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The true physics is that which will, one day,
achieve the inclusion of man in his wholeness

in a coherent picture of the world.

Pierre Teilhard de Chardin

To my daughter Birgitta



Preface to the Third Edition

In the new edition, supplements, additional explanations and cross references
have been added at numerous places, including new formulations of the prob-
lems. Figures have been redrawn and the layout has been improved. In all
these additions I have intended not to change the compact character of the
book. The proofs were read by E. Bauer, E. Marquard–Schmitt and T. Wol-
lenweber. It was a pleasure to work with Dr. R. Hilton, in order to convey
the spirit and the subtleties of the German text into the English translation.
Also, I wish to thank Prof. U. Täuber for occasional advice. Special thanks
go to them and to Mrs. Jörg-Müller for general supervision. I would like to
thank all colleagues and students who have made suggestions to improve the
book, as well as the publisher, Dr. Thorsten Schneider and Mrs. J. Lenz for
the excellent cooperation.

Munich, May 2005 F. Schwabl



Preface to the First Edition

This textbook deals with advanced topics in the field of quantum mechanics,
material which is usually encountered in a second university course on quan-
tum mechanics. The book, which comprises a total of 15 chapters, is divided
into three parts: I. Many-Body Systems, II. Relativistic Wave Equations, and
III. Relativistic Fields. The text is written in such a way as to attach impor-
tance to a rigorous presentation while, at the same time, requiring no prior
knowledge, except in the field of basic quantum mechanics. The inclusion
of all mathematical steps and full presentation of intermediate calculations
ensures ease of understanding. A number of problems are included at the
end of each chapter. Sections or parts thereof that can be omitted in a first
reading are marked with a star, and subsidiary calculations and remarks not
essential for comprehension are given in small print. It is not necessary to
have read Part I in order to understand Parts II and III. References to other
works in the literature are given whenever it is felt they serve a useful pur-
pose. These are by no means complete and are simply intended to encourage
further reading. A list of other textbooks is included at the end of each of
the three parts.

In contrast to Quantum Mechanics I, the present book treats relativistic
phenomena, and classical and relativistic quantum fields.

Part I introduces the formalism of second quantization and applies this
to the most important problems that can be described using simple methods.
These include the weakly interacting electron gas and excitations in weakly
interacting Bose gases. The basic properties of the correlation and response
functions of many-particle systems are also treated here.

The second part deals with the Klein–Gordon and Dirac equations. Im-
portant aspects, such as motion in a Coulomb potential are discussed, and
particular attention is paid to symmetry properties.

The third part presents Noether’s theorem, the quantization of the Klein–
Gordon, Dirac, and radiation fields, and the spin-statistics theorem. The final
chapter treats interacting fields using the example of quantum electrodynam-
ics: S-matrix theory, Wick’s theorem, Feynman rules, a few simple processes
such as Mott scattering and electron–electron scattering, and basic aspects
of radiative corrections are discussed.



X Preface to the First Edition

The book is aimed at advanced students of physics and related disciplines,
and it is hoped that some sections will also serve to augment the teaching
material already available.

This book stems from lectures given regularly by the author at the Tech-
nical University Munich. Many colleagues and coworkers assisted in the pro-
duction and correction of the manuscript: Ms. I. Wefers, Ms. E. Jörg-Müller,
Ms. C. Schwierz, A. Vilfan, S. Clar, K. Schenk, M. Hummel, E. Wefers,
B. Kaufmann, M. Bulenda, J. Wilhelm, K. Kroy, P. Maier, C. Feuchter,
A. Wonhas. The problems were conceived with the help of E. Frey and
W. Gasser. Dr. Gasser also read through the entire manuscript and made
many valuable suggestions. I am indebted to Dr. A. Lahee for supplying
the initial English version of this difficult text, and my special thanks go to
Dr. Roginald Hilton for his perceptive revision that has ensured the fidelity
of the final rendition.

To all those mentioned here, and to the numerous other colleagues who
gave their help so generously, as well as to Dr. Hans-Jürgen Kölsch of
Springer-Verlag, I wish to express my sincere gratitude.

Munich, March 1999 F. Schwabl
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Part I

Nonrelativistic Many-Particle Systems



1. Second Quantization

In this first part, we shall consider nonrelativistic systems consisting of a
large number of identical particles. In order to treat these, we will introduce
a particularly efficient formalism, namely, the method of second quantiza-
tion. Nature has given us two types of particle, bosons and fermions. These
have states that are, respectively, completely symmetric and completely an-
tisymmetric. Fermions possess half-integer spin values, whereas boson spins
have integer values. This connection between spin and symmetry (statistics)
is proved within relativistic quantum field theory (the spin-statistics theo-
rem). An important consequence in many-particle physics is the existence of
Fermi–Dirac statistics and Bose–Einstein statistics. We shall begin in Sect.
1.1 with some preliminary remarks which follow on from Chap. 13 of Quan-
tum Mechanics1. For the later sections, only the first part, Sect. 1.1.1, is
essential.

1.1 Identical Particles, Many-Particle States,
and Permutation Symmetry

1.1.1 States and Observables of Identical Particles

We considerN identical particles (e.g., electrons, π mesons). The Hamiltonian

H = H(1, 2, . . . , N) (1.1.1)

is symmetric in the variables 1, 2, . . . , N . Here 1 ≡ x1, σ1 denotes the position
and spin degrees of freedom of particle 1 and correspondingly for the other
particles. Similarly, we write a wave function in the form

ψ = ψ(1, 2, . . . , N). (1.1.2)

The permutation operator Pij , which interchanges i and j, has the following
effect on an arbitrary N -particle wave function

1 F. Schwabl, Quantum Mechanics, 3rd ed., Springer, Berlin Heidelberg, 2002; in
subsequent citations this book will be referred to as QMI.
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Pijψ(. . . , i, . . . , j, . . . ) = ψ(. . . , j, . . . , i, . . . ). (1.1.3)

We remind the reader of a few important properties of this operator. Since
P 2

ij = 1, the eigenvalues of Pij are ±1. Due to the symmetry of the Hamilto-
nian, one has for every element P of the permutation group

PH = HP. (1.1.4)

The permutation group SN which consists of all permutations of N objects
has N ! elements. Every permutation P can be represented as a product of
transpositions Pij . An element is said to be even (odd) when the number of
Pij ’s is even (odd).2

A few properties :

(i) If ψ(1, . . . , N) is an eigenfunction of H with eigenvalue E, then the same
also holds true for Pψ(1, . . . , N).
Proof. Hψ = Eψ ⇒ HPψ = PHψ = EPψ .

(ii) For every permutation one has

〈ϕ|ψ〉 = 〈Pϕ|Pψ〉 , (1.1.5)

as follows by renaming the integration variables.
(iii) The adjoint permutation operator P † is defined as usual by

〈ϕ|Pψ〉 =
〈
P †ϕ|ψ

〉
.

It follows from this that

〈ϕ|Pψ〉 =
〈
P−1ϕ|P−1Pψ

〉
=
〈
P−1ϕ|ψ

〉
⇒ P † = P−1

and thus P is unitary

P †P = PP † = 1 . (1.1.6)

(iv) For every symmetric operator S(1, . . . , N) we have

[P, S] = 0 (1.1.7)

and

〈Pψi|S |Pψj〉 = 〈ψi|P †SP |ψj〉 = 〈ψi|P †PS |ψj〉 = 〈ψi|S |ψj〉 .
(1.1.8)

This proves that the matrix elements of symmetric operators are the
same in the states ψi and in the permutated states Pψi.

2 It is well known that every permutation can be represented as a product of cycles
that have no element in common, e.g., (124)(35). Every cycle can be written as
a product of transpositions,

e.g. (12) odd
P124 ≡ (124) = (14)(12) even

Each cycle is carried out from left to right (1 → 2, 2 → 4, 4 → 1), whereas the
products of cycles are applied from right to left.
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(v) The converse of (iv) is also true. The requirement that an exchange of
identical particles should not have any observable consequences implies
that all observables O must be symmetric, i.e., permutation invariant.
Proof. 〈ψ|O |ψ〉 = 〈Pψ|O |Pψ〉 = 〈ψ|P †OP |ψ〉 holds for arbitrary ψ.
Thus, P †OP = O and, hence, PO = OP .

Since identical particles are all influenced identically by any physical pro-
cess, all physical operators must be symmetric. Hence, the states ψ and Pψ
are experimentally indistinguishable. The question arises as to whether all
these N ! states are realized in nature.

In fact, the totally symmetric and totally antisymmetric states ψs and ψa

do play a special role. These states are defined by

Pijψ s
a
(. . . , i, . . . , j, . . . ) = ±ψ s

a
(. . . , i, . . . , j, . . . ) (1.1.9)

for all Pij .
It is an experimental fact that there are two types of particle, bosons

and fermions, whose states are totally symmetric and totally antisymmetric,
respectively. As mentioned at the outset, bosons have integral, and fermions
half-integral spin.

Remarks:

(i) The symmetry character of a state does not change in the course of time:

ψ(t) = T e
− i

�

tR
0

dt′H(t′)
ψ(0) ⇒ Pψ(t) = T e

− i
�

tR
0

dt′H(t′)
Pψ(0) ,

(1.1.10)

where T is the time-ordering operator.3

(ii) For arbitrary permutations P , the states introduced in (1.1.9) satisfy

Pψs = ψs (1.1.11)

Pψa = (−1)Pψa ,with (−1)P =
{

1 for even permutations
−1 for odd permutations.

Thus, the states ψs and ψa form the basis of two one-dimensional repre-
sentations of the permutation group SN . For ψs, every P is assigned the
number 1, and for ψa every even (odd) element is assigned the number
1(−1). Since, in the case of three or more particles, the Pij do not all com-
mute with one another, there are, in addition to ψs and ψa, also states
for which not all Pij are diagonal. Due to noncommutativity, a com-
plete set of common eigenfunctions of all Pij cannot exist. These states
are basis functions of higher-dimensional representations of the permu-
tation group. These states are not realized in nature; they are referred to

3 QM I, Chap. 16.
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as parasymmetric states.4. The fictitious particles that are described by
these states are known as paraparticles and are said to obey parastatis-
tics.

1.1.2 Examples

(i) Two particles
Let ψ(1, 2) be an arbitrary wave function. The permutation P12 leads to P12ψ(1, 2)
= ψ(2, 1).
From these two wave functions one can form

ψs = ψ(1, 2) + ψ(2, 1) symmetric

ψa = ψ(1, 2) − ψ(2, 1) antisymmetric
(1.1.12)

under the operation P12. For two particles, the symmetric and antisymmetric states
exhaust all possibilities.

(ii) Three particles
We consider the example of a wave function that is a function only of the spatial
coordinates

ψ(1, 2, 3) = ψ(x1, x2, x3).

Application of the permutation P123 yields

P123 ψ(x1, x2, x3) = ψ(x2, x3, x1),

i.e., particle 1 is replaced by particle 2, particle 2 by particle 3, and parti-

cle 3 by particle 1, e.g., ψ(1, 2, 3) = e−x2
1(x2

2−x2
3)2 , P12 ψ(1, 2, 3) = e−x2

2(x2
1−x2

3)2 ,

P123 ψ(1, 2, 3) = e−x2
2(x2

3−x2
1)2 . We consider

P13P12 ψ(1, 2, 3) = P13 ψ(2, 1, 3) = ψ(2, 3, 1) = P123 ψ(1, 2, 3)
P12P13 ψ(1, 2, 3) = P12 ψ(3, 2, 1) = ψ(3, 1, 2) = P132 ψ(1, 2, 3)
(P123)

2ψ(1, 2, 3) = P123 ψ(2, 3, 1) = ψ(3, 1, 2) = P132 ψ(1, 2, 3).

Clearly, P13P12 �= P12P13 .
S3, the permutation group for three objects, consists of the following 3! = 6 ele-
ments:

S3 = {1, P12, P23, P31, P123, P132 = (P123)
2}. (1.1.13)

We now consider the effect of a permutation P on a ket vector. Thus far we have
only allowed P to act on spatial wave functions or inside scalar products which lead
to integrals over products of spatial wave functions.
Let us assume that we have the state

|ψ〉 =
X

x1,x2,x3

direct productz }| {
|x1〉1 |x2〉2 |x3〉3 ψ(x1, x2, x3) (1.1.14)

4 A.M.L. Messiah and O.W. Greenberg, Phys. Rev. B 136, 248 (1964), B 138,
1155 (1965).
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with ψ(x1, x2, x3) = 〈x1|1 〈x2|2 〈x3|3|ψ〉. In |xi〉j the particle is labeled by the num-
ber j and the spatial coordinate is xi. The effect of P123, for example, is defined as
follows:

P123 |ψ〉 =
X

x1,x2,x3

|x1〉2 |x2〉3 |x3〉1 ψ(x1, x2, x3) .

=
X

x1,x2,x3

|x3〉1 |x1〉2 |x2〉3 ψ(x1, x2, x3)

In the second line the basis vectors of the three particles in the direct product are
once more written in the usual order, 1,2,3. We can now rename the summation
variables according to (x1, x2, x3) → P123(x1, x2, x3) = (x2, x3, x1). From this, it
follows that

P123 |ψ〉 =
X

x1,x2,x3

|x1〉1 |x2〉2 |x3〉3 ψ(x2, x3, x1) .

If the state |ψ〉 has the wave function ψ(x1, x2, x3), then P |ψ〉 has the wave function
Pψ(x1, x2, x3). The particles are exchanged under the permutation. Finally, we
discuss the basis vectors for three particles: If we start from the state |α〉 |β〉 |γ〉 and
apply the elements of the group S3, we get the six states

|α〉 |β〉 |γ〉
P12 |α〉 |β〉 |γ〉 = |β〉 |α〉 |γ〉 , P23 |α〉 |β〉 |γ〉 = |α〉 |γ〉 |β〉 ,
P31 |α〉 |β〉 |γ〉 = |γ〉 |β〉 |α〉 ,
P123 |α〉1 |β〉2 |γ〉3 = |α〉2 |β〉3 |γ〉1 = |γ〉 |α〉 |β〉 ,
P132 |α〉 |β〉 |γ〉 = |β〉 |γ〉 |α〉 .

(1.1.15)

Except in the fourth line, the indices for the particle number are not written out,
but are determined by the position within the product (particle 1 is the first factor,
etc.). It is the particles that are permutated, not the arguments of the states.
If we assume that α, β, and γ are all different, then the same is true of the six
states given in (1.1.15). One can group and combine these in the following way to
yield invariant subspaces 5:

Invariant subspaces:

Basis 1 (symmetric basis):

1√
6
(|α〉 |β〉 |γ〉 + |β〉 |α〉 |γ〉 + |α〉 |γ〉 |β〉 + |γ〉 |β〉 |α〉 + |γ〉 |α〉 |β〉 + |β〉 |γ〉 |α〉)

(1.1.16a)

Basis 2 (antisymmetric basis):

1√
6
(|α〉 |β〉 |γ〉 − |β〉 |α〉 |γ〉 − |α〉 |γ〉 |β〉 − |γ〉 |β〉 |α〉 + |γ〉 |α〉 |β〉 + |β〉 |γ〉 |α〉)

(1.1.16b)

5 An invariant subspace is a subspace of states which transforms into itself on
application of the group elements.
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Basis 3:8<:
1√
12

(2 |α〉 |β〉 |γ〉 + 2 |β〉 |α〉 |γ〉 − |α〉 |γ〉 |β〉 − |γ〉 |β〉 |α〉
− |γ〉 |α〉 |β〉 − |β〉 |γ〉 |α〉)

1
2
(0 + 0 − |α〉 |γ〉 |β〉 + |γ〉 |β〉 |α〉 + |γ〉 |α〉 |β〉 − |β〉 |γ〉 |α〉)

(1.1.16c)

Basis 4:8<:
1
2
(0 + 0 − |α〉 |γ〉 |β〉 + |γ〉 |β〉 |α〉 − |γ〉 |α〉 |β〉 + |β〉 |γ〉 |α〉)
1√
12

(2 |α〉 |β〉 |γ〉 − 2 |β〉 |α〉 |γ〉 + |α〉 |γ〉 |β〉 + |γ〉 |β〉 |α〉
− |γ〉 |α〉 |β〉 − |β〉 |γ〉 |α〉) .

(1.1.16d)

In the bases 3 and 4, the first of the two functions in each case is even under
P12 and the second is odd under P12 (immediately below we shall call these two
functions |ψ1〉 and |ψ2〉). Other operations give rise to a linear combination of the
two functions:

P12 |ψ1〉 = |ψ1〉 , P12 |ψ2〉 = − |ψ2〉 , (1.1.17a)

P13 |ψ1〉 = α11 |ψ1〉 + α12 |ψ2〉 , P13 |ψ2〉 = α21 |ψ1〉 + α22 |ψ2〉 , (1.1.17b)

with coefficients αij . In matrix form, (1.1.17b) can be written as

P13

„ |ψ1〉
|ψ2〉

«
=

„
α11 α12

α21 α22

«„ |ψ1〉
|ψ2〉

«
. (1.1.17c)

The elements P12 and P13 are thus represented by 2 × 2 matrices

P12 =

„
1 0
0 −1

«
, P13 =

„
α11 α12

α21 α22

«
. (1.1.18)

This fact implies that the basis vectors |ψ1〉 and |ψ2〉 span a two-dimensional repre-
sentation of the permutation group S3. The explicit calculation will be carried out
in Problem 1.2.

1.2 Completely Symmetric and Antisymmetric States

We begin with the single-particle states |i〉: |1〉, |2〉, . . . . The single-particle
states of the particles 1, 2, . . . , α, . . . , N are denoted by |i〉1, |i〉2, . . . , |i〉α,
. . . , |i〉N . These enable us to write the basis states of the N -particle system

|i1, . . . , iα, . . . , iN〉 = |i1〉1 . . . |iα〉α . . . |iN 〉N , (1.2.1)

where particle 1 is in state |i1〉1 and particle α in state |iα〉α, etc. (The
subscript outside the ket is the number labeling the particle, and the index
within the ket identifies the state of this particle.)

Provided that the {|i〉} form a complete orthonormal set, the product
states defined above likewise represent a complete orthonormal system in the
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space ofN -particle states. The symmetrized and antisymmetrized basis states
are then defined by

S± |i1, i2, . . . , iN〉 ≡ 1√
N !

∑
P

(±1)PP |i1, i2, . . . , iN〉 . (1.2.2)

In other words, we apply all N ! elements of the permutation group SN of N
objects and, for fermions, we multiply by (−1) when P is an odd permutation.
The states defined in (1.2.2) are of two types: completely symmetric and
completely antisymmetric.

Remarks regarding the properties of S± ≡ 1√
N !

∑
P (±1)PP :

(i) Let SN be the permutation group (or symmetric group) of N quantities.

Assertion: For every element P ∈ SN , one has PSN = SN .
Proof. The set PSN contains exactly the same number of elements as SN and these,

due to the group property, are all contained in SN . Furthermore, the elements of

PSN are all different since, if one had PP1 = PP2, then, after multiplication by

P−1, it would follow that P1 = P2.

Thus

PSN = SNP = SN . (1.2.3)

(ii) It follows from this that

PS+ = S+P = S+ (1.2.4a)

and

PS− = S−P = (−1)PS−. (1.2.4b)

If P is even, then even elements remain even and odd ones remain odd. If
P is odd, then multiplication by P changes even into odd elements and vice
versa.

PS+ |i1, . . . , iN〉 = S+ |i1, . . . , iN〉
PS− |i1, . . . , iN〉 = (−1)PS− |i1, . . . , iN 〉
Special case PijS− |i1, . . . , iN〉 = −S− |i1, . . . , iN〉 .

(iii) If |i1, . . . , iN〉 contains single-particle states occurring more than once,
then S+ |i1, . . . , iN 〉 is no longer normalized to unity. Let us assume that the
first state occurs n1 times, the second n2 times, etc. Since S+ |i1, . . . , iN 〉
contains a total of N ! terms, of which N !

n1!n2!...
are different, each of these

terms occurs with a multiplicity of n1!n2! . . . .

〈i1, . . . , iN |S†
+S+ |i1, . . . , iN 〉 =

1
N !

(n1!n2! . . . )2
N !

n1!n2! . . .
= n1!n2! . . .
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Thus, the normalized Bose basis functions are

S+ |i1, . . . , iN 〉 1√
n1!n2! . . .

=
1√

N !n1!n2! . . .

∑
P

P |i1, . . . , iN〉 . (1.2.5)

(iv) A further property of S± is

S2
± =

√
N !S± , (1.2.6a)

since S2
± = 1√

N !

∑
P (±1)PPS± = 1√

N !

∑
P S± =

√
N !S±. We now consider

an arbitrary N -particle state, which we expand in the basis |i1〉 . . . |iN〉

|z〉 =
∑

i1,... ,iN

|i1〉 . . . |iN〉 〈i1, . . . , iN |z〉︸ ︷︷ ︸
ci1,... ,iN

.

Application of S± yields

S± |z〉 =
∑

i1,... ,iN

S± |i1〉 . . . |iN 〉 ci1,... ,iN =
∑

i1,... ,iN

|i1〉 . . . |iN 〉S±ci1,... ,iN

and further application of 1√
N !
S±, with the identity (1.2.6a), results in

S± |z〉 =
1√
N !

∑
i1,... ,iN

S± |i1〉 . . . |iN〉 (S±ci1,... ,iN ). (1.2.6b)

Equation (1.2.6b) implies that every symmetrized state can be expanded in
terms of the symmetrized basis states (1.2.2).

1.3 Bosons

1.3.1 States, Fock Space, Creation and Annihilation Operators

The state (1.2.5) is fully characterized by specifying the occupation numbers

|n1, n2, . . .〉 = S+ |i1, i2, . . . , iN〉 1√
n1!n2! . . .

. (1.3.1)

Here, n1 is the number of times that the state 1 occurs, n2 the number of
times that state 2 occurs, . . . . Alternatively: n1 is the number of particles in
state 1, n2 is the number of particles in state 2, . . . . The sum of all occupation
numbers ni must be equal to the total number of particles:

∞∑
i=1

ni = N. (1.3.2)
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Apart from this constraint, the ni can take any of the values 0, 1, 2, . . . .
The factor (n1!n2! . . . )−1/2, together with the factor 1/

√
N ! contained in

S+, has the effect of normalizing |n1, n2, . . .〉 (see point (iii)). These states
form a complete set of completely symmetric N -particle states. By linear
superposition, one can construct from these any desired symmetricN -particle
state.

We now combine the states for N = 0, 1, 2, . . . and obtain a complete
orthonormal system of states for arbitrary particle number, which satisfy the
orthogonality relation6

〈n1, n2, . . . |n1
′, n2

′, . . .〉 = δn1,n1′δn2,n2′ . . . (1.3.3a)

and the completeness relation∑
n1,n2,...

|n1, n2, . . .〉 〈n1, n2, . . .| = 11 . (1.3.3b)

This extended space is the direct sum of the space with no particles (vacuum
state |0〉), the space with one particle, the space with two particles, etc.; it is
known as Fock space.

The operators we have considered so far act only within a subspace of
fixed particle number. On applying p,x etc. to an N -particle state, we obtain
again an N -particle state. We now define creation and annihilation operators,
which lead from the space of N -particle states to the spaces of N ±1-particle
states:

a†i |. . . , ni, . . .〉 =
√
ni + 1 |. . . , ni + 1, . . .〉 . (1.3.4)

Taking the adjoint of this equation and relabeling ni → ni
′, we have

〈. . . , ni
′, . . .| ai =

√
ni

′ + 1 〈. . . , ni
′ + 1, . . .| . (1.3.5)

Multiplying this equation by |. . . , ni, . . .〉 yields

〈. . . , ni
′, . . .| ai |. . . , ni, . . .〉 =

√
ni δni

′+1,ni .

Expressed in words, the operator ai reduces the occupation number by 1.
Assertion:

ai |. . . , ni, . . .〉 =
√
ni |. . . , ni − 1, . . .〉 for ni ≥ 1 (1.3.6)

and

ai |. . . , ni = 0, . . .〉 = 0 .

6 In the states |n1, n2, . . .〉, the n1, n2 etc. are arbitrary natural numbers whose
sum is not constrained. The (vanishing) scalar product between states of differing
particle number is defined by (1.3.3a).
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Proof:

ai |. . . , ni, . . .〉 =
∞∑

ni
′=0

|. . . , ni
′, . . .〉 〈. . . , ni

′, . . .| ai |. . . , ni, . . .〉

=
∞∑

ni
′=0

|. . . , ni
′, . . .〉√ni δni

′+1,ni

=
{√

ni |. . . , ni − 1, . . .〉 for ni ≥ 1
0 for ni = 0 .

The operator a†i increases the occupation number of the state |i〉 by 1, and the
operator ai reduces it by 1. The operators a†i and ai are thus called creation
and annihilation operators. The above relations and the completeness of the
states yield the Bose commutation relations

[ai, aj] = 0, [a†i , a
†
j ] = 0, [ai, a

†
j] = δij . (1.3.7a,b,c)

Proof. It is clear that (1.3.7a) holds for i = j, since ai commutes with itself. For
i �= j, it follows from (1.3.6) that

aiaj |. . . , ni, . . . , nj , . . .〉 =
√
ni
√
nj |. . . , ni − 1, . . . , nj − 1, . . .〉

= ajai |. . . , ni, . . . , nj , . . .〉
which proves (1.3.7a) and, by taking the hermitian conjugate, also (1.3.7b).
For j �= i we have

aia
†
j |. . . , ni, . . . , nj , . . .〉 =

√
ni

p
nj + 1 |. . . , ni − 1, . . . , nj + 1, . . .〉

= a†jai |. . . , ni, . . . , nj , . . .〉
and “

aia
†
i − a†iai

”
|. . . , ni, . . . , nj , . . .〉 =`√

ni + 1
√
ni + 1 −√

ni
√
ni

´ |. . . , ni, . . . , nj , . . .〉
hence also proving (1.3.7c).

Starting from the ground state ≡ vacuum state

|0〉 ≡ |0, 0, . . .〉 , (1.3.8)

which contains no particles at all, we can construct all states:
single-particle states

a†i |0〉 , . . . ,

two-particle states

1√
2!

(
a†i
)2

|0〉 , a†ia
†
j |0〉 , . . .
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and the general many-particle state

|n1, n2, . . .〉 =
1√

n1!n2! . . .

(
a†1
)n1
(
a†2
)n2

. . . |0〉 . (1.3.9)

Normalization:

a† |n− 1〉 =
√
n |n〉 (1.3.10)

∥∥a† |n− 1〉
∥∥ =

√
n

|n〉 =
1√
n
a† |n− 1〉 .

1.3.2 The Particle-Number Operator

The particle-number operator (occupation-number operator for the state |i〉)
is defined by

n̂i = a†iai . (1.3.11)

The states introduced above are eigenfunctions of n̂i:

n̂i |. . . , ni, . . .〉 = ni |. . . , ni, . . .〉 , (1.3.12)

and the corresponding eigenvalue of n̂i is the number of particles in the state
i.
The operator for the total number of particles is given by

N̂ =
∑

i

n̂i. (1.3.13)

Applying this operator to the states |. . . , n̂i, . . .〉 yields

N̂ |n1, n2, . . .〉 =

(∑
i

ni

)
|n1, n2, . . .〉 . (1.3.14)

Assuming that the particles do not interact with one another and, further-
more, that the states |i〉 are the eigenstates of the single-particle Hamiltonian
with eigenvalues εi, the full Hamiltonian can be written as

H0 =
∑

i

n̂iεi (1.3.15a)

H0 |n1, . . .〉 =

(∑
i

niεi

)
|n1, . . .〉 . (1.3.15b)

The commutation relations and the properties of the particle-number opera-
tor are analogous to those of the harmonic oscillator.
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1.3.3 General Single- and Many-Particle Operators

Let us consider an operator for the N -particle system which is a sum of
single-particle operators

T = t1 + t2 + . . .+ tN ≡
∑
α

tα , (1.3.16)

e.g., for the kinetic energy tα = p2
α/2m, and for the potential V (xα). For one

particle, the single-particle operator is t. Its matrix elements in the basis |i〉
are

tij = 〈i| t |j〉 , (1.3.17)

such that

t =
∑
i,j

tij |i〉 〈j| (1.3.18)

and for the full N -particle system

T =
∑
i,j

tij

N∑
α=1

|i〉α 〈j|α . (1.3.19)

Our aim is to represent this operator in terms of creation and annihilation op-
erators. We begin by taking a pair of states i, j from (1.3.19) and calculating
their effect on an arbitrary state (1.3.1). We assume initially that j 	= i∑

α

|i〉α 〈j|α |. . . , ni, . . . , nj , . . .〉

≡
∑
α

|i〉α 〈j|α S+ |i1, i2, . . . , iN 〉 1√
n1!n2! . . .

= S+

∑
α

|i〉α 〈j|α |i1, i2, . . . , iN 〉 1√
n1!n2! . . .

.

(1.3.20)

It is possible, as was done in the third line, to bring the S+ to the front, since
it commutes with every symmetric operator. If the state j is nj-fold occupied,
it gives rise to nj terms in which |j〉 is replaced by |i〉. Hence, the effect of
S+ is to yield nj states |. . . , ni + 1, . . . , nj − 1, . . .〉, where the change in the
normalization should be noted. Equation (1.3.20) thus leads on to

= nj

√
ni + 1

1
√
nj

|. . . , ni + 1, . . . , nj − 1, . . .〉

=
√
nj

√
ni + 1 |. . . , ni + 1, . . . , nj − 1, . . .〉

= a†iaj |. . . , ni, . . . , nj , . . .〉 .

(1.3.20′)
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For j = i, the i is replaced ni times by itself, thus yielding

ni |. . . , ni, . . .〉 = a†iai |. . . , ni, . . .〉 .

Thus, for any N , we have

N∑
α=1

|i〉α 〈j|α = a†iaj .

From this it follows that, for any single-particle operator,

T =
∑
i,j

tija
†
iaj , (1.3.21)

where

tij = 〈i| t |j〉 . (1.3.22)

The special case tij = εiδij leads to

H0 =
∑

i

εia
†
iai ,

i.e., to (1.3.15a).
In a similar way one can show that two-particle operators

F =
1
2

∑
α�=β

f (2)(xα,xβ) (1.3.23)

can be written in the form

F =
1
2

∑
i,j,k,m

〈i, j| f (2) |k,m〉 a†ia
†
jamak, (1.3.24)

where

〈i, j| f (2) |k,m〉 =
∫
dx

∫
dyϕ∗

i (x)ϕ
∗
j (y)f (2)(x, y)ϕk(x)ϕm(y) . (1.3.25)

In (1.3.23), the condition α 	= β is required as, otherwise, we would have
only a single-particle operator. The factor 1

2 in (1.3.23) is to ensure that each
interaction is included only once since, for identical particles, symmetry im-
plies that f (2)(xα,xβ) = f (2)(xβ ,xα).
Proof of (1.3.24). One first expresses F in the form

F =
1
2

∑
α�=β

∑
i,j,k,m

〈i, j| f (2) |k,m〉 |i〉α |j〉β 〈k|α 〈m|β .
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We now investigate the action of one term of the sum constituting F :∑
α�=β

|i〉α |j〉β 〈k|α 〈m|β |. . . , ni, . . . , nj , . . . , nk, . . . , nm, . . .〉

= nknm
1√

nk
√
nm

√
ni + 1

√
nj + 1

|. . . , ni + 1, . . . , nj + 1, . . . , nk − 1, . . . , nm − 1, . . .〉
= a†ia

†
jakam |. . . , ni, . . . , nj , . . . , nk, . . . , nm, . . .〉 .

Here, we have assumed that the states are different. If the states are identical,
the derivation has to be supplemented in a similar way to that for the single-
particle operators.

A somewhat shorter derivation, and one which also covers the case of
fermions, proceeds as follows: The commutator and anticommutator for
bosons and fermions, respectively, are combined in the form [ak, aj ]∓ = δkj .∑

α�=β

|i〉α |j〉β 〈k|α 〈m|β =
∑
α�=β

|i〉α 〈k|α |j〉β 〈m|β

=
∑
α,β

|i〉α 〈k|α |j〉β 〈m|β − 〈k|j〉︸ ︷︷ ︸
δkj

∑
α

|i〉α 〈m|α

= a†iaka
†
jam − a†i [ak, a

†
j ]∓︸ ︷︷ ︸

aka†
j∓a†

jak

am

= ±a†ia
†
jakam = a†ia

†
jamak ,

(1.3.26)

for
bosons
fermions.

This completes the proof of the form (1.3.24).

1.4 Fermions

1.4.1 States, Fock Space, Creation and Annihilation Operators

For fermions, one needs to consider the states S− |i1, i2, . . . , iN 〉 defined in
(1.2.2), which can also be represented in the form of a determinant:

S− |i1, i2, . . . , iN〉 =
1√
N !

∣∣∣∣∣∣∣
|i1〉1 |i1〉2 · · · |i1〉N
...

...
. . .

...
|iN 〉1 |iN 〉2 · · · |iN 〉N

∣∣∣∣∣∣∣ . (1.4.1)
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The determinants of one-particle states are called Slater determinants. If any
of the single-particle states in (1.4.1) are the same, the result is zero. This
is a statement of the Pauli principle: two identical fermions must not occupy
the same state. On the other hand, when all the iα are different, then this
antisymmetrized state is normalized to 1. In addition, we have

S− |i2, i1, . . .〉 = −S− |i1, i2, . . .〉 . (1.4.2)

This dependence on the order is a general property of determinants.
Here, too, we shall characterize the states by specifying their occupation

numbers, which can now take the values 0 and 1. The state with n1 particles
in state 1 and n2 particles in state 2, etc., is

|n1, n2, . . .〉 .

The state in which there are no particles is the vacuum state, represented by

|0〉 = |0, 0, . . .〉 .

This state must not be confused with the null vector!
We combine these states (vacuum state, single-particle states, two-particle

states, . . . ) to give a state space. In other words, we form the direct sum
of the state spaces for the various fixed particle numbers. For fermions, this
space is once again known as Fock space. In this state space a scalar product
is defined as follows:

〈n1, n2, . . . |n1
′, n2

′, . . .〉 = δn1,n1′δn2,n2′ . . . ; (1.4.3a)

i.e., for states with equal particle number (from a single subspace), it is iden-
tical to the previous scalar product, and for states from different subspaces
it always vanishes. Furthermore, we have the completeness relation

1∑
n1=0

1∑
n2=0

. . . |n1, n2, . . .〉 〈n1, n2, . . .| = 11 . (1.4.3b)

Here, we wish to introduce creation operators a†i once again. These must
be defined such that the result of applying them twice is zero. Furthermore,
the order in which they are applied must play a role. We thus define the
creation operators a†i by

S− |i1, i2, . . . , iN〉 = a†i1a
†
i2
. . . a†iN

|0〉
S− |i2, i1, . . . , iN〉 = a†i2a

†
i1
. . . a†iN

|0〉 .
(1.4.4)

Since these states are equal except in sign, the anticommutator is

{a†i , a
†
j} = 0, (1.4.5a)
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which also implies the impossibility of double occupation(
a†i
)2

= 0. (1.4.5b)

The anticommutator encountered in (1.4.5a) and the commutator of two
operators A and B are defined by

{A,B} ≡ [A,B]+ ≡ AB +BA
[A,B] ≡ [A,B]− ≡ AB −BA .

(1.4.6)

Given these preliminaries, we can now address the precise formulation. If one
wants to characterize the states by means of occupation numbers, one has to
choose a particular ordering of the states. This is arbitrary but, once chosen,
must be adhered to. The states are then represented as

|n1, n2, . . .〉 =
(
a†1
)n1 (

a†2
)n2

. . . |0〉 , ni = 0, 1. (1.4.7)

The effect of the operator a†i must be

a†i |. . . , ni, . . .〉 = (1 − ni)(−1)
P

j<i nj |. . . , ni + 1, . . .〉 . (1.4.8)

The number of particles is increased by 1, but for a state that is already
occupied, the factor (1−ni) yields zero. The phase factor corresponds to the
number of anticommutations necessary to bring the a†i to the position i.
The adjoint relation reads:

〈. . . , ni, . . .| ai = (1 − ni)(−1)
P

j<i nj 〈. . . , ni + 1, . . .| . (1.4.9)

This yields the matrix element

〈. . . , ni, . . .| ai |. . . , ni
′, . . .〉 = (1 − ni)(−1)

P
j<i njδni+1,ni

′ . (1.4.10)

We now calculate

ai |. . . , ni
′, . . .〉 =

∑
ni

|ni〉 〈ni| ai |ni
′〉

=
∑
ni

|ni〉 (1 − ni)(−1)
P

j<i nj δni+1,ni
′ (1.4.11)

= (2 − ni
′)(−1)

P
j<i nj |. . . , ni

′ − 1, . . .〉ni
′.

Here, we have introduced the factor ni
′, since, for ni

′ = 0, the Kronecker delta
δni+1,ni

′ = 0 always gives zero. The factor ni
′ also ensures that the right-hand

side cannot become equal to the state |. . . , ni
′ − 1, . . .〉 = |. . . ,−1, . . .〉.

To summarize, the effects of the creation and annihilation operators are

a†i |. . . , ni, . . .〉 = (1 − ni)(−1)
P

j<i nj |. . . , ni + 1, . . .〉
ai |. . . , ni, . . .〉 = ni(−1)

P
j<i nj |. . . , ni − 1, . . .〉 .

(1.4.12)
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It follows from this that

aia
†
i |. . . , ni, . . .〉 = (1 − ni)(−1)2

P
j<i nj (ni + 1) |. . . , ni, . . .〉

= (1 − ni) |. . . , ni, . . .〉 (1.4.13a)

a†iai |. . . , ni, . . .〉 = ni(−1)2
P

j<i nj (1 − ni + 1) |. . . , ni, . . .〉
= ni |. . . , ni, . . .〉 , (1.4.13b)

since for ni ∈ {0, 1} we have n2
i = ni and (−1)2

P
j<i nj = 1. On account

of the property (1.4.13b) one can regard a†iai as the occupation-number op-
erator for the state |i〉. By taking the sum of (1.4.13a,b), one obtains the
anticommutator

[ai, a
†
i ]+ = 1.

In the anticommutator [ai, a
†
j]+ with i 	= j, the phase factor of the two terms

is different:

[ai, a
†
j]+ ∝ (1 − nj)ni(1 − 1) = 0 .

Likewise, [ai, aj ]+ for i 	= j, also has different phase factors in the two sum-
mands and, since aiai |. . . , ni, . . .〉 ∝ ni(ni−1) = 0, one obtains the following
anticommutation rules for fermions:

[ai, aj]+ = 0, [a†i , a
†
j ]+ = 0, [ai, a

†
j ]+ = δij . (1.4.14)

1.4.2 Single- and Many-Particle Operators

For fermions, too, the operators can be expressed in terms of creation and
annihilation operators. The form is exactly the same as for bosons, (1.3.21)
and (1.3.24). Now, however, one has to pay special attention to the order of
the creation and annihilation operators.
The important relationX

α

|i〉α 〈j|α = a†iaj , (1.4.15)

from which, according to (1.3.26), one also obtains two-particle (and many-particle)
operators, can be proved as follows: Given the state S− |i1, i2, . . . , iN 〉, we assume,
without loss of generality, the arrangement to be i1 < i2 < . . . < iN . Application
of the left-hand side of (1.4.15) givesX

α

|i〉α 〈j|α S− |i1, i2, . . . , iN〉 = S−
X

α

|i〉α 〈j|α |i1, i2, . . . , iN〉

= nj(1 − ni)S− |i1, i2, . . . , iN 〉 ˛̨
j→i

.

The symbol |j→i implies that the state |j〉 is replaced by |i〉. In order to bring the
i into the right position, one has to carry out

P
k<j nk +

P
k<i nk permutations of

rows for i ≤ j and
P

k<j nk +
P

k<i nk − 1 permutations for i > j.
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This yields the same phase factor as does the right-hand side of (1.4.15):

a†iaj |. . . , ni, . . . , nj , . . .〉 = nj(−1)
P

k<j nka†i |. . . , ni, . . . , nj − 1, . . .〉

= ni(1 − ni)(−1)
P

k<i nk+
P

k<j nk−δi>j |. . . , ni + 1, . . . , nj − 1, . . .〉 .

In summary, for bosons and fermions, the single- and two-particle operators
can be written, respectively, as

T =
∑
i,j

tija
†
iaj (1.4.16a)

F =
1
2

∑
i,j,k,m

〈i, j| f (2) |k,m〉 a†ia
†
jamak, (1.4.16b)

where the operators ai obey the commutation relations (1.3.7) for bosons
and, for fermions, the anticommutation relations (1.4.14). The Hamiltonian
of a many-particle system with kinetic energy T , potential energy U and a
two-particle interaction f (2) has the form

H =
∑
i,j

(tij + Uij)a
†
iaj +

1
2

∑
i,j,k,m

〈i, j| f (2) |k,m〉a†ia
†
jamak , (1.4.16c)

where the matrix elements are defined in (1.3.21, 1.3.22, 1.3.25) and, for
fermions, particular attention must be paid to the order of the two annihila-
tion operators in the two-particle operator.

From this point on, the development of the theory can be presented simulta-
neously for bosons and fermions.

1.5 Field Operators

1.5.1 Transformations Between Different Basis Systems

Consider two basis systems {|i〉} and {|λ〉}. What is the relationship between
the operators ai and aλ?
The state |λ〉 can be expanded in the basis {|i〉}:

|λ〉 =
∑

i

|i〉 〈i|λ〉 . (1.5.1)

The operator a†i creates particles in the state |i〉. Hence, the superposition∑
i〈i|λ〉 a

†
i yields one particle in the state |λ〉. This leads to the relation

a†λ =
∑

i

〈i|λ〉 a†i (1.5.2a)
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with the adjoint

aλ =
∑

i

〈λ|i〉 ai. (1.5.2b)

The position eigenstates |x〉 represent an important special case

〈x|i〉 = ϕi(x), (1.5.3)

where ϕi(x) is the single-particle wave function in the coordinate representa-
tion. The creation and annihilation operators corresponding to the eigenstates
of position are called field operators.

1.5.2 Field Operators

The field operators are defined by

ψ(x) =
∑

i

ϕi(x)ai (1.5.4a)

ψ†(x) =
∑

i

ϕ∗
i (x)a†i . (1.5.4b)

The operator ψ†(x) (ψ(x)) creates (annihilates) a particle in the position
eigenstate |x〉, i.e., at the position x. The field operators obey the following
commutation relations:

[ψ(x), ψ(x′)]± = 0 , (1.5.5a)
[ψ†(x), ψ†(x′)]± = 0 , (1.5.5b)

[ψ(x), ψ†(x′)]± =
∑
i,j

ϕi(x)ϕ∗
j (x

′)[ai, a
†
j ]± (1.5.5c)

=
∑
i,j

ϕi(x)ϕ∗
j (x

′)δij = δ(3)(x − x′) ,

where the upper sign applies to fermions and the lower one to bosons.
We shall now express a few important operators in terms of the field

operators.

Kinetic energy7∑
i,j

a†iTijaj =
∑
i,j

∫
d3xa†iϕ

∗
i (x)

(
− �

2

2m
∇2

)
ϕj(x)aj

=
�

2

2m

∫
d3x∇ψ†(x)∇ψ(x) (1.5.6a)

7 The second line in (1.5.6a) holds when the wave function on which the oper-
ator acts decreases sufficiently fast at infinity that one can neglect the surface
contribution to the partial integration.
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Single-particle potential∑
i,j

a†iUijaj =
∑
i,j

∫
d3xa†iϕ

∗
i (x)U(x)ϕj(x)aj

=
∫
d3xU(x)ψ†(x)ψ(x) (1.5.6b)

Two-particle interaction or any two-particle operator

1
2

∑
i,j,k,m

∫
d3xd3x′ ϕ∗

i (x)ϕ∗
j (x

′)V (x,x′)ϕk(x)ϕm(x′)a†ia
†
jamak

=
1
2

∫
d3xd3x′ V (x,x′)ψ†(x)ψ†(x′)ψ(x′)ψ(x) (1.5.6c)

Hamiltonian

H =
∫
d3x

(
�

2

2m
∇ψ†(x)∇ψ(x) + U(x)ψ†(x)ψ(x)

)
+

1
2

∫
d3xd3x′ ψ†(x)ψ†(x′)V (x,x′)ψ(x′)ψ(x) (1.5.6d)

Particle density (particle-number density)
The particle-density operator is given by

n(x) =
∑

α

δ(3)(x − xα) . (1.5.7)

Hence its representation in terms of creation and annihilation operators is

n(x) =
∑
i,j

a†iaj

∫
d3y ϕ∗

i (y)δ(3)(x − y)ϕj(y)

=
∑
i,j

a†iajϕ
∗
i (x)ϕj(x). (1.5.8)

This representation is valid in any basis and can also be expressed in terms
of the field operators

n(x) = ψ†(x)ψ(x). (1.5.9)

Total-particle-number operator

N̂ =
∫
d3xn(x) =

∫
d3xψ†(x)ψ(x) . (1.5.10)

Formally, at least, the particle-density operator (1.5.9) of the many-
particle system looks like the probability density of a particle in the state
ψ(x). However, the analogy is no more than a formal one since the former is
an operator and the latter a complex function. This formal correspondence
has given rise to the term second quantization, since the operators, in the cre-
ation and annihilation operator formalism, can be obtained by replacing the
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wave function ψ(x) in the single-particle densities by the operator ψ(x). This
immediately enables one to write down, e.g., the current-density operator
(see Problem 1.6)

j(x) =
�

2im
[ψ†(x)∇ψ(x) − (∇ψ†(x))ψ(x)] . (1.5.11)

The kinetic energy (1.5.12) has a formal similarity to the expectation value
of the kinetic energy of a single particle, where, however, the wavefunction is
replaced by the field operator.
Remark. The representations of the operators in terms of field operators that we
found above could also have been obtained directly. For example, for the particle-
number densityZ

d3ξd3ξ′ ψ†(ξ) 〈ξ| δ(3)(x − bξ)
˛̨
ξ′¸ψ(ξ′) = ψ†(x)ψ(x), (1.5.12)

where bξ is the position operator of a single particle and where we have made use of
the fact that the matrix element within the integral is equal to δ(3)(x−ξ)δ(3)(ξ−ξ′).
In general, for a k-particle operator Vk:Z

d3ξ1 . . . d
3ξkd

3ξ1
′ . . . d3ξk

′ ψ†(ξ1) . . . ψ
†(ξk)

〈ξ1ξ2 . . . ξk|Vk

˛̨
ξ′
1ξ

′
2 . . . ξ

′
k

¸
ψ(ξ′

k) . . . ψ(ξ′
1). (1.5.13)

1.5.3 Field Equations

The equations of motion of the field operators ψ(x, t) in the Heisenberg rep-
resentation

ψ(x, t) = eiHt/� ψ(x, 0) e−iHt/� (1.5.14)

read, for the Hamiltonian (1.5.6d),

i�
∂

∂t
ψ(x, t) =

(
− �

2

2m
∇2 + U(x)

)
ψ(x, t) +

+
∫
d3x′ ψ†(x′, t)V (x,x′)ψ(x′, t)ψ(x, t). (1.5.15)

The structure is that of a nonlinear Schrödinger equation, another reason for
using the expression “second quantization”.
Proof: One starts from the Heisenberg equation of motion

i�
∂

∂t
ψ(x, t) = −[H,ψ(x, t)] = −eiHt/� [H,ψ(x, 0)] e−iHt/� . (1.5.16)

Using the relation

[AB,C]− = A[B,C]± ∓ [A,C]±B
Fermi
Bose , (1.5.17)



24 1. Second Quantization

one obtains for the commutators with the kinetic energy:∫
d3x′

�
2

2m
[∇′ψ†(x′)∇′ψ(x′), ψ(x)]

=
∫
d3x′

�
2

2m
(−∇′δ(3)(x′ − x) · ∇′ψ(x′)) =

�
2

2m
∇2ψ(x) ,

the potential energy:∫
d3x′ U(x′)[ψ†(x′)ψ(x′), ψ(x)]

=
∫
d3x′ U(x′)(−δ(3)(x′ − x)ψ(x′)) = − U(x)ψ(x) ,

and the interaction:
1
2

[∫
d3x′d3x′′ ψ†(x′)ψ†(x′′)V (x′,x′′)ψ(x′′)ψ(x′), ψ(x)

]
=

1
2

∫
d3x′

∫
d3x′′ [ψ†(x′)ψ†(x′′), ψ(x)]V (x′,x′′)ψ(x′′)ψ(x′)

=
1
2

∫
d3x′

∫
d3x′′

{
±δ(3)(x′′ − x)ψ†(x′) − ψ†(x′′)δ(3)(x′ − x)

}
× V (x′,x′′)ψ(x′′)ψ(x′)

= −
∫
d3x′ ψ†(x′)V (x,x′)ψ(x′)ψ(x).

In this last equation, (1.5.17) and (1.5.5c) are used to proceed from the second
line. Also, after the third line, in addition to ψ(x′′)ψ(x′) = ∓ψ(x′)ψ(x′′), the
symmetry V (x,x′) = V (x′,x) is exploited. Together, these expressions give
the equation of motion (1.5.15) of the field operator, which is also known as
the field equation.
The equation of motion for the adjoint field operator reads:

i�ψ̇†(x, t) = −
{
− �

2

2m
∇2 + U(x)

}
ψ†(x, t)

−
∫
d3x′ ψ†(x, t)ψ†(x′, t)V (x,x′)ψ(x′, t), (1.5.18)

where it is assumed that V (x,x′)∗ = V (x,x′).
If (1.5.15) is multiplied from the left by ψ†(x, t) and (1.5.18) from the right
by ψ(x, t), one obtains the equation of motion for the density operator

ṅ(x, t) =
(
ψ†ψ̇ + ψ̇†ψ

)
=

1
i�

(
− �

2

2m

){
ψ†∇2ψ −

(
∇2ψ†)ψ} ,

and thus

ṅ(x) = −∇j(x), (1.5.19)

where j(x) is the particle current density defined in (1.5.11). Equation (1.5.19)
is the continuity equation for the particle-number density.
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1.6 Momentum Representation

1.6.1 Momentum Eigenfunctions and the Hamiltonian

The momentum representation is particularly useful in translationally in-
variant systems. We base our considerations on a rectangular normalization
volume of dimensions Lx, Ly and Lz. The momentum eigenfunctions, which
are used in place of ϕi(x), are normalized to 1 and are given by

ϕk(x) = eik·x/
√
V (1.6.1)

with the volume V = LxLyLz. By assuming periodic boundary conditions

eik(x+Lx) = eikx, etc. , (1.6.2a)

the allowed values of the wave vector k are restricted to

k = 2π
(
nx

Lx
,
ny

Ly
,
nz

Lz

)
, nx = 0,±1, . . . , ny = 0,±1, . . . , nz = 0,±1, . . . .

(1.6.2b)

The eigenfunctions (1.6.1) obey the following orthonormality relation:∫
d3xϕ∗

k(x)ϕk′(x) = δk,k′ . (1.6.3)

In order to represent the Hamiltonian in second-quantized form, we need
the matrix elements of the operators that it contains. The kinetic energy is
proportional to∫

ϕ∗
k′
(
−∇2

)
ϕkd

3x = δk,k′k2 (1.6.4a)

and the matrix element of the single-particle potential is given by the Fourier
transform of the latter:∫

ϕ∗
k′(x)U(x)ϕk(x)d3x =

1
V
Uk′−k. (1.6.4b)

For two-particle potentials V (x − x′) that depend only on the relative coor-
dinates of the two particles, it is useful to introduce their Fourier transform

Vq =
∫
d3xe−iq·xV (x) , (1.6.5a)

and also its inverse

V (x) =
1
V

∑
q

Vqeiq·x . (1.6.5b)
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For the matrix element of the two-particle potential, one then finds

〈p′,k′|V (x − x′) |p,k〉

=
1
V 2

∫
d3xd3x′e−ip′·xe−ik′·x′

V (x − x′)eik·x′
eip·x

=
1
V 3

∑
q

Vq

∫
d3x

∫
d3x′e−ip′·x−ik′·x′+iq·(x−x′)+ik·x′+ip·x

=
1
V 3

∑
q

VqV δ−p′+q+p,0V δ−k′−q+k,0.

(1.6.5c)

Inserting (1.6.5a,b,c) into the general representation (1.4.16c) of the Hamil-
tonian yields:

H =
∑
k

(�k)2

2m
a†kak +

1
V

∑
k′,k

Uk′−ka
†
k′ak +

1
2V

∑
q,p,k

Vqa
†
p+qa

†
k−qakap.

(1.6.6)

The creation operators of a particle with wave vector k (i.e., in the state ϕk)
are denoted by a†k and the annihilation operators by ak. Their commutation
relations are

[ak, ak′ ]± = 0, [a†k, a
†
k′ ]± = 0 and [ak, a

†
k′ ]± = δkk′ . (1.6.7)

The interaction term allows a pictorial interpretation. It causes the annihila-
tion of two particles with wave vectors k and p and creates in their place two
particles with wave vectors k−q and p+q. This is represented in Fig. 1.1a.
The full lines denote the particles and the dotted lines the interaction po-
tential Vq. The amplitude for this transition is proportional to Vq. This dia-

k p

k − q p + q
Vq

a)
k p

k − q1 p + q1

Vq1

Vq2

b)

k − q1 − q2 p + q1 + q2

Fig. 1.1. a) Diagrammatic representation of the interaction term in the Hamilto-
nian (1.6.6) b) The diagrammatic representation of the double scattering of two
particles
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grammatic form is a useful way of representing the perturbation-theoretical
description of such processes. The double scattering of two particles can be
represented as shown in Fig. 1.1b, where one must sum over all intermediate
states.

1.6.2 Fourier Transformation of the Density

The other operators considered in the previous section can also be expressed
in the momentum representation. As an important example, we shall look
at the density operator. The Fourier transform of the density operator8 is
defined by

n̂q =
∫
d3xn(x)e−iq·x =

∫
d3xψ†(x)ψ(x)e−iq·x . (1.6.8)

From (1.5.4a,b) we insert

ψ(x) =
1√
V

∑
p

eip·xap, ψ†(x) =
1√
V

∑
p

e−ip·xa†p , (1.6.9)

which yields

n̂q =
∫
d3x

1
V

∑
p

∑
k

e−ip·xa†peik·xake−iq·x ,

and thus, with (1.6.3), one finally obtains

n̂q =
∑
p

a†pap+q . (1.6.10)

We have thus found the Fourier transform of the density operator in the
momentum representation.

The occupation-number operator for the state |p〉 is also denoted by
n̂p ≡ a†pap. It will always be clear from the context which one of the two
meanings is meant. The operator for the total number of particles (1.3.13) in
the momentum representation reads

N̂ =
∑
p

a†pap . (1.6.11)

1.6.3 The Inclusion of Spin

Up until now, we have not explicitly considered the spin. One can think of
it as being included in the previous formulas as part of the spatial degree
8 The hat on the operator, as used here for n̂q and previously for the occupation-

number operator, will only be retained where it is needed to avoid confusion.
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of freedom x. If the spin is to be given explicitly, then one has to make the
replacements ψ(x) → ψσ(x) and ap → apσ and, in addition, introduce the
sum over σ, the z component of the spin. The particle-number density, for
example, then takes the form

n(x) =
∑

σ

ψ†
σ(x)ψσ(x)

n̂q =
∑
p,σ

a†pσap+qσ .
(1.6.12)

The Hamiltonian for the case of a spin-independent interaction reads:

H =
∑

σ

∫
d3x(

�
2

2m
∇ψ†

σ∇ψσ + U(x)ψ†
σ(x)ψσ(x))

+
1
2

∑
σ,σ′

∫
d3xd3x′ψ†

σ(x)ψ†
σ′ (x′)V (x,x′)ψσ′ (x′)ψσ(x) , (1.6.13)

the corresponding form applying in the momentum representation.
For spin- 1

2 fermions, the two possible spin quantum numbers for the z

component of S are ±�

2 . The spin density operator

S(x) =
N∑

α=1

δ(x − xα)Sα (1.6.14a)

is, in this case,

S(x) =
�

2

∑
σ,σ′

ψ†
σ(x)σσσ′ψσ′(x), (1.6.14b)

where σσσ′ are the matrix elements of the Pauli matrices.
The commutation relations of the field operators and the operators in the

momentum representation read:

[ψσ(x), ψσ′ (x′)]± = 0 , [ψ†
σ(x), ψ†

σ′ (x′)]± = 0

[ψσ(x), ψ†
σ′ (x′)]± = δσσ′δ(x − x′)

(1.6.15)

and

[akσ, ak′σ′ ]± = 0, [a†kσ, a
†
k′σ′ ]± = 0, [akσ, a

†
k′σ′ ]± = δkk′δσσ′ . (1.6.16)

The equations of motion are given by

i�
∂

∂t
ψσ(x, t) =

(
− �

2

2m
∇2 + U(x)

)
ψσ(x, t)

+
∑
σ′

∫
d3x′ ψ†

σ′(x′, t)V (x,x′)ψσ′ (x′, t)ψσ(x, t) (1.6.17)
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and

i�ȧkσ(t) =
(�k)2

2m
akσ(t) +

1
V

∑
k′

Uk−k′ak′σ(t)

+
1
V

∑
p,q,σ′

Vqa
†
p+qσ′(t)apσ′(t)ak+qσ(t) . (1.6.18)

Problems

1.1 Show that the fully symmetrized (antisymmetrized) basis functions

S±ϕi1(x1)ϕi2(x2) ... ϕiN (xN)

are complete in the space of the symmetric (antisymmetric) wave functions
ψs/a(x1, x2, ... , xN).

Hint: Assume that the product states ϕi1(x1) ... ϕiN (xN), composed of the
single-particle wave functions ϕi(x), form a complete basis set, and express ψs/a

in this basis. Show that the expansion coefficients c
s/a
i1,...,iN

possess the symmetry

property 1√
N!
S±c

s/a
i1,...,iN

= c
s/a
i1,...,iN

. The above assertion then follows directly by

utilizing the identity 1√
N!
S±ψs/a = ψs/a demonstrated in the main text.

1.2 Consider the three-particle state |α〉|β〉|γ〉, where the particle number is deter-
mined by its position in the product.
a) Apply the elements of the permutation group S3. One thereby finds six different
states, which can be combined into four invariant subspaces.
b) Consider the following basis, given in (1.1.16c), of one of these subspaces, com-
prising two states:

|ψ1〉 =
1√
12

 
2 |α〉|β〉|γ〉 +2 |β〉|α〉|γ〉 −|α〉|γ〉|β〉 −|γ〉|β〉|α〉

−|γ〉|α〉|β〉 −|β〉|γ〉|α〉
!
,

|ψ2〉 =
1

2

 
0+0 −|α〉|γ〉|β〉 +|γ〉|β〉|α〉 +|γ〉|α〉|β〉 −|β〉|γ〉|α〉

!
and find the corresponding two-dimensional representation of S3.

1.3 For a simple harmonic oscillator, [a, a†] = 1, (or for the equivalent Bose opera-
tor) prove the following relations:

[a, eαa†
] = αeαa†

, e−αa†
a eαa†

= a+ α ,

e−αa†
eβa eαa†

= eβαeβa , eαa†a a e−αa†a = e−α a ,

where α and β are complex numbers.

Hint:
a) First demonstrate the validity of the following relationsh

a, f(a†)
i

=
∂

∂a†
f(a†) ,

h
a†, f(a)

i
= − ∂

∂a
f(a) .
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b) In some parts of the problem it is useful to consider the left-hand side of the
identity as a function of α, to derive a differential equation for these functions, and
then to solve the corresponding initial value problem.
c) The Baker–Hausdorff identity

eABe−A = B + [A,B] +
1

2!
[A, [A,B]] + ...

can likewise be used to prove some of the above relations.

1.4 For independent harmonic oscillators (or noninteracting bosons) described by
the Hamiltonian

H =
X

i

εia
†
iai

determine the equation of motion for the creation and annihilation operators in the
Heisenberg representation,

ai(t) = eiHt/�aie
−iHt/� .

Give the solution of the equation of motion by (i) solving the corresponding initial
value problem and (ii) by explicitly carrying out the commutator operations in the

expression ai(t) = eiHt/�aie
−iHt/�.

1.5 Consider a two-particle potential V (x′,x′′) symmetric in x′ and x′′. Calculate
the commutator

1

2

»Z
d3x′

Z
d3x′′ψ†(x′)ψ†(x′′)V (x′,x′′)ψ(x′′)ψ(x′), ψ(x)

–
,

for fermionic and bosonic field operators ψ(x).

1.6 (a) Verify, for an N-particle system, the form of the current-density operator,

j(x) =
1

2

NX
α=1

npα

m
, δ(x − xα)

o
in second quantization. Use a basis consisting of plane waves. Also give the form
of the operator in the momentum representation, i.e., evaluate the integral, j(q) =R
d3xe−iq·xj(x).

(b) For spin- 1
2

particles, determine, in the momentum representation, the spin-
density operator,

S(x) =
NX

α=1

δ(x− xα)Sα ,

in second quantization.
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1.7 Consider electrons on a lattice with the single-particle wave function localized
at the lattice point Ri given by ϕiσ(x) = χσϕi(x) with ϕi(x) = φ(x − Ri). A
Hamiltonian, H = T + V , consisting of a spin-independent single-particle opera-
tor T =

PN
α=1 tα and a two-particle operator V = 1

2

P
α�=β V

(2)(xα,xβ) can be

represented in the basis {ϕiσ} by

H =
X
i,j

X
σ

tija
†
iσajσ +

1

2

X
i,j,k,l

X
σ,σ′
Vijkla

†
iσa

†
jσ′alσ′akσ ,

where the matrix elements are given by tij = 〈i | t | j〉 and Vijkl = 〈ij | V (2) | kl〉. If
one assumes that the overlap of the wave functions ϕi(x) at different lattice points
is negligible, one can make the following approximations:

tij =

8><>:
w for i = j ,

t for i and j adjacent sites

0 otherwise

,

Vijkl = Vijδilδjk with Vij =

Z
d3x

Z
d3y | ϕi(x) |2 V (2)(x,y) | ϕj(y) |2 .

(a) Determine the matrix elements Vij for a contact potential

V =
λ

2

X
α�=β

δ(xα − xβ)

between the electrons for the following cases: (i) “on-site” interaction i = j, and
(ii) nearest-neighbor interaction, i.e., i and j adjacent lattice points. Assume a
square lattice with lattice constant a and wave functions that are Gaussians,
ϕ(x) = 1

∆3/2π3/4 exp{−x2/2∆2}.
(b) In the limit ∆ � a, the “on-site” interaction U = Vii is the dominant con-
tribution. Determine for this limiting case the form of the Hamiltonian in second
quantization. The model thereby obtained is known as the Hubbard model.

1.8 Show, for bosons and fermions, that the particle-number operator N̂ =
P

i a
†
iai

commutes with the Hamiltonian

H =
X
ij

a†i 〈i| T |j〉 aj +
1

2

X
ijkl

a†ia
†
j 〈ij| V |kl〉 alak .

1.9 Determine, for bosons and fermions, the thermal expectation value of the
occupation-number operator n̂i for the state |i〉 in the grand canonical ensemble,
whose density matrix is given by

ρG =
1

ZG
e−β(H−µN̂)

with ZG = Tr
“
e−β(H−µN̂)

”
.
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1.10 (a) Show, by verifying the relation

n(x) |φ〉 = δ(x− x′) |φ〉 ,
that the state

|φ〉 = ψ†(x′) |0〉
(|0〉 = vacuum state) describes a particle with the position x′.
(b) The operator for the total particle number reads:

N̂ =

Z
d3xn(x) .

Show that for spinless particles

[ψ(x), N̂ ] = ψ(x) .



2. Spin-1/2 Fermions

In this and the following chapters, we shall apply the second quantization
formalism to a number of simple problems. To begin with, we consider a gas of
noninteracting spin-1

2 fermions for which we will obtain correlation functions
and, finally, some properties of the electron gas that take into account the
Coulomb interaction.

2.1 Noninteracting Fermions

2.1.1 The Fermi Sphere, Excitations

In the ground state ofN free fermions, |φ0〉, all single-particle states lie within
the Fermi sphere (Fig. 2.1), i.e., states with wave number up to kF , the Fermi
wave number, are occupied:

|φ0〉 =
∏
p

|p|<kF

∏
σ

a†pσ |0〉 . (2.1.1)

kF

Fig. 2.1. The Fermi sphere

The expectation value of the particle-number operator in momentum space
is

np,σ = 〈φ0| a†pσapσ |φ0〉 =
{

1 |p| ≤ kF

0 |p| > kF
. (2.1.2)

For |p| > kF , we have apσ |φ0〉 =
∏
p′

|p′|<kF

∏
σ′
a†p′σ′apσ |0〉 = 0. According to

(2.1.2), the total particle number is related to the Fermi momentum by1

1 P
k f(k) =

P
k

∆

( 2π
L )3

f(k) =
`

L
2π

´3 R
d3kf(k). The volume of k-space per point

is ∆ =
`

2π
L

´3
, c. f. Eq. (1.6.2b).
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N =
∑
p,σ

npσ = 2
∑

|p|≤kF

1 = 2V
∫ kF

0

d3p

(2π)3
=
V k3

F

3π2
, (2.1.3)

whence it follows that

k3
F =

3π2N

V
= 3π2n . (2.1.4)

Here, kF is the Fermi wave vector, pF = �kF the Fermi momentum2, and
n = N

V the mean particle density. The Fermi energy is defined by εF =
(�kF )2/(2m).
For the x-dependence of the ground-state expectation value of the particle
density, one obtains

〈n(x)〉 =
∑

σ

〈φ0|ψ†
σ(x)ψσ(x) |φ0〉

=
∑

σ

∑
p,p′

e−ip·xeip′·x

V
〈φ0| a†pσap′σ |φ0〉

=
∑

σ

∑
p,p′

e−i(p−p′)·x

V
δpp′npσ

=
1
V

∑
p,σ

npσ = n.

As was to be expected, the density is homogeneous.
The simplest excitation of a degenerate electron gas is obtained by pro-

moting an electron from a state within the Fermi sphere to a state outside this
sphere (see Fig. 2.2). One also describes this as the creation of an electron–
hole pair; its state is written as

|φ〉 = a†k2σ2
ak1σ1 |φ0〉 . (2.1.5)

k1σ1

k2σ2

Fig. 2.2. Excited state of a degenerate electron gas; electron–
hole pair

The absence of an electron in the state |k1, σ1〉 has an effect similar to
that of a positively charged particle (hole). If one defines bkσ ≡ a†−k,−σ and
b†kσ ≡ a−k,−σ, then the hole annihilation and creation operators b and b†

likewise satisfy anticommutation relations.
2 We denote wave vectors by p,q,k etc. Solely pF has the dimension of “momen-

tum”.
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2.1.2 Single-Particle Correlation Function

The correlation function of the field operators in the ground state

Gσ(x − x′) = 〈φ0|ψ†
σ(x)ψσ(x′) |φ0〉 (2.1.6)

signifies the probability amplitude that the annihilation of a particle at x′ and
the creation of a particle at x once more yields the initial state. The function
Gσ(x−x′) can also be viewed as the probability amplitude for the transition
of the state ψσ(x′) |φ0〉 (in which one particle at x′ has been removed) into
ψσ(x) |φ0〉 (in which one particle at x has been removed).

Gσ(x − x′) = 〈φ0|
∑
p,p′

1
V

e−ip·x+ip′·x′
a†pσap′σ |φ0〉

=
1
V

∑
p

e−ip·(x−x′)np,σ =
∫

d3p

(2π)3
e−ip·(x−x′)Θ(kF − p)

=
1

(2π)2

∫ kF

0

dp p2

∫ 1

−1

dηeip|x−x′|η,

(2.1.7)

where we have used polar coordinates and introduced the abbreviation η =
cos θ. The integration over η yields eipr−e−ipr

ipr with r = |x − x′|. Thus, we
have

Gσ(x − x′) =
1

2π2r

∫ kF

0

dp p sin pr =
1

2π2r3
(sin kF r − kF r cos kF r)

=
3n
2

sinkF r − kF r cos kF r

(kF r)3

The single-particle correlation function oscillates with a characteristic period
of 1/kF under an envelope which falls off to zero (see Fig. 2.3). The values
at r = 0 and for r → ∞ are Gσ(r = 0) = n

2 , limr→∞Gσ(r) = 0; the zeros
are determined by tan x = x, i.e., for large x they are at nπ

2 .

k

σ(x − x′)

π
Fig. 2.3. Correlation function
Gσ(x − x′) as a function of kF r
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Remark. In relation to the first interpretation of Gσ(x) given above, it should be
noted that the state ψσ(x′) |φ0〉 is not normalized,

〈φ0|ψ†
σ(x′)ψσ(x′) |φ0〉 =

n

2
. (2.1.8)

The probability amplitude is obtained from the single-particle correlation function

by multiplying the latter by the factor
`

n
2

´−1
. Now

Gσ(x− x′) = 〈φ0|ψ†
σ(x)ψσ(x′) |φ0〉 =

n

2

〈φ0|ψ†
σ(x)p
n/2

· ψσ(x′) |φ0〉p
n/2

. (2.1.9)

The probability amplitude for a transition from the (normalized) state ψσ(x′)|φ0〉√
n/2

to the (normalized) state ψσ(x)|φ0〉√
n/2

is equal to the overlap of the two states.

2.1.3 Pair Distribution Function

As a result of the Pauli principle, even noninteracting fermions are corre-
lated with one another when they have the same spin. The Pauli principle
forbids two fermions with the same spin from possessing the same spatial
wave function. Hence, such fermions have a tendency to avoid one another
and the probability of their being found close together is relatively small. The
Coulomb repulsion enhances this tendency. In the following, however, we will
consider only noninteracting fermions.

A measure of the correlations just descibed is the pair distribution func-
tion, which can be introduced as follows: Suppose that at point x a particle
is removed from the state |φ0〉 so as to yield the (N − 1)-particle state

|φ′(x, σ)〉 = ψσ(x) |φ0〉 . (2.1.10)

The density distribution for this state is

〈φ′(x, σ)|ψ†
σ′(x′)ψσ′ (x′) |φ′(x, σ)〉

= 〈φ0|ψ†
σ(x)ψ†

σ′ (x′)ψσ′ (x′)ψσ(x) |φ0〉

≡
(n

2

)2

gσσ′(x − x′) . (2.1.11)

This expression also defines the pair distribution function gσσ′(x − x′).
Note:“n

2

”2

gσσ′(x− x′) = 〈φ0|ψ†
σ(x)ψσ(x)ψ†

σ′(x
′)ψσ′(x′) |φ0〉

−δσσ′δ(x− x′) 〈φ0|ψ†
σ(x)ψσ′(x′) |φ0〉

= 〈φ0|n(x)n(x′) |φ0〉 − δσσ′δ(x − x′) 〈φ0|n(x) |φ0〉 .
For the sake of convenience, the pair distribution function is calculated in
Fourier space:
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(n
2

)2

gσσ′(x − x′) =
1
V 2

∑
k,k′

∑
q,q′

e−i(k−k′)·x−i(q−q′)·x′

× 〈φ0| a†kσa
†
qσ′aq′σ′ak′σ |φ0〉 .

(2.1.12)

We will distinguish two cases:

(i) σ 	= σ′:
For σ 	= σ′, we must have k = k′ and q = q′, otherwise the states would be
orthogonal to one another:(n

2

)2

gσσ′(x − x′) =
1
V 2

∑
k,q

〈φ0| n̂kσn̂qσ′ |φ0〉

=
1
V 2

∑
k,q

nkσnqσ′

=
1
V 2

NσNσ′ =
1
V 2

N

2
· N

2
=
(n

2

)2

.

Thus, for σ 	= σ′,

gσσ′(x − x′) = 1 (2.1.13)

independent of the separation. Particles with opposite spin are not affected
by the Pauli principle.

(ii) σ = σ′:
For σ = σ′ there are two possibilities: either k = k′,q = q′ or k = q′,q = k′:

〈φ0| a†kσa
†
qσaq′σak′σ |φ0〉 = δkk′δqq′ 〈φ0| a†kσa

†
qσaqσakσ |φ0〉

+ δkq′δqk′ 〈φ0| a†kσa
†
qσakσaqσ |φ0〉

= (δkk′δqq′ − δkq′δqk′) 〈φ0| a†kσakσa
†
qσaqσ |φ0〉

= (δkk′δqq′ − δkq′δqk′)nkσnqσ .

(2.1.14)

Since (akσ)2 = 0, we must have k 	= q and thus, by anticommutating – see
(1.6.16) – we obtain the expression (2.1.14), and from (2.1.12) one gains:(n

2

)2

gσσ(x − x′) =
1
V 2

∑
k,q

(
1 − e−i(k−q)(x−x′)

)
nkσnqσ

=
(n

2

)2

− (Gσ(x − x′))2 . (2.1.15)

With the single-particle correlation function Gσ(x−x′) from (2.1.8) and the
abbreviation x = kF |x − x′|, we finally obtain

gσσ(x − x′) = 1 − 9
x6

(sinx− x cosx)2 . (2.1.16)
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0.5
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0.99

1.00

kF |x − x′|

π

π

2π

2π

3π

3π

4π

4π

Fig. 2.4. The pair distribution function gσσ(x− x′). The correlation hole and the
weak oscillations with wave number kF should be noted

Let us give a physical interpretation of the pair distribution function
(2.1.16) plotted in Fig. 2.4. If a fermion is removed at x, the particle density
in the vicinity of this point is strongly reduced. In other words, the probability
of finding two fermions with the same spin at separations � k−1

F is small. The
reduction of gσσ(x − x′) at such separations is referred to as an exchange,
or correlation hole. It should be emphasized once again that this effective
repulsion stems solely from the antisymmetric nature of the state and not
from any genuine interaction.

For the noninteracting electron gas at T = 0, one has

1
4

∑
σ,σ′

gσσ′ = 2−1(1 + gσσ(x)) (2.1.17a)

∑
σ,σ′

〈φ0|ψ†
σ(x)ψ†

σ′ (0)ψσ′(0)ψσ(x) |φ0〉 =
n2

4

∑
σ,σ′

gσσ′(x)

=
n2

2
(1 + gσσ(x))

→ n2 for x → ∞ (2.1.17b)

→ n2

2
for x → 0.

The next section provides a compilation of the definitions of the pair dis-
tribution function and other correlation functions. According to this, the
spin-dependent pair distribution function
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gσσ′(x) =
(

2
n

)2〈
ψ†

σ(x)ψ†
σ′ (0)ψσ′(0)ψσ(x)

〉
is proportional to the probability of finding a particle with spin σ at position
x when it is known with certainty that a particle with spin σ′ is located at
0. It is equal to the probability that two particles with spins σ and σ′ are to
be found at a separation x.

∗2.1.4 Pair Distribution Function, Density Correlation Functions,
and Structure Factor

The definitions and relationships given in this section hold for arbitrary many-
body systems and for fermions as well as bosons3. The standard definition of
the pair distribution function of N particles reads:

g(x) =
V

N(N − 1)

〈
N∑

α�=β=1

δ(x − xα + xβ)

〉
. (2.1.18)

Here, g(x) is the probability density that a pair of particles has the separation
x; in other words, the probability density that a particle is located at x when
with certainty there is a particle at the position 0. As a probability density,
g(x) is normalized to 1:∫

d3x

V
g(x) = 1. (2.1.19)

The density–density correlation function G(x) for translationally invariant
systems is given by

G(x) = 〈n(x)n(0)〉 = 〈n(x + x′)n(x′)〉
=
∑
α,β

〈δ(x + x′ − xα)δ(x′ − xβ)〉. (2.1.20)

Due to translational invariance, this is independent of x′ and we may integrate
over x′, whence (with 1

V

∫
d3x′ = 1) it follows that

G(x) =
1
V

∑
α,β

〈δ(x − xα + xβ)〉 .

This leads to the relationship

G(x) =
1
V

(∑
α

δ(x) +
N(N − 1)

V
g(x)

)

= nδ(x) +
N(N − 1)

V 2
g(x) .

(2.1.21)

3 The brackets signify an arbitrary expectation value, e.g., a quantum-mechanical
expectation value in a particular state or a thermal expectation value.
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For interactions of finite range, the densities become independent of each
other at large separations:

lim
x→∞G(x) = 〈n(x)〉〈n(0)〉 = n2.

From this it follows that, for large N ,

lim
x→∞ g(x) =

V 2

N(N − 1)
n2 = 1 .

The static structure factor S(q) is defined by

S(q) =
1
N

〈∑
α,β

e−iq(xα−xβ)

〉
−Nδq0 . (2.1.22)

One may also write

S(q) =
1
N

∑
α�=β

〈
e−iq(xα−xβ)

〉
+ 1 −Nδq0 (2.1.23)

or

S(q) =
1
N

〈n̂qn̂−q〉 −Nδq0 ,

where

n̂q =
∫
d3xe−iqxn(x) =

∑
α

e−iqxα .

Since N(N − 1) → N2 for large N∫
d3x e−iqxg(x) =

V

N2

∫
d3xe−iqx

〈∑
α�=β

δ(x − xα + xβ)

〉

=
V

N2

〈∑
α�=β

e−iq(xα−xβ)

〉
,

and it follows that

S(q) =
N

V

∫
d3xe−iqxg(x) + 1 −Nδq0.

With

Nδq0 =
N

V

∫
d3xe−iqx ,

one obtains
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S(q) − 1 = n

∫
d3xe−iqx(g(x) − 1) (2.1.24a)

and the inverse

g(x) − 1 =
1
n

∫
d3q

(2π)3
eiqx(S(q) − 1) . (2.1.24b)

In the classical case,

lim
q→0

S(q) = nkTκT , (2.1.25)

where κT is the isothermal compressibility.
The above definitions yield the following second-quantized representations

of the density–density correlation function and the pair-distribution function:

G(x − x′) =
〈
ψ†(x)ψ(x)ψ†(x′)ψ(x′)

〉
(2.1.26a)

g(x) =
V 2

N2

〈
ψ†(x)ψ†(0)ψ(0)ψ(x)

〉
. (2.1.26b)

The first formula, (2.1.26a), is self-evident; the second follows from the former
and (2.1.21) and a permutation of the field operators.

Proof of the last formula based on the definition (2.1.18) and on (1.5.6c):X
α�=β

δ(x − xα + xβ) → R
d3x′d3x′′ψ†(x′)ψ†(x′′)δ(x− x′ + x′′)ψ(x′′)ψ(x′)

=

Z
d3x′ψ†(x′)ψ†(x′ − x)ψ(x′ − x)ψ(x′)*X

α�=β

δ(x− xα + xβ)

+
= V

D
ψ†(x′)ψ†(x′ − x)ψ(x′ − x)ψ(x′)

E
.

2.2 Ground State Energy
and Elementary Theory of the Electron Gas

2.2.1 Hamiltonian

The Hamiltonian, including the Coulomb repulsion, reads:

H =
∑
k,σ

�
2k2

2m
a†kσakσ +

e2

2V

∑
k,k′,q,σ,σ′

q�=0

4π
q2
a†k+q,σa

†
k′−q,σ′ak′σ′akσ . (2.2.1)

The q = 0 contribution, which, because of the long-range nature of the
Coulomb interaction, would diverge, is excluded here since it is canceled by
the interaction of the electrons with the positive background of ions and by
the interaction between the ions. This can be seen from the following.
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The interaction energy of the background of positive ions is

Hion =
1
2
e2
∫
d3xd3x′

n(x)n(x′)
|x − x′| e−µ|x−x′| . (2.2.2a)

Here, n(x) = N
V and we have introduced a cutoff at µ−1. At the end of the

calculation we will take µ→ 0

Hion =
1
2
e2
(
N

V

)2

V 4π

∞∫
0

dr r e−µr =
1
2
e2
N2

V

4π
µ2

. (2.2.2a′)

The interaction of the electrons with the positive background reads:

Hion, el = −e2
N∑

i=1

N

V

∫
d3x

e−µ|x−xi|

|x − xi|
= −e2N

2

V

4π
µ2

. (2.2.2b)

Finally, we consider the q = 0 contribution to the electron–electron interac-
tion, where 4πe2

q2 → 4πe2

q2+µ2 ,

e2

2V
4π
µ2

∑
k,k′,σ,σ′

a†kσa
†
k′σ′ak′σ′akσ

=
e2

2V
4π
µ2

∑
k,k′,σ,σ′

[
a†kσakσ

(
a†k′σ′ak′σ′ − δkk′δσσ′

)]
=

e2

2V
4π
µ2

∑
k,k′,σ,σ′

n̂kσ (n̂k′σ′ − δkk′δσσ′ )

=
e2

2V
4π
µ2

(N̂2 − N̂) =
e2

2V
4π
µ2

(N2 −N).

(2.2.2c)

The leading terms, proportional to N2, in the three evaluated energy contri-
butions cancel one another. The term − e2

2V
4π
µ2N yields an energy contribution

per particle of E
N ∝ 1

N
N
V and vanishes in the thermodynamic limit. The limits

are taken in the order N,V → ∞ and then µ→ 0.

2.2.2 Ground State Energy in the Hartree–Fock Approximation

The ground state energy is calculated in perturbation theory by assuming a
ground state |φ0〉, in which all single-particle states up to kF are occupied:

|φ0〉 =
∏

p≤kF

∏
σ

a†pσ |0〉 ≡
(

kF∏
p=0

a†p↑

)(
kF∏
p=0

a†p↓

)
|0〉 . (2.2.3)
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The kinetic energy in this state is diagonal:

E(0) = 〈φ0|Hkin |φ0〉 =
�

2

2m

∑
k,σ

k2Θ(kF − k)

=
�

2

2m
2

V

(2π)3

∫
d3kk2Θ(kF − k)

=
�

2

m

V

(2π)3
4π

1
5
k5

F =
3�

2k2
F

10m
N =

3
5
εFN =

e2

2a0

1
r2s

3
5

(
9π
4

)2/3

N

E(0) =
e2

2a0

2.21
r2s

N . (2.2.4)

Here, according to (2.1.4), we have used

n =
k3

F

3π2
=

3
4πr30

=
3

4πa3
0r

3
s

(2.2.5)

and introduced r0, the radius of a sphere of volume equal to the volume per
particle. The quantity a0 = �

2

me2 is the Bohr radius and rs = r0
a0

.
The potential energy in first-order perturbation theory4 reads:

E(1) =
e2

2V

∑
k,k′,q,σ,σ′

′ 4π
q2

〈φ0| a†k+q,σa
†
k′−q,σ′ak′σ′akσ |φ0〉 . (2.2.6)

The prime on the summation sign indicates that the term q = 0 is excluded.
The only contribution for which every annihilation operator is compensated
by a creation operator is proportional to δσσ′δk′,k+qa

†
k+qσa

†
kσ′ak+qσ′ akσ,

thus:

E(1) = − e2

2V

∑
k,q,σ

′ 4π
q2
nk+q,σnk,σ

= − e2

2V

∑
σ

∑
k,q

′ 4π
q2
Θ(kF − |q + k|)Θ(kF − k)

= −4πe2V
(2π)6

∫
d3kΘ(kF − k)

∫
d3k′

1
|k− k′|2

Θ(kF − k′) . (2.2.6′)

One then finds

− 4πe2

(2π)3

∫
d3k′

1
|k − k′|2

Θ(kF − k′) = −2e2

π
kFF

(
k

kF

)
,

where

F (x) =
1
2

+
1 − x2

4x
log
∣∣∣∣1 + x

1 − x

∣∣∣∣ (2.2.6′′)

4 This first-order perturbation theory can also be considered as the Hartree–Fock
theory with the variational state (2.2.3); see also Problem 2.5.
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Fig. 2.5. Integration region for E(1) consisting of the
region of overlap of two Fermi spheres with relative
displacement q; see Eq. (2.2.6′)

and

E(1) = −e2kFV

π

∫
k<kF

d3k

(2π)3

[
1 +

k2
F − k2

2kkF
log
∣∣∣∣kF + k

kF − k

∣∣∣∣]

= −N 3
4
e2kF

π

= − e2

2a0rs

(
9π
4

)1/3 3N
2π

= − e2

2a0

0.916
rs

N. (2.2.7)

Taking E(0) and E(1) together yields:

E

N
=

e2

2a0

[
2.21
r2s

− 0.916
rs

+ . . .

]
(rs�1)

. (2.2.8)

The first term is the kinetic energy, and the second the exchange term.
The pressure and the bulk modulus are given by

P = −
(
∂E

∂V

)
N

= − dE

drs

drs

dV
=
Ne2

2a0

rs

3V

[
4.42
r3s

− 0.916
r2s

]
and

B =
1
κ

= −V
(
∂P

∂V

)
=

Ne2

9V a0

[
11.05
r2s

− 1.832
rs

]
. (2.2.9)

For rs = 4.83 the energy takes on its minimum value corresponding to E
N =

−1.29 eV. This is of the same order of magnitude as in simple metals, e.g., Na(
rs = 3.96, E

N = −1.13eV
)
. However, these values of rs lie outside the range

of validity of the present theory.
Higher order corrections to the energy can be obtained in the random

phase approximation (RPA):

E

N Ry
=

⎧⎪⎨⎪⎩2.21
r2s

− 0.916
rs

+ 0.062 ln rs − 0.096 +Ars +Brs ln rs + . . .︸ ︷︷ ︸
correlation energy

⎫⎪⎬⎪⎭
(2.2.10)

where we have made use of the Rydberg, 1 Ry = e2

2a0
= e4m

2�2 = 13.6 eV.
The RPA yields an energy that contains, in addition to the Hartree–Fock



2.2 Ground State Energy and Elementary Theory of the Electron Gas 45

energy, the summation of an infinite series arising from perturbation theory.
It is the latter that yields the logarithmic contributions. That perturbation
theory should lead to a series in powers of rs, can be seen from the rescaling
in (2.2.23).

Remarks
For rs → ∞, one expects the electrons to form a Wigner crystal 5, i.e., to
crystallize. For large rs one finds the expansion6

lim
rs→∞

E

N
=

e2

2a0

[
−1.79

rs
+

2.64

r
3/2
s

+ . . .

]
, (2.2.11)

which, for rs � 10, is quantitatively reliable (see Problem 2.7). The Wigner
crystal has a lower energy than the fluid. Corrections arising from correlation
effects are discussed in other advanced texts7.
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Fig. 2.6. Energies of
the electron gas in the
Hartree–Fock approx-
imation and of the
Wigner crystal, in each
case as a function of rs

To date, Wigner crystallization5 in three dimensions has not been de-
tected experimentally. It is possible that this is due to quantum fluctuations,
which destroy (melt) the lattice6. On the basis of a Lindemann criterion8,
one finds that the Wigner lattice is stable for rs > rc

s = 0.41 δ−4, where δ
(0.15 < δ < 0.5) is the Lindemann parameter. Even for δ = 0.5, the value of
rc
s = 6.49 is already larger than the minimum value of (2.2.11), rs = 4.88.

In two dimensions, a triangular lattice structure has been theoretically pre-

5 E.P. Wigner, Phys. Rev. 46, 1002 (1934) , Trans. Faraday Soc. 34, 678 (1938)
6 R.A. Coldwell-Horsfall and A.A. Maradudin, J. Math. Phys. 1, 395 (1960)
7 G.D. Mahan, Many Particle Physics, Plenum Press, New York, 1990, 2nd edn,

Sect. 5.2
8 See, e.g., J. M. Ziman, Principles of the Theory of Solids, 2nd edn, Cambridge

University Press, Cambridge, 1972, p.65.
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dicted9 and experimentally observed for electrons on the surface of helium. 10

Its melting curve has also been determined. Figure 2.6 compares the Hartree–
Fock energy (2.2.8) with the energy of the Wigner crystal (2.2.11). The min-
imum of the Hartree–Fock energy as a function of rs lies at rs = 4.83 and
has the value E/N = −0.095e2/2a0.

To summarize, the range of validity of the RPA, equation(2.2.10), is re-
stricted to rs � 1, whereas (2.2.11) for the Wigner crystal is valid for rs � 10;
real metals lie between these two regimes: 1.8 ≤ rs ≤ 5.6.

2.2.3 Modification of Electron Energy Levels
due to the Coulomb Interaction

H = H0 +HCoul , H0 =
∑
k,σ

(�k)2

2m
a†kσakσ

HCoul =
1

2V

∑
q�=0,p,k′

σσ′

4πe2

q2
a†p+q σ a

†
k′−q σ′ ak′σ′apσ .

The Coulomb interaction modifies the electron energy levels ε0(k) = (�k)2

2m .
We can calculate this effect approximately by considering the equation of
motion of the operator akσ(t). Let us start with free particles:

ȧkσ(t) =
i
�

⎡⎣∑
k′,σ′

ε0(k′)a†k′σ′ak′σ′ , akσ

⎤⎦
= − i

�

∑
k′,σ′

ε0(k′)
[
a†k′σ′ , akσ

]
+︸ ︷︷ ︸

+δkk′δσσ′

ak′σ′

ȧkσ(t) = − i
�
ε0(k)akσ(t) . (2.2.12)

We now define the correlation function

Gkσ(t) = 〈φ0| akσ(t)a†kσ(0) |φ0〉 . (2.2.13)

Multiplying the equation of motion by a†kσ(0) yields an equation of motion
for Gkσ(t):

d

dt
Gkσ(t) = − i

�
ε0(k)Gkσ(t). (2.2.14)

9 G. Meissner, H. Namaizawa, and M. Voss, Phys. Rev. B13, 1360 (1976);
L. Bonsall, and A.A. Maradudin, Phys. Rev. B15, 1959 (1977)

10 C.C. Grimes, and G. Adams, Phys. Rev. Lett. 42 795 (1979)
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Its solution is

Gkσ(t) = e−
i
�

ε0(k)t(−nkσ + 1), (2.2.15)

since 〈φ0| akσ(0)a†kσ(0) |φ0〉 = −nkσ + 1.
When the Coulomb repulsion is included, the equation of motion for the

annihilation operator akσ reads:

ȧkσ = − i
�

⎛⎜⎝ε0(k)akσ − 1
V

∑
p,q�=0

σ′

4πe2

q2
a†p+q σ′ ak+q σ apσ′

⎞⎟⎠ , (2.2.16)

as can be immediately seen from the field equation. From this it follows that

d

dt
Gkσ(t) = − i

�

⎛⎜⎝ε0(k)Gkσ(t)

− 1
V

∑
p,q�=0

σ′

4πe2

q2

〈
a†p+q σ′(t)ak+q σ(t)apσ′(t)a†kσ(0)

〉⎞⎟⎠ .

(2.2.17)

On the right-hand side there now appears not only Gkσ(t), but also a higher-
order correlation function. In a systematic treatment we could derive an
equation of motion for this, too. We introduce the following factorization
approximation for the expectation value11:〈

a†p+q σ′(t)ak+q σ(t)apσ′ (t)a†kσ(0)
〉

=
〈
a†p+q σ′(t)ak+q σ(t)

〉〈
apσ′(t)a†kσ(0)

〉
= δσσ′δpk

〈
a†p+q σ′(t)ap+q σ′(t)

〉〈
akσ(t)a†kσ(0)

〉
.

(2.2.18)

The equation of motion thus reads:

d

dt
Gkσ(t) = − i

�

⎛⎝ε0(k) − 1
V

∑
q �=0

4πe2

q2
nk+q σ

⎞⎠Gkσ(t) . (2.2.19)

From this, we can read off the energy levels ε(k) as

11 The other possible factorization
D
a†p+q σ′(t)ap σ′(t)

ED
a†k+q σ(t)akσ(0)

E
requires

q = 0, which is excluded in the summation of Eq. (2.2.17).



48 2. Spin-1/2 Fermions

ε(k) =
�

2k2

2m
− 1
V

∑
k′

4πe2

|k − k′|2
nk′σ . (2.2.20)

The second term leads to a change in ε(k),

∆ε(k) = −
∫

d3k′

(2π)3
4πe2

|k − k′|2
Θ(kF − k′)

= −e2

π

kF∫
0

dk′k′2
1∫

−1

dη
1

k2 + k′2 − 2kk′η

= − e2

πk

kF∫
0

dk′k′ log
∣∣∣∣k + k′

k − k′

∣∣∣∣
= −2e2kF

π

(
1
2

+
1 − x2

4x
log
∣∣∣∣1 + x

1 − x

∣∣∣∣)︸ ︷︷ ︸
F (x)

x =
k

kF
. (2.2.21)

Here again the function F (x) of Eq. (2.2.6′′) appears. The Hartree–Fock
energy levels are reduced in comparison to those of the free electron gas.
However, the estimated reduction turns out to be greater than that actually
observed. Figure 2.7 shows F (x) and ε(k) in comparison to ε0(k) = �

2k2

2m for
rs = 4.

Notes:

(i) A shorter derivation of the Hartree–Fock energy is obtained by introducing the
following approximation in the Hamiltonian

0.2 0.4 0.6 0.8 1 4

0.2

0.4

0.6

0.8
0.25 0.5 1.25 1.5

-2

-1

1

2

ε/εF

Band widthB n

k/kF

Fig. 2.7. (a) The function F (x), Eq. (2.2.6′′), and (b) the Hartree–Fock energy
levels ε(k) as a function of the wave number for rs = 4, compared with the energy
of the free-electron gas ε0(k) (dashed).
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1

2V

X
k,k′,q
σ,σ′

4πe2

q2
a†k+q σ a

†
k′−q σ′ ak′σ′akσ →

1

2V

X
k,k′,q�=0

σ,σ′

4πe2

q2

“D
a†k+q σ ak′σ′

E
a†k′−q σ′ akσ + a†k+q σ ak′σ′

D
a†k′−q σ′ akσ

E”

=
2

2V

X
k,q
σ

4πe2

q2

D
a†k+q σ ak+q σ

E
a†kσakσ .

This yields:

H =
X
k,σ

ε(k)a†kσakσ

with

ε(k) =
�

2k2

2m
− 1

V

X
q

4πe2

q2
Θ(kF − |k + q|) .

(ii) The perturbation-theoretical expansion in terms of the Coulomb interaction
leads to a power series (with logarithmic corrections) in rs. This structure can be
seen from the following scaling of the Hamiltonian:

H =
X

i

p2i
2m

+
1

2

X
i�=j

e2

rij
(2.2.22)

To this end, we carry out a canonical transformation r′ = r/r0 p′ = p r0. The
characteristic length r0 is defined by 4π

3
r30N = V , i.e.,

r0 =

„
3V

4πN

«1/3

.

In the new variables the Hamiltonian reads:

H =
1

r20

0@X
i

p′i
2

2m
+ r0

1

2

X
i�=j

e2

r′ij

1A . (2.2.23)

The Coulomb interaction becomes less and less important in comparison to the
kinetic energy as r0 (or rs) becomes smaller, i.e., as the density of the gas increases.

2.3 Hartree–Fock Equations for Atoms

In this section, we consider atoms (possibly ionized) with N electrons and
the nuclear charge number Z. The nucleus is assumed to be fixed and thus
the Hamiltonian written in second quantized form is
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H =
∑
i,j

a†i 〈i|T |j〉 aj +
∑
i,j

a†i 〈i|U |j〉 aj

+
1
2

∑
i,j,k,m

〈i, j|V |k,m〉 a†ia
†
jamak ,

(2.3.1)

where

T =
p2

2m
(2.3.2a)

U = −Ze2

r
, r = |x| (2.3.2b)

and

V =
e2

|x− x′| (2.3.2c)

represent the kinetic energy of an electron, the potential felt by an electron
due to the nucleus, and the Coulomb repulsion between two electrons, re-
spectively. Although the Hartree and the Hartree–Fock approximations have
already been discussed in Sect. 13.3 of QM I12, we will present here a deriva-
tion of the Hartree–Fock equations within the second quantization formalism.
This method is easier to follow than that using Slater determinants.

We write the state of the N electrons as

|ψ〉 = a†1 . . . a
†
N |0〉 . (2.3.3)

Here, |0〉 is the vacuum state containing no electrons and a†i is the creation
operator for the state |i〉 ≡ |ϕi,msi〉 ,msi = ± 1

2 . The states |i〉 are mutually
orthogonal and the ϕi(x) are single-particle wave functions which are yet to
be determined. We begin by calculating the expectation value for the general
Hamiltonian (2.3.1) 〈ψ|H |ψ〉 without particular reference to the atom. For
the single-particle contributions, one immediately finds∑

i,j

〈i|T |j〉 〈ψ| a†iaj |ψ〉 =
N∑

i=1

〈i|T |i〉 (2.3.4a)

∑
i,j

〈i|U |j〉 〈ψ| a†iaj |ψ〉 =
N∑

i=1

〈i|U |i〉 , (2.3.4b)

whilst the two-particle contributions are found as

〈ψ| a†ia
†
jamak |ψ〉 = 〈ψ| (δimδjka

†
ma

†
k + δikδjma

†
ka

†
m)amak |ψ〉 (2.3.4c)

= (δikδjm − δimδjk)Θ(m, k ∈ 1, . . . , N) .

The first factor implies that the expectation value vanishes whenever the cre-
ation and annihilation operators fail to compensate one another. The second
12 QM I op. cit.
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implies that both the operators am and ak must be present in the set a1 . . . aN

occurring in the state (2.3.3), otherwise their application to the right on the
vacuum state |0〉 would give zero. Therefore, the total expectation value of
H reads:

〈ψ|H |ψ〉 =
�

2

2m

N∑
i=1

∫
d3x|∇ϕi|2 +

N∑
i=1

∫
d3xU(x)|ϕi(x)|2

+
1
2

N∑
i,j=1

∫
d3xd3x′V (x − x′)

{
|ϕi(x)|2|ϕj(x′)|2 (2.3.5)

− δmsi
msj

ϕ∗
i (x)ϕ∗

j (x′)ϕi(x′)ϕj(x)
}
.

In the spirit of the Ritz variational principle, the single-particle wave func-
tions ϕi(x) are now determined so as to minimize the expectation value of
H . As subsidiary conditions, one must take account of the normalizations∫
|ϕi|2d3x = 1; this leads to the additional terms −εi(

∫
d3x|ϕi(x)|2−1) with

Lagrange parameters εi. In all, one thus has to take the functional derivative
of 〈ψ|H |ψ〉 −∑N

i=1 εi

(∫
d3x|ϕi(x)|2 − 1

)
with respect to ϕi(x) and ϕ∗

i (x)
and set this equal to zero, where one uses

δϕi(x′)
δϕj(x)

= δijδ(x − x′) . (2.3.6)

The following equations refer once again to atoms, i.e., they take into account
(2.3.2a–c). Taking the variational derivative with respect to ϕ∗

i yields:(
− �

2

2m
∇2 − Ze2

r

)
ϕi(x) +

N∑
j=1

∫
d3x′

e2

|x − x′| |ϕj(x′)|2ϕi(x)

−
N∑

j=1

δmsi
msj

∫
d3x′

e2

|x − x′|ϕ
∗
j (x

′)ϕi(x′) · ϕj(x)

= εiϕi(x) . (2.3.7)

These are the Hartree–Fock equations. Compared to the Hartree equations,
they contain the additional term∫

d3x′
e2

|x − x′| |ϕi(x′)|2ϕi(x)

−
∑

j

δmsi
msj

∫
d3x′

e2

|x − x′|ϕ
∗
j (x

′)ϕi(x′)ϕj(x)

= −
∑
j �=i

δmsi
msj

∫
d3x′

e2

|x − x′|ϕ
∗
j (x

′)ϕi(x′)ϕj(x) . (2.3.8)
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The second term of the interaction on the left-hand side is known as the
exchange integral, since it derives from the antisymmetry of the fermion state.
The interaction term can also be written in the form∫

d3x′
e2

|x − x′|
∑

j

ϕ∗
j (x

′)
[
ϕj(x′)ϕi(x) − ϕj(x)ϕi(x′)δmsi

msj

]
.

The exchange term is a nonlocal term which only occurs for msi = msj .
The term in square brackets is equal to the probability amplitude that i and
j are at the positions x and x′. For further discussion of the Hartree–Fock
equations and their physical implications we refer to Sect. 13.3.2 of QM I.

Problems

2.1 Calculate the static structure function for noninteracting fermions

S0(q) ≡ 1

N
〈φ0 | n̂qn̂−q | φ0〉 ,

where n̂q =
P

k, σ a
†
k σak+qσ is the particle density operator in the momentum

representation and |φ0〉 is the ground state. Take the continuum limit
P

k ,σ =

2V
R
d3k/(2π)3 and calculate S0(q) explicitly.

Hint: Consider the cases q = 0 and q �= 0 separately.

2.2 Prove the validity of the following relations, which have been used in the eval-
uation of the energy shift ∆ε(k) of the electron gas, Eq. (2.2.21):

a) − 4πe2
Z
d3k′

(2π)3
1

| k − k′ |2Θ(kF − k′) = −2e2

π
kFF (k/kF ) ,

with

F (x) =
1

2
+

1 − x2

4x
ln

˛̨̨̨
1 + x

1 − x
˛̨̨̨
.

b) E(1) = −e
2kF

π
V

Z
d3k

(2π)3

»
1 +

k2
F − k2

2kkF
ln

˛̨̨̨
kF + k

kF − k
˛̨̨̨–
Θ(kF − k)

= −3

4

e2kF

π
N = − e2

2a0rs

„
9π

4

«1/3
3N

2π
,

where rs is a dimensionless number which characterizes the mean particle separation
in units of the Bohr radius a0 = �

2/me2. Furthermore, k3
F = 3π2n = 1/(αa0rs)

3

with α = (4/9π)1/3.

2.3 Apply the atomic Hartree–Fock equations to the electron gas.
a) Show that the Hartree–Fock equations are solved by plane waves.
b) Replace the nuclei by a uniform positive background charge of the same total
charge and show that the Hartree term is canceled by the Coulomb attraction of
the positive background and the electrons.



Problems 53

The electronic energy levels are then given by

ε(k) =
(�k)2

2m
− 1

V

X
q

4πe2

| k − q |2Θ(kF − q) .

According to Problem 2.2, this can also be written as ε(k) = (�k)2

2m
− 2e2

π
kFF (k/kF ).

2.4 Show that the Hartree–Fock states |i〉 ≡ |ϕi, msi〉 following from (2.3.7) are
orthogonal and that the εi are real.

2.5 Show that, for noninteracting fermions,

S0(q, ω) ≡ 1

N

Z +∞

−∞
dt eiωt〈φ0|n̂q(t)n̂−q(0)|φ0〉

=
�V

2π2N

Z
d3k Θ(kF − k) Θ(|k + q| − kF )

× δ
„

�ω − �
2

2m
(q2 + 2k · q)

«
.

Also, prove the relationshipZ +∞

−∞

dω

2π
S0(q, ω) =

(
N for q = 0 ,

1 − 1
N

P
k, σ nk σnk+q σ for q �= 0

where n̂k σ = a†k σak σ.

2.6 Derive the following relations for Fermi operators:

a)

e−αa†
aeαa†

= a− α2a† + α(aa† − a†a)
e−αaa†eαa = a† − α2a− α(aa† − a†a)

b)

eαa†aae−αa†a = e−αa

eαa†aa†e−αa†a = e−αa† .

2.7 According to a prediction made by Wigner13, at low temperatures and suffi-
ciently low densities, an electron gas should undergo a phase transition to a crys-
talline structure (bcc). For a qualitative analysis14 , consider the energy of a lattice
of electrons embedded in a homogeneous, positively charged background. Assume
that the potential in which each electron moves can be approximated by the poten-
tial of a uniformly charged sphere of radius r0 = rsa0 surrounding each electron.

13 E.P. Wigner, Phys. Rev. 46, 1002 (1934)
14 E.P. Wigner, Trans. Faraday Soc. 34, 678 (1938)
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Here, r0 is the mean particle separation in the Wigner crystal with electron den-
sity n, i.e., 4π

3
r30 = 1/n. This leads to a model of independent electrons (Einstein

approximation) in an oscillator potential

H =
p2

2m
+
e2

2r30
r2 − 3e2

2r0
.

Determine the zero-point energy E0 of this three-dimensional harmonic oscillator
and compare this with the result found in the literature15:

E0 =
e2

2a0

j
−1.792

rs
+

2.638

r
3/2
s

ff
.

By minimizing the zero-point energy, determine the mean separation of the elec-
trons.

15 R.A. Coldwell–Horsfall and A.A. Maradudin, J. Math. Phys. 1, 395 (1960)
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3.1 Free Bosons

In this section, we study the characteristic properties of noninteracting
bosons. We first calculate the pair distribution function in order to inves-
tigate correlation effects.

3.1.1 Pair Distribution Function for Free Bosons

We shall assume that the bosons are noninteracting and that they carry zero
spin. Hence, their only quantum number is their momentum. We consider a
given state of an N -particle system

|φ〉 = |np0 , np1 , . . .〉 , (3.1.1)

where the occupation numbers can take the values 0, 1, 2, . . . etc. The expec-
tation value of the particle density is

〈φ|ψ†(x)ψ(x) |φ〉 =
1
V

∑
k,k′

e−ikx+ik′x 〈φ| a†kak′ |φ〉

=
1
V

∑
k

nk =
N

V
= n .

(3.1.2)

The density in the state (3.1.1) is independent of position.
The pair distribution function is given by

n2g(x − x′) = 〈φ|ψ†(x)ψ†(x′)ψ(x′)ψ(x) |φ〉

=
1
V 2

∑
k,k′,q,q′

e−ikx−iqx′+iq′x′+ik′x 〈φ| a†ka†qaq′ak′ |φ〉 .

(3.1.3)

The expectation value 〈φ| a†ka†qaq′ak′ |φ〉 differs from zero only if k = k′ and
q = q′, or k = q′ and q = k′. The case k = q, which, in contrast to fermions,
is possible for bosons, has to be treated separately. Hence, it follows that
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〈φ| a†ka†qaq′ak′ |φ〉

= (1 − δkq)
(
δkk′δqq′ 〈φ| a†ka†qaqak |φ〉 + δkq′δqk′ 〈φ| a†ka†qakaq |φ〉

)
+ δkqδkk′δqq′ 〈φ| a†ka

†
kakak |φ〉

= (1 − δkq)(δkk′δqq′ + δkq′δqk′)nknq + δkqδkk′δqq′nk(nk − 1)
(3.1.4)

and

〈φ|ψ†(x)ψ†(x′)ψ(x′)ψ(x) |φ〉 (3.1.5)

=
1
V 2

⎧⎨⎩∑
k,q

(1 − δkq)(1 + e−i(k−q)(x−x′))nknq +
∑
k

nk(nk − 1)

⎫⎬⎭
=

1
V 2

⎧⎨⎩∑
k,q

nknq −
∑
k

n2
k +

∣∣∣∣∣∑
k

e−ik(x−x′)nk

∣∣∣∣∣
2

−
∑
k

n2
k

+
∑
k

n2
k −

∑
k

nk

}

= n2 +

∣∣∣∣∣ 1V ∑
k

e−ik(x−x′)nk

∣∣∣∣∣
2

− 1
V 2

∑
k

nk(nk + 1) .

In contrast to fermions, the second term here is positive due to the permu-
tation symmetry of the wave function. For fermions, there is no multiple
occupancy so the last term does not arise.

We now consider two examples. When all the bosons occupy the same
state p0, then (3.1.5) yields:

n2g(x − x′) = n2 + n2 − 1
V 2

N(N + 1) =
N(N − 1)

V 2
. (3.1.6)

In this case, the pair distribution function is position independent; there are
no correlations. The right-hand side signifies that the probability of detecting
the first particle is N/V , and that of the second particle (N − 1)/V .

If, on the other hand, the particles are distributed over many different
momentum values and the distribution is described, e.g., by a Gaussian

nk =
(2π)3n
(
√
π∆)3

e−(k−k0)
2/∆2

(3.1.7)

with the normalization∫
d3p

(2π)3
np = n ,
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it then follows that∫
d3k

(2π)3
e−ik(x−x′)nk = ne−

∆2
4 (x−x′)2e−ik0(x−x′)

and

1
V

∫
d3k

(2π)3
n2
k =

1
V

[
(2π)3n
(
√
π∆)3

]2 ∫
d3k

(2π)3
e−2(k−k0)

2/∆2 ∼ n2

V ∆3
.

If the density and the width ∆ of the momentum distribution are held fixed,
then, in the limit of large volume V , the third term in (3.1.5) disappears.
The pair distribution function is then given by

n2g(x − x′) = n2
(
1 + e−

∆2
2 (x−x′)2

)
. (3.1.8)

As can be seen from Fig. 3.1, for bosons the probability density of finding

43210

2

1

0 ∆ |x − x′|

g(x − x′)

Fig. 3.1. Pair distribution
function for bosons

two particles at a small separation, i.e., r < ∆−1, is increased. Due to the
symmetry of the wave function, bosons have a tendency to “cluster together”.
From Fig. 3.1, one sees that the probability density of finding two bosons at
exactly the same place is twice that at large separations.

∗3.1.2 Two-Particle States of Bosons

In order to investigate the consequences of Bose–Einstein statistics further,
we now turn to boson interference and fluctuation processes. Such interference
can already be found in two-particle states. The general two-particle state is

|2〉 =
∫
d3x1d

3x2ϕ(x1,x2)ψ†(x1)ψ†(x2) |0〉 , (3.1.9)

with the normalization
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〈2|2〉 =
∫
d3x1d

3x2ϕ
∗(x1,x2)(ϕ(x1,x2) + ϕ(x2,x1)) = 1 . (3.1.10)

We could have restricted ourselves from the outset to symmetric ϕ(x1,x2)
since [ψ†(x1), ψ†(x2)] = 0 and thus the odd part of ϕ(x1,x2) makes no con-
tribution.

In the following, we shall consider functions ϕ(x1, x2) of the form

ϕ(x1,x2) ∝ ϕ1(x1)ϕ2(x2) . (3.1.11)

Had the particles been distinguishable, for such a wave function, they would
have been completely independent. Furthermore, we assume∫

d3x|ϕi(x)|2 = 1 , (3.1.12)

and then the normalization condition (3.1.10) yields:

ϕ(x1,x2) =
ϕ1(x1)ϕ2(x2)

(1 + |(ϕ1, ϕ2)|2)1/2
(3.1.13)

with (ϕi, ϕj) ≡
∫
d3xϕ∗

i (x)ϕj(x). For the two-particle state (3.1.9) with
(3.1.13)1, the expectation value of the density is

〈2|n(x) |2〉 =
∫
d3x1 d

3x2d
3x′1d

3x′2ϕ
∗
1(x1)ϕ∗

2(x2)ϕ1(x′
1)ϕ2(x′

2)

× [1 + |(ϕ1, ϕ2)|2]
−1 〈0|ψ(x2)ψ(x1)ψ†(x)ψ(x)ψ†(x′

1)ψ
†(x′

2) |0〉
= [|ϕ1(x)|2 + |ϕ2(x)|2 + (ϕ1, ϕ2)ϕ∗

2(x)ϕ1(x) + c.c.]

× [1 + |(ϕ1, ϕ2)|2]
−1
.

(3.1.14)

In (3.1.14), in addition to |ϕ1(x)|2 + |ϕ2(x)|2, an interference term occurs.
When the two single-particle wave functions are orthogonal, i.e., (ϕ1, ϕ2) = 0,
the density

〈2|n(x) |2〉 = |ϕ1(x)|2 + |ϕ2(x)|2 (3.1.15)

equals the sum of the single-particle densities, as would be the case for in-
dependent particles. For overlapping Gaussians, it is easy to calculate the
clustering effect for bosons. Let

ϕ1(x) =
1

π1/4
e−

1
2 (x−a)2 , ϕ2(x) =

1
π1/4

e−
1
2 (x+a)2 (3.1.16)

1 The Schrödinger two-particle wave function corresponding to (3.1.9) with

(3.1.13) reads ϕ1(x1)ϕ2(x2)+ϕ2(x1)ϕ1(x2)√
2(1+|(ϕ1,ϕ2)|2)1/2 .
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with the properties (ϕi, ϕi) = 1 and (ϕ1, ϕ2) = 1√
π

∫
dxe−x2−a2

= e−a2
; for

these states the density expectation value (3.1.14) is

〈2|n(x) |2〉 =
1√

π(1 + e−2a2)

{
e−(x−a)2 + e−(x+a)2 + 2e−2a2

e−x2
}
.

(3.1.17)

The integrated density∫
d3x 〈2|n(x) |2〉 = 2

is equal to the number of particles. Figure 3.2 shows 〈2|n(x) |2〉 for the sep-
arations a = 3 and a = 1. For the smaller separation the wave functions
overlap and, for small x, the particle density is greater than it would be for
independent particles.

-6 -4 -2 0 2 4 6
0.0

0.2

0.4

0.6

0.8

|ϕ1|2 + |ϕ2|2
〈2|n(x)|2〉

Fig. 3.2. Densities for two-boson states. The full line is the case a = 3. Since
there is no overlap here, |ϕ1|2 + |ϕ2|2 and 〈n(x)〉 are indistinguishable from one
another. The dashed lines are for a = 1: in this case 〈2|n(x) |2〉 is increased at
small separations in comparison to ϕ2

1 + ϕ2
2

Photon Correlations

Photons represent the ideal example of noninteracting particles. In photon
correlation experiments it has actually been possible to observe the predicted
tendency of bosons to cluster together.2 These correlation effects can be un-
derstood theoretically with the help of pair correlations of the form (3.1.8).3

Since the classical electromagnetic waves of Maxwell’s theory are coherent
2 R. Hanbury Brown and R.G. Twiss, Nature 177, 27 (1956); 178, 1447 (1956)
3 E.M. Purcell, Nature 178, 1449 (1956)
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states of photons in quantum mechanics, it is not surprising that these cor-
relation effects also follow from classical electrodynamics.4

3.2 Weakly Interacting, Dilute Bose Gas

3.2.1 Quantum Fluids and Bose–Einstein Condensation

The most important Bose fluid is He4, which has spin S = 0. Another ex-
ample is spin-polarized atomic hydrogen; this, however, is extremely difficult
to produce for long enough periods at sufficient density. All other atomic
bosons are heavier and more strongly interacting, causing them to crystallize
at temperatures far above any possible superfluid transition. At normal pres-
sures, He4 remains fluid down to T = 0 and at the lambda point Tλ = 2.18K
it enters the superfluid state (Fig. 3.3). The normal and the superfluid phases
are also known as He I and He II. In order for He4 to crystallize, it must be
subjected to a pressure of at least 25 bar. Although they are rare in com-
parison to Fermi fluids, which are realized in He3 and by every metal, Bose
fluids are a rewarding topic of study due to their fascinating properties. Cor-
responding to superfluidity there is the superconducting phase in fermion
systems. He3, electrons in metals, and electrons in a number of oxidic high-Tc

perovskites can form pairs of fermions that obey Bose statistics. Real helium
4 Discussions of the Hanbury-Brown and Twiss experiments can be found in C.

Kittel, Elementary Statistical Physics, p. 123, J. Wiley, New York, 1958 and G.
Baym, Lectures on Quantum Mechanics, p. 431, W.A. Benjamin, London, 1973
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is only mimicked by an ideal Bose gas since, in additions to quantum effects,
it is also plagued by the difficulties associated with a dense fluid. In an ideal
(i.e., noninteracting) Bose gas at temperatures below Tc(v) = 2π�

2/m

[v·2.61]2/3 (for

the mass and density of He4 this gives 3.14 K) Bose–Einstein condensation
occurs5. The single-particle ground state becomes macroscopically occupied
in conjunction with the disappearance of the chemical potential µ→ 0.

In reality, He4 atoms have approximately a Lennard–Jones potential,

V (r) = 4ε
[(σ

r

)12

−
(σ
r

)6
]

(3.2.1)

ε = 1.411× 10−15erg
σ = 2.556Å .

It consists of a repulsive (hard-core) part and an attractive component. At
small separations the potential (3.2.1) is equivalent to the potential of an
almost ideal hard sphere of diameter 2 Å. For fcc close packing of spheres, this
would correspond to a molar volume of 12 cm3, whereas the actually observed
molar volume at P = 30 bar is 26 cm3. The reason for this higher value lies
in the large amplitude of the quantum-mechanical zero-point oscillations. In
the fluid phase VM = 27 cm3. The various phases of He4 and He3 are also
known as quantum fluids or quantum crystals.

Note: Recently, Bose–Einstein condensation has been observed, 70 years after its
original prediction, in a gas of about 2000 spin-polarized 87Rb atoms confined in a
quadrapole trap.6 7 The transition temperature is 170 × 10−9K. One might expect
that at low temperatures alkali atoms would form a solid; however, even at temper-
atures in the nano-Kelvin regime, it is possible to maintain a metastable gaseous
state.

A similar experiment has been carried out with a gas of 2 × 105 spin-polarized
7Li atoms.8 In this case, the condensation temperature is Tc ≈ 400×10−9K. In 87Rb
the s-wave scattering length is positive, whereas in 7Li it is negative. Despite this,
the gaseous phase of 7Li does not collapse into the fluid or the solid phase, not, at
least, in the spatially inhomogeneous case.8 Bose–Einstein condensation has also
been observed in sodium in a sample of 5×105 atoms at a density of 1014cm−3 and
temperatures below 2µK.9

Finally, also in atomic hydrogen, a condensate of more than 108 atoms, with
a transition temperature of roughly 50µK, could be maintained for up to 5 sec-
onds.10

5 See for instance F. Schwabl, Statistical Mechanics, Springer, Berlin Heidelberg,
2002, Sect. 4.4; in subsequent citations this book will be referred to as SM.

6 M.H. Andersen, J.R. Enscher, M.R. Matthews, C.E. Wieman, and E. A. Cornell,
Science 269, 198 (1995)

7 See also G.P. Collins, Physics Today, August 1995, 17
8 C.C. Bradley, C.A. Sackett, J.J. Tollett, and R.G. Hulet, Phys. Rev. Lett. 75,

1687 (1995)
9 K. B. Davis, M.-O. Mewes, M.R. Andrews, N.J. van Druten, D.S. Durfee, D.M.

Kurn, and W. Ketterle, Phys. Rev. Lett. 75, 2969 (1995)
10 D. Kleppner, Th. Greytak et al., Phys. Rev. Lett. 81, 3811 (1998)
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3.2.2 Bogoliubov Theory of the Weakly Interacting Bose Gas

In the momentum representation, the Hamiltonian reads:

H =
∑
k

k2

2m
a†kak +

1
2V

∑
k,p,q

Vqa
†
k+qa

†
p−qapak, (3.2.2)

where we have set � = 1. This Hamiltonian is still completely general, but in
the following we will introduce approximations which restrict the validity of
the theory to dilute, weakly interacting Bose gases. The creation and anni-
hilation operators a†k and ak satisfy the Bose commutation relations and Vq

is the Fourier transform of the two-particle interaction

Vq =
∫
d3x e−iqxV (x). (3.2.3)

At low temperatures, a Bose–Einstein condensation takes place in the k = 0
mode, i.e., in analogy to the ideal Bose gas it is expected that in the ground
state11 |0〉 the single-particle state with k = 0 is macroscopically occupied,

N0 = 〈0|a†0a0 |0〉 � N , (3.2.4a)

and thus the number of excited particles is

N −N0 � N0 � N . (3.2.4b)

Hence, we can neglect the interaction of the excited particles with one another
and restrict ourselves to the interaction of the excited particles with the
condensed particles:

H =
∑
k

k2

2m
a†kak +

1
2V

V0a
†
0a

†
0a0a0 +

1
V

∑
k

′
(V0 + Vk)a†0a0a

†
kak

+
1

2V

∑
k

′
Vk(a†ka

†
−ka0a0 + a†0a

†
0aka−k) + O(a3

k) . (3.2.5)

The prime on the sum indicates that the value k = 0 is excluded. Due to mo-
mentum conservation, there is no term containing ak �=0 and three operators
with k = 0.

The effect of a0 and a†0 on the state with N0 particles in the condensate
is

a0 |N0, . . .〉 =
√
N0 |N0 − 1, . . .〉

a†0 |N0, . . .〉 =
√
N0 + 1 |N0 + 1, . . .〉 .

(3.2.6)

Since N0 is such a huge number, N0 ≈ 1023, both of these correspond to
multiplication by

√
N0. Furthermore, it is physically obvious that the removal

11 Here, |0〉 is the ground state of the N bosons and not the vacuum state with
respect to the ak, which would contain no bosons at all. It will emerge that |0〉
is the vacuum state for the operators αk to be introduced below.
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or addition of one particle from or to the condensate will make no difference
to the physical properties of the system. In comparison to N0, the effect of
the commutator

a0a
†
0 − a†0a0 = 1

is negligible, i.e., the operators

a0 = a†0 =
√
N0 (3.2.7)

can be approximated by a c-number. The Hamiltonian then becomes

H =
∑
k

′ k2

2m
a†kak +

1
2V

N2
0V0

+
N0

V

∑
k

′
[(V0 + Vk)a†kak +

1
2
Vk(a†ka

†
−k + aka−k)] + . . . .

(3.2.8)

The value of N0 is unknown at the present stage. It is determined by the
density (or the particle number for a given volume) and by the interaction.
We express N0 in terms of the total particle number N and the number of
particles in the excited state

N = N0 +
∑
k

′
a†kak . (3.2.9)

We then have, for example,
V0

2V
N2

0 =
V0

2V
N2 − NV0

V

∑
k

′
a†kak +

V0

2V

∑
k,k′

′
a†kaka

†
k′ak′ . (3.2.10)

The Hamiltonian follows as

H =
∑
k

′ k2

2m
a†kak +

N

V

∑
k

′
Vka

†
kak +

N2

2V
V0

+
N

2V

∑
k

′
Vk

(
a†ka

†
−k + aka−k

)
+H ′ .

(3.2.11)

The operator H ′ contains terms with four creation or annihilation operators,
and these are of order n′2, where n′ = N−N0

V is the density of the particles
that are not part of the condensate. The Bogoliubov approximation, which
amounts to neglecting these anharmonic terms, is a good approximation when
n′ � n. We shall see later, when we calculate n′, that exactly this condition
is fulfilled by the dilute, weakly interacting Bose gas.

If H ′ is neglected, we have a quadratic form, which still has to be diag-
onalized. The transformation proceeds in analogy to the theory of antiferro-
magnetic magnons. We introduce the ansatz12

12 The transformation is known as the Bogoliubov transformation. This diagonal-
ization method was originally introduced by T. Holstein and H. Primakoff (Phys.
Rev. 58, 1098 (1940)) for complicated spin-wave Hamiltonians and was rediscov-
ered by N.N. Bogoliubov (J. Phys. (U.S.S.R.) 11, 23 (1947)).
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ak = ukαk + vkα
†
−k

a†k = ukα
†
k + vkα−k

(3.2.12)

with real symmetric coefficients, and demand that the operators α also satisfy
Bose commutation relations

[αk, αk′ ] = [α†
k, α

†
k′ ] = 0, [αk, α

†
k′ ] = δkk′ . (3.2.13)

This is the case when

u2
k − v2

k = 1. (3.2.14)

Proof:

[ak, ak′ ] = ukvk′δk,−k′ + vkuk′(−δk,−k′) = 0[
ak, a

†
k′

]
= ukuk′δkk′ + vkvk′(−δkk′) = (u2

k − v2
k)δkk′ .

The inverse of the transformation (3.2.12) reads (see Problem 3.3):

αk = ukak − vka
†
−k

α†
k = uka

†
k − vka−k .

(3.2.15)

With the additional calculational step

a†kak = u2
kα

†
kαk + v2

kα−kα
†
−k + ukvk(α†

kα
†
−k + αkα−k)

a†ka
†
−k = u2

kα
†
kα

†
−k + v2

kαkα−k + ukvk(α†
kαk + α−kα

†
−k)

aka−k = u2
kαkα−k + v2

kα
†
kα

†
−k + ukvk(α†

−kα−k + αkα
†
k) ,

one obtains for the Hamiltonian

H =
1

2V
N2V0 +

+
∑
k

′( k2

2m
+ nVk

)[
u2
kα

†
kαk + v2

kαkα
†
k + ukvk(α†

kα
†
−k + αkα−k)

]
+

N

2V

∑
k

′
Vk

[
(u2

k + v2
k)
(
α†

kα
†
−k + αkα−k

)
+ 2ukvk(α†

kαk + αkα
†
k)
]
.

(3.2.16)

In order for the nondiagonal terms to disappear, we require

(
k2

2m
+ nVk)ukvk +

n

2
Vk(u2

k + v2
k) = 0 . (3.2.17)

Together with u2
k − v2

k = 1 from (3.2.14), one now has a system of equations
that allow the calculation of u2

k and v2
k. It is convenient to introduce the

definition
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ωk ≡
[(

k2

2m
+ nVk

)2

− (nVk)2
]1/2

=

[(
k2

2m

)2

+
nk2Vk

m

]1/2

. (3.2.18)

From (3.2.14) and (3.2.17), one finds u2
k and v2

k to be (Problem 3.4)

u2
k =

ωk +
(

k2

2m + nVk

)
2ωk

,

v2
k =

−ωk +
(

k2

2m + nVk

)
2ωk

,

(3.2.19)

ukvk = −nVk

2ωk
, v2

k =
(nVk)2

2ωk(ωk + k2

2m + nVk)
.

Inserting (3.2.19) into the Hamiltonian yields:

H =
N2

2V
V0 −

1
2

∑
k

′
(
k2

2m
+ nVk − ωk)︸ ︷︷ ︸

ground-state energy E0

+
∑
k

′
ωkα

†
kαk︸ ︷︷ ︸

sum of oscillators
∼ quasiparticles

. (3.2.20)

The Hamiltonian consists of the ground-state energy and a sum of oscillators
of energy ωk. The excitations that are created by the α†

k are called quasipar-
ticles.

The ground state of the system |0〉 is fixed by the condition that no quasi-
particles are excited,

αk |0〉 = 0 for all k. (3.2.21)

We can now calculate the number of particles (not quasiparticles) outside the
condensate

N ′ = 〈0|
∑
k

′
a†kak |0〉 = 〈0|

∑
k

′
v2
kαkα

†
k |0〉 =

∑
k

′
v2
k . (3.2.22)

For a contact potential V (x) = λδ(x), it follows by using (3.2.18) and (3.2.19)
that

n′ ≡ N ′

V
=
m3/2

3π2
(λn)3/2 . (3.2.23)

The expansion parameter is λn, i.e., the strength of the potential times the
density. If this expansion parameter is small, consistent with the assumptions
made, the density of particles outside the condensate is low. The dependence
on λn is nonanalytic and thus cannot be expanded about λn = 0. Hence,
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these results for condensed Bose systems cannot be obtained using straight-
forward perturbation theory for the initial Hamiltonian (3.2.2). The number
of particles in the condensate is N0 = N − n′V . Its temperature dependence
N0(T ) is studied in Problem 3.5.

The ground-state energy (3.2.20) is composed of a term that would be
the interaction energy if all particles were in the condensate, and a further
negative term. Through the occupation of k 	= 0 Bose states in the ground
state (see (3.2.22)), the kinetic energy is increased, whereas the potential
energy is reduced.

Excited states of the system are obtained by applying α†
k to the ground

state |0〉. Their energy is ωk. For small k one finds from (3.2.18)

ωk = ck with c =

√
nV0

m
. (3.2.24)

Thus, the long wavelength excitations are phonons with linear dispersion.
This value for the sound velocity also follows from the compressibility

κ = − 1
V

∂V
∂P :

c =
1√
ρκ

=

√
∂P

∂ρ
. (3.2.25)

Here, ρ = mn is the mass density and the pressure at zero temperature is
given by

P = −∂E0

∂V
. (3.2.26)

For large k, one obtains from (3.2.18)

ωk =
k2

2m
+ nVk . (3.2.27)

This corresponds to the dispersion relation for free particles whose energy
is shifted by a mean potential of nVk (see Fig. 3.4). A comparison with the
experimental excitation spectrum of He4 is not justified on account of the
restriction to weak interaction and low density; in particular, one cannot
attempt to explain the roton minimum (see Sect. 3.2.3) in terms of the k de-
pendence of the potential, since this would require potential strengths outside
the domain of validity of this theory (see Problem 3.6).

When α†
k is applied to a state, one speaks of the creation of a quasiparticle

with the wave vector k. We shall show furthermore that, for small k, the
excitation of a quasiparticle corresponds to a density wave. To this end, we
consider the operator for the particle number density

nk =
∑
p

a†pap+k ≈
√
N0(a

†
−k + ak) (3.2.28)

under the assumption of a macroscopic occupation of the k = 0 state.
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Fig. 3.4. Excitations of the
weakly interacting Bose gas

From Eq. (3.2.12) it follows that

ak + a†−k = (uk + vk)(αk + α†
−k)

and therefore

nk = Ak

(
αk + α†

−k

)
. (3.2.29)

From Eq. (3.2.19) the amplitude Ak takes the form

Ak ≡
√
N0(uk + vk) = k

√
N0

2mωk
.

From Eq. (3.2.29) one obtains the density operator

ρ(x) = ρ̃(x) + ρ̃†(x) (3.2.30a)

in which ρ̃(x) =
∑

kAkeikxαk , from which it follows that

ρ̃(x)
(
α†

k |0〉
)

=
∑
k′

eik′xAk′αk′α†
k |0〉 = eikxAk |0〉 . (3.2.30b)

For a coherent state |ck〉 built out of quasi-particle excitations with wave
vector k

|ck〉 = e−|ck|2/2
∞∑

n=0

(
ckα

†
k

)n

n!
|0〉 (3.2.31a)

and in which ck = |ck| e−iδk one gains ρ̃(x) |ck〉 = Akckeikx |ck〉 . From this
it follows that the expectation value of the density

〈ck|n(x) |ck〉 = 2Ak |ck| cos(kx − δk) , (3.2.31b)

so that a coherent state of this type represents a density wave.
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Notes:

(i) Second-order phase transitions are associated with a broken symmetry.
In the well known case of a Heisenberg ferromagnet, this symmetry is the
invariance of the Hamiltonian with respect to the rotation of all spins. In
the ferromagnetic phase, where a finite magnetization is present, oriented,
e.g., in the z direction, the rotational invariance is broken. In the case of the
Bose–Einstein condensate the gauge invariance is broken, i.e., the invariance
of the Hamiltonian with respect to transformation of the field operator

ψ(x) → ψ′(x) = ψ(x)eiα (3.2.32)

with a phase α. In the ground state |0〉, one has 〈0|ψ(x) |0〉 	= 0 and the
phase is fixed arbitrarily at α = 0.

(ii) For finite-ranged potentials, e.g., the spherical well of Problem 3.6, the
Fourier transform falls off with increasing wave vector k, leading to a fi-
nite ground-state energy in (3.2.20). For the δ-function potential the Fourier
transform is a constant, which leads to a divergence at the upper integration
limit. To ensure that the ground-state energy E0 also remains finite for an
effective contact potential, the potential strength λ must be replaced by the
(finite) scattering length a. In second-order Born approximation, the scatter-
ing length is given in terms of λ by

a =
m

4π�2
λ

{
1 − λ

V

∑
k

′m
k2

+ O(λ2)

}
or, inversely,

λ =
4π�

2a

m

{
1 +

4π�
2a

V

∑
k

′ 1
k2

+ O(a2)

}
(3.2.33)

(see Problem 3.8). Inserting this into (3.2.16) shows that V0 and Vk must be
replaced, here and in all subsequent formulas, by

V0 → 4π�
2a

m

{
1 +

4π�
2a

V

∑
k

′ 1
k2

}
(3.2.34a)

and

Vk → 4π�
2a

m
. (3.2.34b)

For the interaction of the excited particles it is sufficient to retain only terms
up to first order in a. The value of the ground-state energy is then

E0 =
2π�

2

m

aN2

V

{
1 +

128
15

√
π

(
a3N

V

)1/2
}

. (3.2.35)
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∗3.2.3 Superfluidity

Superfluidity refers to a state in which the fluid can flow past objects without
exerting a drag and where objects can move through the fluid without slowing
down. This property holds only up to a certain critical velocity which we will
now relate to the quasiparticle spectrum. The excitation spectrum of real
helium, as derived from neutron scattering measurements, displays, according
to Fig. 3.5, the following characteristics. For small p, the excitation energy
varies linearly with the momentum

εp = cp . (3.2.36a)

Wave vectorWave vector p/p/�� [[ÅA
−1

]
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[K

Fig. 3.5. The quasiparticle exci-
tations in superfluid He4. Phonons
and rotons according to Henshaw
and Woods13

The excitations in this region are called phonons; their velocity – the sound
velocity – is c = 238 m/s. The second characteristic feature of the excita-
tion spectrum is the minimum at p0 = 1.91 Å−1

�. Here, the excitations are
referred to as rotons and can be described by the dispersion relation

εp = ∆+
(|p| − p0)2

2µ
(3.2.36b)

with the effective mass µ = 0.16mHe and the energy gap ∆/k = 8.6 K. The
condensation of helium and the resulting quasiparticle dispersion relation
((3.2.36a,b), Fig. 3.5) has essential consequences for the dynamical behavior
of He4 in the He-II phase. It leads to superfluidity and to the two-fluid model.
To see this, we consider the flow of helium through a tube in two different
inertial frames. In frame K, the tube is at rest and the fluid moves with a
velocity −v. In frame K0, the helium is at rest and the tube moves with a
velocity v (see Fig. 3.6).
13 D.G. Henshaw and A.D. Woods, Phys. Rev. 121, 1266 (1961)
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Fig. 3.6. Superfluid helium in the rest frame of the tube (laboratory frame, K)
and in the rest frame of the fluid, K0.

The total energies (E,E0) and the total momenta (P,P0) in the two
frames (K,K0) are related to one another through a Galilei transformation:

P = P0 −Mv (3.2.37a)

E = E0 − P0 · v +
Mv2

2
, (3.2.37b)

where we have introduced∑
i

pi = P ,
∑

i

pi0 = P0 ,
∑

i

m = M .

One can derive (3.2.37a,b) by using the Galilei transformation of the individual
particles

xi = xi0 − vt

pi = pi0 −mv .

Thus,

P =
X

pi =
X

(pi0 −mv) = P0 −Mv .

The energy transforms as follows:

E =
X

i

1

2m
p2

i +
X
〈i,j〉

V (xi − xj)

=
X

i

m

2

“pi0

m
− v

”2

+
X
〈i,j〉

V (xi0 − xj0)

=
X

i

p2
i0

2m
− P0 · v +

M

2
v2 +

X
〈i,j〉

V (xi0 − xj0)

= E0 − P0 · v +
M

2
v2 .

In a normal fluid, any flow that might initially be present will be degraded
by frictional losses. When viewed in the frame K0, this means that, in the
fluid, excitations are created which move with the wall of the tube, such that
more and more fluid is pulled along with the moving tube. Seen from the
tube frame K, the same process can be interpreted as a deceleration of the
fluid flow. In order that such excitations actually occur, the energy of the
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fluid must simultaneously decrease. We now have to examine whether, for
the particular excitation spectrum of He-II, Fig. 3.5, the moving fluid can
reduce its energy through the creation of excitations.

Is it energetically favorable for quasiparticles to be excited? We first con-
sider helium at the temperature T = 0, i.e., in the ground state. In the ground
state the energy and momentum in the frame K0 are given by

Eg
0 and P0 = 0 . (3.2.38a)

Thus, in K, these quantities are

Eg = Eg
0 +

Mv2

2
and P = −Mv . (3.2.38b)

If a quasiparticle with momentum p = �k and energy ε(p) = �ωk is created,
the energy and momentum in the frame K0 have the values

E0 = Eg
0 + ε(p) and P0 = p , (3.2.38c)

whence, from (3.2.37a,b), the energy in K follows as

E = Eg
0 + ε(p) − p · v +

Mv2

2
and P = p −Mv . (3.2.38d)

The excitation energy in K (the tube frame) is thus

∆E = ε(p) − p · v . (3.2.39)

Here, ∆E is the energy change in the fluid due to the creation of an excitation
in the tube frame K. Only when ∆E < 0 does the flowing fluid lose energy.
Since ε− pv has its smallest value when p is parallel to v, the inequality

v >
ε

p
(3.2.40a)

must be satisfied in order for an excitation to occur. From (3.2.40a) and the
experimental excitation spectrum, one obtains the critical velocity (Fig. 3.7)

vc =
(
ε

p

)
min

≈ 60 m/s . (3.2.40b)

Fig. 3.7. Quasiparticles and
critical velocity
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If the flow velocity is smaller than vc, no quasiparticles are excited and the
fluid flows unimpeded and loss-free through the tube. This is the phenomenon
of superfluidity. The existence of a finite critical velocity is closely related to
the form of the excitation spectrum, which has a finite group velocity at
p = 0 and is everywhere greater than zero (Fig. 3.7).

The value (3.2.40b) of the critical velocity is observed experimentally for
the motion of ions in He-II. The critical velocity for flows in capillaries is
much smaller than vc, since vortices already occur at lower velocities. Such
excitations have not been considered here.

Problems

3.1 Consider the following two-particle boson state

|2〉 =

Z
d3x1

Z
d3x2ϕ(x1,x2)ψ

†(x1)ψ
†(x2) |0〉 .

a) Confirm the normalization condition (3.1.10).
b) Verify the result (3.1.14) for the expectation value 〈2|n(x) |2〉 on the assumption
that ϕ(x1,x2) ∝ ϕ1(x1)ϕ2(x2).

3.2 The Heisenberg model of a ferromagnet is defined by the Hamiltonian

H = −1

2

X
l,l′
J(|l − l′|)Sl · Sl′ ,

where l and l′ are nearest neighbor sites on a cubic lattice. By means of the Holstein–
Primakoff transformation

S+
i =

√
2Sϕ(n̂i)ai ,

S−
i =

√
2Sa†iϕ(n̂i) ,

Sz
i = S − n̂i ,

with S±
i = Sx

i ± Sy
i , ϕ(n̂i) =

p
1 − n̂i/2S , n̂i = a†iai and [ai, a

†
j ] = δij , [ai, aj ] = 0

one can express the Hamiltonian in terms of Bose operators ai.
a) Show that the commutation relations for the spin operators are satisfied.
b) Write down the Hamiltonian to second order (harmonic approximation) in terms
of the Bose operators ai by regarding the square-roots in the above transformation
as a shorthand for the series expansion.
c) Diagonalize H (by means of a Fourier transformation) and determine the dis-
persion relation of the spin waves (magnons).

3.3 Confirm the inverse (3.2.15) of the Bogoliubov transformation.

3.4 By means of the Bogoliubov transformation, the Hamiltonian of the weakly
interacting Bose gas can be brought into diagonal form. One thereby finds the
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condition (3.2.17):„
k2

2m
+ nVk

«
ukvk +

n

2
Vk
`
u2
k + v2k

´
= 0 .

Confirm the results (3.2.18) and (3.2.19).

3.5 Determine the temperature dependence of the number of particles in the con-
densate, N0(T ), for a contact potential Vk = λ.
a) Proceed by first calculating the thermodynamic expectation value of the par-

ticle number operator N̂ =
P

k a
†
kak by rewriting it in terms of the quasiparticle

operators αk. One finds (in the continuum limit: 1
V

P
k → R

d3k
(2π)3

)

N = N0(T ) + 2
(mnλ)3/2

π2

„
1

6
+ U1(γ)

«
,

where γ = β
k2
0

2m
, k2

0 = 4mnλ, β = 1/kT , k the Boltzmann constant, and

Un(γ) =

Z ∞

0

dy
xn

eγy − 1
, with y = x

p
x2 + 1 .

b) Show that, for low temperatures, the depletion of the condensate increases
quadratically with temperature

N0(T )

V
=
N0(0)

V
− m

12c
(kT )2 ,

where c =
q

nλ
m

. Also, discuss the limiting case of high temperatures and compare

the result obtained with the results from the theory of the Bose–Einstein conden-
sation of noninteracting bosons below the transition temperature.

Lit.: R.A. Ferrell, N. Menyhárd, H. Schmidt, F. Schwabl and P. Szépfalusy,
Ann. Phys. (N.Y.) 47, 565 (1968); Phys. Rev. Lett. 18, 891 (1967); Phys. Letters
24A, 493 (1967); K. Kehr, Z. Phys. 221, 291 (1969).

3.6 a) Determine the excitation spectrum ωk of the weakly interacting Bose gas
for the spherical well potential V (x) = λ′Θ(R − |x|). Analyze the limiting case
R→ 0 and compare the result with the excitation spectrum for the contact potential
Vk = λ. The comparison yields λ = 4π

3
λ′R3.

b) Determine the range of the parameter k0R, where k2
0 = 4mnλ, in which the

excitation spectrum displays a “roton minimum”. Discuss the extent to which this
parameter range lies within or outside the range of validity of the Bogoliubov theory
of weakly interacting bosons.

Hints: Rewrite the spectrum in terms of the dimensionless quantities x = k/k0
and y = k0R and consider the derivative of the spectrum with respect to x. The
condition for the derivative to vanish should be investigated graphically.

3.7 Show that (3.2.11) yields the Hamiltonian (3.2.16), which in turn leads to
(3.2.20).
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3.8 Ground-state energy for bosons with contact interaction

Consider a system of N identical bosons of mass m interacting with one another
via a two-particle contact potential,

H =
NX

α=1

p2i
2m

+ λ
X
i<j

δ(xi − xj) .

In the limit of weak interaction, the Bogoliubov transformation can be used to
express the Hamiltonian in the form

H =
N2

2V
λ− 1

2

X
k

′
„
k2

2m
+ nλ− ωk

«
+
X
k

′
ωkα

†
kαk .

The ground-state energy

E0 =
N2λ

2V
−
X
k

′
„
k2

2m
+ nλ− ωk

«
diverges at the upper integration limit (ultraviolet divergence). The reason for this
is the unphysical form of the contact potential. The divergence is removed by
introducing the physical scattering length, which describes the s-wave scattering
by a short-range potential (L.D. Landau and E.M. Lifshitz, Course of Theoretical
Physics, Vol. 9, E.M. Lifshitz and E.P. Pitaevskii, Statistical Physics 2, Pergamon
Press, New York, 1981, § 6). Show that the scattering amplitude f of particles in
the condensate is given, in first-order perturbation theory, by

a := −f(k1 = k2 = k3 = k4 = 0) =
m

4π�2
λ

(
1 − λ

V

X
k

′m
k2

+ O(λ2)

)
.

Eliminate λ from the expression for the ground-state energy by introducing a. For
small values of a/r0, where r0 = (N/V )−1/3 is the mean separation of particles,
show that the ground-state energy is given by

E0 = N
2π�

2an

m

(
1 +

128

15
√
π

„
a

r0

«3/2
)
.

Calculate from this the chemical potential µ = ∂E0
∂N

and the sound velocity c

c =

s
∂P

∂ρ
, ρ = mn, P = −∂E0

∂V
.



4. Correlation Functions,
Scattering, and Response

In the following, we shall investigate the dynamical properties of many-
particle systems on a microscopic, quantum-mechanical basis. We begin by
expressing experimentally relevant quantities such as the inelastic scattering
cross-section and the dynamical susceptibility (which describes the response
of the system to time-dependent fields) in terms of microscopic entities such
as the dynamical correlation functions. General properties of these correla-
tion functions and their interrelations are then derived using the symmetry
properties of the system, causality, and the specific definitions in terms of
equilibrium expectation values. Finally, we calculate correlation functions for
a few physically relevant models.

4.1 Scattering and Response

Before entering into the details, let us make some remarks about the physi-
cal motivation behind the subject of this chapter. If a time-dependent field
Eei(kx−ωt) is applied to a many-particle system (solid, liquid, or gas), this
induces a “polarization” (Fig. 4.1)

P (k, ω)ei(kx−ωt) + P (2k, 2ω)ei2(kx−ωt) + . . . . (4.1.1)

The first term has the same periodicity as the applied field; in addition,
nonlinear effects give rise to higher harmonics. The linear susceptibility is

Fig. 4.1. An external field E(x, t) in-
duces a polarization P (x, t)
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defined by

χ(k, ω) = lim
E→0

P (k, ω)
E

, (4.1.2)

which is a property of the unperturbed sample and must be expressible solely
in terms of quantities that characterize the many-particle system. In this
chapter we will derive general microscopic expressions for this type of sus-
ceptibility.

Another possibility for obtaining information about a many-particle sys-
tem is to carry out scattering experiments with particles, e.g., neutrons, elec-
trons, or photons. The wavelength of these particles must be comparable
with the scale of the structures that one wants to resolve, and their energy
must be of the same order of magnitude as the excitation energies of the
quasiparticles that are to be measured. An important tool is neutron scatter-
ing, since thermal neutrons, as available from nuclear reactors, ideally satisfy
these conditions for experiments on solids.1 Since neutrons are neutral, their
interaction with the nuclei is short-ranged; in contrast to electrons, they pene-
trate deep into the solid. Furthermore, due to their magnetic moment and the
associated dipole interaction with magnetic moments of the solid, neutrons
can also be used to investigate magnetic properties.

We begin by considering a completely general scattering process and will
specialize later to the case of neutron scattering. The calculation of the inelas-
tic scattering cross-section proceeds as follows. We consider a many-particle
system, such as a solid or a liquid, that is described by the Hamiltonian H0.
The constituents (atoms, ions) of this substance are described by coordinates
xα which, in addition to the spatial coordinates, may also represent other
degrees of freedom. The incident particles, e.g., neutrons or electrons, which
are scattered by this sample, have mass m, spatial coordinate x, and spin
ms.

The total Hamiltonian then reads:

H = H0 +
p2

2m
+W ({xα},x) . (4.1.3)

This comprises the Hamiltonian of the target, H0, the kinetic energy of the
incident particle, and the interaction between this projectile particle and
the target, W ({xα},x). In second quantization with respect to the incident
particle, the Hamiltonian reads:

1 The neutron wavelength depends on the energy according to λ(nm) = 0.0286√
E(eV)

and thus λ = 0.18nm for E = 25meV b=290K.
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H = H0 +
p2

2m
+

∑
k′k′′σ′σ′′

a†k′σ′ak′′σ′′

× 1
V

∫
d3x e−i(k′−k′′)xW σ′σ′′

({xα},x)

= H0 +
p2

2m
+

∑
k′k′′σ′σ′′

a†k′σ′ak′′σ′′W σ′σ′′
k′−k′′({xα}) , (4.1.4)

where a†k′σ′ (ak′′σ′′) creates (annihilates) a projectile particle. We write the
eigenstates of H0 as |n〉, i.e.,

H0 |n〉 = En |n〉 . (4.1.5)

k

2

d 2

dΩ

k1

k

Fig. 4.2. Inelastic scattering with momentum transfer k = k1 − k2 and energy

transfer �ω = �
2

2m
(k2

1 − k2
2)

In the scattering setup sketched in Fig. 4.2, a particle with wave vector k1 and
spin ms1 is incident on a substance initially in the state |n1〉. Thus, the initial
state of the system as a whole is |k1,ms1, n1〉. The corresponding final state
is |k2,ms2, n2〉. Due to its interaction with the target, the incident particle
is deflected, i.e., the direction of its momentum is changed and, for inelastic
scattering, so is the length of its wave vector (momentum). If the interaction
is spin dependent, the spin quantum number may also be changed.

The transition probability per unit time can be obtained from Fermi’s
golden rule2

Γ (k1,ms1, n1 → k2,ms2, n2)

=
2π
�

|〈k2,ms2, n2|W |k1,ms1, n1〉|2 δ(En1 − En2 + �ω) .
(4.1.6)

Here,

�ω =
�

2

2m
(k2

1 − k2
2) (4.1.7a)

2 See, e.g., QM I, Eq. (16.40)
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and

k = k1 − k2 (4.1.7b)

are the energy and momentum transfer of the projectile to the target, and

ε =
�

2k2
2

2m
(4.1.7c)

the final energy of the particle. The matrix element in the golden rule becomes

〈k2,ms2, n2|W |k1,ms1, n1〉 = W σ′σ′′
k2−k1

({xα}) . (4.1.8)

We take the distribution of initial states to be p(n1) with
∑

n1
p(n1) = 1

and the distribution of the spin states of the particle to be ps(ms1) with∑
ms1

ps(ms1) = 1. If only k2 is measured, and the spin is not analyzed, the
transition probability of interest is

Γ (k1 → k2) =
∑
n2n1

∑
ms1ms2

p(n1)ps(ms1)Γ (k1,ms1, n1 → k2,ms2, n2) .

(4.1.9)

The differential scattering cross-section (effective target area) per atom is
defined by

d2σ

dΩdε
dΩdε =

probablility of transition into dΩdε/s
number of scatterers × flux of incident particles

.

(4.1.10)

Here, dΩ is an element of solid angle and the flux of incident particles is equal
to the magnitude of their current density. The number of scatterers is N and
the normalization volume is L3. The states of the incident particles are

ψk1(x) =
1

L3/2
eik1x . (4.1.11)

The current density follows as:

j(x) =
−i�
2m

(ψ∗∇ψ − (∇ψ∗)ψ) =
�k1

mL3
, (4.1.12)

and for the differential scattering cross-section one obtains

d2σ

dΩdε
dΩdε =

1
N

mL3

�k1
Γ (k1 → k2)

(
L

2π

)3

d3k2 , (4.1.13)

since the number of final states, i.e., the number of k2 values in the interval
d3k2 is

(
L
2π

)3
d3k2. With ε = �

2k2
2

2m , it follows that dε = �
2k2 dk2/m and

d3k2 = m
�2 k2 dε dΩ.
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We thus find

d2σ

dΩdε
=
( m

2π�2

)2 k2

k1

L6

N
(4.1.14)

×
∑

n1,n2
ms1,ms2

p(n1)ps(ms1) |〈k1,ms1, n1|W |k2,ms2, n2〉|2 δ(En1 − En2 + �ω) .

We now consider the particular case of neutron scattering and investigate
the scattering of neutrons by nuclei. The range of the nuclear force is R ≈
10−12cm and thus k1R ≈ 10−4 � 1 and, therefore, for thermal neutrons one
has only s-wave scattering. In this case, the interaction can be represented
by an effective pseudopotential

W ({xα},x) =
2π�

2

m

N∑
α=1

aαδ(xα − x) , (4.1.15)

to be used within the Born approximation, where aα are the scattering lengths
of the nuclei. This yields:

d2σ

dΩdε
=
k2

k1

1
N

∑
n1n2

p(n1)

∣∣∣∣∣
N∑

α=1

aα 〈n1| e−ikxα |n2〉
∣∣∣∣∣
2

δ(En1 − En2 + �ω) .

(4.1.16)

Here, we have used

〈k1|W |k2〉 =
2π�

2

mL3

∫
d3xe−ik1x

∑
α

aαδ(x − xα)eik2x

=
2π�

2

mL3

∑
α

aαe−i(k1−k2)xα

(4.1.17)

and the fact that the interaction is independent of spin. Written out explicitly,
the expression (4.1.16) assumes the form∑

αβ

aαaβ

〈
. . . e−ikxα . . .

〉〈
. . . eikxβ . . .

〉
δ(En1 − En2 + �ω) (4.1.16′)

and still has to be averaged over the various isotopes with different scat-
tering lengths. One assumes that their distribution is random, i.e., spatially
uncorrelated:

a =
1
N

N∑
α=1

aα , a2 =
1
N

N∑
α=1

a2
α

aαaβ =
{
a2 for α 	= β

a2 for α = β
= a2 + δαβ(a2 − a2) .

(4.1.18)
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This gives rise to a decomposition of the scattering cross-section into a co-
herent and an incoherent part3:

d2σ

dΩdε
= AcohScoh(k, ω) +AincSinc(k, ω) . (4.1.19a)

Here, the various terms signify

Acoh = a2 k2

k1
, Ainc = (a2 − a2)

k2

k1
(4.1.19b)

and

Scoh(k, ω) =
1
N

∑
αβ

∑
n1n2

p(n1) 〈n1| e−ikxα |n2〉 〈n2| eikxβ |n1〉

× δ(En1 − En2 + �ω) ,

Sinc(k, ω) =
1
N

∑
α

∑
n1n2

p(n1)
∣∣〈n1| e−ikxα |n2〉

∣∣2
× δ(En1 − En2 + �ω) ,

(4.1.20)

the suffices standing for coherent and incoherent.
In the coherent part, the amplitudes stemming from the different atoms are
superposed. This gives rise to interference terms which contain information
about the correlation between different atoms. In the incoherent scattering
cross-section, it is the intensities rather than the amplitudes of the scattering
from different atoms that are added. It contains no interference terms and the
information which it yields relates to the autocorrelation, i.e., the correlation
of each atom with itself. For later use we note here that, for systems in
equilibrium,

p(n1) =
e−βEn1

Z
, (4.1.21a)

which corresponds to the density matrix of the canonical ensemble4

ρ = e−βH0/Z , Z = Tr e−βH0 . (4.1.21b)

We shall also make use of the following representation of the delta function

δ(ω) =
∫

dt

2π
eiωt . (4.1.22)

The coherent scattering cross-section contains the factor
1
�

∫
dt

2π
ei(En1−En2+�ω)t/� 〈n1| e−ikxα |n2〉

=
1

2π�

∫
dteiωt 〈n1| eiH0t/�e−ikxαe−iH0t/� |n2〉 (4.1.23)

=
1

2π�

∫
dteiωt 〈n1| e−ikxα(t) |n2〉 . (4.1.24)

3 See, e.g., L. van Hove, Phys. Rev. 95, 249 (1954)
4 See, e.g., SM, sect. 2.6. β = 1/kT in terms of Boltzmann’s constant k and the

temperature T .
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Hence, by making use of the completeness relation∑
n2

|n2〉 〈n2| = 1 ,

one finds

Scoh
inc

(k, ω) =
∫

dt

2π�
eiωt 1

N

∑
αβ

〈
e−ikxα(t)eikxβ(0)

〉( 1
δαβ

)
. (4.1.25)

The correlation functions in (4.1.25) are evaluated using the density matrix
of the many-particle system (4.1.21), the thermal average of an operator O
being defined by

〈O〉 =
∑

n

e−βH0

Z
〈n|O |n〉 = Tr (ρO) . (4.1.26)

One refers to Scoh(inc)(k, ω) as the coherent (incoherent) dynamical structure
function. Both contain an elastic (ω = 0) and an inelastic (ω 	= 0) component.
Using the density operator

ρ(x, t) =
N∑

α=1

δ(x − xα(t)) (4.1.27)

and its Fourier transform

ρk(t) =
1√
V

∫
d3xe−ikxρ(x, t) =

1√
V

N∑
α=1

e−ikxα(t) , (4.1.28)

it follows from (4.1.25) that

Scoh(k, ω) =
∫

dt

2π�
eiωt V

N
〈ρk(t)ρ−k(0)〉 . (4.1.29)

Thus, the coherent scattering cross-section can be represented by the Fourier
transform of the density–density correlation function, where �k is the mo-
mentum transfer and �ω the energy transfer from the neutron to the target
system. An important application is the scattering from solids to determine
the lattice dynamics. The one-phonon scattering yields, as a function of fre-
quency ω, resonances at the values ±ωt1(k), ±ωt2(k), and ±ωl(k), the fre-
quencies of the two transverse, and the longitudinal phonons. The width of
the resonances is determined by the lifetime of the phonons. The background
intensity is due to multiphonon scattering (see Sect. 4.7(i) and Problem 4.5).
The intensity of the single-phonon lines also depends on the scattering geom-
etry via the scalar product of k with the polarization vector of the phonons
and via the Debye–Waller factor. As a schematic example of the shape of
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−ω−ωl ωt ωl
ω

00

Scoh(k, ω)

Fig. 4.3. Coherent scattering cross-section as a function of ω for fixed momentum
transfer k. Resonances (peaks) are seen at the transverse (±ωt(k)) and longitudinal
(±ωl(k)) phonon frequencies, as well as at ω = 0

the scattering cross section, we show in Fig. 4.3 Scoh for fixed k as a func-
tion of the frequency ω. The resonances at finite frequencies are due to a
transverse and a longitudinal acoustic phonon, and, furthermore, one sees a
quasi-elastic peak at ω = 0. Quasi-elastic peaks may result from disorder and
from relaxation and diffusion processes (Sect. 4.7(ii)).

The coherent scattering cross-section is a source of direct information
about density excitations, such as phonons in solids and fluids. The incoherent
component is a sum of the scattering intensities of the individual scatterers.
It contains information about the autocorrelations.

For other scattering experiments (e.g., with photons, electrons, or atoms)
one can likewise represent the scattering cross-section in terms of correlation
functions of the many-particle system. We shall pursue the detailed proper-
ties of the differential scattering cross-section here no further. These prelim-
inary remarks are intended mainly as additional motivation for the sections
that are to follow, where we will see that the correlation functions and the
susceptibility are related to one another. Causality will allow us to derive dis-
persion relations. Time-reversal invariance and translational invariance will
yield symmetry relations, and from the static limit and the commutation
relations we will derive sum rules.

4.2 Density Matrix, Correlation Functions

The Hamiltonian of the many-particle system will be denoted by H0 and
is assumed to be time independent. The formal solution of the Schrödinger
equation

i�
∂

∂t
|ψ, t〉 = H0 |ψ, t〉 (4.2.1)



4.2 Density Matrix, Correlation Functions 83

is then

|ψ, t〉 = U0(t, t0) |ψ, t0〉 . (4.2.2)

Due to the time independence of H0, the unitary operator U0(t, t0) (with
U0(t0, t0) = 1) is given by

U0(t, t0) = e−iH0(t−t0)/� . (4.2.3)

The Heisenberg state

|ψH〉 = U †
0 (t, t0) |ψ, t〉 = |ψ, t0〉 (4.2.4)

is time independent and the Heisenberg operators

A(t) = U †
0 (t, t0)AU0(t, t0) = eiH0(t−t0)/�Ae−iH0(t−t0)/� , (4.2.5)

corresponding to the Schrödinger operators A,B, .., satisfy the equation of
motion (Heisenberg equation of motion)

d

dt
A(t) =

i
�
[H0, A(t)] . (4.2.6)

The density matrix of the canonical ensemble is

ρ =
e−βH0

Z

with the canonical partition function

Z = Tr e−βH0 , (4.2.7)

and for the grand canonical ensemble

ρ =
e−β(H0−µN)

ZG
(4.2.8)

with the grand canonical partition function

ZG = Tr e−β(H0−µN)

=
∑
N

∑
m

e−β(Em(N)−µN)

[
≡
∑

n

e−β(En−Nnµ)

]
.

Since H0 is a constant of motion, these density matrices are time independent,
as indeed must be the case for equilibrium density matrices. The mean values
in these ensembles are defined by

〈O〉 = Tr(ρO) . (4.2.9)

In particular, we now wish to investigate the correlation functions
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C(t, t′) = 〈A(t)B(t′)〉
= Tr(ρ eiH0t/�Ae−iH0t/�eiH0t′/�Be−iH0t′/�)

= Tr(ρ eiH0(t−t′)/�Ae−iH0(t−t′)/�B)
= C(t− t′, 0) . (4.2.10)

Without loss of generality, we have set t0 = 0 and used the cyclic invariance of
the trace and also [ρ,H0] = 0. The correlation functions depend only on the
time difference; equation (4.2.10) expresses temporal translational invariance.

The following definitions will prove to be useful:

G>
AB(t) = 〈A(t)B(0)〉 , (4.2.11a)

G<
AB(t) = 〈B(0)A(t)〉 . (4.2.11b)

Their Fourier transforms are defined by

G
>
<

AB(ω) =
∫
dt eiωtG

>
<

AB(t) . (4.2.12)

By inserting (4.2.5) into (4.2.12), taking energy eigenstates as a basis,
and introducing intermediate states by means of the closure relation 11 =∑

m |m〉 〈m|, we obtain the following spectral representation for G
>
<

AB(ω):

G>
AB(ω) =

2π
Z

∑
n,m

e−β(En−µNn) 〈n|A |m〉 〈m|B |n〉

× δ

(
En − Em

�
+ ω

)
(4.2.13a)

G<
AB(ω) =

2π
Z

∑
n,m

e−β(En−µNn) 〈n|B |m〉 〈m|A |n〉

× δ

(
Em − En

�
+ ω

)
. (4.2.13b)

From this, it is immediately obvious that

G>
AB(−ω) = G<

BA(ω) (4.2.14a)

G<
AB(ω) = G>

AB(ω)e−β�ω . (4.2.14b)

To derive the first relation, one compares G>
AB(−ω) with (4.2.13a). The sec-

ond follows if one exchanges n with m in (4.2.13b) and uses the δ-function.
The latter relation is always applicable in the canonical ensemble and is valid
in the grand canonical ensemble when the operators A and B do not change
the number of particles. If, however,B increases the particle number by ∆nB,
then Nm −Nn = ∆nB and (4.2.14b) must be replaced by
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G<
AB(ω) = G>

AB(ω)e−β(�ω−µ∆nB) . (4.2.14b′)

Inserting A = ρk and B = ρ−k into (4.2.14a,b) yields the following rela-
tionship for the density–density correlation function:

Scoh(k,−ω) = e−β�ωScoh(−k, ω) . (4.2.15)

For systems possessing inversion symmetry S(k, ω) = S(−k, ω), and hence

Scoh(k,−ω) = e−β�ωScoh(k, ω) . (4.2.16)

This relation implies that, apart from a factor k2
k1

in (4.1.19), the anti-Stokes
lines (energy loss by the sample) are weaker by a factor e−β�ω than the Stokes
lines (energy gain)5. For T → 0 we have Scoh(k, ω < 0) → 0, since the system
is then in the ground state and cannot transfer any energy to the scattered
particle. The above relationship expresses what is known as detailed balance
(Fig. 4.4):

Wn→n′P e
n = Wn′→nP

e
n′ or

Wn→n′ = Wn′→ne−β(En′−En) . (4.2.17)

WnWW →n′ WnWW ′→n

En′

En

E

P e
nPP

Fig. 4.4. Illustration concern-
ing detailed balance

Here, Wn→n′ and Wn′→n are the transition probabilities from the level n to
the level n′ and vice versa, and P e

n and P e
n′ are the equilibrium occupation

probabilities. Detailed balance implies that these quantities are related to
one another in such a way that the occupation probabilities do not change
as a result of the transition processes.

4.3 Dynamical Susceptibility

We now wish to derive a microscopic expression for the dynamical suscepti-
bility. To this end, we assume that the system is influenced by an external
5 From the measurement of the ratio of the Stokes and anti-Stokes lines in Raman

scattering the temperature of a system may be determined.
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force F (t) which couples to the operator B.6 The Hamiltonian then has the
form

H = H0 +H ′(t) (4.3.1a)

H ′(t) = −F (t)B . (4.3.1b)

For t ≤ t0, we assume that F (t) = 0, and that the system is in equilibrium.
We are interested in the response to the perturbation (4.3.1b). The mean
value of A at time t is given by

〈A(t)〉 = Tr (ρS(t)A) = Tr (U(t, t0) ρS(t0) U †(t, t0) A) (4.3.2)
= Tr (ρS(t0) U †(t, t0) A U(t, t0))

= Tr (
e−βH0

Z
U †(t, t0) A U(t, t0)) ,

where the notation 〈A(t)〉 is to be understood as the mean value of the Heisen-
berg operator (4.2.5). Here we have introduced the time-evolution operator
U(t, t0) for the entire Hamiltonian H and inserted the solution

ρS(t) = U(t, t0)ρS(t0)U †(t, t0)

of the von Neumann equation

ρ̇S = − i
�
[H, ρS ] .

Then, using the cyclic invariance of the trace and assuming a canonical equi-
librium density matrix at time t0, we end up with the mean value of the
operator A in the Heisenberg representation.

The time-evolution operator U(t, t0) can be determined perturbation
theoretically in the interaction representation. For this, we need the equa-
tion of motion for U(t, t0). From

i�
d

dt
|ψ, t〉 = H |ψ, t〉 ,

it follows that
i�
d

dt
U(t, t0) |ψ0〉 = HU(t, t0) |ψ0〉

and, thus,(
i�
d

dt
U(t, t0) −HU(t, t0)

)
|ψ0〉 = 0

6 Physical forces are real and observables, e.g., the density ρ(x), are represented by
hermitian operators. Nonetheless, we shall also consider the correlation functions
for nonhermitian operators such as ρk (ρ†k = ρ−k), since we may also be interested
in the properties of individual Fourier components. F (t) is a c-number.
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for every |ψ0〉, which yields the equation of motion

i�
d

dt
U(t, t0) = HU(t, t0) . (4.3.3)

We now make the ansatz

U(t, t0) = e−iH0(t−t0)/�U ′(t, t0) . (4.3.4)

This gives

i�
d

dt
U ′ = eiH0(t−t0)/�(−H0 +H)U ,

and thus

i�
d

dt
U ′(t, t0) = H ′

I(t)U
′(t, t0) , (4.3.5)

where the interaction representation of H ′

H ′
I(t) = eiH0(t−t0)/�H ′(t)e−iH0(t−t0)/� (4.3.6)

has been introduced. The integration of (4.3.5) yields for the time evolution
operator in the interaction representation U ′(t, t0) the integral equation

U ′(t, t0) = 1 +
1
i�

∫ t

t0

dt′H ′
I(t

′)U ′(t′, t0) (4.3.7)

and its iteration

U ′(t, t0) = 1 +
1
i�

∫ t

t0

dt′H ′
I(t

′)

+
1

(i�)2

∫ t

t0

dt′
∫ t′

t0

dt′′H ′
I(t

′)H ′
I(t

′′) + . . . (4.3.8)

= T exp
(
− i

�

∫ t

t0

dt′H ′
I(t

′)
)
.

Here, T is the time-ordering operator. The second representation of (4.3.8)
is not required at present, but will be discussed in more detail in Part III.

For the linear response, we need only the first two terms in (4.3.8). In-
serting these into (4.3.2), we obtain, to first order in F (t),

〈A(t)〉 = 〈A〉0 +
1
i�

∫ t

t0

dt′
〈[

eiH0(t−t0)/�Ae−iH0(t−t0)/�, H ′
I(t

′)
]〉

0

= 〈A〉0 −
1
i�

∫ t

t0

dt′〈[A(t), B(t′)]〉0F (t′) . (4.3.9)
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The subscript 0 indicates that the expectation value is calculated with the
density matrix e−βH0/Z of the unperturbed system. In the first term we have
exploited the cyclic invariance of the trace

〈A(t)〉0 = Tr
(

e−βH0

Z
e−iH0(t−t0)/�AeiH0(t−t0)/�

)
= 〈A〉0 .

We now assume that the initial time at which the system is in equilibrium,
with density matrix e−βH0/Z, lies in the distant past. In other words, we
take the limit t0 → −∞, which, however, does not prevent us from switching
on the force F (t′) at a later instant. For the change in the expectation value
due to the perturbation, we obtain

∆〈A(t)〉 = 〈A(t)〉 − 〈A〉0 =
∫ ∞

−∞
dt′χAB(t− t′)F (t′) . (4.3.10)

Here we have introduced the dynamical susceptibility, or linear response func-
tion

χAB(t− t′) =
i
�
Θ(t− t′)〈[A(t), B(t′)]〉0 , (4.3.11)

which is given by the expectation value of the commutator of the two Heisen-
berg operators A(t) and B(t′) (with respect to the Hamiltonian H0). The
step function arises from the upper integration boundary in Eq. (4.3.9) and
expresses causality. Within the equilibrium expectation value we can make
the replacements

A(t) → eiH0t/�Ae−iH0t/� and B(t) → eiH0t/�Be−iH0t/� .

Equation (4.3.10) determines, to first order, the effect on the observable A of
a force that couples to B.

We also define the Fourier transform of the dynamical susceptibility

χAB(z) =
∫ ∞

−∞
dt eiztχAB(t) , (4.3.12)

where z may be complex (see Sect. 4.4). In order to find its physical signifi-
cance, we consider a periodic perturbation which is switched on very slowly
(ε → 0, ε > 0):

H ′ = −
(
BFωe−iωt′ +B†F ∗

ωeiωt′
)

eεt′ . (4.3.13)

For this perturbation, it follows from (4.3.10) and (4.3.12) that

∆〈A(t)〉 =
∫ ∞

−∞
dt′
(
χAB(t− t′)Fωe−iωt′ + χAB†(t− t′)F ∗

ω)eiωt′
)

eεt′

= χAB(ω)Fωe−iωt + χAB†(−ω)F ∗
ωeiωt . (4.3.14)
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The factor eεt that appears in the intermediate step can be put equal to 1
since ε → 0. The effect of the periodic perturbation (4.3.13) on ∆〈A(t)〉
is thus proportional to the force (including its periodicity) and to the
Fourier transform of the susceptibility. Resonances in the susceptibility ex-
press themselves as a strong reaction to forces of the corresponding fre-
quency.

4.4 Dispersion Relations

The causality principle demands that the response of a system can only be
induced by a perturbation occurring at an earlier time. This is the source of
the step function in (4.3.11), i.e.,

χAB(t) = 0 for t < 0 . (4.4.1)

This leads to the theorem: χAB(z) is analytical in the upper half plane.
Proof. χAB is only nonzero for t > 0, where it is finite. Thus, the factor
e−Im zt guarantees the convergence of the Fourier integral (4.3.12).

For z in the upper half plane, the analyticity of χAB(z) allows us to use
Cauchy’s integral theorem to write

χAB(z) =
1

2πi

∫
C

dz′
χAB(z′)
z′ − z

. (4.4.2)

Here, C is a closed loop in the analytic region. We choose the path shown in

Im(z)

z

C

Re(z)
Fig. 4.5. Integration path C for
deriving the dispersion relation

Fig. 4.5; along the real axis, and around a semicircle in the upper half plane,
with both parts allowed to expand to infinity.

We now assume that χAB(z) becomes sufficiently small at infinity that
the semicircular part of the integration path contributes nothing. We then
have

χAB(z) =
1

2πi

∫ ∞

−∞
dx′

χAB(x′)
x′ − z

. (4.4.3)
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For real z it follows from (4.4.3) that

χAB(x) = lim
ε→0

χAB(x+ iε) = lim
ε→0

∫
dx′

2πi
χAB(x′)
x′ − x− iε

=
∫

dx′

2πi

[
P

1
x′ − x

+ iπδ(x′ − x)
]
χAB(x′) ,

i.e.,

χAB(x) =
1
πi

P
∫
dx′

χAB(x′)
x′ − x

. (4.4.4)

We encounter here the Cauchy principal value

P
∫
dx′

f(x′)
x′ − x

≡ lim
ε→0

(∫ x−ε

−∞
dx′ +

∫ ∞

x+ε

dx′
)

f(x′)
x′ − x

.

We then arrive at the dispersion relations (also known as Kramers–Kronig
relations)

Re χAB(ω) =
1
π

P
∫
dω′ Im χAB(ω′)

ω′ − ω
(4.4.5a)

and

Im χAB(ω) = − 1
π

P
∫
dω′Re χAB(ω′)

ω′ − ω
. (4.4.5b)

These relationships between the real and imaginary parts of the susceptibility
are a consequence of causality.

4.5 Spectral Representation

We define7 the dissipative response

χ′′
AB(t) =

1
2�

〈[A(t), B(0)]〉 (4.5.1a)

and

χ′′
AB(ω) =

∫ ∞

−∞
dt eiωtχ′′

AB(t) . (4.5.1b)

Given the Fourier representation of the step function

7 Here, and below we omit the index 0 from the expectation value. The notation
〈 〉 represents the expectation value with respect to the Hamiltonian H0 of the
entire system without external perturbation.
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Θ(t) = lim
ε→0+

∫ ∞

−∞

dω

2π
e−iωt i

ω + iε
, (4.5.2)

we find

χAB(ω) =
∫
dt eiωt Θ(t) 2i χ′′

AB(t)

=
1
π

∫ ∞

−∞
dω′ χ′′

AB(ω′)
ω′ − ω − iε

=
1
π

P
∫
dω′χ

′′
AB(ω′)
ω′ − ω

+ iχ′′
AB(ω) , (4.5.3)

where, in expressions such as the second line of (4.5.3), it should always
be understood that the limit ε → 0+ is taken. This yields the following
decomposition of χAB(ω):

χAB(ω) = χ′
AB(ω) + iχ′′

AB(ω) , (4.5.4)

with

χ′
AB(ω) =

1
π

P
∫
dω′χ

′′
AB(ω′)
ω′ − ω

. (4.5.5)

When χ′′
AB(ω) is real, then, according to (4.5.5), so is χ′

AB(ω) and (4.5.4)
represents the separation into real and imaginary parts. The relation (4.5.5)
is then identical to the dispersion relation (4.4.5a). The question as to the
reality of χ′′

AB(ω) will be dealt with in Sect. 4.8.

4.6 Fluctuation–Dissipation Theorem

With the definitions (4.5.1b) and (4.2.11) we find

χ′′
AB(ω) =

1
2�

(
G>

AB(ω) −G<
AB(ω)

)
, (4.6.1a)

which, together with (4.2.14b), yields

χ′′
AB(ω) =

1
2�
G>

AB(ω)
(
1 − e−β�ω

)
. (4.6.1b)

These relations between G> and χ′′ are known as the fluctuation–dissipation
theorem. Together with the relation (4.5.3), one obtains for the dynamical
susceptibility

χAB(ω) =
1

2π�

∫ ∞

−∞
dω′G

>
AB(ω′)(1 − e−β�ω′

)
ω′ − ω − iε

. (4.6.2)
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Classical limit β�ω � 1 : The classical limit refers to the frequency and
temperature region for which β�ω � 1. The fluctuation–dissipation theorem
(4.6.1) then simplifies to

χ′′
AB(ω) =

βω

2
G>

AB(ω) . (4.6.3)

In the classical limit (i. e. G>
AB(ω′) 	= 0 only for β�|ω′| � 1) one obtains from

(4.6.2)

χAB(0) = β

∫
dω′

2π
G>

AB(ω′) = βG>
AB(t = 0) . (4.6.4)

Hence the static susceptibility (ω = 0) is given in the classical limit by the
equal-time correlation function of A and B divided by kT .

The name fluctuation–dissipation theorem for (4.6.1) is appropriate since
GAB(ω) is a measure of the correlation between fluctuations of A and B,
whilst χ′′

AB describes the dissipation.
That χ′′ has to do with dissipation can be seen as follows: For a pertur-

bation of the form

H ′ = Θ(t)
(
A†F e−iωt +AF ∗eiωt

)
, (4.6.5)

where F is a complex number, the golden rule gives a transition rate per unit
time from the state n into the state m of

Γn→m =
2π
�

{
δ(Em − En − �ω)| 〈m|A†F |n〉 |2

+δ(Em − En + �ω)| 〈m|AF ∗ |n〉 |2
}
.

(4.6.6)

The power of the external force ( = the energy absorbed per unit time), with
the help of (4.6.1a) and (4.2.13a), is found to be

W =
∑
n,m

e−βEn

Z
Γn→m(Em − En)

=
2π
�

�ω
1

2π�

(
G>

AA†(ω) −G<
AA†(ω)

)
|F |2

= 2ωχ′′
AA†(ω)|F |2 , (4.6.7)

where a canonical distribution has been assumed for the initial states. We
have thus shown that χ′′

AA†(ω) determines the energy absorption and, there-
fore, the strength of the dissipation. For frequencies at which χ′′

AA†(ω) is
large, i.e., in the vicinity of resonances, the absorption per unit time is large
as well.
Remark. If the expectation values of the operators A and B are finite, in some of

the relations of Chap. 4, it can be expedient to use the operators Â(t)=A(t)− 〈A〉
and B̂(t) = B(t) − 〈B〉, in order to avoid contributions proportional to δ(ω), e. g.

�(x, t) or �k=0(t). Since the commutator remains unchanged χAB(t) = χÂB̂(t),

χ′′
AB(t) = χÂB̂(t) etc. hold.
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4.7 Examples of Applications

To gain familiarity with some characteristic forms of response and correlation
functions, we will give these for three typical examples: for a harmonic crystal,
for diffusive dynamics, and for a damped harmonic oscillator.

(i) Harmonic crystal. As a first, quantum-mechanical example, we calcu-
late the susceptibility for the displacements in a harmonic crystal. For the
sake of simplicity we consider a Bravais lattice, i.e., a lattice with one atom
per unit cell. We first recall a few basic facts from solid state physics concern-
ing lattice dynamics8. The atoms and lattice points are labeled by vectors
n = (n1, n2, n3) of natural numbers ni = 1, . . . , Ni, where N = N1N2N3

is the number of lattice points. The cartesian coordinates are characterized
by the indices i = 1, 2, 3. We denote the equilibrium positions of the atoms
(i.e., the lattice points) by an, so that the actual position of the atom n is
xn = an + un, where un is the displacement from the equilibrium position.
The latter can be represented by normal coordinates Qk,λ

ui
n(t) =

1√
NM

∑
k,λ

eikanεi(k, λ)Qk,λ(t) , (4.7.1)

where M the mass of an atom, k the wave vector, and εi(k, λ) the components
of the three polarization vectors, λ = 1, 2, 3. The normal coordinates can be
expressed in terms of creation and annihilation operators a†k,λ and ak,λ for
phonons with wave vector k and polarization λ

Qk,λ(t) =

√
�

2ωk,λ

(
ak,λ(t) + a†−k,λ(t)

)
(4.7.2)

with the three acoustic phonon frequencies ωk,λ. Here, we use the Heisenberg
representation

ak,λ(t) = e−iωk,λtak,λ(0) . (4.7.3)

After this transformation, the Hamiltonian takes the form

H =
∑
k,λ

�ωk,λ

(
a†k,λak,λ +

1
2

)
(4.7.4)

(ak,λ ≡ ak,λ(0)). From the commutation relations of the xn and their adjoint
momenta one obtains for the creation and annihilation operators the standard
commutator form,

8 See, e.g., C. Kittel, Quantum Theory of Solids, 2nd revised printing, J. Wiley,
New York, 1987



94 4. Correlation Functions, Scattering, and Response

[
ak,λ, a

†
k′,λ′

]
= δλλ′δkk′

[ak,λ, ak′,λ′ ] =
[
a†k,λ, a

†
k′,λ′

]
= 0 .

(4.7.5)

The dynamical susceptibility for the displacements is defined by

χij(n − n′, t) =
i
�
Θ(t)

〈[
ui
n(t), uj

n′(0)
]〉

(4.7.6)

and can be expressed in terms of

χ′′ij(n− n′, t) =
1
2�

〈[
ui
n(t), uj

n′(0)
]〉

(4.7.7)

as

χij(n − n′, t) = 2iΘ(t)χ′′ij(n − n′, t) . (4.7.8)

The phonon correlation function is defined by

Dij(n − n′, t) =
〈
ui
n(t)uj

n′(0)
〉
. (4.7.9)

For all of these quantities it has been assumed that the system is transla-
tionally invariant, i.e., one considers either an infinitely large crystal or a
finite crystal with periodic boundary conditions. For the physical quantities
of interest, this idealization is of no consequence. The translational invari-
ance means that (4.7.6) and (4.7.7) depend only on the difference n − n′.
The calculation of χ′′ij(n−n′, t) leads, with the utilization of (4.7.1), (4.7.2),
(4.7.3), and (4.7.5), to

χ′′ij(n− n′, t) =
1
2�

1
NM

∑
k,λ

k′,λ′

eikan+ik′an′ εi(k, λ)εj(k′, λ′)

× �√
4ωk,λωk′,λ′

〈[(
ak,λe−iωk,λt + a†−k,λeiωk,λt

)
,
(
ak′,λ′ + a†−k′,λ′

)]〉
=

1
4NM

∑
k,λ

eik(an−an′)εi(k, λ)ε∗j(k, λ)
1
ω k,λ

(
e−iωk,λt − eiωk,λt

)
.

(4.7.10)

In the following, we shall make use of the fact that the polarization vectors
for Bravais lattices are real.9 For (4.7.6), this yields:

9 In non-Bravais lattices the unit cell contains r ≥ 2 atoms (ions). The number of
phonon branches is 3r, i.e., λ = 1, . . . , 3r. Furthermore, the polarization vectors
ε(k, λ) are in general complex and in the results (4.7.11) to (4.7.18) the second
factor εj(. . . , λ) must be replaced by εj∗(. . . , λ).
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χij(n − n′, t) =
1

NM

∑
k,λ

eik(an−an′) ε
i(k, λ)εj(k, λ)

ωk,λ
sinωk,λt Θ(t)

(4.7.11)

and for the temporal Fourier transform

χij(n − n′, ω) =
1

NM

∑
k,λ

eik(an−an′) ε
i(k, λ)εj(k, λ)

ωk,λ

∞∫
0

dt eiωt sinωk,λt .

(4.7.12)

Using the equations (A.22), (A.23), and (A.24) from QM I,

∞∫
0

dseisz = 2πδ+(z) =
[
πδ(z) + iP

(
1
z

)]
= i lim

ε→0

1
z + iε

∞∫
0

dse−isz = 2πδ−(z) =
[
πδ(z) − iP

(
1
z

)]
= −i lim

ε→0

1
z − iε

,

(4.7.13)

one obtains, for real z,

χij(n − n′, ω) = lim
ε→0

1
2NM

∑
k,λ

eik(an−an′) ε
i(k, λ)εj(k, λ)

ωk,λ

×
{

1
ω + ωk,λ + iε

− 1
ω − ωk,λ + iε

} (4.7.14a)

and for the spatial Fourier transform

χij(q, ω) =
∑
n

e−iqanχij(n, ω) =
1

2M

∑
λ

εi(q, λ)εj(q, λ)
ωq,λ

×
{

1
ω + ωq,λ + iε

− 1
ω − ωq,λ + iε

}
.

(4.7.14b)

For the decompositions

χij(n − n′, ω) = χ′ij(n− n′, ω) + iχ′′ij(n − n′, ω) (4.7.15a)

and

χij(q, ω) = χ′ij(q, ω) + iχ′′ij(q, ω) (4.7.15b)

this leads to
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χ′ij(n − n′, ω) =
1

2NM

∑
k,λ

eik(an−an′) ε
i(k, λ)εj(k, λ)

ωk,λ

×
{
P

(
1

ω + ωk,λ

)
− P

(
1

ω − ωk,λ

)}
(4.7.16a)

χ′ij(q, ω) =
∑
n

e−iqanχij(n, ω)

=
1

2M

∑
λ

εi(q, λ)εj(q, λ)
ωq,λ

×
{
P

(
1

ω + ωq,λ

)
− P

(
1

ω − ωq,λ

)}
(4.7.16b)

χ′′ij(n− n′, ω) =
π

2NM

∑
k,λ

eik(an−an′) ε
i(k, λ)εj(k, λ)

ωk,λ

× [δ(ω − ωk,λ) − δ(ω + ωk,λ)] (4.7.17a)

χ′′ij(q, ω) =
∑
n

e−iqanχij(n, ω)

=
π

2M

∑
λ

εi(q, λ)εj(q, λ)
ωq,λ

× [δ(ω − ωq,λ) − δ(ω + ωq,λ)] . (4.7.17b)

The phonon correlation function (4.7.9) can be either calculated directly,
or determined with the help of the fluctuation–dissipation theorem from
χ′′ij(n − n′, ω):

Dij(n − n′, ω) = 2�
eβ�ω

eβ�ω − 1
χ′′ij(n − n′, ω)

= 2� [1 + n(ω)]χ′′ij(n − n′, ω)

=
π�

NM

∑
k,λ

eik(an−an′) ε
i(k, λ)εj(k, λ)

ωk,λ

× {(1 + nk,λ)δ(ω − ωk,λ) − nk,λδ(ω + ωk,λ)} ;

(4.7.18a)

analogously, it also follows that

Dij(q, ω) = 2� [1 + n(ω)]χ′′ij(q, ω)

=
π�

M

∑
λ

εi(q, λ)εj(q, λ)
ωq,λ

× {(1 + nq,λ)δ(ω − ωq,λ) − nq,λδ(ω + ωq,λ)} .

(4.7.18b)
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Here,

nq,λ =
〈
a†q,λaq,λ

〉
=

1
eβ�ωq,λ − 1

(4.7.19)

is the average thermal occupation number for phonons of wave vector q and
polarization λ. The phonon resonances in Dij(q, ω) for a particular q are
sharp δ-function-like peaks at the positions ±ωq,λ. The expansion of the
density–density correlation function, which determines the inelastic neutron
scattering cross-section, has as one of its contributions the phonon correla-
tion function (4.7.18b). The excitations of the many-particle system (in this
case the phonons) express themselves as resonances in the scattering cross-
section. In reality, the phonons interact with one another and also with other
excitations of the system, e.g, with the electrons in a metal. This leads to
damping of the phonons. The essential effect of this is captured by replacing
the quantity ε by a finite damping constant γ(q, λ). The phonon resonances
in (4.7.18) then acquire a finite width. See Fig. 4.3 and Problem 4.5.

(ii) Diffusion. The diffusion equation for M(x, t) reads:

Ṁ(x, t) = D∇2M(x, t) , (4.7.20)

where D is the diffusion constant and M(x, t) can represent, for example, the
magnetization density of a paramagnet. From (4.7.20) one readily finds10,11

χ(q, ω) = χ(q)
iDq2

ω + iDq2

χ′(q, ω) = χ(q)
(Dq2)2

ω2 + (Dq2)2

χ′′(q, ω) = χ(q)
Dq2ω

ω2 + (Dq2)2
(4.7.21)

G>(q, ω) = χ(q)
2�ω

1 − e−β�ω

Dq2

ω2 + (Dq2)2
.

Figure 4.6 shows χ′(q, ω), χ′′(q, ω), and G>(q, ω). One sees that χ′(q, ω) is
symmetric in ω, whereas χ′′(q, ω) is antisymmetric. The form ofG>(q, ω) also
depends on the value of β�Dq2, which in Fig. 4.6c is taken to be β�Dq2 = 0.1.
In order to emphasize the different weights of the Stokes and anti-Stokes com-
ponents, Fig. 4.6d is drawn for the value β�Dq2 = 1. However, it should be
stressed that, for diffusive dynamics, this is unrealistic since, in the hydrody-
namic regime, the frequencies are always smaller than kT .

10 M(x, t) is a macroscopic quantity; from the knowledge of its dynamics the
dynamical susceptibility can be deduced (Problem 4.1). The same is true for the
oscillator Q (see Problem 4.2).

11 Here, we have also used χ′ = Re χ, χ′′ = Im χ, which, according to Sect. 4.8,
holds for Q† = Q and M−q =M†

q.
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Fig. 4.6. Diffusive dynamics: (a) Real part and (b) imaginary part of the dynamical
susceptibility (4.7.21). The curves in (c) and (d) show G> divided by the static
susceptibility as a function of ω

Dq2 ; (c) for β�Dq2 = 0.1 and (d) for β�Dq2 = 1

(iii) Damped oscillator. We now consider a damped harmonic oscillator

m

[
d2

dt2
+ γ

d

dt
+ ω2

0

]
Q = 0 (4.7.22)

with mass m, frequency ω0, and damping constant γ. If, on the right-hand
side of the equation of motion (4.7.22), one adds an external force F , then, in
the static limit, one obtains Q

F = 1/mω2
0. Since this relationship defines the

static susceptibility, the eigenfrequency of the oscillator depends on its mass
and the static susceptibility χ, according to ω2

0 = 1
mχ . From the equation of

motion (4.7.22) with a periodic frequency-dependent external force one finds
for the dynamical susceptibility 10,11 χ(ω) and for G>(ω)
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χ(ω) =
1/m

−ω2 + ω2
0 − iωγ

χ′(ω) =
1
m

−ω2 + ω2
0

(−ω2 + ω2
0)2 + ω2γ2

(4.7.23)

χ′′(ω) =
1
m

ωγ

(−ω2 + ω2
0)2 + ω2γ2

G>(ω) =
2�ω

m(1 − e−β�ω)
γ

(−ω2 + ω2
0)2 + ω2γ2

.

These quantities, each divided by χ = 1/mω2
0, are shown in Fig. 4.7 as

functions of ω/ω0. Here, the ratio of the damping constant to the oscillator
frequency has been taken as γ/ω0 = 0.4. One sees that χ′ and χ′′ are symmet-
ric and antisymmetric, respectively. Figure 4.7c shows G>(ω) at β�ω0 = 0.1,
whereas Fig. 4.7d is for β�ω0 = 1. As in Fig. 4.6c,d, the asymmetry be-
comes apparent when the temperature is lowered. The differences between
the intensities of the Stokes and anti-Stokes lines can be used, for example,
to determine the temperature of a sample by Raman scattering.

-2 0 2

-1.0

0.0

1.0

2.0

ω/ω0

χ′(ω)
χ

-2 0 2

-2

0

2

ω/ω0

χ′′(ω)
χ

(a) (b)

0
0
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20

30

ω/ω0

G>(ω)
2�χ

0
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4

ω/ω0

G>(ω)
2�χ

(c) (d)

Fig. 4.7. χ′(ω), χ′′(ω) and G>(ω) for the harmonic oscillator γ
ω0

= 0.4. The two

plots of G>(ω) are for different values of β�ω0, namely in (c) β�ω0 = 0.1 and in
(d) β�ω0 = 1.0
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∗4.8 Symmetry Properties

4.8.1 General Symmetry Relations

In the two previous figures we have seen that χ′(ω) is symmetric and χ′′(ω)
antisymmetric, and that in G>(ω) the Stokes line is stronger than the anti-
Stokes line. We will now undertake a general investigation of the conditions
under which these symmetry properties hold. The symmetry properties that
will be discussed here are either of a purely mathematical nature and a direct
consequence of the definitions and of the usual properties of commutators
together with the dispersion relations and the relationships (4.2.14a,b), or
they are of a physical nature and follow from the symmetry properties of the
Hamiltonian, such as translational invariance, rotational invariance, inversion
symmetry, or time-reversal invariance. It follows from (4.6.1b) and (4.2.14b)
that

χ′′
AB(−ω) =

1
2�
G>

AB(−ω)
[
1 − eβ�ω

]
=

1
2�

e−β�ωG>
BA(ω)

[
1 − eβ�ω

]
(4.8.1a)

and a further comparison with (4.6.1b) yields:

χ′′
AB(−ω) = −χ′′

BA(ω) . (4.8.1b)

This relation also follows from the antisymmetry of the commutator; see
(4.8.12b).

When B = A†, the correlation functions G
>
<

AA†(ω) are real.

Proof:

G>
AA†(ω)∗ =

⎡⎣ ∞∫
−∞

dt eiωt
〈
A(t)A†(0)

〉⎤⎦∗

=

∞∫
−∞

dt e−iωt
〈
A(0)A†(t)

〉

=

∞∫
−∞

dt e−iωt
〈
A(−t)A†(0)

〉
=

∞∫
−∞

dt eiωt
〈
A(t)A†(0)

〉
= G>

AA†(ω) .
(4.8.2)

For B = A†, then χ′
AA†(ω) and χ′′

AA†(ω) are also real and thus yield the
decomposition of χAA† into real and imaginary parts:

Im χAA† = χ′′
AA† , Re χAA† = χ′

AA† . (4.8.3)

These properties are satisfied by the density–density correlation function.
The definitions of density correlation and density-response functions read:
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S(k, ω) =

∞∫
−∞

dt eiωtS(k, t) =
∫
dt d3x e−i(kx−ωt)S(x, t) , (4.8.4a)

where

S(x, t) = 〈ρ(x, t)ρ(0, 0)〉 (4.8.4b)

denotes the correlation of the density operator (4.1.27). It follows with
(4.1.28) that

S(k, t) = 〈ρk(t)ρ−k(0)〉 . (4.8.4c)

The susceptibility or response function is defined correspondingly through
χ(k, ω) or

χ′′(k, ω) =

∞∫
−∞

dt eiωt 1
2�

〈[ρk(t), ρ−k(0)]〉 . (4.8.5)

The relationship between the density correlation function and Scoh(k, ω)
reads:

S(k, ω) =
N

V
2π�Scoh(k, ω) . (4.8.6)

Further symmetry properties result in the presence of space inversion sym-
metry. Since we then have χ′′(−k, ω) = χ′′(k, ω), it follows from (4.8.1b)
that

χ′′(k,−ω) = −χ′′(k, ω) . (4.8.7a)

Thus χ′′ is an odd function of ω and, due to (4.8.3), is also real. Correspond-
ingly, χ′(k, ω) is even:

χ′(k,−ω) = χ′(k, ω) . (4.8.7b)

This can be seen by means of the dispersion relation, since

χ′(k,−ω) = P

∞∫
−∞

dω′

π

χ′′(k, ω′)
ω′ + ω

= −P

∞∫
−∞

dω′

π

χ′′(k,−ω′)
ω′ + ω

= P

∞∫
−∞

dω′

π

χ′′(k, ω′)
ω′ − ω

= χ′(k, ω) . (4.8.8)

For systems with inversion symmetry the density susceptibility can, according
to (4.6.1a) and (4.2.14a), be represented in the form
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χ′′(k, ω) =
1
2�

(S(k, ω) − S(k,−ω)) . (4.8.9)

Inserting this into the dispersion relation, one finds

χ′(k, ω) =
1

2�π
P

∞∫
−∞

dω′S(k, ω′)
[

1
ω′ − ω

− 1
−ω′ − ω

]

=
1

�π
P

∞∫
−∞

dω′ω
′S(k, ω′)
ω′2 − ω2

.

(4.8.10)

From this one obtains the asymptotic behavior

lim
ω→0

χ′(k, ω) =
1

�π
P

∞∫
−∞

dω′S(k, ω′)
ω′ (4.8.11a)

lim
ω→∞ω2χ′(k, ω) = − 1

�π

∞∫
−∞

dω′ω′S(k, ω′) . (4.8.11b)

4.8.2 Symmetry Properties of the Response Function
for Hermitian Operators

4.8.2.1 Hermitian Operators

Examples of hermitian operators are the density ρ(x, t) and the momentum
density P(x, t). For arbitrary, and in particular also for hermitian, operators
A and B, one has the following symmetry relations:

χ′′
AB(t− t′) = −χ′′

BA(t′ − t) (4.8.12a)

χ′′
AB(ω) = −χ′′

BA(−ω) . (4.8.12b)

This follows from the antisymmetry of the commutator. The relation for
the Fourier transform is identical to (4.8.1b). Likewise, from the definition
(4.5.1a), one can conclude directly

χ′′
AB(t− t′)∗ = −χ′′

AB(t− t′) (4.8.13a)

i.e., χ′′
AB(t− t′) is imaginary (the commutator of two hermitian operators is

antihermitian) and

χ′′
AB(ω)∗ = −χ′′

AB(−ω) . (4.8.13b)
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Taken together, (4.8.12) and (4.8.13) yield:

χ′′
AB(t− t′)∗ = +χ′′

BA(t′ − t) (4.8.14a)

and

χ′′
AB(ω)∗ = χ′′

BA(ω) . (4.8.14b)

Remark: For both the correlation function and the susceptibility, the trans-
lational invariance implies

G
≷
A(x)B(x′) = G

≷
AB(x − x′, . . . ) (4.8.15a)

and the rotational invariance

G
≷
A(x)B(x′) = G

≷
AB(|x − x′|, . . . ) . (4.8.15b)

It thus follows from (4.8.14b) for systems with spatial translational and ro-
tational invariance that

χ′′
A(x)A(x′)(ω) = χ′′

AA(|x − x′|, ω) (4.8.16)

is real and antisymmetric in ω.
For different operators, it is the behavior under the time-reversal transfor-
mation that determines whether or not χ′′ is real.

4.8.2.2 Time Reversal, Spatial and Temporal Translations

Time-reversal invariance

Under the time-reversal operation (Sect. 11.4.2.3), an operator A(x, t) trans-
forms as follows:

A(x, t) → A′(x, t) = T A(x, t)T −1 = εAA(x,−t) . (4.8.17)

εA is known as the signature and can take the following values:

εA = 1 (e.g., for position and for electric field)
εA = −1 (e.g., for velocity, angular momentum, and magnetic field).

For the expectation value of an operator B one finds

〈α|B |α〉 = 〈T Bα|T α〉 =
〈
T BT −1T α|T α

〉
= 〈T α| (T BT −1)† |T α〉 . (4.8.18a)

Making use of (4.8.17), one obtains

(T [A(x, t), B(x′, t′)]T −1)† = εAεB[A(x,−t), B(x′,−t′)]†

= −εAεB[A(x,−t), B(x′,−t′)] .
(4.8.18b)
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For time-reversal-invariant Hamiltonians, this yields:

χ′′
AB(t− t′) = −εAεBχ′′

AB(t′ − t) (4.8.19a)

and

χ′′
AB(ω) = −εAεBχ′′

AB(−ω) = εAεBχ
′′
BA(ω) . (4.8.19b)

When εA = εB, then χ′′
AB(ω) is symmetric under exchange of A and B, odd

in ω, and real. When εA = −εB, then χ′′
AB(ω) is antisymmetric under the

exchange of A and B, even in ω, and imaginary. If a magnetic field is present,
then its direction is reversed under a time-reversal transformation

χ′′
AB(ω;B) = εAεBχ

′′
BA(ω;−B)

= −εAεBχ′′
AB(−ω;−B). (4.8.20)

Finally, we remark that, from (4.8.13b) and (4.5.3),

χ∗
AB(ω) = χAB(−ω) . (4.8.21)

This relation guarantees that the response (4.3.14) is real.

Translational invariance of the correlation function

f(x, t;x′, t′) ≡ 〈A(x, t)B(x′, t′)〉

=
〈
T−1
a TaA(x, t)T−1

a TaB(x′, t′)T−1
a Ta

〉
=
〈
T−1
a A(x + a, t)B(x′ + a, t′)Ta

〉
.

If the density matrix ρ commutes with Ta, i.e., [Ta, ρ] = 0, then, due to the
cyclic invariance of the trace, it follows that

〈A(x, t)B(x′, t′)〉 = 〈A(x + a, t)B(x′ + a, t′)〉 (4.8.22)

= f(x− x′, t; 0, t′) ,

where in the last step we have set a = −x′. Thus, spatial and temporal
translational invariance together yield:

f(x, t;x′, t′) = f(x − x′, t− t′) . (4.8.23)

Rotational invariance

A system can be translationally invariant without being rotationally invari-
ant. When rotational invariance holds, then (for any rotation matrix R)

f(x − x′, t− t′) = f(R(x − x′), t− t′) = f(|x − x′|, t− t′) , (4.8.24)

independent of the direction.
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Fourier transformation for translationally invariant systems yields:

f̃(k, t;k′, t′) =
∫
d3xd3x′e−ikx−ik′x′

f(x, t;x′, t′)

=
∫
d3xd3x′e−ikx−ik′x′

f(x − x′, t− t′) .

Substituting y = x − x′ leads to

f̃(k, t;k′, t′) =
∫
d3x′

∫
d3ye−ik(y+x′)−ik′x′

f(y, t− t′)

= (2π)3δ(3)(k + k′)f̃(k, t− t′) .

If rotational invariance holds, then

f̃(k, t− t′) = f̃(|k|, t − t′) . (4.8.25)

4.8.2.3 The Classical Limit

We have already seen (Eqs. (4.6.3),(4.6.4)) that, in the classical limit (�ω �
kT ):

χ′′
AB(ω) =

βω

2
G>

AB(ω) and (4.8.26a)

χAB(0) = βG>
AB(t = 0) . (4.8.26b)

From the time-reversal relation for χ′′
AB(ω), Eq. (4.8.19b), it follows that

G>
AB(−ω) = εAεBG

>
AB(ω) . (4.8.27)

When εA = εB, then G>
AB(ω) is symmetric in ω, real, and symmetric upon

interchange of A and B. (The latter follows from the fluctuation–dissipation
theorem and from the symmetry of χ′′

AB(ω)). When εA = −εB, then G>
AB is

odd in ω, antisymmetric upon interchange of A and B, and imaginary.
For εA = εB, equation (4.8.26a) is equivalent to

Im χAB(ω) =
βω

2
G>

AB(ω) . (4.8.28)

The half-range Fourier transform of G>
AB(t), i.e. the Fourier transform of

Θ(t)G>
AB(t) satisfies in the classical limit
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GH
AB(ω) ≡

∫ ∞

0

dt eiωtG>
AB(t)

=
∫ ∞

0

dt eiωt

∫ ∞

−∞

dω′

2π
e−iω′tG>

AB(ω′)

=
∫ ∞

−∞
dt eiωt

∫ ∞

−∞

dω
′′

2π
ie−iω

′′
t

ω′′ + iε

∫ ∞

−∞

dω′

2π
e−iω′tG>

AB(ω
′
)

= − i
2π

∫ ∞

−∞
dω′ G>

AB(ω′)
ω′ − ω − iε

= − i
2π

2
β

∫ ∞

−∞
dω′ χ′′

AB(ω′)
ω′(ω′ − ω − iε)

= − i
πβ

∫ ∞

−∞
dω′χ′′

AB(ω′)
(

1
ω′ −

1
ω′ − ω − iε

)
1

−ω − iε

=
i
βω

(χAB(0) − χAB(ω)) . (4.8.29)

4.8.2.4 Kubo Relaxation Function

The Kubo relaxation function is particularly useful for the description of the
relaxation of the deviation δ〈A(t)〉 after the external force has been switched
off (see SM, Appendix H).

The Kubo relaxation function of two operators A and B is defined by

φAB(t) =
i
�

∫ ∞

t

dt′ 〈[A(t′), B(0)]〉e−εt′ (4.8.30)

and its half-range Fourier transform is given by

φAB(ω) =
∫ ∞

0

dt eiωtφAB(t) . (4.8.31)

It is related to the dynamical susceptibility via

φAB(t = 0) = χAB(ω = 0) (4.8.32a)

and

φAB(ω) =
1
iω

(χAB(ω) − χAB(0)) . (4.8.32b)

The first relation follows from a comparison of (4.3.12) with (4.8.31) and the
second from a short calculation (Problem 4.6). Equation (4.8.29) thus implies
that, in the classical limit,

φAB(ω) = βGH
AB(ω) . (4.8.33)
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4.9 Sum Rules

4.9.1 General Structure of Sum Rules

We start from the definitions (4.5.1a,b)

1
�
〈[A(t), B(0)]〉 =

∫
dω

π
e−iωtχ′′

AB(ω) (4.9.1)

and differentiate this n times with respect to time:

1
�

〈[
dn

dtn
A(t), B(0)

]〉
=
∫

dω

π
(−iω)ne−iωtχ′′

AB(ω) .

Repeated substitution of the Heisenberg equation yields, for t = 0,∫
dω

π
ωnχ′′

AB(ω) =
in

�

〈[
dn

dtn
A(t)

∣∣
t=0

, B(0)
]〉

=
1

�n+1

〈[[
. . . [A,H0] , . . . , H0

]
, B
]〉
.

(4.9.2)

The right-hand side contains an n-fold commutator of A with H0. If these
commutators lead to simple expressions, then (4.9.2) provides information
about moments of the dissipative part of the susceptibility. Such relations
are known as sum rules.
The f-sum rule: An important example is the f-sum rule for the density–
density susceptibility, which, with the help of (4.8.9), can be represented
as a sum rule for the correlation function∫

dω

2π
ωχ′′(k, ω) =

∫
dω

2π�
ωS(k, ω) =

i
2�

〈[ρ̇k(t), ρ−k(t)]〉 .

The commutator on the right-hand side can be calculated with ρ̇k = ik · jk,
which yields, for purely coordinate-dependent potentials, the standard form
of the f-sum rule∫

dω

2π
ω

�
S(k, ω) =

k2

2m
n , (4.9.3)

where n = N
V is the particle number density.

There are also sum rules that result from the fact that, in many cases,12

in the limit k → 0 and ω → 0 the dynamical susceptibility must transform
into a susceptibility known from equilibrium statistical mechanics.
Compressibility sum rule: As an example, we will use (4.8.11a) to give the
compressibility sum rule for the density response function:

12 P.C. Kwok and T.D. Schultz, J. Phys. C2, 1196 (1969)
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lim
k→0

P

∫
dω

π

1
�

S(k, ω)
ω

= n

(
∂n

∂P

)
T

= n2κT . (4.9.4)

Here we have made use of the relationship

χ′(0, 0) =
1
V

(
∂N

∂µ

)
T,V

= −N2

V 3

(
∂V

∂P

)
T,N

= −n3

(
∂ 1

n

∂P

)
T,N

= n

(
∂n

∂P

)
T,N

,

which derives from (4.8.26b) and from thermodynamics13.
The static form factor is defined by

S(k) = 〈ρkρ−k〉 . (4.9.5)

This determines the elastic scattering and is related to S(k, ω) via∫
dω

2π
S(k, ω) = S(k) . (4.9.6)

The static form factor S(k) can be deduced from x-ray scattering.
Equations (4.9.3), (4.9.4), and (4.9.6) provide us with three sum rules

for the density correlation function. The sum rules give precise relationships
between S(k, ω) and static quantities. When these static quantities are known
from theory or experiment and one has some idea of the form of S(k, ω), it
is then possible to use the sum rules to determine the parameters involved in
S(k, ω). We shall elucidate this for the example of excitations in superfluid
helium.

4.9.2 Application to the Excitations in He II

We approximate S(q, ω) by an infinitely sharp density resonance (phonon,
roton) and assume T = 0 so that only the Stokes component is present:

S(q, ω) = Zqδ(ω − εq/�) . (4.9.7)

Inserting this into the f-sum rule (4.9.3) and the form factor (4.9.6) yields:

εq =
�

2nq2

2mS(q)
. (4.9.8)

The f-sum rule (4.9.3) and compressibility sum rule (4.9.4) give, in the limit
q → 0,
13 See, e.g., L.D. Landau and E.M. Lifschitz,Course of Theoretical Physics, Vol.

5. Statistical Physics 3rd edn. Part 1, E.M. Lifshitz, L.P. Pitajevski, Pergamon,
Oxford, 1980; F. Schwabl, Statistical Mechanics, Springer, Berlin Heidelberg,
2002, Eq. (3.2.10)
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εq = �sT q = �

√
1
m

(
∂P

∂n

)
T

q , Zq =
π�nq

msT
, S(q) =

�nq

2msT
, (4.9.9)

where we have introduced the isothermal sound velocity sT =
√(

∂P
∂n

)
T
/m.

The relationship (4.9.8) between the energy of the excitations and the static
form factor was first derived by Feynman14. Figure 4.8 shows experimental
results for these two quantities. For small q, it is seen that S(q) increases
linearly with q, yielding the linear dispersion relation in the phonon regime.
The maximum of S(q) at q ≈ 2Å

−1
leads to the roton minimum.

Fig. 4.8. (a) The excitations of He II at low temperatures: (i) under vapor pressure,
(ii) at 25.3 atm. (b) The static form factor 15

Problems

4.1 Confirm the validity of Eq. (4.7.21) by adding an external magnetic field H(x, t)
to the diffusion equation (4.7.20).

4.2 For the classical damped harmonic oscillator„
d2

dt2
+ γ

d

dt
+ ω2

0

«
Q(t) = F (t)/m

determine the following functions: χ(ω), χ′(ω) χ′′(ω), and G>(ω).
Hint: Solve the equation of motion in Fourier space and determine the dynamical

susceptibility from χ(ω) = dQ(ω)
dF (ω)

.

14 R. Feynman, Phys. Rev. B 94, 262 (1954)
15 D.G. Henshaw, Phys. Rev. 119, 9 (1960); D.G. Henshaw and A.D.B. Woods,

Phys. Rev. 121, 1266 (1961)



110 4. Correlation Functions, Scattering, and Response

4.3 Prove the f-sum rule,Z
dω

2π
ωχ′′(k, ω) =

Z
dω

2π�
ωS(k, ω) =

k2

2m
n

for the density–density correlation function.
Hint: Calculate i

2�
〈[ρ̇k, ρ−k]〉.

4.4 Show, for B = A†, that G>
AB(ω), G<

AB(ω), χ′
AB(ω), and χ′′

AB(ω) are real.

4.5 Show that the coherent neutron scattering cross-section for harmonic phonons,
Eqs. (4.1.29) and (4.7.1) ff., can be written as

Scoh(k, ω) = e−2W 1

N

X
n,m

e−i(an−am)k

Z ∞

−∞

dt

2π�
eiωte〈kun(t)kum(0)〉 (4.9.10)

with the Debye–Waller factor

e−2W = e−〈(kun(0))2〉 . (4.9.11)

Expand the last exponential function in Scoh(k, ω) as a Taylor series. The zeroth-
order term corresponds to elastic scattering, the first-order term to one-phonon
scattering, and the higher-order terms to multiphonon scattering.

4.6 Derive the relation (4.8.32b) by suitable partial integration, and using φAB(t =
∞) = 0.
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Part II

Relativistic Wave Equations



5. Relativistic Wave Equations
and their Derivation

5.1 Introduction

Quantum theory is based on the following axioms1:

1. The state of a system is described by a state vector |ψ〉 in a linear space.
2. The observables are represented by hermitian operators A..., and func-

tions of observables by the corresponding functions of the operators.
3. The mean (expectation) value of an observable in the state |ψ〉 is given

by 〈A〉 = 〈ψ|A |ψ〉.
4. The time evolution is determined by the Schrödinger equation involving

the Hamiltonian H

i�
∂ |ψ〉
∂t

= H |ψ〉 . (5.1.1)

5. If, in a measurement of the observable A, the value an is found, then the
original state changes to the corresponding eigenstate |n〉 of A.

We consider the Schrödinger equation for a free particle in the coordinate
representation

i�
∂ψ

∂t
= − �

2

2m
∇2ψ . (5.1.2)

It is evident from the differing orders of the time and the space derivatives
that this equation is not Lorentz covariant, i.e., that it changes its structure
under a transition from one inertial system to another.

Efforts to formulate a relativistic quantum mechanics began with at-
tempts to use the correspondence principle in order to derive a relativis-
tic wave equation intended to replace the Schrödinger equation. The first
such equation was due to Schrödinger (1926)2, Gordon (1926)3, and Klein
(1927)4. This scalar wave equation of second order, which is now known as
the Klein–Gordon equation, was initially dismissed, since it led to negative
1 See QM I, Sect. 8.3.
2 E. Schrödinger, Ann. Physik 81, 109 (1926)
3 W. Gordon, Z. Physik 40, 117 (1926)
4 O. Klein, Z. Physik 41, 407 (1927)
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probability densities. The year 1928 saw the publication of the Dirac equa-
tion5. This equation pertains to particles with spin 1/2 and is able to de-
scribe many of the single-particle properties of fermions. The Dirac equation,
like the Klein–Gordon equation, possesses solutions with negative energy,
which, in the framework of wave mechanics, leads to difficulties (see below).
To prevent transitions of an electron into lower lying states of negative en-
ergy, in 19306 Dirac postulated that the states of negative energy should
all be occupied. Missing particles in these otherwise occupied states repre-
sent particles with opposite charge (antiparticles). This necessarily leads to
a many-particle theory, or to a quantum field theory. By reinterpreting the
Klein–Gordon equation as the basis of a field theory, Pauli and Weisskopf7

showed that this could describe mesons with spin zero, e.g., π mesons. The
field theories based upon the Dirac and Klein–Gordon equations correspond
to the Maxwell equations for the electromagnetic field, and the d’Alembert
equation for the four-potential.

The Schrödinger equation, as well as the other axioms of quantum theory,
remain unchanged. Only the Hamiltonian is changed and now represents a
quantized field. The elementary particles are excitations of the fields (mesons,
electrons, photons, etc.).

It will be instructive to now follow the historical development rather than
begin immediately with quantum field theory. For one thing, it is concep-
tually easier to investigate the properties of the Dirac equation in its inter-
pretation as a single-particle wave equation. Furthermore, it is exactly these
single-particle solutions that are needed as basis states for expanding the field
operators. At low energies one can neglect decay processes and thus, here, the
quantum field theory gives the same physical predictions as the elementary
single-particle theory.

5.2 The Klein–Gordon Equation

5.2.1 Derivation by Means of the Correspondence Principle

In order to derive relativistic wave equations, we first recall the correspon-
dence principle8. When classical quantities were replaced by the operators

energy E −→ i�
∂

∂t

and

5 P.A.M. Dirac, Proc. Roy. Soc. (London) A117, 610 (1928); ibid. A118, 351
(1928)

6 P.A.M. Dirac, Proc. Roy. Soc. (London) A126, 360 (1930)
7 W. Pauli and V. Weisskopf, Helv. Phys. Acta 7, 709 (1934)
8 See, e.g., QM I, Sect. 2.5.1
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momentum p −→ �

i
∇ , (5.2.1)

we obtained from the nonrelativistic energy of a free particle

E =
p2

2m
, (5.2.2)

the free time-dependent Schrödinger equation

i�
∂

∂t
ψ = −�

2∇2

2m
ψ . (5.2.3)

This equation is obviously not Lorentz covariant due to the different orders
of the time and space derivatives.

We now recall some relevant features of the special theory of relativity.9

We will use the following conventions: The components of the space–time
four-vectors will be denoted by Greek indices, and the components of spa-
tial three-vectors by Latin indices or the cartesian coordinates x, y, z. In
addition, we will use Einstein’s summation convention: Greek indices that
appear twice, one contravariant and one covariant, are summed over, the
same applying to corresponding Latin indices.

Starting from xµ(s) = (ct,x), the contravariant four-vector representation
of the world line as a function of the proper time s, one obtains the four-
velocity ẋµ(s). The differential of the proper time is related to dx0 via ds =√

1 − (v/c)2 dx0, where

v = c (dx/dx0) (5.2.4a)

is the velocity. For the four-momentum this yields:

pµ = mcẋµ(s) =
1√

1 − (v/c)2

(
mc

mv

)
= four-momentum =

(
E/c

p

)
.

(5.2.4b)

In the last expression we have used the fact that, according to relativistic
dynamics, p0 = mc/

√
1 − (v/c)2 represents the kinetic energy of the particle.

Therefore, according to the special theory of relativity, the energy E and the
momentum px, py, pz transform as the components of a contravariant four-
vector

pµ =
(
p0, p1, p2, p3

)
=
(
E

c
, px, py, pz

)
. (5.2.5a)

9 The most important properties of the Lorentz group will be summarized in Sect.
6.1.
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The metric tensor

gµν =

⎛⎜⎜⎝
1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞⎟⎟⎠ (5.2.6)

yields the covariant components

pµ = gµνp
ν =

(
E

c
,−p

)
. (5.2.5b)

According to Eq. (5.2.4b), the invariant scalar product of the four-
momentum is given by

pµp
µ =

E2

c2
− p2 = m2c2 , (5.2.7)

with the rest mass m and the velocity of light c.
From the energy–momentum relation following from (5.2.7),

E =
√

p2c2 +m2c4 , (5.2.8)

one would, according to the correspondence principle (5.2.1), initially arrive
at the following wave equation:

i�
∂

∂t
ψ =

√
−�2c2∇2 +m2c4 ψ . (5.2.9)

An obvious difficulty with this equation lies in the square root of the spatial
derivative; its Taylor expansion leads to infinitely high derivatives. Time and
space do not occur symmetrically.

Instead, we start from the squared relation:

E2 = p2c2 +m2c4 (5.2.10)

and obtain

−�
2 ∂

2

∂t2
ψ = (−�

2c2∇2 +m2c4)ψ . (5.2.11)

This equation can be written in the even more compact and clearly Lorentz-
covariant form(

∂µ∂
µ +

(mc
�

)2
)
ψ = 0 . (5.2.11′)

Here xµ is the space–time position vector

xµ = (x0 = ct,x)
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and the covariant vector

∂µ =
∂

∂xµ

is the four-dimensional generalization of the gradient vector. As is known
from electrodynamics, the d’Alembert operator � ≡ ∂µ∂

µ is invariant under
Lorentz transformations. Also appearing here is the Compton wavelength
�/mc of a particle with mass m. Equation (5.2.11′) is known as the Klein–
Gordon equation. It was originally introduced and studied by Schrödinger,
and by Gordon and Klein.

We will now investigate the most important properties of the Klein–
Gordon equation.

5.2.2 The Continuity Equation

To derive a continuity equation one takes ψ∗ times (5.2.11′)

ψ∗
(
∂µ∂

µ +
(mc

�

)2
)
ψ = 0

and subtracts the complex conjugate of this equation

ψ

(
∂µ∂

µ +
(mc

�

)2
)
ψ∗ = 0 .

This yields

ψ∗∂µ∂
µψ − ψ∂µ∂

µψ∗ = 0
∂µ(ψ∗∂µψ − ψ∂µψ∗) = 0 .

Multiplying by �

2mi , so that the current density is equal to that in the non-
relativistic case, one obtains

∂

∂t

(
i�

2mc2

(
ψ∗ ∂ψ

∂t
− ψ

∂ψ∗

∂t

))
+ ∇ · �

2mi
[ψ∗∇ψ − ψ∇ψ∗] = 0 .

(5.2.12)

This has the form of a continuity equation

ρ̇+ div j = 0 , (5.2.12′)

with density

ρ =
i�

2mc2

(
ψ∗ ∂ψ

∂t
− ψ

∂ψ∗

∂t

)
(5.2.13a)

and current density

j =
�

2mi
(ψ∗∇ψ − ψ∇ψ∗) . (5.2.13b)
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Here, ρ is not positive definite and thus cannot be directly interpreted as a
probability density, although eρ(x, t) can possibly be conceived as the corre-
sponding charge density. The Klein–Gordon equation is a second-order dif-
ferential equation in t and thus the initial values of ψ and ∂ψ

∂t can be chosen
independently, so that ρ as a function of x can be both positive and negative.

5.2.3 Free Solutions of the Klein–Gordon Equation

Equation (5.2.11) is known as the free Klein–Gordon equation in order to
distinguish it from generalizations that additionally contain external poten-
tials or electromagnetic fields (see Sect. 5.3.5). There are two free solutions
in the form of plane waves:

ψ(x, t) = ei(Et−p·x)/� (5.2.14)

with

E = ±
√

p2c2 +m2c4 .

Both positive and negative energies occur here and the energy is not bounded
from below. This scalar theory does not contain spin and could only describe
particles with zero spin.

Hence, the Klein–Gordon equation was rejected initially because the pri-
mary aim was a theory for the electron. Dirac5had instead introduced a first-
order differential equation with positive density, as already mentioned at the
beginning of this chapter. It will later emerge that this, too, has solutions
with negative energies. The unoccupied states of negative energy describe an-
tiparticles. As a quantized field theory, the Klein–Gordon equation describes
mesons7. The hermitian scalar Klein–Gordon field describes neutral mesons
with spin 0. The nonhermitian pseudoscalar Klein–Gordon field describes
charged mesons with spin 0 and their antiparticles.

We shall therefore proceed by constructing a wave equation for spin-1/2
fermions and only return to the Klein–Gordon equation in connection with
motion in a Coulomb potential (π−-mesons).

5.3 Dirac Equation

5.3.1 Derivation of the Dirac Equation

We will now attempt to find a wave equation of the form

i�
∂ψ

∂t
=
(

�c

i
αk∂k + βmc2

)
ψ ≡ Hψ . (5.3.1)

Spatial components will be denoted by Latin indices, where repeated in-
dices are to be summed over. The second derivative ∂2

∂t2 in the Klein–Gordon
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equation leads to a density ρ =
(
ψ∗ ∂

∂tψ − c.c.
)
. In order that the density be

positive, we postulate a differential equation of first order. The requirement
of relativistic covariance demands that the spatial derivatives may only be of
first order, too. The Dirac Hamiltonian H is linear in the momentum operator
and in the rest energy. The coefficients in (5.3.1) cannot simply be numbers:
if they were, the equation would not even be form invariant (having the same
coefficients) with respect to spatial rotations. αk and β must be hermitian
matrices in order for H to be hermitian, which is in turn necessary for a
positive, conserved probability density to exist. Thus αk and β are N × N
matrices and

ψ =

⎛⎜⎝ ψ1

...
ψN

⎞⎟⎠ an N -component column vector .

We shall impose the following requirements on equation (5.3.1):

(i) The components of ψ must satisfy the Klein–Gordon equation so that
plane waves fulfil the relativistic energy–momentum relation E2 = p2c2+
m2c4.

(ii) There exists a conserved four-current whose zeroth component is a pos-
itive density.

(iii) The equation must be Lorentz covariant. This means that it has the
same form in all reference frames that are connencted by a Poincaré
transformation.

The resulting equation (5.3.1) is named, after its discoverer, the Dirac equa-
tion. We must now look at the consequences that arise from the conditions
(i)–(iii). Let us first consider condition (i). The two-fold application of H
yields

−�
2 ∂

2

∂t2
ψ = −�

2c2
∑
ij

1
2
(
αiαj + αjαi

)
∂i∂jψ

+
�mc3

i

3∑
i=1

(
αiβ + βαi

)
∂iψ + β2m2c4ψ . (5.3.2)

Here, we have made use of ∂i∂j = ∂j∂i to symmetrize the first term on the
right-hand side. Comparison with the Klein–Gordon equation (5.2.11′) leads
to the three conditions

αiαj + αjαi = 2δij 11 , (5.3.3a)

αiβ + βαi = 0 , (5.3.3b)

αi 2 = β2 = 11 . (5.3.3c)
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5.3.2 The Continuity Equation

The row vectors adjoint to ψ are defined by

ψ† = (ψ∗
1 , . . . , ψ

∗
N ) .

Multiplying the Dirac equation from the left by ψ†, we obtain

i�ψ† ∂ψ
∂t

=
�c

i
ψ†αi∂iψ +mc2ψ†βψ . (5.3.4a)

The complex conjugate relation reads:

−i�
∂ψ†

∂t
ψ = −�c

i
(
∂iψ

†)αi†ψ +mc2ψ†β†ψ . (5.3.4b)

The difference of these two equations yields:

∂

∂t

(
ψ†ψ

)
= −c

((
∂iψ

†)αi†ψ + ψ†αi∂iψ
)

+
imc2

�

(
ψ†β†ψ − ψ†βψ

)
.

(5.3.5)

In order for this to take the form of a continuity equation, the matrices α
and β must be hermitian, i.e.,

αi† = αi , β† = β . (5.3.6)

Then the density

ρ ≡ ψ†ψ =
N∑

α=1

ψ∗
αψα (5.3.7a)

and the current density

jk ≡ cψ†αkψ (5.3.7b)

satisfy the continuity equation

∂

∂t
ρ+ div j = 0 . (5.3.8)

With the zeroth component of jµ,

j0 ≡ cρ , (5.3.9)

we may define a four-current-density

jµ ≡ (j0, jk) (5.3.9′)

and write the continuity equation in the form

∂µj
µ =

1
c

∂

∂t
j0 +

∂

∂xk
jk = 0 . (5.3.10)

The density defined in (5.3.7a) is positive definite and, within the framework
of the single particle theory, can be given the preliminary interpretation of a
probability density.
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5.3.3 Properties of the Dirac Matrices

The matrices αk, β anticommute and their square is equal to 1; see Eq.
(5.3.3a–c). From (αk)2 = β2 = 11, it follows that the matrices αk and β
possess only the eigenvalues ±1.

We may now write (5.3.3b) in the form

αk = −βαkβ .

Using the cyclic invariance of the trace, we obtain

Trαk = −Trβαkβ = −Trαkβ2 = −Trαk .

From this, and from an equivalent calculation for β, one obtains

Trαk = Tr β = 0 . (5.3.11)

Hence, the number of positive and negative eigenvalues must be equal and,
therefore, N is even. N = 2 is not sufficient since the 2 × 2 matrices
11, σx, σy , σz contain only 3 mutually anticommuting matrices. N = 4 is the
smallest dimension in which it is possible to realize the algebraic structure
(5.3.3a–c).

A particular representation of the matrices is

αi =
(

0 σi

σi 0

)
, β =

(
11 0
0 −11

)
, (5.3.12)

where the 4 × 4 matrices are constructed from the Pauli matrices

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
(5.3.13)

and the two-dimensional unit matrix. It is easy to see that the matrices
(5.3.12) satisfy the conditions (5.3.3a–c):

e.g., αiβ + βαi =
(

0 −σi

σi 0

)
+
(

0 σi

−σi 0

)
= 0 .

The Dirac equation (5.3.1), in combination with the matrices (5.3.12), is re-
ferred to as the “standard representation” of the Dirac equation. One calls ψ
a four-spinor or spinor for short (or sometimes a bispinor, in particular when
ψ is represented by two two-component spinors). ψ† is called the hermitian
adjoint spinor. It will be shown in Sect. 6.2.1 that under Lorentz transfor-
mations spinors possess specific transformation properties.

5.3.4 The Dirac Equation in Covariant Form

In order to ensure that time and space derivatives are multiplied by matrices
with similar algebraic properties, we multiply the Dirac equation (5.3.1) by
β/c to obtain
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−i�β∂0ψ − i�βαi∂iψ +mcψ = 0 . (5.3.14)

We now define new Dirac matrices

γ0 ≡ β

γi ≡ βαi .
(5.3.15)

These possess the following properties:

γ0 is hermitian and (γ0)2 = 11. However, γk is antihermitian.

(γk)† = −γk and (γk)2 = −11.

Proof:(
γk
)†

= αkβ = −βαk = −γk ,

(
γk
)2

= βαkβαk = −11 .

These relations, together with

γ0γk + γkγ0 = ββαk + βαkβ = 0 and

γkγl + γlγk = βαkβαl + βαlβαk = 0 for k 	= l

lead to the fundamental algebraic structure of the Dirac matrices

γµγν + γνγµ = 2gµν11 . (5.3.16)

The Dirac equation (5.3.14) now assumes the form(
−iγµ∂µ +

mc

�

)
ψ = 0 . (5.3.17)

It will be convenient to use the shorthand notation originally introduced by
Feynman:

v/ ≡ γ · v ≡ γµvµ = γµv
µ = γ0v0 − γv . (5.3.18)

Here, vµ stands for any vector. The Feynman slash implies scalar multiplica-
tion by γµ. In the fourth term we have introduced the covariant components
of the γ matrices

γµ = gµνγ
ν . (5.3.19)

In this notation the Dirac equation may be written in the compact form(
−i∂/+

mc

�

)
ψ = 0 . (5.3.20)

Finally, we also give the γ matrices in the particular representation (5.3.12).
From (5.3.12) and (5.3.15) it follows that
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γ0 =
(

11 0
0 −11

)
, γi =

(
0 σi

−σi 0

)
. (5.3.21)

Remark. A representation of the γ matrices that is equivalent to (5.3.21) and
which also satisfies the algebraic relations (5.3.16) is obtained by replacing

γ →MγM−1 ,

where M is an arbitrary nonsingular matrix. Other frequently encountered repre-

sentations are the Majorana representation and the chiral representation (see Sect.

11.3, Remark (ii) and Eq. (11.6.12a–c)).

5.3.5 Nonrelativistic Limit
and Coupling to the Electromagnetic Field

5.3.5.1 Particles at Rest

The form (5.3.1) is a particularly suitable starting point when dealing with
the nonrelativistic limit. We first consider a free particle at rest , i.e., with
wave vector k = 0. The spatial derivatives in the Dirac equation then vanish
and the equation then simplifies to

i�
∂ψ

∂t
= βmc2ψ . (5.3.17′)

This equation possesses the following four solutions

ψ
(+)
1 = e−

imc2
�

t

⎛⎜⎜⎝
1
0
0
0

⎞⎟⎟⎠ , ψ
(+)
2 = e−

imc2
�

t

⎛⎜⎜⎝
0
1
0
0

⎞⎟⎟⎠ ,

(5.3.22)

ψ
(−)
1 = e

imc2
�

t

⎛⎜⎜⎝
0
0
1
0

⎞⎟⎟⎠ , ψ
(−)
2 = e

imc2
�

t

⎛⎜⎜⎝
0
0
0
1

⎞⎟⎟⎠ .

The ψ(+)
1 , ψ(+)

2 and ψ
(−)
1 , ψ(−)

2 correspond to positive- and negative-energy
solutions, respectively. The interpretation of the negative-energy solutions
must be postponed until later. For the moment we will confine ourselves to
the positive-energy solutions.

5.3.5.2 Coupling to the Electromagnetic Field

We shall immediately proceed one step further and consider the coupling to
an electromagnetic field , which will allow us to derive the Pauli equation.
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In analogy with the nonrelativistic theory, the canonical momentum p is
replaced by the kinetic momentum

(
p− e

cA
)
, and the rest energy in the

Dirac Hamiltonian is augmented by the scalar electrical potential eΦ,

i�
∂ψ

∂t
=
(
cα ·

(
p − e

c
A
)

+ βmc2 + eΦ
)
ψ . (5.3.23)

Here, e is the charge of the particle, i.e., e = −e0 for the electron. At the end
of this section we will arrive at (5.3.23), starting from (5.3.17).

5.3.5.3 Nonrelativistic Limit. The Pauli Equation

In order to discuss the nonrelativistic limit , we use the explicit representation
(5.3.12) of the Dirac matrices and decompose the four-spinors into two two-
component column vectors ϕ̃ and χ̃

ψ ≡
(
ϕ̃

χ̃

)
, (5.3.24)

with

i�
∂

∂t

(
ϕ̃

χ̃

)
= c

(
σ · π χ̃

σ · π ϕ̃

)
+ eΦ

(
ϕ̃

χ̃

)
+mc2

(
ϕ̃

−χ̃

)
, (5.3.25)

where

π = p − e

c
A (5.3.26)

is the operator of the kinetic momentum.
In the nonrelativistic limit, the rest energy mc2 is the largest energy

involved. Thus, to find solutions with positive energy, we write(
ϕ̃

χ̃

)
= e−

imc2
�

t

(
ϕ

χ

)
, (5.3.27)

where
(
ϕ
χ

)
are considered to vary slowly with time and satisfy the equation

i�
∂

∂t

(
ϕ

χ

)
= c

(
σ · π χ

σ · π ϕ

)
+ eΦ

(
ϕ

χ

)
− 2mc2

(
0
χ

)
. (5.3.25′)

In the second equation, �χ̇ and eΦχ may be neglected in comparison to
2mc2χ, and the latter then solved approximately as

χ =
σ · π
2mc

ϕ . (5.3.28)

From this one sees that, in the nonrelativistic limit, χ is a factor of order
∼ v/c smaller than ϕ. One thus refers to ϕ as the large, and χ as the small,
component of the spinor.
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Inserting (5.3.28) into the first of the two equations (5.3.25′) yields

i�
∂ϕ

∂t
=
(

1
2m

(σ · π)(σ · π) + eΦ

)
ϕ . (5.3.29)

To proceed further we use the identity

σ · aσ · b = a · b + iσ · (a × b) ,

which follows from10,11 σiσj = δij + iεijkσk, which in turn yields:

σ · π σ · π = π2 + iσ · π × π = π2 − e�

c
σ · B .

Here, we have used12

(π × π)iϕ = −i�
(−e

c

)
εijk

(
∂jA

k −Ak∂j

)
ϕ

= i
�e

c
εijk

(
∂jA

k
)
ϕ = i

�e

c
Biϕ

with Bi = εijk∂jA
k. This rearrangement can also be very easily carried out by

application of the expression

∇ ×Aϕ+ A × ∇ϕ = ∇ × Aϕ− ∇ϕ× A = (∇ × A)ϕ .

We thus finally obtain

i�
∂ϕ

∂t
=
[

1
2m

(
p − e

c
A
)2

− e�

2mc
σ · B + eΦ

]
ϕ . (5.3.29′)

This result is identical to the Pauli equation for the Pauli spinor ϕ, as is known
from nonrelativistic quantum mechanics13. The two components of ϕ describe
the spin of the electron. In addition, one automatically obtains the correct
gyromagnetic ratio g = 2 for the electron. In order to see this, we simply
need to repeat the steps familiar to us from nonrelativistic wave mechanics.
We assume a homogeneous magnetic field B that can be represented by the
vector potential A:

10 Here, εijk is the totally antisymmetric tensor of third rank

εijk =

8<: 1 for even permutations of (123)
−1 for odd permutations of (123)

0 otherwise .

11 QM I, Eq.(9.18a)
12 Vectors such as E, B and vector products that are only defined as three-vectors

are always written in component form with upper indices; likewise the ε tensor.
Here, too, we sum over repeated indices.

13 See, e.g., QM I, Chap. 9.
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B = curlA , A =
1
2
B × x . (5.3.30a)

Introducing the orbital angular momentum L and the spin S as

L = x × p , S =
1
2

�σ , (5.3.30b)

then, for (5.3.30a), it follows14,15 that

i�
∂ϕ

∂t
=
(

p2

2m
− e

2mc
(L + 2S) ·B +

e2

2mc2
A2 + eΦ

)
ϕ . (5.3.31)

The eigenvalues of the projection of the spin operator Sê onto an arbitrary
unit vector ê are ±�/2. According to (5.3.31), the interaction with the elec-
tromagnetic field is of the form

Hint = −µ · B +
e2

2mc2
A2 + eΦ , (5.3.32)

in which the magnetic moment

µ = µorbit + µspin =
e

2mc
(L + 2S) (5.3.33)

is a combination of orbital and spin contributions. The spin moment is of
magnitude

µspin = g
e

2mc
S , (5.3.34)

with the gyromagnetic ratio (or Landé factor)

g = 2 . (5.3.35)

For the electron, e
2mc = −µB

�
can be expressed in terms of the Bohr magneton

µB = e0�

2mc = 0.927× 10−20erg/G.
We are now in a position to justify the approximations made in this

section. The solution ϕ of (5.3.31) has a time behavior that is character-
ized by the Larmor frequency or, for eΦ = −Ze2

0
r , by the Rydberg energy

(Ry ∝ mc2α2, with the fine structure constant α = e20/�c). For the hydrogen
and other nonrelativistic atoms (small atomic numbers Z), mc2 is very much
larger than either of these two energies, thus justifying for such atoms the
approximation introduced previously in the equation of motion for χ.

14 See, e.g., QM I, Chap. 9.
15 One finds −p ·A−A ·p = −2A ·p = −2 1

2
(B × x) ·p = − (x × p) ·B = −L ·B,

since (p · A) = �

i
(∇ · A) = 0.
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5.3.5.4 Supplement Concerning Coupling
to an Electromagnetic Field

We wish now to use a different approach to derive the Dirac equation in
an external field and, to facilitate this, we begin with a few remarks on
relativistic notation. The momentum operator in covariant and contravariant
form reads:

pµ = i�∂µ and pµ = i�∂µ . (5.3.36)

Here, ∂µ = ∂
∂xµ and ∂µ = ∂

∂xµ
. For the time and space components, this

implies

p0 = p0 = i�
∂

∂ct
, p1 = −p1 = i�

∂

∂x1
=

�

i
∂

∂x1
. (5.3.37)

The coupling to the electromagnetic field is achieved by making the replace-
ment

pµ → pµ − e

c
Aµ , (5.3.38)

where Aµ = (Φ,A) is the four-potential. The structure which arises here is
well known from electrodynamics and, since its generalization to other gauge
theories, is termed minimal coupling.

This implies

i�
∂

∂xµ
→ i�

∂

∂xµ
− e

c
Aµ (5.3.39)

which explicitly written in components reads:⎧⎪⎪⎪⎨⎪⎪⎪⎩
i�
∂

∂t
→ i�

∂

∂t
− eΦ

�

i
∂

∂xi
→ �

i
∂

∂xi
+
e

c
Ai =

�

i
∂

∂xi
− e

c
Ai .

(5.3.39′)

For the spatial components this is identical to the replacement �

i ∇ → �

i ∇−
e
cA or p → p− e

cA. In the noncovariant representation of the Dirac equation,
the substitution (5.3.39′) immediately leads once again to (5.3.23).

If one inserts (5.3.39) into the Dirac equation (5.3.17), one obtains(
−γµ

(
i�∂µ − e

c
Aµ

)
+mc

)
ψ = 0 , (5.3.40)

which is the Dirac equation in relativistic covariant form in the presence of
an electromagnetic field.
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Remarks:

(i) Equation (5.3.23) follows directly when one multiplies (5.3.40), i.e.

γ0
“
i�∂0 − e

c
A0

”
ψ = −γi

“
i�∂i − e

c
Ai

”
ψ +mcψ

by γ0:

i�∂0ψ = αi
“
−i�∂i − e

c
Ai
”
ψ +

e

c
A0ψ +mcβψ

i�
∂

∂t
ψ = cα ·

“
p − e

c
A
”
ψ + eΦψ +mc2βψ .

(ii) The minimal coupling, i.e., the replacement of derivatives by derivatives mi-
nus four-potentials, has as a consequence the invariance of the Dirac equation
(5.3.40) with respect to gauge transformations (of the first kind):

ψ(x) → e−i e
�c

α(x)ψ(x) , Aµ(x) → Aµ(x) + ∂µα(x) .

(iii) For electrons, m = me, and the characteristic length in the Dirac equation
equals the Compton wavelength of the electron

λ̄c =
�

mec
= 3.8 × 10−11cm .

Problems

5.1 Show that the matrices (5.3.12) obey the algebraic relations (5.3.3a–c).

5.2 Show that the representation (5.3.21) follows from (5.3.12).

5.3 Particles in a homogeneous magnetic field.
Determine the energy levels that result from the Dirac equation for a (relativistic)
particle of mass m and charge e in a homogeneous magnetic field B. Use the gauge
A0 = A1 = A3 = 0, A2 = Bx.



6. Lorentz Transformations
and Covariance of the Dirac Equation

In this chapter, we shall investigate how the Lorentz covariance of the Dirac
equation determines the transformation properties of spinors under Lorentz
transformations. We begin by summarizing a few properties of Lorentz trans-
formations, with which the reader is assumed to be familiar. The reader who
is principally interested in the solution of specific problems may wish to omit
the next sections and proceed directly to Sect. 6.3 and the subsequent chap-
ters.

6.1 Lorentz Transformations

The contravariant and covariant components of the position vector read:

xµ : x0 = ct , x1 = x , x2 = y , x3 = z contravariant
xµ : x0 = ct , x1 = −x , x2 = −y , x3 = −z covariant .

(6.1.1)

The metric tensor is defined by

g = (gµν) = (gµν) =

⎛⎜⎜⎝
1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞⎟⎟⎠ (6.1.2a)

and relates covariant and contravariant components

xµ = gµνx
ν , xµ = gµνxν . (6.1.3)

Furthermore, we note that

gµ
ν = gµσgσν ≡ δµ

ν , (6.1.2b)

i.e.,

(gµ
ν) = (δµ

ν) =

⎛⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎠ .
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The d’Alembert operator is defined by

� =
1
c2

∂2

∂t2
−

3∑
i=1

∂2

∂xi 2
= ∂µ∂

µ = gµν∂
µ∂ν . (6.1.4)

Inertial frames are frames of reference in which, in the absence of forces,
particles move uniformly. Lorentz transformations tell us how the coordinates
of two inertial frames transform into one another.

The coordinates of two reference systems in uniform motion must be
related to one another by a linear transformation. Thus, the inhomogeneous
Lorentz transformations (also known as Poincaré transformations) possess
the form

x′µ = Λµ
νx

ν + aµ , (6.1.5)

where Λµ
ν and aµ are real.

Remarks:

(i) On the linearity of the Lorentz transformation:
Suppose that x′ and x are the coordinates of an event in the inertial
frames I ′ and I, respectively. For the transformation one could write

x′ = f(x) .

In the absence of forces, particles in I and I ′ move uniformly, i.e., their
world lines are straight lines (this is actually the definition of an iner-
tial frame). Transformations under which straight lines are mapped onto
straight lines are affinities, and thus of the form (6.1.5). The parametric
representation of the equation of a straight line xµ = eµs+dµ is mapped
by such an affine transformation onto another equation for a straight line.

(ii) Principle of relativity: The laws of nature are the same in all inertial
frames. There is no such thing as an “absolute” frame of reference. The
requirement that the d’Alembert operator be invariant (6.1.4) yields

Λλ
µg

µνΛρ
ν = gλρ , (6.1.6a)

or, in matrix form,

ΛgΛT = g . (6.1.6b)

Proof: ∂µ ≡ ∂

∂xµ
=
∂x′λ

∂xµ

∂

∂x′λ
= Λλ

µ∂
′
λ

∂µg
µν∂ν = Λλ

µ∂
′
λg

µνΛρ
ν∂

′
ρ

!
= ∂′λg

λρ∂′ρ

⇒ Λλ
µg

µνΛρ
ν = gλρ .
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The relations (6.1.6a,b) define the Lorentz transformations.
Definition: Poincaré group ≡ {inhomogeneous Lorentz transformation,
aµ 	= 0}
The group of homogeneous Lorentz transformations contains all elements
with aµ = 0.
A homogeneous Lorentz transformation can be denoted by the shorthand
form (Λ, a), e.g.,
translation group (1, a)
rotation group (D, 0) .

From the defining equation (6.1.6a,b) follow two important characteristics of
Lorentz transformations:
(i) From the definition (6.1.6a), it follows that (detΛ)2 = 1, thus

detΛ = ±1 . (6.1.7)

(ii) Consider now the matrix element λ = 0, ρ = 0 of the defining equation
(6.1.6a)

Λ0
µg

µνΛ0
ν = 1 = (Λ0

0)
2 −

∑
k

(Λ0
k)2 = 1 .

This leads to

Λ0
0 ≥ 1 or Λ0

0 ≤ −1 . (6.1.8)

The sign of the determinant of Λ and the sign of Λ0
0 can be used to classify

the elements of the Lorentz group (Table 6.1). The Lorentz transformations
can be combined as follows into the Lorentz group L, and its subgroups or
subsets (e.g., L↓

+ means the set of all elements L↓
+):

Table 6.1. Classification of the elements of the Lorentz group

sgn Λ0
0 detΛ

proper orthochronous L↑
+ 1 1

improper orthochronous∗ L↑
− 1 −1

time-reflection type∗∗ L↓
− −1 −1

space–time inversion type∗∗∗ L↓
+ −1 1

∗ spatial reflection ∗∗ time reflection ∗∗∗ space–time inversion

P =

0B@ 1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

1CA T =

0B@−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

1CA PT =

0B@−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

1CA (6.1.9)
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L Lorentz group (L.G.)

L↑
+ restricted L.G. (is an invariant subgroup)

L↑ = L↑
+ ∪ L↑

− orthochronous L.G.

L+ = L↑
+ ∪ L↓

+ proper L.G.

L0 = L↑
+ ∪ L↓

− orthochronous L.G.

L↑
− = P · L↑

+

L↓
− = T · L↑

+

L↓
+ = P · T · L↑

+

The last three subsets of L do not constitute subgroups.

L = L↑ ∪ TL↑ = L↑
+ ∪ PL↑

+ ∪ TL↑
+ ∪ PTL↑

+ (6.1.10)

L↑ is an invariant subgroup of L; TL↑ is a coset to L↑.
L↑

+ is an invariant subgroup of L; PL↑
+, TL↑

+, PTL↑
+ are cosets of L with

respect to L↑
+. Furthermore, L↑, L+, and L0 are invariant subgroups of L

with the factor groups (E,P ), (E,P, T, PT ), and (E, T ).
Every Lorentz transformation is either proper and orthochronous or can be
written as the product of an element of the proper-orthochronous Lorentz
group with one of the discrete transformations P , T , or PT .
L↑

+, the restricted Lorentz group = the proper orthochronous L.G. consists of
all elements with detΛ = 1 and Λ0

0 ≥ 1; this includes:

(a) Rotations
(b) Pure Lorentz transformations (= transformations under which space and

time are transformed). The prototype is a Lorentz transformation in the
x1 direction

L1(η) =

⎛⎜⎜⎝
L0

0 L
0
1 0 0

L1
0 L

1
1 0 0

0 0 1 0
0 0 0 1

⎞⎟⎟⎠ =

⎛⎜⎜⎝
cosh η − sinh η 0 0

− sinh η cosh η 0 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎠

=

⎛⎜⎜⎜⎜⎝
1√

1−β2
− β√

1−β2
0 0

− β√
1−β2

1√
1−β2

0 0

0 0 1 0
0 0 0 1

⎞⎟⎟⎟⎟⎠ , (6.1.11)

with tanh η = β. For this Lorentz transformation the inertial frame I ′

moves with respect to I with a velocity v = cβ in the x1 direction.
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6.2 Lorentz Covariance of the Dirac Equation

6.2.1 Lorentz Covariance and Transformation of Spinors

The principle of relativity states that the laws of nature are identical in every
inertial reference frame.

We consider two inertial frames I and I ′ with the space–time coordinates
x and x′. Let the wave function of a particle in these two frames be ψ and
ψ′, respectively. We write the Poincaré transformation between I and I ′ as

x′ = Λx+ a . (6.2.1)

It must be possible to construct the wave function ψ′ from ψ. This means
that there must be a local relationship between ψ′ and ψ:

ψ′(x′) = F (ψ(x)) = F (ψ(Λ−1(x′ − a)) . (6.2.2)

The principle of relativity together with the functional relation (6.2.2) neces-
sarily leads to the requirement of Lorentz covariance: The Dirac equation in
I is transformed by (6.2.1) and (6.2.2) into a Dirac equation in I ′. (The Dirac
equation is form invariant with respect to Poincaré transformations.) In order
that both ψ and ψ′ may satisfy the linear Dirac equation, their functional
relationship must be linear, i.e.,

ψ′(x′) = S(Λ)ψ(x) = S(Λ)ψ(Λ−1(x′ − a)) . (6.2.3)

Here, S(Λ) is a 4× 4 matrix, with which the spinor ψ is to be multiplied. We
will determine S(Λ) below. In components, the transformation reads:

ψ′
α(x′) =

4∑
β=1

Sαβ(Λ)ψβ(Λ−1(x′ − a)) . (6.2.3′)

The Lorentz covariance of the Dirac equation requires that ψ′ obey the equa-
tion

(−iγµ∂′µ +m)ψ′(x′) = 0 , (c = 1, � = 1) (6.2.4)

where

∂′µ =
∂

∂x′µ
.

The γ matrices are unchanged under the Lorentz transformation. In order
to determine S, we need to convert the Dirac equation in the primed and
unprimed coordinate systems into one another. The Dirac equation in the
unprimed coordinate system

(−iγµ∂µ +m)ψ(x) = 0 (6.2.5)
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can, by means of the relation

∂

∂xµ
=
∂x′ν

∂xµ

∂

∂x′ν
= Λν

µ∂
′
ν

and

S−1ψ′(x′) = ψ(x) ,

be brought into the form

(−iγµΛν
µ∂

′
ν +m)S−1(Λ)ψ′(x′) = 0 . (6.2.6)

After multiplying from the left by S, one obtains1

−iSΛν
µγ

µS−1∂′νψ
′(x′) +mψ′(x′) = 0 . (6.2.6′)

From a comparison of (6.2.6′) with (6.2.4), it follows that the Dirac equation
is form invariant under Lorentz transformations, provided S(Λ) satisfies the
following condition:

S(Λ)−1γνS(Λ) = Λν
µγ

µ . (6.2.7)

It is possible to show (see next section) that this equation has nonsingu-
lar solutions for S(Λ).2 A wave function that transforms under a Lorentz
transformation according to ψ′ = Sψ is known as a four-component Lorentz
spinor .

6.2.2 Determination of the Representation S(Λ)

6.2.2.1 Infinitesimal Lorentz Transformations

We first consider infinitesimal (proper, orthochronous) Lorentz transforma-
tions

Λν
µ = gν

µ +∆ων
µ (6.2.8a)

with infinitesimal and antisymmetric ∆ωνµ

∆ωνµ = −∆ωµν . (6.2.8b)

This equation implies that ∆ωνµ can have only 6 independent nonvanishing
elements.
1 We recall here that the Λν

µ are matrix elements that, of course, commute with
the γ matrices.

2 The existence of such an S(Λ) follows from the fact that the matrices Λµ
νγ

ν obey
the same anticommutation rules (5.3.16) as the γµ by virtue of (6.1.6a), and from
Pauli’s fundamental theorem (property 7 on page 146). These transformations
will be determined explicitly below.
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These transformations satisfy the defining relation for Lorentz transforma-
tions

Λλ
µg

µνΛρ
ν = gλρ , (6.1.6a)

as can be seen by inserting (6.2.8) into this equation:

gλ
µg

µνgρ
ν +∆ωλρ +∆ωρλ +O

(
(∆ω)2

)
= gλρ . (6.2.9)

Each of the 6 independent elements of ∆ωµν generates an infinitesimal
Lorentz transformation. We consider some typical special cases:

∆ω0
1 = −∆ω01 = −∆β : Transformation onto a coordinate

system moving with velocity c∆β
in the x direction

(6.2.10)

∆ω1
2 = −∆ω12 = ∆ϕ : Transformation onto a coordinate

system that is rotated by an angle
∆ϕ about the z axis. (See Fig. 6.1)

(6.2.11)

The spatial components are transformed under this passive transformation as fol-
lows:

x′1 = x1 +∆ϕx2

x′2 = −∆ϕx1 + x2

x′3 = x3
or x′ = x +

0@ 0
0

−∆ϕ

1A× x = x +

˛̨̨̨
˛̨ e1 e2 e3

0 0 −∆ϕ
x1 x2 x3

˛̨̨̨
˛̨
(6.2.12)

∆ϕ∆

x

x1

x′1

x2
x′2

Fig. 6.1. Infinitesimal rotation, passive trans-
formation

It must be possible to expand S as a power series in ∆ωνµ. We write

S = 11 + τ , S−1 = 11 − τ , (6.2.13)

where τ is likewise infinitesimal i.e. of order O(∆ωνµ). We insert (6.2.13) into
the equation for S, namely S−1γµS = Λµ

νγ
ν , and get

(11 − τ)γµ(11 + τ) = γµ + γµτ − τγµ = γµ +∆ωµ
νγ

ν , (6.2.14)

from which the equation determining τ follows as
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γµτ − τγµ = ∆ωµ
νγ

ν . (6.2.14′)

To within an additive multiple of 11, this unambiguously determines τ . Given
two solutions of (6.2.14′), the difference between them has to commute with
all γµ and thus is proportional to 11 (see Sect. 6.2.5, Property 6). The nor-
malization condition detS = 1 removes this ambiquity, since it implies to
first order in ∆ωµν that

detS = det(11 + τ) = det 11 + Tr τ = 1 + Tr τ = 1 . (6.2.15)

It thus follows that

Tr τ = 0 . (6.2.16)

Equations (6.2.14′) and (6.2.16) have the solution

τ =
1
8
∆ωµν(γµγν − γνγµ) = − i

4
∆ωµνσµν , (6.2.17)

where we have introduced the definition

σµν =
i
2

[γµ, γν ] . (6.2.18)

Equation (6.2.17) can be derived by calculating the commutator of τ with
γµ; the vanishing of the trace is guaranteed by the general properties of the
γ matrices (Property 3, Sect. 6.2.5).

6.2.2.2 Rotation About the z Axis

We first consider the rotation R3 about the z axis as given by (6.2.11). Ac-
cording to (6.2.11) and (6.2.17),

τ(R3) =
i
2
∆ϕσ12 ,

and with

σ12 = σ12 =
i
2

[γ1, γ2] = iγ1γ2 = i
(

0 σ1

−σ1 0

)(
0 σ2

−σ2 0

)
=
(
σ3 0
0 σ3

)
(6.2.19)

it follows that

S = 1 +
i
2
∆ϕσ12 = 1 +

i
2
∆ϕ

(
σ3 0
0 σ3

)
. (6.2.20)

By a succession of infinitestimal rotations we can construct the transfor-
mation matrix S for a finite rotation through an angle ϑ. This is achieved by
decomposing the finite rotation into a sequence of N steps ϑ/N
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ψ′(x′) = Sψ(x) = lim
N→∞

(
1 +

i
2N

ϑσ12

)N

ψ(x)

= e
i
2 ϑσ12

ψ

=
(

cos
ϑ

2
+ iσ12 sin

ϑ

2

)
ψ(x) . (6.2.21)

For the coordinates and other four-vectors, this succession of transformations
implies that

x′ = lim
N→∞

(
11 +

ϑ

N

⎛⎜⎜⎝
0 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 0

⎞⎟⎟⎠
)
· · ·
(

11 +
ϑ

N

⎛⎜⎜⎝
0 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 0

⎞⎟⎟⎠
)
x

= exp

{
ϑ

⎛⎜⎜⎝
0 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 0

⎞⎟⎟⎠
}
x =

⎛⎜⎜⎝
1 0 0 0
0 cosϑ sinϑ 0
0 − sinϑ cosϑ 0
0 0 0 1

⎞⎟⎟⎠x , (6.2.22)

and is thus identical to the usual rotation matrix for rotation through an
angle ϑ. The transformation S for rotations (6.2.21) is unitary (S−1 = S†).
From (6.2.21), one sees that

S(2π) = −11 (6.2.23a)
S(4π) = 11 . (6.2.23b)

This means that spinors do not regain their initial value after a rotation
through 2π, but only after a rotation through 4π, a fact that is also confirmed
by neutron scattering experiments3. We draw attention here to the analogy
with the transformation of Pauli spinors with respect to rotations:

ϕ′(x′) = e
i
2 ω·σϕ(x) . (6.2.24)

6.2.2.3 Lorentz Transformation Along the x1 Direction

According to (6.2.10),

∆ω01 = ∆β (6.2.25)

and (6.2.17) becomes

τ(L1) =
1
2
∆βγ0γ1 =

1
2
∆βα1 . (6.2.26)

We may now determine S for a finite Lorentz transformation along the x1

axis. For the velocity v
c , we have tanh η = v

c .

3 H. Rauch et al., Phys. Lett. 54A, 425 (1975); S.A. Werner et al., Phys. Rev. Lett.
35, 1053 (1975); also described in J.J. Sakurai, Modern Quantum Mechanics,
p.162, Addison-Wesley, Red Wood City (1985).
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The decomposition of η into N steps of η
N leads to the following transforma-

tion of the coordinates and other four-vectors:

x′µ = lim
N→∞

(
g +

η

N
I
)µ

ν1

(
g +

η

N
I
)ν1

ν2

· · ·
(
g +

η

N
I
)νN−1

ν
xν

gµ
ν = δµ

ν ,

Iν
µ =

⎛⎜⎜⎝
0 −1 0 0
−1 0 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎠ , I2 =

⎛⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎠ , I3 = I

x′ = eηIx =
(

1 + ηI +
1
2!
η2I2 +

1
3!
η3I +

1
4!
I2 . . .

)
x

x′µ =
(
1 − I2 + I2 cosh η + I sinh η

)µ
ν
xν

=

⎛⎜⎜⎝
cosh η − sinh η 0 0
− sinh η cosh η 0 0

0 0 1 0
0 0 0 1

⎞⎟⎟⎠
⎛⎜⎜⎝
x0

x1

x2

x3

⎞⎟⎟⎠ . (6.2.27)

The N -fold application of the infinitesimal Lorentz transformation

L1

( η
N

)
= 11 +

η

N
I

then leads, in the limit of large N , to the Lorentz transformation (6.1.11)

L1(η) = eηI =

⎛⎜⎜⎝
cosh η − sinh η 0 0
− sinh η cosh η 0 0

0 0 1 0
0 0 0 1

⎞⎟⎟⎠ . (6.2.27′)

We note that the N infinitesimal steps of η
N add up to η. However, this does

not imply a simple addition of velocities.
We now calculate the corresponding spinor transformation

S(L1) = lim
N→∞

(
1 +

1
2
η

N
α1

)N

= e
η
2 α1

= 11 cosh
η

2
+ α1 sinh

η

2
.

(6.2.28)

For homogenous restricted Lorentz transformations, S is hermitian (S(L1)† =
S(L1)).

For general infinitesimal transformations, characterized by infinitesimal
antisymmetric ∆ωµν , equation (6.2.17) implies that

S(Λ) = 11 − i
4
σµν∆ω

µν . (6.2.29a)
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This yields the finite transformation

S(Λ) = e−
i
4 σµνωµν

(6.2.29b)

with ωµν = −ωνµ and the Lorentz transformation reads Λ = eω, where the
matrix elements of ω are equal to ωµ

ν . For example, one can represent a
rotation through an angle ϑ about an arbitrary axis n̂ as

S = e
i
2 ϑn̂·Σ , (6.2.29c)

where

Σ =
(

σ 0
0 σ

)
. (6.2.29d)

6.2.2.4 Spatial Reflection, Parity

The Lorentz transformation corresponding to a spatial reflection is repre-
sented by

Λµ
ν =

⎛⎜⎜⎝
1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞⎟⎟⎠ . (6.2.30)

The associated S is determined, according to (6.2.7), from

S−1γµS = Λµ
νγ

ν =
4∑

ν=1

gµνγν = gµµγµ , (6.2.31)

where no summation over µ is implied. One immediately sees that the solution
of (6.2.31), which we shall denote in this case by P , is given by

S = P ≡ eiϕγ0 . (6.2.32)

Here, eiϕ is an unobservable phase factor. This is conventionally taken to
have one of the four values ±1, ±i; four reflections then yield the identity 11.
The spinors transform under a spatial reflection according to

ψ′(x′) ≡ ψ′(x′, t) = ψ′(−x, t) = eiϕγ0ψ(x) = eiϕγ0ψ(−x′, t) . (6.2.33)

The complete spatial reflection (parity) transformation for spinors is denoted
by

P = eiϕγ0P(0) , (6.2.33′)

where P(0) causes the spatial reflection x → −x.

From the relationship γ0 ≡ β =
(

11 0
0 −11

)
one sees in the rest frame of

the particle, spinors of positive and negative energy (Eq. (5.3.22)) that are
eigenstates of P – with opposite eigenvalues, i.e., opposite parity. This means
that the intrinsic parities of particles and antiparticles are opposite.
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6.2.3 Further Properties of S

For the calculation of the transformation of bilinear forms such as jµ(x), we
need to establish a relationship between the adjoint transformations S† and
S−1.
Assertion:

S†γ0 = bγ0S−1 , (6.2.34a)

where

b = ±1 for Λ00

{
≥ +1
≤ −1 . (6.2.34b)

Proof: We take as our starting point Eq. (6.2.7)

S−1γµS = Λµ
νγ

ν , Λµ
ν real, (6.2.35)

and write down the adjoint relation

(Λµ
νγ

ν)† = S†γµ†S†−1 . (6.2.36)

The hermitian adjoint matrix can be expressed most concisely as

γµ† = γ0γµγ0 . (6.2.37)

By means of the anticommutation relations, one easily checks that (6.2.37)
is in accord with γ0† = γ0, γk† = −γk. We insert this into the left- and
the right-hand sides of (6.2.36) and then multiply by γ0 from the left- and
right-hand side to gain

γ0Λµ
νγ

0γνγ0γ0 = γ0S†γ0γµγ0S†−1γ0

Λµ
νγ

ν = S−1γµS = γ0S†γ0γµ(γ0S†γ0)−1 ,

since (γ0)−1 = γ0. Furthermore, on the left-hand side we have made the
substitution Λµ

νγ
ν = S−1γµS. We now multiply by S and S−1:

γµ = Sγ0S†γ0γµ(γ0S†γ0)−1S−1 ≡ (Sγ0S†γ0)γµ(Sγ0S†γ0)−1 .

Thus, Sγ0S†γ0 commutes with all γµ and is therefore a multiple of the unit
matrix

Sγ0S†γ0 = b 11 , (6.2.38)

which also implies that

Sγ0S† = bγ0 (6.2.39)
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and yields the relation we are seeking4

S†γ0 = b(Sγ0)−1 = bγ0S−1 . (6.2.34a)

Since (γ0)† = γ0 and Sγ0S† are hermitian, by taking the adjoint of (6.2.39)
one obtains Sγ0S† = b∗γ0, from which it follows that

b∗ = b (6.2.40)

and thus b is real. Making use of the fact that the normalization of S is fixed
by detS = 1, on calculating the determinant of (6.2.39), one obtains b4 = 1.
This, together with (6.2.40), yields:

b = ±1 . (6.2.41)

The significance of the sign in (6.2.41) becomes apparent when one considers

S†S = S†γ0γ0S = bγ0S−1γ0S = bγ0Λ0
νγ

ν

= bΛ0
0 11 +

3∑
k=1

bΛ0
k γ

0γk︸ ︷︷ ︸
αk

.
(6.2.42)

S†S has positive definite eigenvalues, as can be seen from the following.
Firstly, detS†S = 1 is equal to the product of all the eigenvalues, and these
must therefore all be nonzero. Furthermore, S†S is hermitian and its eigen-
functions satisfy S†Sψa = aψa, whence

aψ†
aψa = ψ†

aS
†Sψa = (Sψa)†Sψa > 0

and thus a > 0. Since the trace of S†S is equal to the sum of all the eigen-
values, we have, in view of (6.2.42) and using Trαk = 0,

0 < Tr (S†S) = 4bΛ0
0 .

Thus, bΛ0
0 > 0. Hence, we have the following relationship between the signs

of Λ00 and b:

Λ00 ≥ 1 for b = 1

Λ00 ≤ −1 for b = −1 .
(6.2.34b)

For Lorentz transformations that do not change the direction of time, we
have b = 1; while those that do cause time reversal have b = −1.

4 Note: For the Lorentz transformation L↑
+ (restricted L.T. and rotations) and

for spatial reflections, one can derive this relation with b = 1 from the explicit
representations.
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6.2.4 Transformation of Bilinear Forms

The adjoint spinor is defined by

ψ̄ = ψ†γ0 . (6.2.43)

We recall that ψ† is referred to as a hermitian adjoint spinor. The additional
introduction of ψ̄ is useful because it allows quantities such as the current
density to be written in a concise form. We obtain the following transforma-
tion behavior under a Lorentz transformation:

ψ′ = Sψ =⇒ ψ′† = ψ†S† =⇒ ψ̄′ = ψ†S†γ0 = b ψ†γ0S−1 ,

thus,

ψ̄′ = b ψ̄S−1 . (6.2.44)

Given the above definition, the current density (5.3.7) reads:

jµ = c ψ†γ0γµψ = c ψ̄γµψ (6.2.45)

and thus transforms as

jµ′ = c b ψ̄S−1γµSψ = Λµ
νc b ψ̄γ

νψ = bΛµ
νj

ν . (6.2.46)

Hence, jµ transforms in the same way as a vector for Lorentz transformations
without time reflection. In the same way one immediately sees, using (6.2.3)
and (6.2.44), that ψ̄(x)ψ(x) transforms as a scalar:

ψ̄′(x′)ψ′(x′) = bψ̄(x′)S−1Sψ(x′)
= b ψ̄(x)ψ(x) .

(6.2.47a)

We now summarize the transformation behavior of the most important bi-
linear quantities under orthochronous Lorentz transformations , i.e., transfor-
mations that do not reverse the direction of time:

ψ̄′(x′)ψ′(x′) = ψ̄(x)ψ(x) scalar (6.2.47a)
ψ̄′(x′)γµψ′(x′) = Λµ

νψ̄(x)γνψ(x) vector (6.2.47b)
ψ̄′(x′)σµνψ′(x′) = Λµ

ρΛ
ν

σψ̄(x)σρσψ(x) antisymmetric tensor

(6.2.47c)

ψ̄′(x′)γ5γ
µψ′(x′) = (detΛ)Λµ

ν ψ̄(x)γ5γ
νψ(x) pseudovector (6.2.47d)

ψ̄′(x′)γ5ψ
′(x′) = (detΛ)ψ̄(x)γ5ψ(x) pseudoscalar, (6.2.47e)

where γ5 = iγ0γ1γ2γ3. We recall that detΛ = ±1; for spatial reflections the
sign is −1.
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6.2.5 Properties of the γ Matrices

We remind the reader of the definition of γ5 from the previous section:

γ5 ≡ γ5 ≡ iγ0γ1γ2γ3 (6.2.48)

and draw the reader’s attention to the fact that somewhat different definitions
may also be encountered in the literature. In the standard representation
(5.3.21) of the Dirac matrices, γ5 has the form

γ5 =
(

0 11
11 0

)
. (6.2.48′)

The matrix γ5 satisfies the relations{
γ5, γµ

}
= 0 (6.2.49a)

and

(γ5)2 = 11 . (6.2.49b)

By forming products of γµ, one can construct 16 linearly independent 4 × 4
matrices. These are

ΓS = 11 (6.2.50a)
Γ V

µ = γµ (6.2.50b)

Γ T
µν = σµν =

i
2
[γµ, γν ] (6.2.50c)

ΓA
µ = γ5γµ (6.2.50d)

ΓP = γ5 . (6.2.50e)

The upper indices indicate scalar, vector, tensor, axial vector (= pseudovec-
tor), and pseudoscalar. These matrices have the following properties5:

1. (Γ a)2 = ±11 (6.2.51a)

2. For every Γ a except ΓS ≡ 11, there exists a Γ b, such that

Γ aΓ b = −Γ bΓ a . (6.2.51b)

3. For a 	= S we have TrΓ a = 0. (6.2.51c)
Proof: TrΓ a(Γ b)2 = −TrΓ bΓ aΓ b = −TrΓ a(Γ b)2

Since (Γ b)2 = ±1, it follows that TrΓ a = −TrΓ a, thus proving the

assertion.

5 Only some of these properties will be proved here; other proofs are included as
problems.
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4. For every pair Γ a, Γ b a 	= b there is a Γ c 	= 11, such that ΓaΓb = βΓc,
β = ±1, ±i.
Proof follows by considering the Γ .

5. The matrices Γ a are linearly independent.
Suppose that

P
a

xaΓ
a = 0 with complex coefficients xa. From property 3 above

one then has

Tr
X

a

xaΓ
a = xS = 0 .

Multiplication by Γa and use of the properties 1 and 4 shows that subsequent

formation of the trace leads to xa = 0.

6. If a 4 × 4 matrix X commutes with every γµ, then X ∝ 11.
7. Given two sets of γ matrices, γ and γ′, both of which satisfy

{γµ, γν} = 2gµν ,

there must exist a nonsingular M

γ′µ = MγµM−1 . (6.2.51d)

This M is unique to within a constant factor (Pauli’s fundamental theo-
rem).

6.3 Solutions of the Dirac Equation for Free Particles

6.3.1 Spinors with Finite Momentum

We now seek solutions of the free Dirac equation (5.3.1) or (5.3.17)

(−i∂/+m)ψ(x) = 0 . (6.3.1)

Here, and below, we will set � = c = 1.
For particles at rest, these solutions [see (5.3.22)] read:

ψ(+)(x) = ur(m,0) e−imt r = 1, 2

ψ(−)(x) = vr(m,0) eimt ,
(6.3.2)

for the positive and negative energy solutions respectively, with

u1(m,0) =

⎛⎜⎜⎝
1
0
0
0

⎞⎟⎟⎠ , u2(m,0) =

⎛⎜⎜⎝
0
1
0
0

⎞⎟⎟⎠ ,

v1(m,0) =

⎛⎜⎜⎝
0
0
1
0

⎞⎟⎟⎠ , v2(m,0) =

⎛⎜⎜⎝
0
0
0
1

⎞⎟⎟⎠ ,

(6.3.3)
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and are normalized to unity. These solutions of the Dirac equation are eigen-
functions of the Dirac Hamiltonian H with eigenvalues ±m, and also of the
operator (the matrix already introduced in (6.2.19))

σ12 =
i
2
[γ1, γ2] =

(
σ3 0
0 σ3

)
(6.3.4)

with eigenvalues +1 (for r = 1) and −1 (for r = 2). Later we will show that
σ12 is related to the spin.

We now seek solutions of the Dirac equation for finite momentum in the
form6

ψ(+)(x) = ur(k) e−ik·x positive energy (6.3.5a)
ψ(−)(x) = vr(k) eik·x negative energy (6.3.5b)

with k0 > 0. Since (6.3.5a,b) must also satisfy the Klein–Gordon equation,
we know from (5.2.14) that

kµk
µ = m2 , (6.3.6)

or

E ≡ k0 =
(
k2 +m2

)1/2
, (6.3.7)

where k0 is also written as E; i.e., k is the four-momentum of a particle with
mass m.

The spinors ur(k) and vr(k) can be found by Lorentz transformation of
the spinors (6.3.3) for particles at rest: We transform into a coordinate system
that is moving with velocity −v with respect to the rest frame and then, from
the rest-state solutions, we obtain the free wave functions for electrons with
velocity v. However, a more straightforward approach is to determine the
solutions directly from the Dirac equation. Inserting (6.3.5a,b) into the Dirac
equation (6.3.1) yields:

(k/ −m)ur(k) = 0 and (k/ +m)vr(k) = 0 . (6.3.8)

Furthermore, we have

k/k/ = kµγ
µkνγ

ν = kµkν
1
2
{γµ, γν} = kµkνg

µν . (6.3.9)

Thus, from (6.3.6), one obtains

(k/ −m)(k/+m) = k2 −m2 = 0 . (6.3.10)

Hence one simply needs to apply (k/ + m) to the ur(m,0) and (k/ − m) to
the vr(m,0) in order to obtain the solutions ur(k) and vr(k) of (6.3.8). The
6 We write the four-momentum as k, the four-coordinates as x, and their scalar

product as k · x.
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normalization remains as yet unspecified; it must be chosen such that it is
compatible with the solution (6.3.3), and such that ψ̄ψ transforms as a scalar
(Eq. (6.2.47a)). As we will see below, this is achieved by means of the factor
1/
√

2m(m+ E):

ur(k) =
k/ +m√

2m(m+ E)
ur(m,0) =

⎛⎜⎜⎜⎜⎝
(
E +m

2m

)1/2

χr

σ · k
(2m(m+ E))1/2

χr

⎞⎟⎟⎟⎟⎠ (6.3.11a)

vr(k) =
−k/+m√
2m(m+ E)

vr(m,0) =

⎛⎜⎜⎜⎜⎝
σ · k

(2m(m+ E))1/2
χr

(
E +m

2m

)1/2

χr

⎞⎟⎟⎟⎟⎠ . (6.3.11b)

Here, the solutions are represented by ur(m,0) =
(
χr

0

)
and vr(m,0) =

(
0

χr

)
with χ1 =

(
1
0

)
and χ2 =

(
0
1

)
.

In this calculculation we have made use of

k/

 
χr

0

!
=

»
k0

„
11 0
0 −11

«
− ki

„
0 σi

−σi 0

«–  
χr

0

!

=

 
k0χr

0

!
+

 
0

kiσiχr

!
=

 
Eχr

k · σχr

!

and

−k/
 

0

χr

!
=

 
0

k0χr

!
+

 
kiσiχr

0

!
, r = 1, 2 .

From (6.3.11a,b) one finds for the adjoint spinors defined in (6.2.43)

ūr(k) = ūr(m,0)
k/ +m√

2m(m+ E)
(6.3.12a)

v̄r(k) = v̄r(m,0)
−k/+m√
2m(m+ E)

. (6.3.12b)

Proof: ūr(k) = u†r(k)γ
0 = u†r(m,0)

(γµ†kµ+m)γ0√
2m(m+E)

= u†r(m,0)
γ0(γµkµ+m)√

2m(m+E)
,

since γµ† = γ0γµγ0 and (γ0)2 = 11

Furthermore, the adjoint spinors satisfy the equations

ūr(k) (k/ −m) = 0 (6.3.13a)
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and

v̄r(k) (k/ +m) = 0 , (6.3.13b)

as can be seen from (6.3.10) and (6.3.12a,b) or (6.3.8).

6.3.2 Orthogonality Relations and Density

We shall need to know a number of formal properties of the solutions found
above for later use. From (6.3.11) and (6.2.37) it follows that:

ūr(k)us(k) = ūr(m,0)
(k/+m)2

2m(m+ E)
us(m,0) . (6.3.14a)

With

ūr(m,0)(k/+m)2us(m,0) = ūr(m,0)(k/2 + 2mk/+m2)us(m,0)

= ūr(m,0)(2m2 + 2mk/)us(m,0)

= ūr(m,0)(2m2 + 2mk0γ0)us(m,0)

= 2m(m+ E)ūr(m,0)us(m,0)

= 2m(m+ E)δrs ,

(6.3.14b)

ūr(k)vs(k) = ūr(m,0)
k/2 −m2

2m(m+ E)
vs(m,0)

= ūr(m,0) 0 vs(m,0) = 0

(6.3.14c)

and a similar calculation for vr(k), equations (6.3.14a,b) yield the

orthogonality relations

ūr(k)us(k) = δrs ūr(k) vs(k) = 0
v̄r(k) vs(k) = −δrs v̄r(k)us(k) = 0.

(6.3.15)

Remarks:

(i) This normalization remains invariant under orthochronous Lorentz trans-
formations:

ū′r u
′
s = u†r S

† γ0 S us = u†r γ
0 S−1 S us = ūr us = δrs . (6.3.16)

(ii) For these spinors, ψ̄(x)ψ(x) is a scalar,

ψ̄(+)(x)ψ(+)(x) = eik·xūr(k)ur(k)e−ikx = 1 , (6.3.17)

is independent of k, and thus independent of the reference frame.
In general, for a superposition of positive energy solutions, i.e., for
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ψ(+)(x) =
2∑

r=1

crur , with
2∑

r=1

|cr|2 = 1 , (6.3.18a)

one has the relation

ψ̄(+)(x)ψ(+)(x) =
∑
r,s

ūr(k)us(k)c∗r cs =
2∑

r=1

|cr|2 = 1 . (6.3.18b)

Analogous relationships hold for ψ(−).
(iii) If one determines ur(k) through a Lorentz transformation corresponding

to −v, this yields exactly the above spinors. Viewed as an active trans-
formation, this amounts to transforming ur(m,0) to the velocity v. Such
a transformation is known as a “boost”.

The density for a plane wave (c = 1) is ρ = j0 = ψ̄γ0ψ . This is not a
Lorentz-invariant quantity since it is the zero-component of a four-vector:

ψ̄(+)
r (x)γ0 ψ(+)

s (x) = ūr(k)γ0 us(k)

= ūr(k)
{k/, γ0}

2m
us(k) =

E

m
δrs (6.3.19a)

ψ̄(−)
r (x)γ0 ψ(−)

s (x) = v̄r(k)γ0 vs(k)

= −v̄r(k)
{k/, γ0}

2m
vs(k) =

E

m
δrs . (6.3.19b)

In the intermediate steps here, we have used us(k) = (k//m)us(k), ūs(k) =
ūs(k)(k//m) (Eqs. (6.3.8) and (6.3.13)) etc.

Note. The spinors are normalized such that the density in the rest frame is unity.

Under a Lorentz transformation, the density times the volume must remain con-

stant. The volume is reduced by a factor
p

1 − β2 and thus the density must increase

by the reciprocal factor 1√
1−β2

= E
m

.

We now extend the sequence of equations (6.3.19).

For ψ(+)
r (x) = e−i(k0x0−k·x)ur(k)

and ψ(−)
s (x) = ei(k0x0+k·x)vs(k̃)

(6.3.20)

with the four-momentum k̃ = (k0,−k), one obtains

ψ̄(−)
r (x)γ0 ψ(+)

s (x) = e−2ik0x0
v̄r(k̃)γ0 us(k)

=
1
2
e−2ik0x0

v̄r(k̃)

(
− k̃/

m
γ0 + γ0 k/

m

)
us(k) (6.3.19c)

= 0

since the terms proportional to k0 cancel and since
{
kiγ

i, γ0
}

= 0. In this
sense, positive and negative energy states are orthogonal for opposite energies
and equal momenta.
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6.3.3 Projection Operators

The operators

Λ±(k) =
±k/+m

2m
(6.3.21)

project onto the spinors of positive and negative energy, respectively:

Λ+ur(k) = ur(k) Λ−vr(k) = vr(k)
Λ+vr(k) = 0 Λ−ur(k) = 0 .

(6.3.22)

Thus, the projection operators Λ±(k) can also be represented in the form

Λ+(k) =
∑

r=1,2

ur(k) ⊗ ūr(k)

Λ−(k) = −
∑

r=1,2

vr(k) ⊗ v̄r(k) .
(6.3.23)

The tensor product ⊗ is defined by

(a⊗ b̄)αβ = aαb̄β . (6.3.24)

In matrix form, the tensor product of a spinor a and an adjoint spinor b̄ reads:0B@ a1a2a3
a4

1CA`b̄1, b̄2, b̄3, b̄4´ =

0BB@
a1b̄1 a1b̄2 a1b̄3 a1b̄4
a2b̄1 a2b̄2 a2b̄3 a2b̄4
a3b̄1 a3b̄2 a3b̄3 a3b̄4
a4b̄1 a4b̄2 a4b̄3 a4b̄4

1CCA .

The projection operators have the following properties:

Λ2
±(k) = Λ±(k) (6.3.25a)

TrΛ±(k) = 2 (6.3.25b)
Λ+(k) + Λ−(k) = 1 . (6.3.25c)

Proof:

Λ±(k)2 =
(±k/+m)2

4m2
=
k/2 ± 2k/m+m2

4m2
=
m2 ± 2k/m+m2

4m2

=
2m(±k/+m)

4m2
= Λ±(k)

TrΛ±(k) =
4m

2m
= 2

The validity of the assertion that Λ± projects onto positive and negative energy

states can be seen in both of the representations, (6.3.21) and (6.3.22), by applying

them to the states ur(k) and vr(k). A further important projection operator, P (n),

which, in the rest frame projects onto the spin orientation n, will be discussed in

Problem 6.15.
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Problems

6.1 Prove the group property of the Poincaré group.

6.2 Show, by using the transformation properties of xµ, that ∂µ ≡ ∂/∂xµ (∂µ ≡
∂/∂xµ) transforms as a contravariant (covariant) vector.

6.3 Show that the N-fold application of the infinitesimal rotation in Minkowski
space (Eq. (6.2.22))

Λ = 1 +
ϑ

N

0B@ 0 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 0

1CA
leads, in the limit N → ∞, to a rotation about the z axis through an angle ϑ (the
last step in (6.2.22)).

6.4 Derive the quadratic form of the Dirac equation»“
i�∂ − e

c
A
”2

− i�e

c
(αE + iΣB) −m2c2

–
ψ = 0

for the case of external electromagnetic fields. Write the result using the electro-
magnetic field tensor Fµν = Aµ,ν − Aν,µ, and also in a form explicitly dependent
on E and B.

Hint: Multiply the Dirac equation from the left by γν
`
i�∂ν − e

c
Aν

´
+mc and, by

using the commutation relations for the γ matrices, bring the expression obtained
into quadratic form in terms of the field tensor»“

i�∂ − e
c
A
”2

− �e

2c
σµνFµν −m2c2

–
ψ = 0 .

The assertion follows by evaluating the expression σµνFµν using the explicit form
of the field tensor as a function of the fields E and B.

6.5 Consider the quadratic form of the Dirac equation from Problem 6.4 with the
fields E = E0 (1, 0, 0) and B = B (0, 0, 1), where it is assumed that E0/Bc ≤ 1.
Choose the gauge A = B (0, x, 0) and solve the equation with the ansatz

ψ(x) = e−iEt/�ei(kyy+kzz)ϕ(x)Φ ,

where Φ is a four-spinor that is independent of time and space coordinates. Cal-
culate the energy eigenvalues for an electron. Show that the solution agrees with
that obtained from Problem 5.3 when one considers the nonrelativistic limit, i.e.,
E0/Bc
 1.

Hint: Given the above ansatz for ψ, one obtains the following form for the quadratic
Dirac equation:

[K(x, ∂x)11 +M ]ϕ(x)Φ = 0 ,
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where K(x, ∂x) is an operator that contains constant contributions, ∂x and x. The
matrix M is independent of ∂x and x; it has the property M2 ∝ 11. This suggests
that the bispinor Φ has the form Φ = (11 + λM)Φ0. Determine λ and the eigenval-
ues of M . With these eigenvalues, the matrix differential equation reverts into an
ordinary differential equation of the oscillator type.

6.6 Show that equation (6.2.14′)

[γµ, τ ] = ∆ωµνγν

is satisfied by

τ =
1

8
∆ωµν(γµγν − γνγµ) .

6.7 Prove that γµ† = γ0γµγ0.

6.8 Show that the relation

S†γ0 = bγ0S−1

is satisfied with b = 1 by the explicit representations of the elements of the Poincaré
group found in the main text (rotation, pure Lorentz transformation, spatial reflec-
tion).

6.9 Show that ψ̄(x)γ5ψ(x) is a pseudoscalar, ψ̄(x)γ5γ
µψ(x) a pseudovector, and

ψ̄(x)σµνψ(x) a tensor.

6.10 Properties of the matrices Γ a.
Taking as your starting point the definitions (6.2.50a–e), derive the following prop-
erties of these matrices:

(i) For every Γ a (except ΓS) there exists a Γ b such that Γ aΓ b = −Γ bΓ a.

(ii) For every pair Γ a, Γ b, (a �= b) there exists a Γ c �= 11 such that Γ aΓ b = βΓ c

with β = ±1, ±i.

6.11 Show that if a 4 × 4 matrix X commutes with all γµ, then this matrix X is
proportional to the unit matrix.
Hint : Every 4 × 4 matrix can, according to Problem 6.1, be written as a linear
combination of the 16 matrices Γ a (basis!).

6.12 Prove Pauli’s fundamental theorem for Dirac matrices: For any two four-
dimensional representations γµ and γ′µ of the Dirac algebra both of which satisfy
the relation

{γµ, γν} = 2gµν

there exists a nonsingular transformation M such that

γ′µ =MγµM
−1 .

M is uniquely determined to within a constant prefactor.
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6.13 From the solution of the field-free Dirac equation in the rest frame, determine
the four-spinors ψ±(x) of a particle moving with the velocity v. Do this by applying
a Lorentz transformation (into a coordinate system moving with the velocity −v)
to the solutions in the rest frame.

6.14 Starting from

Λ+(k) =
X

r=1,2

ur(k) ⊗ ūr(k) , Λ−(k) = −
X

r=1,2

vr(k) ⊗ v̄r(k) ,

prove the validity of the representations for Λ±(k) given in (6.3.22).

6.15 (i) Given the definition P (n) = 1
2

(1+γ5n/), show that, under the assumptions

n2 = −1 and nµk
µ = 0, the following relations are satisfied

(a) [Λ±(k), P (n)] = 0 ,

(b) Λ+(k)P (n) + Λ−(k)P (n) + Λ+(k)P (−n) + Λ−(k)P (−n) = 1 ,

(c) Tr [Λ±(k)P(±n)] = 1 ,

(d) P (n)2 = P (n)

(ii) Consider the special case n = (0, êz) where P (n) = 1
2

„
1 + σ3 0

0 1 − σ3

«
.



7. Orbital Angular Momentum and Spin

We have seen that, in nonrelativistic quantum mechanics, the angular mo-
mentum operator is the generator of rotations and commutes with the Hamil-
tonians of rotationally invariant (i.e., spherically symmetric) systems1. It thus
plays a special role for such systems. For this reason, as a preliminary to the
next topic – the Coulomb potential – we present here a detailed investigation
of angular momentum in relativistic quantum mechanics.

7.1 Passive and Active Transformations

For positive energy states, in the non-relativistic limit we derived the Pauli
equation with the Landé factor g = 2 (Sect. 5.3.5). From this, we concluded
that the Dirac equation describes particles with spin S = 1/2. Following on
from the transformation behavior of spinors, we shall now investigate angular
momentum in general.

In order to give the reader useful background information, we will start
with some remarks concerning active and passive transformations. Consider a
given state Z, which in the reference frame I is described by the spinor ψ(x).
When regarded from the reference frame I ′, which results from I through the
Lorentz transformation

x′ = Λx , (7.1.1)

the spinor takes the form,

ψ′(x′) = Sψ(Λ−1x′) , passive with Λ . (7.1.2a)

A transformation of this type is known as a passive transformation. One
and the same state is viewed from two different coordinate systems, which is
indicated in Fig. 7.1 by ψ(x) =̂ ψ′(x′).

On the other hand, one can also transform the state and then view the
resulting state Z ′ exactly as the starting state Z from one and the same
reference frame I. In this case one speaks of an active transformation. For
vectors and scalars, it is clear what is meant by their active transformation
1 See QM I, Sect. 5.1
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(rotation, Lorentz transformation). The active transformation of a vector
by the transformation Λ corresponds to the passive transformation of the
coordinate system by Λ−1. For spinors, the active transformation is defined
in exactly this way (see Fig. 7.1).

The state Z ′, which arises through the transformation Λ−1, appears in I
exactly as Z in I ′, i.e.,

ψ′(x) = Sψ(Λ−1x) active with Λ−1 (7.1.2b)

Λ

Λ

ΛΛ−ΛΛ 11

I

I ′

ψ′′(x)

ψ(x) =̂ ψ′(x′)

ψ′(x)

Z′′′
Z

Z′
Fig. 7.1. Schematic representa-
tion of the passive and active
transformation of a spinor; the en-
closed area is intended to indicate
the region in which the spinor is
finite

The state Z ′′, which results from Z through the active transformation Λ,
by definition appears the same in I ′ as does Z in I, i.e., it takes the form
ψ(x′). Since I is obtained from I ′ by the Lorentz transformation Λ−1, in I
the spinor Z ′′ has the form

ψ′′(x) = S−1ψ(Λx) , active with Λ . (7.1.2c)

7.2 Rotations and Angular Momentum

Under the infinitesimal Lorentz transformation

Λµ
ν = gµ

ν +∆ωµ
ν , (Λ−1)µ

ν = gµ
ν −∆ωµ

ν , (7.2.1)

a spinor ψ(x) transforms as

ψ′(x′) = Sψ(Λ−1x′) passive with Λ (7.2.2a)

or

ψ′(x) = Sψ(Λ−1x) active with Λ−1 . (7.2.2b)
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We now use the results gained in Sect. 6.2.2.1 (Eqs. (6.2.8) and (6.2.13)) to
obtain

ψ′(x) = (11 − i
4
∆ωµνσµν)ψ(xρ −∆ωρ

νx
ν) . (7.2.3)

Taylor expansion of the spinor yields (1 −∆ωµ
νx

ν∂µ)ψ(x) , so that

ψ′(x) = (11 +∆ωµν(− i
4
σµν + xµ∂ν))ψ(x) . (7.2.3′)

We now consider the special case of rotations through ∆ϕ, which are repre-
sented by

∆ωij = −εijk∆ϕk (7.2.4)

(the direction of ∆ϕ specifies the rotation axis and |∆ϕ| the angle of rota-
tion). If one also uses

σij = σij = εijkΣk , Σk =
(
σk 0
0 σk

)
, (7.2.5)

(see Eq. (6.2.19)) one obtains for (7.2.3′)

ψ′(x) =
(

1 +∆ωij

(
− i

4
εijkΣk + xi∂j

))
ψ(x)

=
(

1 − εijk̄∆ϕk̄

(
− i

4
εijkΣk − xi∂j

))
ψ(x)

=
(

1 −∆ϕk̄

(
− i

4
2δkk̄Σ

k − εijk̄xi∂j

))
ψ(x)

=
(

1 + i∆ϕk

(
1
2
Σk + εkijxi 1

i
∂j

))
ψ(x)

≡
(
1 + i∆ϕkJk

)
ψ(x) .

(7.2.6)

Here, we have defined the total angular momentum

Jk = εkijxi 1
i
∂j +

1
2
Σk . (7.2.7)

With the inclusion of �, this operator reads:

J = x × �

i
∇11 +

�

2
Σ , (7.2.7′)

and is thus the sum of the orbital angular momentum L = x × p and the
spin �

2 Σ.
The total angular momentum (= orbital angular momentum + spin) is

the generator of rotations: For a finite angle ϕk one obtains, by combining a
succession of infinitesimal rotations,
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ψ′(x) = eiϕkJk

ψ(x) . (7.2.8)

The operator Jk commutes with the Hamiltonian of the Dirac equation con-
taining a spherically symmetric potential Φ(x) = Φ(|x|)

[H, J i] = 0 . (7.2.9)

A straightforward way to verify (7.2.9) is by an explicit calculation of the
commutator (see Problem 7.1). Here, we consider general consequences re-
sulting from the behavior, under rotation, of the structure of commutators of
the angular momentum with other operators; Eq. (7.2.9) results as a special
case. We consider an operator A, and let the result of its action on ψ1 be the
spinor ψ2:

Aψ1(x) = ψ2(x) .

It follows that

eiϕkJk

A e−iϕkJk
(
eiϕkJk

ψ1(x)
)

=
(
eiϕkJk

ψ2(x)
)

or, alternatively,

eiϕkJk

A e−iϕkJk

ψ′
1(x) = ψ′

2(x) .

Thus, in the rotated frame of reference the operator is

A′ = eiϕkJk

A e−iϕkJk

. (7.2.10)

Expanding this for infinitesimal rotations (ϕk → ∆ϕk) yields:

A′ = A− i∆ϕk[A, Jk] . (7.2.11)

The following special cases are of particular interest:

(i) A is a scalar (rotationally invariant) operator. Then, A′ = A and from
(7.2.11) it follows that

[A, Jk] = 0 . (7.2.12)

The Hamiltonian of a rotationally invariant system (including a spheri-
cally symmetric Φ(x) = Φ(|x|)) is a scalar; this leads to (7.2.9). Hence,
in spherically symmetric problems the angular momentum is conserved.

(ii) For the operator A we take the components of a three-vector v . As
a vector, v transforms according to v′i = vi + εijk ∆ϕj vk. Equating
this, component by component, with (7.2.11), vi + εijk∆ϕjvk = vi +
i
�
∆ϕj

[
Jj , vi

]
which shows that

[J i, vj ] = i� εijk vk . (7.2.13)
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The commutation relation (7.2.13) implies, among other things,[
J i, Jj

]
= i�εijkJk (7.2.14a)[

J i, Lj
]

= i�εijkLk . (7.2.14b)

It is clear from the explicit representation Σk =
(
σk 0
0 σk

)
that the eigen-

values of the 4 × 4 matrices Σk are doubly degenerate and take the values
±1. The angular momentum J is the sum of the orbital angular momentum
L and the intrinsic angular momentum or spin S, the components of which
have the eigenvalues ± 1

2 . Thus, particles that obey the Dirac equation have
spin S = 1/2. The operator

(
�

2Σ
)2

= 3
4�

211 has the eigenvalue 3�
2

4 . The
eigenvalues of L2 and L3 are �

2l(l + 1) and �ml, where l = 0, 1, 2, . . . and
ml takes the values −l,−l + 1, . . . , l − 1, l. The eigenvalues of J2 are thus
�

2j(j + 1), where j = l ± 1
2 for l 	= 0 and j = 1

2 for l = 0. The eigenvalues
of J3 are �mj , where mj ranges in integer steps between −j and j. The op-
erators J2, L2, Σ2, and J3 can be simultaneously diagonalized. The orbital
angular momentum operators Li and the spin operators Σi themselves fulfill
the angular momentum commutation relations.
Note: One is tempted to ask how it is that the Dirac Hamiltonian, a 4× 4 matrix,
can be a scalar. In order to see this, one has to return to the transformation (6.2.6′).
The transformed Hamiltonian including a central potential Φ(|x|)

(−iγν ∂′ν +m+ eΦ(|x′|)) = S(−iγν ∂ν +m+ eΦ(|x|))S−1

has, under rotations, the same form in both systems. The property “scalar” means

invariance under rotations, but is not necessarily limited to one-component spher-

ically symmetric functions.

Problems

7.1 Show, by explicit calculation of the commutator, that the total angular mo-
mentum

J = x × p 11 +
�

2
Σ

commutes with the Dirac Hamiltonian for a central potential

H = c

 
3X

k=1

αkpk + βmc

!
+ eΦ(|x|) .



8. The Coulomb Potential

In this chapter, we shall determine the energy levels in a Coulomb potential.
To begin with, we will study the relatively simple case of the Klein–Gordon
equation. In the second section, the even more important Dirac equation will
be solved exactly for the hydrogen atom.

8.1 Klein–Gordon Equation with Electromagnetic Field

8.1.1 Coupling to the Electromagnetic Field

The coupling to the electromagnetic field in the Klein–Gordon equation

−�
2 ∂

2ψ

∂t2
= −�

2c2∇2ψ +m2c4ψ ,

i.e., the substitution

i�
∂

∂t
−→ i�

∂

∂t
− eΦ ,

�

i
∇ −→ �

i
∇ − e

c
A ,

leads to the Klein–Gordon equation in an electromagnetic field(
i�
∂

∂t
− eΦ

)2

ψ = c2
(

�

i
∇ − e

c
A
)2

ψ +m2c4ψ. (8.1.1)

We note that the four-current-density now reads:

jν =
i�e
2m

(ψ∗∂νψ − ψ∂νψ
∗) − e2

mc
Aνψ

∗ψ (8.1.2)

with the continuity equation

∂νj
ν = 0 . (8.1.3)

One thus finds, in j0 for example, that the scalar potential A0 = cΦ appears.
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8.1.2 Klein–Gordon Equation in a Coulomb Field

We assume that A and Φ are time independent and now seek stationary
solutions with positive energy

ψ(x, t) = e−iEt/�ψ(x) with E > 0. (8.1.4)

From (8.1.1), one then obtains the time-independent Klein–Gordon equation

(E − eΦ)2ψ = c2
(

�

i
∇ − e

c
A
)2

ψ +m2c4ψ . (8.1.5)

For a spherically symmetric potential Φ(x) −→ Φ(r) (r = |x|) and A = 0, it
follows that(

−�
2c2∇2 +m2c4

)
ψ(x) = (E − eΦ(r))2ψ(x). (8.1.6)

The separation of variables in spherical polar coordinates

ψ(r, ϑ, ϕ) = R(r)Y�m(ϑ, ϕ) , (8.1.7)

where Y�m(ϑ, ϕ) are the spherical harmonic functions, already known to us
from nonrelativistic quantum mechanics,1 leads, analogously to the nonrela-
tivistic theory, to the differential equation(

−1
r

d

dr

d

dr
r +

�(�+ 1)
r2

)
R =

(E − eΦ(r))2 −m2c4

�2c2
R . (8.1.8)

Let us first consider the nonrelativistic limit. If we set E = mc2 + E′ and
assume that E′ − eΦ can be neglected in comparison to mc2, then (8.1.8)
yields the nonrelativistic radial Schrödinger equation, since the right-hand
side of (8.1.8) becomes

1
�2c2

(
(mc2)2 + 2mc2(E′ − eΦ(r)) + (E′ − eΦ(r))2 −m2c4

)
R(r)

≈ 2m
�2

(E′ − eΦ(r))R(r) .
(8.1.9)

For a π− meson in the Coulomb field of a nucleus with charge Z,

eΦ(r) = −Ze20
r

. (8.1.10a)

Inserting the fine-structure constant α = e2
0

�c , it follows from (8.1.8) that[
−1
r

d

dr

d

dr
r +

�(�+ 1) − Z2α2

r2
− 2ZαE

�cr
− E2 −m2c4

�2c2

]
R = 0 .

(8.1.10b)

1 QM I, Chap. 5
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Remark: The mass of the π meson is mπ− = 273me and its half-life τπ− = 2.55×
10−8 s. Since the classical orbital period1 estimated by means of the uncertainty

principle is approximately T ≈ a
π−
∆v

≈ m
π− a2

π−
�

=
m2

e
m

π−
a2

�
≈ 10−21s, one can

think of well-defined stationary states, despite the finite half-life of the π−. Even

the lifetime of an excited state (see QM I, Sect. 16.4.3) ∆T ≈ Tα−3 ≈ 10−15 is still

much shorter than τπ− .

By substituting

σ2 =
4(m2c4 − E2)

�2c2
, γ = Zα , λ =

2Eγ
�cσ

, ρ = σr (8.1.11a-d)

into (8.1.10b), we obtain[
d2

d(ρ/2)2
+

2λ
ρ/2

− 1 − �(�+ 1) − γ2

(ρ/2)2

]
ρR(ρ) = 0 . (8.1.12)

This equation has exactly the form of the nonrelativistic Schrödinger equation
for the function u = ρR, provided we substitute in the latter

ρ0 −→ 2λ (8.1.13a)
�(�+ 1) −→ �(�+ 1) − γ2 ≡ �′(�′ + 1) . (8.1.13b)

Here it should be noted that �′ is generally not an integer.

Remark: A similar modification of the centrifugal term is also found in classical

relativistic mechanics, where it has as a consequence that the Kepler orbits are no

longer closed. Instead of ellipses, one has rosette-like orbits.

The radial Schrödinger equation (8.1.12) can now be solved in the same
way as is familiar from the nonrelativistic case: From (8.1.12) one finds for
R(ρ) in the limits ρ→ 0 and ρ→ ∞ the behavior ρ�′ and e−ρ/2 respectively.
This suggests the following ansatz for the solution:

ρR(ρ) =
(ρ

2

)�′+1

e−ρ/2 w(ρ/2). (8.1.14)

The resulting differential equation for w(ρ) (Eq. (6.19) in QM I) is solved in
terms of a power series. The recursion relation resulting from the differential
equation is such that it leads to a function ∼ eρ. Taken together with (8.1.14),
this means that the function R(ρ) would not be normalizable unless the power
series terminated. The condition that the power series for w(ρ) terminates
yields2:

ρ0 = 2(N + �′ + 1) ,

i.e.,
2 Cf. QM I, Eq. (6.23).
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λ = N + �′ + 1 , (8.1.15)

where N is the radial quantum number, N = 0, 1, 2, .... In order to determine
the energy eigenvalues from this, one first needs to use equations (8.1.11a
and d) to eliminate the auxiliary quantity σ

4E2γ2

�2c2λ2
=

4(m2c4 − E2)
�2c2

,

which then yields the energy levels as

E = mc2
(

1 +
γ2

λ2

)− 1
2

. (8.1.16)

Here, one must take the positive root since the rescaling factor is σ > 0 and,
as λ > 0, it follows from (8.1.11c) that E > 0. Thus, for a vanishing attractive
potential (γ → 0), the energy of these solutions approaches the rest energy
E = mc2. For the discussion that follows, we need to calculate �′, defined by
the quadratic equation (8.1.13b)

�′ = −1
2 (±)

√(
�+

1
2

)2

− γ2 . (8.1.17)

We may convince ourselves that only the positive sign is allowed, i.e.,

λ = N +
1
2

+

√(
�+

1
2

)2

− γ2

and thus

E =
mc2√

1 + γ2»
N+ 1

2+
q

(�+ 1
2 )

2−γ2

–2

. (8.1.18)

To pursue the parallel with the nonrelativistic case, we introduce the principal
quantum number

n = N + �+ 1 ,

whereby (8.1.18) becomes

E =
mc2√

1 + γ2»
n−(�+ 1

2 )+
q

(�+ 1
2 )

2−γ2

–2

. (8.1.18′)

The principal quantum number has the possible values n = 1, 2, ... ; for a
given value of n, the possible values of the orbital angular momentum quan-
tum numbers are � = 0, 1, ...n − 1. The degeneracy that is present in the
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nonrelativistic theory with respect to the angular momentum is lifted here.
The expansion of (8.1.18′) in a power series in γ2 yields:

E = mc2
[
1 − γ2

2n2
− γ4

2n4

(
n

�+ 1
2

− 3
4

)]
+ O(γ6)

= mc2 − Ry
n2

− Ryγ2

n3

(
1

�+ 1
2

− 3
4n

)
+ O(Ryγ4) , (8.1.19)

with

Ry =
mc2(Zα)2

2
=
mZ2e4

2�2
.

The first term is the rest energy, the second the nonrelativistic Rydberg
formula, and the third term is the relativistic correction. It is identical to
the perturbation-theoretical correction due to the relativistic kinetic energy,

giving rise to the perturbation Hamiltonian H1 = − (p2)2

8m3c2 (see QM I, Eq.
(12.5))3. It is this correction that lifts the degeneracy in �:

E�=0 − E�=n−1 = −4Ryγ2

n3

n− 1
2n− 1

. (8.1.20)

The binding energy Eb is obtained from (8.1.18′) or (8.1.19) by subtracting
the rest energy

Eb = E −mc2 .

Further aspects:

(i) We now wish to justify the exclusion of solutions �′, for which the negative
root was taken in (8.1.17). Firstly, it is to be expected that the solutions
should go over continuously into the nonrelativistic solutions and thus that
to each � should correspond only one eigenvalue. For the time being we will
denote the two roots in (8.1.17) by �′±. There are a number of arguments for
excluding the negative root. The solution �′− can be excluded on account of
the requirement that the kinetic energy be finite. (Here only the lower limit
is relevant since the factor e−ρ/2 guarantees the convergence at the upper
limit):

T ∼ −
∫
dr r2

∂2R

∂2r
·R ∼

∫
dr r2

(
∂R

∂r

)2

∼
∫
dr r2

(
r�′−1

)2

∼
∫
dr r2�′ .

This implies that �′ > − 1
2 and, hence, only �′+ is allowed. Instead of the

kinetic energy, one can also consider the current density. If solutions with
3 See also Remark (ii) in Sect. 10.1.2
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both �′+ and �′− were possible, then one would also have linear superpositions
of the type ψ = ψ�′+ + iψ�′− . The radial current density for this wave function
is

jr =
�

2mi

(
ψ∗ ∂

∂r
ψ −

(
∂

∂r
ψ∗
)
ψ

)
=

�

2mi
2i
(
ψ�′+

∂

∂r
ψ�′− − ψ�′−

∂

∂r
ψ�′+

)
∼ r�′++�′−−1 =

1
r2
.

The current density would diverge as 1
r2 for r → 0. The current through

the surface of an arbitrarily small sphere around the origin would then be∫
dΩr2jr = constant, independent of r. There would have to be a source or

a sink for particle current at the origin. The solution �′+ must certainly be
retained as it is the one that transforms into the nonrelativistic solution and,
hence, it is the solution with �′− which must be rejected.
One can confirm this conclusion by solving the problem for a nucleus of finite
size, for which the electrostatic potential at r = 0 is finite. The solution that
is finite at r = 0 goes over into the solution of the 1

r problem corresponding
to the positive sign.

(ii) In order that �′ and the energy eigenvalues be real, according to (8.1.17)
we must have

�+
1
2
> Zα (8.1.21a)

(see Fig. 8.1). This condition is most restrictive for s states, i.e., � = 0 :

Z <
1
2α

=
137
2

= 68.5 . (8.1.21b)

For γ > 1
2 , we would have a complex value �′ = − 1

2 + is′ with s′ =
√
γ2 − 1

4 .
This would result in complex energy eigenvalues and furthermore, we would
have R(r) ∼ r−

1
2 e±is′ log r, i.e., the solution would oscillate infinitely many

times as r → 0 and the matrix element of the kinetic energy would be diver-
gent.
The modification of the centrifugal term into (�(� + 1) − (Zα)2) 1

r2 arises
from the relativistic mass increase. Qualitatively speaking, the velocity does
not increase so rapidly on approaching the center as in the nonrelativis-
tic case, and thus the centrifugal repulsion is reduced. For the attractive(
− 1

r2

)
potential, classical mechanics predicts that the particles spiral into

the center. When Zα > �+ 1
2 >

√
�(�+ 1), the quantum-mechanical system

becomes unstable. The condition Zα < 1
2 can also be written in the form

Z
e2
0

�/mπ−c < 1
2mπ−c2, i.e., the Coulomb energy at a distance of a Compton

wavelength �

mπ−c = 1.4 × 10−13 cm from the origin should be smaller than
1
2mπ−c2.
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100 200
0

1

Z

E/mc2
E1p Fig. 8.1. Plot of E1s

and E1p for a point-like
nucleus according to Eq.
(8.1.18) as a function of Z.
The curves end at the Z
value given by (8.1.21a).
For larger Z, the energies
become complex

The solutions for the
(
−Ze2

0
r

)
potential become meaningless for Z > 68. Yet,

since there exist nuclei with higher atomic number, it must be possible to
describe the motion of a π− meson by means of the Klein–Gordon equation.
However, one must be aware of the fact that real nuclei have a finite radius
which means that also for large Z, bound states exist.
The Bohr radius for π− is aπ− = �

2

Zmπ−e2
0

= me
mπ−

a
Z ≈ 2×10−11

Z cm, where
a = 0.5 × 10−8 cm, the Bohr radius of the electron, and mπ− = 270me have
been used. Comparison with the nuclear radius RN = 1.5 × 10−13A1/3 cm
reveals that the size of the nucleus is not negligible4.

For a quantitative comparison of the theory with experiments on π-mesonic atoms,
one also has to take the following corrections into account:

(i) The mass mπ must be replaced by the reduced mass µ = mπM
mπ+M

.

(ii) As already emphasized, one must allow for the finite size of the nucleus.

(iii) The vacuum polarization must be included. This refers to the fact that the
photon exchanged between the nucleus and the π-meson transforms virtually into
an electron–positron pair, which subsequently recombines into a photon (see Fig.
8.2).

N (a) (b)

γγγ
e+

e−

π−π−

+

N

Fig. 8.2. The electromagnetic interaction arises from the exchange of a photon
(γ) between the nucleus (N) and the π-meson (π−). (a) Direct exchange; (b) with
vacuum polarization in which a virtual electron–positron pair (e−–e+) occurs

4 The experimental transition energies for π-mesonic atoms, which lie in the x-
ray range, are presented in D.A. Jenkins and R. Kunselman, Phys. Rev. Lett.
17, 1148 (1966), where they are compared with the result obtained from the
Klein–Gordon equation.
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(iv) Since the Bohr radius for the π−, as estimated above, is smaller by approxi-
mately a factor 1/300 than that of the electron, and thus the probability of finding
the π− in the vicinity of the nucleus is appreciable, one must also include a correc-
tion for the strong interaction between the nucleus and the π−.

8.2 Dirac Equation for the Coulomb Potential

In this section, we shall determine the exact solution of the Dirac equation
for an electron in a Coulomb potential

V (r) = −Ze20
r

. (8.2.1)

From

i�
∂ψ(x, t)

∂t
=
(
cα ·

(
p − e

c
A
)

+ βmc2 + eΦ
)
ψ(x, t) (8.2.2)

one finds, for A = 0 and eΦ ≡ −Ze2
0

r ≡ V (r), the Dirac Hamiltonian

H = cα · p + βmc2 + V (r) (8.2.3)

and, with ψ(x, t) = e−iEt/�ψ(x), the time-independent Dirac equation

(cα · p + βmc2 + V (r))ψ(x) = Eψ(x) . (8.2.4)

Here too, it will turn out to be useful to represent H in spherical polar
coordinates. To achieve this end, we first exploit all symmetry properties of
H .
The total angular momentum J from (7.2.7′)

J = L11 +
�

2
Σ (8.2.5)

commutes with H . This implies that H, J2, and Jz have common eigenstates.

Remarks:

(i) The operators Lz, Σz, and L2 do not commute with H .

(ii) For Σ =
(

σ 0
0 σ

)
, it follows that

(
�

2Σ
)2

= 3�
2

4 11 = 1
2

(
1 + 1

2

)
�

2 11 is

diagonal.

(iii) L2,Σ2, and L · Σ, like H ,are scalars and thus commute with J.
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As a necessary prerequisite for an exact solution of the Dirac equation, we
first discuss the Pauli spinors. As we know from nonrelativistic quantum
mechanics5, the Pauli spinors are common eigenstates of J2, Jz, and L2 with
the corresponding quantum numbers j,m, and �, where J = L + �

2σ is now
the operator of the total angular momentum in the space of two-component
spinors. From the product states

|�,mj + 1/2〉 |↓〉
|�,mj − 1/2〉 |↑〉 or

Y�,mj+
1
2

(
0
1

)
Y�,mj− 1

2

(
1
0

) (8.2.6)

(in Dirac ket space or in the coordinate representation), one forms linear
combinations that are eigenstates of J2, Jz , and L2. For a particular value of
�, one obtains

ϕ
(+)
jmj

=

⎛⎜⎜⎝
√

�+mj+1/2
2�+1 Y�,mj−1/2√

�−mj+1/2
2�+1 Y�,mj+1/2

⎞⎟⎟⎠ for j = �+
1
2

and

ϕ
(−)
jmj

=

⎛⎜⎜⎝
√

�−mj+1/2
2�+1 Y�,mj−1/2

−
√

�+mj+1/2
2�+1 Y�,mj+1/2

⎞⎟⎟⎠ for j = �− 1
2
. (8.2.7)

The coefficients that appear here are the Clebsch–Gordan coefficients. Com-
pared to the convention used in QM I, the spinors ϕ

(−)
jmj

now contain an
additional factor −1. The quantum number � takes the values � = 0, 1, 2, . . . ,
whilst j and mj have half-integer values. For � = 0, the only states are
ϕ

(+)
jmj

≡ ϕ
(+)
1
2 mj

. The states ϕ(−)
jmj

only exist for � > 0, since l = 0 would imply
a negative j. The spherical harmonics satisfy

Y ∗
�,m = (−1)m Y�,−m. (8.2.8)

The eigenvalue equations for ϕ(±)
jmj

are (henceforth we set � = 1):

J2ϕ
(±)
jmj

= j(j + 1)ϕ(±)
jmj

, j =
1
2
,

3
2
, . . .

L2ϕ
(±)
jmj

= �(�+ 1)ϕ(±)
jmj

, � = j ∓ 1
2

Jzϕ
(±)
jmj

= mjϕ
(±)
jmj

, mj = −j, . . . , j .

(8.2.9)

5 QM I, Chap. 10, Addition of Angular Momenta
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Furthermore, we have

L · σϕ(±)
jmj

=
(
J2 − L2 − 3

4

)
ϕ

(±)
jmj

=
(
j(j + 1) − �(�+ 1) − 3

4

)
ϕ

(±)
jmj

(8.2.10)

=
{

�
−�− 1

}
ϕ

(±)
jmj

=
{
−1 + (j + 1/2)
−1 − (j + 1/2)

}
ϕ

(±)
jmj

for j = �± 1
2
.

The following definition will prove useful

K = (1 + L · σ) (8.2.11)

whereby, according to (8.2.10), the following eigenvalue equation holds:

Kϕ
(±)
jmj

= ±
(
j +

1
2

)
ϕ

(±)
jmj

≡ kϕ
(±)
jmj

. (8.2.12)

The parity of Y�m can be seen from

Y�m(−x) = (−1)�Y�m(x) . (8.2.13)

For each value of j
(

1
2 , 3

2 , . . .
)

there are two Pauli spinors, ϕ(+)
jmj

and ϕ
(−)
jmj

,
whose orbital angular momenta � differ by 1, and which therefore have op-
posite parities. We introduce the notation

ϕ�
jmj

=

⎧⎪⎨⎪⎩
ϕ

(+)
jmj

� = j − 1
2

ϕ
(−)
jmj

� = j + 1
2 .

(8.2.14)

In place of the index (±), one gives the value of �, which yields the quantum
number j by the addition (subtraction) of 1

2 . According to (8.2.13), ϕ�
jmj

has
parity (−1)�, i.e.,

ϕ�
jmj

(−x) = (−1)� ϕ�
jmj

(x) . (8.2.15)

Remark: One may also write

ϕ
(+)
jmj

=
σ · x
r

ϕ
(−)
jmj

. (8.2.16)

This relation can be justified as follows: The operator that generates ϕ(+)
jmj

from ϕ
(−)
jmj

must be a scalar operator of odd parity. Furthermore, due to the
difference ∆� = 1, the position dependence is of the form Y1,m(ϑ, ϕ), and
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thus proportional to x . Therefore, x must be multiplied by a pseudovector.
The only position-independent pseudovector is σ . A formal proof of (8.2.16)
is left as an exercise in Problem 8.2.

The Dirac Hamiltonian for the Coulomb potential is also invariant under
spatial reflections, i.e., with respect to the operation (Eq. (6.2.33′))

P = β P(0)

where P(0) effects the spatial reflection6 x → −x. One may see this directly
by calculating βP(0)H and making use of βα = −αβ:

βP(0)

[
1
i
α · ∇ + βm− Zα

r

]
ψ(x)

= β

[
1
i
α(−∇) + βm− Zα

r

]
ψ(−x)

=
[
1
i
α · ∇ + βm− Zα

r

]
βP(0)ψ(x) .

(8.2.17)

Therefore, βP(0) commutes with H such that

[βP(0), H ] = 0 . (8.2.17′)

Since (βP(0))2 = 1, it is clear that βP(0) possesses the eigenvalues ±1. Hence,
one can construct even and odd eigenstates of βP(0) and H

βP(0)ψ
(±)
jmj

(x) = βψ
(±)
jmj

(−x) = ±ψ(±)
jmj

(x) . (8.2.18)

Let us remark in passing that the pseudovector J commutes with βP(0).
In order to solve (8.2.4), we attempt to construct the four-spinors from

Pauli spinors. When ϕ�
jmj

appears in the two upper components, then, on
account of β, one must also in the lower components take the other � belonging
to j, and hence, according to (8.2.16), σ · x̂ϕ�

jmj
. This gives as solution ansatz

the four-spinors7

ψ�
jmj

=

(
iG�j(r)

r ϕ�
jmj

F�j(r)
r (σ · x̂)ϕ�

jmj

)
. (8.2.19)

These spinors have the parity (−1)�, since

βPψ�
jmj

(x) = βψ�
jmj

(−x) = β

(
. . . (−1)� ϕ�

jmj

. . . (−1)�+1 σ · x̂ϕ�
jmj

)
= (−1)� ψ�

jmj
(x) .

(8.2.20)

6 This can also be concluded from the covariance of the Dirac equation and the
invariance of 1

r
under spatial reflections (Sect. 6.2.2.4).

7 Since [J,σ · x] = 0, it is clear that Jz
J2ψ

�
jmj

= m
j(j+1)

ψ�
jmj

.
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The factors 1
r and i included in (8.2.19) will turn out to be useful later.

In matrix notation the Dirac Hamiltonian reads

H =
(
m− Zα

r σ · p
σ · p −m− Zα

r

)
. (8.2.21)

In order to calculate Hψ�
jm, we require the following quantities8:

σ ·p f(r)ϕ�
jmj

= σ ·x̂ σ ·x̂ σ ·p f(r)ϕ�
jmj

=
σ ·x̂
r

(x·p + iσ ·L) f(r)ϕ�
jmj

= −i
σ ·x̂
r

{
r
∂f(r)
∂r

+
(

1 ∓
(
j +

1
2

))
f(r)

}
ϕ�

jmj

for j = �± 1/2
(8.2.22a)

and

(σ ·p)(σ ·x̂) f(r)ϕ�
jmj

= − i
r

[
r
∂

∂r
+ 1 ±

(
j +

1
2

)]
f(r)ϕ�

jmj

for j = �± 1/2 .
(8.2.22b)

By means of (8.2.22a,b), the angle-dependent part of the momentum op-
erator is eliminated, in analogy to the kinetic energy in nonrelativistic quan-
tum mechanics. If one now substitutes (8.2.19), (8.2.21), and (8.2.22) into
the time-independent Dirac equation (8.2.4), the radial components reduce
to (

E −m+
Zα

r

)
G�j(r) = −dF�j(r)

dr
∓
(
j +

1
2

)
F�j(r)
r

for j = �± 1/2(
E +m+

Zα

r

)
F�j(r) =

dG�j(r)
dr

∓
(
j +

1
2

)
G�j(r)
r

for j = �± 1/2 .

(8.2.23)

This system of equations can be solved by making the substitutions

α1 = m+ E , α2 = m− E , σ =
√
m2 − E2 =

√
α1α2

ρ = rσ , k = ±
(
j + 1

2

)
, γ = Zα

(8.2.24)

with the condition E < m for bound states. One obtains

8 σ · aσ · b = a · b + iσ · a × b , ⇒ σ · x̂σ · x̂ = 1
p · x

r
= 1

i
∇ · x

r
= 1

i

`
3
r
− x · x

r3

´
= − 2i

r
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(
d

dρ
+
k

ρ

)
F −

(
α2

σ
− γ

ρ

)
G = 0(

d

dρ
− k

ρ

)
G−

(
α1

σ
+
γ

ρ

)
F = 0 .

(8.2.25)

Differentiating the first equation and inserting it into the second, one sees
that, for large ρ, F and G are normalizable solutions that behave like e−ρ.
Thus, in (8.2.25) we make the ansatz

F (ρ) = f(ρ)e−ρ, G(ρ) = g(ρ)e−ρ , (8.2.26)

which leads to

f ′ − f +
kf

ρ
−
(
α2

σ
− γ

ρ

)
g = 0

g′ − g − kg

ρ
−
(
α1

σ
+
γ

ρ

)
f = 0 .

(8.2.27)

In order to solve the system (8.2.27), one introduces the power series:

g = ρs(a0 + a1 ρ+ . . . ) , a0 	= 0
f = ρs(b0 + b1 ρ+ . . . ) , b0 	= 0 .

(8.2.28)

Here, the same power s is assumed for g and f since different values would
imply vanishing a0 and b0, as can be seen by substitution into (8.2.27) in
the limit ρ → 0. For the solution to be finite at ρ = 0, s would have to be
greater than, or equal to, 1. Our experience with the Klein–Gordon equation,
however, prepares us to admit s values that are somewhat smaller than 1.
Substituting the power series into (8.2.27) and comparing the coefficients of
ρs+ν−1 yields for ν > 0:

(s+ ν + k)bν − bν−1 + γaν − α2

σ
aν−1 = 0 (8.2.29a)

(s+ ν − k)aν − aν−1 − γbν − α1

σ
bν−1 = 0 . (8.2.29b)

For ν = 0 one finds

(s+ k)b0 + γa0 = 0
(s− k)a0 − γb0 = 0 .

(8.2.30)

This is a system of recursion relations. The coefficients a0 and b0 differ from
zero, provided the determinant of their coefficients in (8.2.30) disappears, i.e.

s = (±)

(
k2 − γ2

)1/2
. (8.2.31)

The behavior of the wave function at the origin leads us to take the positive
sign. Now, s depends only on k2, i.e., only on j. Thus, the two states of oppo-
site parity that belong to j turn out to have the same energy. A relationship
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between aν and bν is obtained by multiplying the first recursion relation by
σ, the second by α2, and then subtracting

bν [σ(s+ ν + k) + α2γ] = aν [α2(s+ ν − k) − σγ] , (8.2.32)

where we have used α1α2 = σ2.
In the following we may convince ourselves that the power series obtained,
which do not terminate, lead to divergent solutions. To this end, we investi-
gate the asymptotic behavior of the solution. For large ν (and this is also de-
cisive for the behavior at large r) it follows from (8.2.32) that σνbν = α2νaν ,
thus

bν =
α2

σ
aν ,

and from the first recursion relation (8.2.29a)

νbν − bν−1 + γaν − α2

σ
aν−1 = 0 ,

whence we finally find

bν =
2
ν
bν−1 , aν =

2
ν
aν−1

and thus, for the series,∑
ν

aνρ
ν ∼

∑
ν

bνρ
ν ∼

∑
ν

(2ρ)ν

ν!
∼ e2ρ .

The two series would approach the asymptotic form e2ρ. In order for the
solution (8.2.26) to remain well-behaved for large ρ, the series must terminate.
Due to the relation (8.2.32), when aν = 0 we also have bν = 0 and, according
to the recursion relations (8.2.29), all subsequent coefficients are also zero,
since the determinant of this system of equations does not vanish for ν > 0.
Let us assume that the first two vanishing coefficients are aN+1 = bN+1 = 0.
The two recursion relations (8.2.29a,b) then yield the termination condition

α2aN = −σbN , N = 0, 1, 2, . . . . (8.2.33)

N is termed the “radial quantum number”. We now set ν = N in (8.2.32)
and apply the termination condition (8.2.33)

bN

[
σ(s+N + k) + α2γ + σ(s+N − k) − σ2

α2
γ

]
= 0 ,

i.e., with (8.2.24)

2σ(s+N) = γ(α1 − α2) = 2Eγ . (8.2.34)
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We obtain E from this and also see that E > 0. According to (8.2.24), the
quantity σ also contains the energy E. In the following we reintroduce c and,
from (8.2.34), obtain

2(m2c4 − E2)1/2 (s+N) = 2Eγ .

Solving this equation for E yields the energy levels:

E = mc2
[
1 +

γ2

(s+N)2

]− 1
2

. (8.2.35)

It still remains to determine which values of k (according to (8.2.12) they are
integers) are allowed for a particular value of N . For N = 0, the recursion
relation (8.2.30) implies:

b0
a0

= − γ

s+ k

and from the termination condition (8.2.33), we have

b0
a0

= −α2

σ
< 0 .

Since, as implied by(8.2.31), s < |k|, it follows from the first of these relations
that

b0
a0

{
< 0 for k > 0
> 0 for k < 0 ,

whilst from the second relation it always follows that b0
a0

< 0, i.e., for k < 0
we arrive at a contradiction. Thus, for N = 0, the quantum number k can
only take positive integer values. For N > 0, all positive and negative integer
values are allowed for k. With the definition of the principal quantum number

n = N + |k| = N + j +
1
2

(8.2.36)

and the value s =
√
k2 − γ2 from (8.2.31), equation (8.2.35) yields the energy

levels

En,j = mc2

⎡⎣1 +

(
Zα

n− |k| +
√
k2 − (Zα)2

)2
⎤⎦− 1

2

= mc2

⎡⎢⎣1 +

⎛⎝ Zα

n−
(
j + 1

2

)
+
√(

j + 1
2

)2 − (Zα)2

⎞⎠2
⎤⎥⎦
− 1

2

. (8.2.37)
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Before we discuss the general result, let us look briefly at the nonrelativistic
limit together with the leading corrections. This follows from (8.2.37) by
expanding as a power series in Zα:

En,j = mc2
{

1 − Z2α2

2n2
− (Zα)4

2n3

(
1

j + 1
2

− 3
4n

)
+ O((Zα)6)

}
.

(8.2.38)

This expression agrees with the result obtained from the perturbation-
theoretic calculation of the relativistic corrections (QM I, Eq. (12.5)).

We now discuss the energy levels given by (8.2.37) and their degeneracies.
For the classification of the levels, we note that the quantum number k =
±
(
j + 1

2

)
introduced in (8.2.12) belongs to the Pauli spinors ϕ(±)

jmj
= ϕ

�=j∓ 1
2

jmj
.

Instead of k, one traditionally uses the quantum number �. Positive k is thus
associated with the smaller of the two values of � belonging to the particular
j considered. The quantum number k takes the values k = ±1,±2, . . . , and
the principal quantum number n the values n = 1, 2, . . . . We recall that for
N = 0 the quantum number k must be positive and thus from (8.2.36), we
have k = n and, consequently, � = n−1 and j = n− 1

2 . Table 8.1 summarizes
the values of the quantum numbers k, j, j + 1

2 and � for a given value of the
principal quantum number n.

Table 8.2 gives the quantum numbers for n = 1, 2, and 3 and the spectro-
scopic notation for the energy levels nLj. It should be emphasized that the
orbital angular momentum L is not conserved and that the quantum number
� is really only a substitute for k, introduced to characterize parity.

k ±1 ±2 . . . ±(n− 1) n

j 1/2 3/2 n− 1/2

j + 1/2 1 2 n

0 1 n− 2 n− 1�
1 2 n− 1

Table 8.1. Values of the
quantum numbers k, j, j + 1

2
,

and � for a given principal
quantum number n

n N |k| k j �

1 0 1 1 1/2 0 1S1/2

2 1 1 +1 1/2 0 2S1/2

1 1 −1 1/2 1 2P1/2

0 2 2 3/2 1 2P3/2

3 2 1 1 1/2 0 3S1/2

2 1 −1 1/2 1 3P1/2

1 2 2 3/2 1 3P3/2

1 2 −2 3/2 2 3D3/2

0 3 3 5/2 2 3D5/2

Table 8.2. The values of the quantum
numbers; principal quantum number n,
radial quantum number N , k, angular
momentum j and �
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n = 3

8>>>>><>>>>>:

k = 3
D5/2

k = 2
P3/2

k = −2
D3/2

k = 1
S1/2

k = −1
P1/2

n = 2

8><>:
k = 2

P3/2

k = 1
S1/2

k = −1
P1/2

n = 1

j
k = 1

S1/2

Fig. 8.3. The energy levels of the hydrogen atom according to the Dirac equation
for values of the principal quantum number n = 1, 2, and 3

Figure 8.3 shows the relativistic energy levels of the hydrogen atom ac-
cording to (8.2.37) for the values n = 1, 2, and 3 of the principal quantum
number. The levels 2S1/2 and 2P1/2, the levels 3S1/2 and 3P1/2, the levels
3P3/2 and 3D3/2, etc. are degenerate. These pairs of degenerate levels corre-
spond to opposite eigenvalues of the operator K = 1 + L·σ, e.g., 2P3/2 has
the value k = 2, whereas 2D3/2 possesses k = −2. The only nondegenerate
levels are 1S1/2, 2P3/2, 3D5/2, etc. These are just the lowest levels for a fixed
j, or the levels with radial quantum number N = 0, for which it was shown in
the paragraph following (8.2.35) that the associated k can only be positive.
The lowest energy levels are given in Table 8.3. The energy eigenvalues for
N = 0 are, according to (8.2.37) and (8.2.36),

E = mc2
[
1 +

γ2

k2 − γ2

]− 1
2

= mc2
[
1 +

γ2

n2 − γ2

]− 1
2

= mc2
√

1 − γ2/n2 .

(8.2.39)

Table 8.3. The lowest energy levels

n � j En,j/mc
2

1S1/2 1 0 1
2

p
1 − (Zα)2

2S1/2 2 0 1
2

q
1+

√
1−(Zα)2

2

2P1/2 2 1 1
2

q
1+

√
1−(Zα)2

2

2P3/2 2 1 3
2

1
2

p
4 − (Zα)2
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fine structure   +   Lamb shift   +   hyperfine

Fig. 8.4. Splitting of the
energy levels of the hydro-
gen atom (MHz) due to
the relativistic terms (fine
structure, (Fig. 8.3)), the
Lamb shift and the hyper-
fine structure

Figure 8.4 shows how the level n = 2, l = 1 (a single level according to
the Schrödinger equation) splits according to Dirac theory (8.2.37) to yield
the fine structure. Further weaker splitting, due to the Lamb shift and the
hyperfine structure9, is also shown. It should be noted that all levels are still
(2j + 1)-fold degenerate since they do not depend on the quantum number
mj . This degeneracy is a general consequence of the spherical symmetry
of the Hamiltonian (see the analogous discussion in QM I, Sect. 6.3). The
fine-structure splitting between the 2P3/2 and the 2P1/2 and 2S1/2 levels is
10950 MHz −̂ 0.45 × 10−4eV.

As has already been mentioned, it is usual to make use of the nonrela-
tivistic notation to classify the levels. One specifies n, j, and �, where � is the
index of the Pauli spinor, which really only serves to characterize the parity.

The 2S1/2 and 2P1/2 states are degenerate, as in first-order perturbation
theory. This is not surprising since they are the two eigenstates of opposite
parity for the same N and j. The 2P3/2 state has a higher energy than
the 2P1/2 state. The energy difference arises from the fine-structure splitting
caused by the spin–orbit interaction. In general, for a given n, the states with
larger j have a higher energy. The ground-state energy

E1 = mc2
√

1 − (Zα)2 = mc2
(

1 − (Zα)2

2
− (Zα)4

8
· · ·
)

(8.2.40)

is doubly degenerate, with the two normalized spinors

ψn=1,j= 1
2 ,mj=

1
2
(r, ϑ, ϕ)

=
(2mZα)3/2

√
4π

√
1 + γ̄

2Γ (1 + 2γ̄)
(2mZαr)γ̄−1

× e−mZαr

⎛⎜⎜⎝
1
0

i(1−γ̄)
Zα cosϑ

i(1−γ̄)
Zα sinϑ eiϕ

⎞⎟⎟⎠
(8.2.41a)

and
9 Section 9.2.2 and QM I, Chap. 12
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ψn=1,j= 1
2 ,mj=− 1

2
(r, ϑ, ϕ)

=
(2mZα)3/2

√
4π

√
1 + γ̄

2Γ (1 + 2γ̄)
(2mZαr)γ̄−1

× e−mZαr

⎛⎜⎜⎝
0
1

i(1−γ̄)
Zα sinϑ e−iϕ

−i(1−γ̄)
Zα cosϑ

⎞⎟⎟⎠
(8.2.41b)

with γ̄ =
√

1 − Z2α2 and the gamma function Γ (x). The normalization
is given by

∫
d3xψ†

n=1,j= 1
2 ,mj=± 1

2
(ϑ, ϕ)ψn=1,j= 1

2 ,mj=± 1
2
(ϑ, ϕ) = 1. The two

spinors possess the quantum numbers mj = +1/2 and mj = −1/2. They
are constructed from eigenfunctions of the orbital angular momentum: Y00

in the components 1 and 2 and Y1,m=0,±1 in the components 3 and 4. In
the nonrelativistic limit α → 0, γ̄ → 1, 1−γ̄

Zα −→ 0 these solutions reduce to
the Schrödinger wave functions multiplied by Pauli spinors in the upper two
components.

The solution (8.2.41) displays a weak singularity rγ̄−1 = r
√

1−Z2α2−1 ≈
r−Z2α2/2. However, this only has a noticeable effect in a very tiny region:

r <
1

2mZα
e−

2
Z2α2 =

10−16300/Z2

2mZα
.

Furthermore, for real nuclei with a finite radius, this singularity no longer
occurs. For Zα > 1, γ̄ becomes imaginary and the solutions are therefore
oscillatory. However, all real nuclei have Zα < 1 and, furthermore, this limit
is shifted for finite-sized nuclei.

Problems

8.1 Demonstrate the validity of the relation

(σ · p)(σ · x̂)f(r)ϕ�
jmj

= − i

r

»
r
∂

∂r
+ 1 ±

„
j +

1

2

«–
f(r)ϕ�

jmj
.

8.2 Prove the relation (8.2.16)

ϕ
(+)
jmj

=
σ · x
r
ϕ

(−)
jmj

that was given in connection with the solution of the Dirac equation for the hydro-
gen atom.
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Hint: Make use of the fact that ϕ
(−)
jmj

is an eigenfunction of σ · L and calculate

the commutator
ˆ
σ · L, σ·x

r

˜
(result: 2

r

`
r2 σ · ∇ − (σ · x)(x · ∇) − σ · x´) or the

anticommutator.

8.3 Derive the recursion relations (8.2.29a,b) for the coefficients aν and bν .

8.4 Calculate the ground-state spinors of the hydrogen atom from the Dirac equa-
tion.

8.5 A charged particle is moving in a homogeneous electromagnetic field B =

(0, 0, B) and E = (E0, 0, 0). Choose the gauge A = (0, Bx, 0) and, taking as your

starting point the Klein–Gordon equation, determine the energy levels.



9. The Foldy–Wouthuysen Transformation
and Relativistic Corrections

9.1 The Foldy–Wouthuysen Transformation

9.1.1 Description of the Problem

Beyond the Coulomb potential, there are other potentials for which it is also
important to be able to calculate the relativistic corrections. Relativistic cor-
rections become increasingly important for nuclei of high atomic number,
and it is exactly these, for which the nuclear diameter is no longer negligible,
in which the potential deviates from the 1/r form. The canonical transfor-
mation of Foldy und Wouthuysen1 transforms the Dirac equation into two
decoupled two-component equations. The equation for the components 1 and
2 becomes identical to the Pauli equation in the nonrelativistic limit; it also
contains additional terms that give rise to relativistic corrections. The ener-
gies for these components are positive. The equation for the components 3
and 4 describes negative energy states.

From the explicit solutions given in previous sections, it is evident that
for positive energies the spinor components 1 and 2 are large, and the compo-
nents 3 and 4 small. We seek a transformation that decouples the small and
large components of the spinor from one another. In our treatment of the non-
relativistic limit (Sect. 5.3.5), we achieved this decoupling by eliminating the
small components. We now wish to investigate this limit systematically and
thereby derive the relativistic corrections. According to a classification that
is now established in the literature, the Dirac Hamiltonian contains terms of
two types: “odd” operators which couple large and small components (αi, γi,
γ5) and “even” operators which do not couple the large and small components
(11, β, Σ).

The canonical (unitary) transformation that achieves the required decou-
pling may be written in the form

ψ = e−iSψ′ , (9.1.1)

where, in general, S can be time dependent. From the Dirac equation, it then
follows that

1 L.L. Foldy and S.A. Wouthuysen, Phys. Rev. 78, 29 (1950)
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i∂tψ = i∂te−iSψ′ = ie−iS∂tψ
′ + i

(
∂te−iS

)
ψ′ = Hψ = He−iSψ′ (9.1.2a)

and, thus, we have the equation of motion for ψ′:

i∂tψ
′ =

(
eiS(H − i∂t)e−iS

)
ψ′ ≡ H ′ψ′ (9.1.2b)

with the Foldy–Wouthuysen-transformed Hamiltonian

H ′ = eiS(H − i∂t)e−iS . (9.1.2c)

The time derivative on the right-hand side of this equation only acts on e−iS .
One endeavors to construct S such that H ′ contains no odd operators. For
free particles, one can find an exact transformation, but otherwise one has to
rely on a series expansion in powers of 1

m and, by successive transformations,
satisfy this condition to each order of 1

m . In fact, each power of 1
m corresponds

to a factor p
mc ∼ v

c ; in the atomic domain this is approximately equal to
Sommerfeld’s fine-structure constant α, since, from Heisenberg’s uncertainty
relation, we have v

c ≈ �

cm∆x ≈ �

cma = α.

9.1.2 Transformation for Free Particles

For free particles, the Dirac Hamiltonian simplifies to

H = α · p + βm (9.1.3)

with the momentum operator p = −i∇. Since {α, β} = 0, the problem is
analogous to that of finding a unitary operator that diagonalizes the Pauli
Hamiltonian

H = σxBx + σzBz , (9.1.4a)

so that, after transformation, H contains only 11 and σz . This is achieved by
a rotation about the y axis through an angle ϑ0 determined by (Bx, By, 0):

e
i
2 σyϑ0 = e

1
2 σzσxϑ0 . (9.1.4b)

This equation suggests the ansatz

e±iS = e±β α·p
|p| ϑ(p) = cosϑ± β α · p

|p| sinϑ . (9.1.5)

Here, S is time independent. The last relation results from the Taylor expan-
sion of the exponential function and from

(α · p)2 = αiαj pipj =
1
2
{αi, αj} pipj = δijpipj = p2 (9.1.6a)

(βα · p)2 = β α · p βα · p = −β2(α · p)2 = −p2 . (9.1.6b)
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Inserting (9.1.5) into (9.1.2c), one obtains H ′ as

H ′ = eβ α·p
|p| ϑ(α · p + βm)

(
cosϑ− βα · p

|p| sinϑ
)

= e
β α·p

|p| ϑ

„
cos ϑ+

βα · p
|p| sinϑ

«
(α · p + βm)

= e
2β α·p

|p| ϑ
(α · p + βm) =

„
cos 2ϑ+

βα · p
|p| sin 2ϑ

«
(α · p + βm)

= α · p
(

cos 2ϑ− m

|p| sin 2ϑ
)

+ βm

(
cos 2ϑ+

|p|
m

sin 2ϑ
)
. (9.1.7)

The requirement that the odd terms disappear yields the condition tan 2ϑ =
|p|
m , from whence it follows that

sin 2ϑ =
tan2ϑ

(1 + tan2 2ϑ)1/2
=

p

(m2 + p2)1/2
, cos 2ϑ =

m

(m2 + p2)1/2
.

Substituting this into (9.1.7) finally yields:

H ′ = βm
(m
E

+
p · p
mE

)
= β

√
p2 +m2 . (9.1.8)

Thus, H ′ has now been diagonalized. The diagonal components are nonlocal2

Hamiltonians ±
√

p2 +m2 . In our first attempt (Sect. 5.2.1) to construct
a nonrelativistic theory with a first order time derivative, we encountered
the operator

√
p2 +m2. The replacement of

√
p2 +m2 by linear operators

necessarily leads to a four-component theory with negative as well as positive
energies. Even now, H ′ still contains the character of the four-component
theory due to its dependence on the matrix β, which is different for the
upper and lower components. Such an exact transformation is only feasible
for free particles.

9.1.3 Interaction with the Electromagnetic Field

Of primary interest, of course, is the case of non-vanishing electromagnetic
fields. We assume that the potentials A and Φ are given, such that the Dirac
Hamiltonian reads:

H = α · (p − eA) + βm+ eΦ (9.1.9a)
= βm+ E + O . (9.1.9b)

Here, we have introduced a decomposition into a term proportional to β, an
even term E , and an odd term O:

2 They are nonlocal because they contain derivatives of all orders. In a discrete
theory, the nth derivative signifies an interation between lattice sites that are n
units apart.
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E = eΦ and O = α(p − eA) . (9.1.10)

These have different commutation properties with respect to β:

βE = Eβ , βO = −Oβ . (9.1.11)

The solution in the field-free case (9.1.5) implies that, for small ϑ, i.e., in the
nonrelativistic limit,

iS = β
α · p
|p| ϑ ∼ βα

p
2m

.

We can thus expect that successive transformations of this type will lead to an
expansion in 1

m . In the evaluation of H ′, we make use of the Baker–Hausdorff
identity3

H ′ = H + i[S,H ] +
i2

2
[S, [S,H ]] +

i3

6
[S, [S, [S,H ]]] +

+
i4

24
[S, [S, [S, [S,H ]]]] − Ṡ − i

2
[S, Ṡ] − i2

6
[S, [S, Ṡ]] ,

(9.1.12)

given here only to the order required. The odd terms are eliminated up to
order m−2, whereas the even ones are calculated up to order m−3.
In analogy to the procedure for free particles, and according to the remark
following Eq. (9.1.11), we write for S:

S = −iβO/2m . (9.1.13)

For the second term in (9.1.12), we find

i[S,H ] = −O +
β

2m
[O, E ] +

1
m
βO2 , (9.1.14)

obtained using the straightforward intermediate steps

[βO, β] = βOβ − ββO = −2O
[βO, E ] = β[O, E ]

[βO,O] = βO2 −OβO = 2βO2 .

(9.1.15)

Before calculating the higher commutators, let us immediately draw attention
to the fact that the first term in (9.1.14) cancels out the term O in H .
Hence, the aim of eliminating the odd operator O by transformation has
been attained; although new odd terms have been generated, e.g., the second
term in (9.1.14), these have an additional factor m−1. We now address the
other terms in (9.1.12).

The additional commutator with iS can be written immediately by using
(9.1.14), (9.1.15), and (9.1.11):
3 eABe−A = B + [A,B] + . . .+ 1

n!
[A, [A, . . . , [A,B] . . . ]] + . . .
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i2

2
[S, [S,H ]] = −βO2

2m
− 1

8m2
[O, [O, E ]] − 1

2m2
O3 ,

and likewise,

i3

3!
[S, [S, [S,H ]]] =

O3

6m2
− 1

6m3
βO4 − β

48m3
[O, [O, [O, E ]]] .

For the odd operators, it is sufficient to include terms up to order m−2 and
hence the third term on the right-hand side may be neglected. The next
contributions to (9.1.12), written only up to the necessary order in 1/m, are:

i4

4!
[S, [S, [S, [S,H ]]]] =

βO4

24m3

−Ṡ =
iβȮ
2m

− i
2
[S, Ṡ] = − i

8m2
[O, Ȯ] .

All in all, one obtains for H ′:

H ′ = βm+ β

(O2

2m
− O4

8m3

)
+ E − 1

8m2
[O, [O, E ]] − i

8m2
[O, Ȯ]

+
β

2m
[O, E ] − O3

3m2
+

iβȮ
2m

≡ βm+ E ′ + O′ . (9.1.16)

Here, E and all even powers of O have been combined into a new even
term E ′, and the odd powers into a new odd term O′. The odd terms now
occur only to orders of at least 1

m . To reduce them further, we apply another
Foldy–Wouthuysen transformation

S′ =
−iβ
2m

O′ =
−iβ
2m

(
β

2m
[O, E ] − O3

3m2
+

iβȮ
2m

)
. (9.1.17)

This transformation yields:

H ′′ = eiS′
(H ′ − i∂t)e−iS′

= βm+ E ′ +
β

2m
[O′, E ′] +

iβȮ′

2m
(9.1.18)

≡ βm+ E ′ + O′′ .

Since O′ is of order 1/m, in O′′ there are now only terms of order 1/m2. This
transformation also generates further even terms, which, however, are all of
higher order. For example, βO′2/2m = βe2E2/8m3 ∼ βe4/m3r4 ∼ Ryα4 .
By means of the transformation

S′′ =
−iβO′′

2m
, (9.1.19)
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the odd term O′′ ∼ O
(

1
m2

)
is also eliminated. The result is the operator

H ′′′ = eiS′′
(H ′′ − i∂t)e−iS′′

= βm+ E ′

= β

(
m+

O2

2m
− O4

8m3

)
+ E − 1

8m2

[
O, [O, E ] + iȮ

]
,

(9.1.20)

which now only consists of even terms.
In order to bring the Hamiltonian H ′′′ into its final form, we have to

substitute (9.1.10) and rewrite the individual terms as follows:

2nd term of H ′′′:
O2

2m
=

1
2m

(α · (p− eA))2 =
1

2m
(p − eA)2 − e

2m
Σ ·B , (9.1.21a)

since

αiαj = αiβ2αj = −γiγj = −1
2
(
{γi, γj} + [γi, γj ]

)
= −gij + iεijkΣk

= δij + iεijkΣk

and the mixed term with εijk yields:

−e (piAj +Aipj) iεijkΣk = −ie ((piAj) +Ajpi +Aipj) εijkΣk

= −e (∂iA
j) εijkΣk = −eB · Σ .

5th term of H ′′′:
Evaluation of the second argument of the commutator gives(

[O, E ] + iȮ
)

=
[
αi(pi − eAi), eΦ

]
− ieαiȦi

= −ieαi
(
∂iΦ+ Ȧi

)
= ieαiEi .

It then remains to compute

[O,α ·E] = αiαj(pi − eAi)Ej − αjEjαi(pi − eAi)
= (pi − eAi)Ei − Ei(pi − eAi)

+iεijkΣk(pi − eAi)Ej − iεjikΣkEj(pi − eAi)
= (piEi) + Σ · ∇ × E− 2iΣ ·E × (p− eA) .

Hence, the 5th term in H ′′′ reads:

− ie
8m2

[O,α · E] = − e

8m2
div E− ie

8m2
Σ · ∇ × E

− e

4m2
Σ ·E× (p − eA) .

(9.1.21b)

Inserting (9.1.10) and (9.1.21a,b) into (9.1.20), one obtains the final expres-
sion for H ′′′:



9.2 Relativistic Corrections and the Lamb Shift 187

H ′′′ = β

(
m+

(p− eA)2

2m
− 1

8m3
[(p − eA)2 − eΣ ·B]2

)
+ eΦ

− e

2m
βΣ ·B − ie

8m2
Σ · curlE

− e

4m2
Σ ·E× (p − eA) − e

8m2
div E .

(9.1.22)

The Hamiltonian H ′′′ no longer contains any odd operators. Hence, the com-
ponents 1 and 2 are no longer coupled to the components 3 and 4. The
eigenfunctions of H ′′′ can be represented by two-component spinors in the
upper and lower components of ψ′, which correspond to positive and neg-
ative energies. For ψ′ =

(
ϕ
0

)
, the Dirac equation in the Foldy–Wouthuysen

representation acquires the following form:

i
∂ϕ

∂t
=
{
m+ eΦ+

1
2m

(p − eA)2 − e

2m
σ · B− p4

8m3

− e

4m2
σ · E× (p − eA) − e

8m2
div E

}
ϕ .

(9.1.23)

Here, ϕ is a two-component spinor and the equation is identical to the Pauli
equation plus relativistic corrections. The first four terms on the right-hand
side of (9.1.23) are: rest energy, potential, kinetic energy, and coupling of
the magnetic moment µ = e

2mσ = 2 e
2mS to the magnetic field B. As was

discussed in detail in Sect. 5.3.5.2, the gyromagnetic ratio (Landé factor) is
obtained from the Dirac equation as g = 2. The three subsequent terms are
the relativistic corrections, which will be discussed in the next section.

Remark. Equation (9.1.23) gives only the leading term that follows from O4, which
is still contained in full in (9.1.22), namely p4. The full expression is

− β

8m3
O4 = − β

8m3
((p − eA)2 − eΣB)2 = − β

8m3
[(p − eA)4 + e2B2 +

+eΣ · �B − 2eΣ · B(p− eA)2 − 2ieσj∇Bj(p − eA)] .

It should also be noted that, in going from (9.1.22) to (9.1.23), it has been assumed
that curlE = 0.

9.2 Relativistic Corrections and the Lamb Shift

9.2.1 Relativistic Corrections

We now discuss the relativistic corrections that emerge from (9.1.22) and
(9.1.23). We take E = −∇Φ(r) = − 1

r
∂Φ
∂r x and A = 0. Hence, curlE = 0

and

Σ · E× p = −1
r

∂Φ

∂r
Σ · x × p = −1

r

∂Φ

∂r
Σ · L . (9.2.1)
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Equation (9.1.23) contains three correction terms:

H1 = − (p2)2

8m3
relativistic mass corrrection (9.2.2a)

H2 =
e

4m2

1
r

∂Φ

∂r
σ · L spin-orbit coupling (9.2.2b)

H3 = − e

8m2
div E =

e

8m2
∇2Φ(x) Darwin term. (9.2.2c)

Taken together, these terms lead to the perturbation Hamiltonian

H1 +H2 +H3 = − (p2)2

8m3c2
+

1
4m2c2

1
r

∂V

∂r
σ · L +

�
2

8m2c2
∇2V (x) ;

(9.2.2d)

(V = eΦ). The order of magnitude of each of these corrections can be obtained
from the Heisenberg uncertainty relation

Ry ×
( p

mc

)2

= Ry
(v
c

)2

= Ryα2 = mc2α4 ,

where α = e20 (= e20/�c) is the fine-structure constant. The Hamiltonian
(9.2.2d) gives rise to the fine structure in the atomic energy levels. The per-
turbation calculation of the energy shift for hydrogen-like atoms of nuclear
charge Z was presented in Chap. 12 of QM I; the result in first-order pertur-
bation theory is

∆En,j=�± 1
2 ,� =

RyZ2

n2

(Zα)2

n2

{
3
4
− n

j + 1
2

}
. (9.2.3)

The energy eigenvalues depend, apart from on n, only on j. Accordingly, the
(n = 2) levels 2S1/2 and 2P1/2 are degenerate. This degeneracy is also present
in the exact solution of the Dirac equation (see (8.2.37) and Fig. 8.3). The
determination of the relativistic perturbation terms H1, H2, and H3 from
the Dirac theory thus also provides a unified basis for the calculation of the
fine-structure corrections O(α2).
Remarks:

(i) An heuristic interpretation of the relativistic corrections was given in QM I,
Chap. 12. The term H1 follows from the Taylor expansion of the relativistic kinetic

energy
p

p2 +m2. The term H2 can be explained by transforming into the rest
frame of the electron. Its spin experiences the magnetic field that is generated by
the nucleus, which, in this frame, orbits around the electron. The term H3 can
be interpreted in terms of the “Zitterbewegung”, literally “trembling motion”, a
fluctuation in the position of the electron with an amplitude δx = �c/m.

(ii) The occurrence of additional interaction terms in the Foldy–Wouthuysen rep-
resentation can be understood as follows: An analysis of the transformation from
the Dirac representation ψ to ψ′ shows that the relationship is nonlocal4

4 L.L. Foldy and S.A. Wouthuysen, Phys. Rev. 78, 29 (1950)
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ψ′(x) =

Z
d3x′K(x,x′)ψ(x′) ,

where the kernel of the integral K(x,x′) is of a form such that, at the position
x, ψ′(x) consists of ψ contributions stemming from a region of size ∼ λ̄c around
the point x; here, λ̄c is the Compton wavelength of the particle. Thus, the original
sharply localized Dirac spinor transforms in the Foldy–Wouthuysen representation
into a spinor which seems to correspond to a particle that extends over a finite
region. The reverse is also true: The effective potential that acts on a spinor in
the Foldy–Wouthuysen representation at point x consists of contributions from the
original potential A(x), Φ(x) averaged over a region around x. The full potential
thus has the form of a multipole expansion of the original potential. This viewpoint
enables one to understand the interaction of the magnetic moment, the spin–orbit
coupling, and the Darwin term.

(iii) Since the Foldy–Wouthuysen transformation is, in general, time dependent,
the expectation value of H ′′′ is generally different to the expectation value of H . In
the event that A(x) and Φ(x) are time independent, i.e., time-independent electro-
magnetic fields, then S is likewise time independent. This means that the matrix
elements of the Dirac Hamiltonian, and in particular its expectation value, are the
same in both representations.

(iv) An alternative method5 of deriving the relativistic corrections takes as its
starting point the resolvent R = 1

H−mc2−z
of the Dirac Hamiltonian H . This is

analytic in 1
c

at c = ∞ and can be expanded in 1
c
. In zeroth order one obtains the

Pauli Hamiltonian, and in O( 1
c2

) the relativistic corrections.

9.2.2 Estimate of the Lamb Shift

There are two further effects that also lead to shifts and splitting of the
electronic energy levels in atoms. The first is the hyperfine interaction that
stems from the magnetic field of the nucleus (see QM I, Chap. 12), and the
second is the Lamb shift, for which we shall now present a simplified theory.6

The zero-point fluctuations of the quantized radiation field couple to the
electron in the atom, causing its position to fluctuate such that it experiences
a smeared-out Coulomb potential from the nucleus. This effect is qualitatively
similar to the Darwin term, except that the mean square fluctuation in the
electron position is now smaller: We consider the change in the potential due
to a small displacement δx:

V (x + δx) = V (x) + δx∇V (x) +
1
2
δxiδxj∇i∇jV (x) + . . . . (9.2.4)

Assuming that the mean value of the fluctuation is 〈δx〉 = 0, we obtain
an additional potential

5 F. Gesztesy, B. Thaller, and H. Grosse, Phys. Rev. Lett. 50, 625 (1983)
6 Our simple estimate of the Lamb shift follows that of T.A. Welton, Phys. Rev.

74, 1157 (1948).
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∆HLamb = 〈V (x + δx) − V (x)〉 =
1
6
〈
(δx)2

〉
∇2V (x)

=
1
6
〈
(δx)2

〉
4π Zα�c δ(3)(x) . (9.2.5)

The brackets 〈 〉 denote the quantum-mechanical expectation value in the
vacuum state of the radiation field. In first order perturbation theory, the
additional potential (9.2.5) only influences s waves. These experience an en-
ergy shift of

∆ELamb =
2πZα�c

3
〈
(δx)2

〉
|ψn,�=0(0)|2

=
(2mcZα)3

12�2

Zαc

n3

〈
(δx)2

〉
δ�,0 , (9.2.6)

where we have used ψn,�=0(0) = 1√
π

(
mαcZ

n�

)3/2
. The energy shift for the

p, d, . . . electrons is much smaller than that of the s waves due to the fact
that they have ψ(0) = 0, even when one allows for the finite extent of the
nucleus. A more exact theory of the Lamb shift would include, not only the
finite size of the nucleus, but also the fact that not all contributing effects
can be expressed in the form ∆V , as is assumed in this simplified theory.

We now need to estimate
〈
(δx)2

〉
, i.e., find a connection between δx and

the fluctuations of the radiation field. To this end, we begin with the nonrel-
ativistic Heisenberg equation for the electron:

mδẍ = eE . (9.2.7)

The Fourier transformation

δx(t) =

∞∫
−∞

dω

2π
e−iωtδxω (9.2.8)

yields

〈
(δx(t))2

〉
=

∞∫
−∞

dω

2π

∞∫
−∞

dω′

2π
〈δxωδxω′〉 . (9.2.9)

Due to the invariance with respect to translation in time, this mean square
fluctuation is time independent, and can thus be calculated at t = 0. From
(9.2.7) it follows that

δxω = − e

m

Eω

ω2
. (9.2.10)

For the radiation field we use the Coulomb gauge, also transverse gauge,
div A = 0. Then, due to the absence of sources, we have
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E(t) = −1
c
Ȧ(0, t) . (9.2.11)

The vector potential of the radiation field can be represented in terms of the
creation and annihilation operators a†k,λ(ak,λ) for photons with wave vector
k, polarization λ, and polarization vector εk,λ(λ = 1, 2)7:

A(x, t) =
∑
k,λ

√
� 2πc
V k

(
ak,λεk,λei(kx−ckt) + a†k,λ

ε∗
k,λe−i(kx−ckt)

)
.

(9.2.12)

The polarization vectors are orthogonal to one another and to k. From
(9.2.12), one obtains the time derivative

−1
c
Ȧ(0, t) =

1
c

∑
k,λ

√
� 2πc
V k

ick
(
ak,λεk,λe−ickt − a†k,λ

ε∗
k,λeickt

)
and the Fourier-transformed electric field

Eω =

∞∫
−∞

dt eiωtE(t)

= i
∑
k,λ

√
�(2π)3kc

V

(
ak,λεk,λδ(ω − ck) − a†k,λ

ε∗
k,λδ(ω + ck)

)
(9.2.13)

Now, by making use of (9.2.9), (9.2.10), and (9.2.13), we can calculate the
mean square fluctuation of the position of the electron

〈
(δx(t))2

〉
=
∫

dω dω′

(2π)2
e2

m2

1
ω2ω′2 〈EωEω′〉

= − e2

m2

〈∑
k,λ

∑
k′,λ′

� 2π ck
V (ck)2(ck′)2

(
ak,λεk,λ − a†k,λ

ε∗
k,λ

)

×
(
ak′,λ′εk′,λ′ − a†k′,λ′ε

∗
k′,λ′

)〉
.

The expectation value is finite only when the photon that is annihilated is
the same as that created. We also assume that the radiation field is in its
ground state, i.e., the vacuum state |0〉. Then, with ak,λa

†
k,λ

= 1 + a†k,λ
ak,λ

and ak,λ |0〉 = 0, it follows that

7 QM I, Sect. 16.4.2
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〈
(δx(t))2

〉
=

e2

m2

∫
d3k

(2π)2
�

(ck)3
∑

λ=1,2

〈
ak,λ

a†k,λ
+ a†k,λ

ak,λ

〉

=
2
π

e2

�c

(
�

mc

)2 ∫
dk

k
,

(9.2.14)

where we have also made the replacement 1
V

∑
k →

∫
d3k

(2π)3 . The integral∫∞
0 dk 1

k is ultraviolet (k → ∞) and infrared (k → 0) divergent.
In fact, there are good physical reasons for imposing both an upper and a

lower cutoff on this integral. The upper limit genuinely remains finite when
one takes relativistic effects into account. The divergence at the lower limit
is automatically avoided when the electron is treated, not with the free equa-
tion of motion (9.2.7), but quantum mechanically, allowing for the discrete
atomic structure. In the following, we give a qualitative estimate of both lim-
its, beginning with the upper one. As a result of the “Zitterbewegung”(the
fluctuation in the position of the electron), the electron is spread out over a
region the size of the Compton wavelength. Light, because its wavelength is
smaller than the Compton wavelength, causes, on average, no displacement
of the electron, since the light wave has as many peaks as troughs within
one Compton wavelength. Thus, the upper cutoff is given by the Compton
wavelength 1

m , or by the corresponding energy m. For the lower limit, an
obvious choice is the Bohr radius (Zαm)−1, or the corresponding wave num-
ber Zαm. The bound electron is not influenced by wavelengths greater than
a = (Zαm)−1. The lowest frequency of induced oscillations is then Zαm.
Another plausible choice is the Rydberg energy Z2α2m with the associated
length (Z2α2m)−1, corresponding to the typical wavelength of the light emit-
ted in an optical transition. Light oscillations at longer wavelengths will not
influence the bound electron. In a complete quantum-electrodynamical the-
ory, of course, there are no such heuristic arguments. If we take the first of
the above estimates for the lower limit, it follows that

ωmax∫
ωmin

dω
1
ω

=

m∫
Zαm

dω
1
ω

= log
1
Zα

,

and thus, from (9.2.6) and (9.2.14),

∆ELamb =
(2mcZα)3

12�2

Zαc

n3

2
π

e2

�c

(
�

mc

)2

log
1
Zα

δ�,0

=
8Z4α3

3πn3
log

1
Zα

1
2
α2mc2δ�,0 .

(9.2.15)

This corresponds to a frequency shift8

8 T.A. Welton, Phys. Rev. 74, 1157 (1948)
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∆νLamb = 667 MHz for n = 2, Z = 1, � = 0 .

The experimentally observed shift9 is 1057.862±0.020 MHz. The complete
quantum-electrodynamical theory of radiative corrections yields 1057.864 ±
0.014 MHz.10 In comparison with the Darwin term, the radiative corrections
are smaller by a factor α log 1

α . The full radiative corrections also contain
α(Zα)4 terms, which are numerically somewhat smaller. Levels with � 	= 0
also display shifts, albeit weaker ones than the s levels.

Quantum electrodynamics allows radiative corrections to be calculated
with remarkable precision10,11. This theory, too, initially encounters diver-
gences: The coupling to the quantized radiation field causes a shift in the
energy of the electron that is proportional (in the nonrelativistic case) to p2,
i.e., the radiation field increases the mass of the electron. What one measures,
however, is not the bare mass, but the physical (renormalized) mass which
contains this coupling effect. Such mass shifts are relevant to both free and
bound electrons and are, in both cases, divergent. One now has to reformulate
the theory in such a way that it contains only the renormalized mass. For the
bound electron, one then finds only a finite energy shift, namely, the Lamb
shift11. In the calculation by Bethe, which is nonrelativistic and only contains
the self-energy effect described above, one finds a lower cutoff of 16.6 Ry and
a Lamb shift of 1040 MHz. Simply out of curiosity, we recall the two estimates
preceding Eq. (9.2.15) for the lower cutoff wave vector: If one takes the geo-
metrical mean of these two values, for Z = 1 one obtains a logarithmic factor
in (9.2.15) of log 2

16.55 α2 , which in turn yields ∆E = 1040 MHz.
In conclusion, it is fair to say that the precise theoretical explanation of

the Lamb shift represents one of the triumphs of quantum field theory.

Problems

9.1 Verify the expressions given in the text for

i

2
[S, [S,H ]] ,

i3

6
[S, [S, [S,H ]]] ,

1

24
[S, [S, [S, [S,H ]]]] (9.2.16)

with H = α(p − eA) + βm+ eΦ and S = − i
2m
βO, where O ≡ α(p − eA).

9 The first experimental observation was made by W.E. Lamb, Jr. and R.C.
Retherford, Phys. Rev. 72, 241 (1947), and was refined by S. Triebwasser, E.S.
Dayhoff, and W.E. Lamb, Phys. Rev. 89, 98 (1953)

10 N.M. Kroll and W.E. Lamb, Phys. Rev. 75, 388 (1949); J.B. French and V.F.
Weisskopf, Phys. Rev. 75, 1240 (1949); G.W. Erickson, Phys. Rev. Lett. 27, 780
(1972); P.J. Mohr, Phys. Rev. Lett. 34, 1050 (1975); see also Itzykson and Zuber,
op. cit p. 358

11 The first theoretical (nonrelativistic) calculation of the Lamb shift is due to H.A.
Bethe, Phys. Rev. 72, 339 (1947). See also S.S. Schweber, An Introduction to
Relativistic Quantum Field Theory , Harper & Row, New York 1961, p. 524.; V.F.
Weisskopf, Rev. Mod. Phys. 21, 305 (1949)
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9.2 Here we introduce, for the Klein–Gordon equation, a transformation analogous
to Foldy–Wouthuysen’s, which leads to the relativistic corrections.

(a) Show that the substitutions

θ =
1

2

„
ϕ+

i

m

∂ϕ

∂t

«
and χ =

1

2

„
ϕ− i

m

∂ϕ

∂t

«
allow the Klein–Gordon equation

∂2ϕ

∂t2
= (∇2 −m2)ϕ

to be written as a matrix equation

i
∂Φ

∂t
= H0Φ

where Φ =
`

θ
χ

´
and H0 = −

„
1 1

−1 −1

«
∇2

2m
+

„
1 0
0 −1

«
m.

(b) Show that in the two-component formulation, the Klein–Gordon equation for
particles in an electromagnetic field, using the minimal coupling (p→ π = p− eA),
reads:

i
∂Φ

∂t
=

j
−
„

1 1
−1 −1

«
π2

2m
+

„
1 0
0 −1

«
m+ eV (x)

ff
Φ(x) .

(c) Discuss the nonrelativistic limit of this equation and compare it with the cor-
responding result for the Dirac equation.

Hint: The Hamiltonian of the Klein–Gordon equation in (b) can be brought

into the form H = O+E +ηm with η =

„
1 0
0 −1

«
, O = ρ π2

2m
=

„
0 1

−1 0

«
π2

2m
, and

E = eV + η π2

2m
. Show, in analogy to the procedure for the Dirac equation, that, in

the case of static external fields, the Foldy–Wouthuysen transformation Φ′ = eiSΦ

yields the approximate Schrödinger equation i ∂Φ′
∂t

= H ′Φ′, with

H ′ = η

„
m+

π2

2m
− π4

8m3
+ . . .

«
+ eV +

1

32m4
[π2, [π2, eV ]] + . . . .

The third and the fifth term represent the leading relativistic corrections. In respect

to their magnitudes see Eq. (8.1.19) and the remark (ii) in Sect. 10.1.2.



10. Physical Interpretation
of the Solutions to the Dirac Equation

In interpreting the Dirac equation as a wave equation, as has been our practice
up to now, we have ignored a number of fundamental difficulties. The equa-
tion possesses negative energy solutions and, for particles at rest, solutions
with negative rest mass. The kinetic energy in these states is negative; the
particle moves in the opposite direction to one occupying the usual state of
positive energy. Thus, a particle carrying the charge of an electron is repelled
by the field of a proton. (The matrix β with the negative matrix elements
β33 and β44 multiplies m and the kinetic energy, but not the potential term
eΦ in Eq. (9.1.9).) States such as these are not realized in nature. The main
problem, of course, is their negative energy, which lies below the smallest
energy for states with positive rest energy. Thus, one would expect radia-
tive transitions, accompanied by the emission of light quanta, from positive
energy into negative energy states. Positive energy states would be unstable
due to the infinite number of negative-energy states into which they could
fall by emitting light – unless, that is, all of these latter states were occupied.

It is not possible to exclude these states simply by arguing that they are
not realized in nature. The positive energy states alone do not represent a
complete set of solutions. The physical consequence of this is the following:
When an external perturbation, e.g., due to a measurement, causes an elec-
tron to enter a certain state, this will in general be a combination of positive
and negative energy states. In particular, when the electron is confined to
a region that is smaller than its Compton wavelength, the negative energy
states will contribute significantly.

10.1 Wave Packets and “Zitterbewegung”

In the previous sections, we for the most part investigated eigenstates of
the Dirac Hamiltonian, i.e., stationary states. We now wish to study general
solutions of the time-dependent Dirac equation. We proceed analogously to
the nonrelativistic theory and consider superpositions of stationary states
for free particles. It will emerge that these wave packets have some unusual
properties as compared to the nonrelativistic theory (see Sect. 10.1.2).
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10.1.1 Superposition of Positive Energy States

We shall first superpose only positive energy states

ψ(+)(x) =
∫

d3p

(2π)3
m

E

∑
r=1,2

b(p, r)ur(p)e−ipx (10.1.1)

and investigate the properties of the resulting wave packets. Here, ur(p) are
the free spinors of positive energy and b(p, r) are complex amplitudes. The
factor m

(2π)3E is included so as to satisfy a simple normalization condition.

We note in passing that d3p
E

is a Lorentz-invariant measure where, as always,

E =
p

p2 +m2. We show this by the following rearrangement:Z
d3p

1

E
=

Z
d3p

∞Z
0

dp0
δ(p0 − E)

E
=

Z
d3p

∞Z
0

dp0 2δ(p20 − E2)

=

Z
d3p

∞Z
−∞

dp0 δ(p
2
0 − E2) =

Z
d4p δ(p2 −m2) .

(10.1.2)

Both d4p and the δ-function are Lorentz covariant. The d4p = detΛ d4p′ = ± d4p′
transforms as a pseudoscalar, where the Jacobi determinant detΛ would equal 1

for proper Lorentz transformations.

The density corresponding to (10.1.1) is given by

j(+)0(t,x) = ψ(+)†(t,x)ψ(+)(t,x) . (10.1.3a)

Integrated over all of space∫
d3x j(+)0(t,x) =

∫
d3x

∫
d3p d3p′

(2π)6
m2

EE′
∑
r,r′

b∗(p, r) b(p′, r′)

× u†r(p)ur′(p′)ei(E−E′)t−i(p−p′)x

=
∑

r

∫
d3p

(2π)3
m

E
|b(p, r)|2 = 1 ,

(10.1.3b)

the density in the sense of a probablity density is normalized to unity. Here, we
have used

∫
d3x ei(p−p′)x = (2π)3 δ(3)(p− p′) and the orthogonality relation

(6.3.19a)1. The time dependence disappears and the total density is time
independent. This equation determines the normalization of the amplitudes
b(p, r).
We next calculate the total current, which is defined by

J(+) =
∫
d3x j(+)(t,x) =

∫
d3xψ(+)†(t,x)αψ(+)(t,x) . (10.1.4)

1 u†r(p)ur′(p) = ūr(p)γ
0 ur′(p) = E

m
δrr′
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In analogy to the zero component, one obtains

J(+) =
∫

d3x

(2π)6

∫∫
d3p d3p′

m2

EE′
∑
r,r′

b∗(p, r)b(p′, r′)

× u†r(p)α ur′(p′)ei(E−E′)t−i(p−p′)x

=
∫

d3p

(2π)3
∑
r,r′

m2

E2
b∗(p, r)b(p, r′)u†r(p)αur′(p) .

(10.1.4′)

For further evaluation, we need the Gordon identity (see Problem 10.1)

ūr(p)γµ ur′(q) =
1

2m
ūr(p) [(p+ q)µ + iσµν(p− q)ν ]ur′(q) . (10.1.5)

Taken in conjunction with the orthonormality relations for the ur given in
(6.3.15), ūr(k)us(k) = δrs, equation (10.1.4′) yields:

J(+) =
∑

r

∫
d3p

(2π)3
m

E
|b(p, r)|2 p

E
=
〈 p
E

〉
. (10.1.6)

This implies that the total current equals the mean value of the group velocity

vG =
∂E

∂p
=
∂
√

p2 +m2

∂p
=

p
E
. (10.1.7)

So far, seen from the perspective of nonrelativistic quantum mechanics, noth-
ing appears unusual.

10.1.2 The General Wave Packet

However, on starting with a general wave packet and expanding this using
the complete set of solutions of the free Dirac equation, the result contains
negative energy states. Let us take as the initial spinor the Gaussian

ψ(0,x) =
1

(2πd2)3/4
eixp0−x2/4d2

w , (10.1.8)

where, for example, w =
(
ϕ
0

)
, i.e., at time zero there are only components

with positive energy, and where d characterizes the linear dimension of the
wave packet. The most general spinor can be represented by the following
superposition:

ψ(t,x) =
∫

d3p

(2π)3
m

E

∑
r

(
b(p, r)ur(p)e−ipx + d∗(p, r)vr(p)eipx

)
.

(10.1.9)
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We also need the Fourier transform of the Gaussian appearing in the initial
spinor (10.1.8)∫

d3x eixp0−x2/4d2−ip·x = (4πd2)3/2e−(p−p0)
2d2

. (10.1.10)

In order to determine the expansion coefficients b(p, r) and d(p, r), we take the
Fourier transform at time t = 0 of ψ(0,x) and insert (10.1.8) and (10.1.10)
on the left-hand side of (10.1.9)

(8πd2)3/4e−(p−p0)
2d2

w =
m

E

∑
r

(b(p, r)ur(p) + d∗(p̃, r)vr(p̃)) , (10.1.11)

where p̃ = (p0,−p). After multiplying (10.1.11) by u†r(p) and v†r(p̃), the or-
thogonality relations (6.3.19a–c)

ūr(k)γ0us(k) =
E

m
δrs = u†r(k)us(k)

v̄r(k)γ0vs(k) =
E

m
δrs = v†r(k) vs(k)

v̄r(k̃)γ0us(k) = 0 = v†r(k̃)us(k)

yield the Fourier amplitudes

b(p, r) = (8πd2)3/4 e−(p−p0)
2d2

u†r(p)w

d∗(p̃, r) = (8πd2)3/4 e−(p−p0)
2d2

v†r(p̃)w ,
(10.1.12)

both of which are finite.
We have thus demonstrated the claim made at the outset that a general

wave packet contains both positive and negative energy components. We now
wish to study the consequences of this type of wave packet. For the sake of
simplicity, we begin with a nonpropagating wave packet, i.e., p0 = 0. Some of
the modifications arising when p0 	= 0 will be discussed after Eq. (10.1.14b).

Since we have assumed w =
(
ϕ
0

)
, the representation (6.3.11a,b) implies,

for the spinors ur and vr of free particles, the relation d∗(p, r)/b(p, r) ∼ |p|
m+E .

If the wave packet is large, d � 1
m , then |p| � d−1 � m and thus d∗(p) �

b(p). In this case, the negative energy components are negligible. However,
when we wish to confine the particle to a region of dimensions less than a
Compton wavelength, d � 1

m , then the negative energy solutions play an
important role:

|p| ∼ d−1 � m ,

i.e., d∗/b ∼ 1.
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The normalization∫
d3xψ†(t,x)ψ(t,x) =

∫
d3p

(2π)3
m

E

∑
r

(
|b(p, r)|2 + |d(p, r)|2

)
= 1

is time independent as a result of the continuity equation.
The total current for the spinor (10.1.9) reads:

J i(t) =
∫

d3p

(2π)3
m

E

{
pi

E

∑
r

[
|b(p, r)|2 + |d(p, r)|2

]
+ i
∑
r,r′

[
b∗(p̃, r)d∗(p, r′)e2iEtūr(p̃)σi0vr′(p)

− b(p̃, r)d(p, r′)e−2iEtv̄r′(p)σi0ur(p̃)
]}

.

(10.1.13)

The first term is a time-independent contribution to the current. The second
term contains oscillations at frequencies greater than 2mc2

�
= 2 × 1021s−1.

This oscillatory motion is known as “Zitterbewegung”.

In this derivation, in addition to (10.1.5), we have used

ūr(p̃)γ
µvr′(q) =

1

2m
ūr(p̃) [(p̃− q)µ + iσµν(p̃+ q)ν ] vr′(q) , (10.1.14a)

from which it follows that

u†r(p̃)α
ivr′(p) = ūr(p̃)γ

ivr′(p)

=
1

2m

h
(p̃i − pi)ūr(p̃)vr(p) + ūr(p̃)σ

iν (p̃+ p)νvr′(p)
i
.

(10.1.14b)

For the initial spinor (10.1.8) with w =
`

ϕ
0

´
and p0 = 0, the first term of (10.1.14b)

contributes nothing to J i(t) in (10.1.13). If the spinor w also contains components
3 and 4, or if p0 �= 0, there are also contributions from Zitterbewegung to the first
term of (10.1.14b). One obtains an additional term (see Problem 10.2) to (10.1.13)

∆J i(t) =

Z
d3p

(2π)3
m

E
(8πd2)3/2e−2(p−p0)2d2

e2iEtpiw† 1

2m2
(p2 −mpγ)γ0w .

(10.1.13′)

The amplitude of the Zitterbewegung is obtained as the mean value of x:

〈x〉 =
∫
d3xψ†(t,x)xψ(t,x)

=
∫
d3xψ†(0,x)eiHt x e−iHtψ(0,x) .

(10.1.15a)

In order to calculate 〈x〉, we first determine the temporal variation of 〈x〉,
since this can be related to the current, which we have already calculated:
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d

dt
〈x〉 =

d

dt

∫
d3xψ†(0,x)eiHt x e−iHtψ(0,x)

=
∫
d3xψ†(t,x) i [H,x]ψ(t,x)

=
∫
d3xψ†(t,x)αψ(t,x) ≡ J(t) .

(10.1.15b)

In evaluating the commutator we have usedH = α· 1i ∇+βm. The integration
of this relation over the time from 0 to t yields, without (10.1.13′),

〈
xi
〉

=
〈
xi
〉

t=0
+
∫

d3p

(2π)3
mpi

E2

∑
r

[
|b(p, r)|2 + |d(p, r)|2

]
t

+
∑
r,r′

∫
d3p

(2π)3
m

2E2

[
b∗(p̃, r)d∗(p, r′)e2iEtūr(p̃)σi0vr′(p)

+ b(p̃, r)d(p, r′)e−2iEtv̄r′(p)σi0ur(p̃)
]
.

(10.1.16)

The mean value of xi contains oscillations with amplitude ∼ 1
E ∼ 1

m ∼ �

mc =
3.9 × 10−11 cm. The Zitterbewegung stems from the interference between
components with positive and negative energy.

Remarks:

(i) If a spinor consists not only of positive-energy, but also of negative energy
states, Zitterbewegung follows as a consequence. If one expands bound
states in terms of free solutions, these also contain components with
negative energy. An example is the ground state of the hydrogen atom
(8.2.41).

(ii) A Zitterbewegung also arises from the Klein–Gordon equation. Here too,
wave packets with linear dimension less than the Compton wavelength
λc π− = �c

mπ− , contain contributions from negative energy solutions, which
fluctuate over a region of size λc π− . The energy shift in a Coulomb po-
tential (Darwin term), however, is a factor α smaller than for spin- 1

2
particles. (See Problem 9.2)2.

∗10.1.3 General Solution of the Free Dirac Equation
in the Heisenberg Representation

The existence of Zitterbewegung can also be seen by solving the Dirac equa-
tion in the Heisenberg representation. The Heisenberg operators are defined
by

2 An instructive discussion of these phenomena can be found in H. Feshbach and
F. Villars, Rev. Mod. Phys. 30, 24 (1985)
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O(t) = eiHt/�Oe−iHt/� (10.1.17)

which yields the equation of motion

dO(t)
dt

=
1
i�

[O(t), H ] . (10.1.18)

We assume that the particle is free, i.e., that A = 0 and Φ = 0. In this case,
the momentum commutes with

H = cα · p + βmc2 , (10.1.19)

that is,

dp(t)
dt

= 0 , (10.1.20)

which implies that p(t) = p = const. In addition, we see that

v(t) =
dx(t)
dt

=
1
i�

[x(t), H ] = cα(t) (10.1.21a)

and

dα

dt
=

1
i�

[α(t), H ] =
2
i�

(cp−Hα(t)) . (10.1.21b)

Since H = const (time independent), the above equation has the solution

v(t) = cα(t) = cH−1p + e
2iHt

�

(
α(0) − cH−1p

)
. (10.1.22)

Integration of (10.1.22) yields:

x(t) = x(0) +
c2 p
H

t+
�c

2iH

(
e

2iHt
� − 1

)(
α(0) − cp

H

)
. (10.1.23)

For free particles, we have

αH +Hα = 2cp ,

and hence(
α − cp

H

)
H +H

(
α − cp

H

)
= 0 . (10.1.24)

In addition to the initial value x(0), the solution (10.1.23) also contains a
term linear in t which corresponds to the group velocity motion, and an
oscillating term that represents the Zitterbewegung. To calculate the mean
value

∫
ψ†(0,x)x(t)ψ(0,x)d3x, one needs the matrix elements of the operator

α(0) − cp
H . This operator has nonvanishing matrix elements only between

states of identical momentum. The vanishing of the anticommutator (10.1.24)
implies, furthermore, that the energies must be of opposite sign. Hence, we
find that the Zitterbewegung is the result of interference between positive
and negative energy states.
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∗10.1.4 Potential Steps and the Klein Paradox

One of the simplest exactly solvable problems in nonrelativistic quantum
mechanics is that of motion in the region of a potential step (Fig. 10.1). If the
energy E of the plane wave incident from the left is smaller than the height V0

of the potential step, i.e., E < V0, then the wave is reflected and penetrates
into the classically forbidden region only as a decaying exponential e−κx3

with κ =
√

2m(V0 − E). Hence, the larger the energy difference V0 − E, the
smaller the penetration. The solution of the Dirac equation is also relatively
easy to find, but is not without some surprises.

We assume that a plane wave with positive energy is incident from the
left. After separating out the common time dependence e−iEt, the solution
in region I (cf. Fig.10.1) comprises the incident wave

ψin(x3) = eikx3

⎛⎜⎜⎝
1
0
k

E+m

0

⎞⎟⎟⎠ (10.1.25)

and the reflected wave

ψrefl(x3) = a e−ikx3

⎛⎜⎜⎝
1
0
−k

E+m

0

⎞⎟⎟⎠+ b e−ikx3

⎛⎜⎜⎝
0
1
0
k

E+m

⎞⎟⎟⎠ , (10.1.26)

i.e., ψI(x3) = ψin(x3) + ψrefl(x3). The second term in (10.1.26) represents a
reflected wave with opposite spin and will turn out to be zero. In region II,
we make a similar ansatz for the transmitted wave

ψII(x3) ≡ ψtrans(x3) = c eiqx3

⎛⎜⎜⎝
1
0
q

E−V0+m

0

⎞⎟⎟⎠+ d eiqx3

⎛⎜⎜⎝
0
1
0
−q

E−V0+m

⎞⎟⎟⎠ .

(10.1.27)

V (x3)

V0VV

E

I II
x3

Fig. 10.1. A potential step of
height V0
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The wave vector (momentum) in this region is given by

q =
√

(E − V0)
2 −m2 , (10.1.28)

and the coefficients a, b, c, d are determined from the requirement that ψ be
continuous at the step. If the solution were not continuous, then, upon insert-
ing it into the Dirac equation, one would obtain a contribution proportional
to δ(x3). From this continuity condition, ψI(0) = ψII(0), it follows that

1 + a = c , (10.1.29a)

1 − a = rc , with r ≡ q

k

E +m

E − V0 +m
, (10.1.29b)

and

b = d = 0 . (10.1.29c)

The latter relation, which stems from components 2 and 4, implies that the
spin is not reversed.

As long as |E − V0| < m, i.e. −m + V0 < E < m + V0, the wave vector
q to the right of the step is imaginary and the solution in that case decays
exponentially. In particular, when E, V0 � m, then the solution ψtrans ∼
e−|q|x3 ∼ e−mx3

is localized to within a few Compton wavelengths.
However, when the height of the step V0 becomes larger, so that finally

V0 ≥ E+m, then, according to (10.1.28), q becomes real and one obtains an
oscillating transmitted plane wave. This is an example of the Klein paradox.

The source of this initially surprising result can be explained as follows:
In region I, the positive energy solutions lie in the range E > m, and those
with negative energy in the range E < −m. In region II, the positive energy
solutions lie in the range E > m + V0, and those with negative energy in
the range E < −m+ V0. This means that for V0 > m the solutions hitherto
referred to as “negative energy solutions”actually also possess positive energy.
When V0 becomes so large that V0 > 2m (see Fig. 10.2), the energy of these
“negative energy solutions”in region II eventually becomes larger than m,
and thus lies in the same energy range as the solutions of positive energy in
region I. The condition for the occurrence of oscillatory solutions given after
Eq. (10.1.29c) was V0 ≥ E+m, where the energy in region I satisfies E > m.
This coincides with the considerations above. Instead of complete reflection
with exponential penetration into the classically forbidden region, one has a
transition into negative energy states for E > 2m.

For the transmitted and reflected current density one finds,

jtrans

jin
=

4r
(1 + r)2

,
jrefl
jin

=
(

1 − r

1 + r

)2

= 1 − jtrans

jin
. (10.1.30)
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However, according to Eq. (10.1.29b), r < 0 for positive q and thus the
reflected current is greater than the incident current.

If one takes the positive square root for q in (10.1.28), according to
(10.1.29b), r < 0, and consequently the flux going out to the left exceeds
the (from the left) incoming flux. This comes about because, for V0 > E+m,
the group velocity

v0 =
1

E − V0
q

has the opposite sense to the direction of q. That is, wave-packet solutions
of this type also contain incident wave packets coming form the right of the
step.

If one chooses for q in (10.1.28) the negative square root, r > 0, one
obtains the regular reflection behavior3.

V (x3)

V0VV
V0VV +m

V0VV −m

m

−m

E

E′
E′′

I II

x3

Fig. 10.2. Potential step and energy ranges for V0 > 2m. Potential step (thick
line) and energy ranges with positive and negative energy (right- and left-inclined
hatching). To the left of the step, the energies E and E′ lie in the range of positive
energies. To the right of the step, E′ lies in the forbidden region, and hence the
solution is exponentially decaying. E lies in the region of solutions with negative
energy. The energy E′′ lies in the positive energy region, both on the right and on
the left.

10.2 The Hole Theory

In this section, we will give a preliminary interpretation of the states with
negative energy. The properties of positive energy states show remarkable
3 H.G. Dosch, J.H.D. Jensen and V.L. Müller, Physica Norvegica 5, 151 (1971);

B. Thaller, The Dirac Equation, Springer, Berlin, Heidelberg, 1992, pp. 120, 307;
W. Greiner, Theoretical Physics, Vol. 3, Relativistic Quantum Mechanics, Wave
Equations, 2nd edn., Springer, Berlin, Heidelberg, 1997
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agreement with experiment. Can we simply ignore the negative energy states?
The answer is: No. This is because an arbitrary wave packet will also contain
components of negative energy vr. Even if we have spinors of positive energy,
ur, to start with, the interaction with the radiation field can cause transi-
tions into negative energy states (see Fig. 10.3). Atoms, and thus all matter
surrounding us, would be unstable.

Fig. 10.3. Energy eigenvalues of the Dirac
equation and conceivable transitions

A way out of this dilemma was suggested by Dirac in 1930. He postulated
that all negative energy states be considered as occupied. Thus, particles
with positive energy cannot make transitions into these states because the
Pauli principle forbids multiple occupation. In this picture, the vacuum state
consists of an infinite sea of particles, all of which are in negative energy
states (Fig. 10.4).

a) b)

Fig. 10.4. Filled negative energy
states (thick line): (a) vacuum
state, (b) excited state

An excited state of this vacuum arises as follows: An electron of negative
energy is promoted to a state of positive energy, leaving behind a hole with
charge −(−e0) = e0 ! (Fig. 10.4 b). This immediately has an interesting
consequence. Suppose that we remove a particle of negative energy from the
vacuum state. This leaves behind a hole. In comparison to the vacuum state,
this state has positive charge and positive energy. The absence of a negative
energy state represents an antiparticle. For the electron, this is the positron.
Let us consider, for example, the spinor with negative energy

vr=1(p′)eip′x = v1(p′)ei(Ep′ t−p′x) .



206 10. Physical Interpretation of the Solutions to the Dirac Equation

This is an eigenstate with energy eigenvalue −Ep′ , momentum −p′ and spin
in the rest frame 1

2Σ
3 1/2. When this state is unoccupied , a positron is present

with energy Ep′ , momentum p′, and spin 1
2Σ

3 −1/2. (An analogous situation
occurs for the excitation of a degenerate ideal electron gas, as discussed at
the end of Sect. 2.1.1.)

The situation described here can be further elucidated by considering the
excitation of an electron state by a photon: The γ quantum of the photon
with its energy �ω and momentum �k excites an electron of negative energy
into a positive energy state (Fig. 10.5). In reality, due to the requirements of
energy and momentum conservation, this process of pair creation can only
take place in the presence of a potential. Let us look at the energy and
momentum balance of the process.

Fig. 10.5. The photon γ excites an electron
from a negative energy state into a positive en-
ergy state, i.e., γ → e+ + e−

The energy balance for pair creation reads:

�ω = Eel. pos. energy − Eel. neg. energy

= Ep − (−Ep′) = Eel. + Epos.

(10.2.1)

The energy of the electron is Eel. =
√

p2c2 +m2c4, and the energy of the
positron Epos. =

√
p′2c2 +m2c4. The momentum balance reads:

�k − p′ = p or �k = p + p′ , (10.2.2)

i.e., (photon momentum) = (electron momentum) + (positron momentum).
It turns out, however, that this preliminary interpretation of the Dirac theory
still conceals a number of problems: The ground state (vacuum state) has an
infinitely large (negative) energy. One must also inquire as to the role played
by the interaction of the particles in the occupied negative energy states. Fur-
thermore, in the above treatment, there is an asymmetry between electron
and positron. If one were to begin with the Dirac equation of the positron,
one would have to occupy its negative energy states and the electrons would
be holes in the positron sea. In any case one is led to a many-body sys-



Problems 207

tem.4 A genuinely adequate description only becomes possible through the
quantization of the Dirac field.

The original intention was to view the Dirac equation as a generalization
of the Schrödinger equation and to interpret the spinor ψ as a sort of wave
function. However, this leads to insurmountable difficulties. For example, even
the concept of a probability distribution for the localization of a particle at
a particular point in space becomes problematic in the relativistic theory.
Also connected to this is the fact that the problematic features of the Dirac
single-particle theory manifest themselves, in particular, when a particle is
highly localized in space (in a region comparable to the Compton wavelength).
The appearance of these problems can be made plausible with the help of
the uncertainty relation. When a particle is confined to a region of size ∆x,
it has, according to Heisenberg’s uncertainty relation, a momentum spread
∆p > �∆x−1. If ∆x < �

mc , then the particle’s momentum, and thus energy,
uncertainty becomes

∆E ≈ c∆p > mc2 .

Thus, in this situation, the energy of a single particle is sufficient to create
several other particles. This, too, is an indication that the single-particle the-
ory must be replaced by a many-particle theory, i.e. a quantum field theory.

Before finally turning to a representation by means of a quantized field,
in the next chapter, we shall first investigate further symmetry properties of
the Dirac equation in connection with the relationship of solutions of positive
and negative energy to particles and antiparticles.

Problems

10.1 Prove the Gordon identity (10.1.5), which states that, for two positive energy
solutions of the free Dirac equation, ur(p) and ur′(p),

ūr(p) γ
µur′(q) =

1

2m
ūr(p)[(p+ q)µ + iσµν(p− q)ν ]ur′(q) .

10.2 Derive Eq. (10.1.13) and the additional term (10.1.13′).

10.3 Verify the solution for the potential step considered in conjunction with the

Klein paradox. Discuss the type of solutions obtained for the energy values E′ and

E′′ indicated in Fig. 10.2. Draw a diagram similar to Fig. 10.2 for a potential step

of height 0 < V0 < m.

4 The simple picture of the hole theory may be used only with care. See, e.g., the
article by Gary Taubes, Science 275, 148 (1997) about spontaneous positron
emission.



11. Symmetries and Further Properties
of the Dirac Equation

∗11.1 Active and Passive Transformations,
Transformations of Vectors

In this and the following sections we shall investigate the symmetry properties
of the Dirac equation in the presence of an electromagnetic potential. We
begin by recalling the transformation behavior of spinors under passive and
active transformations, as was described in Sect. 7.1. We will then address the
transformation of the four-potential, and also investigate the transformation
of the Dirac Hamiltonian.

Consider the Lorentz transformation

x′ = Λx+ a (11.1.1)

from the coordinate system I into the coordinate system I ′. According to Eq.
(7.1.2a), a spinor ψ(x) transforms under a passive transformation as

ψ′(x′) = Sψ(Λ−1x′) , (11.1.2a)

where we have written down only the homogeneous transformation.
An active transformation with Λ−1 gives rise to the spinor (Eq. (7.1.2b))

ψ′(x) = Sψ(Λ−1x) . (11.1.2b)

The state Z ′′, which is obtained from Z through the active transformation Λ,
appears by definition in I ′ as the state Z in I, i.e., ψ(x′). Since I is obtained
from I ′ by the Lorentz transformation Λ−1, we have (Eq. (7.1.2c))

ψ′′(x) = S−1ψ(Λx) . (11.1.2c)

For a passive transformation Λ, the spinor transforms according to (11.1.2a).
For an active transformationΛ, the state is transformed according to (11.1.2c)1.

We now consider the transformation of vector fields such as the four-
potential of the electromagnetic field:
1 For inhomogeneous transformations (Λ, a), one has (Λ, a)−1 = (Λ−1,−Λ−1a) and

in the arguments of Eq. (11.1.2a–c) one must make the replacements Λx→ Λx+a
and Λ−1x→ Λ−1(x− a).
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The passive transformation of the components of a vector Aµ(x) under a
Lorentz transformation x′µ = Λµ

νx
ν takes the form

A′µ(x′) = Λµ
νA

ν(x) ≡ Λµ
νA

ν(Λ−1x′) . (11.1.3a)

The inverse of the Lorentz transformation may be established as follows:

Λλ
µg

µνΛρ
ν = gλρ =⇒ ΛλνΛρν = δλ

ρ =⇒ Λ ν
λ Λρ

ν = δ ρ
λ .

Since the right inverse of a matrix is equal to its left inverse, together with
Eq. (11.1.1), this implies

Λµ
νΛ

σ
µ = δσ

ν =⇒ Λ σ
µ x′µ = Λ σ

µ Λµ
νx

ν = xσ ,

and so, finally, the inverse of the Lorentz transformation

xσ = Λ σ
µ x′µ . (11.1.4)

For an active transformation, the entire space, along with its vector fields,
is transformed and then viewed from the original coordinate system I. For a
transformation with Λ, the resulting vector field, when viewed from I ′, is of
the form Aµ(x′) (see Fig. 11.1). The field transformed actively with Λ, which
we denote by A′′µ(x), therefore takes the form

A′′µ(x) = Λ−1µ
νA

ν(Λx) = Λ µ
ν Aν(Λx) in I . (11.1.3c)

x

A(x)

A′′(x)

Λ

I Fig. 11.1. Active transformation of a vector
with the Lorentz transformation Λ

For the sake of completeness, we also give the active transformation with
respect to the Lorentz transformation Λ−1, which leads to the form

A′µ(x) = Λµ
νA

ν(x) . (11.1.3b)

We now investigate the transformation of the Dirac equation in the presence
of an electromagnetic field Aµ with respect to a passive Lorentz transforma-
tion: Starting from the Dirac equation in the system I
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(
γµ(i∂µ − eAµ(x)) −m

)
ψ(x) = 0 , (11.1.5a)

one obtains the transformed equation in the system I ′:(
γµ(i∂′µ − eA′

µ(x′)) −m
)
ψ′(x′) = 0 . (11.1.5b)

Equation (11.1.5b) is derived by inserting into (11.1.5a) the transformations

∂µ ≡ ∂

∂xµ
= Λν

µ∂
′
ν ; Aµ(x) = Λν

µA
′
ν(x′) and ψ(x) = S−1ψ′(x′) ,

which yields(
γµΛν

µ(i∂′ν − eA′
ν(x′)) −m

)
S−1ψ′(x′) = 0 .

Multiplying by S,(
SγµΛν

µS
−1(i∂′ν − eA′

ν(x′)) −m
)
ψ′(x′) = 0 ,

and making use of γµΛν
µ = S−1γνS finally yields the desired result(

γν(i∂′ν − eA′
ν(x′)) −m

)
ψ′(x′) = 0 .

Transformation of the Dirac equation with respect to an active Lorentz trans-
formation, viz:

ψ′′(x) = S−1ψ(Λx) (11.1.2c)

with

A′′µ(x) = Λ µ
ν Aν(Λx) . (11.1.3c)

Starting from(
γµ(i∂µ − eAµ(x)) −m

)
ψ(x) = 0 , (11.1.5a)

we take this equation at the point x′ = Λx, and taking note of the fact that
∂

∂x′µ = ∂xν

∂x′µ
∂

∂xν = Λ ν
µ ∂ν ,(

γµ(iΛ ν
µ ∂ν − eAµ(Λx)) −m

)
ψ(Λx) = 0 .

Multiplying by S−1(Λ),(
S−1γµS(iΛ ν

µ ∂ν − eAµ(Λx)) −m
)
S−1ψ(Λx) = 0 ,

and using S−1γµSΛ ν
µ = Λµ

σγ
σΛ ν

µ = γσδ ν
σ together with Eq. (11.1.4) yields:(

γν(i∂ν − eA′′
ν(x)) −m

)
ψ′′(x) = 0 . (11.1.6)

If ψ(x) satisfies the Dirac equation for the potential Aµ(x), then the trans-
formed spinor ψ′′(x) satisfies the Dirac equation with the transformed po-
tential A′′

µ(x).
In general, the transformed equation is different to the original one. The

two equations are the same only when A′′
µ(x) = Aµ(x). Then, ψ(x) and ψ′′(x)

obey the same equation of motion. The equation of motion remains invari-
ant under any Lorentz transformation L that leaves the external potential
unchanged. For example, a radially symmetric potential is invariant under
rotations.
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11.2 Invariance and Conservation Laws

11.2.1 The General Transformation

We write the transformation ψ′′(x) = S−1ψ(Λx) in the form

ψ′′ = Tψ , (11.2.1)

where the operator T contains both the effect of the matrix S and the trans-
formation of the coordinates. The statement that the Dirac equation trans-
forms under an active Lorentz transformation as above (Eq. (11.1.6)) implies
for the operator

D(A) ≡ γµ(i∂µ − eAµ) (11.2.2)

that

TD(A)T−1 = D(A′′) , (11.2.3)

since

(D(A) −m)ψ = 0 =⇒ T (D(A) −m)ψ = T (D(A) −m)T−1Tψ

= (D(A′′) −m)Tψ = 0 .

As the transformed spinor Tψ obeys the Dirac equation (D(A′′)−m)Tψ = 0,
and this holds for every spinor, equation (11.2.3) follows.
If A remains unchanged under the Lorentz transformation in question (A′′ =
A), it follows from (11.2.3) that T commutes with D(A):

[T,D(A)] = 0 . (11.2.4)

One can construct the operator T for each of the individual transformations,
to which we shall now turn our attention.

11.2.2 Rotations

We have already found in Chap. 7 that2 for rotations

T = e−iϕkJk

(11.2.5)

with

J =
�

2
Σ + x × �

i
∇ .

2 The difference in sign compared to Chap. 7 arises because there the active trans-
formation Λ−1 was considered.
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The total angular momentum J is the generator of rotations.
If one takes an infinitesimal ϕk, then, from (11.2.2) and (11.2.4) and

after expansion of the exponential function, it follows that for a rotationally
invariant potential A,

[D(A),J] = 0 . (11.2.6)

Since [iγ0∂t, γ
iγk] = 0 and [iγ0∂t,x × ∇] = 0, equation (11.2.6) also implies

that

[J, H ] = 0 , (11.2.7)

where H is the Dirac Hamiltonian.

11.2.3 Translations

For translations we have S = 11 and

ψ′′(x) = ψ(x+ a) = eaµ∂µψ(x) , (11.2.8)

and thus the translation operator is

T ≡ e−iaµi∂µ = e−iaµpµ , (11.2.9)

where pµ = i∂µ is the momentum operator. The momentum is the generator
of translations. The translational invariance of a problem means that

[D(A), pµ] = 0 (11.2.10)

and since [iγ0∂t, pµ] = 0, this also implies that

[pµ, H ] = 0 . (11.2.11)

11.2.4 Spatial Reflection (Parity Transformation)

We now turn to the parity transformation. The parity operation P, repre-
sented by the parity operator P , is associated with a spatial reflection. We
use P(0) to denote the orbital parity operator, which causes a spatial reflec-
tion

P(0)ψ(t,x) = ψ(t,−x) . (11.2.12)

For the total parity operator in Sect. 6.2.2.4, we found, to within an arbitrary
phase factor,

P = γ0P(0) . (11.2.13)

We also have P† = P and P2 = 1.
If Aµ(x) is invariant under inversion, then the Dirac Hamiltonian H sat-

isfies

[P , H ] = 0 . (11.2.14)

There remain two more discrete symmetries of the Dirac equation, charge
conjugation and time-reversal invariance.
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11.3 Charge Conjugation

The Hole theory suggests that the electron possesses an antiparticle, the
positron. This particle was actually discovered experimentally in 1933 by
C.D. Anderson. The positron is also a fermion with spin 1/2 and should itself
satisfy the Dirac equation with e → −e. There must thus be a connection
between negative energy solutions for negative charge and positive energy
solutions carrying positive charge. This additional symmetry transformation
of the Dirac equation is referred to as “charge conjugation”, C.
The Dirac equation of the electron reads:

(i∂/− eA/ −m)ψ = 0 , e = −e0 , e0 = 4.8 × 10−10esu (11.3.1)

and the Dirac equation for an oppositely charged particle is

(i∂/+ eA/ −m)ψc = 0 . (11.3.2)

We seek a transformation that converts ψ into ψc. We begin by establishing
the effects of complex conjugation on the first two terms of (11.3.1):

(i∂µ)∗ = −i∂µ (11.3.3a)
(Aµ)∗ = Aµ , (11.3.3b)

as the electromagnetic field is real. In the next section, in particular, it will
turn out to be useful to define an operator K0 that has the effect of complex
conjugating the operators and spinors upon which it acts. Using this notation,
(11.3.3a,b) reads:

K0i∂µ = −i∂µK0 and K0Aµ = AµK0 . (11.3.3′)

Thus, when one takes the complex conjugate of the Dirac equation, one ob-
tains

(−(i∂µ + eAµ)γµ∗ −m)ψ∗(x) = 0 . (11.3.4)

In comparison with Eq. (11.3.1), not only is the sign of the charge oppo-
site, but also that of the mass term. We seek a nonsingular matrix Cγ0 with
the property

Cγ0γµ∗(Cγ0)−1 = −γµ . (11.3.5)

With the help of this matrix, we obtain from (11.3.4)

Cγ0 (−(i∂µ + eAµ)γµ∗ −m) (Cγ0)−1Cγ0ψ∗

= (i∂/+ eA/ −m)(Cγ0ψ∗) = 0 .
(11.3.6)

Comparison with (11.3.2) shows that
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ψc = Cγ0ψ∗ = Cψ̄T (11.3.7)

since

ψ̄T = (ψ†γ0)T = γ0T
ψ†T

= γ0ψ∗ . (11.3.8)

Equation (11.3.5) can also be written in the form

C−1γµC = −γµT

. (11.3.5′)

In the standard representation, we have γ0T = γ0 , γ2T = γ2 , γ1T = −γ1 ,

γ3T = −γ3 , and, hence, C commutes with γ1 and γ3 and anticommutes with
γ0 and γ2. From this, it follows that

C = iγ2γ0 = −C−1 = −C† = −CT , (11.3.9)

so that

ψc = iγ2ψ∗ . (11.3.7′)

The full charge conjugation operation

C = Cγ0K0 = iγ2K0 (11.3.7′′)

consists in complex conjugation K0 and multiplication by Cγ0.
If ψ(x) describes the motion of a Dirac particle with charge e in the

potential Aµ(x), then ψc describes the motion of a particle with charge −e
in the same potential Aµ(x).
Example: For a free particle, for which Aµ = 0,

ψ
(−)
1 =

1
(2π)3/2

⎛⎜⎜⎝
0
0
1
0

⎞⎟⎟⎠ eimt (11.3.10)

and therefore,

(
ψ

(−)
1

)
c

= Cγ0
(
ψ

(−)
1

)∗
= iγ2

(
ψ

(−)
1

)∗
=

1
(2π)3/2

⎛⎜⎜⎝
0
1
0
0

⎞⎟⎟⎠ e−imt = ψ
(+)
2

(11.3.10′)

The charge conjugated state has opposite spin.
We now consider a more general state with momentum k and polarization

along n. With respect to the projection operators, this has the property3

3 n/ = γµnµ , nµ space-like unit vector n2 = nµnµ = −1 and nµk
µ = 0 .

P (n) = 1
2
(1 + γ5n/) projects onto the positive energy spinor u(k, n) , which is

polarized along ň in the rest frame, and onto the negative energy spinor v(k, n),
which is polarized along −ň.
k = Λǩ , n = Λň , ǩ = (m, 0, 0, 0) , ň = (0,n) (see Appendix C). The projection
operators Λ±(k) ≡ (±k/+m)/2m were introduced in Eq. (6.3.21).
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ψ =
εk/+m

2m
1 + γ5n/

2
ψ , k0 > 0 (11.3.11)

with ε = ±1 indicating the sign of the energy. Applying charge conjugation
to this relation, one obtains

ψc = Cψ̄T = Cγ0

(
εk/+m

2m

)∗(1 + γ5n/

2

)∗
ψ∗ (11.3.11′)

= Cγ0

(
εk/∗ +m

2m

)
(Cγ0)−1Cγ0

(
1 + γ5n/

∗

2

)
(Cγ0)−1Cγ0ψ

∗

=
(−εk/+m

2m

)(
1 + γ5n/

2

)
ψc ,

where we have used γ∗5 = γ5 and {Cγ0, γ5} = 0. The state ψc is characterized
by the same four-vectors, k and n, as ψ, but the energy has reversed its
sign. Since the projection operator 1

2 (1 + γ5n/) projects onto spin ± 1
2 along

ň, depending on the sign of the energy, the spin is reversed under charge
conjugation. With regard to the momentum, we should like to point out that,
for free spinors, complex conjugation yields e−ikx → eikx, i.e., the momentum
k is transformed into −k. Thus far, we have discussed the transformation of
the spinors. In the qualitative description provided by the Hole theory, which
finds its ultimate mathematical representation in quantum field theory, the
non-occupation of a spinor of negative energy corresponds to an antiparticle
with positive energy and exactly the opposite quantum numbers to those of
the spinor (Sect. 10.2). Therefore, under charge conjugation, the particles
and antiparticles are transformed into one another, having the same energy
and spin, but opposite charge.

Remarks:

(i) The Dirac equation is obviously invariant under simultaneous transformation
of ψ and A,

ψ −→ ψc = ηcCψ̄
T

Aµ −→ Ac
µ = −Aµ .

With respect to charge conjugation, the four-current density jµ transforms accord-
ing to

jµ = ψ̄γµψ −→ jcµ = ψ̄cγµψc = ψ̄∗C†γ0γµCψ̄
T

= ψTγ0(−C)γ0γµCψ̄
T = ψTCγµCψ̄

T = ψTγT
µ ψ̄

T

= ψα(γµ)βαγ
0
βρψ

∗
ρ = ψ∗

ργ
0
ρβ(γµ)βαψα = ψ̄γµψ .

For the c-number Dirac field one thus obtains jcµ = jµ. In the quantized form, ψ
and ψ̄ become anticommuting fields, which leads to an extra minus sign:

jcµ = −jµ . (11.3.12)

Then, under charge conjugation, the combination ej · A remains invariant. As we
shall see explicitly in the case of the Majorana representation, the form of the charge
conjugation transformation depends on the representation.
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(ii) A Majorana representation is a representation of the γ matrices with the prop-
erty that γ0 is imaginary and antisymmetric, whilst the γk are imaginary and
symmetric. In a Majorana representation, the Dirac equation

(iγµ∂µ −m)ψ = 0

is a real equation. If ψ is a solution of this equation, then so is

ψc = ψ∗ . (11.3.13)

In the Majorana representation, the solution related to ψ by charge conjugation is,
to within an arbitrary phase factor, given by (11.3.13), since the Dirac equation for
the field ψ,

(γµ(i∂µ − eAµ) −m)ψ = , (11.3.14)

also leads to

(γµ(i∂µ + eAµ) −m)ψc = 0 . (11.3.14′)

The spinor ψ is the solution of the Dirac equation with a field corresponding to
charge e and the spinor ψc is the solution for charge −e. A spinor that is real, i.e.,

ψ∗ = ψ ,

is known as a Majorana spinor. A Dirac spinor consists of two Majorana spinors.
An example of a Majorana representation is the set of matrices

γ0 =

„
0 σ2

σ2 0

«
, γ1 = i

„
0 σ1

σ1 0

«
,

γ2 = i

„
11 0
0 −11

«
, γ3 = i

„
0 σ3

σ3 0

«
.

(11.3.15)

Another example is given in Problem 11.2.

11.4 Time Reversal (Motion Reversal)

Although the more appropriate name for this discrete symmetry transforma-
tion would be “motion reversal”, the term “time reversal transformation” is
so well established that we shall adopt this practice. It should be emphasized
from the outset that the time-reversal transformation does not cause a sys-
tem to evolve backwards in time, despite the fact that it includes a change
in the time argument of a state t → −t. One does not need clocks that run
backwards in order to study time reversal and the invariance of a theory
under this transformation. What one is really dealing with is a reversal of
the motion. In quantum mechanics the situation is further complicated by
a formal difficulty: In order to describe time reversal, one needs antiunitary
operators. In this section we first study the time-reversal transformation in
classical mechanics and nonrelativistic quantum mechanics, and then turn
our attention to the Dirac equation.
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11.4.1 Reversal of Motion in Classical Physics

Let us consider a classical system invariant under time translation, which
is described by the generalized coordinates q and momenta p. The time-
independent Hamiltonian function is H(q, p). Hamilton’s equations of motion
are then

q̇ =
∂H(q, p)

∂p

ṗ = −∂H(q, p)
∂q

.

(11.4.1)

At t = 0, we assume the initial values (q0, p0) for the generalized coordinates
and momenta. Hence, the solution q(t), p(t) of Hamilton’s equations of motion
must satisfy the initial conditions

q(0) = q0

p(0) = p0 .
(11.4.2)

Let the solution at a later time t = t1 > 0 assume the values

q(t1) = q1 , p(t1) = p1 . (11.4.3a)

The motion-reversed state at time t1 is defined by

q′(t1) = q1 , p′(t1) = −p1 . (11.4.3b)

If, after this motion reversal, the system retraces its path, and after a further
time t, returns to its time reversed initial state, the system is said to be time-
reversal or motion-reversal invariant (see Fig. 11.2). To test time-reversal
invariance there is no need for running backwards in time. In the definition
which one encounters above, only motion for the positive time direction arises.
As a result, it is possible to test experimentally whether a system is time-
reversal invariant.

q1

q2
t1

t1

2t10 Fig. 11.2. Motion reversal: Shown (displaced
for clarity) are the trajectories in real space:
(0, t1) prior to reversal of the motion, and
(t1, 2t1) after reversal
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Let us now investigate the conditions for time-reversal invariance and find
the solution for the motion-reversed initial state. We define the functions

q′(t) = q(2t1 − t)
p′(t) = −p(2t1 − t) .

(11.4.4)

These functions obviously satisfy the initial conditions

q′(t1) = q(t1) = q1 (11.4.5)
p′(t1) = −p(t1) = −p1 . (11.4.6)

At time 2t1 they have the values

q′(2t1) = q(0) = q0

p′(2t1) = −p(0) = −p0 ,
(11.4.7)

i.e., the motion-reversed initial values. Finally, they satisfy the equation of
motion4

q̇′(t) = −q̇(2t1 − t) = −∂H(q(2t1 − t), p(2t1 − t))
∂p(2t1 − t)

=
∂H(q′(t),−p′(t))

∂p′(t)
(11.4.8a)

ṗ′(t) = ṗ(2t1 − t) = −∂H(q(2t1 − t), p(2t1 − t))
∂q(2t1 − t)

= −∂H(q′(t),−p′(t))
∂q′(t)

. (11.4.8b)

The equations of motion of the functions q′(t), p′(t) are described, ac-
cording to (11.4.8a,b), by a Hamiltonian function H̄, which is related to the
original Hamiltonian by making the replacement p → −p:

H̄ = H(q,−p) . (11.4.9)

Most Hamiltonians are quadratic in p (e.g., that of particles in an external
potential interacting via potentials), and are thus invariant under motion
reversal. For these, H̄ = H(q, p), and q′(t), p′(t) satisfy the original equation
of motion evolving from the motion-reversed starting value (q1,−p1) to the
motion-reversed initial value (q0,−p0) of the original solution (q(t), p(t)). This
implies that such classical systems are time-reversal invariant.

Motion-reversal invariance in this straightforward fashion does not apply
to the motion of particles in a magnetic field, or to any other force that
varies linearly with velocity. This is readily seen if one considers Fig. 11.3:
In a homogeneous magnetic field, charged particles move along circles, the
4 The dot implies differentiation with respect to the whole argument, e.g.,

q̇(2t1 − t) ≡ ∂q(2t1−t)
∂(2t1−t)

.
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t1

2t1

B

0

x

Fig. 11.3. Motion reversal in the presence of a mag-
netic field B perpendicular to the plane of the page.
The motion is reversed at an instant when the particle
is moving in exactly the x-direction

sense of motion depending on the sign of the charge. Thus, when the motion
is reversed, the particle does not return along the same circle, but instead
moves along the upper arc shown in Fig. 11.3. In the presence of a magnetic
field, one can only achieve motion-reversal invariance if the direction of the
magnetic field is also reversed:

B → −B , (11.4.10)

as can be seen from the sketch, or from the following calculation. Let the
Hamiltonian in cartesian coordinates with no field be written H = H(x,p),
which will be assumed to be invariant with respect to time reversal. The
Hamiltonian in the presence of an electromagnetic field is then

H = H(x,p − e

c
A(x)) + eΦ(x) , (11.4.11)

where A is the vector potential and Φ the scalar potential. This Hamilto-
nian is no longer invariant under the transformation (11.4.4). However, it is
invariant under the general transformation

x′(t) = x(2t1 − t) (11.4.12a)
p′(t) = −p(2t1 − t) (11.4.12b)

A′(x, t) = −A(x, 2t1 − t) (11.4.12c)
Φ′(x, t) = Φ(x, 2t1 − t) . (11.4.12d)

Equations (11.4.12c) and (11.4.12d) imply a change in the sign of the mag-
netic field, but not of the electric field, as can be seen from

B = curlA → curlA′ = −B

E = −∇Φ+
1
c

∂

∂t
A(x, t) →− ∇Φ′ +

1
c

∂

∂t
A′(x, t)

= −∇Φ+
1
c

∂

∂(2t1 − t)
A(x, 2t1 − t) = E .

(11.4.13a)
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We note in passing that when the Lorentz condition

1
c

∂

∂t
Φ+ ∇A = 0 (11.4.13b)

holds, it also holds for the motion-reversed potentials.

Remark: In the above description we considered motion in the time interval
[0, t1], and then allowed the motion-reversed process to occur in the adjoining
time interval [t1, 2t1]. We could equally well have considered the original
motion in the time interval [−t1, t1] and, as counterpart, the motion-reversed
process also lying in the time interval between −t1 and t1:

q′′(t) = q(−t)
p′′(t) = −p(−t) (11.4.14)

with the initial conditions

q′′(−t1) = q(t1) ,
p′′(−t1) = −p(t1)

(11.4.15)

and final values,

q′′(t1) = q(−t1) ,
p′′(t1) = −p(−t1) .

(11.4.16)

(q′′(t), p′′(t)) differs from (q′(t), p′(t) in Eq. (11.4.4) only by a time translation
of 2t1; in both cases, time runs in the positive sense −t1 to t1.

11.4.2 Time Reversal in Quantum Mechanics

11.4.2.1 Time Reversal in the Coordinate Representation

Following these classical mechanical preparatory remarks, we now turn to
nonrelativistic quantum mechanics (in the coordinate representation). The
system is described by the wave function ψ(x, t), which obeys the Schrödinger
equation

i
∂ψ(x, t)

∂t
= Hψ(x, t) . (11.4.17)

Let us take the wave function at time t = 0 to be given by ψ0(x), i.e.,

ψ(x, 0) = ψ0(x) . (11.4.18)

This initial condition determines ψ(x, t) at all later times t. Although the
Schrödinger equation enables one to calculate ψ(x, t) at earlier times, this
is usually not of interest. The statement that the wave function at t = 0 is



222 11. Symmetries and Further Properties of the Dirac Equation

ψ0(x) implies that a measurement that has been made will, in general, have
changed the state of the system discontinuously. At the time t1 > 0 we let
the wave function be

ψ(x, t1) ≡ ψ1(x) . (11.4.19)

What is the motion reversed system for which an initial state ψ1(x) evolves
into the state ψ0(x) after a time t1? Due to the presence of the first order
time derivative, the function ψ(x, 2t1 − t) does not satisfy the Schrödinger
equation. However, if, in addition, we take the complex conjugate of the wave
function

ψ′(x, t) = ψ∗(x, 2t1 − t) ≡ K0ψ(x, 2t1 − t) , (11.4.20)

this satisfies the differential equation

i
∂ψ′(x, t)

∂t
= H∗ψ′(x, t) (11.4.21)

and the boundary conditions

ψ′(x, t1) = ψ∗
1(x) (11.4.22a)

ψ′(x, 2t1) = ψ∗
0(x) . (11.4.22b)

Proof. Omitting the argument x, we have5

i
∂ψ′(t)
∂t

= i
∂ψ∗(2t1 − t)

∂t
= −K0i

∂ψ(2t1 − t)
∂t

= K0i
∂ψ(2t1 − t)
∂(−t)

= K0Hψ(2t1 − t) = H∗ψ∗(2t1 − t) = H∗ψ′(t) .

Here, H∗ is the complex conjugate of the Hamiltonian, which is not neces-
sarily identical to H†. For the momentum operator, for example, we have(

�

i
∇
)†

=
�

i
∇ , but

(
�

i
∇
)∗

= −�

i
∇ . (11.4.23)

When the Hamiltonian is quadratic in p, then H∗ = H and thus the system
is time-reversal invariant.

We now calculate the expectation values of momentum, position, and
angular momentum (the upper index gives the time and the lower index the
wave function):

〈p〉tψ = (ψ,pψ) =
∫
d3xψ∗ �

i
∇ψ (11.4.24a)

〈x〉tψ = (ψ,xψ) =
∫
d3xψ∗(x, t)xψ(x, t) (11.4.24b)

5 The operator K0 has the effect of complex conjugation.
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〈p〉tψ′ = (ψ∗,pψ∗) =
∫
d3xψ

�

i
∇ψ∗

= −
(∫

d3xψ∗ �

i
∇ψ

)∗
= −〈p〉2t1−t

ψ (11.4.24c)

〈x〉tψ′ = 〈x〉2t1−t
ψ (11.4.24d)

〈L〉tψ′ =
∫
d3xψ x× �

i
∇ψ∗

= −
(∫

d3xψ∗ x × �

i
∇ψ

)∗
= −〈L〉2t1−t

ψ . (11.4.24e)

These results are in exact correspondence to the classical results. The mean
value of the position of the motion-reversed state follows the same trajectory
backwards, the mean value of the momentum having the opposite sign.

Here, too, we can take ψ(x, t) in the interval [−t1, t1] and likewise,

ψ′(x, t) = K0ψ(x,−t) (11.4.25)

in the interval [−t1, t1], corresponding to the classical case (11.4.14). In the
following, we will represent the time-reversal transformation in this more
compact form. The direction of time is always positive.
Since K2

0 = 1, we have K−1
0 = K0. Due to the property (11.4.23), and since

the spatial coordinates are real, we find the following transformation behavior
for x, p, and L:

K0xK−1
0 = x (11.4.25′c)

K0pK−1
0 = −p (11.4.25′d)

K0LK−1
0 = −L . (11.4.25′e)

11.4.2.2 Antilinear and Antiunitary Operators

The transformation ψ → ψ′(t) = K0ψ(−t) is not unitary.
Definition: An operator A is antilinear if

A(α1ψ1 + α2ψ2) = α∗
1Aψ1 + α∗

2Aψ2 . (11.4.26)

Definition: An operator A is antiunitary if it is antilinear and obeys

(Aψ,Aϕ) = (ϕ, ψ) . (11.4.27)

K0 is evidently antilinear,

K0(α1ψ1 + α2ψ2) = α∗
1K0ψ1 + α∗

2K0ψ2 ,

and, furthermore,

(K0ψ,K0ϕ) = (ψ∗, ϕ∗) =
∫
d3xψϕ∗ = (ϕ, ψ) . (11.4.28)
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Hence, K0 is antiunitary.
If U is unitary, UU † = U †U = 1, then UK0 is antiunitary, which can be seen
as follows:

UK0(α1ψ1 + α2ψ2) = U(α∗
1K0ψ1 + α∗

2K0ψ2) = α∗
1UK0ψ1 + α∗

2UK0ψ2

(UK0ψ,UK0ϕ) = (K0ψ,U
†UK0ϕ) = (K0ψ,K0ϕ) = (ϕ, ψ) .

The converse is also true: Every antiunitary operator can be represented in
the form A = UK0.
Proof: We have K2

0 = 1. Let A be a given antiunitary operator; we define
U = AK0. The operator U satisfies

U(α1ψ1 + α2ψ2) = AK0(α1ψ1 + α2ψ2) = A(α∗
1K0ψ1 + α∗

2K0ψ2)
= (α1AK0ψ1 + α2AK0ψ2) = (α1Uψ1 + α2Uψ2) ,

and, hence, U is linear. Furthermore,

(Uϕ,Uψ) = (AK0ϕ,AK0ψ) = (Aϕ∗, Aψ∗) = (ψ∗, ϕ∗) =
∫
d3xψϕ∗

= (ϕ, ψ) ,

and thus U is also unitary. From U = AK0 it follows that A = UK0, thus
proving the assertion.

Notes:

(i) For antilinear operators such asK0, it is advantageous to work in the coordinate
representation. If the Dirac bra and ket notation is used, one must bear in mind
that its effect is dependent on the basis employed. If |a〉 =

R
d3ξ |ξ〉 〈ξ|a〉, then

in the coordinate representation, and insisting that K0 |ξ〉 = |ξ〉,

K0 |a〉 =

Z
d3ξ (K0 |ξ〉) 〈ξ|a〉∗ =

Z
d3ξ |ξ〉 〈ξ|a〉∗ . (11.4.29)

For the momentum eigenstates this implies that

K0 |p〉 =

Z
d3ξ |ξ〉 〈ξ|p〉∗ = |−p〉 ,

since 〈ξ|p〉 = eipξ and 〈ξ|p〉∗ = e−ipξ . If one chooses a different basis, e.g., |n〉
and postulates K0 |n〉 = |n〉, then K0 |a〉 will not be the same as in the basis of
position eigenfunctions. When we have cause to use the Dirac notation in the
context of time reversal, a basis of position eigenfunctions will be employed.

(ii) In addition, the effect of antiunitary operators is only defined for ket vectors.
The relation

〈a| (L |b〉) = (〈a|L) |b〉 = 〈a|L |b〉 ,
valid for linear operators, does not hold in the antiunitary case. This stems
from the fact that a bra vector is defined as a linear functional on the ket
vectors.6

6 See, e.g., QM I, Sect. 8.2, footnote 2.
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11.4.2.3 The Time-Reversal Operator T in Linear State Space

A. General properties, spin 0

Here, and in the next section, we describe the time-reversal transformation in
the linear space of the ket and bra vectors, since this is frequently employed
in quantum statistics. We give a general analysis of the condition of time
reversal and also consider particles with spin. It will emerge anew that time
reversal (motion reversal) cannot be represented by a unitary transformation.
We denote the time-reversal operator by T . The requirement of time-reversal
invariance implies

e−iHtT |ψ(t)〉 = T |ψ(0)〉 , (11.4.30)

i.e.,

e−iHtT e−iHt |ψ(0)〉 = T |ψ(0)〉 .

Hence, if one carries out a motion reversal after time t and allows the system
to evolve for a further period t, the resulting state is identical to the motion-
reversed state at time t = 0. Since Eq. (11.4.30) is valid for arbitrary |ψ(0)〉,
it follows that

e−iHtT e−iHt = T

whence

e−iHtT = T eiHt . (11.4.31)

Differentiating (11.4.31) with respect to time and setting t = 0, one obtains

T iH = −iHT . (11.4.32)

One might ask whether there could also be a unitary operator T that satisfies
(11.4.32). If T were unitary and thus also linear, one could then move the i
occurring on the left-hand side in front of the T and cancel it to obtain

T H +HT = 0 .

Then, for every eigenfunction ψE with

HψE = EψE

we would also have

HT ψE = −ET ψE .

For every positive energy E there would be a corresponding solution T ψE

with eigenvalue (−E). There would be no lower limit to the energy since
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there are certainly states with arbitrarily large positive energy. Therefore, we
can rule out the possibility that there exists a unitary operator T satisfying
(11.4.31). According to a theorem due to Wigner7, symmetry transforma-
tions are either unitary or antiunitary, and hence T can only be antiunitary.
Therefore, T iH = −iT H and

T H −HT = 0 . (11.4.33)

Let us now consider a matrix element of a linear operator B:

〈α|B |β〉 =
〈
B†α|β

〉
=
〈
T β|T B†α

〉
=
〈
T β|T B†T −1T α

〉
= 〈T β| T B†T −1 |T α〉

or
= 〈α|Bβ〉 = 〈T Bβ|T α〉 =

〈
T BT −1T β|T α

〉
= 〈T β| T BT −1 |T α〉 (11.4.34)

If we assume that B is hermitian and

T BT −1 = εBB , where εB ±1 , (11.4.35)

which is suggested by the results of wave mechanics (Eq. (11.4.24a–e)), it
then follows that

〈α|B |β〉 = εB 〈T β|B |T α〉 .

The quantity εB is known as the “signature” of the operator B. Let us take
the diagonal element

〈α|B |α〉 = εB 〈T α|B |T α〉 .

Comparing this with (11.4.24c–e) and (11.4.25′c–e) yields the transformation
of the operators

T x T −1 = x (11.4.36a)
T p T −1 = −p (11.4.36b)
T LT −1 = −L , (11.4.36c)

i.e., εx = 1, εp = −1, and εL = −1. The last relation is also a consequence
of the first two.

7 E.P. Wigner, Group Theory and its Applications to Quantum Mechanics, Aca-
demic Press, p. 233; V. Bargmann, J. Math. Phys. 5, 862 (1964)
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Remark: If the relations (11.4.36) are considered as the primary defining conditions
on the operator T , then, by transforming the commutator [x, p] = i, one obtains

T iT −1 = T [x, p]T −1 = [x,−p] = −i .

This yields

T i T −1 = −i ,

which means that T is antilinear.

We now investigate the effect of T on coordinate eigenstates |ξ〉, defined by

x |ξ〉 = ξ |ξ〉 ,

where ξ is real. Applying T to this equation and using (11.4.36a), one obtains

xT |ξ〉 = ξT |ξ〉 .

Hence, with unchanged normalization, T |ξ〉 equals |ξ〉 to within a phase
factor. The latter is set to 1:

T |ξ〉 = |ξ〉 . (11.4.37)

Then, for an arbitrary state |ψ〉, the antiunitarity implies

T |ψ〉 = T
∫
d3ξψ(ξ) |ξ〉 =

∫
d3ξψ∗(ξ)T |ξ〉

=
∫
d3ξψ∗(ξ) |ξ〉 .

(11.4.38)

Hence, the operator T is equivalent to K0 (cf. Eq. (11.4.29)):

T = K0 . (11.4.39)

For the momentum eigenstates, it follows from (11.4.38) that

|p〉 =
∫
d3ξ eipξ |ξ〉

T |p〉 =
∫
d3ξ e−ipξ |ξ〉 = |−p〉 .

(11.4.40)

B. Nonrelativistic spin-1
2

particles

Up to now we have considered only particles without spin. Here, we will,
in analogy to the orbital angular momentum, extend the theory to spin- 1

2
particles. We demand for the spin operator that

T ST −1 = −S . (11.4.41)
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The total angular momentum

J = L + S (11.4.42)

then also transforms as

T JT −1 = −J . (11.4.43)

For spin- 1
2 we assert that the operator T is given by

T = e−iπSy/�K0

= e−iπσy/2K0 =
(
cos

π

2
− i sin

π

2
σy

)
K0

= −i
2Sy

�
K0 .

(11.4.44)

The validity of this assertion is demonstrated by the fact that the proposed form
satisfies Eq. (11.4.41) in the form T S = −ST : for the x and z components

−iσyK0σx,z = −iσyσx,zK0 = +iσx,zσyK0 = −σx,z(−iσyK0)

and for the y component

−iσyK0σy = +iσyσyK0 = −σy(−iσyK0) .

For the square of T , from (11.4.44) one gets

T 2 = −iσyK0(−iσyK0) = −iσyi(−σy)K2
0 = +i2σ2

y

= −1 .
(11.4.45)

For particles with no spin, T 2 = K2
0 = 1.

For N particles, the time-reversal transformation is given by the direct
product

T = e−iπS(1)
y /� . . . e−iπS(N)

y /�K0 , (11.4.46)

where S(n)
y is the y component of the spin operator of the nth particle. The

square of T is now given by

T 2 = (−1)N . (11.4.45′)

In this context, it is worth mentioning Kramers theorem.8 This states that
the energy levels of a system with an odd number of electrons must be at
least doubly degenerate whenever time-reversal invariance holds, i.e., when
no magnetic field is present.
Proof: From (T ψ, T ϕ) = (ϕ, ψ) it follows that

8 H.A. Kramers, Koninkl. Ned. Wetenschap. Proc. 33, 959 (1930)



11.4 Time Reversal (Motion Reversal) 229

(T ψ, ψ) = (T ψ, T 2ψ) = −(T ψ, ψ) .

Thus, (T ψ, ψ) = 0, i.e., T ψ and ψ are orthogonal to one another. In addition,
from

Hψ = Eψ

and (11.4.33), it follows that

H(T ψ) = E(T ψ) .

The states ψ and T ψ have the same energy. However, the two states are
also distinct: If it were the case that T ψ = αψ, this would imply T 2ψ =
α∗T ψ = |α|2 ψ, which would contradict the fact that T 2 = −1. However
complicated the electric fields acting on the electrons may be, for an odd
number of electrons this degeneracy, at least, always remains. It is referred
to as “Kramers degeneracy”. For an even number of electrons, T 2 = 1, and
in this case no degeneracy need exist unless there is some spatial symmetry.

11.4.3 Time-Reversal Invariance of the Dirac Equation

We now turn our attention to the main topic of interest, the time-reversal in-
variance of the Dirac equation. The time-reversal transformation T = T̂T (0),
where T (0) stands for the operation t → −t and T̂ is a transformation still
to be determined, associates to the spinor ψ(x, t) another spinor

ψ′(x, t) = T̂T (0)ψ(x, t) = T̂ψ(x,−t) , (11.4.47)

which also satisfies the Dirac equation. If, at a time −t1, the spinor is of the
form ψ(x,−t1) and evolves, according to the Dirac equation, into the spinor
ψ(x, t1) at time t1, then the spinor ψ′(x,−t1) = T̂ψ(x, t1) at time −t1 evolves
into ψ′(x, t1) = T̂ψ(x,−t1) at time t1 (see Fig. 11.4).

−t1

t1

ψ(−t1)

ψ(t1)

ψ′(−t1) = T̂ψ(t1)

ψ′(t1) = T̂ψ(−t1)

Fig. 11.4. Illustration of time reversal for the spinors ψ and ψ′ (space coordinates
are suppressed)
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Applying T (0) to the Dirac equation

i
∂ψ(x, t)

∂t
=
(
α · (−i∇ − eA(x, t)) + βm+ eA0(x, t)

)
ψ(x, t) (11.4.48)

i.e., making the replacement t → −t, yields:

i
∂ψ(x,−t)
∂(−t) =

(
α · (−i∇ − eA(x,−t)) + βm+ eA0(x,−t)

)
ψ(x,−t) .

(11.4.49)

Since, in wave mechanics, the time-reversal transformation is achieved by
complex conjugation, we set

T̂ = T̂0K0

where T̂0 is to be determined. We now apply T̂ to Eq. (11.4.3). The effect of
K0 is to replace i by −i, and one obtains

i
∂ψ′(x, t)

∂t
= T̂

(
α · (−i∇ − eA(x,−t)) + βm+ eA0(x,−t)

)
T̂−1ψ′(x, t) .

(11.4.49′)

The motion-reversed vector potential appearing in this equation is generated
by current densities, the direction of which is now reversed with respect to
the original unprimed current densities. This implies that the vector potential
changes its sign, whereas the zero component remains unchanged with respect
to motion reversal

A′(x, t) = −A(x,−t) , A′0(x, t) = A0(x,−t) . (11.4.50)

Hence, the Dirac equation for ψ′(x, t)

i
∂ψ′(x, t)

∂t
=
(
α · (−i∇ − eA′(x, t)) + βm+ eA′

0(x, t)
)
ψ′(x, t) ,

(11.4.51)

is obtained when T̂ satisfies the condition

T̂αT̂−1 = −α and T̂ βT̂−1 = β , (11.4.52)

where the effect of K0 on i in the momentum operator has been taken into
account. With T̂ = T̂0K0, the last equation implies

T̂0α
∗T̂−1

0 = −α and T̂0βT̂
−1
0 = β , (11.4.52′)

where we have chosen the standard representation for the Dirac matrices in
which β is real. Since α1 and α3 are real, and α2 imaginary, we have
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T̂0α1T̂
−1
0 = −α1

T̂0α2T̂
−1
0 = α2

T̂0α3T̂
−1
0 = −α3

T̂0βT̂
−1
0 = β ,

(11.4.52′′)

which can also be written in the form

{T̂0, α1} = {T̂0, α3} = 0[
T̂0, α2

]
=
[
T̂0, β

]
= 0 .

(11.4.52′′′)

From (11.4.52′′) one finds the representation

T̂0 = −iα1α3 (11.4.53)

and hence,

T̂ = −iα1α3K0 = iγ1γ3K0 . (11.4.53′)

The factor i in (11.4.53) and (11.4.53′) is arbitrary.

Proof: T̂0 satisfies (11.4.52′′′), since, e.g., {T̂0, α1} = α1α3α1 + α1α1α3 = 0.

The total time-reversal transformation,

T = T̂ 0K0T (0) ,

can be written in the form

ψ′(x, t) = iγ1γ3K0ψ(x,−t) = iγ1γ3ψ∗(x,−t) = iγ1γ3γ0ψ̄T (x,−t)
= iγ2γ5ψ̄T (x,−t) (11.4.47′)

and, as required, ψ′(x, t) satisfies the Dirac equation

i
∂ψ′(x, t)

∂t
=
(
α · (−i∇ − eA′(x, t)) + βm+ eA′

0(x, t)
)
ψ′(x, t) .

(11.4.51′)

The transformation of the current density under time reversal follows from
(11.4.47′) as

j′µ = ψ̄′(x, t)γµψ′(x, t) = ψ̄(x,−t)γµψ(x,−t) . (11.4.54)

The spatial components of the current density change their signs. Equations
(11.4.54) and (11.4.50) show that the d’Alembert equation for the electro-
magnetic potential ∂ν∂νAµ = jµ is invariant under time reversal.

In order to investigate the physical properties of a time-reversed spinor,
we consider a free spinor
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ψ =
(
εp/+m

2m

)(
11 + γ5n/

2

)
ψ (11.4.55)

with momentum p and spin orientation n (in the rest frame). The time-
reversal operation yields:

T ψ = T
(
εp/+m

2m

)(
11 + γ5n/

2

)
ψ

= T̂0

(
εp/∗ +m

2m

)(
11 + γ5n/

∗

2

)
ψ∗(x,−t)

=

(
εp̃/+m

2m

)(
11 + γ5ñ/

2

)
T ψ ,

(11.4.56)

where p̃ = (p0,−p) and ñ = (n0,−n). Here, we have used (11.4.52′). The
spinor T ψ has opposite momentum −p and opposite spin −n.

We have thus far discussed all discrete symmetry transformations of the
Dirac equation. We will next investigate the combined action of the parity
transformation P , charge conjugation C, and time reversal T . The successive
application of these operations to a spinor ψ(x) yields:

ψPCT(x′) = PCγ0K0T̂0K0ψ(x′,−t′)
= γ0iγ2γ0γ0K0iγ1γ3K0ψ(−x′)
= iγ5ψ(−x′) .

(11.4.57)

If one recalls the structure of γ5 (Eq. (6.2.48′)), it is apparent that the conse-
quence of the C part of the transformation is to transform a negative-energy
electron spinor into a positive-energy positron spinor. This becomes obvi-
ous when one begins with a spinor of negative energy and a particular spin
orientation (−n), which hence satisfies the projection relation

ψ(x) =
(−p/+m

2m

)(
11 + γ5n/

2

)
ψ(x) . (11.4.58)

Since {γ5, γµ} = 0, it follows from (11.4.57) and (11.4.58) that

ψPCT(x′) = iγ5ψ(−x′) = i
(
p/+m

2m

)(
11 − γ5n/

2

)
γ5ψPCT(−x′)

=
(
p/+m

2m

)(
11 − γ5n/

2

)
ψPCT(x′) .

(11.4.59)

If ψ(x) is an electron spinor with negative energy, then ψPCT(x) is a positron
spinor of positive energy. The spin orientation remains unchanged.9 With
9 To determine the transformation behavior of the quanta from this, one must

think of positrons in the context of Hole theory as unoccupied electron states of
negative energy. Therefore, under PCT , electrons are transformed into positrons
with unchanged momentum and opposite spin.
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regard to the first line of (11.4.59), one can interpret a positron spinor with
positive energy as an electron spinor with negative energy that is multiplied
by iγ5 and moves backwards in space and time. This has an equivalent in the
Feynman diagrams of perturbation theory (see Fig. 11.5).

Electron Positron

Fig. 11.5. Feynman propagators for electrons
(arrow pointing upwards, i.e., in positive time
direction) and positrons (arrow in negative
time direction)

P

e−
e−

e+ e+

C

e−

e+

e+

e−

a) b)

T

e−
e−

e+ e+

c)

Fig. 11.6. The effect of (a) the par-
ity transformation P , (b) charge con-
jugation C, and (c) the time-reversal
transformation T on an electron and
a positron state. The long arrows rep-
resent the momentum, and the short
arrows the spin orientation. These di-
agrams represent the transformations
not of the spinors, but of the particles
and antiparticles, in the sense of Hole
theory or in quantum field theory

Figure 11.6,a–c illustrates the effect of the transformations P , C, and
T on an electron and a positron. According to the Dirac theory, electrons
and positrons possess opposite parity. The effect of a parity transformation
on a state containing free electrons and positrons is to reverse all momenta
while leaving the spins unchanged, and additionally multiplying by a factor
(−1) for every positron (Fig. 11.6a). Up until 1956 it was believed that a
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spatial reflection on the fundamental microscopic level, i.e., a transformation
of right-handed coordinate systems into left-handed systems, would lead to an
identical physical world with identical physical laws. In 1956 Lee and Yang10

found convincing arguments indicating the violation of parity conservation in
nuclear decay processes involving the weak interaction. The experiments they
proposed11 showed unambiguously that parity is neither conserved in the β
decay of nuclei nor in the decay of π mesons. Therefore the Hamiltonian of the
weak interaction must, in addition to the usual scalar terms, contain further
pseudoscalar terms which change sign under the inversion of all coordinates.
This is illustrated in Fig. 11.7 for the experiment of Wu et al. on the β decay
of radioactive 60Co nuclei into 60Ni. In this process a neutron within the
nucleus decays into a proton, an electron, and a neutrino. Only the electron
(β particle) can be readily observed. The nuclei possess a finite spin and a
magnetic moment which can be oriented by means of a magnetic field. It is
found that the electrons are emitted preferentially in the direction opposite
to that of the spin of the nucleus. The essential experimental fact is that the
direction of the velocity of the β particle vβ (a polar vector) is determined
by the direction of the magnetic field B (an axial vector), which orients the
nuclear spins. Since the inversion P leaves the magnetic field B unchanged,
while reversing vβ , the above observation is incompatible with a universal
inversion symmetry. Parity is not conserved by the weak interaction. However,
in all processes involving only the strong and the electromagnetic interactions,
parity is conserved.12

Under charge conjugation, electrons and positrons are interchanged,
whilst the momenta and spins remain unchanged (Fig. 11.6b). This is because
charge conjugation, according to Eqs. (11.3.7′) and (11.3.11′), transforms the
spinor into a spinor with opposite momentum and spin. Since the antiparticle
(hole) corresponds to the nonoccupation of such a state, it again has opposite
values and hence, in total, the same values as the original particle. Even the
charge-conjugation invariance present in the free Dirac theory is not strictly
valid in nature: it is violated by the weak interaction.12

The time-reversal transformation reverses momenta and spins (Fig. 11.6c).
The free Dirac theory is invariant under this transformation. In nature, time
reversal invariance holds for almost all processes, whereby one should note
that time reversal interchanges the initial and final states. It was in the decay
processes of neutral K mesons that effects violating T invariance were first
observed experimentally.

10 T.D. Lee and C.N. Yang Phys. Rev. 104, 254 (1956)
11 C.S. Wu, E. Ambler, R.W. Hayward, D.D. Hoppes, and R.P. Hudson, Phys.

Rev. 105, 1413 (1957); R.L. Garwin, L.M. Ledermann, and M. Weinrich, Phys.
Rev. 105, 1415 (1957)

12 A more detailed discussion of experiments testing the invariance of the electro-
magnetic and strong interactions under C, P , and CP , and their violation by
the weak interaction, can be found in D.H. Perkins, Introduction to High Energy
Physics, 2nd ed., Addison-Wesley, London, 1982.
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BB

e−−−
e−−−

µµ

vβ

vβ

CoCo
P

(a) (b)
vβ

Fig. 11.7. Schematic representation of the parity violation observed in the β-decay
experiment of Wu et al. The figure shows the current circulating in a toroidal coil
generating the magnetic field B, which in turn orients the magnetic moment µ
of the cobalt nucleus and the associated angular momentum I, together with the
velocity vβ of the β particle (electron). The β particles are emitted preferentially
in the direction opposite to that of µ. Thus configuration (a) corresponds to the
experimental result, whereas configuration (b) is not observed

The invariances C, P , and T are all violated individually in nature.12

In relativistic field theory with an arbitrary local interaction, however, the
product Θ = PCT must be an invariance transformation. This theorem,
which is known as the PCT theorem13,14, can be derived from the general
axioms of quantum field theory15. The PCT theorem implies that particles
and antiparticles have the same mass and, if unstable, the same lifetime,
although the decay rates for particular channels are not necessarily the same
for particles and antiparticles.

∗11.4.4 Racah Time Reflection

Here, we determine the spinor transformation corresponding to a pure time
reflection. According to Eq. (6.1.9), this is described by the Lorentz transfor-
mation

Λµ
ν =

⎛⎜⎜⎝
−1 0 0 0

0 1 0 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎠ . (11.4.60)

One readily sees that the condition for the spinor transformation (6.2.7)

13 G. Lüders, Dan. Mat. Fys. Medd. 28, 5 (1954); Ann. Phys. (N.Y.) 2, 1 (1957);
W. Pauli, in Niels Bohr and the development of physics, ed. by W. Pauli, L.
Rosenfeld, and V. Weisskopf, McGraw Hill, New York, 1955

14 The Lagrangian of a quantum field theory with the properties given in Sect. 12.2
transforms under Θ as L(x) → L(−x), so that the action S is invariant.

15 R.F. Streater and A.S. Wightman PCT, Spin Statistics and all that, W.A. Ben-
jamin, New York, 1964; see also Itzykson, Zuber, op. cit., p. 158.
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γµSR = Λµ
νSRγ

ν

is satisfied by16

SR = γ1γ2γ3 . (11.4.61)

Hence, the transformation for the spinor and its adjoint has the form

ψ′ = SRψ

ψ̄′ = ψ†S†
Rγ

0 = −ψ†γ0S−1
R = −ψ̄S−1

R ,
(11.4.62)

in agreement with the general result, Eq. (6.2.34b), b = −1 for time reversal,
where S−1

R = −γ3γ2γ1. The current density thus transforms according to

(ψ̄γµψ)′ = −Λµ
νψ̄γ

νψ . (11.4.63)

Hence, jµ transforms as a pseudovector under Racah time reflection. The
vector potential Aµ(x), on the other hand, transforms as

A′µ(x′) = Λµ
νA

ν(Λ−1x) . (11.4.64)

Thus, the field equation for the radiation field

∂ν∂
νAµ = 4πejµ (11.4.65)

is not invariant under this time reflection
One can combine the Racah transformation with charge conjugation:

ψ′(x, t) = SRψc(x,−t) = S(T )ψ̄T (x,−t) . (11.4.66)

Here, the transformation matrix S(T ) is related to SR and C ≡ iγ2γ0

S(T ) = SRC = γ1γ2γ3iγ2γ0 = iγ2γ5 .

This is the motion-reversal transformation (= time-reversal transformation),
Eq. (11.4.47′). The Dirac equation is invariant under this transformation.

∗11.5 Helicity

The helicity operator is defined by

h(k̂) = Σ · k̂ , (11.5.1)

where k̂ = k/|k| is the unit vector in the direction of the spinor’s momentum.
16 SR is known as the Racah time reflection operator, see J.M. Jauch and F.

Rohrlich, The Theory of Photons and Electrons, p. 88, Springer, New York, 1980
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Since Σ · k̂ commutes with the Dirac Hamiltonian, there exist common
eigenstates17 of Σ · k̂ and H . The helicity operator h(k̂) has the property
h2(k̂) = 1, and thus possesses the eigenvalues ±1. The helicity eigenstates
with eigenvalue +1 (spin parallel to k) are called right-handed, and those
with eigenvalue −1 (spin antiparallel to k) are termed left-handed. One can
visualize the states of positive and negative helicity as analogous to right-
and left-handed screws.

From Eq. (6.3.11a), the effect of the helicity operator on the free spinor
ur(k) is:

Σ · k̂ ur(k) = Σ · k̂

⎛⎜⎜⎜⎝
(
E +m

2m

) 1
2

ϕr

σ · k
[2m(m+ E)]

1
2
ϕr

⎞⎟⎟⎟⎠

=

⎛⎜⎜⎜⎝
(
E +m

2m

) 1
2

σ · k̂ϕr

σ · k
[2m(m+ E)]

1
2
σ · k̂ϕr

⎞⎟⎟⎟⎠
(11.5.2)

with ϕ1 =
(
1
0

)
and ϕ2 =

(
0
1

)
, and an analogous expression for the spinors

vr(k). The Pauli spinors ϕr are eigenstates of σz and thus the ur(k) and
vr(k) in the rest frame are eigenstates of Σz (see Eq. (6.3.4)).

As an example of a simple special case, we now consider free spinors with
wave vector along the z axis. Thus k = (0, 0, k), and the helicity operator is

Σ · k̂ = Σz and σ · k̂ = σz . (11.5.3)

Furthermore, from Eq. (11.5.2) one sees that the spinors ur(k) and vr(k) are
eigenstates of the helicity operator. According to Eqs. (6.3.11a) and (6.3.11b),
the spinors for k = (0, 0, k), i.e., for k′ = (

√
k2 +m2, 0, 0, k) (to distinguish

it from the z component, the four-vector is denoted by k′), are

u(R)(k′) = u1(k′) = N

⎛⎜⎜⎝
1
0
k

E+m

0

⎞⎟⎟⎠ , u(L)(k′) = u2(k′) = N

⎛⎜⎜⎝
0
1
0
−k

E+m

⎞⎟⎟⎠ ,

v(R)(k′) = v1(k′) = N

⎛⎜⎜⎝
−k

E+m

0
1
0

⎞⎟⎟⎠ , v(L)(k′) = v2(k′) = N

⎛⎜⎜⎝
0
k

E+m

0
1

⎞⎟⎟⎠ ,

(11.5.4)
17 In contrast to the nonrelativistic Pauli equation, however, the Dirac equation

has no free solutions that are eigenfunctions of Σ · n̂ with an arbitrarily oriented

unit vector n̂. This is because, except for n̂ = ±k̂, the product Σ · n̂ does not
commute with the free Dirac Hamiltonian.
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with N =
(

E+m
2m

)1/2
, and satisfy

Σzur(k′) = ±ur(k′) for r =

{
1 R

2 L

Σzvr(k′) = ±vr(k′) for r =

{
1 R

2 L
.

(11.5.5)

The letter R indicates right-handed polarization (positive helicity) and L
left-handed polarization (negative helicity).
For k in an arbitrary direction, the eigenstates u(R), u(L) with eigenvalues
+1,−1 are obtained by rotating the spinors (11.5.4). The rotation is through
an angle ϑ = arccos kz

|k| about the axis defined by the vector (−ky, kx, 0). It
causes the z axis to rotate into the k direction. According to (6.2.21) and
(6.2.29c), the corresponding spinor transformation reads:

S = exp
(
−i
ϑ

2
(−kyΣx + kxΣy)/

√
k2

x + k2
y

)
= 11 cos

ϑ

2
+ i

kyΣx − kxΣy√
k2

x + k2
y

sin
ϑ

2
.

(11.5.6)

Therefore, the helicity eigenstates of positive energy for a wave vector k are

u(R)(k) = N

⎛⎜⎜⎜⎜⎝
cos ϑ

2
(kx+iky)√

k2−k2
z

sin ϑ
2

|k|
E+m cos ϑ

2
|k|

E+m
kx+iky√

k2−k2
z

sin ϑ
2

⎞⎟⎟⎟⎟⎠ =
N√

2(k̂z + 1)

⎛⎜⎜⎜⎝
k̂z + 1
k̂x + ik̂y

|k|
E+m(k̂z + 1)
|k|

E+m (k̂x + ik̂y)

⎞⎟⎟⎟⎠
(11.5.7)

and

u(L)(k) = N

⎛⎜⎜⎜⎜⎜⎜⎝

−kx+iky√
k2−k2

z

sin ϑ
2

cos ϑ
2

− |k|
E+m

−kx+iky√
k2−k2

z

sin ϑ
2

− |k|
E+m cos ϑ

2

⎞⎟⎟⎟⎟⎟⎟⎠

=
N√

2(k̂z + 1)

⎛⎜⎜⎜⎝
−k̂x + ik̂y

k̂z + 1
− |k|

E+m (−k̂x + ik̂y)
− |k|

E+m(k̂z + 1)

⎞⎟⎟⎟⎠ .

Corresponding expressions are obtained for spinors with negative energy
(Problem 11.4).
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∗11.6 Zero-Mass Fermions (Neutrinos)

Neutrinos are spin- 1
2 particles and were originally thought to be massless.

There is now increasing experimental evidence that they possess a finite albeit
very small mass. On neglecting this mass, which is valid for sufficiently high
momenta, we may present the standard description by the Dirac equation
having a zero mass term

p/ψ = 0 , (11.6.1)

where pµ = i∂µ is the momentum operator. In principle, one could obtain
the solutions from the plane waves (6.3.11a,b) or the helicity eigenstates by
taking the limit m → 0 in the Dirac equation containing a mass term. One
merely needs to split off the factor 1/

√
m and introduce a normalization

different to (6.3.19a) and (6.3.19b), for example

ūr(k)γ0us(k) = 2Eδrs

v̄r(k)γ0vs(k) = 2Eδrs .
(11.6.2)

However, it is also interesting to solve the massless Dirac equation directly
and study its special properties. We note at the outset that in the representa-
tion based on the matrices α and β (5.3.1), for the case of zero mass, β does
not appear. However, one could also realize three anticommuting matrices
using the two-dimensional representation of the Pauli matrices, a fact that is
also reflected in the structure of (11.6.1).

In order to solve (11.6.1), we multiply the Dirac equation by

γ5γ0 = −iγ1γ2γ3 .

With the supplementary calculation

γ5γ0γ1 = −iγ1γ2γ3γ1 = −iγ1γ1γ2γ3 = +iγ2γ3 = σ23 = Σ1 ,

γ5γ0γ3 = −iγ1γ2γ3γ3 = iγ1γ2 = σ12 = Σ3 , γ5γ0γ0 = γ5 ,

(−piΣi + p0γ
5)ψ = 0

one obtains

Σ · pψ = p0γ5ψ . (11.6.3)

Inserting into (11.6.3) plane waves with positive (negative) energy

ψ(x) = e∓ikxψ(k) = e∓i(k0x0−k·x)ψ(k) , (11.6.4)

this yields

Σ · kψ(k) = k0γ5ψ(k) . (11.6.5)

From (11.6.1) it follows that p/2ψ(x) = 0 and hence, k2 = 0 or k0 = E = |k|
for solutions of positive (negative) energy. With the unit vector k̂ = k/|k|,
Eq. (11.6.5) takes the form
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Σ · k̂ψ(k) = ±γ5ψ(k) . (11.6.6)

The matrix γ5, which anticommutes with all γµ, commutes with Σ and thus
has joint eigenfunctions with the helicity operator Σ · k̂. The matrix γ5 is
also termed the chirality operator. Since (γ5)2 = 1, the eigenvalues of γ5 are
±1, and since Tr γ5 = 0, they are doubly degenerate. The solutions of Eq.
(11.6.6) can thus be written in the form

ψ(x) =
{

e−ikx u±(k)
eikx v±(k) with k2 = 0, k0 = |k| > 0 , (11.6.7)

where the u± (v±) are eigenstates of the chirality operator

γ5u±(k) = ±u±(k) und γ5v±(k) = ±v±(k) . (11.6.8)

The spinors u+ and v+ are said to have positive chirality (right-handed), and
the spinors u− and v− to have negative chirality (left handed). Using the

standard representation γ5 =
(

0 11
11 0

)
, Eq. (11.6.8) yields

u±(k) =
1√
2

(
a±(k)
±a±(k)

)
, v±(k) =

1√
2

(
b±(k)
±b±(k)

)
. (11.6.9)

Inserting(11.6.9) into the Dirac equation (11.6.6), one obtains equations de-
termining a±(k):

a±(k) = ±σ · k̂a±(k) . (11.6.10)

Their solutions are (cf. Problem 11.7)

a+(k) =

(
cos ϑ

2

sin ϑ
2 eiϕ

)
(11.6.11a)

a−(k) =

(
− sin ϑ

2 e−iϕ

cos ϑ
2

)
, (11.6.11b)

where ϑ and ϕ are the polar angles of k̂. These solutions are consistent with
the m → 0 limit of the helicity eigenstates found in (11.5.7). The negative
energy solutions v±(k) can be obtained from the u±(k) by charge conjugation
(Eqs. (11.3.7) and (11.3.8)):

v+(k) = CūT
−(k) = iγ2u∗−(k) = −u+(k) (11.6.11c)

v−(k) = CūT
+(k) = iγ2u∗+(k) = −u−(k) (11.6.11d)

i.e., in (11.6.9), b±(k) = −a±(k).
It is interesting in this context to go from the standard representation

of the Dirac matrices to the chiral representation, which is obtained by the
transformation
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ψch = U †ψ (11.6.12a)

γµch = U †γµU (11.6.12b)

U =
1√
2
(1 + γ5) . (11.6.12c)

The result is (Problem 11.8):

γ0ch ≡ βch = −γ5 =
(

0 −11
−11 0

)
(11.6.13a)

γkch
= γk =

(
0 σk

−σk 0

)
(11.6.13b)

γ5ch
= γ0 =

(
11 0
0 −11

)
(11.6.13c)

αkch
=
(

0 σk

σk 0

)
(11.6.13d)

σch
0i =

i
2
[
γch
0 , γch

i

]
=

1
i

(
σi 0
0 −σi

)
(11.6.13e)

σch
ij =

i
2
[
γch

i , γch
j

]
= εijk

(
σk 0
0 σk

)
(11.6.13f)

In the chiral representation, (11.6.13e,f) are diagonal in the space of bispinors,
i.e., the upper components (1,2) and the lower components (3,4) of the spinor
transform independently of one another under pure Lorentz transformations
and under rotations (see (6.2.29b)). This means that the four-dimensional
representation of the restricted Lorentz group L↑

+ is reducible to two two-
dimensional representations. More precisely, the representation18 of the group
SL(2,C) can be reduced to the two nonequivalent representations D( 1

2 ,0) and
D(0, 1

2 ). When the parity transformation P , which is given by P = eiϕγ0chP0

(see (6.2.32)), is present as a symmetry element, then the four-dimensional
representation is no longer reducible, i.e., it is irreducible.
In the chiral representation, the Dirac equation takes the form

(−i∂0 + iσk∂k)ψch
2 −mψch

1 = 0

(−i∂0 − iσk∂k)ψch
1 −mψch

2 = 0 ,
(11.6.14)

where we have set ψch =
(ψch

1
ψch

2

)
. Equations (11.6.14) are identical to the

equations (A.7), but have been obtained in a different way. For m = 0 the
two equations decouple and one obtains

18 The group SL(2,C) is homomorphic to the group L↑
+ corresponding to the two-

valued nature of the spinor representations. For useful group theoretical back-
ground we recommend V. Heine, Group Theory in Quantum Mechanics, Perg-
amon Press, Oxford (1960), and R.F. Streater and A.S. Wightman, PCT, Spin
Statistics and all that, Benjamin, Reading (1964).
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(i∂0 − iσk∂k)ψch
2 ≡ (p0 + σ · p)ψch

2 = 0 (11.6.15a)

and

(i∂0 + iσk∂k)ψch
1 = 0 . (11.6.15b)

These are the two Weyl equations. A comparison of these with (5.3.1) shows
that (11.6.15) contains a two-dimensional representation of the α matrices.
As mentioned at the beginning of this section, when β is absent, the algebra
of the Dirac α matrices

{αi, αj} = 2δij

can be realized by the three Pauli σi matrices. The two equations (11.6.15a,b)
are not individually parity invariant and in the historical development were
initially heeded no further. In fact, it has been known since the experiments
of Wu et al.19 that the weak interaction does not conserve parity. Since the

chirality operator in the chiral representation is of the form χch
5 =

(
11 0
0 −11

)
,

spinors of the form ψ =
(
ψch

1
0

)
have positive chirality, whilst those of the form

ψ =
(

0
ψch

2

)
have negative chirality.

Experimentally, it is found that only neutrinos of negative chirality exist.
This means that the first of the two equations (11.6.15) is the one relevant to
nature. The solutions of this equation are of the form ψ

ch(+)
2 (x) = e−ik·xu(k)

and ψch(−)
2 (x) = eik·xv(k) with k0 > 0, where u and v are now two-component

spinors The first state has positive energy and, as directly evident from
(11.6.15a), negative helicity since the spin is antiparallel to k. We call this
state the neutrino state and represent it pictorially by means of a left-handed
screw (Fig. 11.8a). Of the solutions shown in (11.6.9), this is u−(k). The mo-
mentum is represented by the straight arrow.

E = k0 = |k|

a)

E = −k0 = −|k| E = k0 = |k|

c)b)

Fig. 11.8. (a) Neutrino state with negative helicity, (b) neutrino state with negative
energy and positive helicity, (c) antineutrino with positive helicity

The solution with negative energy ψch(−)
2 has momentum −k, and hence

positive helicity; it is represented by a right-handed screw (Fig. 11.8b). This
19 See references on p. 234.
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solution corresponds to v−(k) in Eq. (11.6.9). In a hole-theoretical interpre-
tation, the antineutrino is represented by an unoccupied state v−(k). It thus
has opposite momentum (+k) and opposite spin, hence the helicity remains
positive (Fig. 11.8c). Neutrinos have negative helicity, and their antiparti-
cles, the antineutrinos, have positive helicity. For electrons and other massive
particles, it would not be possible for only one particular helicity to occur.
Even if only one helicity were initially present, one can reverse the spin in the
rest frame of the electron, or, for unchanged spin, accelerate the electron in
the opposite direction, in either case generating the opposite helicity. Since
massless particles move with the velocity of light, they have no rest frame;
for them the momentum k distinguishes a particular direction.

P

Fig. 11.9. The effect of a parity
transformation on a neutrino state

Figure 11.9 illustrates the effect of a parity transformation on a neutrino
state. Since this transformation reverses the momentum whilst leaving the
spin unchanged, it generates a state of positive energy with positive helicity.
As has already been stated, these do not exist in nature.

Although neutrinos have no charge, one can still subject them to charge
conjugation. The charge conjugation operation C connects states of positive
and negative chirality and changes the sign of the energy. Since only left-
handed neutrinos exist in nature, there is no invariance with respect to C.
However, since the parity transformation P also connects the two types of
solution

ψch(t,x) → γ0ψch(t,−x) ,

(in the chiral representation γ0 is nondiagonal), the Weyl equation is invariant
under CP . In the chiral representation, C reads

C =
(
−iσ2 0

0 iσ2

)
=

⎛⎜⎜⎝
−1 0 0 0

0 1 0 0
0 0 1 0
0 0 0 −1

⎞⎟⎟⎠ .

Hence, the effect of CP is

ψchCP
(t,x) = ηCψch∗

(t,−x) = ∓iησ2ψ
ch∗

(t,−x)

for chirality γ5 = ±1.
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Problems

11.1 Show that equation (11.3.5) implies (11.3.5′).

11.2 In a Majorana representation of the Dirac equation, the γ matrices – indicated
here by the subscript M for Majorana – are purely imaginary,

γµ
M

∗ = −γµ
M , µ = 0, 1, 2, 3.

A special Majorana representation is given by the unitary transformation

γµ
M = UγµU†

with U = U† = U−1 = 1√
2
γ0
`
11 + γ2

´
.

(a) Show that

γ0
M = γ0γ2 =

„
0 σ2

σ2 0

«
γ1

M = γ2γ1 =

„
iσ3 0
0 iσ3

«
γ2

M = −γ2 =

„
0 −σ2

σ2 0

«
γ3

M = γ2γ3 =

„−iσ1 0
0 −iσ1

«
.

(b) In Eq. (11.3.14′) it was shown that, in a Majorana representation, the charge
conjugation transformation (apart from an arbitrary phase factor) has the form
ψC

M = ψ�
M . Show that application of the transformation U to Eq. (11.3.7′)

ψC = iγ2ψ

leads to

ψC
M = −iψM .

11.3 Show that, under a time-reversal operation T , the four-current-density jµ in
the Dirac theory satisfies

j′ µ(x, t) = jµ(x,−t) .

11.4 Determine the eigenstates of helicity with negative energy:
(a) as in (11.5.7) by applying a Lorentz transformation to (11.5.4);

(b) by solving the eigenvalue equation for the helicity operator Σ · k̂ and taking
the appropriate linear combination of the energy eigenstates (6.3.11b).

11.5 Show that Σ · k̂ commutes with (γµkµ ±m).

11.6 Prove the validity of Eq. (11.5.7).

11.7 Show that (11.6.11) satisfies the equation (11.6.10).

11.8 Prove the validity of (11.6.13).
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Part III

Relativistic Fields



12. Quantization of Relativistic Fields

This chapter is dedicated to relativistic quantum fields. We shall begin by
investigating a system of coupled oscillators for which the quantization prop-
erties are known. The continuum limit of this oscillator system yields the
equation of motion for a vibrating string in a harmonic potential. This is
identical in form to the Klein–Gordon equation. The quantized equation of
motion of the string and its generalization to three dimensions provides us
with an example of a quantized field theory. The quantization rules that
emerge here can also be applied to non-material fields. The fields and their
conjugate momentum fields are subject to canonical commutation relations.
One thus speaks of “canonical quantization”. In order to generalize to arbi-
trary fields, we shall then study the properties of general classical relativistic
fields. In particular, we will derive the conservation laws that follow from the
symmetry properties (Noether’s theorem).

12.1 Coupled Oscillators, the Linear Chain,
Lattice Vibrations

12.1.1 Linear Chain of Coupled Oscillators

12.1.1.1 Diagonalization of the Hamiltonian

We consider N particles of mass m with equilibrium positions that lie on a
periodic linear chain separated by the lattice constant a. The displacements
along the direction of the chain from the equilibrium positions an are denoted

q1 q2 q3 q4

(a)

n− 1 n n+ 1

(b)

Fig. 12.1. Linear chain: (a) displacement of the point masses (large dots) from
their equilibrium positions (small dots); (b) potentials and interactions (represented
schematically by springs)
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by q1, . . . , qN (Fig.12.1a), and the momenta by p1, . . . , pN . It is assumed that
each particle is in a harmonic potential and, additionally, is harmonically
coupled to its nearest neighbors (Fig.12.1b). The Hamiltonian then reads:

H =
N∑

n=1

1
2m

p2
n +

mΩ2

2
(qn − qn−1)2 +

mΩ2
0

2
q2n . (12.1.1)

Here, Ω2 characterizes the strength of the harmonic coupling between nearest
neighbors, and Ω2

0 the harmonic potential of the individual particles (see
Fig.12.1b). Since we will eventually be interested in the limiting case of an
infinitely large system in which the boundary conditions play no part, we will
choose periodic boundary conditions, i.e., q0 = qN . The x coordinates xn are
represented as xn = an + qn = na+ qn and, from the commutation relations
[xn, pm] = iδnm, etc. (� = 1), we have for the canonical commutation relations
of the qn and pn

[qn, pm] = iδnm , [qn, qm] = 0 , [pn, pm] = 0 . (12.1.2)

The Heisenberg representation,

qn(t) = eiHt qn e−iHt , (12.1.3a)
pn(t) = eiHt pn e−iHt , (12.1.3b)

yields the two equations of motion

q̇n(t) =
1
m
pn(t) (12.1.4a)

and

ṗn(t) = mq̈n(t) (12.1.4b)
= mΩ2(qn+1(t) + qn−1(t) − 2qn(t)) −mΩ2

0 qn(t) .

On account of the periodic boundary conditions, we are dealing with a trans-
lationally invariant problem (invariant with respect to translations by a). The
Hamiltonian can therefore be diagonalized by means of the transformation
(Fourier sum)

qn =
1

(mN)1/2

∑
k

eikanQk (12.1.5a)

pn =
(m
N

)1/2∑
k

e−ikanPk . (12.1.5b)

The variables Qk and Pk are termed the normal coordinates and normal
momenta, respectively. We now have to determine the possible values of k.
To this end, we exploit the periodic boundary conditions which demand that
q0 = qN , i.e., 1 = eikaN ; hence, we have kaN = 2π� and thus
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k =
2π�
Na

, (12.1.6)

where � is an integer. The values k = 2π(�±N)
Na = 2π�

Na ± 2π
a are equivalent to

k = 2π�
Na since, for these k values, the phase factors eikan are equal and, thus,

so are the qn and pn. The possible k values are therefore reduced to those
given by:

for even N : −N

2
< � ≤ N

2
, � = 0,±1, . . . ,±N − 2

2
,
N

2

for odd N : −N − 1
2

≤ � ≤ N − 1
2

, � = 0,±1, . . . ,±N − 1
2

.

In solid state physics, this reduced interval of k values is also known as the
first Brillouin zone. The Fourier coefficients in (12.1.5) satisfy the following
orthogonality and completeness relations:
Orthogonality relation :

1
N

N∑
n=1

eikane−ik′an = ∆(k − k′) (12.1.7a)

=

{
1 for k − k′ =

2π
a
h, h integer

0 otherwise.

In this form, the orthogonality relation is valid for any value of k = 2π�
Na .

When k is restricted to values in the first Brillouin zone, the generalized
Kronecker delta ∆(k − k′) becomes δkk′ .
Completeness relation:

1
N

∑
k

e−ikaneikan′
= δnn′ . (12.1.7b)

Here, the summation variable k is restricted to the first Brillouin zone. (For
a proof, see Problem 12.1). The inverse of (12.1.5) reads:

Qk =
√
m

N

∑
n

e−ikanqn (12.1.8a)

Pk =
1√
mN

∑
n

eikanpn . (12.1.8b)
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Since the operators qn and pn are hermitian, it follows that

Q†
k = Q−k , P †

k = P−k . (12.1.9)

Remark. When N is even, � = N
2

and −N
2

are equivalent and hence only N
2

appears. For k = 2π
Na

· N
2

= π
a
, we have Qk = Q†

k and Pk = P †
k , since ei π

a
an =

eiπn = (−1)n .

The commutation relations for the normal coordinates and momenta are
obtained from (12.1.2) with the result

[Qk, Pk′ ] = iδkk′ , [Qk, Qk′ ] = 0 , [Pk, Pk′ ] = 0 . (12.1.10)

Transforming (12.1.1) into normal coordinates according to (12.1.5a,b) yields
the Hamiltonian in the form

H =
1
2

∑
k

(
Pk P

†
k + ω2

k Qk Q
†
k

)
, (12.1.11)

where the square of the vibration frequency as a function of k reads:

ω2
k = Ω2

(
2 sin

ka

2

)2

+Ω2
0 (12.1.12)

(Problem 12.3). The quantity (Ωa)2 is known as the stiffness constant.
Thus, in Fourier space, one obtains uncoupled oscillators with the frequency
ωk =

√
ω2

k. [It should be noted, however, that the terms in (12.1.11) are of
the form QkQ−k etc., so that the oscillators with wave numbers k and −k are
still interdependent.] The frequency is depicted as a function of k (dispersion
relation) in Fig.12.2. In the language of lattice vibrations, Ω0 = 0 leads
to acoustic, and finite Ω0 to optical, phonons. In order to diagonalize H in
Eq.(12.1.11), one introduces creation and annihilation operators:

π
a

−π
a

ωk

k

Ω0 = 0

Ω0 �= 0��

Fig. 12.2. The phonon frequen-
cies for Ω0 �= 0 and Ω0 = 0
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ak =
1√
2ωk

(
ωk Qk + iP †

k

)
(12.1.13a)

a†k =
1√
2ωk

(
ωk Q

†
k − iPk

)
. (12.1.13b)

The inverse of this transformation is given by

Qk =
ak + a†−k√

2ωk
(12.1.14a)

and

Pk = −i
√
ωk

2

(
a−k − a†k

)
. (12.1.14b)

The commutation relations for the normal coordinates (12.1.10) lead to
(Problem 12.5)

[ak , a
†
k′ ] = δk,k′ , [ak, ak′ ] = [a†k, a

†
k′ ] = 0 . (12.1.15)

By inserting (12.1.14a,b) into (12.1.11), one obtains

H =
∑

k

ωk

(
a†kak +

1
2

)
, (12.1.16)

a Hamiltonian for N uncoupled oscillators. The summation extends over all
N wave numbers in the first Brillouin zone, since

H =
1

2

X
k

ωk

2
(a−k − a†k)(a†−k − ak) +

ω2
k

2ωk
(ak + a†−k)(a†k + a−k)

=
1

4

X
k

ωk(a−ka
†
−k + a†kak + aka

†
k + a†−ka−k

−a−kak − a†ka†−k + aka−k + a†−ka
†
k)

=
1

2

X
k

ωk(a†kak + aka
†
k) =

X
k

ωk

„
a†kak +

1

2

«
. (12.1.17)

The energy eigenstates and eigenvalues for the individual oscillators are
known. The ground-state energy of the oscillator with the wave vector k is
1
2ωk. The nth excited state of the oscillator with wave vector k is obtained
by the n-fold application of the operator a†k, having energy (nk + 1

2 )ωk . The
fact that the eigenvalues of the Hamiltonian are, up to the zero-point energy,
integer multiples of the eigenfrequencies leads quite naturally to a particle
interpretation, although we are dealing here not with material particles but
rather with excited states (quasiparticles). In the case of the elastic chain
considered here, these quanta are known as phonons. The occupation numbers
are 0, 1, 2, . . . , hence the quanta are bosons. The operator a†k creates a phonon
with wave vector k and frequency (energy) ωk, whilst ak annihilates a phonon
with wave vector k and frequency (energy) ωk.
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Hence, the eigenstates of the Hamiltonian (12.1.17) are of the following
form: In the ground state |0〉 , which is determined by the equation

ak |0〉 = 0, for allk , (12.1.18a)

no phonons are present. Its energy represents the zero-point energy

E0 =
∑

k

1
2
ωk . (12.1.18b)

A general multiphonon state has the form

|nk1 , nk2 , . . . , nkN 〉 =
1√

nk1 !nk2 ! . . . nkN !

×
(
a†k1

)nk1
(
a†k2

)nk2
. . .
(
a†kN

)nkN |0〉 (12.1.19a)

with energy

E =
∑

k

nkωk + E0 . (12.1.19b)

The occupation numbers take the values nk = 0, 1, 2, . . . and k runs through
the N values of the first Brillouin zone; the nk are not bounded from above.
The operator n̂k = a†kak is the occupation number operator for phonons with
the wave vector k.
From

[n̂k, ak] = −ak und [n̂k, a
†
k] = a†k (12.1.19c)

it follows that

aki |. . . , nki , . . .〉 =
√
nki |. . . , nki − 1, . . .〉 ,

a†ki
|. . . , nki , . . .〉 =

√
nki + 1 |. . . , nki + 1, . . .〉 .

(12.1.19d)

Remark. Let us emphasize that the commutation relations (12.1.2) and
(12.1.15) are valid even when nonlinear terms are present in the Hamiltonian,
since they are a consequence of the general canonical commutation relations
of position and momentum operators.

12.1.1.2 Dynamics

Equation (12.1.16) expresses the Hamiltonian of the linear chain in diago-
nal form. In fact, H is time independent, so that its various representations
(12.1.1), (12.1.11), and (12.1.16) are valid at all times. The essential features
of the dynamics are most readily described in the Heisenberg picture. Starting
from
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qn =
1√
mN

∑
k

eikanQk =
1√
mN

∑
k

1√
2ωk

eikan(ak + a†−k)

=
∑

k

1√
2ωkmN

(
eikanak + e−ikana†k

)
,

(12.1.20)

we define the Heisenberg operator

qn(t) = eiHt qn(0) e−iHt = eiHt qn e−iHt . (12.1.21)

By solving the equation of motion, or by using

eiHt ak e−iHt = ak + [iHt, ak] +
1
2!

[iHt, [iHt, ak]] + . . .

= ak + [iωkt a
†
kak, ak] +

1
2!

[iHt, [iHt, ak]] + . . .

= ak − iωktak +
1
2!

[iωkta
†
kak,−iωktak] + . . .

= ak

(
1 − iωkt+

1
2!

(−iωkt)2 + . . .

)
= ake−iωkt ,

(12.1.22)

one obtains for the time dependence of the displacements

qn(t) =
∑

k

1√
2ωkmN

(
ei(kan−ωkt)ak + e−i(kan−ωkt)a†k

)
. (12.1.23)

Concerning its structure, this solution is identical to the classical solution,
although the amplitudes are now the annihilation and creation operators.
We will discuss the significance of this solution only in the context of the
continuum limit, which we shall now proceed to introduce.

12.1.2 Continuum Limit, Vibrating String

Here, we shall treat the continuum limit for the vibrating string. In this limit
the lattice constant becomes a → 0 and the number of oscillators N → ∞ ,
whilst the length of the string L = aN remains finite (Fig. 12.3).

Fig. 12.3. Concerning the continuum limit of the linear
chain (see text)

The density ρ = m
a and stiffness constant v2 = (Ωa)2 must also remain

constant. The positions of the lattice points x = na are then continuously
distributed. We also introduce the definitions
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q(x) = qn

(m
a

)1/2

(12.1.24a)

p(x) = pn(ma)−1/2 . (12.1.24b)

The equation of motion (12.1.4b)

q̈n = Ω2(qn+1 + qn−1 − 2qn) −Ω2
0 qn

becomes

q̈(x, t) = Ω2a2 (q(x + a, t) − q(x, t)) − (q(x, t) − q(x − a, t))
a2

−Ω2
0q(x, t)

(12.1.25)

and, in the limit a→ 0, one has

q̈(x, t) − v2 ∂2

∂x2
q(x, t) +Ω2

0 q(x, t) = 0 . (12.1.26)

The form of this equation is identical to that of the one-dimensional Klein–
Gordon equation. For Ω0 = 0, i.e., in the absence of a harmonic potential,
Eq. (12.1.26) is the equation of motion for a vibrating string, as is known
from classical mechanics.
In the continuum limit, the Hamiltonian (12.1.1) takes the form

H = lim
a→0,N→∞

∑
n

(
1

2m
p2

n +
mΩ2

2
(qn − qn−1)2 +

mΩ2
0

2
q2n

)

= lim
a→0,N→∞

∑
n

a

(
1

2ma
p2

n +
mΩ2

2a
a2

(
qn − qn−1

a

)2

+
mΩ2

0

2a
q2n

)

=

L∫
0

dx
1
2

[
p(x)2 + v2

(
∂q

∂x

)2

+Ω2
0 q(x)

2

]
, (12.1.27)

where
∑

n a . . . →
L∫
0

dx . . . . The commutators of the displacements and the

momenta are obtained from (12.1.2) and (12.1.24a,b):

[q(x), p(x′)] = lim
a→0,N→∞

(m
a

)1/2

(ma)−1/2 [qn, pn′ ]

= lim
a→0,N→∞

i
δnn′

a
= iδ(x− x′)

(12.1.28a)

and

[q(x), q(x′)] = [p(x), p(x′)] = 0 . (12.1.28b)

Next, we will derive the representation in terms of normal coordinates. From
(12.1.6), it follows that



12.1 Coupled Oscillators, the Linear Chain, Lattice Vibrations 257

k =
2π�
L

, where � is an integer with −∞ ≤ � ≤ ∞ . (12.1.29)

For a string of finite length, the Fourier space remains discrete in the contin-
uum limit, although the number of wave vectors and thus normal coordinates
is now infinite. From (12.1.5a,b) we have

q(x) =
1

L1/2

∑
k

eikxQk (12.1.30a)

p(x) =
1

L1/2

∑
k

e−ikxPk (12.1.30b)

and from (12.1.11)

H =
∑

k

1
2

(
Pk P

†
k + ω2

kQk Q
†
k

)
, (12.1.31)

whereby, in the limit a→ 0, equation (12.1.12) reduces to

ω2
k = v2k2 +Ω2

0 . (12.1.32)

The commutation relations for the normal coordinates (12.1.10) remain un-
changed:

[Qk, Pk′ ] = iδkk′ , [Qk, Qk′ ] = 0 , [Pk, Pk′ ] = 0 . (12.1.33)

The transformation to creation and annihilation operators (12.1.14a,b), and
also the expression for the Hamiltonian in terms of these quantities (12.1.16)
remain correspondingly unchanged. The representation of the displacement
field in terms of creation and annihilation operators now takes the form

q(x) =
1

L1/2

∑
k

eikx
ak + a†−k√

2ωk

=
1

L1/2

∑
k

(
eikxak + e−ikxa†k

) 1√
2ωk

(12.1.34)

and, from (12.1.23), its time dependence is given by

q(x, t) =
1

L1/2

∑
k

(
ei(kx−ωkt)ak + e−i(kx−ωkt)a†k

) 1√
2ωk

. (12.1.35)

We finally obtain for the Hamiltonian

H =
∑

k

ωk

(
a†kak +

1
2

)
, (12.1.36)

which is positive definite. The functions ei(kx−ωkt) and e−i(kx−ωkt) appearing
in (12.1.35) are solutions of the free field equation (12.1.26), which, in connec-
tion with the Klein–Gordon equation, we had interpreted as solutions with
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positive and negative energy. In the quantized theory, these solutions appear
as amplitude functions, prefactors of the annihilation and creation operators
in the expansion of the field operators. The sign of the frequency dependence
is of no significance for the value of the energy. This is determined by the
Hamiltonian (12.1.36), which is positive definite: there are no states of neg-
ative energy. The direct analogy to the vibrating string relates to the real
Klein–Gordon field. The complex field will be treated in Eq. (12.1.47a,b) and
Sect. 13.2.

12.1.3 Generalization to Three Dimensions,
Relationship to the Klein–Gordon Field

12.1.3.1 Generalization to three dimensions

It is now straightforward to generalize the above results to three dimensions.
We consider a discrete three-dimensional cubic lattice. Rather than taking
an elastic lattice, which would have three-dimensional displacement vectors,
we shall assume instead that the displacements are only along one dimension
(scalar). In the continuum limit, the one-dimensional coordinate x must be
replaced by the three-dimensional vector x

x→ x ,

and the field equation for the displacement q(x, t) reads:

q̈(x, t) − v2∆q(x, t) +Ω2
0 q(x, t) = 0 . (12.1.37)

Introducing the substitutions

v → c ,
Ω2

0

v2
→ m2 , (x, t) ≡ x , and q(x, t) → φ(x) , (12.1.38)

we obtain

∂µ∂
µφ(x) +m2φ(x) = 0 , (12.1.39)

which is precisely the Klein–Gordon equation (5.2.11′). The representation
of the solution of the Klein–Gordon equation in terms of annihilation and
creation operators (12.1.35), the commutation relations (12.1.15), (12.1.28),
and the Hamiltonian (12.1.36) can all be directly translated into three di-
mensions:

φ(x, t) =
1

L3/2

∑
k

1√
2ωk

(
ei(kx−ωkt)ak + e−i(kx−ωkt)a†k

)
(12.1.40)

≡ φ+(x) + φ−(x) ,

[ak , a
†
k′ ] = δk,k′ , [ak , ak′ ] = [a†k, a

†
k′ ] = 0, (12.1.41a)
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[φ(x, t), φ̇(x′, t)] = iδ(3)(x − x′),

[φ(x, t), φ(x′, t)] = [φ̇(x, t), φ̇(x′, t)] = 0,
(12.1.41b)

and

H =
∑
k

ωk

(
a†kak +

1
2

)
. (12.1.42)

Inspired by these mechanical analogies, we arrive at a completely new inter-
pretation of the Klein–Gordon equation. Previously, in Sect. 5.2, an attempt
was made to use the Klein–Gordon equation as a relativistic replacement for
the Schrödinger equation and to interpret its solutions as probability ampli-
tudes in the same way as for the Schrödinger wave functions in coordinate
space. However, φ(x, t) is not a wave function but an operator in Fock space.
This field operator is represented as a superposition of single-particle so-
lutions of the Klein–Gordon equation with amplitudes that are themselves
operators. The effect of these operators is to create and annihilate the quanta
(elementary particles) that are described by the field. The term Fock space
describes the state space spanned by the multi-boson states(

a†k1

)nk1
(
a†k2

)nk2
. . . |0〉 , (12.1.43a)

where |0〉 is the ground state (≡ vacuum state) of the field. The energy of
this state is

E =
∑
k

�ωk

(
nk +

1
2

)
. (12.1.43b)

In equation (12.1.40) the field operator was split into positive and negative
frequency parts, φ+(x) and φ−(x). This notation originates from the positive
and negative energy solutions. Due to the hermiticity of the field operator
φ(x), we have φ+† = φ−, and in the expansion (12.1.40) we encounter the
sum of ak and a†k. This hermitian (real) Klein–Gordon field describes un-
charged mesons, as our subsequent investigations will reveal.

12.1.3.2 The infinite-volume limit

Until now, we have based our studies on a finite volume with linear extension
L. In order to formulate relativistically invariant theories, it is necessary
to include all of space. We thus take the limit L → ∞. In this limit, the
previously discrete values of k move arbitrarily close together, such that k
too becomes a continuous variable. The sums over k are replaced by integrals
according to∑

k

(
2π
L

)3

. . .→
∫

d3k

(2π)3
. . . .
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Using the definition

a(k) =
(
L

2π

) 3
2

ak , (12.1.44)

one obtains the field operator from (12.1.39) as

φ(x, t) =

∞∫
−∞

d3k

(2π)3/2

1√
2ωk

(
ei(kx−ωkt)a(k) + e−i(kx−ωkt)a†(k)

)
,

(12.1.45)

where the k integration extends in all three spatial dimensions from −∞ to
+∞. The commutation relations for the creation and annihilation operators
now read:

[
a(k), a†(k′)

]
= δkk′

(
L

2π

)3

= δ(k − k′),

[a(k), a(k′)] = 0 ,
[
a†(k), a†(k′)

]
= 0 .

(12.1.46)

Proof:

1 =
X
k′
δkk′ =

X
k′

„
2π

L

«3
 „

L

2π

«3

δkk′

!

=

Z
d3k′

 „
L

2π

«3

δkk′

!
=

Z
d3k′ δ(k− k′) .

The complex Klein–Gordon field is not hermitian and therefore the ex-
pansion coefficients (operators) of the solutions with positive and negative
frequency are independent of one another

φ(x, t) =
1

L3/2

∑
k

1√
2ωk

(
e−ik·xak + eik·xb†k

)
. (12.1.47a)

Here, k · x = ωkt− k · x is the scalar product of four-vectors. The operators
ak and bk have the following significance:

ak (a†k) annihilates (creates) a particle with momentum k and
bk (b†k) annihilates (creates) an antiparticle with momentum k

and opposite charge,

as will be discussed more fully in subsequent sections. From (12.1.47a), one
obtains the hermitian conjugate of the field operator as

φ†(x, t) =
1

L3/2

∑
k

1√
2ωk

(
e−ik·xbk + eik·xa†k

)
. (12.1.47b)
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12.2 Classical Field Theory

12.2.1 Lagrangian and Euler–Lagrange Equations of Motion

12.2.1.1 Definitions

In this section we shall study the basic properties of classical (and, in the
main, relativistic) field theories. We consider a system described by fields
φr(x), where the index r is a number which labels the fields. It can refer to
the components of a single field, e.g., the radiation field Aµ(x) or the four-
spinor ψ(x), but it can also serve to enumerate the different fields. To begin
with, we define a number of terms and concepts.

We assume the existence of a Lagrangian density that depends on the
fields φr and their derivatives φr,µ ≡ ∂µφr ≡ ∂

∂xµφr. The Lagrangian density
is denoted by

L = L(φr , φr,µ) . (12.2.1)

The Lagrangian is then defined as

L(x0) =
∫
d3xL(φr , φr,µ) . (12.2.2)

The significance of the Lagrangian in field theory is completely analogous to
that in point mechanics. The form of the Lagrangian for various fields will
be elucidated in the following sections. We also define the action

S(Ω) =
∫
Ω

d4xL(φr , φr,µ) =
∫
dx0 L(x0) , (12.2.3)

where d4x = dx0 d3x ≡ dx0 dx1 dx2 dx3. The integration extends over a
region Ω in the four-dimensional space–time, which will usually be infinite.
We shall use the same notation as in Part II on relativistic wave equations ,
where we set the speed of light c = 1 and, thus, x0 = t.

12.2.1.2 Hamilton’s principle in point mechanics

As has already been mentioned, the definitions and the procedure needed
here are analogous to those of point mechanics with n degrees of freedom.
We briefly remind the reader of the latter1,2. The Lagrangian of a system
of particles with n degrees of freedom with generalized coordinates qi, i =
1, . . . , n has the form:
1 H. Goldstein, Classical Mechanics, 2nd ed., Addison-Wesley, Reading, Mass.,

1980
2 L.D. Landau and E.M. Lifshitz, Course of Theoretical Physics, Vol. 1, Pergamon,

Oxford, 1960
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L(t) =
n∑

i=1

1
2
miq̇

2
i − V (qi) . (12.2.4)

The first term is the kinetic energy, and the second the negative potential
energy due to the interactions between the particles and any external con-
servative forces. The action is defined by

S =
∫ t2

t1

dtL(t) . (12.2.5)

The equations of motion of such a classical system follow from Hamilton’s
action principle. This states that the actual trajectory qi(t) of the system is
such that the action (12.2.5) is stationary, i.e.,

δS = 0 , (12.2.6)

where variations in the trajectory qi(t) + δqi(t) between the initial and final
times t1 and t2 are restricted by (see Fig.12.4)

δqi(t1) = δqi(t2) = 0, i = 1, . . . , n . (12.2.7)

Fig. 12.4. Variation of the solution in the time
interval between t1 and t2. Here, q(t) stands for
{qi(t)}

The condition that the action is stationary for the actual trajectory implies

δS =

t2∫
t1

dt

(
∂L

∂qi(t)
δqi(t) +

∂L

∂q̇i(t)
δq̇i(t)

)

=

t2∫
t1

dt

[(
∂L

∂qi(t)
− d

dt

∂L

∂q̇i(t)

)
δqi(t) +

d

dt

(
∂L

∂q̇i(t)
δqi(t)

)]
(12.2.8)

=

t2∫
t1

dt

[(
∂L

∂qi(t)
− d

dt

∂L

∂q̇i(t)

)
δqi(t)

]
+
(

∂L

∂q̇i(t)
δqi(t)

) ∣∣∣∣t2
t1

= 0 .

The second term on the last line vanishes since, according to (12.2.7), the
variation δq(t) must be zero at the endpoints. In order for δS to vanish for
all δqi(t), we have the condition
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∂L

∂qi(t)
− d

dt

∂L

∂q̇i(t)
= 0 , i = 1, . . . , n . (12.2.9)

These are the Euler–Lagrange equations of motion, which are equivalent to
Hamilton’s equations of motion. We now proceed to extend these concepts
to fields.

12.2.1.3 Hamilton’s principle in field theory

In field theory the index i is replaced by the continuous variable x. The
equations of motion (= field equations) are obtained from the variational
principle

δS = 0 . (12.2.10)

To this end, we consider variations of the fields

φr(x) → φr(x) + δφr(x) (12.2.11)

which are required to vanish on the surface Γ (Ω) of the space–time region
Ω:

δφr(x) = 0 on Γ (Ω) . (12.2.12)

In analogy to (12.2.9), we now calculate the change in the action (12.2.3)

δS =
∫
Ω

d4x

{
∂L
∂φr

δφr +
∂L
∂φr,µ

δφr,µ

}

=
∫
Ω

d4x

{
∂L
∂φr

− ∂

∂xµ

∂L
∂φr,µ

}
δφr +

∫
Ω

d4x
∂

∂xµ

(
∂L
∂φr,µ

δφr

)
.

(12.2.13)

Here, we employ the summation convention for the repeated indices r and µ
and have also used3 δφr,µ = ∂

∂xµ δφr . The last term in Eq.(12.2.13) can be
re-expressed using Gauss’s theorem as the surface integral∫

Γ (Ω)

dσµ
∂L
∂φr,µ

δφr = 0 , (12.2.14)

where dσµ is the µ component of the element of surface area. The condition
that δS in Eq.(12.1.13) vanishes for arbitrary Ω and δφr yields the Euler–
Lagrange equations of field theory

∂L
∂φr

− ∂

∂xµ

∂L
∂φr,µ

= 0 , r = 1, 2, . . . . (12.2.15)

3 δφr(x) = φ′r(x) − φr(x) and thus ∂
∂xµ δφr(x) = φ′r,µ(x) − φr,µ(x) = δφr,µ(x) .
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Remark. So far we have considered the case of real fields. Complex fields
can be treated as two real fields, for the real and imaginary parts. It is easy
to see that this is equivalent to viewing φ(x) and φ∗(x) as independent fields.
In this sense, the variational principle and the Euler–Lagrange equations also
hold for complex fields.

We now introduce two further definitions in analogy to point particles in
mechanics. The momentum field conjugate to φr(x) is defined by

πr(x) =
δL

δφ̇r(x)
=

∂L
∂φ̇r(x)

. (12.2.16)

The definition of the Hamiltonian reads:

H =
∫
d3x

(
πr(x)φ̇r(x) − L(φr , φr,µ)

)
= H(φr , πr) , (12.2.17)

where the φ̇r have to be expressed in terms of the πr.
The Hamiltonian density is defined by

H(x) = πr(x)φ̇r(x) − L(φr , φr,µ) . (12.2.18)

The Hamiltonian can be expressed in terms of the Hamiltonian density as

H =
∫
d3xH(x) . (12.2.19)

The integral extends over all space. H is time independent since L does not
depend explicitly on time.

12.2.1.4 Example: A real scalar field

To illustrate the concepts introduced above, we consider the example of a real
scalar field φ(x). For the Lagrangian density we take the lowest powers of the
field and its derivatives that are invariant under Lorentz transformations

L =
1
2
(
φ,µφ

,µ −m2φ2
)
, (12.2.20)

where m is a constant. The derivatives of L with respect to φ and φ,µ are

∂L
∂φ

= −m2φ ,
∂L
∂φ,µ

= φ,µ ,

from which one obtains for the Euler–Lagrange equation (12.2.15)

φ,µ
µ +m2φ = 0 , (12.2.21)

or, in the form previously employed,
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(∂µ∂µ +m2)φ = 0 . (12.2.21′)

Thus, Eq. (12.2.20) is the Lagrangian density for the Klein–Gordon equation.
The conjugate momentum for this field theory is, according to (12.2.16),

π(x) = φ̇(x) , (12.2.22)

and, from (12.2.18), the Hamiltonian density reads:

H(x) =
1
2
[
π2(x) + (∇φ)2 +m2φ2(x)

]
. (12.2.23)

If we had included higher powers of φ2 in (12.2.20), for example φ4, the equa-
tion of motion (12.2.21′) would have contained additional nonlinear terms.

Remarks on the structure of the Lagrangian density

(i) The Lagrangian density may only depend on φr(x) and φr,µ(x); higher
derivatives would lead to differential equations of higher than second order.
The Lagrangian density can depend on x only via the fields. An additional
explicit dependence on x would violate the relativistic invariance.

(ii) The theory must be local, i.e., L(x) is determined by φr(x) and φr,µ(x)
at the position x. Integrals over L(x) would imply nonlocal terms and could
lead to acausal behavior.

(iii) The Lagrangian density L is not uniquely determined by the action, nor
even by the equations of motion. Lagrangian densities that differ from one
another by a four-divergence are physically equivalent

L′(x) = L(x) + ∂νF
ν(x) . (12.2.24)

The additional term here leads in the action to a surface integral over the
three-dimensional boundary of the four-dimensional integration region. Since
the variation of the field vanishes on the surface, this can make no contribu-
tion to the equation of motion.

(iv) L should be real (in quantum mechanics, hermitian) or, in view of re-
mark (iii), equivalent to a real L. This ensures that the equations of mo-
tion and the Hamiltonian, when expressed in terms of real fields, are them-
selves real. L must be relativistically invariant, i.e., under an inhomogeneous
Lorentz transformation

x→ x′ = Λx+ a

φr(x) → φ′
r(x

′) ,
(12.2.25)

L must behave as a scalar:

L(φ′r(x
′), φ′r,µ(x′)) = L(φr(x), φr,µ(x)) . (12.2.26)

Since d4x = dx0dx1dx2dx3 is also invariant, the action is unchanged under
the Lorentz transformation (12.2.25) and the equations of motion have the
same form in both coordinate systems and are thus covariant.
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12.3 Canonical Quantization

Our next task is to quantize the field theory introduced in the previous sec-
tion. We will allow ourselves to be guided in this by the results of the me-
chanical elastic continuum model (Sect. 12.1.3) and postulate the following
commutation relations for the fields φr and the momentum fields πr:

[φr(x, t), πs(x′, t)] = iδrsδ(x − x′) ,
[φr(x, t), φs(x′, t)] = [πr(x, t), πs(x′, t)] = 0 .

(12.3.1)

These are known as the canonical commutation relations and one speaks of
canonical quantization. For the real Klein–Gordon field, where according to
(12.2.22) π(x) = φ̇(x), this also implies

[φ(x, t), φ̇(x′, t)] = iδ(x − x′) ,

[φ(x, t), φ(x′, t)] = [φ̇(x, t), φ̇(x′, t)] = 0 .
(12.3.2)

In view of the general validity of (12.1.28) and (12.1.41b), one postulates also
the canonical commutation relations for interacting fields.

12.4 Symmetries and Conservation Laws,
Noether’s Theorem

12.4.1 The Energy–Momentum Tensor, Continuity Equations,
and Conservation Laws

The invariance of a system under continuous symmetry transformations leads
to continuity equations and conservation laws. The derivation of these con-
servation laws from the invariance of the Lagrangian density is known as
Noether’s theorem (see below).

Continuity equations can also be derived in an elementary fashion from
the equations of motion. This will be illustrated for the case of the energy–
momentum tensor , which is defined by

T µν =
∂L
∂φr,µ

φ ,ν
r − Lgµν . (12.4.1)

The energy–momentum tensor obeys the continuity equation4

T µν
,µ = 0 . (12.4.2)

Proof: Differentiation of T µν yields:
4 In the next section, we shall derive this continuity equation from space–time

translational invariance, whence, in analogy to classical mechanics, the term
energy–momentum tensor will find its justification.
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T µν
,µ =

(
∂

∂xµ

∂L
∂φr,µ

)
φ ,ν

r +
∂L
∂φr,µ

φ ,ν
r µ − ∂νL (12.4.3)

=
∂L
∂φr

φ ,ν
r +

∂L
∂φr,µ

φ ,ν
r µ − ∂νL = 0 ,

where we have used the Euler–Lagrange equation (12.2.15) and ∂νL =
∂L
∂φr

∂νφr + ∂L
∂φr,µ

∂νφr,µ to obtain the second identity.
If a four-vector gµ satisfies a continuity equation

gµ
,µ = 0 , (12.4.4)

then, assuming that the fields on which gµ depends vanish rapidly enough
at infinity, this leads to the conservation of the space integral of its zero
component

G0(t) =
∫
d3x g0(x, t) . (12.4.5)

Proof: The continuity equation, together with the generalized Gauss diver-
gence theorem, leads to∫

Ω

d4x
∂

∂xµ
gµ = 0 =

∫
σ

dσµ g
µ . (12.4.6)

This holds for every four-dimensional region Ω with surface σ. One now
chooses an integration region whose boundary in the spatial directions ex-
tends to infinity. In the time direction, it is bounded by two three-dimensional
surfaces σ1(x0 = t1) and σ2(x0 = t2) (Fig.12.5). In the spatial directions, φr

and φr,µ are zero at infinity:

0 =
∫
σ1

d3x g0 −
∫
σ2

d3x g0 =
∫
d3x g0(x, t1) −

∫
d3x g0(x, t2)

thus,

x0

σ2

σ1
Fig. 12.5. Diagram relating to the
derivation of the conservation law
(see text)
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G0(t1) = G0(t2) (12.4.7a)

or, alternatively,

dG0

dt
= 0 . (12.4.7b)

Applying this result to the continuity equation for the energy–momentum
tensor (12.4.1) leads to the conservation of the energy–momentum four-vector

P ν =
∫
d3xT 0ν(x, t) . (12.4.8)

The components of the energy–momentum vector are

P 0 =
∫
d3x {πr(x)φ̇r(x) − L(φr , φr,µ)} (12.4.9)

=
∫
d3xH = H

and

P j =
∫
d3xπr(x)

∂φr

∂xj
j = 1, 2, 3 . (12.4.10)

The zero component is equal to the Hamiltonian (operator), and the spatial
components represent the momentum operator of the field.

12.4.2 Derivation from Noether’s Theorem of the Conservation
Laws for Four-Momentum, Angular Momentum, and Charge

12.4.2.1 Noether’s theorem

Noether’s theorem states that every continuous transformation that leaves
the action unchanged leads to a conservation law. For instance, the conserva-
tion of four-momentum and of angular momentum follows from the invariance
of the Lagrangian density L under translations and rotations, respectively.
Since these form continuous symmetry groups, it is sufficient to consider in-
finitesimal transformations. We therefore consider the infinitesimal Lorentz
transformation

xµ → x′µ = xµ + δxµ = xµ +∆ωµν x
ν + δµ (12.4.11a)

φr(x) → φ′
r(x

′) = φr(x) +
1
2
∆ωµν S

µν
rs φs(x) . (12.4.11b)

Here x and x′ represent the same point in space time referred to the two
frames of reference, and φr and φ′r are the field components referred to these
coordinate systems. The quantities which appear in these equations should
be understood as follows: The constant δµ causes an infinitesimal displace-
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ment. The homogeneous part of the Lorentz transformation is given by the
infinitesimal antisymmetric tensor ∆ωµν = −∆ωνµ. The coefficients Sµν

rs in
the transformation (12.4.11b) of the fields are antisymmetric in µ and ν and
are determined by the transformation properties of the fields. For example,
in the case of spinors (Eqs.(6.2.13) and (6.2.17)), we have

1
2
∆ωµν S

µν
rs φs = − i

4
∆ωµν σ

µν
rs φs , (12.4.12a)

i.e.,

Sµν
rs = − i

2
σµν

rs , (12.4.12b)

where r and s(= 1, . . . , 4) label the four components of the spinor field.
Vector fields transform under a Lorentz transformation according to Eq.
(11.1.3a) and thus we have

Sµν
rs = gµ

r g
ν
s − gµ

s g
ν
r , (12.4.12c)

where the indices r, s take the values 0, 1, 2, 3. In Eqs. (12.4.12a,b) summation
over the repeated indices µ, ν, and s is implied.

As has already been emphasized, the invariance under the transformation
(12.4.11a,b) means that the Lagrangian density has the same functional form
in the new coordinates and fields as it did in the original ones:

L(φ′r(x
′), φ′r,µ(x′)) = L(φr(x), φr,µ(x)) . (12.4.13)

From Eq. (12.4.13), the covariance of the equations of motion follows.
The variation of φr(x), for unchanged argument, is defined by

δφr(x) = φ′
r(x) − φr(x) . (12.4.14)

Furthermore, we define the total variation

∆φr(x) = φ′
r(x

′) − φr(x) , (12.4.15)

which represents the change due to the form and the argument of the function.
These two quantities are related by

∆φr(x) = (φ′
r(x

′) − φr(x′)) + (φr(x′) − φr(x))

= δφr(x′) +
∂φr

∂xν
δxν + O(δ2)

= δφr(x) +
∂φr

∂xν
δxν + O(δ2) ,

(12.4.16)

where O(δ2) stands for terms of second order, which we neglect. In correspon-
dence with Eq.(12.4.16), the difference between the Lagrangian densities in
the coordinate systems I and I ′, i.e., the total variation of the Lagrangian
density – which vanishes according to (12.4.13) – can be rewritten as
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0 = L(φ′r(x
′), φ′r,µ(x′)) − L(φr(x), φr,µ(x))

= L(φ′
r(x

′), . . . ) − L(φr(x′), . . . ) + (L(φr(x′), . . . ) − L(φr(x), . . . ))

= δL +
∂L
∂xµ

δxµ +O(δ2) . (12.4.17)

The first term on the right-hand side of (12.4.17) is obtained as

δL =
∂L
∂φr

δφr +
∂L
∂φr,µ

δφr,µ

=
∂L
∂φr

δφr −
(

∂

∂xµ

∂L
∂φr,µ

)
δφr +

∂

∂xµ

(
∂L
∂φr,µ

δφr

)
=

∂

∂xµ

{
∂L
∂φr,µ

[
∆φr −

∂φr

∂xν
δxν

]}
,

where the Euler–Lagrange equation was used to obtain the second line and

Eq.(12.4.16) to perform the last step. Together with
∂L
∂xµ

δxµ =
∂

∂xµ
(Lδxµ) =

∂

∂xµ
(Lgµνδxν), Eq. (12.4.17) leads to the continuity equation

gµ
,µ = 0 (12.4.18a)

for the four-vector

gµ ≡ ∂L
∂φr,µ

∆φr − T µνδxν . (12.4.18b)

Here, gµ depends on the variations ∆φr and δxν , and, according to the choice
made, results in different conservation laws.

Equations (12.4.18a) and (12.4.18b), which lead to the conserved quan-
tities (12.4.5), amongst others, represent the general statement of Noether’s
theorem.

12.4.2.2 Application to Translational, Rotational,
and Gauge Invariance

We now analyze the result of the previous section for three important special
cases.

(i) Pure translations:
For translations we have

∆ωµν = 0
δxν = δν

(12.4.19a)

and, hence, (12.4.11b) gives φ′r(x
′) = φr(x); therefore,

∆φr = 0 . (12.4.19b)
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Noether’s theorem then reduces to the statement gµ = −T µνδν , and since
the four displacements δν are independent of one another, one obtains the
four continuity equations

T µν
,µ = 0 (12.2.31)

for the energy–momentum tensor T µν , ν = 0, 1, 2, 3 , defined in (12.4.3). For
ν ≡ 0, one obtains the continuity equation for the four-momentum-density
Pµ = T 0µ, and for ν = i that for the quantities T iµ. The conservation laws
T iµ

,µ = 0 contain as zero components, the spatial momentum densities P i

and as current densities, the components of the so-called stress tensor T ij.
(See also the discussion that follows Eq.(12.4.7b).)

(ii) For rotations we have, according to (12.4.11a,b),

δµ = 0 , δxν = ∆ωνσx
σ (12.4.20a)

and

∆φr =
1
2
∆ωνσS

νσ
rs φs . (12.4.20b)

From (12.4.18b), it then follows that

gµ ≡ 1
2

∂L
∂φr,µ

∆ωνσS
νσ
rs φs − T µν∆ωνσx

σ . (12.4.21)

Using the definition

Mµνσ =
∂L
∂φr,µ

Sνσ
rs φs(x) + (xνT µσ − xσT µν) , (12.4.22)

equation (12.4.21) can be re-expressed in the form

gµ =
1
2

∂L
∂φr,µ

Sνσ
rs φs∆ωνσ − 1

2
T µν∆ωνσx

σ − 1
2
T µσ∆ωσνx

ν

=
1
2

(
∂L
∂φr,µ

Sνσ
rs φs + xνT µσ − xσT µν

)
∆ωνσ (12.4.20′)

=
1
2
Mµνσ∆ωνσ .

Since the six nonvanishing elements of the antisymmetric matrix ∆ωνσ are
independent of one another, it follows that the quantities Mµνσ satisfy the
six continuity equations

∂µM
µνσ = 0 . (12.4.23)

This yields the six quantities

Mνσ =
∫
d3xM0νσ

=
∫
d3x

(
πr(x)Sνσ

rs φs(x) + xνT 0σ − xσT 0ν
)
.

(12.4.24)
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For the spatial components, one obtains the angular-momentum operator

M ij =
∫
d3x

(
πr S

ij
rs φs + xi T 0j − xjT 0i

)
. (12.4.25)

Here, the angular-momentum vector (I1, I2, I3) ≡ (M23,M31,M12) is con-
served. The sum of the second and third terms in the integral represents the
vector product of the coordinate vector with the spatial momentum density
and can thus be considered as the angular momentum of the field. The first
term can be interpreted as intrinsic angular momentum or spin (see below
(13.3.13′) and (E.31c)). The space–time components (0 i)

M0i =
∫
d3xM00i

can be combined into the three-component boost vector (boost generator)

K = (M01,M02,M03) . (12.4.26)

(iii) Gauge transformations (gauge transformation of the first kind).
As a final application of Noether’s theorem we consider the consequences of
gauge invariance .
Assuming that the Lagrangian density contains a subset of fields φr and φ†

r

only in combinations of the type φ†r(x)φr(x) and φ†
r,µ(x)φ ,µ

r (x), then it is
invariant with respect to gauge transformations of the first kind. These are
defined by

φr(x) → φ′
r(x) = eiεφr(x) ≈ (1 + iε)φr(x)

φ†r(x) → φ†
r

′
(x) = e−iεφ†r(x) ≈ (1 − iε)φ†r(x) ,

(12.4.27)

where ε is an arbitrary real number. The coordinates are not transformed
and hence, according to Eq. (12.4.14),

δφr(x) = iε φr(x)

δφ†
r(x) = −iε φ†

r(x)
(12.4.28)

and [cf. (12.4.16)]

∆φr(x) = δφr(x) , ∆φ†
r(x) = δφ†

r(x) . (12.4.29)

The four-current-density follows from Noether’s theorem (12.4.18b) as

gµ ∝ ∂L
∂φr,µ

iε φr +
∂L
∂φ†r,µ

(−iε)φ†
r ,

i.e.,

gµ(x) = i

(
∂L
∂φr,µ

φr −
∂L
∂φ†r,µ

φ†r

)
g0(x) = i

(
πr(x)φr(x) − π†

r(x)φ
†
r(x)

) (12.4.30)

satisfies a continuity equation. This implies that
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Q = −iq
∫
d3x

(
πr(x)φr(x) − π†

r(x)φ
†
r(x)

)
(12.4.31)

is conserved. Thus, in quantized form,

dQ

dt
= 0, [Q,H] = 0 . (12.4.32)

The quantity q will turn out to be the charge. We can already see this by
calculating the commutator of Q and φr with the commutation relations
(12.3.1):

[Q,φr(x)] = −iq
∫
d3x′ [πs(x′), φr(x)]︸ ︷︷ ︸

−iδsrδ(x′ − x)

φs(x′) = −qφr(x) . (12.4.33)

If |Q′〉 is an eigenstate of Q,

Q |Q′〉 = Q′ |Q′〉 , (12.4.34)

then φr(x) |Q′〉 is an eigenstate with the eigenvalue Q′ − q and
φ†r(x) |Q′〉 is an eigenstate with the eigenvalue Q′ + q,

as follows from (12.4.33):

(Qφr(x) − φr(x)Q) |Q′〉 = −qφr(x) |Q′〉
Qφr(x) |Q′〉 − φr(x)Q′ |Q′〉 = −qφr(x) |Q′〉
Qφr(x) |Q′〉 = (Q′ − q)φr(x) |Q′〉 .

(12.4.35)

Hence, by using complex, i.e., nonhermitian, fields, one can represent charged
particles. The conservation of charge is a consequence of the invariance under
gauge transformations of the first kind (i.e., ones in which the phase is inde-
pendent of x). In theories in which the field is coupled to a gauge field, one
can also have gauge transformations of the second kind ψ → ψ′ = ψeiα(x) ,
Aµ → A′µ = Aµ + 1

e∂
µα(x) .

12.4.2.3 Generators of Symmetry Transformations
in Quantum Mechanics

We assume that the Hamiltonian H is time independent and consider con-
stants of the motion that do not depend explicitly on time. The Heisenberg
equations of motion

dA(t)
dt

= i[H,A(t)] (12.4.36)

imply that such constants of the motion commute with H

[H,A] = 0 . (12.4.37)
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Symmetry transformations can in general be represented by unitary, or, in
the case of time reversal, by antiunitary, transformations1. In the case of
a continuous symmetry group, every element of which is continuously con-
nected with the identity, e.g., rotations, the transformations are represented
by unitary operators. This means that the states and operators transform as

|ψ〉 → |ψ′〉 = U |ψ〉 (12.4.38a)

and

A→ A′ = UAU † . (12.4.38b)

The unitarity guarantees that transition amplitudes and matrix elements of
operators remain invariant, and that operator equations are covariant, i.e.,
the equations of motion and the commutation relations have the same form,
regardless of whether they are expressed in the original or in the transformed
operators.

For a continuous transformation, we can represent the unitary operator
in the form

U = eiαT (12.4.39)

where T † = T and α is a real continuous parameter. The hermitian operator
T is called the generator of the transformation. For α = 0, we have U(α =
0) = 1 . For an infinitesimal transformation (α → δα), it is possible to expand
U as

U = 1 + i δα T +O(δα2) , (12.4.39′)

and the transformation rule for an operator A has the form

A′ = A+ δA = (1 + i δαT )A(1 − i δαT ) +O(δα2)
and thus δA = i δα [T,A] . (12.4.37b′)

When the physical system remains invariant under the transformation con-
sidered, then the Hamiltonian must remain invariant, δH = 0, and from
(12.4.37b′) it follows that

[T,H ] = 0 . (12.4.40)

Since T commutes with H , the generator of the symmetry transformation is
a constant of the motion. Conversely, every conserved quantity G0 generates
a symmetry transformation through the unitary operator

U = eiαG0
, (12.4.41)

1 E.P. Wigner, Group Theory and its Application to the Quantum Mechanics of
Atomic Spectra, Academic Press, New York, 1959, Appendix to Chap. 20, p. 233;
V. Bargmann, J. Math. Phys. 5, 862 (1964)
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since G0 commutes with H on account of [H,G0] = 1
i Ġ

0 = 0, and hence
UHU † = H , signifying that H is invariant. Not unnaturally, this is exactly
the same transformation from which one derives the corresponding conserved
four-current-density, which satisfies a continuity equation. This can be con-
firmed explicitly for Pµ, Q, and Mµν . See Problem 13.2(b) for the Klein–
Gordon field and 13.10 for the Dirac field. See also Problems 13.5 and 13.12
referring to the charge conjugation operator.

The boost vector, Ki ≡ M0i, (12.4.26)

Ki = tP i −
∫
d3x

(
xiT 00(x, t) − πr(x)S0i

rsφs(x)
)

(12.4.42)

is a constant, but it depends explicitly on time. From the Heisenberg equation
of motion K̇ = 0 = i[H,K] + P, it follows that K does not commute with H

[H,K] = iP . (12.4.43)

For the Dirac-field one finds

Ki = tP i −
∫
d3x

(
xiH(x) − i

2
ψ̄(x)γiψ(x)

)
. (12.4.44)

Problems

12.1 Prove the completeness relation (12.1.7b) and the orthogonality relation
(12.1.7b).

12.2 Demonstrate the validity of the commutation relation (12.1.10).

12.3 Show that the Hamiltonian (12.1.1) for the coupled oscillators can be trans-
formed into (12.1.11) and gives the dispersion relation (12.1.12).

12.4 Prove the inverse transformations given in (12.1.14a,b).

12.5 Prove the commutation relations for the creation and annihilation operators
(12.1.15).

12.6 Prove the conservation law (12.4.7b) by calculating dG0

dt
using the three-

dimensional Gauss’s law and by using in the definition of G0 the integral over
all space.
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12.7 The coherent states for the linear chain are defined as eigenstates of the
annihilation operators ak. Calculate the expectation value of the operator

qn(t) =
X

k

1√
2Nmωk

h
ei(kna−ωkt)ak(0) + e−i(kna−ωkt)a†k(0)

i
for coherent states.

12.8 Show for vector fields As, s = 0, 1, 2, 3, the validity of Eq. (12.4.12c).



13. Free Fields

We shall now apply the results of the previous chapter to the free real and
complex Klein–Gordon fields, as well as to the Dirac and radiation fields. We
shall thereby derive the fundamental properties of these free field theories.
The spin-statistics theorem will also be proved.

13.1 The Real Klein–Gordon Field

Since the Klein–Gordon field was found as the continuum limit of coupled
oscillators, the most important properties of this quantized field theory have
already been encountered in Sects. 12.1 and 12.2.1.4. Nevertheless, here we
shall once more present the essential relations in a closed, deductive manner.

13.1.1 The Lagrangian Density, Commutation Relations,
and the Hamiltonian

The Lagrangian density of the free real Klein–Gordon field is of the form

L =
1
2

(φ,µφ
,µ −m2φ2) . (13.1.1)

The equation of motion (12.2.21) reads:

(∂µ∂
µ +m2)φ = 0 . (13.1.2)

The conjugate momentum field follows from (13.1.1) as

π(x) =
∂L
∂φ̇

= φ̇(x) . (13.1.3)

The quantized real Klein–Gordon field is represented by the hermitian oper-
ators

φ†(x) = φ(x) and π†(x) = π(x) .

The canonical quantization prescription (12.3.1) yields for the Klein–Gordon
field
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[
φ(x, t), φ̇(x′, t)

]
= i δ(x − x′)[

φ(x, t), φ(x′, t)
]

=
[
φ̇(x, t), φ̇(x′, t)

]
= 0 . (13.1.4)

Remarks:

(i) Since φ(x) transforms as a scalar under Lorentz transformations and
possesses no intrinsic degrees of freedom, the coefficients Sµν

rs in (12.4.11b)
and (12.4.25) are zero. The spin of the Klein–Gordon field is therefore
zero.

(ii) Since the field operator φ is hermitian, the L of Eq. (13.1.1) is not gauge
invariant. Thus the particles described by φ carry no charge.

(iii) Not all electrically neutral mesons with spin 0 are described by a real
Klein–Gordon field. For example, the K0 meson has an additional prop-
erty known as the hypercharge Y . At the end of the next section we will
see that the K0, together with its antiparticle K̄0, can be described by a
complex Klein–Gordon field.

(iv) For the case of quantized fields, too, it is still common practice to speak
of real and complex fields.

The expansion of φ(x) in terms of a complete set of solutions of the Klein–
Gordon equation is of the form

φ(x) = φ+(x) + φ−(x) (13.1.5)

=
∑
k

1√
2V ωk

(
e−ikxak + eikxa†k

)
with

k0 = ωk = (m2 + k2)1/2 , (13.1.6)

where φ+ and φ− represent the contributions of positive (e−ikx) and negative
frequency (eikx), respectively. Inverting (13.1.5) yields:

ak =
√

1
2V ωk

∫
d3x eikx

(
ωkφ(x, 0) + iφ̇(x, 0)

)
a†k =

√
1

2V ωk

∫
d3x e−ikx

(
ωkφ(x, 0) − iφ̇(x, 0)

)
. (13.1.5′)

From the canonical commutation relations of the fields (13.1.4), one obtains
the commutation relations for the ak and a†k:[

ak, a
†
k′

]
= δkk′ ,

[
ak, ak′

]
=
[
a†k, a

†
k′

]
= 0 . (13.1.7)

These are the typical commutation relations for uncoupled oscillators, i.e.,
for bosons. The operators

n̂k = a†kak (13.1.8)
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have the eigenvalues

nk = 0, 1, 2, . . .

and can thus be interpreted as occupation-number, or particle-number, opera-
tors. The operators ak and a†k annihilate and create particles with momentum
k.

From the energy–momentum four-vector (12.4.8), one obtains the Hamil-
tonian of the scalar field as

H =
∫
d3x

1
2

[
φ̇2(x) + (∇φ(x))2 +m2φ2(x)

]
(13.1.9)

=
∫
d3x

1
2

[
π2(x) + (∇φ(x))2 +m2φ2(x)

]
,

and the momentum operator of the Klein–Gordon field as

P = −
∫
d3x φ̇(x)∇φ(x) . (13.1.10)

Remark. The quantum-mechanical field equations also follow from the
Heisenberg equations, and the commutation relations (13.1.4) and (12.3.1):

φ̇(x) = i[H,φ(x)] = π(x) (13.1.11)

π̇(x) = i[H,π(x)] = (∇2 −m2)φ(x) , (13.1.12)

from which we have, in accordance with Eq. (13.1.2),

φ̈(x) = (∇2 −m2)φ(x) . (13.1.13)

Substitution of the expansion (13.1.5) yields H and P as

H =
∑
k

1
2
ωk

(
a†kak + aka

†
k

)
=
∑
k

ωk

(
a†kak +

1
2

)
(13.1.14)

P =
∑
k

1
2
k
(
a†kak + aka

†
k

)
=
∑
k

k
(
a†kak +

1
2

)
. (13.1.15)

The state of lowest energy, the ground state or vacuum state |0〉, is charac-
terized by the fact that it contains no particles, i.e., nk = 0, or

ak |0〉 = 0 for all k . (13.1.16a)

Thus

φ+(x) |0〉 = 0 for all x. (13.1.16b)

The energy of the vacuum state

E0 =
1
2

∑
k

ωk , (13.1.17)
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also known as the zero-point energy, is divergent. In itself, this is not a prob-
lem, since only energy differences are measurable and these are finite. How-
ever, it is desirable and possible to eliminate the zero-point energy from the
outset by the use of normal ordering of operators. In a normal ordered prod-
uct all annihilation operators are placed to the right of all creation operators .
For bosons, we illustrate the definition of normal order, symbolized by two
colons : . . . : , by means of the following examples:

(i) : ak1
ak2

a†k3
: = a†k3

ak1
ak2

(13.1.18a)

(ii) : a†kak + aka
†
k : = 2a†kak (13.1.18b)

and

(iii) : φ(x)φ(y) : = : (φ+(x) + φ−(x))(φ+(y) + φ−(y)) :
= : φ+(x)φ+(y) : + : φ+(x)φ−(y) :

+ : φ−(x)φ+(y) : + : φ−(x)φ−(y) :
= φ+(x)φ+(y) + φ−(y)φ+(x)

+φ−(x)φ+(y) + φ−(x)φ−(y) . (13.1.18c)

One treats the Bose operators in a normal product as if they had vanish-
ing commutators. The order of the creation (annihilation) operators among
themselves is irrelevant since their commutators are all zero. The positive
frequency parts are placed to the right of the negative frequency parts. The
vacuum expectation value of any normal product vanishes.

We now redefine the Lagrangian density and the observables such as
energy–momentum vector, angular momentum, etc. as normal products
: :. This means, for example, that the momentum operator (13.1.10) is
replaced by

P = −
∫
d3x : φ̇(x)∇φ(x) : . (13.1.10′)

It follows from this that the energy–momentum vector, instead of being given
by (13.1.14) and (13.1.15), now takes the form

Pµ =
∑
k

kµ a†kak . (13.1.19)

This no longer contains any zero-point terms. We shall illustrate this for the
Hamiltonian operator H . In the calculation leading to (13.1.14), the first
step involved no permutation of operators. If the original H is now replaced
by : H :, then, corresponding to example (ii) above, normal ordering gives
H =

∑
k ωka

†
kak, i.e., the zero component of (13.1.19).

The normalized particle states and their energy eigenvalues are:
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The vacuum |0〉 E0 = 0

single-particle states a†k |0〉 Ek = ωk

two-particle states a†k1
a†k2

|0〉 for arbitrary k1 	= k2 Ek1,k2

= ωk1 + ωk2

1√
2

(
a†k
)2

|0〉 for arbitrary k Ek,k = 2ωk

One obtains a general two-particle state by a linear superposition of these
states. As a result of (13.1.7), we have a†k1

a†k2
|0〉 = a†k2

a†k1
|0〉 . The parti-

cles described by the Klein–Gordon field are bosons: each of the occupation
numbers takes the values nk = 0, 1, 2, . . . . The operator n̂k = a†kak is the
particle-number operator for particles with the wave vector k whose eigen-
values are the occupation numbers nk.

We now turn to the angular momentum of the scalar field. This single-
component field contains no intrinsic degrees of freedom and the coefficients
Srs in Eq. (12.4.25) vanish, Srs = 0. The angular momentum operator
(12.4.25) therefore contains no spin component; it comprises only orbital
angular momentum

J =
∫
d3xx × P(x) (13.1.20)

= :
∫
d3xx × φ̇(x)

1
i
∇φ(x) : .

The spin of the particles is thus zero. Since the Lagrangian density (13.1.1)
and the Hamiltonian (13.1.9) are not gauge invariant, there is no charge
operator. The real Klein–Gordon field can only describe uncharged particles.
An example of a neutral meson with zero spin is the π0.

13.1.2 Propagators

For perturbation theory, and also for the spin-statistic theorem to be dis-
cussed later, one requires the vacuum expectation values of bilinear combi-
nations of the field operators. To calculate these, we first consider the com-
mutators[

φ+(x), φ+(y)
]

=
[
φ−(x), φ−(y)

]
= 0[

φ+(x), φ−(y)
]

=
1

2V

∑
k

∑
k′

1
(ωkωk′)1/2

[
ak, a

†
k′

]
e−ikx+ik′y

=
1
2

∫
d3k

(2π)3
e−ik(x−y)

ωk
, k0 = ωk . (13.1.21)
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Using the definitions

∆±(x) = ∓ i
2

∫
d3k

(2π)3
e∓ikx

ωk
, k0 = ωk (13.1.22a)

∆(x) =
1
2i

∫
d3k

(2π)3
1
ωk

(
e−ikx − eikx

)
, k0 = ωk (13.1.22b)

one can represent the commutators as follows:[
φ+(x), φ−(y)

]
= i∆+(x− y) (13.1.23a)[

φ−(x), φ+(y)
]

= i∆−(x− y) = −i∆+(y − x) (13.1.23b)

[φ(x), φ(y)] =
[
φ+(x), φ−(y)

]
+
[
φ−(x), φ+(y)

]
(13.1.23c)

= i∆(x− y) .

We also have the obvious relations

∆(x− y) = ∆+(x− y) +∆−(x− y)) (13.1.24a)
∆−(x) = −∆+(−x) . (13.1.24b)

In order to emphasize the relativistic covariance of the commutators of the
field, it is convenient to introduce the following four-dimensional integral
representations:

∆±(x) = −
∫

C±

d4k

(2π)4
e−ikx

k2 −m2
(13.1.25a)

∆(x) = −
∫
C

d4k

(2π)4
e−ikx

k2 −m2
, (13.1.25b)

for which the contours of integration in the complex k0 plane are shown in
Fig. 13.1.

Fig. 13.1. Contours of integra-
tion C± and C in the com-
plex k0 plane for the propaga-
tors ∆±(x) and ∆(x)

The expressions (13.1.25a,b) can be verified by evaluating the path inte-
grals in the complex k0 plane using the residue theorem. The integrands are
proportional to [(k0 − ωk)(k0 + ωk)]−1 and have poles at the positions ±ωk.
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Depending on the integration path, these poles may contribute to the inte-
grals. The right-hand sides of (13.1.25a,b) are manifestly Lorentz covariant.
This was shown in (10.1.2) for the volume element, and for the integrand is
self-evident.

We now turn to the evaluation of the vacuum expectation values and
propagators. Taking the vacuum expectation value of (13.1.23a) and using
φ |0〉 = 0, one obtains

i∆+(x− x′) = 〈0| [φ+(x), φ−(x′)] |0〉 = 〈0|φ+(x)φ−(x′) |0〉
= 〈0|φ(x)φ(x′) |0〉 . (13.1.26)

In perturbation theory (Sect. 15.2) we will encounter time-ordered products
of the perturbation Hamiltonian. For their evaluation we will need vacuum
expectation values of time-ordered products. The time-ordered product T is
defined for bosons as follows:

T φ(x)φ(x′) =
{
φ(x)φ(x′) t > t′

φ(x′)φ(x) t < t′ (13.1.27)

= Θ(t − t′)φ(x)φ(x′) +Θ(t′ − t)φ(x′)φ(x) .

Fig. 13.2. Contour of integration in the
k0 plane for the Feynman propagator
∆F(x)

The Feynman propagator is defined in terms of the expectation value of
the time-ordered product:

i∆F(x− x′) ≡ 〈0|T (φ(x)φ(x′)) |0〉 (13.1.28)
= i (Θ(t− t′)∆+(x− x′) −Θ(t′ − t)∆−(x− x′)) .

This is related to ∆±(x) through

∆F(x) = ±∆±(x) for t ≷ 0 (13.1.29)

and has the integral representation

∆F(x) =
∫

CF

d4k

(2π)4
e−ikx

k2 −m2
. (13.1.30)

The latter can be seen by adding an infinite half-circle to the integra-
tion contour in the upper or lower half-plane of k0 and comparing it with
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Eq.(13.1.25a). The integration along the path CF defined in Fig. 13.2 is iden-
tical to the integration along the real k0 axis, whereby the infinitesimal dis-
placements η and ε in the integrands serve to shift the poles k0 = ±(ωk−iη) =
±(

√
k2 +m2 − iη) away from the real axis:

∆F(x) = lim
η→0+

∫
d4k

(2π)4
e−ikx

k2
0 − (ωk − iη)2

(13.1.31)

= lim
ε→0+

∫
d4k

(2π)4
e−ikx

k2 −m2 + iε
.

As a preparation for the perturbation-theoretical representation in terms of
Feynman diagrams, it is useful to give a pictorial description of the processes
represented by propagators. Plotting the time axis to the right in Fig. 13.3,

b)a)

time time

xx

x′x′

Fig. 13.3. Propagation of a particle (a)
from x′ to x and (b) from x to x′

diagram (a) means that a meson is created at x′ and subsequently annihilated
at x, i.e., it is the process described by 〈0|φ(x)φ(x′) |0〉 = i∆+(x − x′). Dia-
gram (b) represents the creation of a particle at x and its annihilation at x′,
i.e., 〈0|φ(x′)φ(x) |0〉 = −i∆−(x − x′). Both processes together are described
by the Feynman propagator for the mesons of the Klein–Gordon field, which
is thus often called, for short, the meson propagator.

As an example, we consider the scattering of two nucleons, which are
represented in Fig. 13.4 by the full lines. The scattering arises due to the

=+

xx x

x′x′
x′

∆F

Fig. 13.4. Graphical representation of the meson propagator ∆F(x− x′) . In the
first diagram, a meson is created at x′ and annihilated at x. In the second diagram,
a meson is created at x and annihialted at x′. Full lines represent nucleons, and
dashed lines mesons
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exchange of mesons. The two processes are represented jointly, and indepen-
dently of their temporal sequence, by the Feynman propagator.

13.2 The Complex Klein–Gordon Field

The complex Klein–Gordon field is very similar to the real Klein–Gordon
field, except that now the particles created and annihilated by the field carry
a charge. Our starting point is the Lagrangian density

L = : φ†,µ(x)φ,µ(x) −m2φ†(x)φ(x) : . (13.2.1)

In line with the remark following Eq. (12.2.24), φ(x) and φ†(x) are treated as
independent fields. Hence, we have, for example, ∂L

∂φ†
,µ(x)

= φ,µ(x), and, from

the Euler–Lagrange equations (12.2.15), the equations of motion

(∂µ∂µ +m2)φ(x) = 0 and (∂µ∂µ +m2)φ†(x) = 0 . (13.2.2)

The conjugate fields of φ(x) and φ†(x) are, according to (12.2.16),

π(x) = φ̇†(x) and π†(x) = φ̇(x) . (13.2.3)

Since the complex Klein–Gordon field also behaves as a scalar under Lorentz
transformations, it has spin = 0. Due to the gauge invariance of L, this field
possesses an additional conserved quantity, namely the charge Q. The equal
time commutators of the fields and their adjoints are, according to canonical
quantization (12.3.1),[

φ(x, t), φ̇†(x′, t)
]

= i δ(x − x′)[
φ†(x, t), φ̇(x′, t)

]
= i δ(x − x′)

(13.2.4)

and [
φ(x, t), φ(x′, t)

]
=
[
φ(x, t), φ†(x′, t)

]
=
[
φ̇(x, t), φ̇(x′, t)

]
=
[
φ̇(x, t), φ̇†(x′, t)

]
= 0 .

The solutions of the field equations (13.2.2) for the complex Klein–Gordon
field are also of the form e±ikx, so that the expansion of the field operator
takes the form

φ(x) = φ+(x) + φ−(x) =
∑
k

1
(2V ωk)1/2

(
ake−ikx + b†keikx

)
, (13.2.5a)

where, in contrast to the real Klein–Gordon field, the amplitudes b†k and ak
are now independent of one another. From (13.2.5a) we have
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φ†(x) = φ†+(x) + φ†−(x) =
∑
k

1
(2V ωk)1/2

(
bk e−ikx + a†keikx

)
.

(13.2.5b)

In (13.2.5a,b), the operators φ(x) and φ†(x) are split into their positive
(e−ikx) and negative (eikx) frequency components. Taking the inverse of the
Fourier series (13.2.5a,b) and using (13.2.4), one finds the commutation re-
lations[

ak, a
†
k′

]
=
[
bk , b

†
k′

]
= δkk′[

ak, ak′

]
=
[
bk, bk′

]
=
[
ak, bk′

]
=
[
ak, b

†
k′

]
= 0 .

(13.2.6)

One now has two occupation-number operators, for particles a and for par-
ticles b

n̂ak = a†kak and n̂bk = b†kbk . (13.2.7)

The operators a†k , ak create and annihilate particles of type a, whilst b†k , bk
create and annihilate particles of type b , in each case the wave vector being
k. The vacuum state |0〉 is defined by

ak |0〉 = bk |0〉 = 0 for all k , (13.2.8a)

or, equivalently,

φ+(x) |0〉 = φ†
+
(x) |0〉 = 0 for all x . (13.2.8b)

One obtains for the four-momentum

Pµ =
∑
k

kµ (n̂ak + n̂bk) , (13.2.9)

whose zero component, having k0 = ωk, represents the Hamiltonian. On
account of the invariance of the Lagrangian density under gauge transforma-
tions of the first kind, the charge

Q = −iq
∫
d3x : φ̇†(x)φ(x) − φ̇(x)φ†(x) : (13.2.10)

is conserved. The corresponding four-current-density is of the form

jµ(x) = −iq
(

:
∂φ†

∂xµ
φ− ∂φ

∂xµ
φ† :

)
(13.2.11)

and satisfies the continuity equation

jµ
,µ = 0 . (13.2.12)
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Substituting the expansions (13.2.5a,b) into Q, one obtains

Q = q
∑
k

(n̂ak − n̂bk) . (13.2.13)

The charge operator commutes with the Hamiltonian. The a particles have
charge q, and the b particles charge −q. Except for the sign of their charge,
these particles have identical properties. The interchange a ↔ b changes only
the sign of Q. In relativistic quantum field theory, every charged particle is
automatically accompanied by an antiparticle carrying opposite charge. This
is a general result in field theory and also applies to particles with other spin
values. It is also confirmed by experiment.

An example of a particle–antiparticle pair are the charged π mesons π+

and π− which have electric charges +e0 and −e0 . However, the charge need
not necessarily be an electrical charge: The electrically neutral K0 meson
has an antiparticle K̄0, which is also electrically neutral. These two particles
carry opposite hypercharge: Y = 1 for the K0 and Y = −1 for the K̄0, and
are described by a complex Klein–Gordon field. The hypercharge1 is a charge-
like intrinsic degree of freedom, which is related to other intrinsic quantum
numbers, namely the electrical charge Q, the isospin Iz , the strangeness S,
and the baryon number N , by

Y = 2(Q− Iz)

and

S = Y −N .

The hypercharge is conserved for the strong, but not for the weak interactions.
However, since the latter is weaker by a factor of about 10−12, the hypercharge
is very nearly conserved. The electrical charge is always conserved perfectly!
The physical significance of the charge of a free field will become apparent
when we consider the interaction with other fields. The sign and magnitude
of the charge will then play a role.

13.3 Quantization of the Dirac Field

13.3.1 Field Equations

The quantized Klein–Gordon equation provides a description of mesons and,
simultaneously, difficulties in its interpretation as a quantum-mechanical
wave equation were overcome. Similarly, we shall consider the Dirac equa-
tion (5.3.20) as a classical field equation to be quantized:

1 See, e.g., E. Segrè, Nuclei and Particles, 2nd ed., Benjamin/Cummins, London
(1977), O. Nachtmann, Elementary Particle Physics, Springer, Heidelberg (1990)
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(iγ∂ −m)ψ = 0 and ψ̄(iγ∂
←

+m) = 0 . (13.3.1)

The arrow above the ∂ in the second equation signifies that the differentiation
acts to the left on the ψ̄. The second equation is obtained by taking the adjoint
of the first, and using the relations ψ̄ = ψ†γ0 and γ0γ†µγ0 = γµ. A possible
Lagrangian density for these field equations is

L = ψ̄(x)(iγµ∂µ −m)ψ(x) , (13.3.2)

which may be verified from

∂L
∂ψ̄

− ∂µ
∂L

∂(∂µψ̄)
= (iγµ∂µ −m)ψ = 0

and

∂L
∂ψ

− ∂µ
∂L

∂(∂µψ)
= −mψ̄ − ∂µψ̄ iγµ = 0 . (13.3.3)

The Lagrangian density (13.3.2) is not real, but differs from a real one only
by a four-divergence:

L =
i
2
[
ψ̄γµ∂µψ − (∂µψ̄)γµψ

]
−mψ̄ψ +

i
2
∂µ(ψ̄γµψ)

L∗ = − i
2

[
(∂µψ

†)γ2
0γ

µ†γ0ψ − ψ†γ2
0γ

µ†∂µγ
0ψ
]

−mψ̄ψ + (
i
2
∂µ(ψ̄γµψ))†

= − i
2
[
(∂µψ̄)γµψ − ψ̄γµ∂µψ

]
−mψ̄ψ − (

i
2
∂µ(ψ̄γµψ)) . (13.3.4)

The first three terms in (13.3.4), taken together, are real and could also
be used as the Lagrangian density, since the last non-real term is a four-
divergence and makes no contribution to the Euler–Lagrange equations of
motion.

The conjugate fields following from (13.3.2) are:

πα(x) =
∂L
∂ψ̇α

= iψ†
α

π̄α(x) =
∂L
∂ ˙̄ψα

= 0 .
(13.3.5)

Here, there is already an indication that the previously applied canonical
quantization is not going to work for the Dirac equation because[

ψ̄α(x), π̄α(x′)
]

= ψ̄α · 0 − 0 · ψ̄α = 0 	= δ(x − x′) .

Furthermore, particles with S = 1
2 are fermions and not bosons and, in

the nonrelativistic limit, these were quantized by means of anticommutation
relations. The Hamiltonian density resulting from (13.3.2) is
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H = παψ̇α − L = iψ†
αψ̇α − ψ̄(iγµ∂µ −m)ψ (13.3.6)

= −iψ̄γj∂jψ +mψ̄ψ

and the Hamiltonian reads:

H =
∫
d3x ψ̄(x)

(
−iγj∂j +m

)
ψ(x) . (13.3.7)

13.3.2 Conserved Quantities

For the energy–momentum tensor (12.4.1) one obtains from (13.3.2)

T µν = (∂νψ̄)
∂L

∂(∂µψ̄)
+

∂L
∂(∂µψ)

∂νψ − gµνL

= 0 + ψ̄ iγµ ∂νψ − gµν ψ̄(iγ∂ −m)ψ (13.3.8)
= iψ̄γµ∂νψ .

Since the Lagrangian density does not contain the derivative ∂µψ̄, the first
term in (13.3.8) vanishes. To obtain the final line, we have made use of the
fact that the Lagrangian density vanishes for every solution of the Dirac
equation. The order of the factors in (13.3.8) is arbitrary. As long as we are
dealing only with a classical field theory, the order is irrelevant. Later, we
shall introduce normal ordering.

According to (12.4.8), the momentum density follows from (13.3.8) as

Pµ = T 0µ (13.3.9)

and the momentum as

Pµ =
∫
d3xT 0µ = i

∫
d3x ψ̄(x)γ0∂µψ(x) . (13.3.10)

The zero component, in particular, is given by

P 0 = i
∫
d3x ψ̄(x)γ0∂0ψ = i

∫
d3xψ†∂0ψ = H . (13.3.11)

This result is identical to the Hamiltonian H of Eq. (13.3.7), as can be seen
by using the Dirac equation.

Finally, we consider the angular momentum determined by (12.4.24): If,
in the general relation

Mνσ =
∫
d3x

(
πr(x)Sνσ

rs φs + xνT 0σ − xσT 0ν
)
,

one substitutes the spinor field for φs, Eq. (13.3.5) for πr , and Eq. (12.4.12b)
for S, one then obtains
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Mνσ =
∫
d3x

(
iψ†

α

(
− i

2

)
σνσ

αβψβ + xν iψ†∂σψ − xσiψ†∂νψ

)
=
∫
d3xψ†

(
ixν∂σ − ixσ∂ν +

1
2
σνσ

)
ψ .

(13.3.12)

For the spatial components, this yields:

M ij =
∫
d3xψ†

(
xi 1

i
∂

∂xj
− xj 1

i
∂

∂xi︸ ︷︷ ︸
orbital angular momentum

+
1
2
σij︸ ︷︷ ︸

spin

)
ψ , (13.3.13)

which can be combined to form the angular momentum vector

M =
(
M23,M31,M12

)
=
∫
d3xψ†(x)

(
x × 1

i
∇ +

1
2

Σ

)
ψ(x) .

(13.3.13′)

The first term represents the orbital angular momentum and the second the
spin, with Σ represented by the Pauli spin matrices in (6.2.29d).

13.3.3 Quantization

It will prove useful here to modify the definition of plane wave spinors. Instead
of the spinors vr(k), r = 1, 2, we will now adopt the notation

wr(k) =
{

v2(k) for r = 1
−v1(k) for r = 2 , (13.3.14)

where the vr(k) are given in Eq. (6.3.11b), and hence

ur(k) =
(
E +m

2m

) 1
2
(

χr
σ·k

m+Eχr

)
(13.3.15a)

wr(k) = −
(
E +m

2m

) 1
2
(

σ·k
m+E iσ2χr

iσ2χr

)
, (13.3.15b)

with iσ2 ≡
(

0 1
−1 0

)
and χ1 =

(
1
0

)
, χ2 =

(
0
1

)
. This definition is motivated

by the ideas of Hole theory (Sect. 10.2) and implies that relations involving
the spin have the same form for both electrons and positrons. An electron
with spinor u 1

2
(m,0) and a positron with spinor w 1

2
(m,0) both have spin

± 1
2 , i.e., for the operator 1

2Σ
3 they have the eigenvalues ± 1

2 and the effect of
1
2Σ on electron and positron states is of the same form. Given this definition,
the charge conjugation operation C transforms the spinors ur(k) into wr(k)
and vice versa:
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Cur(k) = iγ2ur(k)
∗ = wr(k), r = 1, 2

Cwr(k) = iγ2wr(k)
∗ = ur(k), r = 1, 2 .

(13.3.15c)

In the new notation, the orthogonality relations (6.3.15) and (6.3.19a–c) ac-
quire the form

ūr(k)us(k) = δrs ūr(k)ws(k) = 0
w̄r(k)ws(k) = −δrs w̄r(k)us(k) = 0

(13.3.16)

and

ūr(k)γ0us(k) =
E

m
δrs ūr(k̃)γ0ws(k) = 0

w̄r(k)γ0ws(k) =
E

m
δrs w̄r(k̃)γ0us(k) = 0 , k̃ = (k0,−k) .

(13.3.17)

Relations that are bilinear in vr(k), e.g., the projections (6.3.23), have the
same form in wr(k). We now turn to the representation of the field as a
superposition of free solutions in a finite volume V :

ψ(x) =
∑
k,r

(
m

V Ek

)1/2 (
brkur(k) e−ikx + d†rkwr(k) eikx

)
(13.3.18a)

≡ ψ+(x) + ψ−(x) ,

with

Ek = (k2 +m2)1/2 , (13.3.19)

where the last line indicates the decomposition into positive and negative
frequency contributions. In classical field theory, the amplitudes brk and drk

are complex numbers, as in (10.1.9), and hermitian conjugation becomes sim-
ply complex conjugation, i.e., d†rk = d∗rk. Below, we shall quantize ψ(x) and
ψ̄(x), and then the amplitudes brk and drk will be replaced by operators. The
relations (13.3.18a,b) are written in such a way that they also remain valid
as an operator expansion. For the adjoint field (the adjoint field operator)
ψ̄(x) = ψ†(x)γ0, one obtains from (13.3.18a)

ψ̄(x) =
∑
k,r

(
m

VEk

)1/2 (
drkw̄r(k) e−ikx + b†rkūr(k) eikx

)
. (13.3.18b)

Inserting (13.3.18a,b) into (13.3.10) yields for the momentum

Pµ =
∑
k,r

kµ
(
b†rkbrk − drkd

†
rk

)
, (13.3.20)

as the following algebra shows:
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Pµ = i

Z
d3x ψ̄γ0∂µψ = i

Z
d3x

X
k,r

X
k′,r′

„
m

V Ek

« 1
2
„
m

V Ek′

« 1
2

×
h
b†r′k′ ūr′(k′)eik′x + dr′k′ w̄r′(k′)e−ik′x

i
×γ0∂µ

h
brkur(k)e

−ikx + d†rkwr(k)e
ikx
i

= i
X
k,r

X
k′,r′

„
m

Ek

m

Ek′

« 1
2 n
δkk′

“
− ikµb†r′k′brkūr′(k′)γ0ur(k)

+ikµdr′k′d
†
rkw̄r′(k′)γ0wr(k)

”
+δk,−k′

“
ikµei(k0+k0

′)x0 b†r′k′d
†
rkūr′(k′)γ0wr(k)

−ikµe−i(k0+k0
′)x0dr′k′brkw̄r′(k′)γ0ur(k)

”o
.

(13.3.21)

In the first term after the last identity we have immediately set e±i(k0−k′
0)x0 = 1,

on account of δkk′ , (and thus k′0 =
√

k′ +m2 = k0). The orthogonality relations

for the u and w yield the assertion (13.3.20).

In quantized field theory, brk and drk are operators. What are their alge-
braic properties? These we can determine using the result (13.3.20) for the
Hamiltonian

H = P 0 =
∑
k,r

k0

(
b†rkbrk − drkd

†
rk

)
. (13.3.22)

If, as in the Klein–Gordon theory, commutation rules of the form[
drk, d

†
rk′

]
= δkk′ ,

held, there would be no lower bound to the energy. (It would not help to
replace d†r in the expansion of the field by an annihilation operator er, as H
would still not be positive definite.) A system described by this Hamiltonian
would not be stable; the excitation of particles by the operator d†rk would
reduce its energy! The way out of this dilemma is to demand anticommutation
rules:{

brk, b
†
r′k′

}
= δrr′δkk′{

drk, d
†
r′k′

}
= δrr′δkk′

(13.3.23)

{
brk, br′k′

}
=
{
drk, dr′k′

}
=
{
drk, br′k′

}
=
{
brk, d

†
r′k′

}
= 0 .

That anticommutation rules should apply for fermions comes as no surprise in
view of the nonrelativistic many-particle theory discussed in Part I. The sec-
ond term in (13.3.22) then becomes −drkd

†
rk = d†rkdrk−1, so that the creation
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of a d particle makes a positive energy contribution. The anticommutation
relations (13.3.23) imply that each state can be, at most, singly occupied, i.e.,
the occupation-number operators n̂(b)

rk = b†rkbrk and n̂
(d)
rk = d†rkdrk have the

eigenvalues (occupation numbers) n(b,d)
rk = 0, 1. To avoid zero-point terms, we

have also introduced normal products for the Dirac field. The definition of
the normal ordering for fermions reads: All annihilation operators are written
to the right of all creation operators, whereby each permutation contributes
a factor (−1). Let us illustrate this definition with an example:

: ψαψβ : = :
(
ψ+

α + ψ−
α

) (
ψ+

β + ψ−
β

)
:

= ψ+
αψ

+
β − ψ−

β ψ
+
α + ψ−

αψ
+
β + ψ−

αψ
−
β .

(13.3.24)

All observables, e.g., (13.3.10) or (13.3.22) are defined as normal products,
i.e., the final Hamiltonian is defined byH = : Horiginal : and P = : Poriginal :,
where Horiginal and Poriginal refer to the expressions in (13.3.22) and (13.3.10).
We thus have

H =
∑
k,r

Ek

(
b†rkbrk + d†rkdrk

)
(13.3.25)

P =
∑
k,r

k
(
b†rkbrk + d†rkdrk

)
. (13.3.26)

The operators b†rk (brk) create (annihilate) an electron with spinor ur(k)e−ikx

and the operators d†rk (drk) create (annihilate) a positron in the state
wr(k)eikx. From (13.3.25) and (13.3.26) and the corresponding representa-
tion of the angular momentum operator, it is clear that the d particles –
now already called positrons – have the same energy, momentum, and spin
degrees of freedom as the electrons. For their complete characterization, we
still have to consider their charge.

13.3.4 Charge

We start from the general formula (12.4.31) which yields for the charge Q

Q = −i q
∫
d3 x(πψ − ψ̄π̄) = −i q

∫
d3 xiψ†

αψα

= q

∫
d3 x ψ̄γ0ψ .

(13.3.27a)

The associated four-current-density is of the form

jµ(x) = q : ψ̄(x)γµψ(x) : (13.3.27b)

and satisfies the continuity equation

jµ
,µ = 0 . (13.3.27c)
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Setting q = −e0 for the electron, we obtain from (13.3.27a) the modified
definition of Q in terms of normal products

Q = −e0
∫
d3 x : ψ̄(x)γ0ψ(x) : ≡

∫
d3xj0(x)

= −e0
∑
k

∑
r=1,2

(
b†rkbrk − d†rkdrk

)
.

(13.3.28)

In the last identity the expansions (13.3.18a) and (13.3.18b) have been
inserted and evaluated as in Eq.(13.3.21). The difference in sign between
(13.3.28) and the Hamiltonian (13.3.25) stems from the fact that in (13.3.21)
the differential operators ∂µ produce different signs for the positive and neg-
ative frequency components, which, however, are compensated by the anti-
commutation. From (13.3.28), it is already evident that the d particles, i.e.,
the positrons, have opposite charge to the electrons. This is further confirmed
by the following argument:[

Q, b†rk
]

= −e0b†rk[
Q, d†rk

]
= e0d

†
rk .

(13.3.29)

We consider a state |Ψ〉, which is taken to be an eigenstate of the charge
operator with eigenvalue q:

Q |Ψ〉 = q |Ψ〉 . (13.3.30)

From (13.3.29) it then follows that

Qb†rk |Ψ〉 = (q − e0)b
†
rk |Ψ〉

Qd†rk |Ψ〉 = (q + e0)d
†
rk |Ψ〉 .

(13.3.31)

The state b†rk |Ψ〉 has the charge (q − e0) and the state d†rk |Ψ〉 the charge
(q + e0). Hence, using (13.3.18b), we also conclude that

Qψ̄(x) |Ψ〉 = (q − e0)ψ̄(x) |Ψ〉 . (13.3.32)

The creation of an electron or the annihilation of a positron reduces the
charge by e0. The vacuum state |0〉 has zero charge.

The charge operator, as a conserved quantity, commutes with the Hamil-
tonian and is time independent. As can be seen directly from (13.3.28) and
(13.3.26), it also commutes with the momentum vector P, which can be writ-
ten

[Q,Pµ] = 0 . (13.3.33)

Hence, there exist joint eigenfunctions of the charge and the momentum
operators. In the course of our attempt, in Part II, to construct a relativistic
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wave equation, and to interpret ψ in analogy to the Schrödinger wave function
as a probability amplitude, we interpreted j0 = ψ†ψ as a positive density; H ,
however, was indefinite. In the quantum field theoretic form, Q is indefinite,
which is acceptable for the charge, and the Hamiltonian is positive definite.
This leads to a physically meaningful picture: ψ(x) is not the state, but rather
a field operator that creates and annihilates particles. The states are given
by the states in Fock space, i.e., |0〉 , b†rk |0〉 , b

†
r1k1

d†r2k2
|0〉 , b†r1k1

b†r2k2
d†r3k3

|0〉,
etc. The operator b†rk=0 with r = 1(r = 2) creates an electron at rest with
spin in the z direction sz = 1

2 (sz = − 1
2 ). Likewise, d†rk=0 creates a positron

at rest with sz = 1
2 (sz = − 1

2 ). Correspondingly, b†rk (d†rk) creates an electron
(positron) with momentum k, which, in its rest frame, possesses the spin 1

2
for r = 1 and − 1

2 for r = 2 (see Problem 13.11).

∗13.3.5 The Infinite-Volume Limit

When using the Dirac field operators, we will always consider a finite volume,
i.e., in their expansion in terms of creation and annihilation operators we have
sums rather than integrals over the momentum. The infinite-volume limit will
only be introduced in the final results; for example, in the scattering cross-
section. However, there are some circumstances in which it is convenient
to work with an infinite volume from the outset. Equation (13.3.18a) then
becomes2

ψ(x) =
∫

d3k

(2π)3

√
m

k0

∑
r=1,2

(
br(k)ur(k)e−ikx + d†r(k)wr(k)eikx

)
.

(13.3.34)

The annihilation and creation operators are related to their finite-volume
counterparts by

br(k) =
√
k0V brk , dr(k) =

√
k0V drk . (13.3.35)

These operators thus satisfy the anticommutation relations{
br(k), b†r′(k′)

}
= (2π)3k0δrr′δ(3)(k − k′){

dr(k), d†r′(k′)
}

= (2π)3k0δrr′δ(3)(k − k′) ,
(13.3.36)

and all other anticommutators vanish. The momentum operator has the form

Pµ =
∫

d3k

(2π)3
kµ

k0

∑
r=1,2

b†r(k)br(k) + d†r(k)dr(k) . (13.3.37)

2 The factor
√
m in (13.3.34) is chosen, as in (13.3.18a), in order to cancel the

corresponding factor 1/
√
m in the spinors, so that the limit m→ 0 exists.
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We have{
Pµ, b†r(k)

}
= kµb†r(k) , {Pµ, br(k)} = −kµbr(k) ,{

Pµ, d†r(k)
}

= kµd†r(k) , {Pµ, dr(k)} = −kµd†r(k) .
(13.3.38)

From (13.3.38), one sees directly that the one-electron (positron) state
b†r(k) |0〉 (d†r(k) |0〉) possesses momentum kµ.

13.4 The Spin Statistics Theorem

13.4.1 Propagators and the Spin Statistics Theorem

We are now in a position to prove the spin statistics theorem, which relates
the values of the spin to the statistics (i.e., to the commutation properties
and, hence, to the possible occupation numbers). By way of preparation we
calculate the anticommutator of the Dirac field operators, where α and β
stand for the spinor indices 1, . . . , 4. Making use of the anticommutation
relations (13.3.23), the projectors (6.3.23), and Eq. (6.3.21) we find{

ψα(x), ψ̄α′(x′)
}

=
1
V

∑
k

∑
k′

(
mm

EkEk′

)1/2∑
r

∑
r′
δrr′δkk′

×
(
urα(k)ūr′α′(k′)e−ikxeik′x′

+ wrα(k)w̄r′α′(k′)eikxe−ik′x′)
=

1
V

∑
k

m

Ek

(
e−ik(x−x′)

∑
r

urα(k)ūrα′(k)

+ eik(x−x′)
∑

r

wrα(k)w̄rα′(k)

)

=
∫

d3k

(2π)3
m

Ek

(
e−ik(x−x′)

(
k/+m

2m

)
αα′

(13.4.1)

+ eik(x−x′)
(
k/ −m

2m

)
αα′

)
= (i∂/+m)αα′

1
2

∫
d3k

(2π)3
1
Ek

(
e−ik(x−x′) − eik(x−x′)

)
= (i∂/+m)αα′ i∆(x − x′) ,

where the function (13.1.22b)

∆(x− x′) =
1
2i

∫
d3k

(2π)3
1
Ek

(
e−ik(x−x′) − eik(x−x′)

)
, k0 = Ek (13.4.2)

has already been encountered in (13.1.23c) as the commutator of free bosons,
namely
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[φ(x), φ(x′)] = i∆(x− x′) .

The anticommutator of the free field operators thus has the form{
ψα(x), ψ̄α′ (x′)

}
= (i∂/+m)αα′ i∆(x− x′) . (13.4.1′)

In order to proceed further with the analysis, we require certain properties
of ∆(x), which we summarize below.

Properties of ∆(x)

(i) It is possible to represent ∆(x) in the form

∆(x) =
1
i

∫
d4k

(2π)3
δ(k2 −m2)ε(k0)e−ikx (13.4.3a)

with

ε(k0) = Θ(k0) −Θ(−k0) .

See Problem 13.16.

(ii)

∆(−x) = −∆(x) . (13.4.3b)

This can be seen directly from Eq.(13.4.3a).

(iii)

(� +m2)∆(x) = 0 . (13.4.3c)

The functions ∆(x),∆+(x),∆−(x) are solutions of the free Klein–Gordon equation,
since they are linear superpositions of its solutions. The propagator ∆F (x) and the
retarded and advanced Green’s functions3∆R(x),∆A(x) satisfy the inhomogeneous

Klein–Gordon equation with a source δ(4)(x) : (� +m2)∆F (x) = −δ(4)(x).
See Problem 13.17.

(iv)

∂0∆(x)| x0=0 = −δ(3)(x) . (13.4.3d)

This follows by taking the derivative of (13.4.2).

(v) ∆(x) is Lorentz invariant.

This can be shown by considering a Lorentz transformation Λ

∆(Λx) =
1

i

Z
d4k

(2π)3
δ(k2 −m2)ε(k0)e−ik·Λx .

3 The retarded and advanced Green’s functions are defined by∆R(x) ≡ Θ(x0)∆(x)
and ∆A(x) ≡ −Θ(−x0) ∆(x).
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Using k · Λx = Λ−1k · x and the substitution k′ = Λ−1k, we have d4k = d4k′ and

k′2 = k2. Furthermore, the δ function in (13.4.3a) vanishes for space-like vectors
k, i.e., k2 < 0. Since for time-like k and orthochronous Lorentz transformations

ε(k0′ ) = ε(k0), it follows that

∆(Λx) = ∆(x) . (13.4.3e)

For Λ ∈ L↓ on the other hand, ∆(Λx) = −∆(x).

Fig. 13.5. Minkowski diagram: past
and future light cone of the origin, and
a space-like vector (outside the light
cone), are shown

(vi) For space-like vectors one has

∆(−x) = ∆(x) . (13.4.3f)

Proof. The assertion is valid for purely space-like vectors as seen from the rep-

resentation (13.4.3a) with the substitutions x → −x and k → −k. However, all

space-like vectors can be transformed into purely space-like vectors by means of an

orthochronous Lorentz transformation (Fig. 13.5).

(vii) Thus, by combining (13.4.3b) and (13.4.3f), it follows for space-like
vectors that

∆(x) = 0 for x2 < 0 . (13.4.3g)

For purely space-like vectors this can be seen directly from the definition
(13.4.2) of ∆(x).

We now turn to the proof of the spin statistics theorem. First, we show
that two local observables of the type ψ̄(x)ψ(x), etc., commute for space-like
separations, e.g.:
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[
ψ̄(x)ψ(x), ψ̄(x′)ψ(x′)

]
= ψ̄α(x)

[
ψα(x), ψ̄(x′)ψ(x′)

]
+
[
ψ̄α(x), ψ̄(x′)ψ(x′)

]
ψα(x)

= ψ̄α(x)
({
ψα(x), ψ̄β(x′)

}
ψβ(x′)

− ψ̄β(x′) {ψα(x), ψβ(x′)}
)

+
({
ψ̄α(x), ψ̄β(x′)

}
ψβ(x′) (13.4.4)

− ψ̄β(x′)
{
ψ̄α(x), ψβ(x′)

})
ψα(x)

= ψ̄α(x)
(
(i∂/ +m)αβ i∆(x− x′)

)
ψβ(x′)

+ψ̄β(x′)
(
(−i∂/ +m)βαi∆(x− x′)

)
ψα(x).

Because of (13.4.3g), this commutator vanishes for space-like separations.
Thus, causality is satisfied since no signal can be transmitted between x and
x′ when (x− x′)2 < 0.4

What would have been the result if we had used commutators instead
of anticommutators for the quantization? Apart from the absence of a lower
energy bound, we would encounter a violation of causality. We would then
have[

ψα(x), ψ̄α′ (x′)
]

= (i∂/ +m)αα′ i∆1(x − x′) , (13.4.5a)

where

∆1(x − x′) =
1
2i

∫
d3k

(2π)3
1
k0

(
e−ik(x−x′) + eik(x−x′)

)
. (13.4.5b)

The function ∆1(x) = ∆+(x)−∆−(x) is an even solution of the homogeneous
Klein–Gordon equation, which does not vanish for space-like separations
(x − x′)2 < 0. Likewise, for space-like separations, (i∂/ +m)i∆1(x − x′) 	= 0.
For this kind of quantization, local operators at the same point in time but
different points in space would not commute. This would amount to a viola-
tion of locality or microcausality. Based on these arguments, we can formulate
the spin statistics theorem as follows:
Spin statistics theorem: Particles with spin 1

2 and, more generally, all parti-
cles with half-integral spin are fermions, whose field operators are quantized
by anticommutators. Particles with integral spin are bosons, and their field
operators are quantized by commutators.

Remarks:

(i) Microcausality: Two physical observables at positions with a space-like
separation must be simultaneously measurable; the measurements cannot

4 If it were possible to transmit signals between space–time points with space-like
separations, then this could only occur with speeds greater than the speed of
light. In a different coordinate system, this would correspond to a movement
into the past, i.e., to acausal behavior.
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influence one another. This property is known as microcausality. Without
it, space-like separations would have to be linked by a signal which, in vi-
olation of special relativity, would need to travel faster than light in order
for the observables to influence one another. This situation would also ap-
ply at arbitrarily small separations, hence the expression microcausality.
Instead of microcausality, the term locality is also used synonymously.
We recall the general result that two observables do not interfere (are
simultaneously diagonalizable) if, and only if, they commute.

(ii) The prediction of the spin statistics theorem for free particles with spin
S = 0 can be demonstrated in analogy to (13.4.5): Commutation rules
lead to [φ(x), φ(x′)] = i∆(x − x′). The fields thus satisfy microcausality
and, by calculating the commutators of products, one can show that the
observables φ(x)2 etc. also do. If, on the other hand, one were to quantize
the Klein–Gordon field with Fermi commutation relations, then, as is
readily seen, neither [φ(x), φ(x′)]+ nor [φ(x), φ(x′)]− could possess the
microcausality property [φ(x), φ(x′)]± = 0 for (x− x′)2 < 0. Therefore,
also composite operators would violate the requirement of microcausality.

(iii) Perturbation theory leads one to expect that the property of micro-
causality can be extended from the free propagator to the interacting
case5. For the interacting Klein–Gordon field one can derive the spectral
representation

〈0| [φ(x), φ(x′)] |0〉 =

∞∫
0

dσ2!(σ2)∆(x − x′, σ) (13.4.6)

for the expectation value of the commutator6. Here ∆(x − x′, σ) is the
free commutator given in Eq. (13.4.2) with explicit reference to the mass,
which in Eq. (1.3.4) has been integrated over. Hence, microcausality is
also fulfilled for the interacting field. If on the other hand the Klein–
Gordon field had been quantized using Fermi anti-commutation rules
one would find

〈0| {φ(x), φ(x′)} |0〉 =

∞∫
0

dσ2!(σ2)∆1(x− x′, σ) , (13.4.7)

where ∆1(x− x′, σ) given in Eq. (13.4.5b) does not vanish for space-like
separations. Microcausality would then be violated. Analogously one ob-
tains for fermions, if they are quantized with commutators, a spectral
representation containing ∆1, which is again a contradiction to micro-
causality.

5 A general proof for interacting fields on the basis of axiomatic field theory can
be found in R.F. Streater, A.S. Wightman, PCT, Spin & Statistics and all that,
W.A. Benjamin, New York, 1964, p. 146 f.

6 J.D. Bjorken and S.D. Drell, Relativistic Quantum Fields, McGraw Hill, New
York, 1965, p. 171.
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(iv) The reason why the observables of the Dirac field can only be bilinear
quantities ψ̄ψ as well as powers or derivatives thereof is the following.
The field ψ(x) itself is not measurable, since it is changed by a gauge
transformation of the first kind,

ψ(x) → ψ′(x) = eiαψ(x) ,

and observables may only be gauge-invariant quantities. Measurable
quantities must, as the Lagrangian density, remain unchanged under a
gauge transformation. Furthermore, there are no other fields that couple
to ψ(x) alone. The electromagnetic vector potential Aµ, for example,
couples to a bilinear combination of ψ.

Another reason why ψ(x) is not an observable quantity follows from
the transformation behavior of a spinor under a rotation through 2π, Eq.
(6.2.23a). Since the physically observable world is unchanged by a rotation
through 2π, whereas a spinor ψ becomes −ψ, one must conclude that spinors
themselves are not directly observable. This does not contradict the fact that,
under rotation in a spatial subdomain, one can observe the phase change of
a spinor with respect to a reference beam by means of an interference exper-
iment, since the latter is determined by a bilinear quantity (see the remarks
and references following Eq. (6.2.23a)).

13.4.2 Further Properties of Anticommutators
and Propagators of the Dirac Field

We summarize here for later use a few additional properties of anticommu-
tators and propagators of the Dirac field.

According to Eq. (13.4.1) and using the properties (13.4.3d) and (13.4.3g)
of ∆(x), the equal time anticommutator of the Dirac field is given by{

ψα(t,x), ψ̄α′(t,y)
}

= −γ0
αα′∂0∆(x0 − y0,x − y)|y0=x0

= γ0
αα′δ3(x − y) .

Multiplying this by γ0
α′β and summing over α′ yields:{

ψα(t,x), ψ†
β(t,y)

}
= δαβ δ

3(x − y) . (13.4.8)

Hence, iψ† is thus sometimes called the anticommutating conjugate operator
to ψ(x).

Fermion propagators
In analogy to (13.1.23a–c), one defines for the Dirac field[

ψ±(x), ψ̄∓(x′)
]
+

= iS±(x− x′) (13.4.9a)



302 13. Free Fields

[
ψ(x), ψ̄(x′)

]
+

= iS(x− x′) . (13.4.9b)

The anticommutator (13.4.9b) has already been calculated in (13.4.1). From
this calculation one sees that iS+(x−x′) (iS−(x−x′)) is given by the first (sec-
ond) term in the penultimate line of (13.4.1). Hence, on account of (13.1.10a–
c), we have

S±(x) = (i∂/ +m)∆±(x) (13.4.10a)

S(x) = S+(x) + S−(x) = (i∂/ +m)∆(x) . (13.4.10b)

Starting from the integral representation (13.1.25a,b) of ∆± and ∆, one ob-
tains from (13.4.9a,b)

S±(x) =
∫

C±

d4p

(2π)4
e−ipx p/+m

p2 −m2
=
∫

C±

d4p

(2π)4
e−ipx

p/−m
(13.4.11a)

and

S(x) =
∫

C

d4p

(2π)4
e−ipx

p/−m
, (13.4.11b)

where we have used (p/±m)(p/ ∓m) = p2 − m2. The paths C± and C are
the same as defined in Fig. 13.1. For Fermi operators one also introduces a
time-ordered product. The definition of the time-ordered product for Fermi
fields reads:

T
(
ψ(x)ψ̄(x′)

)
≡
{
ψ(x)ψ̄(x′) for t > t′

−ψ̄(x′)ψ(x) for t < t′

≡ Θ(t− t′)ψ(x)ψ̄(x′) −Θ(t′ − t)ψ̄(x′)ψ(x) . (13.4.12)

For use in the perturbation theory to be developed later, we also introduce
the following definition of the Feynman fermion propagator

〈0|T (ψ(x)ψ̄(x′)) |0〉 ≡ iSF (x− x′) . (13.4.13)

For its evaluation, we note that

〈0|ψ(x)ψ̄(x′) |0〉 = 〈0|ψ+(x)ψ̄−(x′) |0〉 = 〈0|
[
ψ+(x), ψ̄−(x′)

]
+
|0〉

= iS+(x − x′)
(13.4.14a)

and, similarly,

〈0| ψ̄(x′)ψ(x) |0〉 = iS−(x− x′) , (13.4.14b)

from which it follows that the Feynman fermion propagator (see Problem
13.18) is

SF (x) = Θ(t)S+(x) −Θ(−t)S−(x) = (iγµ∂µ +m)∆F (x) . (13.4.15)
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By exploiting (13.1.31), one can also write the Feynman fermion propagator
in the form

SF (x) =
∫

d4p

(2π)4
e−ipx p/+m

p2 −m2 + iε
. (13.4.16)

Problems

13.1 Confirm the validity of (13.1.5′).

13.2 (a) For the scalar field, show that the four-momentum operator

Pµ =:

Z
d3x {πφ,µ − δ µ

0 L} :

can be written in the form (13.1.19)

Pµ =
X
k

kµa†kak .

(b) Show that the four-momentum operator is the generator of the translation
operator:

eiaµP µ

F (φ(x))e−iaµP µ

= φ(x+ a) .

13.3 Confirm formula (13.1.25a) for ∆±(x).

13.4 Confirm the formula (13.1.31) for ∆F (x), taking into account Fig. 13.2.

13.5 Verify the commutation relations (13.2.6).

13.6 For the quantized, complex Klein–Gordon field, the charge conjugation oper-
ation is defined by

φ′(x) = Cφ(x)C† = ηCφ
†(x) ,

where the charge conjugation operator C is unitary and leaves the vacuum state
invariant: C |0〉 = |0〉.
(a) Show for the annihilation operators that

CakC
† = ηCbk, CbkC

† = η∗Cak

and derive for the single-particle states

|a,k〉 ≡ a†k |0〉 , |b,k〉 ≡ b†k |0〉 ,
the transformation property

C |a,k〉 = η∗C |b,k〉 , C |b,k〉 = ηC |a,k〉 .
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(b) Also show that the Lagrangian density (13.2.1) is invariant under charge con-
jugation and that the current density (13.2.11) changes sign:

Cj(x)C† = −j(x).
Hence, particles and antiparticles are interchanged, with the four-momentum re-
maining unchanged.
(c) Find a representation for the operator C.

13.7 Show for the Klein–Gordon field that:

[Pµ, φ(x)] = −i∂µφ(x)

[P, φ(x)] = i∇φ(x) .

13.8 Derive the equations of motion for the Dirac field operator ψ(x), starting from
the Heisenberg equations of motion with the Hamiltonian (13.3.7).

13.9 Calculate the expectation value of the quantized angular momentum operator
(13.3.13) in a state with a positron at rest.

13.10 Show that the spinors ur(k) and wr(k) transform into one another under
charge conjugation.

13.11 Consider an electron at rest and a stationary positron

˛̨
e∓,k = 0, s

¸
=

(
b†sk=0 |0〉
d†sk=0 |0〉

.

Show that

J
˛̨
e∓,k = 0, s

¸
=
X

r=1,2

˛̨
e∓,k = 0, r

¸ 1

2
(σ)rs

and

J3
˛̨
e∓,k = 0, s

¸
= ±1

2

˛̨
e∓,k = 0, s

¸
,

where (σ)rs are the matrix elements of the Pauli matrices in the Pauli spinors χr

and χs.

13.12 Prove that the momentum operator of the Dirac field (13.3.26)

Pµ =
X
k,r

kµ
h
b†rkbrk + d†rkdrk

i
is the generator of the translation operator:

eiaµP µ

ψ(x)e−iaµP µ

= ψ(x+ a) .
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13.13 From the gauge invariance of the Lagrangian density, derive the expression
(13.3.27b) for the current-density operator of the Dirac field.

13.14 Show that the operator of the charge conjugation transformation

C = C1C2

C1 = exp

24−i
X
k,r

m

V Ek
λ(b†krbkr − d†krdkr)

35
C2 = exp

24 iπ

2

X
k,r

m

V Ek
(b†kr − d†kr)(bkr − dkr)

35
transforms the creation and annihilation operators of the Dirac field and the field
operator as follows:

CbkrC
† = ηCdkr ,

Cd†krC
† = η∗Cb

†
kr ,

Cψ(x)C† = ηCCψ̄
T (x),

where the transpose only refers to the spinor indices, and C = iγ2γ0. The factor
C1 yields the phase factor ηC = eiλ. The transformation C exchanges particles and
antiparticles with the same momentum, energy, and helicity.
Show also that the vacuum is invariant with respect to this transformation and that
the current density jµ = e : ψ̄γµψ : changes sign.

13.15 (a) Show for the spinor field that

Q = −e0
X
k

X
r

“
b†rkbrk − d†rkdrk

”
(Eq. (13.3.28)), by starting from

Q = −e0
Z
d3x : ψ̄(x)γ0ψ(x) : .

(b) Show, furthermore, thath
Q, b†rk

i
= −e0b†rk and

h
Q, d†rk

i
= e0d

†
rk

(Eq.(13.3.29)).

13.16 Show that (13.4.2) can also be written in the form (13.4.3a).

13.17 Show that ∆F (x),∆R(x), and ∆A(x) satisfy the inhomogeneous Klein–
Gordon equation

(∂µ∂
µ +m2)∆F (x) = −δ(4)(x) .

13.18 Prove equation (13.4.15).
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Hint: Use

δ
`
k2 −m2

´
=
“
δ
“
k0 −

p
k2 +m2

”
+ δ

“
k0 +

p
k2 +m2

””.p
k2 +m2 .

13.19 Show for the Dirac-field that:

[Pµ, ψ(x)] = −i∂µψ(x)

[P, ψ(x)] = i∇ψ(x) .



14. Quantization of the Radiation Field

This chapter describes the quantization of the free radiation field. Since, for
certain aspects, it is necessary to include the coupling to external current
densities, a separate chapter is devoted to this subject. Starting from the
classical Maxwell equations and a discussion of gauge transformations, the
quantization will be carried out in the Coulomb gauge. The principal aim
in this chapter is to calculate the propagator for the radiation field. In the
Coulomb gauge, one initially obtains a propagator that is not Lorentz in-
variant. However, when one includes the effect of the instantaneous Coulomb
interaction in the propagator and notes that the terms in the propagator
that are proportional to the wave vector yield no contribution in pertur-
bation theory, one then finds that the propagator is equivalent to using a
covariant one. The difficulty in quantizing the radiation field arises from the
massless nature of the photons and from gauge invariance. Therefore, the
vector potential Aµ(x) has, in effect, only two dynamical degrees of freedom
and the instantaneous Coulomb interaction.

14.1 Classical Electrodynamics

14.1.1 Maxwell Equations

We begin by recalling classical electrodynamics for the electric and magnetic
fields E and B. The Maxwell equations in the presence of a charge density
ρ(x, t) and a current density j(x, t) read1:

1 Here and in the following we shall use rationalized units, also known as Heaviside–

Lorentz units. In these units the fine-structure constant is α =
ê2
0

4π�c
= 1

137
,

whereas in Gaussian units it is given by α =
e2
0

�c
, i.e., ê0 = e0

√
4π. Correspond-

ingly, we have E = EGauss/
√

4π and B = BGauss/
√

4π, and the Coulomb law

V (x) = e2

4π|x−x′| . In the following, we shall also set � = c = 1.
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∇ ·E = ρ (14.1.1a)

∇ × E = −∂B
∂t

(14.1.1b)

∇ · B = 0 (14.1.1c)

∇ × B =
∂E
∂t

+ j . (14.1.1d)

If we introduce the antisymmetric field tensor

Fµν =

⎛⎜⎜⎝
0 Ex Ey Ez

−Ex 0 Bz −By

−Ey −Bz 0 Bx

−Ez By −Bx 0

⎞⎟⎟⎠ , (14.1.2)

whose components can also be written in the form

Ei = F 0i

Bi =
1
2
εijkFjk ,

(14.1.3)

the Maxwell equations then acquire the form

∂νF
µν = jµ (14.1.4a)

and

∂λFµν + ∂µF νλ + ∂νFλµ = 0 , (14.1.4b)

where the four-current-density is

jµ = (ρ, j) , (14.1.5)

satisfying the continuity equation

jµ
,µ = 0 . (14.1.6)

The homogeneous equations (14.1.1b,c) or (14.1.4b) can be satisfied auto-
matically by expressing Fµν in terms of the four-potential Aµ:

Fµν = Aµ,ν −Aν,µ . (14.1.7)

The inhomogeneous equations (14.1.1a,d) or (14.1.4a) imply that

�Aµ − ∂µ∂νA
ν = jµ . (14.1.8)

In Part II, where relativistic wave equations were discussed, jµ(x) was the
particle current density. However, in quantum field theory, and particularly
in quantum electrodynamics, it is usual to use jµ(x) to denote the electrical
current density. In the following, we will have, for the Dirac field for example,
jµ(x) = eψ̄(x)γµψ(x), where e is the charge of the particle, i.e., for the
electron e = −ê0.
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14.1.2 Gauge Transformations

Equation (14.1.8) is not sufficient to determine the four-potential uniquely,
since, for an arbitrary function λ(x), the transformation

Aµ → A′µ = Aµ + ∂µλ (14.1.9)

leaves the electromagnetic field tensor Fµν and hence, also the fields E and
B, as well as Eq. (14.1.8) invariant. One refers to (14.1.9) as a gauge trans-
formation of the second kind. It is easy to see that not all components of Aµ

are independent dynamical variables and, by a suitable choice of the function
λ(x), one can impose certain conditions on the components Aµ, or, in other
words, transform to a certain gauge. Two particularly important gauges are
the Lorentz gauge, for which one requires

Aµ
,µ = 0 , (14.1.10)

and the Coulomb gauge, for which

∇ ·A = 0 (14.1.11)

is specified. Other gauges include the time gauge A0 = 0 and the axial gauge
A3 = 0. The advantage of the coulomb gauge is that it yields only two trans-
verse photons, or, after an appropriate transformation, two photons with he-
licity ±1. The advantage of the Lorentz gauge consists in its obvious Lorentz
invariance. In this gauge, however, there are, in addition to the two transverse
photons, a longitudinal and a scalar photon. In the physical results of the the-
ory these latter photons, apart from mediating the Coulomb interaction, will
play no role.2

14.2 The Coulomb Gauge

We shall be dealing here mainly with the Coulomb gauge (also called
transverse or radiation gauge). It is always possible to transform into the
Coulomb gauge. If Aµ does not satisfy the Coulomb gauge, then one takes
instead the gauge-transformed field Aµ +∂µλ, where λ is determined through
∇2λ = −∇ · A. In view of the Coulomb gauge condition (14.1.11), for the
zero components (µ = 0), equation (14.1.8) simplifies to

(∂2
0 − ∇2)A0 − ∂0(∂0A0 − ∇ ·A) = j0 ,

and due to (14.1.11) we thus have

∇2A0 = −j0 . (14.2.1)

2 The most important aspects of the covariant quantization by means of the
Gupta–Bleuler method are summarized in Appendix E.
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This is just the Poisson equation, well known from electrostatics, which has
the solution

A0(x, t) =
∫
d3x′

j0(x′, t)
4π|x − x′| . (14.2.2)

Since the charge density j0(x) depends only on the matter fields and their
conjugate fields, Eq. (14.2.2) represents an explicit solution for the zero com-
ponents of the vector potential. Therefore, in the Coulomb gauge, the scalar
potential is determined by the Coulomb field of the charge density and is thus
not an independent dynamical variable. The remaining spatial components
Ai are subject to the gauge condition (14.1.11), and there are thus only two
independent field components.

We now turn to the spatial components of the wave equation (14.1.8),
thereby taking account of (14.1.11),

�Aj − ∂j∂0A0 = jj . (14.2.3)

From (14.2.2), using the continuity equation (14.1.6) and partial integration,
we have

∂j∂0A0(x) = ∂j

∫
d3x′∂0j0(x′)
4π|x − x′| = −∂j

∫
d3x′∂′kjk(x′)
4π|x − x′|

= −∂j∂k

∫
d3x′jk(x′)
4π|x− x′| =

∂j∂k

∇2 jk(x) ,
(14.2.4)

where − 1
∇2 is a short-hand notation for the integral over the Coulomb Green’s

function3. If we insert (14.2.4) into (14.2.3), we obtain

�Aj = jtrans
j ≡

(
δjk − ∂j∂k

∇2

)
jk . (14.2.5)

The wave equation for Aj (14.2.5) contains the transverse part of the current
density jtrans

j . The significance of the transversality will become more evident
later on when we work in Fourier space.

3 In this way, the solution of the Poisson equation

∇2Φ = −ρ is represented as Φ = − 1

∇2 ρ ≡
Z
d3x′ρ(x′, t)
4π|x − x′| }; .

For the special case ρ(x, t) = −δ3(x), we have

∇2Φ = δ3(x) and thus Φ =
1

∇2
δ3(x) = −

Z
d3x′δ3(x′)
4π|x − x′| = − 1

4π|x| .
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14.3 The Lagrangian Density
for the Electromagnetic Field

The Lagrangian density of the electromagnetic field is not unique. One can
derive the Maxwell equations from

L = −1
4
FµνF

µν − jµA
µ (14.3.1)

with Fµν = Aµ,ν −Aν,µ. This is because

∂ν
∂L

∂Aµ,ν
= ∂ν

(
−1

4

)
(Fµν − F νµ) × 2 = −∂νF

µν (14.3.2)

and
∂L
∂Aµ

= −jµ

yield the Euler–Lagrange equations

∂νF
µν = jµ , (14.3.3)

i.e. (14.1.4a). As was noted before Eq. (14.1.7), equation (14.1.4b) is auto-
matically satisfied. From (14.3.1), one finds for the momentum conjugate to
Aµ

Πµ =
∂L
∂Ȧµ

= −Fµ0 . (14.3.4)

Hence, the momentum conjugate to A0 vanishes,

Π0 = 0

and

Πj = −F j0 = Ej . (14.3.5)

The vanishing of the momentum component Π0 shows that it is not possible
to apply the canonical quantization procedure to all four components of the
radiation field without modification.

Another Lagrangian density for the four-potential Aµ(x), which leads to
the wave equation in the Lorentz gauge, is

LL = −1
2
Aµ,νA

µ,ν − jµA
µ . (14.3.6)

Here, we have

Πµ
L =

LL

∂Ȧµ

= −Aµ,0 = −Ȧµ , (14.3.7)

and the equation of motion reads:

�Aµ = jµ . (14.3.8)
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This equation of motion is only identical to (14.1.8) when the potential Aµ

satisfies the Lorentz condition

∂µA
µ = 0 . (14.3.9)

The Lagrangian density LL of equation (14.3.6) differs from the L of (14.3.1)
in the occurrence of the term − 1

2 (∂λA
λ)2, which fixes the gauge:

LL = −1
4
FµνF

µν − 1
2
(∂λA

λ)
2 − jµA

µ . (14.3.6′)

This can easily be seen when one rewrites LL as follows:

LL = −1
4
(Aµ,ν −Aν,µ)(Aµ,ν −Aν,µ) − 1

2
∂λA

λ∂σA
σ − jµA

µ

= −1
2
Aµ,νA

µ,ν +
1
2
Aµ,νA

ν,µ − 1
2
∂λA

λ∂σA
σ − jµA

µ

= −1
2
Aµ,νA

µ,ν − jµA
µ .

In the last line, a total derivative has been omitted since it disappears in the
Lagrangian through partial integration. If one adds the term − 1

2 (∂λA
λ)2 to

the Lagrangian density, one must choose the Lorentz gauge in order that the
equations of motion be consistent with electrodynamics

�Aµ = jµ .

Remarks:

(i) Unlike the differential operator in (14.1.8), the d’Alembert operator appearing
in (14.3.8) can be inverted.

(ii) With or without the term fixing the gauge, the longitudinal part of the vector
potential ∂λA

λ satisfies the d’Alembert equation

�

“
∂λA

λ
”

= 0 .

This also holds in the presence of a current density jµ(x).

14.4 The Free Electromagnatic Field and its
Quantization

When jµ = 0, i.e., in the absence of external sources, the solution of the
Poisson equation which vanishes at infinity is A0 = 0, and the electromagnetic
fields read:

E = −Ȧ , B = ∇ × A . (14.4.1)

From the Lagrangian density of the free radiation field

L = −1
4
FµνFµν =

1
2
(E2 − B2) , (14.4.2)
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where (14.1.2) is used to obtain the last expression, one obtains the Hamil-
tonian density of the radiation field as

Hγ = ΠjȦj − L = E2 − 1
2
(E2 − B2)

=
1
2
(E2 + B2) .

(14.4.3)

Since the zero component of Aµ vanishes and the spatial components satisfy
the free d’Alembert equation and ∇ ·A = 0, the general free solution is given
by

Aµ(x) =
∑
k

2∑
λ=1

1√
2|k|V

(
e−ikxεµk,λakλ + eikxεµk,λ

∗
a†kλ

)
, (14.4.4)

where k0 = |k|, and the two polarization vectors have the properties

k · εk,λ = 0 , ε0k,λ = 0

εk,λ · εk,λ′ = δλλ′ .
(14.4.5)

In the classical theory, the amplitudes akλ are complex numbers. In (14.4.4),
we chose a notation such that this expansion also remains valid for the quan-
tized theory in which the akλ are replaced by the operators akλ. The form of
(14.4.4) guarantees that the vector potential is real.

Remarks:

(i) The different factor in QM I Eq. (16.49) arises due to the use there of
Gaussian units, in which the energy density, for example, is given by
H = 1

8π (E2 + B2).
(ii) In place of the two photons polarized transversely to k, one can also use

helicity eigenstates whose polarization vectors have the form

εµp,±1 = R(p̂)

⎛⎜⎜⎝
0

1/
√

2
±i/

√
2

0

⎞⎟⎟⎠ , (14.4.6)

where R(p̂) is a rotation that rotates the z axis into the direction of p.
(iii) The first attempt at quantization could lead to[

Ai(x, t), Ȧj(x′, t)
]

= iδijδ(x − x′)

i.e., (14.4.7)

[
Ai(x, t), Ej(x′, t)

]
= −iδijδ(x − x′) .

This relation, however, contradicts the condition for the Coulomb gauge
∂iA

i = 0 and the Maxwell equation ∂iE
i = 0.
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We will carry out the quantization of the theory in the following way:
It is already clear that the quanta of the radiation field – the photons – are
bosons. This is a consequence of the statistical properties (the strict validity of
Planck’s radiation law) and of the fact that the intrinsic angular momentum
(spin) has the value S = 1. The spin statistics theorem tells us that this spin
value corresponds to a Bose field. Therefore, the amplitudes of the field, the
akλ, are quantized by means of Bose commutation relations.

We begin by expressing the Hamiltonian (function or operator) (14.4.3) in
terms of the expansion (14.4.4). Using the fact that the three vectors k, εk1 ,
and εk2 form an orthogonal triad, we obtain

H =
∑
k,λ

|k|
2

(
a†kλakλ + akλa

†
kλ

)
. (14.4.8)

We postulate the Bose commutation relations[
akλ, a

†
k′λ′

]
= δλλ′δkk′ and[

akλ, ak′λ′

]
=
[
a†kλ, a

†
k′λ′

]
= 0 .

(14.4.9)

The Hamiltonian (14.4.8) then follows as

H =
∑
k,λ

|k|
(
a†kλakλ +

1
2

)
. (14.4.8′)

The divergent zero-point energy appearing here will be eliminated later by a
redefinition of the Hamiltonian using normal ordering. We now calculate the
commutators of the field operators. Given the definition

Λµν ≡
2∑

λ=1

εµk,λε
ν
k,λ , (14.4.10)

it follows from (14.4.5) that

Λ00 = 0 , Λ0j = 0 (14.4.11)

and

Λij =
2∑

λ=1

εik,λε
j
k,λ = δij − kikj

k2

(k, εk,λ, λ = 1, 2 form an orthogonal triad, i.e., k̂ik̂j +
∑2

λ=1 ε
i
k,λε

j
k,λ

= δij).
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For the commutator, we now haveh
Ai(x, t), Ȧj(x′, t)

i
=
X
kλ

X
k′λ′

1

2V
√
kk′

n
e−ikxeik′x′

εik,λε
j
k′,λ′

∗
(ik′0)δλλ′δkk′

−eikxe−ik′x′
εik,λ

∗
εjk′,λ′(−ik′0)δλλ′δkk′

o
=

i

2

X
kλ

“
εik,λε

j
k,λ

∗
eik(x−x′) + εik,λ

∗
εjk′,λ′e

−ik(x−x′)
”

=
i

2

X
k

„
δij − k

ikj

k2

«“
eik(x−x′) + e−ik(x−x′)

”
= i

„
δij − ∂

i∂j

∇2

«X
k

eik(x−x′)

= i

„
δij − ∂

i∂j

∇2

«
δ(x − x′) .

The commutator of the canonical variables thus reads:[
Ai(x, t), Ȧj(x′, t)

]
= i
(
δij − ∂i∂j

∇2

)
δ(x − x′) (14.4.12a)

or, on account of (14.4.1),[
Ai(x, t), Ej(x′, t)

]
= −i

(
δij − ∂i∂j

∇2

)
δ(x − x′) (14.4.12b)

and is consistent with the transversality condition that must be fulfilled by
A and E. For the two remaining commutators we find[

Ai(x, t), Aj(x′, t)
]

= 0 (14.4.12c)[
Ȧi(x, t), Ȧj(x′, t)

]
= 0 . (14.4.12d)

These quantization properties are dependent on the gauge. However, the
resulting commutators for the fields E and B are independent of the gauge
chosen. Since E = −Ȧ and B = curlA, one finds[

Ei(x, t), Ej(x′, t)
]

=
[
Bi(x, t), Bj(x′, t)

]
= 0 (14.4.12e)[

Ei(x, t), Bj(x′, t)
]

=
[
Ei(x, t), εjkm ∂

∂x′k
Am(x′, t)

]
= εjkm ∂

∂x′k
(−i)

(
δim − ∂

′i∂
′m

∇′2

)
δ(x − x′)

= −iεjki ∂

∂x′k
δ(x − x′)

= iεijk ∂

∂xk
δ(x − x′) . (14.4.12f)

Whereas the commutator (14.4.12b) contains the nonlocal term ∇−2, the
commutators (14.4.12e,f) of the fields E and B are local.
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In order to eliminate the divergent zero-point energy in the Hamiltonian,
we introduce the following definition

H = :
1
2

∫
d3x (E2 + B2) : =

∑
k,λ

k0 a
†
kλakλ (14.4.13)

where k0 = |k|. Similarly, for the momentum operator of the radiation field,
we have

P = :
∫
d3xE× B : =

∑
k,λ

k a†kλakλ . (14.4.14)

The normal ordered product for the components of the radiation field is
defined in exactly the same way as for Klein–Gordon fields.

14.5 Calculation of the Photon Propagator

The photon propagator is defined by

iDµν
F (x− x′) = 〈0|T (Aµ(x)Aν (x′)) |0〉 . (14.5.1)

In its most general form, this second-rank tensor can be written as

Dµν
F (x) = gµνD(x2) − ∂µ∂νD(l)(x2) , (14.5.2)

where D(x2) and D(l)(x2) are functions of the Lorentz invariant x2. In mo-
mentum space, (14.5.2) yields:

Dµν
F (k) = gµνD(k2) + kµkνD(l)(k2) . (14.5.3)

In perturbation theory, the photon propagator always occurs in the combi-
nation jµD

µν
F (k)jν , where jµ and jν are electron–positron current densities.

As a result of current conservation, ∂µj
µ = 0, in Fourier space we have

kµj
µ = 0 (14.5.4)

and, hence, the physical results are unchanged when one replaces Dµν
F (k) by

Dµν
F (k) −→ Dµν

F (k) + χµ(k)kν + χν(k)kµ , (14.5.5)

where the χµ(k) are arbitrary functions of k.
Once a particular gauge is specified, e.g., the Coulomb gauge, the resulting

Dµν
F (k) is not of the Lorentz-invariant form (14.5.3); the physical results are,

however, the same. The change of gauge (14.5.5) can be carried out simply
with a view to convenience. We will now calculate the propagator in the
Coulomb gauge and then deduce from this other equivalent representations.
It is clear that D(k2) in (14.5.3) is of the form

D(k2) ∝ 1
k2

,



14.5 Calculation of the Photon Propagator 317

since Dµν
F (k) must satisfy the inhomogeneous d’Alembert equation with a

four-dimensional δ-source. We can adopt the same relations as for the Klein–
Gordon propagators, but now it is also necessary to introduce the polarization
vectors of the photon field. Introducing, in addition to (14.5.1),

iDµν
+ (x− x′) = 〈0|Aµ(x)Aν (x′) |0〉 , (14.5.6a)

we obtain from (13.1.25a) and (13.1.31)

Dµν
± (x) =

∫
C±

d4 k

(2π)4
e−ikx

k2

2∑
λ=1

εµ
k,λ ε

ν
k,λ

= ∓ i
2

∫
d3 k

(2π)3
1
|k|
∑

λ

εµ
k,λ ε

ν
k,λe∓ikx

(14.5.6b)

and

Dµν
F (x− x′) = Θ(t− t′)Dµν

+ (x− x′) −Θ(t′ − t)Dµν
− (x− x′)

= −i
∫

d3 k

(2π)3
1

2|k|

2∑
λ=1

εµ
k,λε

ν
k,λ

(
Θ(x0 − x′0)e−ik(x−x′)

+Θ(x′0 − x0)eik(x−x′)
)
, (14.5.6c)

i.e.,

Dµν
F (x− x′) = lim

ε→0

∫
d4 k

(2π)4
Λµν(k)

e−ik(x−x′)

k2 + iε
. (14.5.6d)

Here, we have

Λµν(k) =
2∑

λ=1

εµ
k,λ ε

ν
k,λ (14.5.7)

with the components

Λ00 = 0 , Λ0k = Λk0 = 0 , Λlk = δlk − klkk

k2
.

Making use of the tetrad

εµ0 (k) = nµ ≡ (1, 0, 0, 0)
εµ1 (k) = (0, εk,1) , εµ2 (k) = (0, εk,2) (14.5.8)

εµ3 (k) = (0,k/|k|) =
kµ − (nk)nµ(
(kn)2 − k2

)1/2
,
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one can also write Λµν in the form

Λµν(k) = −gµν − (kµ − (kn)nµ) (kν − (kn)nν)

(kn)2 − k2
+ nµnν

= −gµν − kµkν − (kn) (nµkν + kµnν)
(kn)2 − k2

− k2nµnν

(kn)2 − k2
.

(14.5.9)

As was noted in connection with Eq. (14.5.5), the middle term on the second
line of (14.5.9) makes no contribution in perturbation theory and can thus
be omitted. The third term in (14.5.9) makes a contribution to the Feynman
propagator iDF (x− x′) (14.5.6d) of the form,

− lim
ε→0

∫
d4 k

(2π)4
e−ik(x−x′) i

k2 + iε
k2

k2
nµnν

= −inµnν

∫
d3 k

(2π)3
eik(x−x′)

k2
δ(x0 − x′0)

= −iδ(x0 − x′0)
nµnν

4π|x − x′| . (14.5.10)

In perturbation theory, this term is compensated by the Coulomb interaction,
which appears explicitly when one works in the Coulomb gauge. To see this in
more detail, we must also consider the Hamiltonian. The Lagrangian density
L (14.3.1)

L = −1
4
FµνF

µν − jµA
µ (14.3.1)

can also be written in the form

L =
1
2
(E2 − B2) − jµA

µ , (14.5.11)

where

E = Etr + El (14.5.12a)

with the transverse and longitudinal components

Etr = −Ȧ (14.5.12b)

and

El = −∇A0 . (14.5.12c)

In the Lagrangian, the mixed term∫
d3xEtr ·El =

∫
d3x Ȧ · ∇A0 ,

vanishes, as can be seen by partial integration and use of ∇ · A = 0. Thus,
the Lagrangian density (14.5.11) is equivalent to
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L =
1
2

(
(Ȧtr)

2
+ (El)

2 − (∇ × A)2
)
− jµA

µ . (14.5.13)

For the momentum conjugate to the electromagnetic potential A, this yields:

Πtr ≡ ∂L
∂Ȧ

= −Ȧ . (14.5.14)

This, in turn, yields the Hamiltonian density

H = Hγ + Hint

=
1
2
(Πtr)

2
+

1
2
(∇ × A)2 − 1

2
(El)

2
+ jµA

µ ,
(14.5.15)

where the first two terms are the Hamiltonian density of the radiation field
(14.4.3), and

Hint = −1
2
(El)

2
+ jµA

µ

is the interaction term. It will be helpful to separate out from the interaction
term Hint the part corresponding to the Coulomb interaction of the charge
density

HCoul = −1
2
(El)

2
+ j0A

0 . (14.5.16)

When integrated over space, this yields:

HCoul =
∫
d3xHCoul =

∫
d3x

(
−1

2
(∇A0)

2 + j0A
0

)
=
∫
d3x

(
1
2
A0∇2A0 + j0A

0

)
=

1
2

∫
d3x j0A0

=
1
2

∫
d3xd3x′

j0(x, t)j0(x′, t)
4π|x − x′| ,

(14.5.17)

which is exactly the Coulomb interaction between the charge densities
j0(x, t). Thus, the total interaction now takes the form

Hint = HCoul −
∫
d3x j(x, t)A(x, t) . (14.5.18)

The propagator of the transverse photons (14.5.6d), together with the
Coulomb interaction, is thus equivalent to the following covariant propagator:

Dµν
F (x) = −gµν lim

ε→0

∫
d4 k

(2π)4
e−ikx

k2 + iε
. (14.5.19)

As already stated at the beginning of this chapter, there are various ways
to treat the quantized radiation field: In the Coulomb gauge, for every wave
vector, one has as dynamical degrees of freedom the two transverse photons
and, in addition, there is the instantaneous Coulomb interaction. Neither of
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these two descriptions on its own is covariant, but they can be combined to
yield a covariant propagator, as in Eq. (14.5.19). In the Lorentz gauge, one has
four photons that automatically lead to the covariant propagator (14.5.19)
or (E.10b). As a result of the Lorentz condition, the longitudinal and scalar
photons can only be excited in such a way that Eq. (E.20a) is satisfied for
every state. They therefore make no contribution to any physically observable
quantities, except the Coulomb interaction, which they mediate.

Problems

14.1 Derive the commutation relations (E.11) from (E.8).

14.2 Calculate the energy–momentum tensor for the radiation field. Show that the
normal ordered momentum operator has the form

P = :

Z
d3xE ×B :

=
X
k,λ

k a†kλakλ .

14.3 Using the results of Noether’s theorem, deduce the form of the angular mo-
mentum tensor of the electromagnetic field starting from the Lagrangian density

L = −1

4
FµνFµν .

(a) Write down the orbital angular momentum density.
(b) Give the spin density.
(c) Explain the fact that, although S = 1, only the values ±1 occur for the projec-
tion of the spin onto the direction k.



15. Interacting Fields,
Quantum Electrodynamics

15.1 Lagrangians, Interacting Fields

15.1.1 Nonlinear Lagrangians

We now turn to the treatment of interacting fields. When there are nonlinear
terms in the Lagrangian density, or in the Hamiltonian, transitions and re-
actions between particles become possible. The simplest example of a model
demonstrating this is a neutral scalar field with a self-interaction,

L =
1
2

(∂µφ) (∂µφ) − m2

2
φ2 − g

4!
φ4 . (15.1.1)

This so-called φ4 theory is a theoretical model whose special significance lies
in the fact that it enables one to study the essential phenomena of a nonlinear
field theory in a particularly clear form. The division of φ into creation and
annihilation operators shows that the φ4 term leads to a number of transition
processes. For example, two incoming particles with the momentum vectors
k1 and k2 can scatter from one another to yield outgoing particles with the
momenta k3 and k4, the total momentum being conserved.

As another example we consider the Lagrangian density for the interaction
of charged fermions, described by the Dirac field ψ, with the radiation field
Aµ

L = ψ̄(iγµ∂µ −m)ψ − 1
2

(∂µAν) (∂µAν) − eψ̄γµψA
µ . (15.1.2)

The interaction term is the lowest nonlinear term in Aµ and ψ that is bilinear
in ψ (see remark (iv) at the end of Sect. 13.4.1) and Lorentz invariant. A
physical justification for this form will be given in Sect. 15.1.2 making use of
the known interaction with the electromagnetic field (5.3.40).

Quantum electrodynamics (QED), which is based on the Lagrangian den-
sity (15.1.2), is a theory describing the electromagnetic interaction between
electrons, positrons, and photons. It serves as an excellent example of an
interacting field theory for the following reasons:

(i) It contains a small expansion parameter, the Sommerfeld fine-structure
constant α ≈ 1

137 , so that perturbation theory can be successfully applied.



322 15. Interacting Fields, Quantum Electrodynamics

(ii) Quantum electrodynamics is able to explain, among other things, the
Lamb shift and the anomalous magnetic moment of the electron.

(iii) The theory is renormalizable.
(iv) Quantum electrodynamics is a simple (abelian) gauge theory.
(v) It admits a description of all essential concepts of quantum field theory

(perturbation theory, S matrix, Wick’s theorem, etc.).

15.1.2 Fermions in an External Field

Here, we consider the simplest case of the interaction of an electron field with
a known electromagnetic field Aeµ, which varies in space and time. The Dirac
equation for this case reads:

(iγµ∂µ −m)ψ = eγµAeµψ (15.1.3)

and has the Lagrangian density

L = ψ̄(γµ(i∂µ − eAeµ) −m)ψ (15.1.4)
≡ L0 + L1 ,

where L0 is the free Lagrangian density and L1 the interaction with the field
Aeµ,

L0 = ψ̄(iγµ∂µ −m)ψ
L1 = −eψ̄γµψAeµ ≡ −ejµAeµ .

(15.1.5)

The momentum conjugate to ψα is πα = ∂L
∂ψ̇α

= iψ†
α, as in (13.3.5), so that

the Hamiltonian density is given by

H = H0 + H1

= ψ̄(−iγj∂j +m)ψ + eψ̄γµψAeµ .
(15.1.6)

In the above, Aeµ was an external field. In the next section we will consider
the coupling to the radiation field, which is itself a quantized field.

15.1.3 Interaction of Electrons with the Radiation Field:
Quantum Electrodynamics (QED)

15.1.3.1 The Lagrangian and the Hamiltonian Densities

The Hamiltonian and the Lagrangian densities of the interacting Dirac and
radiation fields are obtained by replacing Aeµ in (15.1.5) by the quantized
radiation field and adding the Lagrangian density of the free radiation field

L = ψ̄(i∂/−m)ψ − 1
2

(∂νAµ) (∂νAµ) − eψ̄A/ψ . (15.1.7)
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This is identical to the form postulated for formal reasons in (15.1.2). It leads
to the conjugate momenta to the Dirac and radiation fields:

πα =
∂L
∂ψ̇α

= iψ†
α , Πµ =

∂L
∂Ȧµ

= −Ȧµ , (15.1.8)

and the Hamiltonian density operator

H = HDirac
0 + Hphoton

0 + H1 , (15.1.9)

where HDirac
0 and Hphoton

0 are the Hamiltonian densities of the free Dirac and
radiation fields (Eq. (13.3.7) and (E.14)). Here, H1 represents the interaction
between these fields

H1 = eψ̄A/ψ . (15.1.10)

15.1.3.2 Equations of Motion
of Interacting Dirac and Radiation Fields

For the Lagrangian density (15.1.7), the equations of motion of the field
operators in the Heisenberg picture read:

(i∂/−m)ψ = eA/ψ (15.1.11a)
�Aµ = eψ̄γµψ . (15.1.11b)

These are nonlinear field equations which, in general, cannot be solved ex-
actly. An exception occurs for the simplified case of one space and one time
dimension: a few such (1+1)-dimensional field theories can be solved exactly.
An interesting example is the Thirring model

(i∂/−m)ψ = gψ̄γµψγµψ . (15.1.12)

This can also be obtained as a limiting case of Eq. (15.1.11a) with a massive
radiation field, i.e.,

(� +M)Aµ = eψ̄γµψ , (15.1.13)

in the limit of infinite M . In general, however, one is obliged to use the
methods of perturbation theory. These will be treated in the next sections.

15.2 The Interaction Representation,
Perturbation Theory

Experimentally, one is primarily interested in scattering processes . In this
section we derive the S-matrix formalism necessary for the theoretical de-
scription of such processes. We begin by reiterating a few essential points
from quantum mechanics1 concerning the interaction representation. These
will facilitate our perturbation treatment of scattering processes.
1 See, e.g., QM I, Sects. 8.5.3 and 16.3.1.
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15.2.1 The Interaction Representation (Dirac Representation)

We divide the Lagrangian density and the Hamiltonian into a free and an
interaction part, where H0 is time independent:

L = L0 + L1 (15.2.1)
H = H0 +H1 . (15.2.2)

When the interaction L1 contains no derivatives, the density corresponding
to the interaction Hamiltonian H1 =

∫
d3xH1 is given by

H1 = −L1 (15.2.3)

We shall make use of the Schrödinger representation in which the states |ψ, t〉
are time dependent and satisfy the Schrödinger equation

i
∂

∂t
|ψ, t〉 = H |ψ, t〉 . (15.2.4)

The operators are denoted by A in the subsequent equations. The fundamen-
tal operators such as the momentum, and the field operators such as ψ(x), are
time independent in the Schrödinger picture. (Note that the field equations
(13.1.13), (13.3.1), etc. were equations of motion in the Heisenberg picture.)
When external forces are present, one may also encounter Schrödinger op-
erators with explicit time dependence (e.g., in Sect. 4.3 on linear response
theory). The definition of the interaction representation reads:

|ψ, t〉I = eiH0t |ψ, t〉 , AI(t) = eiH0tAe−iH0t . (15.2.5)

In the interaction representation, due to Eq. (15.2.4), the states and the
operators satisfy the equations of motion

i
∂

∂t
|ψ, t〉I = H1I(t) |ψ, t〉I (15.2.6a)

d

dt
AI(t) = i [H0, AI(t)] +

∂

∂t
AI(t) . (15.2.6b)

The final term in (15.2.6b) only occurs when the Schrödinger operator A de-
pends explicitly on time. In the following, we will make use of the abbreviated
notation

|ψ(t)〉 ≡ |ψ, t〉I (15.2.7a)

and

HI(t) ≡ H1I(t) . (15.2.7b)

The equation of motion for |ψ(t)〉 has the form of a Schrödinger equation
with time-dependent Hamiltonian HI(t). When the interaction is switched
off, i.e., when HI(t) = 0, the state vector in the interaction picture is time
independent. The field operators in this representation satisfy the equations
of motion

dφrI(x, t)
dt

= i [H0, φrI(x, t)] (15.2.8)
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i.e., the free equations of motion. The field operators in the interaction rep-
resentation are thus identical to the Heisenberg operators of free fields. Since
L1 contains no derivatives, the canonical conjugate fields have the same form
as the free fields, e.g.,

∂L
∂ψ̇α

=
∂L0

∂ψ̇α

in quantum electrodynamics. Hence, the equal time commutation relations
of the interacting fields are the same as those for the free fields.

Since the interaction representation arises from the Schrödinger represen-
tation, and hence also from the Heisenberg representation, through a unitary
transformation, the interacting fields obey the same commutation relations
as the free fields. Since the equations of motion in the interaction picture are
identical to the free equations of motion, the operators have the same simple
form, the same time dependence, and the same representation in terms of
creation and annihilation operators as the free operators. The plane waves
(spinor solutions, free photons, and free mesons) are still solutions of the
equations of motion and lead to the same expansion of the field operators as
in the free case. The Feynman propagators are again i∆F (x− x′) etc., where
the vacuum is defined here with reference to the operators ark′ , brk′, dλk. The
time evolution of the states is determined by the interaction Hamiltonian.

Let us once more draw attention to the differences between the various
representations in quantum mechanics. In the Schrödinger representation the
states are time dependent. In the Heisenberg representation the state vector
is time independent, whereas the operators are time dependent and satisfy
the Heisenberg equation of motion. In the interaction representation the time
dependence is shared between the operators and the states. The free part of
the Hamiltonian determines the time dependence of the operators. The states
change in time as a result of the interaction. Thus, in the interaction repre-
sentation, the field operators of an interacting nonlinear field theory satisfy
the free field equations: for the real Klein–Gordon field these are given by
Eq. (13.1.2), for the complex Klein–Gordon field by (13.2.2), for the Dirac
field by (13.3.1), and for the radiation field by (14.1.8). For the time depen-
dence of these fields one thus has the corresponding plane-wave expansions
(13.1.5), (13.2.5), (13.3.18), and (14.4.4) or (E.5) (see also (15.3.12a–c)). We
also recall the relation between Schrödinger and Heisenberg operators in the
interacting field theory

ψHeisenb.(x, t) = eiHtψSchröd.(x)e−iHt

AHeisenb.(x, t) = eiHtASchröd.(x)e−iHt .
(15.2.9)

In the interaction representation, one obtains

ψI(x) ≡ eiH0tψSchröd.(x)e−iH0t = ψ(x)

Aµ
I (x) ≡ eiH0tAµ

Schröd.(x)e−iH0t = Aµ(x) ,
(15.2.10)
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where ψ(x) (Aµ(x)) is the free Dirac field (radiation field) in the Heisenberg
representation, x ≡ (x, t). Since the interaction Hamiltonian is a polynomial
in the fields, e.g., in quantum electrodynamics, in the Schrödinger picture,

H1 = e

∫
d3xψ̄γµψAµ ,

and in the interaction representation one has

HI(t) ≡ H1I(t) ≡ eiH0tH1e−iH0t

= e

∫
d3xψ̄(x)γµψ(x)Aµ(x) ,

(15.2.11)

x ≡ (x, t). Here, the field operators are identical to the Heisenberg operators
of the free field theories, as given in (13.3.18) and (14.4.4) or (E.5).

One finds the time-evolution operator in the interaction picture by start-
ing from the formal solution of the Schrödinger equation (15.2.4), |ψ, t〉 =
e−iH(t−t0) |ψ, t0〉. This leads, in the interaction representation, to

|ψ(t)〉 = eiH0te−iH(t−t0) |ψ, t0〉
= eiH0te−iH(t−t0)e−iH0t0 |ψ(t0)〉
≡ U ′(t, t0) |ψ(t0)〉

(15.2.12)

with the time-evolution in the interaction picture

U ′(t, t0) = eiH0te−iH(t−t0)e−iH0t0 . (15.2.13)

From this relation, one immediately recognizes the group property

U ′(t1, t2)U ′(t2, t0) = U ′(t1, t0) (15.2.14a)

and the unitarity

U ′†(t, t0) = U ′(t0, t) = U ′−1(t, t0) (15.2.14b)

of the time-evolution operator. Unitarity requires the hermiticity of H and
H0. The equation of motion for this time-evolution operator is obtained from

i
∂

∂t
U ′(t, t0) = eiH0t(−H0 +H)e−iH(t−t0)e−iH0t0

= eiH0tH1e−iH0teiH0te−iH(t−t0)e−iH0t0

(or from the equation of motion (15.2.6a) for |ψ(t)〉):

i
∂

∂t
U ′(t, t0) = HI(t)U ′(t, t0) . (15.2.15)

Remark. This equation of motion also holds in the case where H , and hence
H1, have an explicit time dependence: Then, in Eqs. (15.2.12)–(15.2.15), one
must replace e−iH(t−t0) by the general Schrödinger time-evolution operator
U(t, t0), which satisfies the equation of motion i ∂

∂tU(t, t0) = HU(t, t0).
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15.2.2 Perturbation Theory

The equation of motion for the time evolution operator (15.2.15) in the in-
teraction picture can be solved formally using the initial condition

U ′(t0, t0) = 1 (15.2.16)

in the form

U ′(t, t0) = 1 − i
∫ t

t0

dt1HI(t1)U ′(t1, t0) , (15.2.17)

i.e., it is now given by an integral equation. The iteration of (15.2.17) yields:

U ′(t, t0) = 1 + (−i)
∫ t

t0

dt1HI(t1) + (−i)2
∫ t

t0

dt1

∫ t1

t0

dt2HI(t1)HI(t2)

+ (−i)3
∫ t

t0

dt1

∫ t1

t0

dt2

∫ t2

t0

dt3HI(t1)HI(t2)HI(t3) + . . . ,

i.e.,

U ′(t, t0) =
∞∑

n=0

(−i)n
∫ t

t0

dt1

∫ t1

t0

dt2 . . . (15.2.18)

×
∫ tn−1

t0

dtn HI(t1)HI(t2) . . . HI(tn) .

By making use of the time-ordering operator T , this infinite series can be
written in the form

U ′(t, t0) =
∞∑

n=0

(−i)n

n!

∫ t

t0

dt1

∫ t

t0

dt2 . . . (15.2.19)

×
∫ t

t0

dtn T (HI(t1)HI(t2) . . .HI(tn))

or, still more compactly, as

U ′(t, t0) = T exp
(
−i
∫ t

t0

dt′HI(t′)
)
. (15.2.19′)

One can readily convince oneself of the equivalence of expressions (15.2.18)
and (15.2.19) by considering the nth-order term: In (15.2.19) the times fulfil
either the inequality sequence t1 ≥ t2 ≥ . . . ≥ tn, or a permutation of this
inequality sequence. In the former case, the contribution to (15.2.19) is

(−i)n

n!

∫ t

t0

dt1

∫ t1

t0

dt2 . . .

∫ tn−1

t0

dtn (HI(t1) . . . HI(tn)) .

In the latter case, i.e., when a permutation of the inequality sequence applies,
one can rename the integration variables and, thereby, return once more to
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the case t1 ≥ t2 ≥ . . . tn. One thus obtains the same contribution n! times.
This proves the equivalence of (15.2.18) and (15.2.19). The contribution to
(15.2.19) with n factors of HI is referred to as the nth-order term.

The time-ordering operator in (15.2.19) and (15.2.19′), also known as
Dyson’s time-ordering operator or the chronological operator, signifies at this
stage the time ordering of the composite operators HI(t). If, as is the case
in quantum electrodynamics, the Hamiltonian contains only even powers of
Fermi operators, it can be replaced by what is known as the Wick’s time-
ordering operator, which time-orders the field operators. It is in this sense
that we shall use T in the following. The time-ordered product T (. . . ) orders
the factors so that later times appear to the left of earlier times. All Bose
operators are treated as if they commute, and all Fermi operators as if they
anticommute.

We conclude this section with a remark concerning the significance of the
time-evolution operator U ′(t, t0), which, in the interaction picture, according
to Eq. (15.2.12), gives the state |ψ(t)〉 from a specified state |ψ(t0)〉. If at time
t0 the system is in the state |i〉, then the probability of finding the system at
a later time t in the state |f〉 is given by

| 〈f |U ′(t, t0) |i〉 |2 . (15.2.20)

From this, one obtains the transition rate, i.e., the probability per unit time
of a transition from an initial state |i〉, to a final state |f〉 differing from the
initial state (〈i|f〉 = 0) as,

wi→f =
1

t− t0
| 〈f |U ′(t, t0) |i〉 |2 . (15.2.21)

15.3 The S Matrix

15.3.1 General Formulation

We now turn our attention to the description of scattering processes. The
typical situation in a scattering experiment is the following: At the initial
time (idealized as t = −∞), we have widely separated and thus noninteracting
particles. These particles approach one another and interact for a short time
corresponding to the range of the forces. The particles, and possibly newly
created ones, that remain after this interaction then travel away from one
another and cease to interact. At a much later time (idealized as t = ∞),
these are observed. The scattering process is represented schematically in
Fig. 15.1. The time for which the particles interact is very much shorter than
the time taken for the particles to travel from the source to the point of
observation (detector); hence, it is reasonable to take the final and initial
times as t = ±∞, respectively.
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...

...

Fig. 15.1. Schematic representation of a general
scattering process. A number of particles are inci-
dent upon one another, interact, and scattered par-
ticles leave the interaction region. The number of
scattered particles can be greater or smaller than
the number of incoming particles

At the initial time ti = −∞ of the scattering process, we have a state |i〉
corresponding to free, noninteracting particles

|ψ(−∞)〉 = |i〉 .
After the scattering, the particles that remain are again well separated from
one another and are described by

|ψ(∞)〉 = U ′(∞,−∞) |i〉 . (15.3.1)

The transition amplitude into a particular final state |f〉 is given by

〈f |ψ(∞)〉 = 〈f |U ′(∞,−∞) |i〉 = 〈f |S |i〉 = Sfi . (15.3.2)

The states |i〉 and |f〉 are eigenstates of H0. One imagines that the interaction
is switched off at the beginning and the end. Here, we have introduced the
scattering matrix, or S matrix for short, by way of S = U(∞,−∞),

S =
∞∑

n=0

(−i)n

n!

∫ ∞

−∞
dt1

∫ ∞

−∞
dt2 . . . (15.3.3)

×
∫ ∞

−∞
dtn T (HI(t1)HI(t2) . . .HI(tn)) .

If the Hamiltonian is expressed in terms of the Hamiltonian density, one
obtains

S =
∞∑

n=0

(−i)n

n!

∫
. . .

∫
d4x1 . . . d

4xn T (HI(x1) . . .HI(xn))

= T

(
exp

(
−i
∫
d4x(HI(x))

))
.

(15.3.4)

Since the interaction operator is Lorentz invariant, and the time ordering
does not change under orthochronous Lorentz transformations, the scatter-
ing matrix is itself invariant with respect to Lorentz transformations, i.e.,
it is a relativistically invariant quantity. In quantum electrodynamics, the
interaction Hamiltonian density appearing in (15.3.4) is

HI = e : ψ̄(x)γµψ(x)Aµ(x) : . (15.3.5)
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The unitarity of U(t, t0) (see (15.2.14b)) implies that the S matrix is also
unitary

SS† = 1 (15.3.6a)
S†S = 1 (15.3.6b)

or, equivalently,∑
n

SfnS
∗
in = δfi (15.3.7a)∑

n

S∗
nfSni = δfi . (15.3.7b)

To appreciate the significance of the unitarity, we expand the asymptotic
state that evolves from the initial state |i〉 through

|ψ(∞)〉 = S |i〉 (15.3.8)

in terms of a complete set of final states {|f〉}:

|ψ(∞)〉 =
∑

f

|f〉 〈f |ψ(∞)〉 =
∑

f

|f〉Sfi . (15.3.9)

We now form

〈ψ(∞)|ψ(∞)〉 =
∑

f

S∗
fiSfi =

∑
f

|Sfi|2 = 1 , (15.3.10)

where we have used (15.3.7b). The unitarity of the S matrix expresses conser-
vation of probability. If the initial state is |i〉, then the probability of finding
the final state |f〉 in an experiment is given by |Sfi|2. The unitarity of the
S matrix guarantees that the sum of these probabilites over all possible fi-
nal states is equal to one. Since particles may be created or annihilated, the
possible final states may contain particles different to those in the initial
states.

The states |i〉 and |f〉 have been assumed to be eigenstates of the unper-
turbed Hamiltonian H0, i.e., the interaction was assumed to be switched off.
In reality, the physical states of real particles differ from these free states.
The interaction turns the “bare”states into “dressed”states. An electron in
such a state is surrounded by a cloud of virtual photons that are continually
being emitted and reabsorbed, as illustrated in Fig. 15.2. 2

2 In order that the energy spectrum of the bare (free) particle be identical to that of
the physical particle, the Lagrangian density of the Dirac field is reparameterized
as

L = ψ̄(i∂/−mR)ψ − eψ̄A/ψ + δmψ̄ψ ,

with the renormalized (physical) mass mR = m+ δm. The Hamiltonian density
then includes an additional perturbation term −δmψ̄ψ. In the lowest order pro-
cesses treated in the next section, this plays no role. It will be analysed further
when we come to the topic of radiative corrections in Sect. 15.6.1.2.
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+...+ + +

Fig. 15.2. The propagation of a real (physical) electron involves the free propaga-
tion and the propagation that includes the additional emission and reabsorption of
virtual photons. The significance of the different lines is explained in Fig. 15.3.

The calculation of the transition elements between bare states |i〉 and
|f〉 can be justified by appealing to the adiabatic hypothesis. The interaction
Hamiltonian HI(t) is replaced by HI(t)ζ(t), where

lim
t→±∞ ζ(t) = 0 and ζ(t) = 1 for − T < t < T ,

i.e., at time t = −∞ one has free particles. During the time interval −∞ <
t < T , the interaction turns the free particles into physical particles. Thus,
in the time interval [−T, T ], we have real particles that experience the total
interaction HI(t). Since the particles involved in a scattering process are
initially widely separated, they only interact during the time interval [−τ, τ ],
which is determined by the range of the interaction and the speed of the
particles. The time T must, of course, be much larger than τ : T � τ . The
assumption of the adiabatic hypothesis is that the scattering cannot depend
on the description of the states long before, or long after, the interaction. At
the end of the calculation one takes the limit T → ∞. If one is calculating a
process only in the lowest order perturbation theory at which it occurs, one
uses the entire interaction for the transition and not to convert the bare state
into a physical state. In this case, one can take the limit T → ∞ from the
outset, and use the full interaction Hamiltonian in the whole time interval.

The types of transition processes are determined by the form of the inter-
action Hamiltonian. If the initial state contains a certain number of particles,
then the effect of the term of nth order in S (Eq.(15.3.4)) is the following: The
application of HI(xn) causes some of the original particles to be annihilated
and new ones to be created. The next factor HI(xn−1) leads to further anni-
hilation and creation processes, etc. It is necessary here to integrate over the
space–time position of these processes. We will elucidate this for a few exam-
ples taken from quantum electrodynamics. Here, the interaction Hamiltonian
density is

HI(x) = e : ψ̄(x)A/(x)ψ(x) : (15.3.11)

with the field operators
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ψ(x) =
∑

p,r=1,2

(
m

V Ep

)1/2 (
brpur(p) e−ipx + d†rpwr(p) eipx

)
(15.3.12a)

ψ̄(x) =
∑

p,r=1,2

(
m

V Ep

)1/2 (
b†rpūr(p) eipx + drpw̄r(p) e−ipx

)
(15.3.12b)

Aµ(x) =
∑
k

3∑
λ=0

(
1

2V |k|

)1/2

εµλ(k)
(
aλ(k)e−ikx + a†λ(k)eikx

)
. (15.3.12c)

As in previous chapters, at this stage it is useful to introduce a graphical rep-
resentation, shown in Fig. 15.3. A photon is represented by a wavy line, an
electron by a full line, and a positron by a full line with an arrow in the oppo-
site time direction. If the particle interacts with an external electromagnetic
field, it is similarly represented to a photon line, with a cross3

electronphoton positron external field

Fig. 15.3. The lines of the Feynman diagrams; the time axis points upwards

15.3.2 Simple Transitions

We first discuss the basic processes that are brought about by a single factor
HI(x). The three field operators in HI(x) can be split into components of
positive and negative frequency, yielding a total of eight terms. For example,
the term ψ+ annihilates an electron, while ψ− creates a positron. The term
eψ̄−(x)A+(x)ψ+(x) annihilates a photon and an electron originally present at
x, and once more creates an electron at x. This process is represented by the
first diagram in Fig. 15.4. One could also describe this as the absorption of a
photon by an electron. If one instead takes the summand A− from the photon
field, one obtains a transition in which a photon is created at the position x,
in other words, a process in which an electron at x emits a photon (the first of
the lower series of diagrams in Fig. 15.4). The other six elementary processes
are also shown in this figure. It is not necessary to discuss each of these in
detail; we shall select just one. The third diagram of the lower series stems
from eψ̄+A−ψ+ and represents the annihilation of an electron–positron pair,

3 As already mentioned elsewhere, these graphical representations are more than
just simple illustrations: In the form of Feynman diagrams they prove to be
unambiguous representations of the analytical expressions of perturbation theory.
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The elementary processes of the QED vertex

HI(x) = e : ( ψ̄+|{z}
ann e+

+ ψ̄−|{z}
cr e−

)( A/+|{z}
ann γ

+ A/−|{z}
cr γ

)( ψ+|{z}
ann e−

+ ψ−|{z}
cr e+

) :

Photon
absorption

e−

e−

γ e+

e+

γ e− e+γ

e−e+

γ

Photon
emission

e−

e−

γ

e+

e+ γ

e− e+

γ

e−e+ γ

e− scattered
by a photon

e+ scattered
by a photon

Pair
annihilation

Pair
creation

Fig. 15.4. The elementary processes of the QED vertex; the time axis points up-
wards

i.e., the transition of an electron and a positron into a photon. The range of
possible processes is determined by the form of HI(x) and its powers. The
points on the diagrams at which particles are incident or are emitted (i.e.,
are created or annihilated) are also known as vertices.

Figure 15.5 shows processes of various order, all of which are possible for
an initial state consisting of an incoming electron and an incoming positron.
Figure 15.5a shows the noninteracting motion described by the zeroth-order
term. Figure 15.5b shows the second-order interaction in which the electron
emits a photon which is absorbed by the positron. This process likewise con-
tains the emission of a photon by the positron and its absorption by the
electron. This process leads to a final state that once again contains an elec-
tron and a positron, hence it describes the scattering of an electron–positron
pair. The diagram is of second order with two vertices. At higher orders
of perturbation theory, the electron and positron can interact to produce
the fourth-order scattering process represented in Fig. 15.5c. In the diagram
shown in Fig. 15.5d, the positron propagates without interaction. The elec-
tron first emits a photon and then experiences a deflection due to an external
potential. The final state consists of an electron, a positron, and a photon.
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Initial state e− + e+

Scattering:

e−

e−e− e−

e−
e+

e+e+

e+

e+

a) b) c)

Bremsstrahlung: Pair annihilation:

e−

e− e+

γ

d)

e− e+

e)

e− e+

γγ

f)

Fig. 15.5. Examples of reactions having as the initial state electron plus positron:
a) motion of noninteracting electron and positron; b) scattering of electron and
positron; c) fourth-order scattering, exchange of two photons; d) Bremsstrahlung
of the electron in the presence of an external field; the positron here propagates
without interaction; e) pair annihilation in the presence of an external time-varying
field whose frequency is equal to the energy of the e+e− pair; f) pair annihilation
with a final state containing two photons

One refers here to the bremsstrahlung of the electron in the presence of the
external field. In Fig. 15.5e an external field causes the annihilation of the
electron–positron pair. In order that this process may really happen, the
frequency of the external field must be high enough that it at least equals
the energy of the electron–positron pair. The diagram given by Fig. 15.5f
represents pair annihilation, the final state consisting of two photons.

We should now like to establish the transition probabilities for these pro-
cesses. In order to determine the energy, momentum, and angular dependence
of the individual transitions, one has to calculate the matrix elements. The
procedure is similar to that for calculating the correlation functions in non-
relativistic many-particle physics. One has to re-order the creation and anni-
hilation operators, using the commutation and anticommutation relations, in
such a way that all annihilation operators are on the right, and all creation
operators on the left. The effect of an annihilation operator on the vacuum
state to the right is to yield zero, as is the effect of a creation operator acting



∗15.4 Wick’s Theorem 335

to the left. In a transition from a state |i〉 to a state |f〉, there are contri-
butions only from those summands of products in T (H(x1) . . .H(xn)) for
which the creation and annihilation operators exactly compensate one an-
other4. The commutation of annihilation operators to the right then yields
finite contributions from commutators or anticommutators. As will emerge,
these can be expressed in terms of propagators. Thus, the result for the
transition amplitude has the following structure: If the diagram consists of
vertices at positions x1, . . . , xn and of incoming and outgoing particles, then
the result is a product of propagators and this product is to be integrated
over all positions of the vertices x1, . . . , xn.

For simple processes it is easy to carry out the procedure that we have
sketched step by step. In so doing, we find a set of rules which enable an
analytical expression to be assigned to every diagram. These are known as the
Feynman rules. To derive the Feynman rules systematically, one needs Wick’s
theorem, which allows an arbitrary time-ordered product to be represented
by a sum of normal ordered products. The lines in the Feynman diagrams
that correspond to incoming and outgoing particles are known as external
lines, and the others are called internal lines. The particles represented by
internal lines are termed virtual particles.

In the diagram of Fig. 15.5f, the internal line can be viewed either as the
motion of a virtual electron from the left- to the right-hand vertex, or as the
motion of a positron from the right- to the left-hand vertex. To obtain the
total transition probability, one must integrate over all space–time positions
of the two vertices. Both processes are described by the Feynman propagator
that analytically represents this internal line (see also the discussion at the
end of Sect. 13.1).

∗15.4 Wick’s Theorem

In order to calculate the transition amplitude from the state |i〉 to the state
|f〉, one needs to determine the matrix element 〈f |S |i〉. If one considers a
particular order of perturbation theory, one has to evaluate the matrix el-
ement of a time-ordered product of interaction Hamiltonians. Of the many
terms in the perturbation expansion, contributions come only from those

4 If, for example, the initial state |i〉 contains an electron with quantum numbers
(p, r) and a photon with (k, λ), then it is of the form

|i〉 = b†rpa
†
λ(k) |0〉 ,

whereas the final state |f〉 with particles (p′, r′) and (k′, λ′) appears in bra form
as

〈f | = 〈0| aλ′(k′)br′p′ .
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whose application to |i〉 yields the state |f〉. Hence, (apart from the possi-
bility of individual particles moving without interaction) the corresponding
perturbation-theoretical contribution to the S matrix must contain those an-
nihilation operators that annihilate the particles in |i〉 and those creation
operators that create the particles in |f〉. In addition, a general term in S
will also contain further creation and annihilation operators responsible for
the creation and subsequent annihilation of virtual particles. These particles
are termed virtual because they are not present in the initial or final states;
they are emitted and reabsorbed in intermediate processes, e.g., the photon
in Fig. 15.5b. The virtual particles do not obey the energy–momentum rela-
tion, p2 = m2, valid for real particles, i.e., they do not lie on the mass shell.
As already mentioned in the previous section, one can calculate the value of
such matrix elements of S by using the commutation relations to move the
annihilation operators to the right. Instead of carrying out this calculation
for every single case individually, it is helpful to rewrite the time-ordered
products so that they are normal ordered from the start, i.e., so that all an-
nihilation operators are to the left of all creation operators. Wick’s theorem
tells us how an arbitrary time-ordered product can be represented as a sum
of normal ordered products. Wick’s theorem is the basis for the systematic
calculation of pertubation-theoretical contributions and their representation
by means of Feynman diagrams.

Since the Hamiltonian density of a normal ordered product is

H(x) = e : ψ̄(x)A/(x)ψ(x) : , (15.4.1)

the nth-order term of S has the form

S(n) =
(−ie)n

n!

∫
d4x1 . . . d

4xn

× T
(
: ψ̄(x1)A/(x1)ψ(x1) : . . . : ψ̄(xn)A/(xn)ψ(xn) :

)
;

(15.4.2)

this type of time-ordered product of partially normal ordered factors is known
as a mixed time-ordered product.

In order to facilitate the formulation of Wick’s theorem, we summarize
a few properties of the time-ordered and normal ordered products that were
introduced in Eqs. (13.1.28) and (13.4.12).

For given field operators A1, A2, A3, . . . , one has (see Eq. (13.1.18c)) the
distributive law

: (A1 +A2)A3A4 : = : A1A3A4 +A2A3A4 :
= : A1A3A4 : + : A2A3A4 : .

(15.4.3)

The contraction of two field operators A and B, such as ψ(x1), ψ†(x2), or
Aµ(x3), . . . , is defined by

AB ≡ T (AB)− : AB : . (15.4.4)
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It is easy to convince oneself that such contractions are c numbers: According
to the general definition, T (AB) orders the operators A and B chronologi-
cally, and, for the case of two Fermi operators, introduces a factor (−1).
Since the commutator or the anticommutator of free fields is a c number,
T (AB) − AB is also a c number, and the same is true of : AB : −AB
and the difference (15.4.4). Since the vacuum expectation value of a normal
ordered product vanishes, it follows from (15.4.4) that

AB = 〈0|T (AB) |0〉 . (15.4.5)

With this, the most important contractions are already known as a result
of the Feynman propagators evaluated in (13.1.31), (13.4.16), and (14.5.19).
For the real and the complex Klein–Gordon field, for the Dirac field, and for
the radiation field, respectively, we find the following:

φ(x1)φ(x2) = i∆F (x1 − x2)

φ(x1)φ†(x2) = φ†(x2)φ(x1) = i∆F (x1 − x2)
ψα(x1)ψ̄β(x2) = −ψ̄β(x2)ψα(x1) = iSFαβ(x1 − x2)

Aµ(x1)Aν(x2) = iDµν
F (x1 − x2) .

(15.4.6)

Furthermore, we also have

ψ(x1)ψ(x2) = ψ̄(x1)ψ̄(x2) = 0
ψ(x1)φ(x2) = 0 , ψ(x1)Aµ(x2) = 0 etc.

φ±(x1)φ±(x2) = 0 , ψ±(x1)ψ±(x2) = 0 , ψ̄±(x1)ψ̄±(x2) = 0
φ(x1)ψ̄(x2) = 0 , (15.4.7)

since all these pairs of operators either commute or anticommute with one
another. We recall that, in the interaction representation, the fields in H(x)
are free Heisenberg fields. According to Eq. (15.4.4), the time-ordered product
of two field operators can be represented in normal ordered form as follows:

T (AB) = : AB : +AB . (15.4.8)

We now define what is known as the generalized normal product (normal
product with contractions) of the field operators A = A(x1), B = B(x2), . . . ,
which also contains within itself contractions of these operators:

: ABC DEF . . .KL . . . : = (−1)P
AC DLEF . . . : BK . . . : , (15.4.9)

where P is the number of the individual permutations of Fermi operators
that is necessary to obtain the order ACDLEF . . . BK . . . . For example,

: ψ̄α(x1)Aµ(x2)ψβ(x3)ψγ(x4)Aν(x5)ψ̄δ(x6) :
= (−1)ψβ(x3)ψ̄δ(x6) : ψ̄α(x1)Aµ(x2)ψγ(x4)Aν(x5) : .

(15.4.10)

We are now in a position to formulate Wick’s theorem both for pure
time-ordered products and for mixed time-ordered products.
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1st Theorem: The time-ordered product of the field operators is equal to the
sum of their normal products in which the operators are linked by all different
possible contractions:

T (A1A2A3 . . . An) =: A1A2A3 . . . An :
+ : A1A2A3 . . . An : + : A1A2A3 . . . An : + . . .+ : A1A2 . . . An−1An :
+ : A1A2A3A4 . . . An : + . . .+ : A1A2 . . . An−3An−2An−1An :

+ . . . .

(15.4.11)

In the first line there are no contractions, in the second, one, in the third,
two, etc.
2nd Theorem: A mixed T product of field operators is equal to the sum of
their normal products in the form (15.4.11), with the difference that the sum
does not include contractions between operators that occur within one and
the same normal product factor. For example, we have

T (ψ1 : ψ2ψ3ψ4 :) =
: ψ1ψ2ψ3ψ4 : + : ψ1ψ2ψ3ψ4 : + : ψ1ψ2ψ3ψ4 : + : ψ1ψ2ψ3ψ4 : .

(15.4.12)

The proof of Wick’s theorem is not essential for its application. Hence, the
remainder of this section, which presents a simple proof, could be omitted.

We first prove the 1st theorem, Eq. (15.4.11), for the case in which the
operators of the product A1A2 . . . An are time ordered from the outset. We
will show that the general case can be reduced to this special case. We now
express the field operators in terms of their positive and negative frequency
components. We divide this product, which occurs in time-ordered form from
the outset, into a sum of products of positive and negative frequency parts.
We select one such term arbitrarily; this is time ordered but, in general, not
normal ordered. We then re-order its factors in the following way: The left-
most creation operator that is not in normal order is moved step-by-step to
the left by permuting it successively – through commutation or anticommu-
tation – with each of the annihilation operators that appear to the left of
it. This procedure is then repeated for the next non-normal ordered creation
operator and continued until all operators have become normal ordered. For
each of these permutations one obtains, from (15.4.8) and the definition of
the normal ordered product,

A+
i A

−
k = T (A+

i A
−
k ) =: A+

i A
−
k : +A+

i A
−
k

= ±A−
k A

+
i +A+

i A
−
k ,

(15.4.13)

where the lower sign applies when both operators are Fermi operators. In
the final result, each of the summands is in normal ordered form with a sign
that is determined by the number of pairs of Fermi operators that have been
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permuted. These signs can be eliminated from the expression if one writes
each of the summands in the time-ordered (original) sequence and subjects
it to the normal-ordering operation : . . . : (see, e.g., (15.4.13), where one can
write ±A−

k A
+
i =: A+

i A
−
k :). The result now closely resembles the expression

(15.4.11) except for the fact that not all contractions appear; it includes
only those between the “wrongly”positioned (non-normal ordered) operators.
However, since the contraction of two operators that are both time ordered
and normal ordered vanishes, we can add all such contractions to the result
and thus, using the distributive law, we obtain the sum of normal ordered
products with all contractions. We have thus proved (15.4.11) for the time
sequence t1 > . . . > tn. We now consider the operators A1A2 . . . An and an
arbitrary permutation P (A1A2 . . . An) of these operators. On account of the
definition of the time-ordering and normal-ordering operations, we have

T (P (A1A2 . . . An)) = (−1)P
T (A1A2 . . . An) (15.4.14a)

and

: P (A1A2 . . . An) : = (−1)P : A1A2 . . . An : (15.4.14b)

with the same power P . Hence, we have demonstrated theorem 1, Eq. (15.4.11),
for arbitrary time ordering of the operators A1, . . . , An.

Theorem 2 is obtained from the proof of theorem 1 as follows: The partial
factors : AB . . . : within the mixed time-ordered product are already normal
ordered. In the procedure described above for constructing normal order-
ing there is no permutation, and thus no contraction, of these simultaneous
operators. The contractions of these already normal ordered, simultaneous
operators – which would not vanish – do not occur. This proves theorem 2.

15.5 Simple Scattering Processes, Feynman Diagrams

We shall now investigate a number of simple scattering processes, for which
we will calculate the matrix elements of the S matrix. In so doing, we will
encounter the most important features of the Feynman rules, which have
already been mentioned on several occasions. In order of increasing complex-
ity, we will study the first-order processes of the emission of a photon by
an electron and the scattering of an electron by an external potential (Mott
scattering) and, as examples of second-order processes, the scattering of two
electrons (Møller scattering) and the scattering of a photon from an electron
(Compton scattering).

15.5.1 The First-Order Term

Taking the simplest possible example, we consider the first-order contribution
to the S matrix, Eq. (15.4.14)
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S(1) = −ie
∫
d4x : ψ̄(x)A/(x)ψ(x) : (15.5.1)

with the field operators from Eq. (15.3.12). The possible elementary processes
that result have already been discussed in Sect. 15.3.2 and are represented
in Fig. 15.4. Of the eight possible transitions, we consider here the emission
of a photon γ by an electron (Fig. 15.6), or, in other words, the transition of
an electron into an electron and a photon:

e− → e− + γ .

e−

e−

γ

Fig. 15.6. The emission of a photon γ from an electron
e−. This process is virtual, i.e., only possible within a
diagram of higher order

The initial state containing an electron with momentum p

|i〉 =
∣∣e−p

〉
= b†rp |0〉 (15.5.2a)

goes into the final state containing an electron with momentum p′ and a
photon with momentum k′

|f〉 =
∣∣e−p′, γk′〉 = b†r′p′a

†
λ(k′) |0〉 . (15.5.2b)

The spinor index r and the polarization index λ are given for the creation
operators, but for the sake of brevity are not indicated for the states. The
first-order contribution to the scattering amplitude is given by the matrix
element of (15.5.1). Contributions to 〈f |S(1) |i〉 come from ψ(x) only through
the term with brp, from ψ̄(x) only through the term b†r′p′ , and from A(x) only
through aλ(k′):

〈f |S(1) |i〉 = −ie
∫
d4x

[(
m

V Ep′

) 1
2

ūr′(p′)eip′x

]

× γµ

[(
1

2V |k′|

) 1
2

ελµ(k′)eik′x

]

×
[(

m

V Ep

) 1
2

ur(p)e−ipx

]
.

(15.5.3)

The integration over x leads to the conservation of four-momentum and thus
to the matrix element
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〈f |S(1) |i〉 = −(2π)4δ(4)(p′ + k′ − p)
(

m

VEp

) 1
2
(

m

V Ep′

) 1
2
(

1
2V |k′|

) 1
2

×ieūr′(p′)γµελµ(k′ = p− p′)ur(p) . (15.5.4)

The four-dimensional δ function imposes conservation of momentum p′ =
p − k′ and of energy Ep−k′ + |k′| = Ep. For electrons and photons, the
latter condition leads to k′ ·p/|k′||p| =

√
1 +m2/p2. In general, this cannot

be satisfied since the two end products would always have a lower energy
than the incident electron. The condition of energy–momentum conservation
cannot be satisfied for real electrons and photons. Thus, this process can only
occur as a component of higher-order diagrams. A preliminary comparison of
Fig. 15.6 with Eq. (15.5.3) shows that the following analytical expressions can
be assigned to the elements of the Feynman diagram: To the incident electron
ur(p)e−ipx, to the outgoing electron ūr′(p′)eip′x, to the vertex point −ieγµ, to
the outgoing photon ελµ(k′)eik′x, and, in addition, one has to integrate over
the position of the interaction point x, i.e., the vertex point is associated with
the integration

∫
d4x. Carrying out this integration over x, one obtains from

the exponential functions the conservation of four-momentum (2π)4δ(4)(p′ +
k′−p), and hence one obtains finally the following rules in momentum space:
Assigned to the incident electron is ur(p), to the outgoing electron ūr′(p′), to
the outgoing photon εαλ(k′), and to the vertex point −ieγα(2π)4δ(4)(p′+k′−p).

15.5.2 Mott Scattering

Mott scattering is the term used to describe the scattering of an electron by
an external potential. In practice, this is usually the Coulomb potential of a
nucleus. The external vector potential then has the form

Aµ
e = (V (x), 0, 0, 0)) . (15.5.5)

The initial state

|i〉 = b†rp |0〉 (15.5.6a)

and the final state

|f〉 = b†r′p′ |0〉 (15.5.6b)

each contains a single electron. The scattering process is represented dia-
grammatically in Fig. 15.7.

e−

e−
Fig. 15.7. Mott scattering: An electron e− is scattered by an
external potential
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The S-matrix element that follows from S(1) in Eq. (15.5.1) has the form

〈f |S(1) |i〉 = −ie
∫
d4x

(
m

V Ep′

) 1
2

ūr′(p′)eip′xγ0

× V (x)
(

m

V Ep

) 1
2

ur(p)e−ipx

= −ieṼ (p − p′)
(

m

V Ep′

) 1
2
(

m

V Ep

) 1
2

×M2πδ(p0 − p′0) .

(15.5.7)

Here,

M = ūr′(p′)γ0ur(p) (15.5.8)

is the spinor matrix element. In the calculation of the transition probability
| 〈f |S(1) |i〉 |2, formally the square of a δ-function appears. In order to give
meaning to this quantity, one should recall that the scattering experiment is
carried out over a very long, but nonetheless finite, time interval T and that
2πδ(E) should be replaced by

2πδ(E) →
∫ T/2

−T/2

dt eiEt . (15.5.9)

The square of this function is also encountered in the derivation of Fermi’s
golden rule(∫ T/2

−T/2

dt eiEt

)2

=
(

2
E

sin
ET

2

)2

= 2πT
(

sin2ET/2
πE2T/2

)
= 2πTδ(E) .

(15.5.10)

Here we have used the fact, detailed in QM I, Eqs. (16.34)–(16.35), that the
final expression in brackets is a representation of the δ-function:

lim
T→∞

δT (E) = lim
T→∞

(
sin2ET/2
πE2T/2

)
= δ(E)

In briefer form, this justification may also be presented as

lim
T→∞

∫ T/2

−T/2

dt eiEt

∫ T/2

−T/2

dt eiEt = 2πTδ(E) , (15.5.10′)

where the limit of the first factor is expressed by 2πδ(E), which for the second
integral then yields

∫ T/2

−T/2 dt e
0 = T .

The transition probability per unit time Γif is obtained by dividing | 〈f |S(1) |i〉 |2
by T (Eq. (15.5.7)):
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Γif = 2πδ(E − E′)
( m

V E

)2

|M|2 e2 |Ṽ (p − p′)|2 . (15.5.11)

The differential scattering cross-section is defined by

dσ

dΩ
=
dN(Ω)
NindΩ

, (15.5.12)

where dN(Ω) is the number of particles scattered into the element of solid
angle dΩ , and Nin is the number of particles incident per unit area (see
Fig. 15.8). The differential scattering cross-section (15.5.12) is also equal to
the number of particles scattered per unit time into dΩ divided by the inci-
dent current density jin and by dΩ:

dσ

dΩ
=
dN(Ω)/dt
jindΩ

. (15.5.12′)

In addition to the transition rate Γif that has already been found, we also
need to know the incident flux and the number of final states in the element
of solid angle dΩ. We will first show that the flux of incident electrons is
given by |p|

EV . In order to do so, we need to calculate the expectation value
of the current density

jµ(x) = : ψ̄(x)γµψ(x) : (15.5.13)

in the initial state

|i〉 =
∣∣e−,p〉 = b†rp |0〉 .

We obtain〈
e−,p

∣∣ jµ(x)
∣∣e−,p〉 =

m

V Ep
ūr(p)γµur(p) =

pµ

V Ep
, (15.5.14)

where we have used the Gordon identity (Eq. (10.1.5))

ūr(p)γµur′(q) =
1

2m
ūr(p) [(p+ q)µ + iσµν(p− q)ν ]ur′(q) .

The incident current density jin is thus equal to

jin =
|p|
V Ep

, (15.5.15)

p

ϑ

dΩ

d3p
′

p
′

Fig. 15.8. Scattering of
an electron with momen-
tum p by a potential. The
momentum of the scat-
tered electron is p′, the
angle of deflection ϑ, and
the solid angle dΩ
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which, as might be expected, is the product of the particle number density
1
V and the relative velocity |p|

Ep
. To determine dN(Ω) per unit time, we need

the number of final states in the interval d3p′ around p′. Since the volume of
momentum space per momentum value is (2π)3/V , the number of momentum
states in the interval d3p′ is

d3p′

(2π)3/V
=
V |p′|2d|p′|dΩ

(2π)3
=
V |p′|E′dE′dΩ

(2π)3
, (15.5.16a)

where we have used

E′ =
√

p′2 +m2 and dE′ =
|p′|d|p′|√
p′2 +m2

=
|p′|d|p′|
E′ (15.5.16b)

Inserting Eqs. (15.5.11), (15.5.15) and (15.5.16a) into the differential scatter-
ing cross-section (15.5.12′)5, one obtains the cross-section per element of solid
angle dΩ, by keeping dΩ fixed and integrating over the remaining variable
E′

dσ

dΩ
=
∫

2πδ(E − E′)
( m

V E

)2

|M|2e2|Ṽ (p − p′)|2 1
|p|
EV

V |p′|E′dE′

(2π)3

=
(em

2π

)2

|M|2|Ṽ (p − p′)|2
∣∣|p′|=|p| ,

(15.5.17)

where the conservation of energy, expressed by δ(E−E′), yields the condition
|p′| = |p| for the momentum of the scattered particle. The Fourier transform
of the Coulomb potential of a nucleus with charge Z, in Heaviside–Lorentz
units,6

V (x) =
Ze

4π|x|
reads:

Ṽ (p − p′) =
Ze

|p− p′|2
. (15.5.18)

For the sake of simplicity, we assume that the incident electron beam is
unpolarized. This corresponds to a sum over both polarization directions
with the weight 1

2 , i.e., 1
2

∑
r=1,2. The polarization of the scattered particles

is likewise not resolved, giving a sum
∑

r′ over the two polarization directions
of the final state. Under this condition, inserting (15.5.8) and (15.5.18) into
(15.5.17), yields for the differential scattering cross-section

5 dN(Ω)
dt

=
P

f∈dΩ Γif = V
(2π)3

R
p′∈dΩ

d3p′Γif .

6 See footnote 1 in Chap. 14.
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dσ

dΩ
=
(em

2π

)2 1
2

∑
r′

∑
r

|ūr′(p′)γ0ur(p)|
2 (Ze)2

|p− p′|4

∣∣∣∣∣
|p′|=|p|

. (15.5.19)

Hence, we are led to the calculation of∑
r′

∑
r

|ūr′(p′)γ0ur(p)|
2

=
∑
r′

∑
r

ūr′α′(p′)γ0
α′αurα(p)ūrβ(p)γ0

ββ′ur′β′(p′)

= γ0
α′α

(
p/+m

2m

)
αβ

γ0
ββ′

(
p/
′ +m

2m

)
β′α′

=
1

4m2
Tr γ0(p/ +m)γ0(p/′ +m) ,

(15.5.20)

where we have used the representations (6.3.21) and (6.3.23) of the projection
operator Λ+, which leads to the trace of the product of γ matrices.

Making use of the cyclic invariance of the trace, Tr γν = 0, {γµ, γν}
= 2gµν11, and Tr γ0γµγ0γν = 0 for µ 	= ν, one obtains

Tr γ0(p/+m)γ0(p/′ +m) = Tr γ0p/γ0p/′ +mTr γ0p/γ0 +mTr γ0p/′γ0 +m2 Tr1

= Tr γ0p/γ0p/′ + 4m2 = pµp
′
ν Tr γ0γµγ0γν + 4m2

= p0p
′
0 Tr1 + pkp

′
k Tr γ0γkγ0γk + 4m2

= 4(p20 + pp′ +m2)

= 4(E2
p + pp′ +m2) . (15.5.21)

From the expression for the velocity7,

v =
∂E

∂p
=

pp
p2 +m2

=
p

E

and |p| = Ev , pp′ = |p|2 cos ϑ (for |p′| = |p|)
(15.5.22a)

we gain the following relations:

|p − p′|2 = 2p2(1 − cos ϑ) = 4p2 sin2 ϑ

2
(15.5.22b)

and

E2 + p · p′ +m2 = 2E2 − p2(1 − cosϑ) = 2E2 − 2p2sin2 ϑ

2

= 2E2

„
1 − v2sin2ϑ

2

«
.

(15.5.22c)

Inserting (15.5.20), (15.5.21), and (15.5.22a–c) into (15.5.19), one finally ob-
tains the differential scattering cross-section for Mott scattering

7 E and Ep are used interchangeably.
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dσ

dΩ
=

(αZ)2(1 − v2 sin2 ϑ
2 )

4E2v4 sin4 ϑ
2

, (15.5.23)

where α is Sommerfeld’s fine-structure constant6 α = ê2
0

4π . In the nonrela-
tivistic limit, (15.5.23) yields the Rutherford scattering law, see Eq. (18.37)
in QM I,

dσ

dΩ
=

(Zα)2

4m2v4 sin4 ϑ
2

. (15.5.24)

For the scattering of Klein–Gordon particles one has, instead of Eq. (15.5.23),

dσ

dΩ
=

(αZ)2

4E2v4 sin4 ϑ
2

,

see Problem 15.2.
In addition to the elements of the Feynman diagrams encountered in the

preceding section, here we also have a static external field Aµ
e (x), represented

as a wavy line with a cross. According to Eq. (15.5.7), in the transition
amplitude this is assigned the factor Aµ

e (x), or in momentum space

Aµ
e (q) =

∫
d3xe−iq·xAµ

e (x) . (15.5.25)

15.5.3 Second-Order Processes

15.5.3.1 Electron–electron scattering

Our next topic is the scattering of two electrons, also known as Møller scat-
tering. The corresponding Feynman diagram is shown in Fig. 15.9. This is a
second-order process following from the S-matrix term:

S(2) =
(−i)2

2!

∫
d4x1 d

4x2 T (HI(x1)HI(x2))

=
(ie)2

2!

∫
d4x1 d

4x2 (15.5.26)

×T
(
: ψ̄(x1)A/(x1)ψ(x1) : : ψ̄(x2)A/(x2)ψ(x2) :

)
.

Application of Wick’s theorem leads to one term without contraction, three
terms each with one contraction, three terms each with two contractions,
and, finally, to one term with three contractions. The term that contains the
two external incident and outgoing fermions is
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− e2

2

∫
d4x1 d

4x2 : ψ̄(x1)A/(x1)ψ(x1)ψ̄(x2)A/(x2)ψ(x2) :

= −e2

2

∫
d4x1 d

4x2 : ψ̄(x1)γµψ(x1)ψ̄(x2)γνψ(x2)iDFµν(x1 − x2) : ,

(15.5.27)

where DFµν(x1 − x2) is the photon propagator (14.5.19). Depending on
the initial state, this term leads to the scattering of two electrons, of two
positrons, or of one electron and one positron.

We shall consider the scattering of two electrons

e− + e− → e− + e− ,

from the initial state

|i〉 =
∣∣e−(p1r1), e−(p2r2)

〉
= b†r1p1

b†r2p2
|0〉 (15.5.28a)

into the final state

|f〉 =
∣∣e−(p′

1r
′
1), e

−(p′
2r

′
2)
〉

= b†r′
1p

′
1
b†r′

2p
′
2
|0〉 . (15.5.28b)

Here, there are clearly two contributions to the matrix element of S(2). The
direct scattering contribution, in which the operator ψ̄(x1)γµψ(x1) annihi-
lates the particle labeled 1 with spinor ur1(p1) at the position x1 and creates
the particle with spinor ur′

1
(p′1). The operator ψ̄(x2)γνψ(x2) has the same

effect on the particle labeled 2. The other contribution is the exchange scat-
tering. This is obtained when the effect of the annihilation operators remains
as just described, whilst the operator ψ̄(x1)γµψ(x1) creates the particle in the
final state ur′

2
(p′2) and the second operator creates the particle in the state

ur′
1
(p′1). These two contributions are shown diagrammatically in Fig. 15.9.

Exactly the same contributions arise when one, instead, exchanges the posi-
tions x1 and x2 of the two interaction operators. Since one has to integrate
over x1 and x2, one obtains twice the contribution of the two diagrams in
Fig. 15.9. The factor 2 arising from the permutation of the two vertex posi-
tions cancels with the factor 1

2! in S(2). This is a general property of Feynman
diagrams. The factor 1

n! in S(n) can be omitted when one is summing only
over topologically distinct diagrams.

p
′
1r

′
1

p1r1

p
′
2r

′
2

p2r2

p
′
1r

′
1

p1r1

p
′
2r

′
22

p2r2
a) b)

x2 x1

Fig. 15.9. Electron–electron scattering:
(a) direct scattering, (b) exchange scatter-
ing
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The S-matrix element for the direct scattering in Fig. 15.9a is

〈f |S(2) |i〉a = −e2
∫
d4x1 d

4x2

(
m4

V 4Ep1Ep2Ep′
1
Ep′

2

) 1
2

× e−ip1x1+ip′
1x1−ip2x2+ip′

2x2

× (ūr′
1
(p′1)γ

µur1(p1))(ūr′
2
(p′2)γ

νur2(p2))iDFµν(x1 − x2) .
(15.5.29)

The exchange scattering contribution (b) is obtained by exchanging the wave
functions of the final states in −

〈
f |S(2)|i

〉
a
, so that the wave-function part

has the form

e−ip1x1+ip′
1x2−ip2x2+ip′

2x1(ūr′
2
(p′2)γ

µur1(p1))(ūr′
1
(p′1)γ

νur2(p2)) .
(15.5.30)

The minus sign that appears here is due to the fact that, in the exchange
term, one needs an odd number of anticommutations to bring the creation
and annihilation operators into the same order as in the direct term. If,
in (15.5.29) one inserts iDFµν(x1 − x2) = i

∫
d4k

−gµνe−ik(x1−x2)

k2+iε , then, after
carrying out the integrations, one obtains

〈f |S(2) |i〉 = (2π)4δ(4)(p′1 + p′2 − p1 − p2)

×
(

m4

V 4Ep1Ep′
1
Ep2Ep′

2

) 1
2

(Ma + Mb) ,
(15.5.31)

where the matrix elements are given, for the graph 15.9a, by

Ma = −e2ū(p′1)γ
µu(p1)iDFµν(p2 − p′2)ū(p

′
2)γ

νu(p2) (15.5.32a)

and for the graph 15.9b, by

Mb = e2ū(p′2)γ
µu(p1)iDFµν(p2 − p′1)ū(p′1)γ

νu(p2) . (15.5.32b)

The δ function in (15.5.31) expresses the conservation of the total four-
momentum of the two particles. Since, in the matrix element Ma for the
direct scattering, the photon propagator, for example, has the argument
k ≡ p2 − p′2 = p′1 − p1, the four-momentum of the particles is conserved
at every vertex. Hereby, we fix the orientation of the photon momentum
of the internal line to be from right to left. In principle, the orientation of
the photon momentum is arbitrary since DFµν(k) = DFµν(−k); however,
one must select an orientation so that one can monitor the conservation of
momentum at the vertices. The Feynman diagrams in momentum space are
shown in Fig. 15.10.

The Feynman rules can now be extended as follows: To every internal
photon line with momentum argument k, with end points at the vertices γµ

and γν , assign the propagator iDFµν(k) = i −gµν

k2+iε .



15.5 Simple Scattering Processes, Feynman Diagrams 349

p
′
1r

′
1

p1r1

p
′
2r

′
2

p2r2

p
′
1r

′
1

p1r1

p
′
2r

′
2

p2rr22
a) b)

k = − pp′
11

Fig. 15.10. Feynman diagrams
in momentum space for electron–
electron scattering a) direct scat-
tering, b) exchange scattering

We now turn to the evaluation of the matrix element (15.5.32a), which is
now lengthier than for Mott scattering. Instead of going through the details
of the calculation, we refer the reader to the problems and the supplementary
remarks at the end of this section and discuss the final result. The relation
between the differential scattering cross-section and the matrix element M
in the center-of-mass system for two fermions with mass m1 and m2 is given,
according to Eq. (15.5.59), by

dσ

dΩ

∣∣∣∣
CM

=
1

(4π)2
m1m2

Etot
|M|2, (15.5.33)

where Etot is the total energy. Inserting the results (15.5.37)–(15.5.43) into
(15.5.33), one obtains for the scattering cross-section in the center-of-mass
frame (Fig. 15.11) the Møller formula (1932)

dσ

dΩ
=

α2(2E2 −m2)2

4E2(E2 −m2)2

×
(

4
sin4 ϑ

− 3
sin2 ϑ

+
(E2 −m2)2

(2E2 −m2)2

(
1 +

4
sin4 ϑ

))
.

(15.5.34)

In the nonrelativistic limit, E2 ≈ m2, v2 = (E2 −m2)/E2, this yields:

dσ

dΩ

∣∣∣∣
nr

=
( α
m

)2 1
4v4

(
1

sin4 ϑ
2

+
1

cos4 ϑ
2

− 1
sin2 ϑ

2 cos2 ϑ
2

)
, (15.5.35)

p1 = (E,p) p2 = (E,−p)

p
′
1 = (E,p

′
)

p
′
2 = (E,−p

′
)

ϑ Fig. 15.11.
Kinematics of
the scattering
of two identical
particles in the
center-of-mass
system
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a formula that was originally derived by Mott (1930). It is instructive to
compare this result (15.5.35) with the classical Rutherford-scattering formula

dσ

dΩ
=

α2m2

16|p|4

{
1

sin4 ϑ
2

+
1

cos4 ϑ
2

}
. (15.5.36)

This classical formula contains the familiar sin−4 ϑ
2 term, but also an ad-

ditional cos−4 ϑ
2 term, since here we are considering the scattering of two

(identical) electrons. If one observes the scattering at a particular angle ϑ,
then the probability of observing the electron incident from the left is propor-
tional to sin−4 ϑ

2 . The probability that the electron incident from the right is
scattered into this direction is, as can be seen from symmetry considerations,
proportional to

sin−4

(
π − ϑ

2

)
= cos−4 ϑ

2
.

Classically, these probabilities simply add, which leads to (15.5.36). In the
quantum-mechanical result (15.5.35), however, an additional term arises due
to the interference between the two electrons. In quantum mechanics it is the
two amplitudes, corresponding to the Feynman diagrams 15.9a and 15.9b,
that are added. The scattering cross-section is then obtained as the absolute
magnitude squared. The minus sign in the interference term results from the
Fermi statistics; for bosons one obtains a plus sign.

In the extreme relativistic case, E
m → ∞, from (15.5.34) we have

dσ

dΩ

∣∣∣∣
er

=
α2

E2

(
4

sin4 ϑ
− 2

sin2 ϑ
+

1
4

)
=

α2

4E2

(
1

sin4 ϑ
2

+
1

cos4 ϑ
2

+ 1

)

=
α2

4E2

(3 + cos2 ϑ)2

sin4 ϑ
.

(15.5.37)

Supplement : Calculation of the differential scattering cross-section for
electron–electron scattering. For the scattering cross-section, we need

|M|2 = |Ma|2 + |Mb|2 + 2ReMaM∗
b (15.5.38)

from (15.5.32a,b) with iDFµν(k) = −igµν

k2+ie . We assume an unpolarized electron
beam that scatters from likewise unpolarized electrons and, furthermore, that
the polarization of the scattered particles is not registered; this implies the
summation 1

4

∑
r1

∑
r2

∑
r′
1

∑
r′
2
≡ 1

4

∑
ri,r′

i
. For the first term in (15.5.38)

we obtain
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|Ma|2 =
e2

4

∑
ri,r′

i

ūr′
1
(p′1)γ

µur1(p1)ūr′
2
(p′2)γµur2(p2)

× ūr1(p1)γνur′
1
(p′1)ūr2(p2)γνur′

2
(p′2)

1
[(p′1 − p1)2]

2

=
e4

4

∑
ri,r′

i

ūr1(p1)γνur′
1
(p′1)ūr′

1
(p′1)γ

µur1(p1)

× ūr2(p2)γνur′
2
(p′2)ūr′

2
(p′2)γµur2(p2)

1
[(p′1 − p1)2]

2

=
e4

4
Tr
(
γν
p/′1 +m

2m
γµ
p/1 +m

2m

)
× Tr

(
γν p/

′
2 +m

2m
γµ p/2 +m

2m

)
1

[(p′1 − p1)2]
2 .

(15.5.39)

The second term of (15.5.38) is obtained by exchanging the momenta p′1 and
p′2 in |Ma|2:

|Mb|2 = |Ma|2 (p′1 ↔ p′2) , (15.5.40)

and the third is

Re(MaM∗
b) =

e2

4

∑
ri,r′

i

1
(p′1 − p2)2(p′2 − p1)2

× Re
[
ūr′

1
(p′1)γµur1(p1)ūr′

2
(p′2)γ

µur2(p2)

× ūr1(p1)γνur′
1
(p′1)ūr2(p2)γνur′

2
(p′2)

]
= −e4

4
1

(p′1 − p2)2(p′2 − p1)2

× Tr
(
γν
p/′1 +m

2m
γµ
p/1 +m

2m
γν p/

′
2 +m

2m
γµ p/2 +m

2m

)
.

(15.5.41)

In the final expression here, it is possible to omit the Re since its argument is
already real. There still remains the evaluation of the traces: For Eq. (15.5.39)
one needs

Tr (γν(p/′1 +m)γµ(p/1 +m)) = 4(gµνm
2 + p1µp

′
1ν + p1νp

′
1µ − gµνp

′
1 · p1) .

(15.5.42)

In Eq. (15.5.41) we encounter

γν(p/′1 +m)γµ(p/1 +m)γν = −2p/1γµp/
′
1 + 4m(p1µ + p′1µ) − 2m2γµ

(15.5.43)
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and

Tr (γν(p/′1 +m)γµ(p/1 +m)γν(p/′2 +m)γµ(p/2 +m))

= Tr
(
(−2p/1γµp/

′
1 + 4m(p1 + p′1)µ − 2m2γµ)(p/′2 +m)γµ(p/2 +m)

)
= Tr

(
− 2p/1(4p′1 · p′2 − 2mp/′1)(p/2 +m) + 4m(p/′2 +m)(p/1 + p/′1)(p/2 +m)

− 2m2(−2p/′2 + 4m)(p/2 +m)
)

= 16(−2p1·p2 p
′
1·p′2+m2p1·p′1+m2(p1+p′1)·(p2+p′2)+m

2p2·p′2−2m4) .
(15.5.44)

The formulas (15.5.38)–(15.5.44)were used in going from (15.5.31) to (15.5.34).

∗15.5.3.2 Scattering Cross-Section and S-Matrix Element

In many applications, it is important to have a general relation between the
scattering cross-section and the relevant S-matrix element.

We consider the scattering of two particles with four-momenta pi =
(Ei,pi), i = 1, 2, which react to yield a final state containing n particles
with momenta p′f = (E′

f ,p
′
f ), f = 1, . . . , n. For brevity, we suppress the

polarization states. The S-matrix element for the transition from the initial
state |i〉 into the final state |f〉 has the form

〈f |S |i〉 = δfi + (2π)4δ(4)(
∑

p′f −
∑

pi)

×
∏

i

(
1

2V Ei

)1/2∏
f

(
1

2V E′
f

)1/2 ∏
external
fermions

(2m)1/2M . (15.5.45)

The final product
∏

external fermions(2m)1/2 stems from the normalization fac-
tor in (15.3.12a,b) and contributes a factor (2m)1/2 for every external fermion,
whereby the masses can be different. The amplitude factor M =

∑∞
n=1 M(n)

is the sum over all orders of perturbation theory, where M(n) stems from
the term S(n). The four-dimensional δ function is obtained for an infinite
time interval and an infinite normalization volume. As was the case for Mott
scattering, it is convenient to consider a finite time interval T as well as a
finite volume. One then has

(2π)4δ(4)(
∑

p′f −
∑

pi)

→ lim
T→∞,V →∞

∫ T/2

−T/2

dt

∫
V

d3x eix(
P

p′
f−

P
pi)

(15.5.46)
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and(
lim

T→∞,V →∞

∫ T/2

−T/2

dt

∫
V

d3x eix(
P

p′
f−

P
pi)

)2

= TV (2π)4δ(4)(
∑

p′f −
∑

pi).

(15.5.47)

This leads to a transition rate or, in other words, a transition probability per
unit time, of

wfi =
|Sfi|2
T

= V (2π)4δ(4)(
∑

p′f −
∑

pi)

(∏
i

1
2V Ei

)⎛⎝∏
f

1
2V E′

f

⎞⎠
×

∏
external
fermions

(2m) |M|2 . (15.5.48)

wfi is the transition rate into a particular final state f . The transition rate
into a volume element in momentum space

∏
l d

3p′l is obtained by multiplying
(15.5.48) by the number of states in this element

|Sfi|2
T

∏
f

V
d3p′f
(2π)3

. (15.5.49)

The scattering cross-section is the ratio of the transition rate to the incident
flux. In differential form this implies

dσ =
|Sfi|2
T

V

vrel

∏
f

V
d3p′f
(2π)3

= (2π)4δ(4)(
∑

p′f −
∑

pi)
1

4E1E2vrel

×
∏

external
fermions

(2m)
∏
f

d3p′f
(2π)3E′

f

|M|2 (15.5.50)

≡ 1
4E1E2vrel

∏
external
fermions

(2m) |M|2dΦn .

The normalization is chosen such that the volume V contains one particle
and the incident flux equals vrel/V , with the relative velocity vrel. In the
center-of-mass frame (p2 = −p1), the relative velocity of the two incident
particles is

vrel =
|p1|
E1

+
|p2|
E2

= |p1|
E1 + E2

E1E2
. (15.5.51)
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In the laboratory frame, where particle 2 is assumed to be at rest, we have
p2 = 0, and the relative velocity is

vrel =
|p1|
E1

. (15.5.52)

In the calculation of the scattering cross-sections, one encounters phase-space
factors of the outgoing particles

dΦn ≡ (2π)4δ(4)(
∑

p′f − p1 − p2)
∏
f

d3p′f
(2π)32E′

f

. (15.5.53)

If one is interested in the cross-section of the transition into a certain region
of phase space, one must integrate over the remaining variables. Since the
total four-momentum is conserved, the momenta p′

1, . . .p
′
n cannot all be

independent variables. We consider the important special case of two outgoing
particles

dΦ2 = (2π)4δ(4)(p′1 + p′2 − p1 − p2)
d3p′1

(2π)32E′
1

d3p′2
(2π)32E′

2

. (15.5.54)

The integration over p′
2 yields8:

dΦ2 =
1

(2π)2
δ(E′

1 + E′
2 − E1 − E2)

d3p′1
4E′

1E
′
2

=
δ(E′

1 + E′
2 − E1 − E2)p′21 dp

′
1dΩ

′
1

16π2E′
1E

′
2

, (15.5.55)

where, in this equation, E′
2 ≡ Ep′

2=p1+p2−p′
1
. The further integration over

p1 ≡ |p′
1| yields9:

dΦ2 =
|p′

1|2

16π2E′
1E

′
2

∂(E′
1+E′

2)

∂|p′
1|

dΩ′
1 . (15.5.56)

In the center-of-mass system we have p′
2 = −p′

1. From the relation

E′2
f = m′2

f + p′2
f , f = 1, 2 (15.5.57)

it follows that

∂(E′
1 + E′

2)
∂|p′

1|
= |p′

1|
(

1
E′

1

+
1
E′

2

)
= |p′

1|
E1 + E2

E′
1E

′
2

. (15.5.58)

8 The phase space changes in size when going from (15.5.54) to (15.5.56), since
finally we are calculating the cross-section per element of solid angle dΩ′

1, inde-
pendently of |p′

1| and p′
2. The notation dΦ is retained throughout.

9 δ(f(x)) =
P

x0

1
|f ′(x0)|δ(x − x0), where the sum extends over all (simple) zeros

of f(x).
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Inserting this into (15.5.56) and (15.5.58), and inserting (15.5.52) into (15.5.50),
one obtains the differential scattering cross-section in the center-of-mass
frame as

dσ

dΩ

∣∣∣∣
CM

=
1
4

1
(4π)2(E1 + E2)2

|p′
1|

|p1|
∏

external
fermions

(2mFermi)|M|2. (15.5.59)

This is the relationship we are seeking between the differential scattering
cross-section and the amplitude M. The special case of electron–electron
scattering was analyzed in Sect. 15.5.3.1.

15.5.3.3 Compton Scattering

Compton scattering refers to the scattering of a photon from a free electron.
In practice, the electrons are frequently bound but the high energy of the
photons often means that they can still be considered as effectively free10. In
this scattering process

e− + γ −→ e− + γ

the initial state contains an electron and a photon, as does the final state.
In second-order perturbation theory, Wick’s theorem yields two contribu-
tions, each with one contraction of two Fermi operators ψ and ψ̄. The two
Feynman diagrams are shown in Fig. 15.12. From these we can directly de-
duce a further Feynman rule. To each internal fermion line there corresponds
a propagator iSF (p) = i

p/−m+iε . The two diagrams (b) and (c) are topologi-
cally equivalent: it is sufficient to consider just one of them.

e−

e−

γ

γ

e−

e−

e+

γ

γ

-̂

(b)

e−

e−

γ

γ

(a) (c)

Fig. 15.12. Compton scattering (a) A photon is absorbed and then emitted. (b)
The photon first creates an e+e− pair. This diagram is topologically equivalent to
(c), where first a photon is emitted, and only afterwards is the incident photon
absorbed by the electron

10 The great historical significance of the Compton effect for the evolution of quan-
tum mechanics was described in QM I, Sect. 1.2.1.3.
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Remark. In connection with the calculation of the photon propagator in the
Coulomb gauge (Sect. 14.5), it was asserted that the photon propagator appears
only in the combination jµD

µν
F jν . We now explain this in second-order perturbation

theory, for which the contribution to the S matrix is

S(2) =
(−i)2

2!

Z Z
d4xd4x′ T

`
jµ(x)Aµ(x)jν(x′)Aν(x′)

´
=

(−i)2

2!

Z Z
d4xd4x′ T

`
jµ(x)jν(x′)

´
T
`
Aµ(x)Aν(x′)

´
,

since the electron and photon operators commute with one another. The contraction
of the two photon fields yields:Z

d4xd4x′ T
`
jµ(x)jν(x′)

´
DF µν(x− x′) =

Z
d4k T (jµ(k)jν(k))DF µν(k) ,

and, on account of the continuity equation jµ(k)kµ = 0, the part of DF µν(k) which

we call redundant in (E.26c) makes no contribution.

15.5.4 Feynman Rules of Quantum Electrodynamics

In our analysis of scattering processes in Sects. 15.5.2 and 15.5.3, we were able
to apply Wick’s theorem to derive the most important elements of the Feyn-
man rules which associate analytical expressions to the Feynman diagrams.
We summarize these rules in the list below and in Fig. 15.13.

For given initial and final states |i〉 and |f〉, the S-matrix element has the
form

〈f |S |i〉

= δfi +

⎡⎢⎣(2π)4δ(4)(Pf − Pi)

⎛⎜⎝ ∏
ext.

fermion

√
m

V E

⎞⎟⎠
⎛⎜⎝ ∏

ext.
photon

√
1

2V |k|

⎞⎟⎠
⎤⎥⎦M ,

where Pi and Pf are the total momenta of the initial and final states. In
order to determine M, one draws all topologically distinct diagrams up to
the desired order in the interaction and sums over the amplitudes of these
diagrams. The amplitude associated with a particular Feynman diagram is
itself determined as follows:

1. One assigns a factor of −ieγµ to every vertex point.
2. For every internal photon line one writes a factor iDFµν(k) = i−gµν

k2+iε .
3. For every internal fermion line one writes iSF (p) = i 1

p/−m+iε .
4. To the external lines one assigns the following free spinors and polariza-

tion vectors:
incoming electron: ur(p)
outgoing electron: ūr(p)
incoming positron: w̄r(p)
outgoing positron: wr(p)
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Feynman rules of quantum electrodynamics in momentum space

External lines:

ur(p) ūr(p)

incident electron outgoing electron

w̄r(p) wr(p)

incident positron outgoing positron

ελµ(k) ελµ(k)

incident photon outgoing photon

Aeµ(k)

external field

Internal lines:

p

iSF (p) = i 1
p/−m+iε iDµν

F (k) = i −gµν

k2+iε

k

µ ν

internal electron line internal photon line

−ieγµ

p
′

p

k

vertex

Fig. 15.13. The Feynman rules of quantum electrodynamics. The end points where
the external lines and propagators can be attached to a vertex are indicated by dots
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incoming photon: ελµ(k)
outgoing photon: ελµ(k)

5. The spinor factors (γ matrices, SF propagators, four-spinors) are ordered
for each fermion line such that reading them from right to left amounts
to following the arrows along the fermion lines.

6. For each closed fermion loop, multiply by a factor (−1) and take the
trace over the spinor indices.

7. At every vertex, the four-momenta of the three lines that meet at this
point satisfy energy and momentum conservation.

8. It is necessary to integrate over all free internal momenta (i.e., those not
fixed by four-momentum conservation):

∫
d4q

(2π)4
.

9. One multiplies by a phase factor δp = 1(or − 1), depending on whether
an even or odd number of transpositions is necessary to bring the fermion
operators into normal order.

An example of a diagram containing a closed fermion loop is the self-
energy diagram of the photon in Fig. 15.21, another being the vacuum dia-
gram of Fig. 15.14. Vacuum diagrams are diagrams without external lines.

Fig. 15.14. The vacuum diagram of lowest order

The minus sign for a closed fermion loop has the following origin:
Starting from the part of the T -product which leads to the closed loop
T
(
. . . ψ̄(x1)A(x1)ψ(x1) . . . ψ̄(x2)A(x2)ψ(x2) . . . ψ̄(xf )A(xf )ψ(xf ) . . .

)
, one has

to permute ψ̄(x1) with an odd number of fermion fields to arrive at the ar-
rangement . . . A(x1)ψ(x1)ψ̄(x2)A(x2)ψ(x2) . . . ψ̄(xf )A(xf )ψ(x1) . . . leading
to the sequence of propagators ψ(x1)ψ̄(x2) . . . ψ(xf )ψ̄(x1) with a minus sign.

∗15.6 Radiative Corrections

We will now describe a few other typical elements of Feynman diagrams,
which lead in scattering processes to higher-order corrections in the charge.
These corrections go by the general name of radiative corrections. If, in
electron–electron scattering, for example, one includes higher order Feyn-
man diagrams, one obtains correction terms in powers of the fine-structure
constant α. Some of these diagrams are of a completely new form, whereas
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others can be shown to be modfications of the electron propagator, the pho-
ton propagator, or the electron–electron–photon vertex. In this section we
will investigate the latter elements of Feynman diagrams. The intention is to
give the reader a general, qualitative impression of the way in which higher
corrections are calculated, and of regularization and renormalization. We will
not attempt to present detailed quantitative calculations.11

15.6.1 The Self-Energy of the Electron

15.6.1.1 Self-Energy and the Dyson Equation

As observed earlier, an electron interacts with its own radiation field. It
can emit and reabsorb photons. These photons, which are described by
perturbation-theoretical contributions of higher order, modify the propaga-
tion properties of the electron. If, for example, a fermion line within some
diagram is replaced by the diagram shown in Fig. 15.15b, this means that

(a) (b)

Fig. 15.15. Replacement of a fermion propagator (a) by two propagators with
inclusion of the self-energy (b)

the propagator as a whole, (a)+(b), becomes

SF (p) → S′
F (p) = SF (p) + SF (p)Σ(p)SF (p) . (15.6.1)

The bubble consisting of a photon and a fermion line (Fig. 15.15b) is called
the self-energy Σ(p). The corresponding analytical expression is given in Eq.
(15.6.4). Summing over processes of this type

S′
F (p) = SF (p) + SF (p)Σ(p)SF (p)

+SF (p)Σ(p)SF (p)Σ(p)SF (p) + . . .

= SF (p) + SF (p)Σ(p)
(
SF (p) + SF (p)Σ(p)SF (p) + . . .

)
,

(15.6.2a)

one obtains the Dyson equation

S′
F (p) = SF (p) + SF (p)Σ(p)S′

F (p) , (15.6.2b)

11 See, e.g., J. M. Jauch and F. Rohrlich, The Theory of Photons and Electrons or
J. D. Bjorken and S. D. Drell, Relativistic Quantum Mechanics, McGraw-Hill,
New York, 1964, p. 153
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with the solution

S′
F (p) =

1
(SF (p))−1 −Σ(p)

. (15.6.3)

Hence, the self-energy Σ(p) and its associated self-energy diagram give,
among other things, a correction to the mass and a modification of the par-
ticle’s energy, the latter being the source of the name “self-energy”. The
diagrammatic representation of (15.6.2a) and (15.6.2b) is given in Fig. 15.16.
To distinguish it from the free (or bare) propagator SF (p), the propagator

= + + + ++ + + . . .

= +

Fig. 15.16. Diagrammatic representation of the Dyson equation (15.6.2a,b). The
propagator S′

F (p) is represented by the double line

S′
F (p) is called the interacting (dressed) propagator. It is represented dia-

grammatically by a double line.
A few self-energy diagrams of higher order have already been given in

Fig. 15.2. In general, a part of a diagram is called a self-energy contribution
when it is linked to the rest of the diagram only by two SF (p) propagators. A
proper self-energy diagram (also one-particle irreducible) is one that cannot
be separated into two parts by cutting a single SF (p) line. Otherwise, one has
an improper self-energy diagram. The self-energy diagrams in Fig. 15.2 are
all proper ones. The second summand in the first line of Fig. 15.16 contains
a proper self-energy part; all the others are improper. The Dyson equation
(15.6.2b) can be extended to arbitrarily high orders; then, Σ(p) in (15.6.2b)
and (15.6.3) consists of the sum of all proper self-energy diagrams.

The analytical expression corresponding to the lowest order self-energy
diagram of Fig. 15.17, which is also contained as a part of Fig. 15.15, reads
according to the Feynman rules

k

p− k Fig. 15.17. Lowest (proper) self-energy diagram of the
electron
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−iΣ(p) =
(−ie)2

(2π)4

∫
d4kiDFµν(k)γµiSF (p− k)γν

=
e2

(2π)4

∫
d4k

1
k2 + iε

2p/− 2k/− 4m
(p− k)2 −m2 + iε

. (15.6.4)

This integral is ultraviolet divergent; it diverges logarithmically at the upper
limit.

The bare (free) propagator i
p/−m+iε has a pole at the bare mass p/ = m, i.e.,

i
p/−m+iε = i(p/+m)

p2−m2+iε has a pole at p2 = m2. Correspondingly, the interacting
propagator that follows from (15.6.3)

iS′
F (p) =

i
p/−m−Σ(p) + iε

. (15.6.5)

will possess a pole at a different, physical or renormalized mass

mR = m+ δm . (15.6.6)

The mass of the electron is modified by the emission and reabsorption of
virtual photons (see, e.g., the diagrams in Fig. 15.2). We rewrite (15.6.5)
with the help of (15.6.6),

iS′
F (p) =

i
p/−mR −Σ(p) + δm+ iε

. (15.6.7)

15.6.1.2 The Physical and the Bare Mass, Mass Renormalization

It will prove convenient to redefine the fermion part of the Lagrangian density,
and likewise that of the Hamiltonian,

L ≡ ψ̄(i∂/−m)ψ − eψ̄A/ψ

= ψ̄(i∂/−mR)ψ − eψ̄A/ψ + δm ψ̄ψ , (15.6.8)

so that the free Lagrangian density contains the physical mass. This then
takes account of the fact that the nonlinear interaction in L1 modifies the
bare mass m, and that the resulting physical mass mR, which is observed
in experiment, differs from m according to (15.6.6). Individual particles that
are widely separated from one another and noninteracting, as is the case for
scattering processes before and after the scattering event, possess the physical
mass mR. According to Eq. (15.6.8), the Hamiltonian density contains, in
addition to eψ̄A/ψ, the further perturbation term −δm ψ̄ψ. The δm has to be
determined such that the combined effect of the two terms in the modified
interaction part,

HI = eψ̄A/ψ − δm ψ̄ψ , (15.6.9)

produces no change in the physical electron mass. The perturbation term
−δm ψ̄ψ is represented diagrammatically in Fig. 15.18. It has the form of a
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−δm

Fig. 15.18. Feynman diagram for the mass counter term −δm ψ̄ψ

vertex with two lines. Subtraction of the term −δm ψ̄ψ, has the result that the
“bare”particles of the thus redefined Lagrangian density have the same mass,
and, hence, the same energy spectrum, as the physical particles, namely mR.
Every self-energy term of the form shown in Fig. 15.19a is accompanied by
a mass counter term (b), which cancels the k-independent contribution from
(a). In higher orders of e, there are further proper self-energy diagrams to be
considered, and δm contains higher-order corrections in e. For the redefined
Lagrangian density (15.6.8) and the interaction Hamiltonian density (15.6.9)
the propagator also has the form (15.6.7), where the self-energy Σ(p)

−iΣ(p) = −e2
∫

d4k

(2π)4
−i

k2 + iε
γν

i
p/ − k/−mR + iε

γν (15.6.10)

differs from (15.6.4) only in the appearance of the mass mR. The mass shift
δm is obtained from the condition that the sum of the third and fourth terms
in the denominator of (15.6.7) produces no change in the (physical) mass, i.e.,
that iS′

F (p) has a pole at p/ = mR:

Σ(p)|p/=mR
= δm . (15.6.11)

p p− k p

k

+

a)

p p

b)

Fig. 15.19. The lowest self-energy contributions according to the Lagrangian den-
sity (15.6.8) or (15.6.9). (a) Self-energy as in Eq. (15.6.4) with m→ mR; (b) mass
counter term resulting from the mass correction in (15.6.9)
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15.6.1.3 Regularization and Charge Renormalization

Since the integrand in (15.6.10) falls off only as k−3, the integral is ultraviolet
divergent. Thus, in order to determine the physical effects associated with
Σ(p), one needs to carry out a regularization which makes the integral finite.
One possibility is to replace the photon propagator by

1
k2 + iε

−→ 1
k2 − λ2 + iε

− 1
k2 − Λ2 + iε

. (15.6.12)

Here, Λ is a large cut-off wave vector: for k � Λ the propagator is unchanged
and for k � Λ it falls off as k−4, such that Σ(p) becomes finite. In the
limit Λ → ∞ one has the original QED. In addition, λ is an artificial photon
mass that is introduced so as to avoid infrared divergences, and which will
eventually be set to zero. With the regularization (15.6.12), Σ(p) becomes
finite. It will be helpful to expand Σ(p) in powers of (p/−mR),

Σ(p) = A− (p/ −mR)B + (p/ −mR)2Σf (p) . (15.6.13)

From (15.6.10) one sees that the p-independent coefficients A and B diverge
logarithmically in Λ, whereas Σf (p) is finite and independent of Λ. If one
multiplies Σ(p) from the left and right by spinors for the mass mR, only the
constant A remains. If one considers ∂Σ(p)

∂pµ
, and again multiplies from the left

and right by the spinors, then only −γµB remains. We will need this result
later in connection with the Ward identity.

The result of the explicit calculation11 is: According to Eq. (15.6.11), the
mass shift δm is obtained as

δm = A =
3mRα

2π
log

Λ

mR
, (15.6.14)

which is logarithmically divergent. The coefficient B is

B =
α

4π
log

Λ2

m2
R

− α

2π
log

m2
R

λ2
. (15.6.15)

The explicit form of the finite function Σf (p) will not be needed here. It
follows that

iS′
F (p) =

i
(p/−mR) [1 +B − (p/ −mR)Σf (p)]

=
i

(p/−mR) (1 +B) (1 − (p/−mR)Σf (p)) + O(α2)

=
iZ2

(p/−mR) (1 − (p/ −mR)Σf (p)) + O(α2)
(15.6.16)

with
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Z−1
2 ≡ 1 +B = 1 +

α

4π

(
log

Λ2

m2
R

− 2 log
m2

R

λ2

)
. (15.6.17)

The quantity Z2 is known as the wave function renormalization constant.
Now, a propagator connects two vertices, each of which contributes a

factor e. Hence, the factor Z2 can be split into two factors of
√
Z2 and, taking

into account the two fermions entering at each vertex, one can redefine the
value of the charge

e′R = Z2e ≡ (1 −B)e . (15.6.18)

Here, e′R is the preliminary renormalized charge. In the following, we will un-
dertake two further renormalizations. The electron propagator that remains
after the renormalization has the form

iS̃′
F (p) = Z−1

2 iS′
F (p)

=
i

(p/ −mR) (1 − (p/ −mR)Σf (p)) + O(α2)
(15.6.19)

and is finite.

15.6.1.4 Renormalization of External Electron Lines

The diagram 15.20a contains a self-energy insertion in an external electron
line. This, together with the mass counter term of Fig. 15.20b, leads to the
following modification of the spinor of the incident electron:

ur(p) → ur(p) +
i

p/ −mR + iε

(
i(p/ −mR)B − i(p/ −mR)2Σf(p)

)
ur

→
(

1 − i
p/ −mR + iε

(p/ −mR)B
)
ur(p) , (15.6.20)

since the last term in the first line vanishes on account of (p/−mR)ur(p) = 0.
The expression in the second line is undetermined, as can be seen, either
by allowing the two operators to cancel with one another, or by applying
(p/ −mR) to ur(p). By switching the interaction on and off adiabatically,

HI = ζ(t)e ψ̄γµψA
µ − ζ(t)2δm ψ̄ψ, (15.6.21)

a) b)

Fig. 15.20. (a) A diagram with inclu-
sion of the self-energy in an external
fermion line. (b) Mass counter term
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where limt→±∞ ζ(t) = 0, and ζ(0) = 1, Eq. (15.6.20) is replaced by a well-
defined mathematical expression, with the result

ur(p) → ur(p)
√

1 − B . (15.6.22)

This means that the external lines, like the internal ones, also yield a factor√
1 − B in the renormalization of the charge. Thus, Eq. (15.6.18) also holds

for vertices with external lines:

e → e′R = (1 −B)e .

Apart from the factor Z1/2
2 , which goes into the charge renormalization, there

are no radiative corrections in the external electron lines. The result (15.6.22)
is to be expected intuitively for the following reasons: (i) Even an external
electron must have been emitted somewhere and is thus an internal electron in
some larger process. It thus yields a factor of

√
1 −B at every vertex. (ii) The

transition from S′
F to S̃′

F in Eq. (15.6.19) can be regarded as a replacement of
the field ψ by a renormalized field ψR = Z

−1/2
2 ψ + . . . , or Z1/2

2 ψR = ψ+ . . .
. From this, one also sees that Z2 represents the probability of finding in a
physical electron state one bare electron.

15.6.2 Self-Energy of the Photon, Vacuum Polarization

The lowest contribution to the photon self-energy is represented in Fig. 15.21.
This diagram makes a contribution to the photon propagator. The photon
creates a virtual electron–positron pair, which subsequently recombines to
yield a photon once more. Since the virtual electron–positron pair has a
fluctuating dipole moment that can be polarized by an electric field, one
speaks in this context of vacuum polarization.

q

q + k

k k

Fig. 15.21. Vacuum polarization: A photon decays into
an electron–positron pair which recombines to a photon

According to the Feynman rules, the analytical expression equivalent to
Fig. 15.21 is

Πµν(k,mR) =
∫

d4q

(2π)4
(−1)

× Tr
(

(−ieγµ)
i

q/+ k/−mR + iε
(−ieγν)

i
q/−mR + iε

)
. (15.6.23)
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At first sight, this expression would appear to diverge quadratically at the up-
per limit. However, due to the gauge invariance, the ultraviolet contributions
are in fact only logarithmically divergent.

Regularizing the expression by cutting off the integral at a wave vector Λ would

violate gauge invariance. One thus regularizes (15.6.23) using the Pauli–Villars

method11, by replacingΠµν(k,mR) byΠR
µν(k,mR)≡Πµν(k,mR)−Pi CiΠµν(k,Mi),

where the Mi are large additional fictitious fermion masses, and the coefficients

satisfy
P

i Ci = 1,
P

i CiM
2
i = m2

R. The final result only involves log M2

m2
R

≡P
i Ci log

M2
i

m2
R

.

Finally, because of the vacuum polarization self-energy contributions, the
photon propagator for small k takes the form

iD′
µν(k) = − igµν

k2 + iε
Z3

(
1 − α

πm2
R

(
1
15

− 1
40

(
k2

m2
R

)))
, (15.6.24)

where

Z3 ≡ 1 − C = 1 − α

3π
log

M2

m2
R

(15.6.25)

is the photon field renormalization constant. This factor also leads to a renor-
malization of the charge

e′′2R ≡ Z3e
′2 ≈

(
1 − α

3π
log

M2

m2
R

)
e2 . (15.6.26)

The photon propagator that remains after charge renormalization, for small
k, has the form

iD̃′
Fµν(k) = Z−1

3 iD′
Fµν(k)

=
−igµν

k2 + iε

(
1 − αk2

πm2
R

(
1
15

− 1
40

(
k2

m2
R

)))
.

(15.6.27)

15.6.3 Vertex Corrections

We now proceed to the discussion of vertex corrections. The divergences that
occur here can again be removed by renormalization. A diagram of the type
shown in Fig. 15.22a contains two fermion and one photon line; it thus has
the same structure as the vertex ψ̄γµAµψ in Fig. 15.22b. For diagrams of this
kind, one thus speaks of vertex corrections. The diagram 15.22a represents
the lowest (lowest power in e) vertex correction. This diagram also yields the
leading contribution to the anomalous magnetic moment of the electron. The
amplitude for the diagram, without the external lines, is given by

Λµ(p′, p) = (−ie)2
∫

d4k

(2π)4
−i

k2 + iε

× γν
i

p/′ − k/−mR + iε
γµ

i
p/− k/ −mR + iε

γν .

(15.6.28)
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p
′ − k

p− p′

p− k

p

p
′

a) b)

p
′

p− p′

p

Fig. 15.22. (a) Vertex correction,
(b) vertex

Λµ(p′, p) is logarithmically divergent and is regularized in the following by
replacing the photon propagator as specified in Eq. (15.6.12). One can split
Λµ(p′, p) into a component that diverges in the limit Λ → ∞ and a component
that remains finite. We first consider Λµ multiplied from the left and right by
two spinors corresponding to the mass mR, to yield ūr′(P )Λµ(P, P )ur(P ).
We denote the momentum of spinors such as these, which correspond to
real particles, by P . Due to Lorentz invariance, this expression can only be
proportional to γµ and to Pµ. With the help of the Gordon identity (10.1.5),
one can replace a Pµ dependence by γµ, so that one has

ūr′(P )Λµ(P, P )ur(P ) = Lūr′(P )γµur(P ) (15.6.29)

with a constant L that remains to be determined. For general four-vectors
p, p′, we separate Λµ(p′, p) in the following way:

Λµ(p′, p) = Lγµ + Λf
µ(p′, p) . (15.6.30)

Whereas L diverges in the limit Λ → ∞, the term Λf
µ(p′, p) remains finite.

In order to see this, we expand the fermion part of (15.6.28) in terms of the
deviation of the momentum vectors p and p′ from the momentum P of free
physical particles used in (15.6.29):(

1
P/− k/−mR + iε

− 1
P/ − k/−mR + iε

(p/′ − P/)
1

P/ − k/−mR + iε
+ · · ·

)
× γµ

(
1

P/− k/ −mR + iε

− 1
P/− k/−mR + iε

(p/− P/)
1

P/ − k/−mR + iε
+ · · ·

)
.

(15.6.31)

The divergence in (15.6.28) stems from the leading term (the product of the
first terms in the brackets in (15.6.31)); this yields Lγµ, whilst the remaining
terms are finite.

The first term in (15.6.30), together with γµ, leads to the replacement
γµ → γµ(1 + L) and produces a further renormalization of the charge
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eR = (1 + L)e′′R ≡ Z−1
1 e′′R . (15.6.32)

We need not pursue the calculation of L any further since, as will be generally
shown, it is related to the constant B introduced in (15.6.13) and (15.6.15),
and in the charge renormalization cancels with it.

15.6.4 The Ward Identity and Charge Renormalization

Taken together, the various renormalization factors for the charge yield

e → eR =
√

1 − C (1 −B)(1 + L)e . (15.6.33)

The factor
√

1 − C comes from the vacuum polarization (Fig. 15.21), the fac-
tor 1−B from the wave function renormalization of the electron (Fig. 15.15),
and the factor 1 + L from the vertex renormalization. However, in quantum
electrodynamics, it turns out that the coefficients B and L are equal. To
demonstrate this, we write the self-energy of the electron (15.6.10) in the
form

Σ(p) = ie2
∫

d4k

(2π)4
DF (k)γνSF (p− k)γν , (15.6.34)

and the vertex function (15.6.28) as

Λµ(p′, p) = e2
∫

d4k

(2π)4
DF (k)γνSF (p′ − k)γµSF (p− k)γν . (15.6.35)

We now make use of the relation

∂SF (p)
∂pµ

= −SF (p)γµSF (p), (15.6.36)

which is obtained by differentiating

SF (p)S−1
F (p) = 1 (15.6.37)

with respect to pµ, i.e.,

∂SF (p)
∂pµ

S−1
F (p) + SF (p)

∂

∂pµ
(p/−mR) = 0 , (15.6.38)

and then multiplying by SF (p) from the right. Equation (15.6.36) states
that the insertion of a vertex γµ in an internal electron line, without energy
transfer, is equivalent to the differentiation of the electron propagator with
respect to pµ (Fig. 15.23). With the help of this identity, we can write the
vertex function (15.6.35) in the limit of equal momenta as
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p pk pp k p k

q = 0

kk

a) b)

Fig. 15.23. Diagrammatic representation of the Ward identity. (a) Self-energy
diagram. (b) The differentiation is equivalent to inserting into the fermion line a
vertex for a photon with zero momentum

Lγµ = lim
p′→p

Λµ(p′, p)
∣∣∣∣
p/′=mR , p/=mR

= −ie2
∫

d4k

(2π)4
DF (k)γν

∂SF (p− k)
∂(p− k)µ γν (15.6.39)

= −ie2
∫

d4k

(2π)4
DF (k)γν

∂SF (p− k)
∂pµ

γν .

On the other hand, from the definition of B in (15.6.13), one obtains

ūr′(p)Bγµur(p) = ūr′(p)
(−∂Σ(p)

∂pµ

)
ur(p)

= ūr′(p)

(
e2
∫

d4k

(2π)4
DF (k)γν

∂SF (p− k)
∂pµ

γν

)
ur(p)

= ūr′(p)Lγµur(p) , (15.6.40)

from which it follows that

B = L . (15.6.41)

This relation implies

(1 −B)(1 + L) = 1 + O(α2) , (15.6.42)

so that the charge renormalization simplifies to

e → eR =
√

1 − Ce ≡ Z
1/2
3 e . (15.6.43)

The renormalized charge eR is equal to the experimentally measured charge
e2R ≡ 4π

137 . The bare charge e2 is, according to (15.6.26), larger than e2R.
The factors arising from the renormalization of the vertex and of the wave

function of the fermion cancel one another. It follows from this result that
the charge renormalization is independent of the type of fermion considered.



370 15. Interacting Fields, Quantum Electrodynamics

In particular, it is the same for electrons and muons. Hence, for the identical
bare charges, the renormalized charges of these particles are also equal, as
is the case for electrons and muons. Since the renormalization factors (Z
factors) depend on the mass, this last statement would not hold without
such cancellation. The prediction that the charge renormalization only arises
from the photon field renormalization is valid at every order of perturbation
theory. The relation (15.6.36) and its generalization to higher orders, together
with its implication (15.6.41), are known as the Ward identity. This identity
is a general consequence of gauge invariance. Expressed in terms of the Z
factors, the Ward identity (15.6.41) reads

Z1 = Z2 .

Remarks:

(i) We add a remark here concerning the form of the radiative corrections
for the electron–electron scattering that was treated to leading order in
Sects. 15.5.3.1 and 15.5.3.2. We will confine ourselves to the direct scat-
tering. The leading diagram is shown in Fig. 15.24a. Taking this as the
starting point, one obtains diagrams that contain self-energy insertions in
internal (b) and external (d) lines, and vertex corrections (c). These are
taken into account by charge renormalization and by the replacements
D → D̃′ and γµ → (γµ +Λf

µ), as was briefly sketched above. The diagram

a) b) c)b)

d) e) f)e)

g)

Fig. 15.24. Radiative corrections to the direct electron–
electron scattering up to fourth order in e. (a) Second or-
der; (b) correction due to vacuum polarization; (c) vertex
correction; (d) self-energy insertion in an external line; (f)
and (g) two further diagrams
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(e) stems from the mass counter term −δmψ̄ψ. In addition to these dia-
grams there are two further diagrams (f,g) that make finite contributions
in second order.

(ii) Quantum electrodynamics in four space–time dimensions is renormaliz-
able since, at every order of perturbation theory, all divergences can be
removed by means of a finite number of reparameterizations (renormal-
ization constants δm, Z1, Z2, and Z3).

15.6.5 Anomalous Magnetic Moment of the Electron

An interesting consequence of the radiative corrections is their effect on the
magnetic moment of the electron. This we elucidate by considering the scat-
tering in an external electromagnetic potential Aµ

e . In the interaction (15.6.9)
the field operator Aµ is thus replaced by Aµ +Aµ

e . The process to first order
is shown in Fig. 15.25a. The corresponding analytical expression is

a)

b) c) d)c)

e) f) g)f)

p′

p

Fig. 15.25. Radiative corrrections of second order for the QED vertex with two
fermions and an external potential Aµ

e
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− ieRūr′(p′)A/e(p′ − p)ur(p)

= − ieR

2mR
ūr′(p′)

[
(p′ + p)µ + iσµν(p′ − p)ν

]
ur(p)Aeµ(p′ − p) ,

(15.6.44)

where we have used the Gordon identity (10.1.5). In anticipation of the charge
renormalization (see below), we have already inserted the renormalized charge
here. The second term in the square brackets is the transition amplitude
for the scattering of a spin- 1

2 particle with the magnetic moment eR

2mR
=

− ê0
2mR

, where ê0 is the elementary charge12; i.e., the gyromagnetic ratio is
g = 2. The processes of higher order are shown in Fig. 15.25b–g. The self-
energy insertions (b,c) and the contribution C from vacuum polarization (d)
and L coming from the vertex correction (g) lead to charge renormalization,
i.e., in (15.6.44) one has, instead of e, the physical charge eR. Furthermore,
the diagrams (d) and (g) yield finite corrections. For the spin-dependent
scattering, only the vertex correction Λf

µ(p′, p) is important. For (15.6.30)11

the calculation yields

Λf
µ(p′, p) = γµ

α

3π
q2

m2
R

(
log

mR

λ
− 3

8

)
+

α

8πmR
[q/ , γµ] (15.6.45)

with q = p′ − p. By adding the last term of this equation to (15.6.44), one
obtains

−ieRūr′(p′)(γµ +
iα
2π

σµνq
ν

2mR
)ur(p)Aµ

e (q) (15.6.46)

= −ieRūr′(p′)
[
(p+ p′)µ

2mR
+ (1 +

α

2π
)
iσµνq

ν

2mR

]
ur(p)Aµ

e (q) .

In coordinate space, the term iσµνq
νAµ

e has the form −σµν∂
νAµ

e (x) =
− 1

2σµνF
µν . In order to be able to give a physical interpretation of the result

(15.6.46), we consider an effective interaction Hamiltonian which, in first-
order perturbation theory, yields exactly (15.6.46):

Heff ≡ eR

∫
d3x

{
ψ̄(x)γµψ(x)Aµ

e (x) +
α

2π
1

2mR
ψ̄(x)σµνψ(x)∂νAµ

e (x)
}

= eR

∫
d3x

{
i

2mR

(
ψ̄(x) (∂µψ(x)) −

(
∂µψ̄(x)

)
ψ(x)

)
Aµ

e (x)

+
(
1 +

α

2π

) 1
4mR

ψ̄(x)σµνψF
µν
e (x)

}
.

(15.6.47)

Here, we have again used the Gordon identity. The first term after the second
equals sign represents a convective current. The second term, in the case of

12 See footnote 1 in Chap. 14
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a constant magnetic field, can be interpreted as a magnetic dipole energy.
Since this can, through the substitution F 12 = B3, F 23 = B1, F 31 = B2,
σ12 = Σ3, etc., be brought into the form

−B
(

eR

2mR

(
1 +

α

2π

)
2
∫
d3xψ̄(x)

Σ

2
ψ(x)

)
≡ −Bµ . (15.6.48)

For slow electrons, the upper components of the spinors are significantly
larger than the lower ones. In this nonrelativistic limit, the magnetic moment
of a single electron is, according to (15.6.48), effectively given by

eR

2mR

(
1 +

α

2π

)
2
σ

2
, (15.6.49)

where σ are the 2 × 2 Pauli matrices. The contribution to (15.6.49) propor-
tional to the fine-structure constant is referred to as the anomalous mag-
netic moment of the electron. It should be stressed, however, that (15.6.47)
does not represent a fundamental interaction: It merely serves to describe
the second-order radiative correction within first-order perturbation theory.
From (15.6.49) one obtains the modification of the g factor

g − 2
2

=
α

2π
= 0.00116 .

When one includes corrections of order α2 and α3, which arise from higher-
order diagrams, one finds the value

g − 2
2

= 0.0011596524(±4),

which is in impressive agreement with the experimental value of

0.00115965241(±20) .

The increase in the magnetic moment of the electron can be understood
qualitatively as follows. The electron is continually emitting and reabsorb-
ing photons and is thus surrounded by a cloud of photons. Thus, a certain
amount of the electron’s energy, and therefore mass, resides with these pho-
tons. Hence, the charge-to-mass ratio of the electron is effectively increased
and this reveals itself in a measurement of the magnetic moment. In the dia-
gram 15.25g, the electron emits a photon before interacting with the external
magnetic field. The correction is proportional to the emission probability and,
thus, to the fine-structure constant α.

Problems

15.1 Confirm the expression (15.2.17) for the propagator φ(x1)φ(x2) , instead of
starting from (15.2.16), by evaluating (15.2.15) directly.
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15.2 The interaction of the complex Klein–Gordon field with the radiation field
reads, according to Eq. (F.7), to first order in Aµ(x)

HI(x) = jµ(x)Aµ(x) ,

where jµ = −ie : ∂φ†
∂xµ
φ− ∂φ

∂xµ
φ† : is the current density.

Calculate the differential scattering cross-section for the scattering from a nucleus
with charge Z. Establish the result

dσ

dΩ
=

(αZ)2

4E2v4sin4 ϑ
2

.

15.3 Show that for fermions˙
e−,p

˛̨
jµ(x)

˛̨
e−,p

¸
=

pµ

V Ep
,

where jµ(x) is the current-density operator,
˛̨
e−,p

¸
= b†p,r |0〉, andEp =

p
p2 +m2.

15.4 Verify Eq. (15.5.39).

15.5 Verify Eqs. (15.5.42) and (15.5.43).

15.6 a) With the help of the Feynman rules, give the analytical expression for the

transition amplitude corresponding to the Feynman diagrams of Compton scatter-

ing, Fig. 15.12a,b.

b) Derive these expressions by making use of Wick’s theorem.
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Appendix

A Alternative Derivation of the Dirac Equation

Here, we shall give an alternative derivation of the Dirac equation. In so
doing, we will also deduce the Pauli equation as well as a decomposition of
the Dirac equation that is related to the Weyl equations for massless spin- 1

2
particles.

Our starting point is the nonrelativistic kinetic energy

H =
p2

2m
→ 1

2m

(
�

i
∇
)2

. (A.1)

Provided there is no external magnetic field, instead of this Hamiltonian, one
can use the completely equivalent form

H =
1

2m
(σ · p)(σ · p) (A.2)

as can be established from the identity

(σ · a)(σ · b) = a · b + iσ · (a × b) .

If one starts from (A.1) when introducing the coupling to the magnetic field,
it is, in addition, necessary to add the coupling of the electron spin to the
magnetic field “by hand”. Alternatively, one can start with (A.2) and write
the Hamiltonian with magnetic field as

H =
1

2m
σ ·
(
p− e

c
A
)

σ ·
(
p − e

c
A
)

=
1

2m

(
p− e

c
A
)2

+
i

2m
σ ·
[(

p − e

c
A
)
×
(
p − e

c
A
)]

(A.3)

=
1

2m

(
p− e

c
A
)2

− e�

2mc
σ · B .

Here, we have made use of the rearrangements that lead from (5.3.29) to
(5.3.29′). In this way, one obtains the Pauli equation with the correct Landé
factor g = 2.

We now wish to establish the relativistic generalization of this equation.
To this end, we start with the relativistic energy–momentum relation
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E2

c2
− p2 = (mc)2 , (A.4)

which we rewrite as(
E

c
− σ · p

)(
E

c
+ σ · p

)
= (mc)2 . (A.5)

According to the correspondence principle (E → i� ∂
∂t , p → −i�∇), the

quantum-mechanical relation is(
i�

∂

∂t c
+ σi�∇

)(
i�

∂

∂t c
− σi�∇

)
φ = (mc)2φ , (A.6)

where φ is a two-component wave function (spinor). This equation was orig-
inally put forward by van der Waerden. In order to obtain a differential
equation of first order in time, we introduce two two-component spinors

φ(L) = −φ and φ(R) = − 1
mc

(
i�

∂

∂x0
− i�σ · ∇

)
φ(L) .

The last equation, defining φ(R), together with the remaining differential
equation from (A.6), yields:(

i�
∂

∂x0
− i�σ · ∇

)
φ(L) = −mcφ(R)(

i�
∂

∂x0
+ i�σ · ∇

)
φ(R) = −mcφ(L) .

(A.7)

The notation φ(L) and φ(R) refers to the fact that, in the limit m → 0,
these functions represent left- and right-handed polarized states (i.e., spins
antiparallel and parallel to the momentum). In order to make the connection
to the Dirac equation, we write σ∇ ≡ σi∂i and form the difference and the
sum of the two equations (A.7)

i�
∂

∂x0

(
φ(R) − φ(L)

)
+ i�σi∂i

(
φ(R) + φ(L)

)
−mc

(
φ(R) − φ(L)

)
= 0

− i�
∂

∂x0

(
φ(R) + φ(L)

)
− i�σi∂i

(
φ(R) − φ(L)

)
−mc

(
φ(R) + φ(L)

)
= 0 .

(A.8)

Combining the two-component spinors into the bispinor

ψ =
(
φ(R) − φ(L)

φ(R) + φ(L)

)
(A.9a)
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yields(
i�γ0 ∂

∂x0
+ i�γi∂i −mc

)
ψ = 0 , (A.9b)

with

γ0 =
(

11 0
0 −11

)
, γi =

(
0 σi

−σi 0

)
. (A.9c)

We thus obtain the standard representation of the Dirac equation.

B Dirac Matrices

B.1 Standard Representation

γ0 =
(

11 0
0 −11

)
, γi =

(
0 σi

−σi 0

)
, γ5 =

(
0 11
11 0

)
β =

(
11 0
0 −11

)
, αi =

(
0 σi

σi 0

)
Chirality operator : γ5

(γ5)2 = 11

{γ5, γµ} = 0
a/b/ = a · b− iaµbνσµν , a/ ≡ γµa

µ

σµν =
i
2

[γµ, γν ]

σµν = −σνµ

γµγµ = 4 , γµγνγµ = −2γν

γµγνγργµ = 4gνρ , γµγνγργσγµ = −2γσγργν

B.2 Chiral Representation

γ0 = β =
(

0 −11
−11 0

)
, α =

(
σ 0
0 −σ

)
, γ =

(
0 σ

−σ 0

)
,

σ0i =
i
2

[γ0, γi] = −iαi =
1
i

(
σi 0
0 −σi

)

σij =
i
2

[γi, γj] = − i
2

[αi, αj ] = εijk

(
σk 0
0 σk

)
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B.3 Majorana Representations

γ0 =
(

0 σ2

σ2 0

)
, γ1 = i

(
σ3 0
0 σ3

)
, γ2 =

(
0 −σ2

σ2 0

)
, γ3 = −i

(
σ1 0
0 σ1

)
or

γ0 =
(

0 σ2

σ2 0

)
, γ1 = i

(
0 σ1

σ1 0

)
, γ2 = i

(
11 0
0 −11

)
, γ3 = i

(
0 σ3

σ3 0

)

C Projection Operators for the Spin

C.1 Definition

We define here the spin projection operator and summarize its properties.
Since this projection operator contains the Dirac matrix γ5 (Eq. 6.2.48), we
give the following useful representation of γ5

γ5 = iγ0γ1γ2γ3 = − i
4!
εµνρσγµγνγργσ = − i

4!
εµνρσγ

µγνγργσ . (C.1)

Here, εµνρσ is the totally antisymmetric tensor of fourth rank:

εµνρσ =

⎧⎨⎩
1 for even permutations of 0123

−1 for odd permutations of 0123
0 otherwise .

(C.2)

The spin projection operator is defined by

P (n) =
1
2
(11 + γ5n/) . (C.3)

Here, n/ = γµnµ, and nµ is a space-like unit vector satisfying n2 = nµnµ = −1
and nµk

µ = 0. In the rest frame, these two vectors are denoted by ňµ and ǩµ

and have the form ň = (0, ň) and ǩ = (m,0).

C.2 Rest Frame

For the special case where n ≡ n(3) ≡ (0, 0, 0, 1) is a unit vector in the positive
z direction, one obtains

P (n(3)) =
1
2
(11 + γ5γ3) =

1
2

(
11 + σ3 0

0 11 − σ3

)
, (C.4)

since γ5(−γ3) = −
(

0 11
11 0

)(
0 σ3

−σ3 0

)
=
(
σ3 0
0 −σ3

)
. The effect of the pro-

jection operator P (n(3)) on the spinors of particles at rest (Eq. (6.3.3) or
(6.3.11a,b) for k = 0) is thus given by
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P (n(3))
{
u1(m,0)
u2(m,0) =

{
u1(m,0)
0

P (n(3))
{
v1(m,0)
v2(m,0) =

{
0
v2(m,0) .

(C.5)

Equation (C.5) implies that, in the rest frame, P (n) projects onto eigenstates
of 1

2Σ ·n, with the eigenvalue + 1
2 for positive energy states and the eigenvalue

− 1
2 for negative energy states.
In Problem 6.15 the following properties of P (n) and of the projection op-

erators Λ±(k) acting on spinors of positive and negative energy have already
been demonstrated:

[Λ±(k), P (n)] = 0

Λ+(k)P (n) + Λ−(k)P (n) + Λ+(k)P (−n) + Λ−(k)P (−n) = 11 (C.6)

TrΛ±(k)P (±n) = 1 .

C.3 General Significance of the Projection Operator P (n)

We will now investigate the effect of P (n) for a general space-like unit vector
n, which thus obeys n2 = −1 and n ·k = 0. Useful quantities for this purpose
are the vector

Wµ = −1
2
γ5γµk/ (C.7a)

and the scalar product

W · n = −1
4
εµνρσn

µkνσρσ , (C.7b)

which can also be written as

W · n = −1
2
γ5n/k/ . (C.7c)

The equivalence of these two expressions can be seen most easily by trans-
forming into a frame of reference in which k is purely time-like (k =
(k0, 0, 0, 0)) and hence n, on account of n · k = 0, purely space-like (n =
(0, n1, 0, 0)). In this rest frame, the right-hand side of (C.7b) becomes

−1
4
ε10ρσn

1k0σρσ = −1
4
ε10ρσn

1k0iγργσ

= −1
4
(ε1023n1k0iγ2γ3 + ε1032n

1k0iγ3γ2)

= − i
2
n1k0γ2γ3
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and for the right-hand side of (C.7c) we have

−1
2
γ5n/k/ = − i

2
γ0γ1γ2γ3(−n1γ1)k0γ

0 = − i
2
n1k0γ2γ3 ,

thus demonstrating that they are identical.
In the rest frame the vector (C.7a) has the spatial components

W = −1
2
γ5γγ

0k0 = +
1
2
γ5γ

0γm =
m

2
Σ , (C.8)

where we have put k0 = m. Assuming that n is directed along the z axis, i.e.,
n = n(3) ≡ (0, 0, 0, 1), it follows from (C.8) that

W · n =
m

2
Σ3 . (C.9)

The plane waves in the rest frame are eigenvectors of −W ·n(3)

m = 1
2Σ

3 :

1
2Σ

3u1(m,k = 0) = 1
2u1(m,k = 0)

1
2Σ

3u2(m,k = 0) = − 1
2u2(m,k = 0)

1
2Σ

3v1(m,k = 0) = 1
2v1(m,k = 0)

1
2Σ

3v2(m,k = 0) = − 1
2v2(m,k = 0) .

(C.10)

After carrying out a Lorentz transformation from (m,k = 0) to (k0,k), we
have

−W · n
m

=
1

2m
γ5n/k/ ,

where n is the transform of n(3). The equations (C.10) then transform into
eigenvalue equations for ur(k) and vr(k)

− W · n
m

ur(k) =
1

2m
γ5n/k/ur(k) =

1
2
γ5n/ur(k)

= ±1
2
ur(k) for r =

{
1
2

− W · n
m

vr(k) =
1

2m
γ5n/k/vr(k) = −1

2
γ5n/vr(k)

= ±1
2
vr(k) for r =

{
1
2
,

(C.11)

where, after the first and the second equals signs, we have made use of (C.7c)
and of k/ur(k) = mur(k) and k/vr(k) = −mvr(k), respectively. Finally, after
the third equals sign we obtain the right-hand side of (C.10). The action of
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γ5n/ on the ur(k) and vr(k) is apparent from (C.11) and it is likewise evident
that

P (n) =
1
2
(11 + γ5n/) (C.12a)

is a projection operator onto u1(k) and v2(k) and that

P (−n) =
1
2
(11 − γ5n/) (C.12b)

is a projection operator onto u2(k) and v1(k).
Let n be an arbitrary space-like vector, with n ·k = 0 and let ň be the cor-

responding vector in the rest frame. Then, P (n) projects onto spinors u(k, n)
that are polarized along +ň in the rest frame, and onto those v(k, n) that are
polarized along −ň in the rest frame. We have the eigenvalue equations

Σ · ň u(ǩ, ň) = u(ǩ, ň)

Σ · ň v(ǩ, ň) = −v(ǩ, ň) .
(C.13)

The vectors k and n are related to their counterparts ǩ and ň in the rest
frame by a Lorentz transformation Λ: kµ = Λµ

ν ǩ
ν with ǩν = (m, 0, 0, 0) and

nµ = Λµ
ν ň

ν with ňν = (0,n). The inverse relation reads ňν = Λ ν
µ n

µ.
As is usual in the present context, we have used the notation u(k, n) and
v(k, n) for the spinors. These are related to the ur(k) and vr(k) used previ-
ously by

u1(k) = u(k, n), u2(k) = u(k,−n)
v1(k) = v(k,−n), v2(k) = v(k, n) ,

(C.14)

where n = Λn(3) with n(3) = (0, 0, 0, 1).
We now consider a unit vector nk, whose spatial part is parallel to k:

nk =
( |k|
m
,
k0

m

k
|k|

)
. (C.15)

Trivially, this satisfies

n2
k =

k2

m2
− k2

0

m2
= −1 and nk · k =

|k|k0

m
− k0

m

k2

|k| = 0 .

We now show that the combined effect of the projection operator P (nk) and
the projection operators Λ±(k) on spinors with positive and negative energy
can be represented by

P (nk)Λ±(k) =
(

11 ± Σ · k
|k|

)
Λ±(k) . (C.16)

To prove this relation, one starts from the definitions
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P (nk)Λ±(k) =
1
2
(11 + γ5n/k)

±k/+m

2m

and rearranges as follows:

γ5n/k
±k/+m

2m
= γ5n/k

±k/+m

2m
±k/+m

2m
=
(

1
2
γ5n/k ± γ5n/k

k/

2m

) ±k/+m

2m
.

This yields:

1
2
γ5n/k

±k/+m

2m
= ±γ5n/k

k/

2m
±k/+m

2m

which gives us the intermediate result

P (nk)Λ±(k) =
1
2
(11 ± γ5n/k

k/

m
)
±k/+m

2m
. (C.17)

We then proceed by writing

γ5n/kk/ = γ5(nk · k︸ ︷︷ ︸
=0

−inµ
kσµνk

ν)

= −iγ5(n0
kσ0jk

j + nj
kσj0k

0) = iγ5σ0j(
|k|
m
kj − k0

m

kj

|k|k
0)

= iγ5
m

|k|σ0jk
j = γ5

m

|k|γ
0γjkj .

Here, we have used nk ·k = 0 and also the fact that the purely spatial compo-
nents make no contribution, due to the antisymmetry of σij . By considering,
as an example, the j = 3 component of γ5γ

0γj:

γ5γ
0γ3 = −iγ1γ2(γ3)2 = iγ1γ2 = σ12 = Σ3 ,

the assertion (C.16) is confirmed. Equation (C.16) reveals the following prop-
erty of the projection operator P (nk): The operator P (nk) projects states
with positive energy onto states with positive helicity, and states with nega-
tive energy onto states with negative helicity. Analogously, we have

P (−nk)Λ±(k) =
1
2
(11 ∓ Σ · k

|k| )Λ± ;

thus P (−nk) projects spinors with positive energy onto spinors with negative
helicity and spinors with negative energy onto spinors with positive helicity.
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D The Path-Integral Representation
of Quantum Mechanics

We start from the Schrödinger equation

i�
∂

∂t
|ψ, t〉 = H |ψ, t〉 (D.1)

with the Hamiltonian

H =
1

2m
p2 + V , (D.2)

and let the eigenstates of H be |n〉. Assuming that limx→±∞ V (x) = ∞, we
know that the eigenvalues of H are discrete. In the coordinate representation,
the eigenstates of H are the wave functions ψn(x) = 〈x|n〉, where |x〉 is the
position eigenstate with position x. The discussion that follows will be based
on the Schrödinger representation. If, at time 0 the particle is in the position
state |y〉, then at time t its state is e−iHt/� |y〉. The probability amplitude
that at time t the particle is located at x is given by

G(y, 0|x, t) = 〈x| e−itH/� |y〉 . (D.3)

We call G(y, 0|x, t) the Green’s function. It satisfies the initial condition
G(y, 0|x, 0) = δ(y−x). Inserting the closure relation 11 =

∑
n |n〉 〈n| in (D.3),

G(y, 0|x, t) =
∑
n,m

〈x|n〉 〈n| e−itH/� |m〉 〈m|y〉 ,

we obtain the coordinate representation of the Green’s function

G(y, 0|x, t) =
∑

n

e−itEn/�ψn(x)ψ∗
n(y). (D.4)

By dividing the time interval [0, t] into N parts (Fig. D.1), whereby increasing
N yields ever smaller time differences ∆t = t

N , we may express the Green’s
function as follows:

G(y, 0|x, t) = 〈x| e−iH∆t/� . . . e−iH∆t/� |y〉

=
∫
dz1 . . .

∫
dzN−1 〈zN | e−iH∆t/� |zN−1〉 . . . 〈z1| e−iH∆t/� |z0〉 ,

(D.5)

y = z0 zN = xz1 zN−1

Fig. D.1. Discretization of the time interval [0, t], with the zi of the identity oper-
ators introduced in (D.5) (z0 = y, zN = x)
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where we have introduced the identity operators 11 =
∫
dzi |zi〉 〈zi|. We then

have

e−iH∆t/� = e−i ∆t
�

V (x)
2 e−i ∆tp2

2�m e−
i∆t

�

V (x)
2 + O((∆t))2. (D.6)

We now determine the necessary matrix elements

〈ξ| e−i p2
2m

∆t
� |ξ′〉 =

∫
dk

2π
〈ξ|k〉 e−i (k�)2

2m
∆t
� 〈k|ξ′〉

=
∫
dk

2π
eik(ξ−ξ′)e−i (k�)2

2m
∆t
�

=
∫
dk

2π
e−

i∆t�

2m

“
k− ξ−ξ′

2∆t�/2m

”2
+i(ξ−ξ′)2 m

2∆t�

=
( −im

2π�∆t

)1/2

e
im

2�∆t (ξ−ξ′)2 .

(D.7)

In the first step the completeness relation for the momentum eigenfunctions
was inserted twice. From (D.6) and (D.7) it follows that

〈ξ| e−iH∆t/� |ξ′〉

= exp
[
−i
∆t

�

(
V (ξ) + V (ξ′)

2
− m(ξ − ξ′)2

2(∆t)2

)]( −im
2π�∆t

) 1
2 (D.8)

and finally, for the Green’s function,

G(y, 0|x, t) =
∫
dz1 . . .

∫
dzN−1

× exp

[
i∆t
�

N∑
n=1

{
m(zn − zn−1)2

2(∆t)2
− V (zn) + V (zn−1)

2

}

+
N

2
log

−im
2π�∆t

]
.

In the limit N → ∞ this yields the Feynman path-integral representation1

G(y, 0|x, t) =
∫
D[z] exp

i
�

∫ t

0

dt′
{
mż(t′)2

2
− V (z(t′))

}
, (D.9)

where

D[z] = lim
N→∞

( −im
2π�∆t

)N
2 N−1∏

n=1

dzn (D.10)

1 R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals,
McGraw-Hill, New York, 1965; G. Parisi, Statistical Field Theory , Addison-
Wesley, 1988, p.234
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and

zn = z

(
nt

N

)
.

The probability amplitude for the transition from y to x after a time t is
given as the sum of the amplitudes of all possible trajectories from y to x,
each being given the weight exp i

�

∫ t

0
dt′ L(ż, z) and where

L(ż, z) =
mż(t)2

2
− V (z(t))

is the classical Lagrangian. The phase of the probability amplitude is just
the classical action. In the limit � → 0, the main contribution to the func-
tional integral comes from the neighborhood of the trajectory whose phase
is stationary. This is just the classical trajectory.

E Covariant Quantization of the Electromagnetic Field,
the Gupta–Bleuler Method

E.1 Quantization and the Feynman Propagator

In the main text, we treated the radiation field in the Coulomb gauge. This
has the advantage that only the two transverse photons occur. To determine
the propagator, however, one has to combine the photon contributions with
the Coulomb interaction in order to obtain the final covariant expression. In
this appendix, we describe an alternative and explicitly covariant quantiza-
tion of the radiation field by means of the Gupta–Bleuler method2. In the
covariant theory, one begins with

LL = −1
2
(∂νAµ)(∂νAµ) − jµA

µ . (E.1)

The components of the momentum conjugate to Aµ are

Πµ
L =

∂LL

∂Ȧµ = −Ȧµ . (E.2)

From the Lagrangian density (E.1), we obtain the field equations

�Aµ(x) = jµ(x) . (E.3)

2 Detailed presentations of the Gupta–Bleuler method can be found in S.N. Gupta,
Quantum Electrodynamics Gordon and Breach, New York, 1977; C. Itzykson and
J.-B. Zuber, Quantum Field Theory McGraw Hill, New York, 1980; F. Mandl
and G. Shaw, Quantum Field Theory, J. Wiley, Chichester 1984; J.M. Jauch and
F. Rohrlich, The Theory of Photons and Electrons, 2nd ed., Springer, New York,
1976, Sect.6.3.
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These are only equivalent to the Maxwell equations when the four-potential
Aµ(x) satisfies the gauge condition

∂µA
µ(x) = 0 . (E.4)

The most general solution of the free field equations (jµ = 0) is given by the
linear superposition3

Aµ(x) = Aµ +(x) +Aµ −(x)

=
∑
k,r

(
1

2V |k|

)1/2 (
εµr (k)ar(k)e−ikx + εµr (k)a†r(k)eikx

)
. (E.5)

The four polarization vectors obey the orthogonality and completeness rela-
tions

εr(k)εs(k) ≡ εrµ(k)εµs (k) = −ζrδrs , r, s = 0, 1, 2, 3 (E.6a)∑
r

ζrε
µ
r (k)ενr (k) = −gµν , (E.6b)

where

ζ0 = −1 , ζ1 = ζ2 = ζ3 = 1 . (E.6c)

On occasion it is useful to employ the special polarization vectors

εµ0 (k) = nµ ≡ (1, 0, 0, 0) (E.7a)
εµr (k) = (0, εk,r) r = 1, 2, 3 , (E.7b)

where εk,1 and εk,2 are unit vectors that are orthogonal, both to one another
and to k, and

εk,3 = k/|k| . (E.7c)

This implies

n · εk,r = 0 , r = 1, 2 (E.7d)
εk,rεk,s = δrs , r, s = 1, 2, 3 . (E.7e)

The longitudinal vector can also be expressed in the form

εµ3 (k) =
kµ − (kn)nµ(
(kn)2 − k2

)1/2
. (E.7f)

3 To distinguish them from the polarization vectors εk,λ and creation and anni-

hilation operators a†kλ and akλ (λ = 1, 2) of the main text, where the Coulomb
gauge was employed, we denote the polarization vectors in the covariant repre-
sentation by εµ

r (k), and the corresponding creation and annihilation operators
by a†r(k) and ar(k).
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The four vectors describe

εµ1 , ε
µ
2 transverse polarization
εµ3 longitudinal polarization
εµ0 scalar or time-like polarization .

The covariant simultaneous canonical commutation relations for the radiation
field read:

[Aµ(x, t), Aν(x′, t)] = 0,
[
Ȧµ(x, t), Ȧν (x′, t)

]
= 0[

Aµ(x, t), Ȧν(x′, t)
]

= −igµνδ(x − x′) .
(E.8)

The commutation relations are the same as those for the massless Klein–
Gordon field, but with the additional factor −gµν . The zero component has
the opposite sign to the spatial components.

One can thus obtain the propagators directly from those for the Klein–
Gordon equation:

[Aµ(x), Aν(x′)] = iDµν(x− x′) (E.9a)

Dµν(x− x′) = igµν

∫
d4k

(2π)3
δ(k2)ε(k0)e−ikx (E.9b)

〈0|T (Aµ(x)Aν(x′)) |0〉 = iDµν
F (x− x′) (E.10a)

Dµν
F (x− x′) = −gµν

∫
d4k e−ikx

k2 + iε
. (E.10b)

By inverting (E.5) and using (E.8), one obtains the commutation relations
for the creation and annihilation operators[

ar(k), a†s(k
′)
]

= ζrδrsδkk′ , ζ0 = −1 , ζ1 = ζ2 = ζ3 = 1 ,

[ar(k), as(k′)] =
[
a†r(k), a†s(k

′)
]

= 0 .
(E.11)

E.2 The Physical Significance of Longitudinal and Scalar Photons

For the components 1, 2, 3 (i.e., the two transverse, and the longitudinal,
photons) one has, according to Eq. (E.11), the usual commutation relations,
whereas for the scalar photon (r = 0) the roles of the creation and annihilation
operators seem to be reversed. The vacuum state |0〉 is defined by

ar(k) |0〉 = 0 for all k and r = 0, 1, 2, 3 , (E.12)

i.e.,

Aµ +(x) |0〉 = 0
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for all x. One-photon states have the form

|qs〉 = a†s(q) |0〉 . (E.13)

The Hamiltonian is obtained from (E.1) as

H =
∫
d3x :

(
Πµ

L(x)Ȧµ(x) − L(x)
)

: . (E.14)

Inserting (E.2) and the expansion (E.5) into this Hamiltonian yields

H =
∑
r,k

|k| ζr a†r(k)ar(k) . (E.15)

One may be concerned that the energy might not be positive definite, because
of ζ0 = −1. However, because of the commutation relation (E.11) the energy
is indeed positive definite

H |q, s〉 =
∑
r,k

|k| ζr a†r(k)ar(k)a†s(q) |0〉

= |q| a†s(q) |0〉 , s = 0, 1, 2, 3 .

(E.16)

Correspondingly, one defines the occupation-number operator

n̂rk = ζra
†
r(k)ar(k) . (E.17)

For the norm of the states, one finds

〈qs|qs〉 = 〈0| as(q)a†s(q) |0〉 = ζs 〈0|0〉 = ζs . (E.18)

In the Gupta–Bleuler theory, the norm of a state with a scalar photon is
negative. More generally, every state with an odd number of scalar photons
has a negative norm. However, the Lorentz condition ensures that, essentially,
the scalar photons are eliminated from all physical effects. In combination
with the longitudinal photons, they merely lead to the Coulomb interaction
between charged particles.

For the theory to be really equivalent to the Maxwell equations, we still
need to satisfy the Lorentz condition (E.4). In the quantized theory, however,
it is not possible to impose the Lorentz condition as an operator identity. If
one were to attempt this, Eq. (E.9a) would imply that

[∂µA
µ(x), Aν (x′)] = i∂µD

µν(x − x′) (E.19)
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must vanish. However, from (E.10b) we know that this is not the case. Gupta
and Bleuler replaced the Lorentz condition by a condition4 on the states

∂µA
µ+(x) |Ψ〉 = 0 . (E.20a)

This also gives

〈Ψ | ∂µA
µ−(x) = 0 (E.20b)

and thus

〈Ψ | ∂µA
µ(x) |Ψ〉 = 0 . (E.21)

It is thereby guaranteed that the Maxwell equations are always satisfied in
the classical limit.

The subsidiary condition (E.20a) affects only the longitudinal- and scalar-
photon states since the polarization vectors of the transverse photons are
orthogonal to k. From (E.20a), (E.5), and (E.6), it follows for all k that

(a3(k) − a0(k)) |Ψ〉 = 0 . (E.22)

Equation (E.22) amounts to a restriction on the allowed combinations of
excitations of scalar and longitudinal photons. If |Ψ〉 satisfies the condition
(E.22), the expectation value of the term with the corresponding wave vector
in the Hamiltonian is

〈Ψ | a†3(k)a3(k) − a†0(k)a0(k) |Ψ〉
= 〈Ψ | a†3(k)a3(k) − a†0(k)a0(k) − a†0(k)(a3(k) − a0(k)) |Ψ〉
= 〈Ψ | (a†3(k) − a†0(k))a3(k) |Ψ〉 = 0 .

(E.23)

Thus, with (E.15), we have

〈Ψ |H |Ψ〉 = 〈Ψ |
∑
k

∑
r=1,2

|k| a†r(k)ar(k) |Ψ〉 , (E.24)

4 As already stated prior to Eq.(E.19), the Lorentz condition cannot be imposed
as an operator condition, and cannot even be imposed as a condition on the
states in the form

∂µA
µ(x) |Ψ〉 = 0 . (E.20c)

For the vacuum state, Eq. (E.20c) would yield

∂µA
µ(x) |Ψ0〉 = ∂µA

µ−(x) |Ψ0〉 = 0 .

Multiplication of the middle expression by A+(y) yields A+
µ (y)∂νA−

ν (x) |Ψ0〉 =
∂

∂xν
(A+

µ (y)A−
ν (x)) |Ψ0〉 = ∂

∂xν

`
[A+

µ (y),A−
ν (x)] + A−

ν (x)A+
µ (y)

´ |Ψ0〉 =
∂

∂xν
igµνD

+(y − x) |Ψ0〉 �= 0 , which constitutes a contradiction. Thus the

Lorentz condition can only be imposed in the weaker form (E.20a).
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so that only the two transverse photons contribute to the expectation value of
the Hamiltonian. From the structure of the remaining observables P,J, etc.,
one sees that this is also the case for the expectation values of these observ-
ables. Thus for free fields, in observable quantities only transverse photons
occur, as is the case for the Coulomb gauge. The excitation of scalar and
longitudinal photons obeying the subsidiary condition (E.20a) leads, in the
absence of charges, to no observable consequences. One can show that the
excitation of such photons leads merely to a transformation to another gauge
that also satisfies the Lorentz condition. It is thus simplest to take as the
vacuum state the state containing no photons.

When charges are present, the longitudinal and scalar photons provide the
Coulomb interaction between the charges and thus appear as virtual particles
in intermediate states. However, the initial and final states still contain only
transverse photons.

E.3 The Feynman Photon Propagator

We now turn to a more detailed analysis of the photon propagator. For this
we utilize the equation

gµν = −
∑

r

ζrε
µ
r (k)ενr (k) (E.6b)

and insert the specific choice (E.7a-c) for the polarization vector tetrad into
the Fourier transform of (E.10b):

Dµν
F (k) =

1
k2 + iε

{∑
r=1,2

εµr (k)ενr (k)

+
(kµ − (k · n)nµ) (kν − (k · n)nν)

(kn)2 − k2
− nµnν

}
.

(E.25)

The first term on the right-hand side represents the exchange of transverse
photons

Dµν
F,trans(k) =

1
k2 + iε

∑
r=1,2

εµr (k)ενr (k) . (E.26a)

We divide the remainder of the expression, i.e., the second and third terms,
into two parts:

Dµν
F,Coul(k) =

1
k2 + iε

{
(kn)2nµnν

(kn)2 − k2
− nµnν

}

=
k2

k2 + iε
nµnν

(kn)2 − k2
=

nµnν

(kn)2 − k2

=
nµnν

k2

(E.26b)
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and

Dµν
F,red(k) =

1
k2 + iε

[
kµkν − (kn)(kµnν + nµkν)

(kn)2 − k2

]
. (E.26c)

In coordinate space, Dµν
F,Coul reads:

Dµν
F,Coul(x) = nµnν

∫
d3kdk0

(2π)4
e−ikx 1

|k|2

= gµ0gν0

∫
d3keikx

|k|2
∫
dk0eik0x0

= gµ0gν0 1
4π|x|δ(x

0) . (E.26b′)

This part of the propagator represents the instantaneous Coulomb inter-
action. The longitudinal and scalar photons thus yield the instantaneous
Coulomb interaction between charged particles. In the Coulomb gauge only
transverse photons occurred. The scalar potential was not a dynamical degree
of freedom and was determined through Eq. (14.2.2) by the charge density of
the particles (the charge density of the Dirac field). In the covariant quantiza-
tion, the longitudinal and scalar (time-like) components were also quantized.
The Coulomb interaction now no longer occurs explicitly in the theory, but
is contained as the exchange of scalar and longitudinal photons in the prop-
agator of the theory (in going from (E.25) to (E.26b) it is not only the third
term of (E.25) that contributes, but also a part of the second term). The re-
maining term Dµν

F,red makes no physical contribution and is thus redundant,
as can be seen from the structure of perturbation theory (see the Remark in
Sect. 15.5.3.3),∫

d4x

∫
d4x′ j1µ(x)Dµν

F (x− x′)j2ν(x′)

=
∫
d4k j1µ(k)Dµν

F (k)j2ν(k) .
(E.27)

Since the current density is conserved,

∂µj
µ = 0 and hence jµk

µ = 0 , (E.28)

the term Dµν
F,red, comprising terms proportional to kµ or kν , makes no con-

tribution.

E.4 Conserved Quantities

From the free Lagrangian density corrresponding to (E.1),

LL = −1
2

(∂νAµ) (∂νA
µ) = −1

2
Aµ,νA

µ,ν , (E.29)
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according to (12.4.1), one obtains for the energy–momentum tensor

T µν = −A ,µ
σ Aσ,ν − gµνLL , (E.30a)

and hence the energy and momentum densities

T 00 = −1
2
(ȦνȦν + ∂kA

ν∂kA
ν) (E.30b)

T 0k = −Ȧν∂
kAν . (E.30c)

Furthermore, from (12.4.21), one obtains the angular-momentum tensor

Mµνσ = −Aν,µAσ +Aσ,µAν + xνT µσ − xσT µν (E.31a)

having the spin contribution

Sµνσ = −AσAν,µ +AνAσ,µ (E.31b)

from which one finally establishes the spin three-vector

S = A(x) × Ȧ(x) . (E.31c)

The vector product of the polarization vectors of the transverse photons
ε1(k) × ε2(k) equals k/|k|, and hence the value of the spin, is 1 with only
two possible orientations, parallel or antiparallel to the wave vector. In this
context it is instructive to make the transition from the two creation and
annihilation operators a†1(k) and a†2(k) (or a1(k) and a2(k)) to the creation
and annihilation operators for helicity eigenstates.

F Coupling of Charged Scalar Mesons
to the Electromagnetic Field

The Lagrangian density for the complex Klein–Gordon field is, according to
(13.2.1),

LKG =
(
∂µφ

†) (∂µφ) −m2φ†φ . (F.1a)

In order to obtain the coupling to the radiation field, one has to make the
replacement ∂µ → ∂µ + ieAµ. The resulting covariant Lagrangian density,
including the Lagrangian density of the electromagnetic field

Lrad = −1
2

(∂νAµ) (∂νA
µ) (F.1b)

reads:

L = −1
2

(∂νAµ) (∂νA
µ) −

(
∂φ†

∂xµ
− ieAµφ

†
)(

∂φ

∂xµ
+ ieAµφ

)
−m2φ†φ .

(F.2)



F Coupling of Charged Scalar Mesons 395

The equations of motion for the vector potential are obtained from

− ∂

∂xν

∂L
∂Aµ

,ν
= �Aµ = − ∂L

∂Aµ
. (F.3)

By differentiating with respect to φ†, one obtains the Klein–Gordon equa-
tion in the presence of an electromagnetic field. Defining the electromagnetic
current density

jµ = − ∂L
∂Aµ

, (F.4)

one obtains

jµ = −ie
((

∂φ†

∂xµ
− ieAµφ

†
)
φ− φ†

(
∂φ

∂xµ
+ ieAµφ

))
, (F.5)

which, by virtue of the equations of motion, is conserved.
The Lagrangian density (F.6) can be separated into the Lagrangian den-

sity of the free Klein–Gordon field LKG, that of the free radiation field Lrad,
and an interaction Lagrangian density L1,

L =
(
∂µφ

†) (∂µφ) −m2φ†φ− 1
2

(∂νAµ) (∂νA
µ) + L1 , (F.6)

where

L1 = ie
(
∂φ†

∂xµ
φ− φ†

∂φ

∂xµ

)
Aµ + e2AµA

µφ†φ . (F.7)

The occurrence of the term e2AµA
µφ†φ is characteristic for the Klein–Gordon

field and corresponds, in the nonrelativistic limit, to the A2 term in the
Schrödinger equation. From (F.7) one obtains for the interaction Hamiltonian
density which enters the S matrix (15.3.4)5 for charged particles

HI(x) = −ie
(
φ†(x)

∂φ

∂xµ
− ∂φ†

∂xµ
φ(x)

)
Aµ(x) − e2φ†(x)φ(x)Aµ(x)Aµ(x) .

(F.8)

5 P.T. Matthews, Phys. Rev. 76, 684L (1949); 76, 1489 (1949); S.S. Schweber, An
Introduction to Relativistic Quantum Field Theory , Harper & Row, New York,
1961, p.482; C. Itzykson and J.-B. Zuber, Quantum Field Theory, McGraw Hill,
New York, 1980, p.285



Index

acausal behavior 265
action 261, 262
active transformation 150, 155–156,

209–211
adiabatic hypothesis 331, 364
adjoint field operator 291
analyticity of χAB(z) 89
angular momentum 156–159, 272, 280
– of a field 272
– of the Dirac field 289
– of the radiation field 394
– of the scalar field 281
angular momentum operator 272, 304
angular momentum tensor
– of the electromagnetic field 320, 394
annihilation operator 11, 14, 16, 26,

252, 303, 336, 338
anomalous magnetic moment of the

electron 371–373
anti-Stokes lines 85, 97
anticommutation relations 288, 295
anticommutation rules for fermions

19, 292
anticommutator 17, 301–303
antineutrino 243
antiparticle 205, 216, 287
autocorrelation 80
axial vector 145
axioms of quantum mechanics 115

Baker–Hausdorff identity 30, 184
bare states 331
baryon number 287
bilinear form 142
binding energy 165
bispinor 123
Bogoliubov approximation 63
Bogoliubov theory 62
Bogoliubov transformation 63, 72, 74
Bohr magneton 128
Bohr radius 43, 192

boost 150, 275
boost vector 272, 275
Bose commutation relations 12, 314
Bose field 55–72, 314
Bose fluid 60
Bose gas 60
Bose operators 14, 280, 328
Bose–Einstein condensation 60, 62, 68
bosons 5, 10, 21, 280, 299, 314
boundary conditions
– periodic 25, 250
Bravais lattice 93
bremsstrahlung 334
Brillouin zone 251
broken symmetry 68
bulk modulus 44

canonical commutation relations 266
canonical ensemble 83
canonical quantization 266, 277, 311
Cauchy principal value 90
causality 88
charge 285–287, 293–296
– bare 369
– renormalized 363–368
charge conjugation 214–217, 232, 303,

304
charge conjugation operation 290,

303–305
charge density 310, 319
charge operator 281, 294
charge renormalization 363, 368–372
chiral representation of the Dirac

matrices 125, 379
chirality operator 240, 379
classical electrodynamics 307–312
classical limit 92, 105
Clebsch–Gordan coefficients 169
coherent (incoherent) dynamical

structure function 81
coherent scattering cross-section 80
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coherent states 276
commutation relations 21, 277–281,

303
– canonical 266
– of the Dirac field operators 296
– of the field operators 28
commutator 18, see commutation

relation
– of free bosons 296
completely antisymmetric states 8
completely symmetric states 8, 11
completeness relation 11, 17, 251
compressibility 66
compressibility sum rule 107, 108
Compton scattering 339, 355–356
Compton wavelength 130, 166, 189,

192
condensate 62
conjugate fields 285, 288
conservation laws 212–213, 266
conserved quantities 274, 289–290,

393
constant of the motion 274
contact potential 31, 65
continuity equation 24, 199, 266, 286,

293, 308
– of the Dirac equation 122
– of the Klein–Gordon equation 119
continuous symmetry group 274
continuum limit 255–258
contraction 336
contravariant indices 117, 131
coordinate representation 21
correction, relativistic 165
correlation function 46, 83, 92, 334
– classical limit 105
– symmetry properties 100–106
correspondence principle 116, 378
Coulomb interaction 33, 46, 319
Coulomb potential 46–49, 161–179
– scattering in see Mott scattering
Coulomb repulsion 41, 50
covariance 265
– relativistic 282
covariant indices 117, 131
covariant quantization 387
creation operator 11, 14, 16, 26, 252,

336, 338
cross-section, differential 78
current density 23, 304, 305, 310, 343
– electrical 308
– under time reversal 231
current-density operator 286, 305

d’Alembert equation 231, 313
– inhomogeneous 317
d’Alembert operator 312
– definition 132
damped harmonic oscillator 98
Darwin term 188
Debye–Waller factor 110
degeneracy 164, 178, 229
degenerate electron gas 34
δ-function potential 68
density matrix 80
density of solutions of the free Dirac

equation 150
density operator 27
density response function 100, 107
density wave 66
density–density correlation 100
density–density correlation function

39, 85, 97
density–density susceptibility 107
diffusion 97
diffusion equation 97
diffusive dynamics 97
Dirac equation 120–130, 287, 322,

377–379
– continuity equation 122
– for a Coulomb potential 168–179
– in chiral representation 241
– in covariant form 123–125
– Lorentz covariance 135
– massless 239
– nonrelativistic limit 126–128
– quadratic form 152–153
– requirements on 121
– solutions of the free equation 125,

146
– time-dependent 195
– with electromagnetic field 168–179
Dirac field 305, 321, 322, 337
– quantized 287–296
Dirac field operators 295, 304
Dirac Hamiltonian 120
Dirac hole theory see Hole theory
Dirac matrices
– chiral representation 240, 379
– form 145–146
– fundamental theorem 146, 153
– Majorana representation 216, 244,

380
– properties 123, 145–146
– standard representation 379
Dirac representation 323–328
dispersion relations 90, 101, 252
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dissipation 92
dissipative response 90
divergent zero-point energy 316
dynamical susceptibility 85, 91, 94, 98,

106
Dyson equation 359

effective mass 69
effective target area 78
eigenstate 115
Einstein approximation 54
elastic scattering 81, 108
electrodynamics, classical 307–312
electromagnetic vector potential 301
electron 290
– anomalous magnetic moment

371–373
– bare mass 361
– charge 126, 369
– magnetic moment 128, 371–373
– renormalized mass 362
electron gas 41–49
– ground state energy 44
electron–electron interaction 42
electron–electron scattering see

Møller scattering
electron–hole pair 34
electron–positron current density 316
electron–positron pair 332
– virtual 365
emission, of a photon 340
energy absorption 92
energy levels 164
– relativistic, of the hydrogen atom

177
– of the Dirac equation for a Coulomb

potential 175
– of the Klein–Gordon equation in

Coulomb potential 164
energy transfer 368
energy uncertainty 207
energy, negative 214
energy–momentum conservation 341
energy–momentum four-vector 268
energy–momentum tensor 266, 289
– for the Dirac-field 289
– for the radiation field 320
energy–momentum vector 280
equation of motion
– for field operators 23
– for the density operator 24
Euler–Lagrange equations 263, 288,

311

– of field theory 263
exchange hole 38
exchange of mesons 285
exchange term 44
excitation energy 76
expansion of the field operator 285
expectation value of an observable

115
external lines 356

f -sum rule 107–109
factorization approximation 47
Fermi energy 34
Fermi operators 19, 328
Fermi sphere 33
Fermi wave number 33
Fermi’s golden rule 77
fermion line 356
fermion propagators 301
fermions 5, 16, 21, 288, 299
Feynman diagrams 284, 336, 347
– external lines 356
Feynman path-integral representation

386
Feynman propagator 283, 285, 318,

325
– for fermions 302–303
– for mesons 284
– for photons 320, 392
Feynman rules 339, 348, 355–358
Feynman slash 124
field equations 23, 285, 287–289
– classical 287
– free 325
– nonlinear 323
– quantum-mechanical 279
field operator 20, 258, 259, 295, 324,

325, 331, 332
– adjoint 291
field tensor, electromagnetic 309
field theories, free 277
field theory
– classical 261–265
– nonlinear 321, 325
fields
– free 277
– conjugate 288
– electric 307
– free 303
– free, electromagnetic 312–320
– interacting 321–373
– relativistic 249–275
fine structure 178
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fine-structure constant, Sommerfeld’s
162, 307, 321

fluctuation–dissipation theorem 91,
96

fluctuations 57
Fock space 11, 17, 259, 295
Foldy–Wouthuysen transformation

181–187
four-current-density 161, 286, 293, 308
four-dimensional space–time continuum

261
four-momentum 117
four-momentum operator 303
four-spinor 123
four-velocity 117
free bosons 55

g factor 127, 128, 187, 373, 377
Galilei transformation 70
γ matrices see Dirac matrices
gauge 316
– axial 309
– Coulomb 309–310
– Lorentz 309
– time 309
– transverse 190
gauge invariance 68, 272, 285
– of the Lagrangian density 305
gauge theory, abelian 322
gauge transformations
– of the first kind 272, 286, 301
– of the second kind 273, 309
generator 273–275
– of rotations 157, 213
– of symmetry transformations 274
– of translations 303, 304
golden rule 92
Gordon identity 197, 207, 367, 372
grand canonical ensemble 83
grand canonical partition function 83
graphs 284
Green’s function 385
– advanced 297
– Coulomb 310
– retarded 297
ground state 12, 279
– of the Bose gas 62
– of a Dirac particle in a Coulomb

potential 178
– of superfluid helium 71
– of the Fermi gas 33
– of the field 259
– of the linear chain 254

ground state energy 41
group velocity 197, 201
Gupta–Bleuler method 387–394
gyromagnetic ratio see g factor

Hamilton’s principle 262
Hamiltonian 22, 115, 277–281, 289,

321
– nonlocal 183
– of a many-particle system 20
– of the Dirac equation 120
– of the scalar field 279
– rotationally invariant 158
– with central potential 159
Hamiltonian density 264, 319,

322–323
– of the free Dirac field 288
– of the free radiation field 313
hard-core potential 61
harmonic approximation 72
harmonic crystal 93–97
harmonic oscillator 29, 30
Hartree–Fock approximation 42
Hartree–Fock energy levels 48
Hartree–Fock equations 49–52
He-II phase 69
Heaviside–Lorentz units see Lorentz–

Heaviside units
Heisenberg equation
– nonrelatvistic 190
Heisenberg equation of motion 23
Heisenberg ferromagnet 68
Heisenberg model 72
Heisenberg operators 83, 325
Heisenberg representation 23, 250,

325, 326
Heisenberg state 83
helicity 236–238, 305, 384
helicity eigenstates 238, 313, 394
helium
– excitations 69
– phase diagram 60
– superfluidity 69
hole 34
Hole theory 204–207, 214, 216, 290
Holstein–Primakoff transformation 72
Hubbard model 31
hypercharge 278, 287
hyperfine interaction 189
hyperfine structure 178

identical particles 3
incoherent scattering cross-section 80
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inelastic scattering 76, 77
inelastic scattering cross-section 76
inertial frames 132
infrared divergence 192
interacting fields 321–373
interaction Hamiltonian 325, 331
interaction Hamiltonian density 329
interaction representation 86, 323–328
interaction term 319, 321
interaction, electromagnetic 321
interference 57, 200
interference terms 80
intrinsic angular momentum 272
invariance 212–213
– relativistic 265
invariant subspaces 7
inversion symmetry 101
irreducible representation 241
isospin 287
isothermal compressibility 41
isothermal sound velocity 109

K0 meson 278, 287
kinetic energy 21
Klein paradox 202–204
Klein–Gordon equation 116–120
– continuity equation 119
– free solutions 120
– in Coulomb potential 162–168
– one-dimensional 256
– with electromagnetic field 161–168
Klein–Gordon field 258–260, 337
– complex 260, 278, 285–287, 303, 394
– real 277–285
Klein–Gordon propagator 317
Kramers degeneracy 229
Kramers theorem 228
Kramers–Kronig relations 90
Kubo relaxation function 106

Lagrangian 261, 318, 321–323
– nonlinear 321–322
Lagrangian density 261, 277–281, 285,

318, 321–323, 394
– of quantum electrodynamics 321,

322
– of radiation field and charged scalar

mesons 394
– of the φ4 theory 321
– of the Dirac field 288
– of the free real Klein–Gordon field

277
– of the radiation field 311–312, 387

Lamb shift 178, 189–193, 322
Landé factor see g factor
lattice dynamics 81, 93
lattice vibrations 249–260
left-handed states 237
Lennard–Jones potential 61
light cone 298
light emission 195
Lindemann criterion 45
linear chain 250–255
linear response 87
linear response function 88
linear susceptibility 75
locality 265, 299, 300
Lorentz condition 221
Lorentz covariance 283
– of the Dirac equation 135
Lorentz group 133
Lorentz spinor, four-component 136
Lorentz transformation 131–134, 297
– along the x1 direction 139
– infinitesimal 136–141, 156
– inhomogeneous 265
– linearity 132
– orthochronous 133, 144, 298
– proper 133
– rotation 138
– spatial reflection 141
– time reflection type 133
Lorentz–Heaviside units 307, 344

magnetic moment
– of the electron 373
magnetization 68
magnons 72
Majorana representation of the Dirac

matrices 125, 216, 244, 380
many-body system 206
many-particle operator 14, 19
many-particle state 3, 13
many-particle theory, nonrelativistic

292
mass
– bare 193, 361–362
– physical 193, 361–362
– renormalized see mass, physical
mass density 66
mass increase, relativistic 166
mass shift 362
massless fermions see neutrino
matrix elements 334
Maxwell equations 307–308
measurement 115
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meson propagator 284
mesons 162, 167, 284
– electrically neutral 259, 278
– free 325
– scalar 394
metric tensor 131
microcausality 299
minimal coupling 129
Minkowski diagram 298
Møller formula 349
Møller scattering 339, 346–352
momentum 289, 291, 322
momentum conjugate 311
momentum density 289
momentum eigenfunctions 25
momentum field 264
momentum operator 129, 280, 295
– normal ordered 320
– of the Dirac field 304
– of the Klein–Gordon field 279
– of the radiation field 316, 387
momentum representation 25
momentum transfer 78
motion reversal 217–236
motion-reversed state 218
Mott scattering 339, 341–346
multiphonon state 254

neutrino 239–243
neutrons
– scattering 76, 79
– scattering cross-section 80
– wavelength 76
Noether’s theorem 268–270, 320
noninteracting electron gas 38
nonlocality 265
nonrelativistic limit 176, 181
nonrelativistic many-particle theory

292
normal coordinates 93, 250
normal momenta 250
normal ordered products 280
normal ordering 280, 314, 316
– for fermions 293
normal product, generalized 337
normal-ordering operator 339
nuclear radius, finite 166, 167, 179
nucleon 284

observables 115
occupation numbers 10, 17
occupation-number operator 13, 19,

27, 254, 279

one-phonon scattering 110
operator
– antilinear 223
– antiunitary 217, 223
– chronological 328
– d’Alembert 312
– even 181
– odd 181
orbital angular momentum density

320
orbital angular momentum of the field

281, 290
orbital angular momentum quantum

number 164
orthogonality relation 11, 251, 291
– for solutions of the free Dirac

equation 198
– of the solutions of the free Dirac

equation 149
orthonormality of momentum

eigenfunctions 25
oscillators, coupled 249–260

pair annihilation 334
pair correlations 59
pair creation 206
pair distribution function 36, 39, 55
paraparticles 6
parastatistics 6
parasymmetric states 6
parity 141, 213
– intrinsic 141
parity transformation 213, 232
particle density 22
particle interpretation 253
particle-number density 28
particle-number operator 13, 279, 281
particles, virtual 336
passive transformation 137, 155–156,

209–211
path-integral representation 385
– Feynman 386
Pauli equation 127, 187, 237
Pauli matrices 123, 290, 304
Pauli principle 36, 205
Pauli spinor 127, 169, 304
Pauli’s fundamental theorem see

Dirac matrices, fundamental theorem
Pauli–Villars method 366
PCT theorem 235
periodic boundary conditions 25
permutation group 4
permutation operator 3
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permutations 4, 127, 347
perturbation expansion 335
perturbation Hamiltonian 283
perturbation theory 188, 281, 283,

322, 327–328
φ4 theory 321
phonon annihilation operator 253
phonon correlation function 94
phonon creation operator 253
phonon damping 97
phonon dispersion relation 109
phonon frequencies 93
phonon resonances 97
phonon scattering 81
phonons 66, 69, 93–97, 109, 253
– acoustic 252
– optical 252
photon correlations 59
photon field 332
photon line 356
photon propagator 316–320, 392
photon self-energy 365
photons 314
– free 325
– longitudinal 389
– transverse 389
π mesons 287
π0 meson 281
π− meson 162, 167
Planck’s radiation law 314
Poincaré group 133, 152
Poincaré transformation 132
point mechanics 261
Poisson equation 310, 312
polarization vector 191, 313
– of the photon field 317
position eigenstates 21
positron 205, 290, 304
potential
– electromagnetic 319
– rotationally invariant 213
– spherically symmetric 162
potential step 202, 204
pressure 44, 66
principal quantum number 164, 175
principle of least action 262
principle of relativity 132, 135
probability amplitude 387
probability distribution 207
projection operators 151, 216
– for the spin 380
propagator 281–287, 301–303
– and spin statistics theorem 296–301

– covariant 319
– free 360
– interacting 360
pseudopotential 79
pseudoscalar 144, 153
pseudovector 144, 153
purely space-like vectors 298

quanta, of the radiation field 314
quantization 290–293
– canonical 266, 285
– – for the Dirac equation 288
– of the Dirac field 207, 287–296
– of the radiation field 307–320
quantization rule, canonical 277
quantum crystals 61
quantum electrodynamics 193,

321–373
quantum field theory 193, 207, 216
– relativistic 287
quantum fields, relativistic 249–275
quantum fluctuations 45
quantum fluid 60
quantum number, radial 164, 174
quasiparticles 65, 253

Racah time reflection 235–236
radiation field 307–322, 387
– quantized 193, 307–320
radiative corrections 193, 358–373
radiative transitions 195
Raman scattering 99
random phase approximation 44
range of interaction 331
reflection, spatial 213
regularization 363, 366
relativistic corrections 176, 181,

187–189
relativistic mass correction 188
renormalizable theory 322
renormalization see charge renormal-

ization
renormalization constant see wave

function renormalization constant
renormalization factors 368
representations of the permutation

group 5
resolvent 189
response 75
rest mass 118
rest-state solutions of the Dirac

equation 147
retardation 297
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right-handed states 237
Ritz variational principle 51
rotation 138, 152, 156–159, 212, 271
– infinitesimal 157
rotation matrix 139
rotational invariance 103, 104
roton minimum 66, 109
rotons 69
RPA 44
Rutherford scattering law 346
Rydberg energy 128
Rydberg formula, nonrelativistic 165

S matrix 322, 328–332, 336, 339
S-matrix element 335, 352, 356
– for γ emission 340
– for Mott scattering 342
– for Møller scattering 348
scalar 144
scattering 75
– of two nucleons 284
scattering amplitude 340
scattering cross-section 354
– differential 343, 344
– – Møller scattering 349
– – for Mott scattering 345
– – in the center-of-mass frame 355
– relation to the S-matrix element

352
scattering experiments 76
scattering length 68, 74
scattering matrix see S matrix
scattering processes 328, 333, 339
Schrödinger equation 82, 115, 324
Schrödinger operator 83, 324, 325
Schrödinger representation 324–326
second quantization 22, 23
second-order phase transitions 68
self-energy 359
– of the electron 359
– of the photon 365
self-energy diagram 360
self-energy insertions 372
signature of an operator 103, 226
single-particle correlation function 37
single-particle operator 14, 20
single-particle potential 22
single-particle state 281, 303
Sommerfeld’s fine-structure constant

162, 307, 321
sound velocity 66
space-like vectors 298
spatial reflection 141, 213

special theory of relativity 117
spectral representation 84, 90
spherical well potential 68, 73
spin 27, 272
– of the Klein–Gordon field 278
spin density 28, 320
spin density operator 28
spin projection operator 380
spin statistics theorem 296–303
spin- 1

2
fermions 28, 33, 299

spin-dependent pair distribution
function 38

spin-orbit coupling 178, 188
spin-statistic theorem 281
spinor 123, 290, 378, 383
– adjoint 144
– free 196
– hermitian adjoint 123
spinor field 289, 305
spinor index 340
spinor solutions 325
standard representation of the Dirac

matrices 379
state vector 115
states
– bare 330
– coherent 276
– dressed 330
static form factor 108, 109
static structure factor 40
static susceptibility 92, 98
stationary solutions 162
stiffness constant 252, 255
Stokes lines 85, 97
strangeness 287
stress tensor T ij 271
string, vibrating 255–258
sum rules 107–108
summation convention 117
superfluid state 60
superfluidity 69
superposition of positive energy

solutions 149
susceptibility 101
– dynamical 85–89
symmetric operator 4
symmetry 209–243
– discrete 213
symmetry breaking 68
symmetry properties 100
symmetry relations 100
symmetry transformation 214, 274

temporal translational invariance 84
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tensor 153
– antisymmetric 144
theory, renormalizable 322
thermal average 81
Thirring model 323
time reversal 217–236
time-evolution operator 86
– in the interaction picture 326
– Schrödinger 326
time-like vectors 298
time-ordered product 283, 336, 337
– for Fermi operators 302
– for the Klein–Gordon field 283
time-ordering operator 5
– Dyson’s 327
– Wick’s 328
time-reversal invariance 103
– in classical mechanics 218
– in nonrelativistic quantum mechanics

221
– of the Dirac equation 229–235
time-reversal operation 103
time-reversal operator, in linear state

space 225–229
time-reversal transformation 103, 233
total angular momentum 157
total current 196
total number of particles 13
total-particle-number operator 22
totally antisymmetric states 5
totally symmetric states 5
transformation
– active 150, 155–156, 209–211
– antiunitary 274
– infinitesimal 152, 268
– of the Dirac equation 210
– of vector fields 209
– passive 137, 155–156, 209–211
– unitary 274, 325
transition amplitude 329
transition probability 78, 334
transition rate 328
transitions, simple 332–339
translation 213, 270
translation operator 303
translational invariance 94, 103, 190,

213

– of the correlation function 104
transpositions 4
two-fluid model 69
two-particle interaction 22
two-particle operator 15, 20
two-particle state 281

ultraviolet divergence 74, 192, 361
uncertainty relation 207

vacuum 281
vacuum expectation value 283, 337
vacuum polarization 365, 372
vacuum state 12, 17, 279, 303, 389
variation, total 269
variational derivative 51
variations 263
vector 144
vector potential, electromagnetic 301
vertex 333, 335
vertex corrections 366, 372
vertex point 356
violation of parity conservation 234
von Neumann equation 86

Ward identity 363, 368–371
wave function renormalization constant

364
wave packets 195, 198
wave, plane 202
weak interaction 234
weakly interacting Bose gas 62–68
– condensate 62
– excitations 66
– ground-state energy 68, 74
Weyl equations 242, 377
Wick’s theorem 322, 335–339, 356
Wigner crystal 45, 54
world line 117
Wu experiment 234

Z factors 370
zero-point energy 254, 280
– divergent 314
zero-point terms 293
Zitterbewegung 199–201
– amplitude of 199
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