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Preface

Thermodynamics and statistical physics study the physical properties (mecha-
nical, thermal, magnetic, optical, electrical, etc.) of the macroscopic system.
The tasks and objects of study in thermodynamics and statistical physics are
identical. However, the methods of investigation into macroscopic systems are
different.

Thermodynamics is a phenomenological theory. It studies the properties
of bodies, without going into the mechanism of phenomena, i.e., not taking
into consideration the relation between the internal structure of substance
and phenomena, it generalizes experimental results. As a result of such a gen-
eralization, postulates and laws of thermodynamics made their appearance.
These laws make it possible to find general relations between the different
properties of macroscopic systems and the physical events occurring in them.

Statistical physics is a microscopic theory. On the basis of the knowledge of
the type of particles a system consists of, the nature of their interaction, and
the laws of motion of these particles issuing from the construction of substance,
it explains the properties being observed on experiment, and predicts the new
properties of systems. Using the laws of classical or quantum mechanics, and
also the theory of probability, it establishes qualitatively new statistical appro-
priatenesses of the physical properties of macroscopic systems, substantiates
the laws of thermodynamics, determines the limits of their applicability, gives
the statistical interpretation of thermodynamic parameters, and also works
out methods of calculations of their means. The Gibbs method is based on
statistical physics. This method is the most canonical. Therefore, in this book,
the exposition of the Gibbs method takes an important place.

Results, stemming from phenomenological thermodynamics, bear the gen-
eral character and can be applied to any macroscopic systems; however, the
internal mechanism of physical phenomena and properties, being observed
in the experiments, is not disclosed. In other words, thermodynamics only
describes the phenomena and establishes the relation between them, but does
not answer the question why it happens just so.
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Statistical physics relates the properties of bodies to their internal con-
struction, creates the microscopic theory of physical phenomena, and answers
the question why it happens just so. The disadvantage of this method resides
in the fact that results, obtained here, bear a particular character and are
right only in frames of the considered model of the structure of substance.

Thermodynamics and statistical physics study not only equilibrium sys-
tems, but also systems in which specified currents and flows (the electric
current, flow of energy and substance) exist. In this case, the theory is called
thermodynamics of non-equilibrium systems or kinetics. Kinetics originates
from the Boltzmann equation (1872) and has continued developing up to the
present time.

The development of phenomenological thermodynamics started in the first
half of the nineteenth century.

The first law of thermodynamics was discovered by the German phys-
iologist Julius Robert von Mayer (1842) and the English physicist James
Prescott Joule (1843). They showed the equivalence of heat and mechanical
work. The first law of thermodynamics is a law of conservation of energy for
closed processes. In 1847, the German physicist and physiologist Hermann von
Helmholtz generalized this law for any non-closed thermodynamic processes.

The second law of thermodynamics was discovered independently by
both the German physicist Rudolf Clausius (1850) and the English physi-
cist William Thomson (Lord Kelvin). They introduced in the theory a new
function of state – entropy, in the statistical sense, and discovered the law of
increasing entropy.

The third law of thermodynamics was discovered in 1906 by the German
physicist–chemist Walther Nernst. According to this law, entropy of all sys-
tems independently of external parameters tends to the identical value (zero)
as temperature approaches the absolute zero.

Note that the first law of thermodynamics is a law about energy, and the
second and the third ones are about entropy.

The founders of thermodynamics are J.R. von Mayer, J.P. Joule, H. von
Helmholtz, R. Clausius, W. Kelvin, and W. Nernst.

Statistical physics received its development only in the last quarter of the
nineteenth century. The founders of classical statistical physics are R. Clau-
sius, J.C. Maxwell, L. Boltzmann, and J.W. Gibbs. The height of development
of classical statistical physics is the method of Josiah Willard Gibbs (1902).

The application of classical statistics to many problems provided results,
though not coinciding with the experimental facts of that time. Black radiation
(thermodynamics of a photon gas), heat capacity of metals, Pauli paramag-
netism, etc. can serve as examples. These difficulties of classical statistics
were circumvented only after the rise of quantum mechanics (L. de Broglie,
W. Heisenberg, E. Schrödinger, and P. Dirac) and quantum statistics, created
on its basis (E. Fermi, P. Dirac, S.N. Bose, A. Einstein) during 1924–1926.

The method of thermodynamic functions and potentials, and also the
Gibbs statistical method or the methods of free energy, being the key-note
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of the book, occupy an important place. It is shown that of all the thermo-
dynamic functions, the most important are the function of free energy and
grand thermodynamic potential, which are determined from the Gibbs canon-
ical distribution. It is expalined that the basic postulate of statistical physics
– the microcanonical distribution of isolated systems – is based on the statisti-
cal theory of the macroscopic properties of a system, from which all canonical
distribution stems.

Understanding free energy and grand thermodynamic potential, it is easy
to determine entropy, thermal and caloric equations of state, and also all
thermodynamic coefficients, measured by testing. To do this in the case of
classical systems, it is sufficient to know the Hamilton function – energy as
a function of coordinates and impulses of particles of the system, forming
it, and for quantum systems, it is the energy spectrum, i.̊a., the dependence
of energy on quantum numbers. It is also an essence of the Gibbs method,
which is applied to ideal and non-ideal gases, and also to a crystalline solid.
The exposition of the Fermi-Dirac and Bose–Einstein quantum statistics and
its application to different quantum gases occupy a large place. It is shown
how the difficulties of classical statistics, associated with its application to an
electron gas in metals, are circumvented. The statistics of the electron gases
are considered in detail in this book.

A separate chapter is devoted to the statistical theory of thermodynamic
properties of an electron gas in a quantizing magnetic field. Note that the
investigation of properties of an electron gas in extremal conditions, in par-
ticular, at ultra-low temperatures and in strong quantizing magnetic fields, is
one of the actual tasks of contemporary physics.

In the last chapter, on the basis of the Boltzmann kinetic equation, the
electron gas in metals and semiconductors is considered in a nonequilibrium
state. Nonequilibrium processes are associated with charge carrier motion in
a crystal under external disturbances such as the electric field and the tem-
perature gradient in the magnetic field. They include electric conductivity,
thermoelectric, galvanomagnetic, and thermomagnetic effects.

Baku, Bahram M. Askerov
November 2009 Sophia R. Figarova
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1

Basic Concepts of Thermodynamics
and Statistical Physics

Summary. The basic concepts and postulates of thermodynamics and statisti-
cal physics are expounded in this chapter. Different ways of description of the
state of macroscopic systems, consisting of a very large number of particles such
as atoms, molecules, ions, electrons, photons, phonons, etc., are adduced. Such
concepts as the distribution function over microstates, statistical weight of the pre-
assigned macroscopic state of a system, absolute temperature, and pressure are also
introduced.

1.1 Macroscopic Description of State of Systems:
Postulates of Thermodynamics

As noted in the Foreword, thermodynamics and statistical physics study phys-
ical properties of macroscopic systems with a large number of degrees of
freedom. The lifetime of these systems ought to be sufficiently long to con-
duct experiments on them. A usual gas, consisting of atoms or molecules,
photon gas, plasma, liquid, crystal, and so on, can serve as an example of
such systems. A small but macroscopic part of the considered system is called
a subsystem.

Macroscopic systems can interact between themselves or with the sur-
rounding medium by the following channels:

1. An interaction when the considered system performs work on other sys-
tems, or vice versa, is called mechanical interaction (ΔA �= 0). In this
case, the volume of the system changes.

2. An interaction in which the energy of the system changes only at the
expense of heat transfer (without performing work) is called thermal
interaction (ΔQ �= 0).

3. An interaction leading to exchange of particles between systems or between
the system and the surrounding medium is called material interaction
(ΔN �= 0).
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Depending on which of the above-indicated channels is open or closed, different
types of macroscopic systems exist in nature.

A system is called isolated if energy and material exchange with the sur-
rounding medium is absent (ΔA = 0, ΔQ = 0, ΔN = 0). For such systems
all channels of interaction are closed.

If a system is surrounded by a heat-insulated shell, the system is called an
adiabatically isolated system (ΔQ = 0).

If a system does not exchange particles with the surrounding medium
(ΔN = 0), such a system is called closed, and, on the other hand, if exchange
of particles (ΔN �= 0) takes place, the system is called open.

If the considered system is a small but macroscopic part of a large system,
physical processes occurring in it will hardly influence the thermodynamic
state of the large system. In this case, the large system is called a thermostat,
and the system interacting with it is a system in the thermostat.

The thermodynamic state of each system at pre-assigned external condi-
tions can be described by a restricted number of physical quantities which can
be measured on test. Such quantities are called thermodynamic parameters.
The number of particles in a system N , its volume V , pressure P , absolute
temperature T , dielectric P and magnetic M polarization vectors, electric
E and magnetic H field strengths are examples of thermodynamic param-
eters. These parameters characterize the system itself and also the external
conditions in which it is found.

Parameters that are determined by coordinates of external bodies inter-
acting with a system are called external parameters: volume, the electric and
the magnetic field strength, etc. Parameters that, apart from coordinates of
external bodies, depend also on coordinates and impulses of particles enter-
ing into the system are called internal parameters: pressure, temperature, the
internal energy, dielectric and magnetic polarizations.

Internal parameters can be intensive or extensive. Parameters not depend-
ing on the number of particles in a system are called intensive: pressure,
temperature, etc. Parameters that are proportional to the number of particles
or the amount of substance are called extensive or additive: entropy, energy
and other thermodynamic potentials.

The state of a system determined by the totality of the above-enumerated,
measured-on-test thermodynamic parameters is called a macroscopic state of
the system:

Macroscopic state ⇒ (N, V, P, T, P, M , E,H , . . .) .

It is evident that these macroscopic parameters determine the averaged state
of a system, in that the details and the nature of the complex motion of
particles composing the system are disregarded. Such a description of a system
bears the phenomenological, i.e. the descriptive, character.

If thermodynamic parameters determining the state of a system do not
depend on time, such a state is called stationary. Moreover, if stationary flows
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and currents are absent in a system, such a state is called a thermodynamic
equilibrium. This state is the simplest macroscopic state of a system. It is to
be noted that even in this state, inside the system particles perform complex
chaotic motion; however, this motion is not of interest in thermodynamics.

After introducing the primary basic thermodynamic concepts, we pass on
to the exposition of two postulates comprising the basis of thermodynamics.
These postulates were established from generalizations of experimental data.

The first postulate of thermodynamics states that each isolated system
has only one intrinsic state, that of thermodynamic equilibrium. If a system
is not in the equilibrium state, it tends toward its equilibrium state over a
period of time, and once it has achieved that state, can never come out of it
spontaneously without an external force being exerted on it.

Also called the general principle of thermodynamics, this postulate defines
the thermodynamic equilibrium state. This principle is demonstrated by an
example of the macroscopic parameter L (Fig. 1.1). The time τ during which
the parameter L(t) passes to the equilibrium state L0 is called the relaxation
time. The quantity τ depends on the nature of interaction and intensity of
the motion of the particles composing the system.

The first postulate of thermodynamics determines the limit of applicabil-
ity of the laws of thermodynamics. Indeed, inasmuch as each system consists
of chaotically moving particles, the parameter L(t) can deviate from its mean
value, i.e. a fluctuation occurs. These deviations are schematically shown in
Fig. 1.1. Thermodynamics disregards these fluctuations and takes only the
mean values measured on test into consideration. Therefore the laws of ther-
modynamics are applicable only to systems in which deviations from the mean
values are much smaller than the mean values themselves. But this is possible
only in systems with a sufficiently large number of particles.

If a system consists of a small number of particles, the relative fluctuation
can be large and the system itself can move away from the equilibrium state.
In this case, the concept of “the equilibrium state” loses its sense, and the
first postulate of thermodynamics is violated. It can be demonstrated by a
simple example. Let us assume that a gas contained in a rectangular vessel
contains N particles. Mentally divide the vessel into two equal parts. In the
equilibrium state, in each half N/2 molecules ought to be found. If N = 4,

τ t0

L (t)

L0

Fig. 1.1. The fluctuation of the thermodynamical parameter
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often the following picture can be observed: in the first part there are three
molecules, and in the second there is one molecule; or, in the first part there
are four molecules, and the second part is empty. Such a situation means that
the system itself is not in the equilibrium state, in which N/2 = 2 molecules
should be present in each part of the vessel.

Thus, from the first postulate the following conclusion can be made: Laws
of thermodynamics are not applicable to systems consisting of a small number
of particles.

The second postulate of thermodynamics states that if two systems A and
B are separately found in thermodynamic equilibrium with the third system C,
A and B are also found in thermodynamic equilibrium between themselves, i.e.

A ∼ C
B ∼ C

}
⇒ A ∼ B. (1.1)

This postulate is also called the zeroth law of thermodynamics and, as we will
see below, defines the concept of absolute temperature.

The second postulate determines the upper boundary of applicability of
the laws of thermodynamics. As seen from this postulate, when bringing into
thermal contact subsystems A, B, C, or while disconnecting them, the state
of equilibrium is not violated, i.e. the energy of interaction of the subsystems
is negligibly small and the energy of the whole system is an additive quantity1

E =
∑

α

Eα, (1.2)

where Eα is the energy of the subsystem α.
Thus, the laws of thermodynamics are applicable only to systems for which

the condition of additivity of energy (1.2) is fulfilled. Naturally, the condition
of additivity is not fulfilled for large systems, individual parts of which interact
through a gravitational field.2 Therefore, the laws of thermodynamics are not
applicable to very large, complex systems, e.g. to the universe as a whole.

From the second postulate, besides the principle of additivity of energy, the
second, not less important, conclusion stems. Indeed, from this postulate it fol-
lows that if A, B, C are subsystems of a large system in the equilibrium state,
their state, besides the external parameters, ought to be characterized also by
the general internal parameter. This internal intensive parameter is called
temperature and is identical in all parts of the large system, which is in the
thermodynamic equilibrium state. Temperature is determined by the intensity
of the thermal motion of the particles in the system. Thus, according to the
second postulate, the thermodynamic equilibrium state of a system is deter-
mined by the totality of external parameters and temperature. Consequently,
1 Equality (1.2) supposes that the energy of interaction between subsystems is

negligible small compared with the internal energy of a subsystem.
2 In this case, the gravitational energy of interaction between parts cannot be

neglected.
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according to the second postulate, each internal parameter is a function of
external parameters and temperature. This conclusion relates any internal
parameter Ai to temperature T and external parameters a1, a2, . . . , an:

Ai = Ai(a1, a2, . . . , an;T ); i = 1, 2, . . . κ, (1.3)

where k is the number of internal parameters. This equation, written in the
symbolic form, is called the equation of state. The number of such equations,
naturally, equals the number of internal parameters k.

If in the capacity of an internal parameter we accept the internal energy
of a system Ai ≡ E, (1.3) can be presented in the form:

E = E(a1, a2, . . . , an;T ). (1.4)

This equation is called the caloric equation of the state of a system.
If in the capacity of an internal parameter we accept pressure Ai ≡ P ,

from (1.3) we get the thermal equation of state:

P = P (a1, a2, . . . , an;T ). (1.5)

Thus, from the set of equations (1.3) it is seen that the thermodynamic
state of a system is single-valuedly determined by (n+1) independent number
of parameters. Therefore, the number (n + 1) is called the thermodynamic
degree of freedom of a system. Depending on the complexity of a system, n
takes on values n = 1, 2, 3, . . ..

In the simplest case of closed systems,3 if in the capacity of an independent
external parameter volume V is accepted, the internal parameter pressure P
and internal energy E, conforming to (1.3), can be expressed as follows:

P = P (V ;T ); E = E(V ;T ). (1.6)

The explicit form of these equations for ideal gases is experimentally deter-
mined and theoretically substantiated by statistical methods:

P =
N

V
k0T ; E =

3
2
k0TN , (1.7)

where N is the number of particles of an ideal gas, and k0 is the Boltzmann
constant.

If from (1.4) we determine temperature and substitute it into (1.3),
all internal parameters can be expressed by E and external parameters
a1, a2, . . . , an. Thus, the second postulate of thermodynamics can be also
expressed as follows: All internal parameters of a system found in thermo-
dynamic equilibrium are functions of external parameters and energy:

Ai = Ai(a1, a2, . . . , an;E). (1.8)
3 A gas consisting of the pre-assigned number of neutral atoms or molecules can be

considered as an example.
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Systems satisfying this condition are called ergodic. Consequently, thermody-
namics is applicable only to ergodic systems.

For an ideal gas, using (1.7), the equation of type (1.8) takes the following
explicit form:

P =
2
3
E

V
. (1.9)

Finally, note once more that the first postulate of thermodynamics defines the
concept of thermodynamic equilibrium and the second one defines the concept
of absolute temperature.

1.2 Mechanical Description of Systems:
Microscopic State: Phase Space: Quantum States

It is known that any macroscopic system consists of a colossal but finite
number of particles, and also that each particle can have a complex inter-
nal structure. Here the structure of a particles does not interest us, and we
will regard that the considered system as consisting of N number of chaoti-
cally moving material points interacting among themselves. Thus, the number
of degrees of freedom of the considered system is 3N . Note that under normal
conditions 1 cm3 of air contains 3 × 1019 molecules. The linear dimension of
each molecule is 10−8 cm. In order to have a notion of the number of parti-
cles and their dimensions, we quote a known example by Kelvin, according
to which the number of H2O molecules in a glass of water is 100 times the
number of glasses of water available in all oceans and seas of the world.

Naturally, it is impossible to describe in detail the state of such a macro-
scopic system with a small number of thermodynamic parameters, since these
parameters disregard the internal structure of the system. For the complete
description of a system, it is necessary to know which particles it consists
of, what nature of their interaction is and by which equations their motion
is described, i.e. whether the motion of particles obeys classical or quantum
mechanical laws. In conformity with this, in nature two types of systems exist:
classical and quantum systems. We consider these cases separately.

Classical systems. The motion of particles forming such systems obeys
the laws of classical mechanics, and the state of each of them is determined
by three generalized coordinates qi(t) and by three corresponding generalized
impulses pi(t),4 where i takes on the value i=1, 2, 3. Consequently, the general
state of a classical system consisting of N particles at the instant of time t is
determined by 6N quantities:

microstate ⇒ (q, p) ≡ (q1, q2, . . . , q3N ; p1, p2, . . . , p3N ). (1.10)

4 In classical statistical physics the motion of particles is characterized not by veloc-
ity, but by impulse, as the Liouville theorem (Sect. 1.3) is just not in the space
of coordinates and velocity (q, q̇), but in the phase space (q, p).
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The state of a system being determined by 3N generalized coordinates and 3N
generalized impulses is called the microscopic state or, briefly, the microstate
of the classical system. The quantities qi(t) and pi(t), i.e. the microstates of
the system, are found from a solution of the system of Hamilton canonical
equations:

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
; i = 1, 2, 3, . . . , 3N, (1.11)

where 3N is the number of degrees of freedom of the system, the points over
qi and pi mean the time derivative and H is the Hamilton function of the
system. For conservative systems, H coincides with the total energy E(q, p)
of the system:

H ≡ E(q, p) =
3N∑
i=1

p2
i

2m
+ U(q1, q2, . . . , q3N ), (1.12)

wherem is the mass of a particle and U(q) is the potential energy of interaction
of particles; it is supposed that an external field is absent.

To describe a microstate of classical systems, it is convenient to introduce
the concept of phase space or the Γ-space. Each system has its intrinsic phase
space. For instance, the phase space of a classical system consisting of N
particles represents an abstract 6N -dimensional space. The position of each
“point” in this space is determined by 3N generalized coordinates qi and 3N
generalized impulses pi, i.e. by 6N quantities.

Thus, a microstate of a classical system consisting of N particles has a
corresponding “point” – a phase point – in the 6N -dimensional phase space.

Henceforth, for an elementary volume of the phase space dΓ we will use
the following symbolic notation:

dΓ = dq dp ≡
3N∏
i=1

dqi dpi. (1.13)

Hence it is seen that the dimensionality of an element of “volume” of the phase
space of a classical system consisting of N particles is (action)3N .

The phase space can be subdivided into two subspaces: coordinates and
impulses. Then, for an element of volume of the phase space one can write
dΓ = dΓq · dΓp.

For some systems (e.g. an ideal gas) instead of the Γ-space, we may intro-
duce the concept of the μ-space. The μ-space is a six-dimensional space, each
point of which is determined by a coordinate and an impulse of one particle
(x, y, z, px, py, pz). It is evident that in the μ-space a microstate of an ideal
gas consisting of N particles is described by a multitude of N points.

Coordinates qi(t) and impulses pi(t) of particles forming a system contin-
ually change in conformity with equations of motion (1.11); therefore, the
microstate of the system changes with time. As a result, the position of
phase points changes, describing a specified “curve” in the 6N -dimensional
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phase space. This curve is called the phase trajectory.5 The equation of the
phase trajectory, in principle, can be found from the solution of the sys-
tem of equations (1.11). These solutions can be written symbolically in the
following form:{

qi = qi(t; q01, q02, . . . , q03N ; p01, p02, . . . , p03N )
pi = pi(t; q01, q02, . . . , q03N ; p01, p02, . . . , p03N), (1.14)

where q0i and p0i are initial coordinates and impulses, respectively, of a
particle.

Note that the phase trajectory can be closed, but it cannot intersect or
touch itself. This result follows from the principle of determinism of classical
mechanics, i.e. the single-valuedness of the solution (1.14) of the equation of
motion (1.11).6

The phase trajectory of even simple systems cannot be described graphi-
cally. It is sufficient to remember that the phase space of a system consisting
of one particle is six-dimensional. The phase trajectory can be graphically
described only for one particle moving in a one-dimensional space. In this case,
the phase space is two-dimensional. In Fig. 1.2, the phase trajectory of a freely
moving particle with a mass m and a pre-assigned energy p2/2m = ε0 = const
in “a one-dimensional box” with dimensions −L/2 ≤ q ≤ L/2 is presented.

As seen from Fig. 1.3, the phase trajectory of a linear harmonic oscilla-
tor with a pre-assigned energy p2/2m + mω2q2/2 = ε0 = const represents

0 q

p

2me0

− 2me0

L /2− L /2

Fig. 1.2. The phase trajectory of the one-dimensional free moving

0 q

p

2me0

2e0 /mω 2

Fig. 1.3. The phase trajectory of a linear harmonic oscillator
5 This curve should not be confused with the trajectory of a particle’s motion in

the usual three-dimensional space.
6 Indeed, if the phase trajectory would intersect itself, the intersection point could

be accepted as an initial one, and the further change in the state of the system
would not be single-valued.
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an ellipse with semi-axes
√

2ε0/mω2 and
√

2mε0, where ω is the circular
frequency of the linear harmonic oscillator with a mass m.

Quantum systems. For quantum systems, i.e. systems in which the motion
of particles is described by equations of quantum mechanics, concepts of the
phase space, phase point and phase trajectory have no sense. Indeed, according
to the Heisenberg uncertainty principle, the coordinate q and impulse p of a
particle cannot be single-valuedly determined simultaneously. Principal errors
Δq and Δp are related by the following relationship:

(Δq)2 · (Δp)2 ≥ �
2

4
, (1.15)

where
� = h/2π = 1.05 × 10−27 erg s,

h being the Planck constant.
The state of a system in non-relativistic quantum mechanics is described

by the stationary Schrödinger equation

Ĥ Ψn = EnΨn. (1.16)

Here Ψn and En are an eigenfunction and eigenvalue of energy, respectively.
The Hamilton operator Ĥ entering into (1.16) can be obtained from expres-
sion (1.12) by replacing pi ⇒ p̂i = −i� ∂

∂qi
. If in place of the generalized

coordinate qi we take the Cartesian coordinate r i = r(xi, yi, zi), the Hamilton
operator Ĥ takes the following form:

Ĥ =
N∑

i=1

(
− �

2

2m
∇2

i

)
+ U(r1, r2, . . . , rN ), (1.17)

where ∇2
i is the Laplace operator. In (1.16) n is the totality of quantum

numbers, determining one quantum state of the system. The wave func-
tion of the system Ψn depends on the coordinates of all particles, i.e.
Ψn = Ψn(r1, r2, . . . , rN ).

Thus, the microscopic state of a quantum system is determined by the
totality of all quantum numbers describing one quantum state Ψn. One value
of the energy of the system En can correspond to each microstate n, or several
microstates can correspond to one value of energy, i.e. it is possible to have
quantum degeneracy.

For real systems, we cannot exactly solve the Schrödinger equation (1.16)
and determine the microstate of a system. Here, we consider the simplest ideal
systems, allowing an exact solution.

Ideal gas in a rectangular box. Assume that in a rectangular box with
dimensions Lx, Ly, Lz, N non-interacting particles with a mass m are found.
It is known that the total energy of an ideal gas is the sum of the energies of
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the individual particles:

En =
N∑

i=1

εni , (1.18)

where

εni =
�

2

2m
(
k2
ix + k2

iy + k2
iz

)
(1.19)

is the quantum mechanical energy of the i th particle;

kix =
(
π

Lx

)
nix , kiy =

(
π

Ly

)
niy , kiz =

(
π

Lz

)
niz (1.20)

are components of the wave vector, where

nix , niy , niz = 1, 2, 3, . . . (1.21)

are quantum numbers of the ith particle, taking on any positive integer value;
and n ⇒ (n1x, n1y, n1z;n2x, n2y, n2z; . . . ;nNx , ;nNy , nNz ) is the totality of
quantum numbers determining the state of a system.

If we substitute the value of the wave vector (1.20) into (1.19), the energy
of the ith particle εni can be expressed by the quantum numbers

εni =
π2

�
2

2m

(
n2

ix

L2
x

+
n2

iy

L2
y

+
n2

iz

L2
z

)
. (1.22)

As can be seen, the energy of the ith particle of an ideal gas is determined
by three quantum numbers nix , niy , niz (the spin of a particle is disregarded).
From quantum mechanics, it is known that in such a case each totality of
quantum numbers has only one corresponding wave function, i.e. one quantum
state, and the degeneracy is absent.

If the energy of a particle (1.22) is taken into account in (1.18), it can be
said that one microstate of an ideal gas in the box is determined by assigning
3N quantum numbers, i.e. for the considered system

microscopic state ⇒
⇒ (n1x, n1y, n1z; n2x, n2y, n2z; . . . ; nNx , nNy , nNz ).

(1.23)

System consisting of harmonic oscillators. Assume that the considered system
consists of N non-interacting linear harmonic oscillators with frequency ω.
Owing to the absence of the interaction between oscillators, expression (1.18)
for the energy of the system remains in force; only in the given case, energy
of the ith particle of an oscillator has the form

εi = (ni + 1/2) �ω, (1.24)

where ni = 0, 1, 2, . . . are quantum numbers of an oscillator. Each value ni

has one corresponding wave function, i.e. one quantum state.
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Thus, one microstate of an ideal gas consisting of N linear harmonic
oscillators is determined by the totality of N quantum numbers:

microstate ⇒ (n1, n2, . . . , nN). (1.25)

System consisting of rotators. Consider a system consisting of N non-
interacting rotators formed by rigidly bound atoms of masses m′ and m′′

at a distance r from each other (a diatomic molecule). Assume that the rota-
tors rotate around the axis passing through the fixed centres of the masses.
Inasmuch as the rotators do not interact, the total energy of the system can be
determined from expression (1.18); however, in the given case, the quantum
mechanical energy of each rotator is pre-assigned by the expression

εi =
�

2

2I
li(li + 1), (1.26)

where li = 0, 1, 2, . . . is the azimuthal quantum number, I = mr2 is the
moment of inertia of a rotator (a molecule), and m = m′m′′/(m′+m′′) is the
reduced mass.

Note that the wave function of a rotator, apart from the azimuthal quan-
tum number li, depends also on the magnetic quantum number mi, which
takes on integer values in the limits

− li ≤ mi ≤ li. (1.27)

Hence it follows that each quantum state of a rotator is determined by two
quantum numbers (li and mi). Inasmuch as the energy of a rotator does
not depend on the quantum number mi, its energy levels are (2li + 1)-fold
degenerate.

Thus, one microstate of a system consisting of N rotators is determined
by the totality of 2N quantum numbers:

microstate ⇒ (l1,m1; l2,m2; . . . ; lN ,mN ). (1.28)

From the examples given above, it is seen that the total of quantum numbers
determining one microstate of a system equals the number of degrees of free-
dom. In fact, if we consider an ideal gas consisting of N diatomic molecules
and take into account that each molecule has three translational, one vibra-
tional and two rotational degrees of freedom, then the system as a whole has
6N degrees of freedom. From (1.23), (1.25) and (1.28), it is seen that for the
considered system the total of quantum numbers determining one microstate
also equals 6N .

Quasi-classical approximation. It is known that at specified conditions (the
quasi-classical approximation) the quantum mechanical description of a sys-
tem can be replaced with its classical counterpart, i.e. in some particular cases,
quantum systems behave as classical ones. Consider the conditions of quasi-
classicity. The quasi-classical approximation is applicable when the difference
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of energies of two adjacent quantum levels is much less than the energy of the
particles:

[ε(n+ 1) − ε(n)] � ε(n). (1.29)

For the case (1.22), this inequality takes the form (2n + 1) � n2, i.e. the
quasi-classical approximation is applicable for very large (n � 1) quantum
numbers.

Condition of quasi-classicity (1.29) obviously can be expressed as follows:
if the mean energy of the thermal motion of particles ε(n) = k0T is much more
than the discreteness of the energy spectrum, the motion can be regarded as
classical. For free particles in a box with volume V = L3, i.e. for case (1.22),
the condition of quasi-classicity (1.29) can be written down in the form

π2
�

2

2mL2 � k0T, (1.30)

where T is the absolute temperature.
Condition of quasi-classicity (1.30) can also be presented as

L� λ, (1.31)

where λ = h/p is the de Broglie wavelength of a particle, and p =
√

2mk0T is
the mean impulse.

Thus, the free motion of particles is classical when the linear dimensions
of the space L in which the motion occurs are much more than the de Broglie
wavelength of a particle.

Consider the question of the number of microstates of a system. For quan-
tum systems, the number of microstates in the pre-assigned range of energy
equals the number of quantum states. In the quantum case, the number of
microstates accounting for the specified range of energy is finite because of
the property of discreteness.

For classical systems, one phase point corresponds to each microstate and
therefore, formally, the “infinite” number of microstates corresponds to any
element of the phase space. If, from the point of view of quantum mechanics,
it is taken into account that the least “volume” of the phase space h = 2π�

(Fig. 1.4) corresponds to one state of a particle with one degree of freedom,

dq
q

p

dp

h = 2πh

Fig. 1.4. The “volume” of the quantum state of a particle with one degree of freedom
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then the “volume” (2π�)3N corresponds to a microstate of a system with 3N
degrees of freedom in the phase space.

Thus, the number of quantum states corresponding to “an element of
volume” dΓ = dq dp equals

dG =
dΓ

(2π�)3N
=

3N∏
i=1

dqi dpi

(2π�)3N
. (1.32)

Note that we will use the relation (1.32) between “an element of volume”
of the phase space and the number of quantum states of a system for the
single-valued determination of entropy of a system in the quasi-classical case
(Sect. 1.6).

1.3 Statistical Description of Classical Systems:
Distribution Function: Liouville Theorem

As noted in Sect. 1.2, to determine a microstate of a classical system consisting
of N particles it is necessary to know 6N parameters. To do this, it is required
to solve a system of 6N equations (1.11). Even if the explicit form of the
Hamilton function (1.12) and initial conditions are known, it is very difficult
or practically impossible to solve the system (1.11) owing to the huge number
of particles. Moreover, knowing the coordinates and impulses of all particles
gives no complete information about properties of the system as a whole.
It is associated with the fact that in the behaviour of macrosystems quali-
tatively new statistical appropriateness arises. Such appropriateness bears a
probabilistic character and is distinct from mechanical laws. Hence it follows
that states of macrosystems should be described by statistical methods. In
these methods, the idea is not the exact determination of the microstates of
a system but their determination with a certain probability.

Assume that the considered system is a small but macroscopic part of a
large system – the thermostat. A microstate of a system interacting with the
thermostat chaotically changes over a course of time, and we cannot exactly
determine the coordinates (q, p) of these states in the phase space. Then the
question can be posed in the following form: What is the probability that
microstates of a system may be found in a small element of volume (dq dp) of
the phase space? To determine this probability, mentally trace the change in
the microstates of a system in the course of a long time interval T . Assume
that over the course of a short time range dt a microstate of the system is
found in the element of volume (dq dp) taken near the point (q, p). If the time
of observation is regarded as very long, the quantity

lim
T→∞

(
dt
T

)
= dW (1.33)
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can be taken as the probability of the microstate of the system being found
in the element of volume (dq dp).

It is evident that the probability dW depends on around which point
(q, p) = (q1, q2, . . . , q3N ; p1, p2, . . . , p3N ) the element of volume (dq dp) =
3N∏
i=1

dqi dpi is taken, and, naturally, the quantity dW ought to be directly

proportional to this element of volume (dq dp):

dW = ρ(q, p)dq dp. (1.34)

The coefficient of proportionality ρ(q, p) is the probability of the microstate
found in the unit volume of the phase space taken near the point (q, p) and
is called the distribution function. From the geometrical point of view, ρ(q, p)
is the density of phase points corresponding to the microstate of the system
near the point (q, p) of the phase space, i.e. it characterizes the distribution
of microstates of the system in the phase state.

Knowing the distribution function, we can calculate the mean statisti-
cal value of any quantity L(q, p), depending on coordinates and impulses of
particles of the system:

Lρ =
∫
L(q, p)ρ(q, p)dq dp. (1.35)

Notice that in reality the state of a system is determined by macroscopic
quantities measured experimentally. Knowing the internal structure of the
system, the mean value of the measured quantities with respect to time can
be immediately calculated:

Lt = lim
T→∞

1
T

T∫
0

L(q(t), p(t))dt. (1.36)

To do this, besides the explicit form of the dependence of the quantity L on q
and p, it is necessary to know the dependences of the coordinates and impulses
of a particle on time, i.e. functions q = q(t) and p = p(t). And this means a
solution of system of equations (1.11). Inasmuch as this system is unsolvable,
the immediate calculation of Lt by (1.36) is not possible. In order to overcome
this difficulty, we assume that the mean value with respect to time (1.36) can
be replaced with the statistical mean (1.35):

Lt ⇒ Lρ. (1.37)

This supposition is called the ergodic hypothesis, and systems satisfying con-
dition (1.37) are called ergodic systems. Henceforth, we will consider only
ergodic systems and omit the statistical index ρ, i.e. Lρ = L.

An advantage of calculation of the statistical mean value (1.35) lies in the
fact that in this case it is sufficient to know dependences of the quantity L
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on q and p, i.e. it is not necessary to know the time dependences of q and p.
The explicit form of the function L(q, p) for different systems can be found
in classical mechanics. In the particular case, L can be the Hamilton function
H = E(q, p). However, as seen from (1.35), in order to find L, besides L(q, p)
it is necessary to know the distribution function ρ(q, p). Finding the explicit
form of this function is the basic task of statistical physics. It is necessary
to find such a distribution function in order that the mean statistical value,
calculated with its aid, would coincide with the mean value with respect to
time, i.e. condition (1.37) would be satisfied.

Properties of the distribution function. In order to find the explicit form
of the distribution function, note its following properties.

1. The distribution function ought to satisfy the normalization condition. It
is evident that if we integrate the expression (1.34) over all the phase
space, we get the normalization condition∫

ρ(q, p)dq dp = 1, (1.38)

which means that the event of a microstate of a system being found at
some point or other of the phase space is real.

2. To define the second property of the distribution function, we introduce
the concept of a statistically independent subsystem. Assume that the con-
sidered system consists of two macroscopic subsystems. It is evident that in
the process of interaction of these subsystems, basically particles that are
found on the boundary, the number of which is much smaller than the total
number of particles in the subsystems, participate. Therefore, in a time
range which is less than the relaxation time, these subsystems can be con-
sidered as self-dependent, i.e. the change in the state of one subsystem in
the given time interval does not influence the state of the other subsystem.
Subsystems satisfying this condition are statistically independent.

Elements of volume of the phase space of the considered subsystems are
denoted by dq(1)dp(1) and dq(2)dp(2), respectively. Then probabilities of
microstates of the subsystems being found in these elements of volume have
the form

dW (1) = ρ1 dq(1)dp(1); dW (2) = ρ2 dq(2)dp(2). (1.39)

It is evident that the distribution function ρ1 depends on coordinates and
impulses of particles of the first subsystem, and ρ2 depends on coordinates
and impulses of particles of the second subsystem.

Mathematically, the statistical independence means that the probability
dW = ρ dq dp of the microstate of the system consisting of two subsystems
found in the element of volume dq dp = dq(1)dp(1)dq(2)dp(2) ought to equal
the product of the probability of the microstate of the first subsystem found
in the element of volume dq(1)dp(1) and the probability of the microstate of
the second subsystem found in the element of volume dq(2)dp(2), i.e. dW =
dW (1) · dW (2). In the explicit form
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ρ dq dp = ρ1dq(1)dp(1) · ρ2dq(2)dp(2), (1.40)

or
ρ = ρ1 · ρ2. (1.41)

In the general case of a large system consisting of n0 number of subsystems,
equality (1.41) takes the form

ρ = ρ1 · ρ2 · . . . · ρn0 =
n0∏

α=1

ρα. (1.42)

Thus, the distribution function of a large system is the product of the dis-
tribution functions of the statistically independent subsystems forming the
large system. The converse is also true: if the distribution function of the
whole system can be presented in the form of the product of the distribu-
tion functions of individual subsystems, these subsystems are statistically
independent.

If we take the logarithm of the equality (1.42), we can obtain the second
important property of the distribution function:

ln ρ =
n0∑

α=1

ln ρα. (1.43)

This means that the logarithm of the distribution function of a large system
equals the sum of the logarithms of the distribution functions of the individual
subsystems; in other words, the logarithm of the distribution function of the
system is an additive quantity.

3. Liouville theorem. The third property of the distribution function stems
from this theorem, according to which the distribution function is con-
stant along the phase trajectory, i.e. ρ(q, p) = const. This is one of the
definitions of the Liouville theorem. To prove this theorem, mentally keep
a watch over microstates of the given subsystem for an extended time and
subdivide the time of observation into very small identical ranges. Imag-
ine that phase points A1, A2, A3, . . . , An correspond to microstates of the
subsystem at instants of time t1, t2, t3, . . . , tn in the phase space.

Now assume that each phase point A1, A2, A3, . . . , An corresponds to a
microstate of one of the subsystems at the instant of time t. It is evident
that the multitude of subsystems mentally formed in this way is a multitude
of states of identical subsystems (with identical Hamilton function) and is
called the Gibbs statistical ensemble. The number of subsystems n entering
into this ensemble ought to be very large.

A microstate of the statistical ensemble, i.e. positions of phase points
A1, A2, . . . , An in the course of time changes and at the instant of time t′,
is described by the multitude of the phase points A′1, A′2, . . . , A′n:

(A1, A2, . . . , An)t ⇒ (A′1, A
′
2, . . . , A

′
n)t′ . (1.44)
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If Δn phase points occupy an element of the phase volume ΔΓ, by definition
of the distribution function it can be written as

Δn = ρ(q, p, t)ΔΓ. (1.45)

For the pre-assigned ensemble, phase points do not disappear or arise. There-
fore, the distribution function ρ(q, p, t) in the phase space ought to satisfy
the continuity equation. In order to write the continuity equation in the
6N -dimensional phase space, first remember its form in the usual three-
dimensional space:

∂ρ

∂t
+ div(ρυ) = 0. (1.46)

Here ρ(x, y, z, t) and υ(x, y, z, t) are the density and velocity of the flow of
points at the instant of time t, respectively. Equation (1.46) actually is the
law of conservation of substance and can be written down in the form

∂ρ

∂t
+ υ gradρ+ ρ div υ = 0. (1.47)

If we take into account that the sum of the first two terms is a total derivative
of the function ρ with respect to time, (1.47) takes the form:

dρ
dt

+ ρ div υ = 0. (1.48)

Then, by analogy with (1.48), for the continuity equation in the 6N -
dimensional phase space we have:

dρ(q, p, t)
dt

+ ρDivV = 0, (1.49)

where V is the vector of “velocity” in the 6N -dimensional phase space with
components q̇1, q̇2, . . . , q̇3N ; ṗ1, ṗ2, . . . , ṗ3N ; dρ/dt is the velocity of the change
in the density of phase points around the point (q, p); and DivV is the symbol
of divergence in the 6N -dimensional phase space:

Div V =
3N∑
i=1

(
∂q̇i
∂qi

+
∂ṗi

∂pi

)
. (1.50)

Taking into account the Hamilton canonical (1.11), we get:

3N∑
i=1

(
∂q̇i
∂qi

+
∂ṗi

∂pi

)
=

3N∑
i=1

(
∂2H

∂qi∂pi
− ∂2H

∂pi∂qi

)
= 0. (1.51)

Thus, for the 6N -dimensional phase space

DivV = 0. (1.52)
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From (1.49) and (1.52), it is seen that a total derivative of the distribution
function equals zero:

dρ(q, p, t)
dt

= 0, (1.53)

i.e. ρ is constant along the phase trajectory:

ρ(q, p, t) = const. (1.54)

When proving this property of the distribution function, we have used equa-
tion of motion (1.11) describing the phase trajectory. Therefore, in conformity
with Liouville theorem (1.54), the third property of the distribution function
can be formulated as follows: The distribution function along the phase tra-
jectory does not depend on time, i.e. it is an integral of the motion. Note that
ρ(q, p, t) along the phase trajectory remains constant though coordinates q(t)
and impulses p(t) strongly depend on time, and their changes are described
by a solution of (1.11).

Besides the above, one more equivalent definition of the Liouville theorem
can be given; it follows from expression (1.45) and condition (1.54): an element
of volume ΔΓ of the phase space occupied by phase points for the pre-assigned
part (Δn = const) of the ensemble does not depend on time, i.e. ΔΓ = const.

Thus, another definition of the Liouville theorem can be formulated thus:
The phase volume occupied by phase points corresponding to microstates of
the statistical ensemble is conserved, i.e.

ΔΓ = ΔΓ′, (1.55)

where ΔΓ and ΔΓ′ are elements of volume of the phase space occupied by
phase points of the ensemble at the instants of time t and t′, respectively.

Consider the general conclusions stemming from the indicated properties
of the distribution function. As it is seen from (1.35), to calculate the mean
statistical value of the physical quantities it is necessary to know two functions.
The explicit form of L(q, p) is found in classical mechanics. The distribution
function ρ(q, p) is determined in statistical physics. It is clear that for both
L(q, p) and ρ(q, p) the universal form for all systems cannot be found. How-
ever, using the above-indicated properties of the distribution function, we can
determine the general form applicable for any system.

According to the third property stemming from the Liouville theorem
(1.54), the distribution function ρ(q, p) along the trajectory is constant,
though its arguments q and p substantially depend on time. This means that
the distribution function ρ can depend on coordinates q and impulses p only
in terms of mechanical invariants I(q, p) – integrals of the motion:

ρ(q, p) = ρ(I(q, p)). (1.56)

From classical mechanics, it is known that systems have seven additive inte-
grals of motion: the total internal energy of a system E(q, p); components
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of the impulse Px, Py, Pz; and components of the moment of the impulse
Mx,My,Mz of the system as a whole. Note that the frame of reference can be
so connected with the body (the system) that in the given frame of reference
P and M would be equal to zero. Then, in this frame of reference the only
mechanical invariant – the total internal energy E(q, p) – remains, and as a
result dependence (1.56) can be written down in the form

ρ(q, p) = ρ(E(q, p)). (1.57)

Such a dependence of the distribution function ρ(q, p) indicates the exclusively
important role of the internal energy E(q, p) in statistical physics.

Thus, we get the most general and fundamental property of the distri-
bution function: The distribution function ρ(q, p) depends only on the total
internal energy of a system E(q, p).

And what is the explicit form of this dependence? To this question, a
universal answer for any system does not exist. We consider a concrete system.

Assume that the considered system consists of several subsystems. Then,
taking into account the condition of additivity of energy (1.2) and ln ρ (1.43),
we see that the logarithm of the distribution function of any α-subsystem can
depend on its energy Eα as follows:

ln ρα = Aα + βEα(q, p). (1.58)

The constants Aα and β here are found from some specified conditions. It is
evident that the coefficient β ought not to depend on the number of the sub-
system and is identical for all subsystems. Only in this case, for all the system
ln ρ(q, p) and, consequently, the distribution function ρ(q, p) itself satisfies the
condition (1.57): i.e. ρ(q, p) depends only on the total internal energy of the
system: E =

∑
α
Eα.

It should be noted that just the distribution function of a system found in
the thermostat, i.e. the Gibbs canonical distribution (see Chap. 4), has such
a general appearance (1.58): or

ρα = exp(Aα + βEα(q, p)). (1.59)

1.4 Microcanonical Distribution:
Basic Postulate of Statistical Physics

The microcanonical distribution is concerned with completely isolated sys-
tems. Owing to the absence of any interaction with the surrounding medium
(ΔA = 0, ΔΘ = 0, ΔN = 0), its energy remains fixed as E0 = const, i.e. in
whatever microstate the system is found, its total internal energy is

E(q, p) = E0. (1.60)
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Microstates satisfying this condition are called possible states. In the abstract
phase space, (1.60) is an equation of a specified “hypersurface”. Energy of all
microstates corresponding to phase points on this surface is identical, and
E0 = const. Therefore this hypersurface is called the isoenergetic surface. It
is evident that the system cannot be found in microstates to which phase
points outside this surface E(q, p) �= E0 correspond. These states are called
impossible states.

The explicit form of the distribution function for completely isolated clas-
sical systems that are found in the thermodynamic equilibrium is determined
on the basis of the postulate of statistical physics.

The basic postulate of statistical physics is as follows: If a completely iso-
lated system is found in the thermodynamic equilibrium state, the probability
of it being found in any possible microstate is identical, i.e. preference can be
given to none of the possible states.

Mathematically, this postulate can be expressed in the form

ρ(q, p) =

{
C = const, at E(q, p) = E0,

0, at E(q, p) �= E0.
(1.61)

For the distribution function, expression (1.61) has the appearance

ρ(q, p) = Cδ(E(q, p) − E0). (1.62)

This distribution function is called the microcanonical distribution. The con-
stant C is determined from the normalization condition of the distribution
function (1.38):

∫
ρ(q, p)dq dp = C

∫
δ(E(q, p) − E0)dq dp = 1. (1.63)

Recall that the δ-function entering into expression (1.62) has the following
properties:

1.
∫
δ(x− a)dx = 1,

2.
∫
f(x)δ(x − a)dx = f(a), (1.64)

3.
∫
f(x)δ[φ(x)]dx =

∑
s

f(xs)
|φ′(xs)| ,

where xs are roots of the equation φ(xs) = 0, and a is an arbitrary constant.
In order to use the second property of the δ-function (1.64), in (1.63) pass
from the integral over dq dp ≡ dΓ to the integral over dE. Then we get

C

∫
δ(E(q, p) − E0)dq dp = C

∫
δ(E(q, p) − E0)

dΓ
dE

dE = 1.
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Fig. 1.5. The microcanonical distribution for isolated classical systems

Here
C =

1
(dΓ/dE)E=E0

=
1

Ω(E0)
(1.65)

is the normalizing constant.
Hence, it is seen that the quantity Ω(E0) = (dΓ/dE )E=E0 represents

the “volume” of the phase space found between two hypersurfaces, differing
from one another by one energetic unit and taken around the isoenergetic
hypersurface E(q, p) = E0.

As a result, the distribution function for isolated classical systems – the
microcanonical distribution – takes the form

ρ(q, p) =
1

Ω(E0)
δ(E(q, p) − E0). (1.66)

The microcanonical distribution is schematically depicted in Fig. 1.5.
Note that (1.66) is a mathematical expression of the basic postulate of

statistical physics. The justification of this postulate is corroborated by the
coincidence of the results obtained by use of (1.66) with the experimental
results.

For isolated systems, with the aid of the microcanonical distribution the
mean value of any physical quantity depending on energy L(q, p) = L(E(q, p))
can be computed:

L =
∫
L(E(q, p))

1
Ω(E0)

δ(E(q, p) − E0)dq dp. (1.67)

If with the aid of the replacement

dq dp = dΓ =
dΓ
dE

dE (1.68)

we pass from the integral over dΓ to the integral over dE and take into account
(1.65), for the mean value we get

L = L(E0). (1.69)

In the particular case when L(E(q, p)) = E(q, p), for the mean value of energy
of the system we have

E(q, p) = E0. (1.70)
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1.5 Statistical Description of Quantum Systems:
Statistical Matrix: Liouville Equation

Imagine that the motion of particles of the considered macroscopic system
bears quantum character. Inasmuch as the number of particles in the system
is very large, the purely quantum mechanical description of the system as
well as for classical systems is practically impossible. In fact, for the quantum
mechanical description of a system it is necessary to solve (1.16) and find
the wave function Ψn, depending on 3N number of variables – coordinates
of all particles. Furthermore, the wave function Ψn can be used to find the
quantum mechanical mean value L of the physical quantity L. The practical
impossibility of working with this problem is evident.

Another principal difficulty is associated with the fact that a system cannot
be found in the purely stationary quantum state, inasmuch as its energy spec-
trum is continuous. In nature, a completely isolated system does not exist.
Each system to some extent interacts with the surrounding medium and
the energy of this interaction is more of the difference between energy lev-
els. Therefore, the macroscopic system being found in the stationary state is
impossible. For this reason, the macroscopic system is found not in the purely
quantum state but in “the mixed” state. According to quantum mechanics,
in “a mixed” state the system is described not by the stationary wave func-
tion, but by the density matrix. In statistical physics, it is called the statistical
matrix.

Impossibility of the stationary state of a macroscopic system also follows
from the uncertainty principle for energy. Indeed, the difference of energies
of two adjacent levels ΔE = (En+1 − En) ought to be much more than the
uncertainty of energy:

δE ∼ �

Δt
. (1.71)

To fulfill this condition, the time of measurement Δt ought to be infinitely
large. In reality, however, Δt is finite. Therefore, in the range of the uncertainty
of energy δE, several energy levels can be found and, consequently, it cannot
be asserted that the system is found in some specified stationary state.

Thus, inasmuch as the quantum mechanical description of the system is
impossible, the problem needs to be solved by statistical methods. To do this,
we proceed as follows. Separate one subsystem, which is a small part of a large
system. Suppose that the subsystem does not interact with the surroundings.
Then, we can speak about “the stationary state” of the subsystem. The wave
function of the subsystem in these stationary states is denoted by ψn(q).
Here, q are coordinates of all particles of the system, and n is the totality
of quantum numbers determining its stationary state. Let the energy of this
stationary state be En.

Assume that at a certain instant of time the state of the subsystem is
described by the wave function Ψ(t), which can be expanded into a series
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with respect to orthonormalized wave functions ψn(q):

Ψ(t) =
∑

n

Cnψn(q), (1.72)

where the coefficient Cn depends on time

Cn ∼ exp
(
− iEnt

�

)
, (1.73)

and satisfies the normalization condition∑
n

|Cn|2 = 1. (1.74)

The mean value of a physical quantity L corresponding to the operator L̂ is
defined as follows:

L =
∫

Ψ∗L̂Ψ dq. (1.75)

If we use the expansion (1.72), for L we get

L =
∑
nm

C∗nCmLnm, (1.76)

where
Lnm =

∫
ψ∗n(q)L̂ψm(q)dq (1.77)

is the matrix element of the physical quantity L corresponding to the
operator L̂.

If we introduce the notation

C∗nCm ⇒Wmn, (1.78)

we get the formula to calculate the mean value:

L =
∑
mn

WmnLnm. (1.79)

The totality of quantities Wmn is called the statistical matrix. If we denote
the statistical operator corresponding to this matrix by Ŵ , expression (1.79)
takes the form

L =
∑

n

(Ŵ L̂)nn. (1.80)

Diagonal elements of the statistical matrix Wnn ≡Wn show the probability of
the system being found in the stationary state n. Therefore Wn in the quan-
tum statistics corresponds to the distribution function ρ(q, p) in the classical
statistics:

ρ(q, p) ⇒Wn, (1.81)
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and the normalization condition (1.38) has the appearance
∑

n

Wn = 1. (1.82)

Recall that for a classical system the distribution function ρ(q, p) determines
the probability of the system that is found in a microstate corresponding to the
phase point (q; p). And in quantum systems, Wn means the probability of the
system that is found in a microstate with energy En, which is determined by
the totality of quantum numbers n.

For classical systems, the distribution function ρ(q, p) possesses the prop-
erty stemming from the Liouville theorem: the distribution function is an
integral of the motion and therefore depends only on mechanical invariants
(1.56). In quantum systems, for the statistical matrix Wnm a theorem anal-
ogous to the Liouville theorem can be proved. To do this, using (1.73) write
down the derivative of the statistical matrix with respect to time. Then we get

∂

∂t
(C∗nCm) =

i

�
(En − Em)C∗nCm, (1.83)

or, if we use notations (1.78),

∂

∂t
Wmn =

i

�
(En − Em)Wmn. (1.84)

The right-hand side of this equation can be presented in the form

(En − Em)Wnm =
∑

k

(WmkHkn − HmkWkn). (1.85)

Here Hmn is the matrix element of the Hamilton operator Ĥ . In the energetic
representation, Hmn is a diagonal matrix:

Hmn = Enδmn. (1.86)

If we take this into account, the entry of (1.85) becomes clear.
As a result, (1.84) takes the form

∂

∂t
Wmn =

i

�

∑
k

(WmkHkn − HmkWkn). (1.87)

Equation (1.87) can be also written down in the matrix form, i.e. for the
operator of the density matrix Ŵ ,

∂

∂t
Ŵ =

i

�
(ŴĤ − Ĥ Ŵ ). (1.88)

This equation, as well as (1.87), is called the Liouville equation.
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As seen from the Liouville equation, to fulfill the stationary condition
∂Ŵ/∂t = 0, the operator Ŵ ought to commutate with the Hamilton operator
Ĥ of the system:

ŴĤ − Ĥ Ŵ = 0. (1.89)

Physical quantities corresponding to the operator that commutates with the
Hamilton operator are conservation quantities. Therefore, according to (1.89),
it can be asserted that the statistical matrix is an integral of the motion.

In quantum statistics, this conclusion is an analogue of the Liouville
theorem (1.54) in classical statistics.

From the energetic presentation of the statistical matrix, one more of its
property follows. Indeed, as seen from the Liouville equation (1.84), to fulfill
the stationary condition (∂Wmn/∂t = 0) the following ought to take place:

(En − Em)Wmn = 0. (1.90)

And to fulfill this condition, the matrix element Wmn ought to be diagonal:

Wmn = Wnδmn. (1.91)

With regard to (1.91), the formula for the mean value (1.79) takes the form

L =
∑

n

WnLnn. (1.92)

As can be seen, to calculate the mean value of any physical quantity L it is suf-
ficient to know the distribution function Wn and only the diagonal elements
of the matrix Lnn . For the considered system, Lnn is found from quantum
mechanics. And the finding of the explicit form of the distribution function
Wn is the task of statistical physics. Naturally, a universal expression for Wn

applicable to any system does not exist. However, as is known, in quantum
statistics the Liouville theorem is fulfilled, too, i.e. Wn is a conservation quan-
tity. And this means that the dependence Wn on the totality of the quantum
numbers n is expressed by conservation quantities, namely, by En:

Wn = W (En). (1.93)

This property is an analogue of the property of the distribution function (1.61)
in classical statistics.

The explicit form of the function W (En) is different for different physi-
cal systems. Assume that the considered system with energy E = En consists
of statistically independent subsystems. If we denote the energy of the
α-subsystem by Enα , the energy of the complete system is

En =
∑
α

Enα , (1.94)

where nα is the totality of quantum numbers determining the state of the
α-subsystem, and n is the totality of quantum numbers determining the state
of the whole system, i.e. n⇒ n1, n2, . . . nα.
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Inasmuch as the subsystems are statistically independent, the distribution
function Wn ought to possess the property analogous to the property of ρ(q, p)
in classical statistics (1.43):

ln Wn =
∑
α

ln Wnα , (1.95)

i.e. in the quantum case the logarithm of the distribution function is an addi-
tive quantity, too. Then, the logarithm of the distribution function can be
presented in the form

ln W (Enα) = Aα + βEnα , (1.96)

where Enα is energy of the α-subsystem; Aα is a constant, which is found from
the normalization condition and depends on the number of the subsystem; and
the coefficient β ought not to depend on the number of the subsystem, since
only in this case conditions (1.95) and (1.94) are fulfilled at the same time.

Notice that the canonical distribution for systems in the thermostat has
the same appearance as (1.96).

Consider the microcanonical distribution for isolated quantum systems
with the pre-assigned energy E = E0 = const. As noted above, the energy
spectrum of macroscopic systems is continuous. Denote by dG the number of
quantum states in an infinitely small range of energy dE taken around the
given value of energy E.

If it is supposed that the system consists of several subsystems, then

dG =
∏
α

dGα, (1.97)

where dGα is the number of quantum states in an infinitely small range of
energy dE, taken close to the given value of energy Eα of the subsystem with
number α.

Notice that (1.97) corresponds to the relationship

dΓ =
∏
α

dΓα (1.98)

for the classical case, which means that an element of volume of the phase
space of the whole system equals the product of elements of volumes of the
phase space of individual subsystems.

For an isolated system, quantum states dG falling in the range of energy
dE can be considered as possible states. According to the basic postulate of
statistical physics, the probability of the system found in any microstate is
identical, i.e. preference can be given to none of them. On the other hand,
the probability dW of the system found in any of the states dG ought to be
proportional to the number dG. Then it can be written as

dW = const δ(E − E0)
∏
α

dGα. (1.99)
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Equation (1.99) is called the microcanonical distribution for quantum systems.
Here the δ(E − E0) function shows the isolatedness of the system, and

E =
∑
α

Eα (1.100)

is the total energy of the system.

1.6 Entropy and Statistical Weight

We introduce one of the basic concepts of thermodynamics and statistical
physics – entropy of a system. Entropy, as well as energy, is a function of
state, i.e. it determines the microscopic state of a system.

At first, consider the concept of the statistical weight of a system, which
is closely associated with entropy. To do this, suppose that the considered
quantum system is found in the thermodynamic equilibrium state. Subdivide
this system into a multitude of subsystems. Let n be the totality of quantum
numbers determining a microstate of any subsystem with energy En, and
Wn = W (En) be the probability of the system found in the given microstate.
Pass from the distribution over microstates W (En) to the distribution over
energy w(E). It is known that the energy spectrum of a macroscopic system
is almost continuous, and therefore a multitude of energy levels corresponding
to the quantum states accounts for a sufficiently small range of energies. In
order to find the probability w(E)dE of the system found in the state with
energy in the range of E and E + dE taken close to E, it is necessary to
multiply the function W (E) by the number of quantum states (microstates)
accounting for the range of energy dE.

If we take into account that the number of these microstates is

dG(E) =
dG(E)

dE
dE = g(E)dE, (1.101)

the distribution function over energies takes the form

w(E) = g(E)W (E). (1.102)

Here
g(E) =

dG(E)
dE

(1.103)

is the function of the density of quantum states, i.e. the number of quantum
states accounting for a unit range of energy taken close to E, and G(E) is the
total number of all the quantum states with energy less than E.

Even without knowing the explicit form of the distribution function w(E),
it can be asserted that a subsystem in thermodynamic equilibrium ought to
be found most of the time in states close to the mean value of energy E.
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Fig. 1.6. The distribution function over energy

Therefore, the distribution function w(E) over energy ought to have a sharp
maximum at E = E (Fig. 1.6).

According to the normalization condition
∫
w(E)dE = 1. (1.104)

This geometrically means that the area under the curve w(E) ought to be
equal unity.

If the curve depicted in Fig. 1.6 is approximately replaced by a rectangle
with the height w(E) and width ΔE, condition (1.104) can be presented in
the form

w(E)ΔE = 1, (1.105)

where ΔE is called the width of the distribution curve over energy.
Taking into account the distribution function (1.102) in (1.105), we get

W (E)ΔG = 1. (1.106)

Here,
ΔG = g(E)ΔE (1.107)

is the number of microstates accounting for the range of energies ΔE of the
subsystem and is called the statistical weight of a macrostate of the system
with energy E = E.

The statistical weight ΔG shows the number of microstates corresponding
to one pre-assigned macrostate of the system. Therefore, ΔG characterizes
the degree of the internal chaoticity of the system.

The statistical weight of a closed system, in conformity with (1.97), can be
presented as the product of statistical weights of the individual subsystems:

ΔG =
∏
α

ΔGα, (1.108)

where ΔGα = ΔG(Eα) is the statistical weight of the α-subsystem.
In statistical physics, apart from the statistical weight, a more convenient

function, also characterizing the degree of chaoticity of a system, is accepted.
This function is defined as a logarithm of the statistical weight:
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S = k0 ln ΔG (1.109)

and is called the entropy of a system. Here k0 is the Boltzmann constant. As
is seen, entropy cannot be negative, i.e. S ≥ 0, since the statistical weight
ΔG ≥ 1. Note that entropy of a system, as also the energy, in conformity
with (1.108) and (1.109), possesses the property of additivity, i.e.

S =
∑

α

Sα. (1.110)

Here, Sα = k0 ln ΔGα is entropy of the α-subsystem.
Thus, it can be asserted that entropy is a function of the state of a macro-

scopic system and characterizes the degree of its internal chaoticity; entropy
has only a statistical sense; entropy cannot be spoken of separately for a given
particle.

If we take into account (1.106) in (1.109), entropy can be expressed by the
distribution function

S = −k0 ln W (E). (1.111)

Inasmuch as, according to (1.96), the logarithm of the distribution func-
tion is a linear function of energy, lnW (E) can be replaced with the mean
lnW (E), i.e.

ln W (E) = ln W (E). (1.112)

Then, the expression of entropy (1.111) takes the form

S = −k0

∑
n

Wn ln Wn. (1.113)

We now consider classical systems in the quasi-classical approximation. In this
case, using the normalization condition for classical systems consisting of N
particles, ∫

ρ(q, p)dΓ = 1, (1.114)

where dΓ = dq dp =
3N∏
i

dqi dpi is an element of volume of the phase space,

and therefore we can pass from the distribution over microstates ρ(q, p) to the
distribution over energies ρ(E). To do this, rewrite the condition (1.114) in
the form ∫

ρ(E(q, p))
dΓ
dE

dE = 1, (1.115)

or ∫
ρ(E(q, p))(2π�)3Ng0(E)dE = 1. (1.116)

Here,

g0(E) = (2π�)−3N dΓ
dE

(1.117)
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is the function of the density of states of quasi-classical systems.
As is seen from (1.116),

ρ(E) = (2π�)3Nρ(E(q, p))g0(E) (1.118)

is the distribution function over energy. Then condition (1.116) takes the form
∫
ρ(E)dE = 1. (1.119)

Taking into account that ρ(E) takes on a maximum value at E = E, (1.119)
can be roughly presented as

ρ(E)ΔE = 1. (1.120)

Here ΔE is the width of the distribution curve (Fig. 1.6). If substitute (1.118)
into (1.120), we get

(2π�)3Nρ(E(q, p))ΔG = 1, (1.121)

where
ΔG = g0(E)ΔE (1.122)

is the number of microstates accounting for the range of energy ΔE taken
close to energy E = E in the quasi-classical case, i.e. the statistical weight
of the macrostate with energy E = E. Then entropy can be presented in
the form

S = k0 ln ΔG = k0 ln g0(E)ΔE. (1.123)

If the value of g0(E) from (1.117) is taken into account, for the quasi-classical
case entropy can be presented as

S = k0 ln
ΔqΔp

(2π�)3N
. (1.124)

In the quasi-classical case, entropy can be also expressed by the distribution
function over microstates. To do this, take into account (1.121) and (1.123).
Then we get

S = −k0 ln[(2π�)3Nρ(E(q, p))]. (1.125)

On the basis of property (1.58) of the distribution function, we can replace

ln ρ(E(q, p)) = ln ρ(E(q, p)). (1.126)

As a result, for entropy we get

S = −k0

∫
ρ(q, p) ln

[
(2π�)3Nρ(q, p)

]
dq dp. (1.127)

From additivity of entropy (1.110), one more its property stems. If we divide
the width of the distribution function ΔE (Fig. 1.6) by the number of
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energy levels ΔG in this range, we get the distance between adjacent energy
levels:

D(E) =
ΔE
ΔG

= ΔE e−S(E)/k0 . (1.128)

From the property of additivity, it follows that the more the amount of sub-
stance (the number of particles N) in a system, the more is the entropy
of the system S(E) and the denser the energy levels. Thus, with increasing
amount of substance in a system, the distance between adjacent energy levels
exponentially decreases.

In conclusion, once more recall the basic properties of entropy:

1. Entropy is a function of state and characterizes the degree of its internal
chaoticity. The more the entropy, the more is the chaoticity, and vice versa;
the less the entropy, the more is the ordering of the system.

2. Entropy has only a statistical sense; it cannot be spoken of for a separate
particle.

3. Entropy cannot be negative, i.e. S ≥ 0.
4. Entropy is an additive quantity, i.e. S =

∑
α
Sα.

5. Entropy characterizes the density of levels in the energy spectrum of a
system. The more the entropy, the denser are the energy levels.

6. Entropy of a system in the thermodynamic equilibrium state takes on a
maximum value. This property follows from the law of increasing entropy,
which is further discussed in Sect. 1.7 below.

1.7 Law of Increasing Entropy:
Reversible and Irreversible Processes

In Sect. 1.6, we introduced the concept of entropy of an isolated system found
in thermodynamic equilibrium. The question arises whether entropy can be
spoken of for a system that is not in thermodynamic equilibrium. A positive
answer to this question can be given, i.e. the concept of entropy for thermody-
namic non-equilibrium systems can also be introduced. To substantiate this,
imagine that the considered closed system is not found in the thermodynamic
equilibrium state, and its relaxation time is τ . If we study the system in the
time range Δt < τ , it is evident that the system is in the non-equilibrium state
(Fig. 1.7a) and, naturally, we cannot speak of a specified value of entropy of
the system. However, if we subdivide the considered system into small sub-
systems, the relaxation time τα7 of each of them (assume with number α) will
be less than the time of observation Δt, i.e. τα < Δt (Fig. 1.7b). As can be
seen from the figure, for a very small time τα the subsystem passes onto its
local equilibrium state (the quantity Lα tends to its local equilibrium value
L0α). And it can be said that for all the time of observation Δt, the subsystem

7 With a decrease in dimensions of the subsystem its relaxation time decreases.
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Fig. 1.7. The relaxation of the thermodynamical parameter: (a) - for system; (b) -
for subsystem

is found in this local equilibrium state. Consequently, the concept of entropy
Sα = S(Eα) can be introduced for each subsystem found in the local equi-
librium state. Inasmuch as entropy is an additive quantity, we can speak of
the instantaneous value of entropy of a large non-equilibrium system, having
defined it as S(t) =

∑
α
Sα(Eα).

According to the first postulate of thermodynamics, in the course of time
an isolated non-equilibrium system ought to pass into the equilibrium state.
The question arises as to how entropy of the system S(t) changes as a result
of this process.

In order to answer this question, use the microcanonical distribution func-
tion (1.99) for isolated systems with energy E0 and pass from the distribution
over microstates to the distribution over energy. Then, (1.99) takes the form

dW = const δ(E − E0)
∏
α

dGα

dEα
dEα. (1.129)

If we replace the derivative dGα/dEα in this distribution by the ratio
ΔGα/ΔEα and make use of the expression of entropy of the α-subsystem,
stemming from definition (1.109)

ΔGα = exp
(
Sα(Eα)
k0

)
, (1.130)

we get

dW = const δ(E − E0) eS/k0
∏
α

dEα

ΔEα
, (1.131)

where S =
∑
α
Sα(Eα) is entropy of the isolated system. Inasmuch as the

range of energy ΔEα very weakly depends on energy compared with the factor
eS/k0 , it can be regarded as constant and the distribution function over energy
(1.131) takes the form

dW = const δ(E − E0)eS/k0
∏
α

dEα. (1.132)
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The obtained distribution function (1.132) is the probability of the subsystems
found in states with energies E1, E2, . . . , Eα, . . . in the ranges of energy E1 +
dE1, E2 + dE2, . . . , Eα + dEα, . . ., respectively. Here the δ(E − E0) function
provides the isolatedness of the system, i.e. E =

∑
α
Eα = E0 = const.

As seen from (1.132), the distribution function over energies of an isolated
system having the above-indicated physical sense very strongly and expo-
nentially depends on entropy of the system, i.e. S = S(E1, E2, . . . , Eα, . . .).
Therefore, the greater the probability of the considered macrostate of the sys-
tem, the higher is the entropy of this state. It is known that the probability of
an isolated system found in thermodynamic equilibrium state is maximum. In
this state, energy of subsystems ought to be equal to its mean value, Eα = Eα.
Thus, entropy of an isolated system in thermodynamic equilibrium state has
the maximum value:

S(E1, E2, . . . , Eα, . . .) = Smax. (1.133)

Conclusion: If an isolated system at a certain instant of time is not found
in thermodynamic equilibrium state, in the course of time internal processes
proceed in such a direction, as a result of which the system comes to its equilib-
rium state and at that entropy of the system increases, reaching its maximum
value. This assertion is called the Law of Increasing Entropy or the Second
Law of Thermodynamics. The law in such a form was formulated by Clausius
in 1865, and statistically substantiated by Boltzmann in 1870.

Note that on a system such a process can be performed at which each
macroscopic state will be in thermodynamic equilibrium and entropy does
not change. Taking into account this case also, the law of increasing entropy
in the general form can be formulated as follows: Entropy of an isolated system
never decreases; it either increases or, in the particular case, remains constant.

In conformity with this, processes proceeding in all macroscopic systems
can be subdivided into two groups (Fig. 1.8):

dS/dt > 0 − irreversible process
dS/dt = 0 − reversible process. (1.134)

Reversible
 process  

0

Irreversible   
process 

t

S = const

∂ S/∂ t>0
S(t)

Smax

Fig. 1.8. The time dependence of entropy for irreversible and reversible processes
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Irreversible processes cannot proceed in the reverse direction, inasmuch as
in that case the entropy decreases, but this contradicts the law of increasing
entropy. In nature, we frequently come across irreversible processes. Diffu-
sion, thermal conductivity, expansion of a gas, etc. can serve as examples of
irreversible processes.

A reversible process can proceed in direct and reverse directions. In this
case, a system passes through identical equilibrium macroscopic states, since
in this case entropy in both the directions does not change. In nature, it can
be said that reversible processes do not exist, and they can be created only
approximately by artificial methods. Compression or expansion of a gas found
under a piston in a cylinder is one example of the simple adiabatic process.

An adiabatic process is a reversible process. Processes proceeding suffi-
ciently slowly in adiabatically isolated (ΔQ = 0) systems are called adiabatic.
We can show that in such processes entropy does not change: dS/dt = 0, i.e.
the process is reversible. To do this, consider the simplest case: a gas under a
piston in an adiabatically isolated cylinder (Fig. 1.9).

As the external parameter, take the volume of the gas under the piston,
which for the given cylinder is determined by the height l. By changing this
height, we can increase or decrease the volume of the gas. Inasmuch as the
change in entropy with time is related to the change in volume, we can write

dS
dt

=
dS
dl

· dl
dt
. (1.135)

Suppose that the piston moves sufficiently slowly; then the change in entropy
with time can be expanded into a series in powers of l̇ = dl/dt:

dS
dt

= A0 +A1
dl
dt

+A2

(
dl
dt

)2

+ · · · (1.136)

The constants A0 and A1 in this series ought to be equal to zero. The constant
A0 equals zero because at l̇ = 0 the state of the system does not change
and entropy remains constant, i.e. dS/dt = 0; A1 equals zero because when
changing the sign of l̇ (the motion of the piston down and up), dS/dt changes
its sign, which contradicts the law of increasing entropy (dS/dt ≥ 0). Thus,

l

l > 0
.

l < 0
.

Fig. 1.9. An adiabatic process
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dS
dt

= A2

(
dl
dt

)2

. (1.137)

If we take into account (1.135), we get

dS
dl

= A2
dl
dt
. (1.138)

Hence it is seen that as the velocity of the piston tends to zero (l̇ → 0),
the change in entropy of the system with respect to the external parameter l
tends to zero: dS/dl = 0, i.e. when the change in volume of the adiabatically
isolated gas is slow, the processes of expansion or compression are adiabatically
reversible.

Thus, we have seen that the processes of expansion or compression are
reversible (dS/dl = 0) if the piston moves with a very small velocity. Then
the following question arises: In reference to which velocity ought the velocity
of the piston be small? In order to answer this question, take a look at the
process of compression or expansion of the gas. If the piston moves down
(l̇ < 0), immediately under the piston the instantaneous density of the gas
increases. The velocity of motion of the piston ought to be such that at any
instance of time, i.e. at any position of the piston, the density of the gas
everywhere would be identical, i.e. the gas would be found in thermodynamic
equilibrium. An analogous situation arises also during the upward motion
of the piston (l̇ > 0): as the piston moves up, the gas ought to fill up the
vacuum forming under the piston, in order that the density would be identical
everywhere and equilibrium would be attained. It is apparent that during the
motion of the piston the process of regaining uniform distribution of particles
of the gas occurs with the speed of sound. Therefore, in order that the process
would be adiabatic, the velocity of the motion of the piston ought to be less
than the speed of propagation of sound υ0 in the gas:

∣∣∣∣dldt
∣∣∣∣� υ0. (1.139)

If we take into account that the speed of sound in most gases is on the order of
350 m/s, the piston can be moved with a sufficiently large velocity, satisfying
condition (1.139), and the adiabaticity of the process is not violated.

1.8 Absolute Temperature and Pressure:
Basic Thermodynamic Relationship

In Sect. 1.7 we became acquainted with three thermodynamic quantities: vol-
ume V , internal energy E(q, p) and entropy S(E). Of these, volume is an
external parameter, and energy and entropy are internal ones. Energy has
both a mechanical and a statistical sense, and entropy has only a statistical
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Fig. 1.10. The thermal equilibrium of two subsystems

sense. The change in one of these quantities induces a change in the oth-
ers. Derivatives of these quantities are also thermodynamic parameters: for
instance, absolute temperature and pressure. We consider them separately.

Absolute temperature. Assume that an isolated system with energy E0 =
const in thermodynamic equilibrium consists of two subsystems with energy,
entropy and volume E1, S1, V1 and E2, S2, V2, respectively (Fig. 1.10). As a
consequence of the additivity of energy and entropy, we have

E = E1 + E2, (1.140)

and
S = S1(V1, E1) + S2(V2, E2). (1.141)

Assume that the boundary of division of the two subsystems ab (Fig. 1.10) is
immovable; therefore, volumes V1 and V2 do not change but energies of the
systems E1 and E2 and also entropies S1 and S2 can change.

Taking into account E2 = E−E1, notice that entropy of an isolated system
depends only on one independent variable E1, i.e. S = S(E1). According to
the law of increasing entropy, in thermodynamic equilibrium entropy of an
isolated system ought to be maximum. For this, it is necessary to fulfill the
condition

∂S

∂E1
=
(
∂S1

∂E1

)
V1

+
(
∂S2

∂E2

)
V2

∂E2

∂E1
= 0. (1.142)

Since ∂E2/∂E1 = −1, from (1.142) we get8

(
∂S1

∂E1

)
V1

=
(
∂S2

∂E2

)
V2

. (1.143)

If an isolated system in thermodynamic equilibrium is subdivided into n arbi-
trary subsystems, the condition of thermodynamic equilibrium (1.143) in the
general form can be presented as

8 Here and everywhere a quantity, indicated at the foot of the bracket when taking
the derivate, is regarded as constant.
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(
∂S1

∂E1

)
V1

=
(
∂S2

∂E2

)
V2

= · · · =
(
∂Sn

∂En

)
Vn

. (1.144)

Hence it is seen that if an isolated system is found in thermodynamic equi-
librium, there exists the quantity (∂S/∂E)V , which is identical in any part of
the system. The reciprocal value of this quantity is denoted by T :(

∂E

∂S

)
V

= T (1.145)

and is called the absolute temperature or, in brief, temperature. Then condition
of thermodynamic equilibrium or maximum entropy (1.144) takes the form

T1 = T2 = · · · = Tn = T. (1.146)

If we take into account the definition of entropy (1.109), according to (1.145)
temperature is measured in degrees.

If entropy is defined not by the expression (1.109) but as S = ln ΔG,
temperature (1.145) ought to be measured in energetic units. Hence, it is
seen that the Boltzmann constant k0 relates energy to temperature. For
instance, 1 erg = κ0 · 1 deg. From experiment it has been determined that
κ0 = 1.38× 10−16 erg/deg. Thus, the Boltzmann constant k0 is the number of
ergs corresponding to one degree.

Note some properties of the absolute temperature:

1. In a system which is in thermodynamic equilibrium, the temperature at all
points is identical (1.146).

2. As with entropy, temperature has only a statistical sense, and we cannot
speak of the temperature of one isolated particle but we can speak of its
energy.

3. Temperature is an internal intensive parameter. This property stems from
the fact that we can subdivide the system into n arbitrary subsystems, but
the definition of the absolute temperature (1.146) remains invariable since
this definition does not depend upon the number n.

4. The absolute temperature of a steady macroscopic system is positive.9 If,
on the contrary, T < 0, the state of the system is non-steady and, breaking
into individual parts, it is destroyed. In order to prove this, subdivide the
system into a multitude of subsystems. Let the α-subsystem have the total
energy E0α, mass Mα, impulse Pα and entropy Sα. If it is taken into
account that entropy of the subsystem depends on the internal energy,
entropy of the large system takes the form

S =
∑
α

Sα

(
E0α − P 2

α

2Mα

)
≡
∑
α

Sα(Eα), (1.147)

9 Artificially, a system with negative absolute temperature can be created, but such
a metastable state is non-steady and as a result of the minor external intervention
the system, having come out of this state, passes into the normal state.
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where Eα is the internal energy of the subsystem. If it is supposed that
T < 0, then (∂S/∂E)V < 0. According to the law of increasing entropy, for
an increase in S it is necessary to have a decrease in the internal energy Eα.
It is possible in that case that, within the limits of the law of conservation
of an impulse

∑
α

Pα = 0, impulses of the subsystems grow, and thereby

the subsystems macroscopically move in different directions, i.e. the state
of the system is non-steady. Thus, temperature cannot be negative.

5. The attainment of identical temperature in a system determines the direc-
tion of the flow of energy in it: energy from the high-temperature region
passes into the low-temperature one. In order to show this, assume that the
considered isolated system consists of two parts with temperatures T1 and
T2 (Fig. 1.10). The system, being in the non-equilibrium thermodynamic
state, in the course of time ought to pass into the thermodynamic equilib-
rium and in both the parts the temperature ought to equalize. During this
passage, as consequence of increasing entropy, we have

dS
dt

=
(
∂S1

∂E1

)
V1

dE1

dt
+
(
∂S2

∂E2

)
V2

dE2

dt
> 0. (1.148)

Inasmuch as in isolated systems E = const, on the strength of (1.140) we
can write

dE2

dt
= −dE1

dt
. (1.149)

Then, taking into account the definition of the absolute temperature
(1.145), condition of irreversibility of the passage process (1.148) takes
the form (

1
T1

− 1
T2

)
dE1

dt
> 0. (1.150)

Hence it is seen that if T1 > T2, then dE1/dt < 0, and if T1 < T2, then
dE1/dt > 0.

Thus, in the process of the passage of the system from the non-
equilibrium state into the equilibrium one, energy is transferred from the
high-temperature part into the low-temperature one.

6. The value of the absolute temperature of a system determines the degree
of the change in entropy (chaoticity) with the change in its energy ΔE.
Indeed, according to (1.145), the change in entropy can be presented
as ΔS = ΔE/T . Hence it is seen that at the pre-assigned change in
energy, entropy at low temperatures changes more than that at high
temperatures.10

Pressure. To define this thermodynamic parameter, we make use of the known
formula

F = −∂E(p, q, r)
∂r

(1.151)

10 With an increase in energy, the volume of the system ought to remain constant.
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Fig. 1.11. A fragment of the surface of the system

from classical mechanics. Here E(p, q, r) is the internal energy (the Hamilton
function) of the system; p and q are generalized impulses and coordinates of
particles of the system; r is the radius vector of an element of the surface Δσ
of the system; and F is the force acting on this element of the surface.

In Fig. 1.11, a fragment of the surface of the system is shown. In the course
of time, r(t) changes, and thereby Δσ and volume of the system change.
Assume that this process is adiabatic. Then r(t) plays the role of an external
parameter. It is clear that the change in r(t) induces the change in energy
E(q, p, r). From classical mechanics it is known that the total derivation of
energy (the Hamilton function) of a system can be replaced with the partial
derivative

dE(q, p, r)
dt

=
∂E(q, p, r)

∂t
. (1.152)

Owing to the fact that the change in energy with respect to time is due to
the change in r(t), we can write

∂E(q, p, r)
∂t

=
∂E(q, p, r)

∂r
dr
dt
. (1.153)

Denote the mean value of the energy of the system by E = E(q, p, r) and take
its time derivative. By interchanging the position of the operation of averaging
and the time derivative, we get

dE
dt

=
dE(q, p, r)

dt
=
∂E(q, p, r)

∂t
=
∂E(q, p, r)

∂r
dr
dt
. (1.154)

On the other hand, the mean energy E is a function of volume V and entropy
S. If the process of the change in volume is regarded as adiabatic (S = const),
(1.154) can be presented in the form

dE
dt

=
(
∂E

∂r

)
S

dr
dt
. (1.155)

Comparing (1.154) and (1.155), we get

∂E(q, p, r)
∂r

=
(
∂E

∂r

)
S

. (1.156)
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By substituting this expression into (1.151), for the mean value of the force
acting on the element of the surface Δσ we get

F = −
(
∂E

∂r

)
S

= −
(
∂E

∂V

)
S

dV
dr

. (1.157)

Taking into account that dV = Δσdr , for pressure P = F/Δσ we have

P = −
(
∂E

∂V

)
S

. (1.158)

Definitions of the absolute temperature (1.145) and pressure (1.158) can be
combined as follows:

dE = T dS − P dV. (1.159)
This relationship is called the basic thermodynamic relationship, since ther-
modynamics as a whole is based on this.

Note some properties of pressure:

1. Pressure has both a mechanical and statistical sense. The statistical sense
of pressure resides in the fact that it is defined as the derivative of the
mean value of energy with respect to volume (1.158).

2. Pressure is an internal intensive parameter.
3. In a system in thermodynamic equilibrium, pressure at each point is iden-

tical. In order to show this, imagine that an isolated system is divided into
two parts (Fig. 1.10), the boundary of division ab being movable; i.e. vol-
umes V1 and V2 can change but the total volume of the system V = V1+V2

does not change (V = const). In order that entropy S = S1(V1) + S2(V2)
of a system in thermodynamic equilibrium be maximum, it is necessary to
fulfill the condition(

∂S

∂V1

)
E0

=
(
∂S1

∂V1

)
E1

+
(
∂S2

∂V2

)
E2

∂V2

∂V1
= 0. (1.160)

Taking into account that ∂V2/∂V1 = −1, we get(
∂S1

∂V1

)
E1

=
(
∂S2

∂V2

)
E2

. (1.161)

According to the basic thermodynamic relationship (1.159), (∂S/∂V )E =
P/T . Then the condition for thermodynamic equilibrium (1.161) takes the
form P1/T1 = P2/T2. Since in equilibrium T1 = T2, necessarily P1 = P2. If
we divide the system into n subsystems, the condition of the equilibrium
takes the form

P1 = P2 = · · · = Pn = P. (1.162)
Recall that expression (1.146) is the condition of thermal equilibrium, and
(1.162) is that of mechanical equilibrium. But also note that the mechanical
equilibrium in the system is attained faster than the thermal one, inasmuch
as the creation of the thermal equilibrium is related to the very slow process
of thermal conductivity.
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4. In the equilibrium state pressure is positive. From the relationship
(∂S/∂V )E = P/T , it follows that if P > 0, then (∂S/∂V )E > 0. In this
case, at an increase in entropy the system ought to expand, but other bodies
surrounding it hinder this. On the contrary, if P < 0, then (∂S/∂V )E < 0.
Hence it follows that at an increase in entropy the system ought to be
spontaneously compressed, converting it into a point, which is impossible.

Notice that in nature metastable states of the system with negative pressure
are possible. The breaking away from the walls of the vessels of some liquids
can serve as an example of this.



2

Law of Thermodynamics: Thermodynamic
Functions

Summary. Usually, when we speak of the laws of thermodynamics, we have in
mind its three laws. In fact, there are four laws of thermodynamics. One of them
is the zeroth law. This law is expressed in the form of the second postulate (see
Sect. 1.1) and is a law about temperature.

In this chapter, the three basic laws of thermodynamics are expounded. The
first law is about internal energy and its conservation; the second and third laws
are about entropy and its change. The method of thermodynamic functions and the
finding of general thermodynamic relationships based on them comprise the basic
content of the chapter.

2.1 First Law of Thermodynamics:
Work and Amount of Heat: Heat Capacity

Once more note that the first law of thermodynamics is about internal energy,
which is a function of the state of a macroscopic system and its conservation.
It is known that any macroscopic system can interact with its surrounding
systems, i.e. with the surrounding medium, by three channels: mechanical
(ΔA �= 0), thermal (ΔQ �= 0) and material (ΔN �= 0) (see Sect. 1.1).

To begin with, consider closed systems (N =const,ΔN = 0).1 In this case,
only two types of interactions, i.e. mechanical and thermal, are possible.

Mechanical interaction. Work. Consider an adiabatically isolated (ΔQ= 0)
closed system. For such systems, only mechanical interaction is possible. In
such an interaction, two cases are possible: a system at the expense of internal
energy performs work and increases its volume (ΔV > 0); and a system with
external forces exerting on it decrease its volume (ΔV < 0).

When a system performs work, its internal energy decreases, therefore
the elementary work being performed is regarded as negative (dA < 0), and
similarly, the elementary work being performed by external forces on a system
is regarded as positive (dA > 0).
1 Thermodynamics of open systems (ΔN �= 0) will be considered in Sect. 3.1.
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Fig. 2.1. A gas in a cylindrical vessel under a piston
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Fig. 2.2. An adiabatically isolated system with boundaries of an arbitrary shape

To compute the elementary work, for simplicity assume that the considered
system represents a gas in a cylindrical vessel under a piston (Fig. 2.1).

If we pressurise the gas to P , and assume the cross-sectional area of the
piston is σ, the gas acts on the piston with a force Pσ, which is directed
upwards. This force moves the piston up by a magnitude dl and performs the
elementary work Pσdl=PdV . According to our condition, the elementary
work being performed by the system ought to be negative. Therefore, the
elementary work can be written down in the form2

dA = −P dV, (2.1)

Where, in the given case, dV > 0.
It can be shown that the expression for work (2.1) is just for macroscopic

systems of any form. To do this, consider an adiabatically isolated system with
boundaries of an arbitrary shape (Fig. 2.2). Assume that under the influence of
pressure P the system increases its volume from V1 to V2. To calculate the work
being performed in this process, subdivide boundaries of the system into small
portions and denote the area of an arbitrarily taken portion by dσi. Then, on
the element of the surface dσi, the force Pdσi acts. If under the action of this

2 If under action of external forces the volume of the gas decreases (dV < 0), then
dA > 0. Thus, (1.1) is the general expression for the elementary work.
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Fig. 2.3. The work being performed by the gas in the process of expansion

force the element of the surface dσi is moved by the magnitude dr i, the most
elementary work being performed equals dAi = −P dσi dr i = −P dVi, where
dVi =dσi dr i. If we add up over all the surface of the system, the elementary
work being performed by the gas in the process of expansion from V1 to V2

can be written down in the form

dA =
∑

i

dAi = −P
∑

i

dVi = −P dV, (2.2)

which coincides with (2.1). The same expression for the elementary work is
obtained in the case of action of external forces, leading to a decrease in
volume from V2 to V1(V1 < V2), too.

Inasmuch as the internal energy of an adiabatically isolated closed sys-
tem changes only at the expense of the work being performed, the law of
conservation of energy in this case has the appearance

dE = dA = −P dV. (2.3)

If the system, expanding from the state with energy E1 and volume V1, passes
into the state with energy E2 and volume V2, the law of conservation (2.3)
can be written down in the integral form

E2 − E1 = −
V2∫

V1

P (V )dV . (2.4)

It is evident that the work being performed and, consequently, the change in
energy (2.4) of the system in the process of expansion numerically equal the
cross-hatched area under the curve P =P (V ) on the P − V plane (Fig. 2.3).

Thermal interaction. Amount of heat. Consider a system in a thermostat
with immovable boundaries. If temperatures of the thermostat and system
are different, the exchange of a certain amount of heat dQ occurs between
them. We arrange to regard the amount of heat that is transferred from the
system into the thermostat as negative (dQ < 0), and the amount of heat
that is transferred from the thermostat into the system as positive (dQ > 0).
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Recall that at the mechanical interaction the external parameter of the sys-
tem (volume V ) changes, and at the thermal interaction its internal parameter
(temperature T ) changes. The process of the heat exchange between the sys-
tem and thermostat occurs as a result of thermal conductivity. This is a very
complex molecular-kinetic process: particles of the system and thermostat that
are found close to the boundary of the system with the thermostat interact
(collide) and exchange energy, and this process of collision (the exchange of
energy) propagates inside the system (the thermostat). As a result, a certain
amount of heat dQ transfers from the system to the thermostat or, vice versa,
depending on where the temperature is higher. Inasmuch as the amount of
heat dQ received as a result of the exchange changes the internal energy by
dE, the law of conservation can be presented in the form

dE = dQ. (2.5)

However, equality (2.5) can be written only in the case where the amount of
heat is equivalent to the mechanical energy (work) and is measured in identical
units. The equivalence of heat and mechanical energy was determined for the
first time by the German physiologist Julius Robert von Mayer in 1842, and
in 1843 the English physicist James Prescott Joule determined the coefficient
of equivalence, which is

1 cal = 4.184 J = 4.184× 107 erg. (2.6)

By the discovery of equivalence of the amount of heat and work, von Mayer
and Joule laid down the basis of the First Law of Thermodynamics. The
mathematical expression of this law was proposed by the German physicist
and physiologist Hermann Ludwig Ferdinand von Helmholtz in 1847. Thus,
three outstanding scientists: i.e. von Mayer, Joule and von Helmholtz, are
regarded as the discoverers of the First Law of Thermodynamics.

Assume that a closed system, thanks to mechanical and thermal interac-
tions, passes from the initial state 1 into the final state 2. Comprehensively
having studied processes of such a type, and as a result of the generalisation
of numerous experimental data for closed systems (N =const), the First Law
of Thermodynamics can be formulated as follows: As a closed system passes
from the initial state 1 with energy E1 into the final state 2 with energy E2,
the change in energy (E2 −E1) equals the sum of the amount of heat received
as a result of the exchange and the work being carried out; this sum depends
only on these states and does not depend on the mode of passage of the system
from the initial state into the final state (Fig. 2.4).

Hence it follows that the internal energy is a function of state. Thus, it
can be written as

2∫
1

dQ+

2∫
1

dA = E2 − E1. (2.7)

From the first law, the following conclusion is drawn: for closed systems
there exists such a function of state (the internal energy E), single-valuedly
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Fig. 2.5. The work being performed at the circular process

characterizing the state of the system, that its change is a total differential:

2∫
1

dE = E2 − E1. (2.8)

Note that (2.7) is the integral form of the First Law of Thermodynamics,
i.e. the law of conservation of energy for closed systems. By combining (2.7)
and (2.8), the differential form of the First Law of Thermodynamics can be
presented in the form

dA+ dQ = dE, (2.9)

i.e. the change in energy of a closed system at the elementary process equals
the sum of the elementary work being carried out and the amount of heat
received as a result of the exchange.

Note a certain subtlety. Though in (2.9) dA and dQ separately are not
total differentials, their sum dA+ dQ, i.e. the change in energy dE, is a total
differential. This means that E is a function of state, but A and Q are not. We
can say what the internal energy E in the given state of the system is, but we
do not know which part of this energy is mechanical and which part is thermal.
We can only say which part in the change in internal energy in passing from
one state to another accounts for the share of the mechanical work, and which
one for the share of the change in thermal energy (see Sect. 1.9).

There exists one more definition of the First Law of Thermodynamics. If
a system participating in the circular process returns to the starting state, its
internal energy does not change (Fig. 2.5).
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Then, according to (2.7), for the work being carried out we get
∮

dA = −
∮

dQ (2.10)

or ∮
p(V )dV =

∮
dQ. (2.11)

The work being performed numerically equals the cross-hatched area of the
circular process (Fig. 2.5), and the sign of work depends on the direction of
the process.

From First Law of Thermodynamics for circular process (2.10), it follows
that during the process the system receiving a certain amount of heat and
converting it into equivalent work returns to its starting state.

Thus, in the circular process the system performs work only at the expense
of the thermal energy. If dQ=0, from (2.10) it follows that

∮
dA = 0, (2.12)

i.e. without spending thermal energy, work cannot be performed.
For many years, attempts were made to create a machine to carry out

work without expenditure of thermal energy. Such a machine would be called
the perpetual engine (perpetuum mobile) of the first kind. From the above,
the First Law of Thermodynamics can also be formulated as follows: It is
impossible to create a perpetual engine (perpeiuum mobile) of the first kind.

Heat capacity. Among thermodynamic coefficients, the heat capacity occu-
pies a special place. Here we will give only its definition and find the general
expression on the basis of the First Law of Thermodynamics.

The heat capacity numerically equals the amount of heat necessary to
increase the temperature of the substance (the system) by one degree. The
specific (molar) heat capacity numerically equals the amount of heat necessary
to increase the temperature of 1 g (1mole) of substance by 1 ◦.

In practice, the heat capacity is measured under two conditions: at con-
stant volume (V =const), which is the isochoric heat capacity CV ; and at
constant pressure (P =const) which is the isobaric heat capacity CP .

Using the differential form of the First Law of Thermodynamics (2.9), the
amount of heat received by the system can be written as

dQ = dE − dA. (2.13)

If V, T are taken as independent parameters determining the state of the
system, then E=E(V, T ). Then the change in energy is

dE =
(
∂E

∂V

)
T

dV +
(
∂E

∂T

)
V

dT. (2.14)
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If we substitute (2.14) and expression for work (2.1) into (2.13), we get

dQ =
(
∂E

∂T

)
V

dT +
[(

∂E

∂V

)
T

+ P

]
dV. (2.15)

Hence, for the isochoric heat capacity CV we have

CV =
(
∂Q

∂T

)
V

=
(
∂E

∂T

)
V

. (2.16)

At constant pressure P , according to the equation of state V =V (P, T ), vol-
ume V depends only on temperature T and therefore the change in volume
is dV = (∂V /∂T )P dT . Then, according to (2.15), in the condition P =const,
the expression for the amount of heat takes the form

dQ =
(
∂E

∂T

)
V

dT +
[(

∂E

∂V

)
T

+ P

](
∂V

∂T

)
P

dT. (2.17)

Hence, for the isobaric heat capacity CP = (∂Q/∂T )P we can write

CP = CV +
[(

∂E

∂V

)
T

+ P

](
∂V

∂T

)
P

. (2.18)

Here, the term (∂E/∂V )T (∂V /∂T )P determines the change in energy of
the system for a change in temperature by one degree at constant pressure
(P =const), and the term P (∂V /∂T )P corresponds to the amount of heat
spent on performing work to increase the volume for a change in temperature
by one degree at P =const. If energy of the system does not depend on volume,
i.e. (∂E/∂V )T = 0 (an ideal gas), the difference CP −CV = =P (∂V /∂T )P is
determined by the amount of heat spent on performing work.

From (2.16) and (2.18), it follows that to calculate the isochoric heat capac-
ity it is sufficient to know the caloric equation of the state of the system, i.e.
the dependence of the energy E=E(T, V ), and to calculate the isobaric heat
capacity it is necessary to know also the thermal equation of the state of the
system P =P (T, V ).

We now show that the difference of heat capacities CP −CV is determined
only by the thermal equation of the state of the system P =P (V, T ). The
basic thermodynamic relationship dE=T dS − P dV (see Sect. 1.8) can be
presented in the form (

∂E

∂V

)
T

= T

(
∂S

∂V

)
T

− P. (2.19)

In Sect. 2.3 [see (2.62)], we will show that (∂S/∂V )T = (∂P/∂T )V . By
substituting this expression into (2.19), we get(

∂E

∂V

)
T

+ P = T

(
∂P

∂T

)
V

. (2.20)
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With regard to (2.18) and (2.20), CP − CV finally takes the form

CP − CV = T

(
∂P

∂T

)
V

(
∂V

∂T

)
P

. (2.21)

As seen from (2.21), in order to calculate the difference CP −CV it is sufficient
to know the explicit form of the thermal equation of the state of the system
P =P (V, T ). In particular, for an ideal gas, using the equation PV = RT ,
from (2.21) the von Mayer equation follows:3

CP − CV = R, (2.22)

where R=NAk0 =8.31 × 107 erg/(K mol)= 8.31 J/(K mol)=1.92 cal/(K mol)
is the universal gas constant, k0 =1.38 × 10−16 erg/K is the Boltzmann con-
stant and NA = 6.026× 1023 mol−1 is the Avogadro number.

As can be seen, for ideal gases CP > CV . This is explained by the fact
that at P =const, a certain part of the thermal energy being supplied is
expended on performing work in the expansion of the gas. And in the case
of V = const, owing to the absence of expansion, the thermal energy is spent
only on increasing the internal energy and, consequently, the temperature of
the system. Note that inequality CP > CV holds true not only for ideal gases
but also for any macroscopic systems (see Sect. 2.4).

2.2 Second Law of Thermodynamics: Carnot Cycle

In the general form, the formulation of the Second Law of Thermodynamics –
the law of increasing entropy – was given in Sect. 1.7. Still earlier, in Sect. 1.6
the definition of the statistical sense of entropy was given. Inasmuch as entropy
of a system is determined by the number of microstates corresponding to the
pre-assigned macrostate, or in other words, is determined as the logarithm of
the statistical weight of the pre-assigned macrostate, it characterises the state
of a system and is a function of state.

We introduce the definition of the Second Law of Thermodynamics as
proposed by Clausius in 1865: Possible internal processes of an isolated sys-
tem not in thermodynamic equilibrium ought to proceed in the direction of
the increase in entropy; when reaching the thermodynamic equilibrium, these
processes cease and entropy takes on a maximum value (Fig. 1.8).

This is the statistically substantiated general form of the Second Law of
Thermodynamics. However, it should be noted that the second law, as also the
first one, is an experimental law based on generalisation of test data. At the
beginning of the nineteenth century, with the aim of increasing the efficiency
of heat machines, processes of heat transfer into the mechanical work and

3 Just on the basis of this equation, in 1842 von Mayer determined the mechanical
equivalent of heat.
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vice versa were intensively studied. It was established that the processes of
transfer of the amount of heat → work (the mechanical energy) and work
→ the amount of heat are not symmetric. It was experimentally proved that
all mechanical energy (work) can be converted into an equivalent amount of
heat, but it is impossible to completely convert all heat into an equivalent
effective work:

ΔA = ΔQ−−−−−−−−→; ΔQ > ΔA−−−−−−−−→. (2.23)

Hence, it follows that it is impossible to create a heat machine that converts
all heat into mechanical energy (work) with the efficiency equal to unity, i.e.
it is impossible to create a perpetual engine of the second kind.

At the same time, it became known that heat spontaneously (without
performing work) cannot transfer from a cold body to a hot one. As a result of
a generalisation of such experimental conclusions, two different but equivalent
formulations of the Second Law of Thermodynamics arose:

Clausius postulate (1850). It is impossible to have a process the only final
result of which is the transfer of heat from a low-temperature body to a
high-temperature one.

Kelvin postulate (1852). It is impossible to have a circular process the only
final result of which is the conversion into work of all heat received from the
system with a pre-assigned temperature.

Indeed, from the Kelvin postulate it follows that it is impossible to create
a machine, working on the basis of a circular cycle, in which heat received
from the only source completely converts into work.

Hence, it is seen that it is impossible to create a machine (the perpetual
engine of the second kind) with the efficiency

η =
ΔA
ΔQ

, (2.24)

equal to unity; here, ΔQ is the amount of the expended heat, and ΔA is
the performed work. The question arises whether it is impossible to create a
machine with η=1, and whether it is only possible to create a machine with
the maximum efficiency η= ηmax < 1. It was established that the machine
with the maximum efficiency ought to work in a reversible circular cycle.
Such a reversible circular cycle was proposed for the first time in 1824 by the
French engineer Sadi Carnot.

The Carnot cycle represents a reversible circular process consisting of two
isothermal and two adiabatic processes. At first, a working body is brought
into contact with a heater with temperature T2 and allowed to isothermally
expand (Fig. 2.6a). Thus, the system receives an amount of heat ΔQ2 from
the heater. Thereupon, the system parts from the heater and adiabatically
expands (Fig. 2.6b). Thereafter, the working body is brought into contact
with the cooler with temperature T1 and, being isothermally compressed,
gives up the amount of heat ΔQ1 to the cooler (Fig. 2.6c). Then, the system
parts from the cooler (Fig. 2.6d) and, being adiabatically compressed, returns
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Fig. 2.6. The scheme of the Carnot Cycle
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Fig. 2.8. The Carnot Cycle on (P, V ) plane

to the starting position (Fig. 2.6e). As a result, the working body performs a
reversible circular process.

Processes comprising the whole Carnot cycle are graphically shown on
(T, S) and (P, V ) planes in Figs. 2.7 and 2.8, respectively. In these figures,
processes 1 → 2 and 3 → 4 are isothermal, and 2 → 3 and 4 → 1 are
adiabatic.

Inasmuch as in the course of one Carnot cycle work ΔA= |ΔQ2| − |ΔQ1|
is performed, the efficiency of the heat machine, working on the basis of this
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cycle, equals

η =
|ΔQ2| − |ΔQ1|

|ΔQ2| (2.25)

And we now prove the known theorem, characteristic for the Carnot cycle.
To do this, using the formula for work (2.1), write down the First Law of
Thermodynamics (2.9) in the form

dE = dQ− P dV. (2.26)

Once more, introduce the basic thermodynamic relationship (1.159), combin-
ing the First and Second Laws of Thermodynamics:

dE = T dS − P dV. (2.27)

From a comparison of the two latter expressions, the relation between the
amount of heat and the change in entropy, i.e. the Clausius equality, can
be found:

dQ = T dS. (2.28)

This equality is true only for reversible processes and relates the first two
laws of thermodynamics. Hence, it is seen that when transferring the amount
of heat dQ to the system with temperature T , its entropy increases by the
magnitude

dS =
dQ
T
. (2.29)

Inasmuch as entropy is a function of state, for a reversible circular process
∮

dS =
∮

dQ
T

= 0 (2.30)

Hence, it follows that though dQ is not a total differential, dQ/T is a total
differential.

If in the system an irreversible process is possible, the growth of entropy
is associated not only with the delivered amount of heat dQ, but also at the
expense of irreversibility of possible processes. In this case4

dS >
dQ
T
. (2.31)

This inequality is called the Clausius inequality.
We return once more to the Carnot cycle. Applying expression (2.28) to

isothermal processes 1 → 2 and 3 → 4, for the amount of heat received by
the system from the heater, we can write down |ΔQ2| =T2 |ΔS2|, and for the
amount of heat given up to the cooler, we have |ΔQ1| =T1 |ΔS1|. Since the
Carnot cycle is a circular reversible cycle, i.e. the working body returns to
4 For instance, in the system, along with receiving heat, there occur irreversible

processes of diffusion or heat transfer.
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the starting state, the change in its entropy ΔS= ΔS2 + ΔS1 = 0. Therefore
|ΔS2| = |ΔS1|. Taking this into account in definition (2.25), the efficiency of
the Carnot cycle takes the form

η =
T2 − T1

T2
. (2.32)

Hence stems the known Carnot theorem: The efficiency of the Carnot machine
does not depend on the nature of a working body and is determined only by
temperature of a heater and a cooler. It is seen that η=1 is possible only in
the case when the temperature of a cooler T1 =0. But in Sect. 2.6, we see
from the Third Law of Thermodynamics that production of the absolute zero
of temperature is impossible. Consequently, it is impossible to construct a
machine with η= 1, in principle.

While for the First Law of Thermodynamics – the law about energy –
there exists only one formulation, for the Second Law of Thermodynamics,
i.e. the law about entropy, there exist several equivalent definitions. Further
we will show that each of these definitions stems from the other, or, if one of
them is wrong, the others are also wrong.

1. Note that the Clausius postulate follows from the law of increasing
entropy. Indeed, in Sect. 1.8 we showed that energy (the amount of
heat) can spontaneously transfer only from a high-temperature body to a
low-temperature body; otherwise, entropy would decrease.

2. We prove that the Clausius and Kelvin postulates are equivalent. To do
this, it is sufficient to show that if one of the postulates is wrong, the other
is violated, too.

At first assume that the Clausius postulate is wrong. This means that a spec-
ified amount of heat Q1 can spontaneously transfer from the system B1 with
temperature T1 to the system B2 with temperature T2 > T1 (Fig. 2.9).

Use the system B2 in the capacity of a heater in the Carnot cycle. The
working body takes away from B2 the same amount of heat – Q1, a part of
which the Carnot machine converts into work Q1 − Q2 =A, transferring at
the same time the amount of heat Q2 < Q1 to the system B1. As a result,

B2

B1

T1

K

Q2

Q1

Q1

Q1 Q2 A=−

T2 > T1

Fig. 2.9. The illustration of the equivalency of the Clausius and Kelvin hypotheses
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Fig. 2.11. A hypothetical circular process

the state of system B2 does not change, and the system B1 loses the amount
of heat Q1 −Q2 =A, i.e. at the expense of heat received from the system B2,
work Q1 −Q2 =A is performed. Thus, a process takes place, the only result
of which is the performance of work A at the expense of heat solely of the
system B1. It is evident that this conclusion contradicts the Kelvin postulate.

We now show that if the Kelvin postulate is wrong, the Clausius postulate
is wrong, too. Assume that the Kelvin postulate is wrong, i.e. the amount of
heat ΔQ received from the system with temperature T1 can be completely
converted into work: ΔQ=ΔA (Fig. 2.10). All the work received ΔA by some
means (for instance, by friction) can be completely converted into heat and
transferred to a system, including the system B2, with temperature T2 >
T1. Hence it follows that it is possible to have a process, the only result
of which is the transfer of heat from the low-temperature body B1 to the
high-temperature body B2, which contradicts the Clausius postulate.

From the Second Law of Thermodynamics, there follows one more impor-
tant result: entropy is a single-valued function of the state of the system, and,
consequently, different adiabats cannot intersect. To prove this conclusion,
assume the reverse, i.e entropy is not a single-valued function of state and
different adiabats can intersect. If this is right, we can create a circular pro-
cess, shown in Fig. 2.11. This circular process consists of three processes.
In the process of the isothermal expansion 1–2 of the system, a certain
amount of heat ΔQ received from the thermostat is completely converted
into equivalent work.

Thereupon, as a result of two adiabatic processes 2–3 and 3–1, the system
returns to the starting state. Such a circular process is possible if adiabats
S1 and S2 intersect in state 3. Hence, it follows that two different values
of entropy S1 and S2 correspond to the same state 3. Thus, as a result of
such a hypothetical process, the amount of heat received from the thermostat
completely gets converted into work, and this means there is a possibility
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of creating the perpetual engine of the second kind, which contradicts the
Second Law of Thermodynamics. Consequently, our supposition is wrong, i.e.
different adiabats cannot intersect, and entropy is a single-valued function
of state.

So, the Second Law of Thermodynamics – a law about entropy – in the
general form can be formulated as follows: Entropy is a single-valued function
of the state of a system; as a result of irreversible processes proceeding in an
isolated non-equilibrium system, entropy of the system increases and reaches
a maximum in the equilibrium state.

Note that this definition is the most general formulation of the Second
Law of Thermodynamics, since it follows the Clausius postulate. On the other
hand, the Kelvin postulate is equivalent to the Clausius postulate, from which
the impossibility of creating the perpetual engine of the second kind stems.

2.3 Thermodynamic Functions of Closed Systems:
Method of Thermodynamic Potentials

The basic task of thermodynamics and statistical physics is the finding of
physical quantities characterizing a macroscopic state of a system and deter-
mination of the relation between them (e.g. the equation of state). In thermo-
dynamics this task is solved through experimental methods and in statistical
physics through analytical methods. However, the determination of quantities
possessing a physical sense is not always possible directly from experiments
or theoretical computations. Therefore, auxiliary, so-called thermodynamic
functions are introduced. These functions are also called thermodynamic
potentials. Knowing their explicit form, thermodynamic parameters and gen-
eral relationships between them can be determined. Such a method is called
the method of thermodynamic potentials.

Here we will consider closed systems (N = const). Chapter 3 is devoted to
open systems, i.e. systems with a variable number of particles (N �= const).

From the preceding chapter (Sects. 1.3 and 1.5), it is known that to
determine the mean value of a physical quantity L for classical systems it
is necessary to calculate the integral

L̄ =
∫
L(q, p)ρ(q, p)dq dp, (2.33)

and for quantum systems to do the sum

L̄ =
∑

n

WnLnn. (2.34)

To solve this problem from classical mechanics, it is necessary to know the
explicit form of the function L(q, p) as well as the distribution function ρ(q, p),
and from quantum mechanics it is essential to know the diagonal matrix
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elements Lnn and diagonal elements of the statistical matrix Wn ≡Wnn . Inas-
much as for any physical parameter it is not possible to find the explicit form
of L(q, p) and Lnn , it is not possible to immediately calculate L̄. Therefore,
we are enforced to use the method of thermodynamic potentials.

For closed systems, there exist four thermodynamic functions – potentials.
We introduce them below.

1. Internal energy. Recall that the expression for the change in the internal
energy of a system according to the First Law of Thermodynamics has
the appearance

dE = dQ+ dA. (2.35)

With regard to the Second Law

dQ = T dS, (2.36)

formula (2.35) acquires the form

dE = T dS − P dV, (2.37)

where dA= − P dV .
Hence it follows that

dE = dQ− P dV. (2.38)

As can be seen, for isochoric (V = const) processes

dE = dQ (2.39)

i.e. in isochoric processes the change in the internal energy of a system equals
the amount of heat received by the system as a result of the exchange. Since
the internal energy is a function of state, i.e. dE is a total differential, from
(2.36) it follows that

T =
(
∂E

∂S

)
V

; P = −
(
∂E

∂V

)
S

. (2.40)

From (2.36), it is seen that V and S are independent variables for the function
of the internal energy:

E = E(V, S). (2.41)

Knowing the explicit form of this function, on the basis of (2.40) we can
calculate the temperature and pressure. If from definition (2.40) we take the
derivative of T with respect to V and of P with respect to S, we get

(
∂T

∂V

)
S

=
∂2E

∂S∂V
;
(
∂P

∂S

)
V

= − ∂2E

∂V ∂S
. (2.42)
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Hence follows the first thermodynamic relationship
(
∂T

∂V

)
S

= −
(
∂P

∂S

)
V

. (2.43)

Inasmuch as relationship (2.43) is obtained independently of the explicit form
of the function E(V, S), it bears the general character and relates two prop-
erties of the system – the change in temperature at the adiabatic expansion
to the change in pressure at the isochoric receiving of heat.

From (2.39) follows the definition of the isochoric heat capacity:

CV =
(
∂E

∂T

)
V

. (2.44)

The internal energy as a function of variables S and V can be called the
thermodynamic potential.

2. Enthalpy or heat function. As is seen from (2.39), in isochoric (V = const)
processes the amount of heat supplied to the system equals the increase in
the internal energy. It asks, if the process occurs isobarically (P = const),
to the change in which function does the amount of heat delivered to the
system be equal. To elucidate this question, write down relationship (2.38)
at P = const in the form

d(E + PV ) = dQ (2.45)

and introduce the notation

W = E + PV. (2.46)

From relationship (2.45), it follows that for isobaric processes

dW = dQ. (2.47)

The function W is called enthalpy or the heat function5. of the system. Thus,
in isobaric processes the heat delivered equals the increase in enthalpy. If on
the right-hand side of thermodynamic relationship (2.37) we take into account
the identity P dV + V dP = d(PV ), for the change in enthalpy we get

dW = T dS + V dP. (2.48)

Hence it follows that entropy S and pressure P are independent variables for
enthalpy:

W = W (S, P ). (2.49)

Knowing the explicit form of the function W (S, P ), on the basis of (2.48) the
temperature and volume of the system can be determined:
5 This function is also called the heat content.
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T =
(
∂W

∂S

)
P

; V =
(
∂W

∂P

)
S

. (2.50)

In definitions (2.50) of T , we take the derivative with respect to pressure and
for V with respect to entropy. Then we get

(
∂T

∂P

)
S

=
∂2W

∂P∂S
;
(
∂V

∂S

)
P

=
∂2W

∂S∂P
. (2.51)

Hence follows the second thermodynamic relationship:
(
∂T

∂P

)
S

=
(
∂V

∂S

)
P

, (2.52)

which relates two properties of the system – the change in temperature T to
the change in pressure in adiabatic processes, and the change in volume V at
the delivery of a certain amount of heat in isobaric processes.

From (2.47) stems the definition of the isobaric heat capacity:

CP =
(
∂W

∂T

)
P

. (2.53)

Consequently, in isobaric processes the heat capacity is determined by the
change in enthalpy of the system. In this case (P = const), W plays the role
of the internal energy.

3. Free energy or von Helmholtz potential. The above-indicated thermody-
namic functions – the internal energy and enthalpy – are inconvenient
from the practical point of view, since one of their arguments – entropy –
is not measurable by experiment. Therefore, it is necessary to introduce
a characteristic function of the system, independent parameters of which
are P,T,V. One of such functions is the free energy.

On the basis of (2.35) and (2.36), the basic thermodynamic relationship can
be presented in the form

dE = T dS + dA. (2.54)

For isothermal processes (T =const), (2.54) takes the form

d(E − TS) = dA. (2.55)

Denote
F = E − TS, (2.56)

then we get
dF = dA. (2.57)

The function F is called the free energy or the von Helmholtz potential. From
(2.57) it follows that in isothermal processes (T =const) the work being
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performed equals the change in the free energy, i.e. the free energy is a part of
the internal energy, which can be converted into work. Then TS can be called
the bound energy. In order to find a differential of the free energy on the right-
hand side of (2.37), we take into account the identity d(TS )=T dS + S dT .
Then we get

dF = −P dV − S dT. (2.58)

It is seen that V and T are independent variables of the free energy F :

F = F (V, T ). (2.59)

Knowing the explicit form of this function with the aid of the expres-
sion, stemming from (2.58) the pressure and entropy of the system can be
computed:

P = −
(
∂F

∂V

)
T

; S = −
(
∂F

∂T

)
V

. (2.60)

In (2.60), the first expression represents the thermal equation of state in the
general form P =P (V, T ).

In definitions (2.60), taking the derivative of P with respect to T and of
S with respect to V , we get

(
∂P

∂T

)
V

= − ∂2F

∂T∂V
;
(
∂S

∂V

)
T

= − ∂2F

∂V ∂T
. (2.61)

Hence stems the third thermodynamic relationship
(
∂P

∂T

)
V

=
(
∂S

∂V

)
T

, (2.62)

relating two properties of the system. In (2.62), the left-hand side represents
the change in pressure at an isochoric change in temperature, and the right-
hand side the change in entropy at an isothermal change in volume.

4. Gibbs thermodynamic potential. Among the above-considered thermody-
namic functions, the function in which the pressure P and temperature T
are independents is absent. In order to find such a function, in (2.58) take
into account the identity P dV + V dP = d(PV ). Then we get

d(F + PV ) = −S dT + V dP. (2.63)

Denoting
Φ = F + PV = E − TS + PV = W − TS, (2.64)

we get
dΦ = −S dT + V dP. (2.65)
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The function of which T and P are independent variables,

Φ = Φ(T, P ) (2.66)

is called the Gibbs thermodynamic potential.
Knowing the explicit form of this function, entropy and volume can be

found:
S = −

(
∂Φ
∂T

)
P

; V =
(
∂Φ
∂P

)
T

. (2.67)

In definitions (2.67), the second expression represents the thermal equation of
state in the general form: V =V (P, T ). If we take in (2.67) the derivative of
S with respect to P and of V with respect to T , we get:(

∂S

∂P

)
T

= − ∂2Φ
∂P∂T

;
(
∂V

∂T

)
P

=
∂2Φ
∂T∂P

. (2.68)

Hence stems the fourth thermodynamic relationship:(
∂S

∂P

)
T

= −
(
∂V

∂T

)
P

. (2.69)

It should be noticed that the above-introduced thermodynamic relationships
(2.43), (2.52), (2.62) and (2.69) are obtained independently of the explicit
form of thermodynamic functions and therefore bear the general thermo-
dynamic character. These relationships, and also definitions (2.40), (2.50),
(2.60) and (2.67), constitute the basis of the Gibbs method of thermodynamic
potentials.

In conclusion, we note that the free energy F and the Gibbs free potential
Φ among thermodynamic functions occupy a special place for two reasons.

1. The internal energy and enthalpy are expressed by these potentials. From
the relationship E=F +TS and (2.60), it follows that the internal energy
is expressed by the free energy F :

E = F − T

(
∂F

∂T

)
V

= −T 2

(
∂

∂T

F

T

)
V

. (2.70)

This equation bears the name the Gibbs–von Helmholtz equation.
From the relationship W = Φ + TS and definition (2.67), it follows that

enthalpy is expressed by the Gibbs potential Φ:

W = Φ − T

(
∂Φ
∂T

)
P

= −T 2

(
∂

∂T

Φ
T

)
P

. (2.71)

2. To elucidate the second reason for the importance of the free energy F
and the Gibbs free potential Φ, rewrite relationship (2.37) for irreversible
processes:

dE
dt

+ P
dV
dt

< T
dS
dt
. (2.72)
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If a process proceeds at constant volume (V =const) and constant tempera-
ture (T =const), from (2.72) it follows that

d
dt

(E − TS) < 0;
(

dF
dt

)
V,T

< 0. (2.73)

Consequently, irreversible processes at constant T and V ought to proceed in
the direction of the decrease in the free energy of the system. Thus, in the
equilibrium state the free energy ought to take on the minimum value:

(F )T,V ⇒ Fmin. (2.74)

If a process proceeds at constant pressure (P =const) and temperature
(T = const), from (2.72) we get

d
dt

(E + PV − TS) < 0;
(

dΦ
dt

)
P,T

< 0. (2.75)

Consequently, irreversible processes at constant P and T ought to proceed in
the direction of the decrease in the Gibbs potential. In the equilibrium state,
the Gibbs potential ought to take on the minimum value:

(Φ)T,P ⇒ Φmin. (2.76)

At the end of this section, we once more recall in the compact form the
thermodynamic functions and thermodynamic relationships:

Internal energy
dE = T dS − P dV.

Enthalpy
dW = T dS + V dP.

Free energy
F = E − TS; dF = −P dV − S dT. (2.77)

Gibbs thermodynamic potential

Φ = W − TS; dΦ = −S dT + V dP.

Hence, four thermodynamic relationships follow:
(
∂T

∂V

)
S

= −
(
∂P

∂S

)
V

;
(
∂T

∂P

)
S

=
(
∂V

∂S

)
P

;

(
∂P

∂T

)
V

=
(
∂S

∂V

)
T

;
(
∂V

∂T

)
P

= −
(
∂S

∂P

)
T

.

(2.78)
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2.4 Thermodynamic Coefficients
and General Relationships Between Them

Thermodynamic coefficients are quantities that determine how changes in
some parameters effect changes in other parameters that characterize the
macroscopic state of a system and that can be measured on test.

The most important thermodynamic coefficient is the heat capacity of a
system.

The heat capacity numerically equals the amount of heat (energy) neces-
sary to raise the temperature of a system by one degree. From the definition
of the heat capacity (2.16) and from the definition of heat (2.28), it follows
that the heat capacity is a measure of the change in entropy of a system when
its temperature changes by one degree.

The heat capacity can be determined at two conditions: at constant volume
(isochoric) and at constant pressure (isobaric). Then, according to (2.28), we
get for the isochoric heat capacity

CV = T (∂S/∂T )V , (2.79)

and for the isobaric heat capacity

CP = T (∂S/∂T )P . (2.80)

We also introduce definitions of the other thermodynamic coefficients:
Isobaric coefficient of thermal expansion is

αP = 1/V (∂V /∂T )P ; (2.81)

The coefficient characterizing the relative change in temperature at an adia-
batic expansion or compression is

αS = −1/T (∂T/∂V )S ; (2.82)

The isochoric thermal coefficient of pressure is

βV = 1/P (∂P/∂T )V ; (2.83)

The coefficient characterizing the relative change in temperature of a system
at an adiabatic change in pressure is

βS = 1/T (∂T/∂P )S ; (2.84)

The coefficient of isothermal compression is

γT = −1/V (∂V /∂P )T ; (2.85)
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The coefficient of adiabatic compression is

γS = −1/V (∂V /∂P )S . (2.86)

The reverse coefficients of compression

γ−1
T = BT = −V (∂P/∂V )T and γ−1

S = BS = −V (∂P/∂V )S ,

are respectively called the isothermal and the adiabatic bulk modulus or the
statistical modulus.

The physical meaning of the above-indicated coefficients is clear from their
definitions. Each of them can be measured by experiments and characterises
a specified property of the system.

Thermodynamic coefficients, as well as macroscopic parameters, can be
calculated on the basis of Gibbs thermodynamic potentials. According to rela-
tionships (2.60) and (2.67), heat capacities CV and CP are expressed by the
free energy and Gibbs potential as follows:

CV = −T (∂2F
/
∂T 2

)
V

; CP = −T (∂2Φ
/
∂T 2

)
P
. (2.87)

The isobaric coefficient of thermal expansion is, according to (2.68) and (2.81)

αP = 1/V
(
∂2Φ

/
∂T∂P

)
; (2.88)

The isochoric thermal coefficient of pressure is, according to (2.61) and (2.83)

βV = 1/P
(
∂2F

/
∂T∂V

)
. (2.89)

The coefficient of isothermal compression is, according (2.67) and (2.85)

γT = −1/V
(
∂2Φ

/
∂P 2

)
T
. (2.90)

If the explicit forms of functions F =F (V, T ) and Φ =Φ(P, T ) are known, we
can calculate the above-introduced thermodynamic coefficients and compare
the obtained results with experimental facts. The finding of the explicit form of
functions F =F (V, T ) and Φ = Φ(P, T ) is the task of statistical physics. Later
(see Chaps. 5–7) we will find the explicit forms of these functions for differ-
ent systems. Here, we will determine general relationships between different
thermodynamic coefficients independently of the explicit forms of functions F
and Φ.

To do this, we introduce every possible derivative of thermodynamic quan-
tities that determine different thermodynamic coefficients. It is known that
the state of any macroscopic system is determined by the four thermody-
namic parameters S,V,P,T. We isolate, in turn, one of them and, having
the three others constant, write every possible derivative of thermodynamic
parameters.
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S©, V, P T,

(
∂V

∂P

)
T

,

(
∂P

∂T

)
V

,

(
∂T

∂V

)
P

, (2.91)

S, V©, P, T

(
∂S

∂P

)
T

,

(
∂P

∂T

)
S

,

(
∂T

∂S

)
P

, (2.92)

S, V, P©, T

(
∂S

∂V

)
T

,

(
∂V

∂T

)
S

,

(
∂T

∂S

)
V

, (2.93)

S, V, P, T©
(
∂S

∂V

)
P

,

(
∂V

∂P

)
S

,

(
∂P

∂S

)
V

. (2.94)

Note that a derivative in each line is obtained from the preceding one by
clockwise rotation.

The above-presented tableau contains 12 partial derivatives of thermo-
dynamic parameters. Only eight of them, according to relationships (2.79)–
(2.86), determine thermodynamic coefficients that possess a physical sense
and can be measured by experiment. The remaining four partial deriva-
tives (enclosed in the dashed frame), according to thermodynamic relation-
ship (2.78), are related to one of the eight above-indicated thermodynamic
coefficients.

In order to find the general relationships between thermodynamic coef-
ficients (2.79)–(2.86), i.e. between partial derivatives (2.91)–(2.94), we make
use of the method of the Jacobian.

Having multiplied derivatives of each line (2.91)–(2.94) and using proper-
ties of the Jacobian (see Appendix D), we get the following four thermody-
namic relationships:

(
∂V

∂P

)
T

·
(
∂P

∂T

)
V

·
(
∂T

∂V

)
P

= −1, (2.95)

(
∂S

∂P

)
T

·
(
∂P

∂T

)
S

·
(
∂T

∂S

)
P

= −1, (2.96)

(
∂S

∂V

)
T

·
(
∂V

∂T

)
S

·
(
∂T

∂S

)
V

= −1, (2.97)

(
∂S

∂V

)
P

·
(
∂V

∂P

)
S

·
(
∂P

∂S

)
V

= −1. (2.98)

Taking into account properties of the Jacobian (see Appendix D), the ther-
modynamic relationships (2.43), (2.52), (2.62) and (2.69) can be presented in
the form
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(
∂T

∂V

)
S

= −
(
∂P

∂S

)
V

or
∂(T, S)
∂(V, S)

· ∂(V, S)
∂(P, V )

= 1, (2.99)

(
∂T

∂P

)
S

=
(
∂V

∂S

)
P

or
∂(T, S)
∂(P, S)

· ∂(P, S)
∂(P, V )

= 1, (2.100)

(
∂P

∂T

)
V

=
(
∂S

∂V

)
T

or
∂(P, V )
∂(T, V )

· ∂(T, V )
∂(T, S)

= 1, (2.101)

(
∂S

∂P

)
T

= −
(
∂V

∂T

)
P

or
∂(T, S)
∂(P, T )

· ∂(P, T )
∂(P, V )

= 1. (2.102)

The above-indicated equalities derive from the fact that each thermodynamic
function is a function of state, i.e. the change in each of them is a total
differential.

Having made use of the property of the Jacobian (see Appendix D), each
of the conditions (2.99)–(2.102) can be presented in the general form

∂(T, S)
∂(P, V )

= 1. (2.103)

Thus, (2.103) is the general condition of the fact that all thermodynamic
functions are functions of state.

Taking into account relationships (2.99)–(2.102) in (2.95)–(2.98), we get(
∂V

∂P

)
T

·
(
∂P

∂T

)
V

·
(
∂T

∂V

)
P

= −1, (2.104)

(
∂V

∂T

)
P

·
(
∂P

∂T

)
S

·
(
∂T

∂S

)
P

= 1, (2.105)

(
∂P

∂T

)
V

·
(
∂V

∂T

)
S

·
(
∂T

∂S

)
V

= −1, (2.106)

(
∂P

∂T

)
S

·
(
∂V

∂P

)
S

·
(
∂T

∂V

)
S

= 1. (2.107)

Each of the derivates entering into these equations determines one of the eight
thermodynamic coefficients being measured. Therefore, taking into account
definitions (2.79)–(2.86), from (2.104) to (2.107) the general relationships
between thermodynamic coefficients can be found:

αP

βV γT
= P, (2.108)

CPβS

αP
= V, (2.109)

CV αS

βV
= P, (2.110)
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βS

αsγs
= V. (2.111)

From (2.108) and (2.110) and also from (2.109) and (2.111) we get general
relationships containing only thermodynamic coefficients:

αP

CV γTαS
= 1;

αP

CP γSαS
= 1. (2.112)

Using the relationships (2.108)–(2.112), one isobaric αP and three adiabatic
αS , βS , γS coefficients can be expressed by the remaining βV , γT , CV and CP .
As a result, we get

αP = PβV γT ; βS = V
αP

CP
= V P

βV γT

CP
; (2.113)

αS = P
βV

CV
; γS =

CV

CP
γT . (2.114)

In order to find the relation between isobaric and isochoric heat capacities,
we make use of the property of the Jacobian (Appendix D):

CP = T

(
∂S

∂T

)
P

= T
∂(S, P )
∂(T, P )

= T
∂(S, P )
∂(T, V )

∂(T, V )
∂(T, P )

= T

(
∂V

∂P

)
T

∂(S, P )
∂(T, V )

.

(2.115)
If in (2.115) we take into account the definition of the Jacobian (see
Appendix D)

∂(S, P )
∂(T, V )

=
(
∂S

∂T

)
V

(
∂P

∂V

)
T

−
(
∂S

∂V

)
T

(
∂P

∂T

)
V

(2.116)

and use (2.101), we get

CP − CV = −T
(
∂V

∂P

)
T

(
∂P

∂T

)2

V

= TV P 2γTβ
2
V . (2.117)

Having rewritten relationship (2.104) in the form
(
∂V

∂P

)
T

(
∂P

∂T

)
V

= −
(
∂V

∂T

)
P

, (2.118)

and substituted it into (2.117), we get

CP − CV = T

(
∂V

∂T

)
P

(
∂P

∂T

)
V

= TV PαPβV . (2.119)

Rewrite relationship (2.104) in the form
(
∂P

∂T

)
V

= −
(
∂V

∂T

)
P

(
∂P

∂V

)
T

. (2.120)
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Take into account (2.117), and for the difference CP − CV we get one more
expression

CP − CV = −T
(
∂P

∂V

)
T

(
∂V

∂T

)2

P

=
TV α2

P

γT
. (2.121)

Note that expressions (2.117), (2.119) and (2.121) for the difference CP −CV ,
naturally, are equivalent.

In conclusion, we briefly analyse the obtained general results.

1. According to the thermodynamic inequality (∂V /∂P )T < 0 (see Sect. 2.5),
from (2.117) it follows that CP > CV . This result is explained by the fact
that at isobaric conditions (P = const) with the raise of temperature by
one degree volume ought to increase in order that the pressure remains
constant. The amount of heat being received is expended on the raising
of the temperature and also on performing work to increase volume.

2. From the inequality CV < CP , according to (2.114), it follows that
γS < γT , i.e. at adiabatic conditions (S= const) a system is compressed
with more difficulty than at isothermal (T = const) conditions, since in
adiabatic compression the system is heated and, naturally, is compressed
with more difficulty.
Then the inequality for the adiabatic and the isothermal bulk modulus
can be written as

BS =
CP

CV
BT ; BS > BT . (2.122)

3. The relationships (2.108)–(2.112) between thermodynamic coefficients do
not depend on the explicit form of thermodynamic functions and therefore
bear the general character. Knowing one or several of them, the rest can
be found.

4. From (2.113) and (2.114), it is seen that coefficients αS and βS , charac-
terizing the change in temperature at adiabatic conditions, are inversely
proportional to heat capacities CV and CP , which is physically clear.

5. Finally, note the most important obtained result. From relationships
(2.113), (2.114) and (2.117), it follows that knowing CV and the thermal
equation of state P =P (V, T ), all thermodynamic coefficients of a closed
system can be calculated, because in order to find coefficients βV , γT and
the difference CP − CV , it is sufficient to know the thermal equation of
state P =P (V, T ).

In order to calculate the isochoric heat capacity CV = (∂E/∂T )V , it is neces-
sary to know the caloric equation of state E=E(V, T ). And the dependence
of the internal energy on temperature E=E(T, V ) is determined by the struc-
ture as well as by the nature of the motion and interaction of particles forming
the system. For this reason, the heat capacity CV occupies a special place
among all thermodynamic coefficients.

Thus, we come to the most important conclusion: In order to calculate
all thermodynamic coefficients measured on test, it is sufficient to know only
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the explicit form of thermal and caloric equations of states P =P (T, V ) and
E=E(T, V ), respectively.

In order to find these equations, as it follows from (2.54) and (2.68), it is
necessary to know the explicit form of only the function of the free energy
F =F (V, T )

P = −
(
∂F

∂V

)
T

; E = F − T

(
∂F

∂T

)
V

. (2.123)

General conclusion: In order to construct the theoretical thermodynamics of
a closed system, i.e. to find thermal and caloric equations of state, and also
to calculate all thermodynamic coefficients, it is sufficient to know only one
function – the free energy F =F (V, T ).

Finding the explicit form of this function is the basic task of statistical
physics. This question in statistical physics is solved on the basis of the Gibbs
method (see Sect. 4.3).

2.5 Thermodynamic Inequalities:
Stability of Equilibrium State of Homogeneous Systems

The condition of homogeneous closed macroscopic systems found in thermo-
dynamic equilibrium was considered in Sect. 1.8 on the basis of the law
of increasing entropy. From the necessary condition of maximum entropy
S=Smax, it follows that temperature and pressure ought to be identical at
all points of the system: T = const, P =const.

The question arises as to what conditions thermodynamic parameters and
their derivatives ought to satisfy in order that the equilibrium state be steady,
i.e. so that continually arising small fluctuations cannot bring the system out
of the equilibrium state. In order to answer the posed question, we make use
of the condition of the minimum of the Gibbs potential Φ(T, P ) ⇒ Φmin (see
Sect. 2.3) in the equilibrium state.

According to the property of the thermodynamic potential, in the steady
state at pre-assigned values of independent variables T and P , the Gibbs
potential Φ(T = const, P =const) in reference to other variables ought to be
minimum.

Consider a system in a thermostat. Let temperature and pressure of
the thermostat be T0 and P0. Inasmuch as the system is found in equi-
librium with the thermostat, its temperature and pressure ought to be the
same: T =T0, P =P0. As the other variables of the system we take entropy
S and volume V , and, naturally, its energy depends on these variables:
E=E(V, S). Then, the Gibbs thermodynamic potential can be written down
in the following form:

Φ = E(V, S) + P0V − T0S. (2.124)
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As can be seen, Φ depends on variables V and S at constant temperature
and pressure: ΦP0,T0 = Φ(V, S). Consider the condition of the minimum of a
function Φ =Φ(V, S) of two variables.

The condition of the extremum of the function Φ is obtained by equating
the first partial derivative with respect to variables V and S to zero:(

∂Φ
∂S

)
V

=
(
∂E

∂S

)
V

− T0 = 0, (2.125)

(
∂Φ
∂V

)
S

=
(
∂E

∂V

)
S

+ P0 = 0. (2.126)

If we take into account that (∂E/∂S)V =T and (∂E/∂V )S =−P , from (2.125)
and (2.126) we get the known condition of the equilibrium: T =T0 and P =P0.

In order that an extremum of a function of two variables would be the
minimum, it is necessary that its second partial derivative with respect to any
of the variables (for instance, S)(

∂2Φ
∂S2

)
V

=
(
∂2E

∂S2

)
V

> 0, (2.127)

and also the determinant, composed of second derivatives∣∣∣∣∣∣∣∣∣

(
∂2E

∂S2

)
V

∂2E

∂V ∂S

∂2E

∂S∂V

(
∂2E

∂V 2

)
S

∣∣∣∣∣∣∣∣∣
> 0 (2.128)

would be positive.
Inequalities (2.127) and (2.128) are sufficient conditions of a minimum of

the Gibbs thermodynamic potential Φ.
We rewrite condition (2.127) in the form(

∂2E

∂S2

)
V

=
∂

∂S

(
∂E

∂S

)
V

=
(
∂T

∂S

)
V

=
T

CV
> 0. (2.129)

Inasmuch as T > 0, we get the first thermodynamic inequality

CV > 0, (2.130)

determining stability of the equilibrium state of a system. Since CP > CV

from (2.130), it follows that CP > 0.
Now the second condition of the minimum of the function Φ (2.128) can

be presented in the following form:∣∣∣∣∣∣∣∣∣

∂

∂S

(
∂E

∂S

)
V

∂

∂V

(
∂E

∂S

)
V

∂

∂S

(
∂E

∂V

)
S

∂

∂V

(
∂E

∂V

)
S

∣∣∣∣∣∣∣∣∣
= −

∣∣∣∣∣∣∣∣∣

(
∂T

∂S

)
V

(
∂T

∂V

)
S(

∂P

∂S

)
V

(
∂P

∂V

)
S

∣∣∣∣∣∣∣∣∣
> 0.

(2.131)



2.5 Thermodynamic Inequalities: Stability of Equilibrium State 71

Having rewritten determinant (2.131) in the form of the Jacobian, for condi-
tion (2.128) we get

∂(T, P )
∂(S, V )

< 0. (2.132)

With regard to properties of the Jacobian (see Appendix D), inequality (2.132)
takes the form

∂(T, P )
∂(S, V )

=
∂(T, P )
∂(T, V )

∂(T, V )
∂(S, V )

=
(
∂P

∂V

)
T

T

CV
< 0. (2.133)

Since CV > 0, from (2.133) follows the second thermodynamic inequality
(
∂P

∂V

)
T

< 0. (2.134)

Conditions (2.130) and (2.134) determining the stability of the equilibrium
state of homogeneous closed systems are called thermodynamic inequalities.

We show that as conditions (2.130) and (2.134) are fulfilled, the equilibrium
state of a homogeneous system is steady, i.e. the natural fluctuations arising
in the course of time fade, and as conditions inverse to (2.130) and (2.134) are
fulfilled, natural fluctuations that arise are strengthened, bringing the system
out of the equilibrium state.

Consider each of the inequalities separately.

1. If the condition of stability (2.130) is fulfilled, the fluctuations arising fade
and the system remains in the state of equilibrium. Separate a small region
in a homogeneous system. If as a result of the fluctuation, energy grows
by the magnitude ΔE, inasmuch as CV > 0, the local temperature of this
region also grows by the magnitude ΔT . As a result, energy from the “hot”
region transfers into the cold surroundings, the fluctuation fades and the
system remains in the equilibrium state. On the contrary, if as a result
of the fluctuation in the small region, energy decreases by the magnitude
ΔE, inasmuch as CV > 0, the local temperature also decreases by the
magnitude ΔT , and energy from the surroundings transfers into the “cold”
small region and the temperature over the entire system equalises. As a
result, the equilibrium is regained.

On the contrary, if CV < 0, at a fluctuation in energy ΔE > 0, the local
temperature in the small region would decrease by the magnitude ΔT < 0.
As a result, energy from the surroundings transfers into this “cold” region and
the fluctuation in energy strengthens. Thus, small fluctuations bring the sys-
tem out of equilibrium. In the case of a decrease in energy, at the expense of
the fluctuation ΔE < 0, temperature grows by ΔT > 0, since it is supposed
that CV < 0. Then energy from the considered high-temperature region trans-
fers into the surrounding region and, thereby, fluctuations in the side of the
decrease in energy strengthen, and the temperature rises. Thus, an unsteady
state arises.
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Fig. 2.12. The van der Waals isotherm for a temperature below the critical
temperature

2. From the second condition of stability (2.134), it follows that at the
isothermal and the adiabatic compression of a homogeneous system [see
(2.114)] found in the steady state, its pressure ought to increase and,
conversely, at expansion of the system, the pressure ought to decrease.

With the example of the van der Waals gas, we show that this condition
actually provides stability of the thermodynamic state in reference to small
fluctuations. In Fig. 2.12 the van der Waals isotherm for a temperature below
the critical temperature is shown. Here, the solid curve a1a2a5a6 is the real
isotherm, the portion a6a5 corresponds to the gas, a2a1 is the liquid phase,
and the horizontal straight line a2a5 is the two-phase state (liquid + gas) of
the system.

The portions of the isotherm a2a1 and a5a6 describe the homogeneous
state, and condition (2.134) is fulfilled. If in a small portion of these homo-
geneous states (liquid or gas), as a result of weak fluctuations, the den-
sity increases (volume decreases), the local pressure grows, inasmuch as
(∂P/∂V )T < 0, and the volume increases, and thereby the fluctuation in the
density fades. On the contrary, if the local density decreases (volume increase),
pressure in a small region drops, and therefore the surroundings compress the
considered small region (volume decreases). Thereby, the fluctuation in the
density fades, and the system conserves its stability.

In the portions a2a3 and a5a4 of the theoretical van der Waals isotherm,
condition (2.134) is fulfilled, but states corresponding to these portions are
metastable and as a result of a minor external coercion the homogeneity is
violated, and the points a3 and a4 turn out to be in the horizontal portion of
the isotherm–isobar a2a5 and the system becomes two-phased (liquid + gas).

In the portion a3a4 of the isotherm (Fig. 2.12), condition (2.134) is violated
and the inverse inequality (∂P/∂V )T > 0 takes place. Therefore, states corre-
sponding to this portion are unsteady. If such states even arise, as a result of
strengthening of fluctuations these states instantaneously disappear and the
system passes into the two-phase state (liquid + gas), and the homogeneity is
violated. Indeed, if in states of the system corresponding to the portion a3a4,
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the substance is compressed as a result of fluctuations in the local region (the
local specific volume decreases), pressure ought to also decrease inasmuch as
(∂P/∂V )T > 0. Then, the external pressure compresses this region till the
appearance of a drop of liquid, i.e. till the system does not pass into the
two-phase state (liquid + gas). On the contrary, if in states of the system cor-
responding to the same portion a3a4 the density decreases as a result of the
fluctuations (the local specific volume increases), pressure in the local region
also increases inasmuch as (∂P/∂V )T > 0 and the expansion continues as long
as the system does not pass into the normal state, in order that the condition
(∂P/∂V )T < 0 be fulfilled.

Thus, states of a homogeneous system satisfying the condition (∂P/
∂V )T > 0 are always absolutely unsteady in reference to small fluctuations in
the density or decay into two phases.

Note some general conclusions following from thermodynamic inequalities.
From the thermodynamic inequality CP > CV > 0, and also different

definitions of the heat capacity
[
CV =

(
∂E

∂T

)
V

, CP =
(
∂W

∂T

)
P

, CV,P = T

(
∂S

∂T

)
V,P

]
,

it follows that the internal energy E at V =const, enthalpy W at P =const,
and also entropy at constant V or P are monotonic functions of temperature.

From the second thermodynamic inequality (2.134) [with regard to rela-
tionships (2.85), (2.86) and (2.114)], it follows that in homogeneous systems at
both isothermal and adiabatic processes volume V =V (P ) is a monotonically
decreasing function of pressure, and, conversely, pressure P is a monotonically
decreasing function of volume. The portions a1a2 (liquid) and a5a6 (vapour)
of the van der Waals isotherm, shown in Fig. 2.12, can serve as examples.

In conclusion, consider the relation of the first thermodynamic inequality
CV > 0 to the known Le Chatelier–Brown principle.

The Le Chatelier–Brown principle holds: If external factors coerce a system
that is in the equilibrium state, tending to bring it out of this state, there arise
processes in the system tending to decrease this coercion, i.e. the system, using
all its possibilities, endeavors to conserve its equilibrium state. This principle
was formulated in 1884 by Le Chatelier and substantiated in 1887 by Brown.

Using a simple example, we show that the inequality CV > 0 corresponds
to the Le Chatelier–Brown principle. Suppose that the relatively small system
1 is found in equilibrium with the thermostat 2 with temperature T (Fig. 2.13).
Assume that the amount of heat ΔQ (the coercion) communicates to the
system 1 externally. Inasmuch as CV > 0, the temperature of the system 1
increases by the magnitude ΔT and the equilibrium with the thermostat is
violated. In order to decrease this coercion, a certain amount of heat ΔQ′

transfers from the system 1 into the thermostat 2. Therefore, the increase in
ΔT weakens.
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Fig. 2.13. The illustration of the Le Chatelier-Brown principle in the case of the
immediate external coercion

Δ

P
T → T + DT

Q

Fig. 2.14. The illustration of the Le Chatelier-Brown principle in the case of the
indirect external coercion

In some cases, a system weakens an external coercion not immediately,
but indirectly. We show that the inequality CP > CV corresponds to this
case. Imagine that in a cylinder under a piston there is a gas (Fig. 2.14). It
is assumed that the piston is movable and its equilibrium position is deter-
mined by the external pressure P and pressure of the gas. We supply to the
system externally an amount of heat ΔQ. As a result of this coercion, entropy
and temperature of the system increase by magnitudes ΔS= ΔQ/T and ΔT ,
respectively.

The inequality CP > CV can be rewritten in the form (ΔS/ΔT )P >
(ΔS/ΔT )V , and we take into account that the increase in entropy in both
the cases is identical, i.e. ΔS=ΔQ/T . Then we get

(ΔT )V > (ΔT )P . (2.135)

Thus, when supplying the amount of heat ΔQ, the increase in temperature
in the case of P = const is small, i.e. the gas expanding (the position of the
piston is shown by the dashed line) is heated a little, and thereby weakens the
external coercion (the increase in temperature as a result of ΔQ), because a
certain part of the heat being supplied is expended on performing work in the
expansion of the gas.

2.6 Third Law of Thermodynamics: Nernst Principle

Thermodynamics as a phenomenological theory is based on four laws, stem-
ming from generalisation of experimental facts.
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The zeroth law is a law about temperature and the equilibrium;
The first law is a law about the internal energy and its conservation;
The second law is a law about entropy and its increase;
The third law does not introduce a new concept in the theory but is a law

about the behaviour of entropy of a system at low temperatures.
In thermodynamics, in solving some questions a large meaning is given to

the behaviour of entropy at low temperatures, especially at the temperature
of absolute zero. For instance, to determine some chemical constants it is
necessary to know the value of entropy at absolute zero S(0).

From the thermodynamic inequality CP > CV > 0, it follows that
(∂S/∂T )V,P =CV,P /T > 0. Thus, in all cases entropy is a monotonic func-
tion of temperature: as temperature tends to absolute zero, entropy decreases.
The question arises as to what is the value of entropy at temperature abso-
lute zero: S(0)= ? The answer to this question is given by the third law of
thermodynamics – the Nernst principle.

Having generalised numerous experimental data, the German chemist–
physicist Nernst in 1906 formulated the following principle: As temperature
tends to absolute zero, entropy of a system, independently of values of exter-
nal parameters determining its state, tends to a certain constant value. For
definiteness, this constant is regarded as equal to zero.

In order to write the mathematical expression of this principle, denote by
xi a multitude of external parameters characterizing the ith state of a system
(volume, pressure, a magnetic field, and so on), and by S(xi, T ) entropy of
the ith state of the system. According to the Nernst principle

S(x1, 0) = S(x2, 0) = . . . = S(xn, 0) = const = 0, (2.136)

where x1, x2, . . . , xn are values of external parameters in different states
1, 2, . . . , n.

From (2.136), it follows that the differences of entropies of two arbitrary
states as T → 0 ought also to tend to zero:

lim
T→0

ΔS = lim
T→0

[S(xi, T ) − S(xk, T )] = 0, (2.137)

i.e. from the mathematical form of the Nernst principle it follows that at
absolute zero at different values of external parameters, entropy of states of
the system and also the difference of entropies ought to equal zero. This result
is schematically depicted in Fig. 2.15.

Note that in classical physics it is not possible to substantiate the Nernst
principle. This principle in some way can be substantiated only in quantum
mechanics, taking into account the discreteness of energy levels. To do this,
subdivide the considered system into small but macroscopic parts (subsys-
tems). If we take into account the discreteness of the energy spectrum, each
subsystem at T =0 is found at its lowest energy level (quantum state). Thus,
the statistical weight of each subsystem is ΔGα = 1. This means that only one
microstate corresponds to the macroscopic state of the subsystem at T =0.
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Fig. 2.15. The temperature dependence of the entropy at different values of external
parameters

Then the statistical weight of the system as a whole with regard to (1.108)
ought to be equal to unity:

ΔG =
∏
α

ΔGα = 1. (2.138)

Taking into account the definition of entropy (1.109), we get

lim
T→0

S = k0 lim
T→0

[
ln
∏
α

ΔGα

]
= k0 lim

T→0
[ln 1] = 0, (2.139)

i.e. the Nernst principle.
Note some conclusions following from the Nernst principle.

1. Heat capacities (CV and CP ) of all systems at the absolute zero are equal
to zero:

lim
T→0

CV (T ) = 0; lim
T→0

CP (T ) = 0. (2.140)

This result can be obtained in two ways:

– Firstly, from the definition of the heat capacity in the general form:

SV,P (T ) =

T∫
0

CV,P (T ′)
T ′

dT ′. (2.141)

According to the Nernst principle, the numerical value of the lower boundary
of integral (2.141) ought to be equal to zero, and to do this it is necessary to
fulfil the equality CV,P (0)= 0;

– Secondly, in a particular case assume that entropy depends on temper-
ature T as follows:

S(P, V, T ) = A(P, V )T n, (2.142)
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where A(P, V ) is any function of volume and pressure, and n > 0 is a positive
real number. Then according to the definition of the heat capacity

CV,P = T

(
∂S

∂T

)
V,P

= nA(P, V )T n ∼ T n, (2.143)

i.e. as T → 0 heat capacities tend to zero by the same law as entropy.

2. As T → 0, the difference CP −CV tends to zero faster than heat capacities
themselves. Indeed, taking into account relationships (2.101) and (2.102)
in (2.119) and using (2.142), we get

CP − CV = −T
(
∂S

∂V

)
T

(
∂S

∂P

)
T

= −
(
∂A

∂V

)(
∂A

∂P

)
T 2n+1. (2.144)

From (2.143) and (2.144) it follows that

CP − CV

CV,P
= − 1

nA

(
∂A

∂V

)(
∂A

∂P

)
T n+1 ∼ T n+1. (2.145)

As can be seen, the difference (CP − CV ) tends to zero faster than CV,P .
3. As T → 0, coefficients of thermal expansion αP and the thermal coefficient

of pressure βV also tend to zero. Indeed, using definitions (2.81) and (2.83),
relationship (2.78), and mathematical form of the Nernst principle (2.137),
we get

lim
T→0

αP =
1
V

lim
T→0

(
∂V

∂T

)
P

= − 1
V

lim
T→0

(
∂S

∂P

)
T

= 0, (2.146)

lim
T→0

βV =
1
P

lim
T→0

(
∂P

∂T

)
V

=
1
P

lim
T→0

(
∂S

∂V

)
T

= 0. (2.147)

Here when using principle (2.137), it was taken into account that in our case
x=V and x=P .

4. The isotherm and adiabat corresponding to the temperature of absolute
zero coincide. Indeed, inasmuch as at the absolute zero γ=CP /CV =1,
the equation of the adiabat PV γ = const coincides with the equation of
the isotherm PV = const.

5. It is not possible to produce the absolute zero of temperature; we can only
asymptotically approach it.

Note that this conclusion is one of the definitions of the Third Law of
Thermodynamics, i.e. it is equivalent to it.

The impossibility of producing the absolute zero of temperature can be
substantiated in different ways:

(a) It is known that cooling of the system occurs as a result of repetition of
two consecutive processes: adiabatic expansion (temperature drops) and
isothermal compression (entropy decreases).According to the Third Law
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of Thermodynamics, as T → 0, entropy does not depend on compression
(on the external pressure) and the isotherm coincides with the adiabat;
therefore it is impossible to produce the state with S=0 as a result of the
finite number of the above-indicated processes. Then it turns out that the
state with T = 0 cannot be produced either, since according to the third
law, the state with T = 0 and the state with S= 0 are the same.

(b) According to the Nernst principle, as T → 0, heat capacities CP and CV

also tend to zero. Therefore, close to temperature T = 0, any fluctuation in
energy raises temperature, and thus it is impossible to produce the state
with T = 0.

(c) Imagine the reverse, i.e. assume that it is possible to produce a system with
T =0. Use this system as a cooler in the Carnot cycle. Let the temperature
of a heater be T1 �= 0, and that of the cooler be T2 =0. In this imaginary
reversible circular cycle, the working body in the first isothermal process
1 → 2 (see Fig. 2.7) receives from the heater the amount of heat ΔQ1 and
entropy increases by the magnitude

ΔS12 =
ΔQ1

T1
. (2.148)

Inasmuch as processes 2 → 3 and 4 → 1 are adiabatic, ΔS23 =ΔS41 =0. The
second isothermal compression 3 → 4 proceeds at T2 =0 and, according to the
third law, ought to be isoenthropic, i.e. adiabatic, such that ΔS34 =0. Then
the total change in entropy in the circular Carnot cycle equals

ΔS = ΔS12 + ΔS23 + ΔS34 + ΔS41 =
ΔQ1

T1
. (2.149)

It is known that in the circular process entropy ought not to change, i.e.

ΔS =
∮

dS = 0. (2.150)

Inconformity of (2.149) and (2.150) (since ΔQ1 �= 0) shows that our supposi-
tion is wrong, i.e. it is impossible to produce a system with the temperature
of absolute zero.

In conclusion, note that if the dependence of the heat capacity over a wide
temperature range is known, then, taking into account the Nernst principle
(S(0)=0), the absolute value of entropy and other thermodynamic functions
can be calculated.

For instance, the dependence of entropy on temperature at pre-assigned
volume and pressure has the appearance

SV,P (T ) =

T∫
0

CV,P (T ′)
T ′

dT ′. (2.151)
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For other thermodynamic functions we have:
Internal energy

E(T ) = E(0) +

T∫
0

CV (T ′)dT ′, (2.152)

Enthalpy

W (T ) = W (0) +

T∫
0

CP (T ′)dT ′, (2.153)

Free energy

F (T ) = E(0) +

T∫
0

CV (T ′)dT − T

T∫
0

CV (T ′)
T ′

dT ′, (2.154)

Thermodynamic potential

Φ(T ) = W (0) +

T∫
0

CP (T ′)dT ′ − T

T∫
0

CP (T ′)
T ′

dT ′, (2.155)

where E(0) and W (0) are energy and enthalpy of the system at T = 0.
From the above formulae, once more the importance of the heat capacity

of a system is seen.

2.7 Thermodynamic Relationships for Dielectrics
and Magnetics

Up to now we considered closed systems, macroscopic states of which are
determined by such parameters as P, V, T, S, and we have found their thermo-
dynamic relationships and thermodynamic functions (see Sect. 2.3). However,
there exist such systems in which a macroscopic state is also determined
by other specific parameters besides the indicated parameters. Dielectrics
and magnetics can serve as examples of such systems. At first we consider
dielectrics.

A dielectric is a material medium consisting of bound charges but not
conducting an electrical current. Dielectrics can be non-polar, polar and fer-
roelectric. Their macroscopic state apart from S,T,V and P is determined
by two other parameters: an electric field E as an external parameter, and
the polarisation vector P as an internal parameter. We elucidate the way in
which these new parameters enter into thermodynamic relationships.
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According to the First Law of Thermodynamics, the total change in the
internal energy has the appearance

dE = dQ+ dA, (2.156)

where dA is work being performed. In usual cases, dA= − P dV . For
dielectrics, it is necessary also to take into account work being performed
by an external electric field. Here we will not consider the ferroelectric state
of dielectrics.

Polar and non-polar dielectrics can be considered as neutral systems con-
sisting of bound electric charges. In such systems, electric charges, grouping
themselves, form a neutral atom or molecule. Depending on the symme-
try of distribution of the charges, atoms and molecules may or may not
possess an intrinsic electric dipole moment. Dielectrics consisting of atoms
and molecules and possessing an intrinsic electric dipole moment are called
polar dielectrics, and dielectrics consisting of atoms and molecules and not
possessing an intrinsic electric dipole moment are called non-polar dielectrics.

An external electric field displaces bound charges and, thereby, performs
a certain work. We calculate this work. On each bound charge ei, the electric
field E acts with the force eiE. Inasmuch as under action of this force the
charge is displaced by the displacement vector dr i, work being performed at
that is eidr iE . If it is added up over all charges of the system in unit volume,
work being performed by the electric field is

dA′ =
∑

i

eiE dr i = E
∑

i

eidr i = E dP, (2.157)

where dP =
∑
i

eidri is the electric dipole moment arising as a result of dis-

placement of electric charges, i.e. the polarisation vector of the medium.
Comparing work performed by the electric field with work in the usual case
dA= − P dV , notice the correspondence −P → E and V → P.

1. Internal energy. If in (2.156) we take into account that dQ=T dS, and
also the expression for work being performed by the electric field (2.157),
for the change in the internal energy we get

dE = T dS − P dV + E dP. (2.158)

The latter item presents as E dP =d(EP) − P dE . Then (2.177) takes
the form

dE′ = T dS − P dV − P dE . (2.159)

Here
E′ = E − EP (2.160)

is the internal energy of a dielectric in an external electric field.
If V = const and E = const, from (2.159) it follows that dE′=T dS= dQ.
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2. Enthalpy. In the energy expression (2.159), we carry out the replacement
P dV =d(PV ) − V dP . Then we get

dW ′ = T dS + V dP − P dE. (2.161)

Here
W ′ = E′ + PV = E + PV − PE = W − PE (2.162)

is enthalpy of a dielectric in an electric field.
If P =const and E =const, from (2.161) it follows that dW ′= dQ=T dS.

3. Free energy. By replacing T dS= d(TS ) − S dT in the expression for the
internal energy (2.159), we get

dF ′ = −S dT − P dV − P dE (2.163)

Here
F ′ = E′ − TS = E − PE − TS = F − PE (2.164)

is the free energy of a dielectric in an electric field.
4. Gibbs potential. In the expression of the free energy (2.163), by replacing
PdV = d(PV ) − V dP , we get

dΦ′ = −S dT + V dP − P dE. (2.165)

Here

Φ′ = F ′ + PV = E − TS + PV − PE = Φ − PE (2.166)

is the Gibbs potential of a dielectric in an external electric field.

From the above relationships, it is seen that, when placing a dielectric in
an electric field, all thermodynamic functions change by the quantity of the
potential energy (−PE):

E′ − E = W ′ −W = F ′ − F = Φ′ − Φ = −PE. (2.167)

It is also seen that the polarisation vector can be computed with the aid of
any thermodynamic function

P = −
(
∂E′

∂E
)

S,V

= −
(
∂W ′

∂E
)

S,P

= −
(
∂F ′

∂E
)

V,T

= −
(
∂Φ′

∂E
)

P,T

.

(2.168)
Knowing the explicit form of the Gibbs thermodynamic potential Φ′=Φ′

(T, P,E), S, V and P can be found. For instance, from (2.165) it follows that

V =
(
∂Φ′

∂P

)
T,E

; P = −
(
∂Φ′

∂E
)

T,P

. (2.169)
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Hence we get (
∂V

∂E
)

P,T

= −
(
∂P

∂P

)
E,T

. (2.170)

The derivative (∂V / ∂E)P,T entering into this expression characterises the
change in volume of a dielectric under the action of an electric field, i.e. the
electrostriction phenomenon; and the derivative (∂P/∂P )E,T is a coefficient
characterizing the change in the electric polarisation under the action of pres-
sure, i.e. the piezoelectric effect. From (2.170), it is seen that both effects are
associated with each other.

Magnetics come in diamagnetic, paramagnetic and ferromagnetic states.
For dia- and paramagnetics, by analogy with dielectrics, thermodynamic
relationships can be written. To do this, it is sufficient to replace in corre-
sponding functions the electric field strength with the magnetic field strength,
and the electric polarisation vector with the magnetic polarisation vector:
H → E; P → M . As a result, for magnetics the following relationships can
be written:

dE′ = T dS − P dV −M dH ,
dW ′ = T dS + V dP −M dH ,
dF ′ = −S dT − P dV −M dH ,
dΦ′ = −S dT + V dP −M dH .

(2.171)

Here E′=E − MH , W ′=W − MH , F ′=F − MH , Φ′= Φ − MH are
the thermodynamic functions of a magnetic material in an external magnetic
field. Knowing the explicit form of the thermodynamic functions, and using
the relationships (2.171), the different parameters can be determined. For
instance, if the Gibbs potential Φ′=Φ′(T, P,H ) is known, V and M can be
calculated:

V =
(
∂Φ′

∂P

)
T,H

; M = −
(
∂Φ′

∂H

)
T,P

. (2.172)

Hence we get (
∂V

∂H

)
P,T

= −
(
∂M
∂P

)
T,H

. (2.173)

Here (∂V /∂H )P,T characterises the change in volume of a magnetic under the
action of a magnetic field, i.e. the magnetostriction effect, and (∂M /∂P )T

characterises the change in the magnetisation vector under the action of
pressure, i.e. the piezomagnetic effect.

In conclusion, note that the magnetisation vector can be found with the
aid of any thermodynamic function:

M = −
(
∂E′

∂H

)
V,S

= −
(
∂W ′

∂H

)
S,P

= −
(
∂F ′

∂H

)
V,T

= −
(
∂Φ′

∂H

)
P,T

.

(2.174)
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Fig. 2.16. The distribution of magnetic dipoles in a paramagnetic

2.8 Magnetocaloric Effect:
Production of Ultra-Low Temperatures

To produce ultra-low temperatures (below 1 K) Debye in 1926 proposed to
use the magnetocaloric effect. The essence of the magnetocaloric effect resides
in the following: a solid paramagnetic salt with temperature T =T1 isother-
mically is magnetised to the finite value H (Fig. 2.16), the transition 1 → 2).
Thereupon, it is adiabatically (ΔS=0) demagnetised (the transition 2 → 3).
During this transition, the temperature of the system (the paramagnetic salt)
drops, i.e. T2 < T1. By repeating these processes many times, the tempera-
ture can be sufficiently lowered. Thus, the essence of the magnetocaloric effect
resides in the fact that at the adiabatic demagnetisation of a paramagnetic
its temperature drops.

The effect, i.e. the lowering of temperature, can be explained as follows: in
the absence of an external magnetic field, in consequence of the chaotic dis-
tribution of magnetic dipoles in a paramagnetic, the mean magnetic moment
of the system as a whole equals zero (Fig. 2.16, the state 1). As a result
of the isothermal magnetisation, magnetic dipoles are ordered (the state 2).
Thereupon, the system is adiabatically isolated and demagnetised, the order
is violated and the chaoticity is retained (the state 3). At the transition 2 → 3,
to destroy the ordering it is necessary to perform work. Since the process pro-
ceeds in adiabatic conditions, this work is performed at the expense of the
internal energy of the system and, thus, the temperature drops.

The above-described processes on the S, T plane are schematically depicted
in Fig. 2.17. Here temperature dependences of entropy in a magnetic field
S(H) and in its absence S(0) are presented. When constructing the depen-
dence, the inequality CV > 0, the Nernst principle and the fact that in a
magnetic field in a paramagnetic there exists the ordering of dipole moments
and therefore S(H)<S(0) were taken into account.

Assume that an external magnetic field is absent and the considered system
(the paramagnetic salt) is found in the state with temperature T1 and entropy
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3

1

S

2

TT1T2T3

ΔS

0

S (0)

S (H )

Fig. 2.17. The temperature dependence of the entropy of a paramagnetic at
different values of magnetic field

S(T1, 0) (Fig. 2.17, state 1). Isothermally magnetise the system to the value
H �= 0 (the transition 1 → 2). During this time, its entropy decreases by
the magnitude ΔS=S(T1H) − S(T10). We calculate this change in entropy.
Inasmuch as T1 = const, S is a function only of H . Therefore

2∫
1

dS =

H∫
0

(
∂S

∂H

)
T

dH, (2.175)

or

ΔS = S(T1, H) − S(T1, 0) =

H∫
0

(
∂S

∂H

)
T

dH. (2.176)

We use the thermodynamic relationship for magnetics from (2.171)

dF ′ = −S dT − P dV −M dH. (2.177)

Hence we have

S = −
(
∂F ′

∂T

)
V,H

; M = −
(
∂F

∂H

)
V,T

. (2.178)

or (
∂S

∂H

)
T

=
(
∂M

∂T

)
H

. (2.179)

Taking into account (2.179) in (2.176), we get

S(T1, H) = S(T1, 0) +

H∫
0

(
∂M

∂T

)
H

dH. (2.180)

Using the Curie law for the magnetisation of paramagnetics

M =
CH

T
, (2.181)
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in (2.180), we get

S(T1, H) = S(T1, 0) − CH2

2T 2
1

, (2.182)

where C is the Curie constant. As seen from (2.182), as a result of the rise
of ordering in the magnetic field, the entropy of the system decreases by the
magnitude CH 2

/
2T1.

And we now calculate the change in temperature as a result of the adiabatic
demagnetisation (the transition 2 → 3). This change is characterised by the
quantity (∂T/∂H)S . Use the thermodynamic relationship from (2.171),

dE′ = T dS − P dV −M dH. (2.183)

Hence we have
T =

(
∂E′

∂S

)
V,H

; M = −
(
∂E′

∂H

)
S,V

(2.184)

and, consequently, (
∂T

∂H

)
S

= −
(
∂M

∂S

)
H

. (2.185)

Taking into account the property of the Jacobian (see Appendix B), transform
the right-hand side of equality (2.185):

(
∂T

∂H

)
S

= −
(
∂M

∂S

)
H

= −∂(M,H)
∂(S,H)

= −∂(M,H)
∂(T,H)

∂(T,H)
∂(S,H)

= −
(
∂M

∂T

)
H

(
∂T

∂S

)
H

.

(2.186)

If we take into account the definition (∂S/∂T )H =CH/T and (2.181), we get
(
∂T

∂H

)
S

= − T

CH

(
∂M

∂T

)
H

=
C

CH

H

T
, (2.187)

where CH is the heat capacity of the paramagnetic in a constant magnetic
field. It is known that at low temperatures CH = AT3 (A is the constant, not
depending on temperature) and, therefore, applying (2.187) to the transition
2 → 3, for the change in temperature we get

(ΔT )S =
C

A

H

T 4
(ΔH)S (2.188)

or
T2 = T1 − C

A

H

T 4
|ΔH |S . (2.189)

As is seen, at low temperatures (T < 1 K) the change in temperature is ∼T−4;
therefore it is sufficiently big. Note that using this method, i.e. many times
repeating the indicated processes, temperature can be lowered to 10−3 K.
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Note that at lower temperatures magnetic dipole moments associated with
the spin of an electron strongly interact, and therefore magnetic dipoles
are spontaneously ordered and an external magnetic field does not influ-
ence this ordering. In this case, the Curie law (2.181) does not hold, and
the magnetisation M does not depend on temperature. Therefore, instead of
(2.182) and (2.187), we obtain ΔS=S(T,H)−S(T, 0)=0 and, consequently,
(∂T/∂H)S = 0.

To produce temperatures close to absolute zero, nuclear paramagnetics are
used as a working body. Inasmuch as the interaction between nuclear magnetic
moments is weaker than the interaction between electron magnetic moments,
the spontaneous ordering of nuclear magnetic moments does not occur. The
ordering of nuclear magnetic moments is governed by an external magnetic
field. The magnetocaloric effect associated with the nuclear paramagnetism
makes it possible to lower the temperature to 10−6 K.

In conclusion, note the following. From the above discussion it follows that
by the multiple repetition of processes of the isothermal magnetisation and
adiabatic demagnetisation it is possible to produce absolute zero of tempera-
ture. However, it is impossible because, according to the Nernst principle, at
absolute zero entropy does not depend on external parameters (in the given
case on H) and dependences [S(H,T )=S(0, T )] and S(H,T ) close to absolute
zero coincide. It is clear that the adiabatic process in this case coincides with
the isothermal one and loses its sense; therefore the system cannot change its
state to the side of low temperatures.

2.9 Thermodynamics of Systems with Variable Number
of Particles: Chemical Potential

Up to now we were considering closed systems with an invariable number
of particles (N =const). The state of such systems is determined by four
parameters: entropy S, volume V , temperature T and pressure P . Of them,
S and V are additive parameters, and P and T are intensive ones.

However, in nature, systems with a variable number of particles, i.e. open
systems, exist, too. Thermodynamics and statistical physics thoroughly study
such systems also. The following may be considered as examples of open sys-
tems: liquid with saturated vapour over it, solid and liquid phases that are in
contact; components in chemical reactions; photon gas in equilibrium with a
wall of the closed volume; systems of quasi-particles (when the temperature of
a crystal changes, the number of phonons changes); electrons in the conduction
band and holes in the valence band in semiconductors, i.e. an electron–hole gas
(when the temperature of a semiconductor changes, the number of conduction
electrons and free holes changes), etc.

The thermodynamic state of such systems, apart from the four above-
indicated parameters, is determined also by the number of particles N . Thus,
for open systems N is not a parameter, but a variable. We consider open
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systems and the dependence of thermodynamic functions on the number of
particles N .

Note that the four thermodynamic functions (E,W,F and Φ) known to
us possess one common property: they are all additive, i.e. as many times the
number of particles in a system changes, so does the value of these quantities.
Indeed, the internal energy E is an additive quantity according to the second
postulate of thermodynamics, and other functions: enthalpy W =E + PV ,
the free energy F =E − TS and Gibbs potential Φ =W − TS , are additive
inasmuch as they are expressed by additive quantities E, V and S.

The property of additivity of these functions gives the possibility to draw
conclusions about their dependence on the number of particles N : all ther-
modynamic functions are a uniform function of the first order of N. Issuing
from this, in the general form these dependences can be presented as follows:

The internal energy can be a function of entropy S, volume V and the
number of particles N :

E = Nϕ1

(
S

N
,
V

N

)
; (2.190)

Enthalpy can be a function of entropy S, pressure P and the number of
particles N :

W = Nϕ2

(
S

N
,P

)
; (2.191)

The free energy can be a function of volume V , temperature T and the number
of particles N :

F = Nϕ3

(
V

N
, T

)
; (2.192)

The Gibbs potential can be a function of temperature T , pressure P and the
number of particles N :

Φ = Nϕ4(P, T ). (2.193)

It is clear that by virtue of additivity of S and V , functions ϕ1, ϕ2, ϕ3 do
not depend on N and all thermodynamic functions are proportional to the
number of particles.

Inasmuch as thermodynamic functions themselves are proportional to the
number of particles N , it is evident that their differentials change proportion-
ally to dN . Then to the differentials in Sect. 2.3 (2.77), it is necessary to add
the item μdN , proportional to dN . Thus, the differentials of thermodynamic
functions can be written as

dE = T dS − P dV + μ dN, (2.194)
dW = T dS + V dP + μ dN, (2.195)
dF = −S dT − P dV + μ dN, (2.196)
dΦ = −S dT + V dP + μ dN, (2.197)
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where the coefficient of proportionality μ is called the chemical potential. The
chemical potential can be determined by differentiating any thermodynamic
function with respect to N :

μ =
(
∂E

∂N

)
S,V

=
(
∂W

∂N

)
S,P

=
(
∂F

∂N

)
T,V

=
(
∂Φ
∂N

)
P,T

. (2.198)

However, we need to take into account that in different cases μ will be a
function of different parameters. For instance, from (2.193) it follows that

μ =
(
∂Φ
∂N

)
P,T

= ϕ4(P, T ), (2.199)

i.e. in this case μ=μ(P, T )=ϕ4(P, T ) is a function only of T and P and does
not depend on the number of particles.

From (2.193) and (2.199), we get

Φ = μN. (2.200)

Hence follows the physical sense of the chemical potential: μ=Φ/N , i.e. the
chemical potential can be defined as the Gibbs potential, accounting for one
particle. From another definition of the chemical potential

μ =
(
∂F

∂N

)
T,V

, (2.201)

follows one more physical sense: the chemical potential equals the free energy
(the performed work) necessary to change the number of particles in a system
by unity.

Chemical potential is an intensive quantity, inasmuch as it does not depend
on the number of particles. Having substituted the expression of the Gibbs
potential (2.200) into (2.197), for a differential of the chemical potential we get

dμ = − S

N
dT +

V

N
dP. (2.202)

On denoting the intrinsic volume by υ=V/N and the intrinsic entropy by
s=S/N , we get

dμ = −s dT + υ dP. (2.203)

We introduce one more thermodynamic function. To do this, in (2.196) carry
out the replacement μ dN =d(μN) −N dμ. Then we have

d(F − μN) = −S dT − P dV −N dμ. (2.204)

If we accept the notation

Ω = F − μN = F − Φ = −PV, (2.205)
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from (2.204), for the new thermodynamic function we get

dΩ = −S dT − P dV −N dμ. (2.206)

As can be seen, T,V and μ are independent variables of the function, called
the grand thermodynamic potential or Ω-potential : Ω=Ω(T, V, μ).

We have introduced two new functions μ and Ω. Thus, the total number
of thermodynamic functions becomes six (E,W,F,Φ, μ,Ω).

If a system is found in an external magnetic field H , the change in its free
energy, according to (2.171) and (2.196), has the appearance

dF ′ = −S dT − P dV −M dH + μ dN. (2.207)

Carrying out the replacement μ dN = d(μN) −N dμ, from (2.207) we have

dΩ′ = −S dT − P dV −N dμ−M dH. (2.208)

Here
Ω′ = F ′ − μN = F −MH − Φ = Ω −MH (2.209)

is the grand thermodynamic potential of an open system found in an external
magnetic field, and Ω=F − μN =F − Φ is the thermodynamic potential
at H =0.

As is seen, T, V, μ and H are independent variables of Ω′ : Ω′(T, V, μ,H).
Knowing the explicit form of this function, we can determine the number

of particles, pressure, entropy and the magnetisation vector:

N = − (∂Ω′/∂μ)
T,V,H

;P = − (∂Ω′/∂V )
T,μ,H

;
S = − (∂Ω′/∂T )

V,μ,H
;M = − (∂Ω′/∂H)

V,T,μ
.

(2.210)

Using a total differential of thermodynamic functions, i.e. expressions (2.194)–
(2.197), the thermodynamic relationships for open systems can be found. For
instance, from (2.194) we have

T = (∂E/∂S)V,N ; P = − (∂E/∂V )S,N ; μ = (∂E/∂N)S,V . (2.211)

Hence

(∂T/∂V )S,N = − (∂P/∂S)V,N ; (∂T/∂N)S,V = (∂μ/∂S)N,V ;
(∂P/∂N)S,V = − (∂μ/∂V )S,N .

(2.212)

The above relationships can be presented also in the form of the Jacobian:

∂(T, S)
∂(V, S)

= −∂(P, V )
∂(S, V )

or
∂(T, S)
∂(P, V )

= 1; N = const, (2.213)

∂(T, S)
∂(N,S)

=
∂(μ,N)
∂(S,N)

or
∂(T, S)
∂(μ,N)

= −1; V = const, (2.214)
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∂(P, V )
∂(N,V )

= −∂(μ,N)
∂(V,N)

or
∂(P, V )
∂(μ,N)

= 1; S = const. (2.215)

In a like manner, using differentials of other functions (2.195)–(2.197), other
cases can also be considered. It can be shown that at P = const (2.214) is
obtained, and at T =const (2.215) is obtained, i.e. the case of P = const coin-
cides with the case of V =const, and the case of T = const coincides with the
case of S=const.

2.10 Conditions of Equilibrium of Open Systems

It is known that the condition of equilibrium of systems in contact with each
other is determined from the condition of maximum of entropy of the complete
system. Inasmuch as for closed systems (N =const) entropy depends only on
energy and volume S=S(E, V ), from the condition S=Smax (Sect. 1.8) it
follows that two closed systems are found in equilibrium when their tem-
peratures and pressures are identical: T1 =T2 =T and P1 =P2 =P . These
conditions provide thermal and mechanical equilibrium.

In open (N �= const) systems, a new variable – the number of particles N –
appears. Thus, in this case entropy depends on three variables S=S(E, V,N).
We find the condition of maximum of entropy relative to N .

Assume that two open systems with the number of particles N1 and N2 are
in contact and form an isolated common system. The boundary ab dividing
them (Fig. 2.18) transmits particles, i.e. N1 and N2 can change; however,
their sum

N1 +N2 = N = const (2.216)

remains constant.
In order that at pre-assigned volumes V1, V2 and energies E1, E2 of

subsystems, entropy of the complete system

S = S1(N1) + S2(N2) (2.217)

a b

S1

S2

E2 , N2 , V2

E1, N1, V1

Fig. 2.18. The equilibrium of two open systems
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would be maximum (S=Smax), it is necessary to fulfil the condition

∂S

∂N1
=
∂S1

∂N1
+
∂S2

∂N2

∂N2

∂N1
= 0. (2.218)

If from (2.216), we take into account that ∂N2/∂N1 = − 1, we get
(
∂S1

∂N1

)
V1,E1

=
(
∂S2

∂N2

)
V2,E2

. (2.219)

From the basic thermodynamic relationship (2.194)

dS =
1
T

dE +
P

T
dV − μ

T
dN, (2.220)

we have (
∂S

∂N

)
E,V

= − μ

T
. (2.221)

On substituting this expression into (2.219), and taking into account that in
equilibrium T1 =T2 = T , from the condition of maximality of entropy we get
the condition of equilibrium of open systems

μ1 = μ2 = μ or μ(P, T ) = const. (2.222)

Hence it follows that if open systems are found in equilibrium, their chemical
potentials ought to be identical. Note that for open systems the chemical
potential resembles the level of liquid in connected vessels. Thus, in the
general case the following conditions

T1 = T2 = . . . = Tn = T ; thermal equilibrium, (2.223)
P1 = P2 = . . . = Pn = P ; mechanical equilibrium, (2.224)
μ1 = μ2 = . . . = μn = μ; material equilibrium, (2.225)

are conditions of thermodynamic equilibrium of n number of contacting sub-
systems. If a system is found in an external field, the pressure depends on
coordinates P =P (x, y, z). In this case, condition (2.222) takes the form

μ[P (x, y, z), T )] = const. (2.226)

If we denote the potential energy of one particle in an external field by
u(x, y, z), the chemical potential equals

μ = μ0(P, T ) + u(x, y, z) = const, (2.227)

where μ0(P, T ) is the chemical potential in the absence of an external field.
Consider the particular case of the atmospheric air in the gravitational

field of the Earth, and assume that it is an ideal gas consisting of particles of
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the mass m. Then condition (2.227) can be presented in the following form:

μ = μ0(P (z), T ) +mgz = const, (2.228)

where g is the acceleration due to gravity, and z is the distance from the
surface of the Earth. Regarding temperature as constant and differentiating
(2.228) with respect to z, we get

(
∂μ0

∂P

)
T

dP
dz

+mg = 0. (2.229)

If we take into account that (∂μ0/∂P )T = υ, (2.229) takes the form

υ
dP
dz

+mg = 0. (2.230)

From the equation of the state of an ideal gas, we have

υ =
V

N
=
k0T

P
. (2.231)

Then (2.230) can be rewritten as

dP
P

= − mg

k0T
dz. (2.232)

After integrating, we get the known barometric formula

P = P0e
−mgz

k0T , (2.233)

where P0 is pressure of air on the surface of the Earth. Hence it follows that for
an air layer to be found in equilibrium in the gravitational field, the pressure
(the density) of air ought to exponentially depend on the height.
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Canonical Distribution: Gibbs Method

Summary. It is known that the basic task of statistical physics is calculating the
mean value of thermodynamic parameters, determining the macroscopic state of a
system, the relation (the equation of state) between them, and also thermodynamic
coefficients, measured on test. However, inasmuch as the immediate determination
of these parameters is impossible, auxiliary functions – thermodynamic potentials –
are introduced in theory. If these functions are known, we can find the equation of
a state and compute thermodynamic coefficients (see Chap. 2). Thus, the problem
is reduced to finding the explicit form of thermodynamic functions, especially free
energy (the Helmholtz potential).

The present chapter is devoted to the Gibbs method, which is applied to find
the function of free energy, on the basis of which the canonical distribution lies. On
the basis of the microcanonical distribution, canonical distributions for closed and
open systems in a thermostat are found and also the essence of the Gibbs method
is expounded.

3.1 Gibbs Canonical Distribution for Closed Systems

It is known that to solve the basic task of statistical physics, i.e. to find the
mean value of thermodynamic quantities for classical systems it is necessary
to calculate the integral

L̄ =
∫
L(q, p)ρ(q, p)dq dp, (3.1)

and for quantum systems to calculate the sum (see Sect. 1.3).

L̄ =
∑

n

LnnWn. (3.2)

Quantities L(q, p) and Lnn are known from classical and quantum mechan-
ics, respectively. The distribution function ρ(q, p) and density matrix Wn are
found from statistical physics. The explicit form of these functions depends
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on conditions in which the system is found. For instance, for completely iso-
lated systems ρ and Wn are pre-assigned by expressions (1.66) and (1.99),
respectively, i.e. the microcanonical distribution, obtained on the basis of the
postulate of statistical physics.

It should be noted that a completely isolated system is an ideal case. In
reality, however, there are conditions in which the system interacts with its
surroundings, i.e. it is found in contact with the medium surrounding it (the
thermostat). On the basis of properties, adduced in Sects. 1.4 and 1.5, the
explicit form of the distribution function of a system in the thermostat can
be presented in the form

ln ρ(q, p) = A0 + βE(q, p) (3.3)

for classical systems and in the form

ln W (En) = A0 + βEn (3.4)

for quantum systems. These expressions can also be presented as

ρ(q, p) = exp[A0 + βE(q, p)] (3.5)

and

Wn ≡W (En) = exp(A0 + βEn), (3.6)

respectively.
To determine the explicit form and the physical sense of the constants A0

and β, entering into the expressions (3.5) and (3.6), use the basic postulate
of statistical physics, i.e. the microcanonical distribution. Assume that the
considered system with the thermostat forms a completely isolated system
(Fig. 3.1).

thermostat
E′, S′, T

system
E, S, T

Fig. 3.1. The closed system in the thermostat
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Separately consider classical and quantum systems.
Quantum systems. Assume that the considered system with the thermostat

represents a quantum system. Let energy and entropy of the thermostat be E′
and S′, and energy and entropy of the system be E and S. At first consider
closed (N = const) quantum systems. Inasmuch as the system is found in
thermodynamic equilibrium with the thermostat, their temperatures T ought
to be identical.

Inasmuch as it is supposed that the system is small compared with the
thermostat, energy can be written as

E′ + E = E0 = const;E � E′, (3.7)

where E0 = const is the pre-assigned energy of the total isolated system.
Having microcanonical distribution (1.99) applied to this isolated quantum
system, we get

dW = const δ(E′ + E − E0)dG′ dG, (3.8)

where dG′ and dG are the statistical weights of the macroscopic states of the
thermostat and system with energies E′ and E, respectively.

The following problem is stated: What is the probability that the system
is in a concrete microstate with energy E = En at any microstate of the
thermostat? To find this probability it is necessary in (3.8), having accepted
E = En and dG = 1, to integrate over microstates of the system, i.e. over
dG′. Then we get

Wn = const
∫
δ(E′ + En − E0)dG′. (3.9)

In order to integrate with the aid of the δ-function, pass from the integration
over dG′ to the integration over energy dE′. To do this present dG′ in the
form

dG′ =
dG′

dE′
dE′ (3.10)

and replace the derivative dG′/dE′ by the ratio ΔG′/ΔE′

dG′ = (ΔG′/ΔE′) dE′. (3.11)

If the expression ΔG′ = eS′(E′)/k0 is used, stemming from the definition of
entropy (1.109), (3.9) takes the form

Wn = const
∫ (

eS′(E′)/k0

ΔE′

)
δ(E′ + En − E0)dE′. (3.12)

Integrating with the aid of the δ-function over dE′, we get

Wn = const

(
eS′(E′)/k0

ΔE′

)∣∣∣∣∣
E′=E0−En.

(3.12a)
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Inasmuch as En � E0, the range of energies ΔE′, entering into expression of
the distribution function sought (3.12a), can be regarded as almost constant:
ΔE′ |E′=E0−En ≈ ΔE′ |E′=E0 = const. Then the distribution function takes
the form:

Wn = const exp [S′(E0 − En)/k0] . (3.13)

If, according to (3.7), one takes into account that En � E′ < E0, the function
S′(E0 − En) can be expanded into a series in powers of En. Then entropy of
the thermostat in the linear approximation takes the form

S′(E0 − En) ∼= S′(E0) − En

(
∂S′

∂E′

)∣∣∣∣
E′=E0

+ · · · (3.14)

According to the definition of temperature (1.145), we have
(
∂S′

∂E′

)∣∣∣∣
E′=E0

=
1
T
, (3.15)

where T is the absolute temperature of the thermostat (and also the temper-
ature of the system). If you substitute the expression of entropy (3.14) into
(3.13) and all constants, including also eS′(E0)/k0 = const, denoted by a new
constant A, finally for the distribution function we get the following canonical
expression

Wn = A · e−En/k0T , (3.16)

where A is the normalizing constant, not depending upon En, determined
from the normalization condition∑

n

Wn = 1. (3.17)

Having substituted (3.16) into (3.17), for the normalizing constant we get

A−1 =
∑

n

e−En/k0T . (3.18)

Taking into account (3.18) in (3.16), for the distribution function we have

Wn =
e−En/k0T∑

n
e−En/k0T

. (3.19)

Having logarithmized both sides of expression (3.19), we get

ln Wn = − ln
∑

n

e−En/k0T − En

k0T
. (3.20)

If we compare expressions of the distribution function (3.19) and (3.20) with
expressions (3.4) and (3.6), we find constants A0 and β
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A0 = − ln
∑

n

e−En/k0T = ln A, β = − 1
k0T

. (3.21)

Expression (3.16) or in the explicit form (3.19) is called the Gibbs canonical
distribution function for closed quantum systems found in the thermostat.

As is seen from (3.19), the distribution function over microstates of
quantum systems is determined only by the energy spectrum of the system En.

Having substituted expression for the distribution function (3.19) into
(3.2), we find the mean statistical value of the physical quantity

L̄ =

∑
n
Lnne−En/k0T

∑
n

e−En/k0T
. (3.22)

Hence it is seen that in order to calculate the mean statistical value of the
quantity L̂, characterizing quantum systems, it is sufficient to know only diag-
onal matrix elements Lnn of the operator L̂ and the energy spectrum En. Both
quantities Lnn and En ought to be known from quantum mechanics.

Classical systems. In order to find the expression of canonical distribution
for such systems, it is sufficient in expression (3.16) for quantum systems to
carry out the replacement

Wn ⇒ ρ(q, p);En ⇒ E(q, p);A⇒ Acl. (3.23)

As a result, we get the expression of the Gibbs distribution function over
microstates for closed classical systems in the thermostat

ρ(q, p) = Acl · e−E(q,p)/k0T . (3.24)

However, it should be noted that the constant Acl, entering here, is found
from the normalization condition∫

ρ(q, p)dqdp = Acl

∫
e−E(q, p)/k0T dqdp = 1. (3.25)

Hence we get the expression for the constant Acl

A−1
cl =

∫
e−E(q,p)/k0T dq dp. (3.25a)

and the explicit form of the distribution function

ρ(q, p) =
e−E(q,p)/k0T∫

e−E(q,p)/k0T dq dp
. (3.26)

Canonical distribution over microstates for classical systems (3.24) was intro-
duced in 1901 by the well-known American physicist Gibbs.

Having substituted (3.26) into (3.1), the mean statistical value for any
physical quantities L(q, p) of classical systems can be found:
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−
L =

∫
L(q, p)e−E(q,p)/k0T dq dp∫

e−E(q,p)/k0T dq dp
. (3.27)

As is seen from (3.27), in order to calculate L̄, it is necessary to know L(q, p)
and energy of the microstate E(q, p). Note that both functions L(q, p) and
E(q, p) ought to be known from classical mechanics.

At the end of the section, note similarity and distinction between canon-
ical and microcanonical distributions. The microcanonical distribution is the
mathematical expression of the postulate of statistical physics about the
identical probability of all microstates for completely isolated systems. The
canonical distribution is obtained from the microcanonical one and is just for
systems in the thermostat.

As is seen from Sects. 1.4 and 1.5, the microcanonical distribution function
depends on energy in the form of the δ-function. Therefore the distribution
function both over microstates and energies has a maximum at E = E0

(Fig. 1.5).
In the case of the canonical distribution, the distribution function over

microstates depends on energy exponentially [see (3.16) and (3.24)].
To determine the distribution over energies w(E) for a system in the ther-

mostat it is necessary to multiply the distribution function over microstates
Wn by the function of the density of quantum states g(E)

w(E) = Wng(E). (3.28)

Inasmuch as the function of the density of states g(E) ∼ Er (where r > 0)
is an increasing function of energy E, and Wn is an exponentially decreasing
function, their product w(E) has a maximum (Fig. 3.2). It is evident that the
function w(E) takes on a maximum value at E = Ē, where Ē is the mean
value of energy of the system in the thermostat.

Thus, distribution functions over energies both for isolated systems (the
microcanonical distribution) and systems in the thermostat (the canonical
distribution) have a maximum (Figs. 1.5 and 3.2). However, in the case of the
microcanonical distribution the width of the distribution curve is infinitely
small (only one value E = E0 corresponds to energy), and in the case of
the canonical distribution the width of the distribution curve has a finite

E E

Wn

w(E)

g(E)

Fig. 3.2. The distribution over energies
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value. The width of the distribution, presented in the form of a rectangle
(see Fig. 1.6), is on the order of the fluctuation in energy of a system in the
thermostat. Inasmuch as fluctuations in energy for macroscopic systems are
insignificant, the canonical distribution can be applied also to isolated systems
with a specified accuracy.

Note that known Maxwell and Boltzmann distributions as a particular case
stem from Gibbs canonical distribution (3.24) for classical systems, i.e. the
Gibbs canonical distribution is a generalized form of Maxwell and Boltzmann
distributions.

3.2 Free Energy: Statistical Sum
and Statistical Integral

The explicit form of normalizing factors A and Acl, entering into the Gibbs
distribution for quantum (3.16) and classical systems (3.24), is given by
expressions (3.18) and (3.25a), respectively. In the given section, consider
what physical sense these normalizing factors possess, i.e. through which
known physical quantities they are expressed. To do this use the Boltzmann
relationship relating entropy of the system to distribution function.

In the case of quantum systems, entropy S and the mean value of the
distribution function are related by relationship (1.113), i.e.

S = −k0ln Wn. (3.29)

Having substituted the expression of the distribution function (3.16) into
(3.29), we get

S = −k0 ln A+
En

T
. (3.30)

If the mean value of energy is denoted by En = E, (3.30) takes the form

k0T ln A = E − TS. (3.31)

Knowing that E − TS = F , for the normalizing factor we have

A = eF/k0T . (3.32)

If expression (3.32) is taken into account in (3.16), the Gibbs canonical
distribution for quantum systems takes the entirely specified form

Wn = e
F−En

k0T . (3.33)

This form of the canonical distribution and the normalization condition (3.17)
make it possible to calculate free energy:

F = −k0T ln Z, (3.34)
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where
Z =

∑
n

e−En/k0T (3.35)

is called the statistical sum.
In the case of classical systems, the relation between entropy and distri-

bution function is given by expression (1.125)

S = −k0 ln
[
(2π�)3Nρ(q, p)

]
. (3.36)

If we take into account the expression of the distribution function (3.24) in
(3.36), we get

S = −k0 ln
[
(2π�)3NAcl

]
+
E(q, p)
T

. (3.37)

Introducing the notation E(q, p) = E in expression (3.37), we can rewrite it
in the form

k0T ln
[
(2π�)3NAcl

]
= E − TS = F. (3.38)

Hence for the normalizing factor we get

Acl = (2π�)−3NeF/k0T . (3.39)

Substitute this expression into (3.24). Then the distribution function for
classical systems takes the form

ρ(q, p) = (2π�)−3Ne
F−E(q,p)

k0T . (3.40)

Using normalization condition (3.25), for the function of free energy we get

F = −k0T ln Zcl, (3.41)

where
Zcl =

∫
′e−E(q,p)/k0T dΓ

(2π�)3N
(3.42)

is called the statistical integral; dΓ =
3N∏
i=1

dpi dqi is an element of volume in

the phase space.
The prime above the integral sign shows that the integration in the phase

space is carried out only over phase points ЯНrresponding to nonequivalent
physical microstates. In fact, when intercommutating two particles of a system
with N number of identical particles, new phase points obtained are equivalent
to preceding ones, i.e. both phase points correspond to the same physical
microstate. It is evident that the number of such equivalent points equals N !.
Therefore, in order to obtain the true expression of the statistical integral Zcl,
it is needed to take away the prime above the integral sign and conduct the
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integration over all phase points, and thereupon divide the obtained expression
by N !.

Thus, the final expression for the statistical integral takes the form

Zcl =
1
N !

∫
e−E(q,p)/k0T dΓ

(2π�)3N
. (3.43)

Note that the consideration of N ! in formula (3.43) provides additivity of
entropy and other thermodynamic quantities of the system. In particular,
the true expression of statistical integral (3.43) circumvents the known Gibbs
paradox (see Sect. 4.2).

In conclusion, consider one more substantiation of the Gibbs distribution
and show that from it known thermodynamic relationships for the free energy
can be obtained.

To do this use the normalization condition for the Gibbs distribution
function (3.34): ∑

n

Wn =
∑

n

e
F−En

k0T = 1. (3.44)

Naturally, energy of the system En ought to depend on external parameters.
Assume that there is in all one external parameter and this parameter is
volume: En = En(V ). Then the left-hand side of equality (3.44) is a function
of temperature T and volume V . Knowing this, differentiate up both sides of
(3.44). As a result, we get

∑
n

Wn

k0T

[
dF − ∂En

∂V
dV − F − En

T
dT
]

= 0. (3.45)

Rewrite it in the following form

dF
∑

n

Wn = dV
∑

n

Wn
∂En

∂V
+

dT
T

(
F −

∑
n

WnEn

)
. (3.46)

If we take into account that on the left-hand side of this inequality
∑
n
Wn = 1,

and on the right-hand side

∑
n

WnEn = E,
∑

n

Wn
∂En

∂V
=
∂E

∂V
= −P, F − E = −TS, (3.47)

(3.46) takes the form of the known thermodynamic inequality

dF = −P dV − S dT. (3.48)

This conclusion shows that the Gibbs canonical distribution satisfies all basic
principles and laws of thermodynamics and statistical physics.
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3.3 Gibbs Method and Basic Objects of its Application

In Sect. 2.4 we came to the conclusion that if the explicit form of free energy
F is known, we can find the equation of the state of the system, calculate its
entropy and all thermodynamic coefficients:

thermal equation of state and entropy, respectively,

P = −
(
∂F

∂V

)
T

, S = −
(
∂F

∂T

)
V

, (3.49)

caloric equation

E = F − T

(
∂F

∂T

)
V

; (3.50)

heat capacity

CV = T

(
∂S

∂T

)
V

, CP = T

(
∂S

∂T

)
P

; (3.51)

coefficients of thermal expansion, thermal coefficients of pressure and isother-
mal coefficients of compression, respectively,

αP =
1
V

(
∂V

∂T

)
P

, βV =
1
P

(
∂P

∂T

)
V

, γT = − 1
V

(
∂V

∂P

)
T

. (3.52)

In order to find the explicit form of the function of free energy, as seen in
expressions (3.34) and (3.41), for quantum systems it is necessary to know
the statistical sum (3.35), and for classical systems, the statistical integral
(3.43). And to calculate the statistical sum and statistical integral the explicit
form of the energy spectrum En or the Hamilton function E(q, p) needs to be
known. Thus, the solution of the problem is reduced to finding En or E(q, p).
These problems are solved in quantum and classical mechanics, conformably.

This chain of calculations in statistical physics composes the essence of
the Gibbs method : in order to find pressure P , entropy S and mean energy
E, it is necessary to know free energy F , and to do this it is necessary to
compute the statistical sum Z or the statistical integral Zkl, for which it is
necessary to know the explicit form of functions En or E(q, p). Thus, the
complete solution of the statistical problem for concrete systems is reduced
to finding En or E(q, p).

The essence of the Gibbs method, being on the top of statistical physics,
can be schematically presented in the form:

(
En

E(q, p)

)
⇒
(
Z
Zkl

)
⇒ F ⇒ (P,E, S,CV , CP , . . .). (3.53)

Thus, the chain of calculations, beginning with En or E(q, p), is accomplished.
It should be noted that the basis of this method composes the postulate of sta-
tistical physics, i.e. the microcanonical distribution, inasmuch as the canonical



3.4 Grand Canonical Distribution for Open Systems 103

distribution, composing the basis of the Gibbs method, also stems from the
microcanonical distribution. Consequently, the microcanonical distribution is
the basis of all statistical physics.

As is seen from the chain of calculations (3.53), first of all, it is necessary
to know the energy spectrum En or Hamilton function E(q, p). Unfortunately,
in the general case, for any system the explicit form of these functions is not
known. Therefore, the Gibbs method can be applied only to particular cases.

Energy of interaction between two arbitrary particles in the system is
denoted by uik, and mean kinetic energy of the particle as ε̄. Introduce the
dimensionless parameter

η =
uik

ε̄
. (3.54)

Depending on the value of the parameter η all systems surrounding us can be
divided into four groups:

1. Ideal gases: η = 0, i.e uik = 0,
2. Real gases: η � 1, i.e. uik � ε̄,
3. Liquids: η ≈ 1, i.e. uik ≈ ε̄,
4. Crystalline solids: η � 1, i.e. uik � ε̄.

In subsequent chapters we comprehensively consider three of these groups: an
ideal gas, real gases and crystalline solids. In the case of an ideal gas, inasmuch
as interaction between particles is completely absent (uik = 0), for energy we
can write the exact expression and analytically bring the chain of calculations
(3.53) to the end. In the case of real gases (η � 1) and crystalline solids
(η−1 � 1), a small parameter exists. Therefore, we can expand energy in a
series and bring calculations (3.53) to the end.

In the case of liquid, rough methods are not applicable owing to the absence
of a small parameter, since η ≈ 1. Generally, the analytical statistical theory
of liquids is very complex. Therefore, only semi-empirical or phenomenological
theories are possible.

3.4 Grand Canonical Distribution for Open Systems

Before passing to the application of the Gibbs method to concrete systems,
consider the canonical distribution in the general form, i.e. generalize it for
open systems. The thermodynamics of such systems is expounded in Sect. 9.9.

Assume that the considered system with energy EN , the number of par-
ticles N , entropy S, temperature T and the chemical potential μ is a small
part of a very large system – the thermostat (Fig. 3.3). Let the corresponding
parameters of the thermostat be E′N , N

′, S′, T ′, μ′.
Also assume that the volume of the system does not change (V = const);

however, at the boundary of division of the system the thermostat transmits
particles (ΔN �= 0) and heat (ΔQ �= 0). Therefore, in the thermodynamic
equilibrium T = T ′ and μ = μ′. Thus, the considered system is a small, but
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thermostat
E′N′ , N ′, S′, T ′, µ′

EN, N, S, T , µ
system

Fig. 3.3. The open system in the thermostat

macroscopic system with a variable number of particles in thermodynamic
equilibrium with the thermostat:

EN � E′N ′ , N � N ′, S(EN , N) � S′(E′N ′ , N ′). (3.55)

Inasmuch as the system + the thermostat, as a whole, represent a completely
isolated system, it can be written as:

N +N ′ = N0 = const, EN + E′N ′ = E0 = const. (3.56)

Consider separately quantum and classical systems.
Quantum systems. Inasmuch as in the system the number of particles N

changes, energy of microstates ought to depend not only on the totality of the
quantum numbers n, but also on N . Let EnN be energy of a microstate of the
system with the number of particles N that are found in the quantum state,
determined by the totality of quantum numbers n.

It is necessary to find the answer to the question: What is the probability
that the system is found in a concrete microstate with energy EnN and the
number of particles N , in order that the thermostat can be found in any of its
microstates.

Denote the probability sought by WnN . In order to find this probability,
take into account that the complex system (the system + the thermostat) is
completely isolated and apply to it microcanonical distribution (3.8).

Having generalized microcanonical distribution (3.8) for the considered
case, we get

dW = const δ(E′N ′ + EN − E0)δN ′+N,N0dG
′
N ′dGN , (3.57)

where the δ-function and the δ-symbol show isolatedness of the complex
system.
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In order to answer the question posed above, it is necessary to accept
EN = EnN and dGN = 1, and thereupon integrate (3.57) over dG ′N ′ and
add up with respect to N ′. Repeating the reasoning, adduced in Sect. 3.1, the
probability sought can be presented in the form analogous to (3.13):

WnN = const exp
[

1
k0
S′(E0 − EnN , N0 −N)

]
. (3.58)

Inasmuch as the system is significantly less than the thermostat, i.e. condition
(3.55) takes place, entropy of the thermostat S′ can be expanded with respect
to EnN and N . If we restrict ourselves to the linear approximation, we get

S′(E0−EnN , N0−N) = S′(E0, N0)−
(
∂S′

∂E′

)
V,N

EnN−
(
∂S′

∂N ′

)
V,E

N. (3.59)

Thermodynamic relationship for systems with a variable number of particles
(2.194) can be presented in the form

dS =
1
T

dE +
P

T
dV − μ

T
dN. (3.60)

Hence we get (
∂S

∂E

)
V,N

=
1
T

;
(
∂S

∂N

)
V,E

= −μ

T
. (3.61)

Taking into account these relationships in (3.59), we get

S′(E0 − EnN , N0 −N) = S′(E0, N0) − EnN

T
+
μN

T
. (3.62)

From expressions (3.58) and (3.62) we get the probability sought

WnN = A e(μN−EnN )/k0T . (3.63)

This expression is called the grand canonical distribution for open systems.
In order to find the constant A, entering into (3.63), use the expression of

entropy (1.113), presented in the form

S = −k0ln WnN . (3.64)

Then from (3.63) and (3.64) we have

S = −k0 ln A− μN̄

T
+
ĒnN

T
. (3.65)

Having denoted mean values by N̄ = N and ĒnN = E, we get

k0T ln A = E − TS − μN = F − μN = F − Φ = Ω. (3.66)

Hence we have
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A = eΩ/k0T . (3.67)

As a result, the grand canonical distribution (3.63) finally takes the form

WnN = e
Ω+μN−EnN

k0T . (3.68)

The grand thermodynamic potential Ω is found from the normalization
condition ∑

N

∑
n

WnN = 1. (3.69)

Having substituted the expression of the distribution function (3.68) into
(3.69), we get

Ω = −k0T ln

[∑
N

eμN/k0T
∑

n

e−EnN/k0T

]
. (3.70)

With the aid of (3.70) we can find the dependence of the grand thermodynamic
potential on T, μ and V , i.e. the explicit form of the function Ω = Ω(T, μ, V )
for a concrete system. Thus, using the relationship Ω = −PV , pressure can
be determined as a function of temperature, chemical potential and volume:

P = −Ω/V = P (T, μ, V ). (3.71)

Solving (3.71) simultaneously with the equation N =N(T, μ, V )= − (∂Ω/
∂μ)T,V , obtained in (2.206), and eliminating μ, we find the equation of the
state of the system f(T, V, P,N) = 0

Now adduce the generalized form of the canonical distribution for multi-
component systems. To do this the expression of the thermodynamic potential
Φ = μN is present in the general form

Φ =
∑

i

Ni
∂Φ
∂Ni

=
∑

i

μiNi, (3.72)

where Ni and μi are the number of particles and chemical potential of the ith
component, respectively. Then in (3.68), having carried out the replacement

Φ = μN →
∑

i

μiNi;EnN → EnN1N2..., (3.73)

we get the generalized form of the canonical distribution for a multicomponent
system

WnN1N2... = exp

⎡
⎣Ω +

∑
i

μiNi − EnN1N2...

k0T

⎤
⎦ . (3.74)

Classical systems. Assume that there is a classical system with a number
of particles N . The probability that a microstate of this system falls in an
element of volume
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dΓN = dq(Ndp(N) =
3N∏
i=1

dqi dpi, (3.75)

taken near the point (q, p) ≡ (q1, q2, . . . , q3N , p1, p2, . . . , p3N ) is

dWN (q, p) = ρN (q, p)dΓN , (3.76)

where ρN (q, p) is the probability of a microstate of the system found in a unit
volume of the phase space near the point (q, p), i.e. the distribution function.
This function, like expression (3.63), can be presented in the form

ρN (q, p) = Acle
μN−EN (q,p)

k0T . (3.77)

The constant Acl can be found, using the relationship between entropy and
the mean value of the distribution function (1.125) and expression (3.77). As
a result, we get

k0T ln
[
(2π�)3NAcl

]
= E − TS − μN = F − Φ = Ω, (3.78)

where E = EN (q, p) and N = N are mean values of energy and the number
of particles of the system, respectively. From (3.78) it follows that

Acl = (2π�)−3NeΩ/k0T . (3.79)

Having substituted this expression into (3.77), we get the final expression for
the distribution function of classical open systems

ρN (q, p) = (2π�)−3Ne
Ω+μN−EN (q,p)

k0T . (3.80)

In the considered case for open systems, the normalization condition has the
appearance ∑

N

∫
ρN (q, p)dΓN = 1. (3.81)

Using (3.81) and (3.80), the general expression of the grand thermodynamic
potential can be written down as1

Ω = −k0T ln

[∑
N

eμN/k0T 1
N !

∫
e−EN (q,p)/k0T dΓN

(2π�)3N

]
. (3.82)

In conclusion, note the distinctions between three fundamental distributions:
microcanonical, canonical and grand canonical.

1. Microcanonical distribution (1.99) or (3.57) is just for completely isolated
systems. In this case, we do not take into account the fluctuation in either
energy or the number of particles (see Fig. 1.5).

1 Here the appearance of the factor N ! is based on reasoning when passing from
the expression for statistical integral (2.14) to the expression (2.15).
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2. Gibbs canonical distribution (3.16) is just for closed systems in the ther-
mostat. In this case, the fluctuation in energy is taken into account (see
Fig. 3.2), but the fluctuation in the number of particles is not, i.e. the mean
number of particles N coincides with their real value. This distribution
with reference to the number of particles can be called “the microcanonical
distribution”.

3. Gibbs grand canonical distribution (3.63) or (3.68) is just for open sys-
tems in the thermostat. In this case, the fluctuation both in energy and
the number of particles is taken into account. This distribution with ref-
erence to energy and the number of particles can be called “the canonical
distribution”.

In particular, if we disregard the fluctuation in the number of particles, i.e.
we suppose that the mean value of the number of particles N and the real N
coincide, we get Ω + μN = Ω + μN̄ = Ω + Φ = F . Consequently, the grand
canonical distribution (3.68) passes into the canonical distribution (3.33).



4

Ideal Gas

Summary. This chapter is devoted to the application of the Gibbs method to
an ideal gas. On the basis of this method, free energy and entropy are calculated,
and thermal and caloric equations of a state are found. The exposition of classical
and quantum theories of the heat capacity of an ideal gas occupies a large place.
A mixture of ideal gases and the Gibbs paradox are considered. Thermodynamic
properties of an ideal gas consisting of polar molecules in an external electric field
as well as an ideal gas consisting of magnetic dipoles (a paramagnetic in the gaseous
phase) in an external magnetic field are also considered. At the end of the chapter
a simple example of the thermodynamic state of a system with negative absolute
temperature is discussed.

4.1 Free Energy, Entropy and Equation
of the State of an Ideal Gas

Apply the Gibbs method to an ideal gas of volume V , consisting of a N
number of identical particles (molecules). In the given section, we disregard
the internal structure of a molecule and present it as a material point with the
mass m. In an ideal gas, inasmuch as interaction between molecules is absent,
internal energy can be presented in the form:

E(q, p) =
N∑

i=1

1
2m

(p2
ix + p2

iy + p2
iz). (4.1)

In order to find the free energy of an ideal gas, it is necessary to calculate the
statistical integral. To do this, substitute the expression of energy (4.1) into
(3.43). Then we get

Zcl =
1

N !(2π�)3N

[∫
e−(p2

x+p2
y+p2

z)/2mk0T dqxdqydqzdpxdpydpz

]N

. (4.2)



110 4 Ideal Gas

Take into account that ∫
dqxdqydqz = V. (4.3)

Moreover, according to Appendix A, integrals, entering into (4.2), are easily
calculated

∞∫
−∞

e−p2
x/2mk0T dpx = 2

∞∫
0

e−p2
x/2mk0T dpx = (2πmk0T )1/2. (4.4)

Note that integrals over dpy, dpz also equal (4.4). Then with regard to (4.3)
and (4.4) the statistical integral (4.2) takes the form

Zcl =
1

N !(2π�)3N

[
V (2πmk0T )3/2

]N

. (4.5)

Logarithmizing this expression and taking into account that for large N the
logarithm N ! can be presented in the form

ln N ! = ln 1 + ln 2 + · · · + ln N =
N∑

x=1

ln x ≈
N∫

1

ln xdx = N ln (N/e) (4.6)

for lnZcl we get

ln Zcl = N ln

[
eV

N

(
mk0T

2π�2

)3/2
]
. (4.7)

As a result, the free energy of an ideal gas F = −k0T ln Zcl takes the form

F = −k0NT ln

[
eV

N

(
mk0T

2π�2

)3/2
]
. (4.8)

Using the expression of free energy (4.8) and relationship P = − (∂F/∂V )T,N ,
we get the known thermal equation of the state of an ideal gas, i.e. the
Mendeleev–Clapeyron equation

P =
k0NT

V
. (4.9)

With regard to the expression of free energy (4.8) and the definition S =
− (∂F/∂T )V,N , entropy of an ideal gas can be expressed by T and V :

S(T, V ) =
3
2
k0N + k0N ln

[
eV

N

(
mk0T

2π�2

)3/2
]
. (4.10)
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Expression of entropy (4.10) can be rewritten in the form

S(T, V ) = k0N ln
(
eV

N

)
+

3
2
k0N ln T +BN, (4.11)

where B is the constant for a specified gas, equal to

B =
3
2
k0

[
1 + ln

(
mk0

2π�2

)]
.

Then from (4.11) for the isochoric heat capacity of an ideal gas CV =
T (∂S/∂T )V we get the known expression

CV =
3
2
k0N. (4.12)

If this expression is taken into account in (4.11), entropy takes the form

S(T, V ) = k0N ln
(
V e

N

)
+ CV ln T +BN. (4.13)

Use the equation of the state of an ideal gas V = k0TN /P in (4.13). Then
entropy can be presented as a function of T and P :

S(T, P ) = (k0N + CV ) ln T − k0N ln P +B0N. (4.14)

Here B0 = B + k0(1 + ln k0). Taking into account the expression (4.14) and
the definition CP = T (∂S/∂T )P , for the isobaric heat capacity we get

CP = CV + k0N = CV +R. (4.15)

For the considered model of an ideal gas it is not difficult to determine the
caloric equation of a state, i.e. the expression of energy. To do this, take into
account (4.8) and (4.10) in the expression E = F + TS . As a result, we get

E =
3
2
k0NT. (4.16)

As is seen, energy of an ideal gas does not depend on volume and is determined
only by temperature. Note that having taken the derivative with respect to
temperature in (4.16), we get the expression of the isochoric heat capacity
(4.12).

If we use the equation of state (4.9), expressions of entropy (4.13) and
isobaric heat capacity (4.15), we get equations of the isotherm (T = const)
and adiabat (S = const) of an ideal gas:

if T = const, then PV = const
and (4.17)

if S = const, then PV γ = const,



112 4 Ideal Gas

where γ = CP /CV is the ratio of heat capacities. Inasmuch as γ > 1, from
(4.17) it follows that the slope of the curve of the adiabat is more like the
slope of curve of the isotherm.

Using the equation of state (4.9) and the equation of the adiabat (4.17),
known relationships between T and V , as well as T and P , can be found.

TV γ−1 = const; T γP 1−γ = const. (4.18)

Note that the latter relationship in the case of an adiabatic process (S = const)
can also be obtained from expression (4.14).

4.2 Mixture of Ideal Gases: Gibbs Paradox

Dwell upon one important question of the classical statistics more comprehen-
sively. This question is associated with correction of the statistical integral,
i.e. with the presence of the factor 1/N ! in expression (3.43)1.

An example of an ideal gas shows that without consideration of the given
factor, it is the violated additivity of entropy and free energy which leads
to the Gibbs paradox. Indeed, if the factor 1/N ! in the expression of the
statistical integral (4.2) is disregarded, for free energy instead of (4.8) and for
entropy instead of (4.13) we get the following expression, conformably,

F = −k0NT ln

[
V

(
mk0T

2π�2

)3/2
]
, (4.19)

S(T, V ) = k0N ln V + CV ln T +BN. (4.20)

From these expressions it is seen that neither free energy nor entropy satisfies
the condition of additivity. For instance, at pre-assigned conditions (identical
temperatures) as the number of particles N increases two times, F and S
increase more than two times, i.e. inasmuch as N increases, the heat capacity
and volume also increase two times.

The application of expression for entropy (4.20), obtained without consid-
eration of 1/N !, to a mixture of ideal gases leads to the appearance of the
Gibbs paradox. In order to show this, assume that a vessel with an ideal gas
is divided by a partition ab into two parts with volumes V1 and V2. In each
part, different ideal gases (with different heat capacities) with a number of
molecules N1 and N2, respectively, are found. Temperature and pressure of
the gases in both parts are identical (Fig. 4.1).

Entropy of the complete system, consisting of two parts divided by the
partition, with regard to expression (4.20) can be presented as:

1 In quantum statistics this problem is solved on the basis of the indistinguishability
principle: a wave function of an ideal gas, consisting of identical particles, ought
to be either symmetric or antisymmetric (see Chap. 7)
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V1

N1

T, P

V2

N2

T, P

a

b

Fig. 4.1. The illustration for the Gibbs Paradox

S0 = S1 + S2 = k0N1 ln V1 + k0N2 ln V2

+(CV1 + CV2) ln T +B1N1 +B2N2.
(4.21)

If the partition ab is taken away, as a result of diffusion of gases a mixture
of gases forms. The system with the number of molecules (N1 +N2) is found
in a state of equilibrium with the identical density over the entire volume
(V1 + V2). In this final state, entropy of the system can also be presented on
the basis of (4.20) in the form

S = k0(N1 +N2) ln(V1 + V2) + (CV1 + CV2) ln T +B1N1 + B2N2. (4.22)

The change in entropy as a result of taking away the partition is

ΔS = S − S0 = k0N1 ln
(
V1 + V2

V1

)
+ k0N2 ln

(
V1 + V2

V2

)
. (4.23)

It is seen that as a result of the diffusion of gases the system passes into a new
state with the larger entropy: ΔS > 0, i.e. diffusion of different gases is an
irreversible process, and so it ought to be. However, from (4.23) it is seen that
in the expression of ΔS no parameter characterizing the distinction of gases
enters. Thus it follows that if between two parts of the system with identical
gases the partition is taken away, then, according to formula (4.23), entropy
increases by a magnitude ΔS as a result of self-diffusion. This alogical result
is precisely the Gibbs paradox.

The paradox consists of the fact that as identical gases are mixed the
macroscopic state of the system does not change and therefore entropy ought
not to change. However, entropy, calculated on the basis of formula (4.20),
changes. In the particular case, if V1 = V2 = V and N1 = N2 = N , according
to (4.23), the change in entropy, independent of the kind of gas, is a constant
quantity, equal to

ΔS = 2R ln 2, (4.24)

where R = k0N is the universal gas constant.
Now show that if to a mixture of ideal gases, the expression for entropy

(4.13) obtained with consideration of 1/N ! is applied, the above-indicated
Gibbs paradox disappears, i.e. as different gases are mixed entropy increases,
and as identical gases are mixed entropy does not change.

Indeed, inasmuch as on the right and left parts of the system, presented in
Fig. 4.1, different gases are found, entropy of the original state of the system
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on the basis of formula (4.13) has the appearance:

S0 = S01 + S02 = k0N1 ln
(
eV1

N1

)
+ k0N2 ln

(
eV2

N2

)

+(CV1 + CV2) ln T + B1N1 +B2N2,

(4.25)

and after mixing (taking away the partition), entropy of the system in the
final state ought to equal

S = S1 + S2 = k0N1 ln
[(

(V1 + V2)e
N1

)]

+ k0N2 ln
[(

(V1 + V2)e
N1

)]
+ (CV1 + CV2) ln T +B1N1 +B2N2,

(4.26)
and the change in entropy is

ΔS = S − S0 = k0N1

[
ln
(
V1 + V2

N1

)
− ln

V1

N1

]

+ k0N2

[
ln
(
V1 + V2

N2
− ln

V2

N2

)]
.

(4.27)

Inasmuch as each of the expressions entering into (4.27) is positive, then

ΔS > 0. (4.28)

Assume that on both sides of the partition an identical ideal gas is found
(Fig. 4.1). In the presence of the partition, entropy on the basis of formula
(4.13) has the appearance:

S′0 = k0N1 ln
eV1

N1
+ k0N2 ln

eV2

N2
+ (CV1 + CV2) ln T +B(N1 +N2). (4.29)

After taking away the partition the system occupies volume (V1 + V2) with
the number of molecules (N1 + N2). Therefore the expression of entropy in
this final state, according to (4.13), takes the form

S′ = k0(N1 +N2) ln
e(V1 + V2)
N1 +N2

+ (CV1 + CV2) ln T +B(N1 +N2). (4.30)

As a result, the change in entropy is

ΔS′ = S′ − S′0 = k0N1

[
ln

V1 + V2

N1 +N2
− ln

V1

N1

]

+ k0N2

[
ln V1+V2

N1+N2
− ln

V2

N2

]
.

(4.31)
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Inasmuch as in the presence and in the absence of the partition, pressure and
temperature are identical, from the equation of state (4.9) follows the identity:

V1 + V2

N1 +N2
=
V1

N1
=
V2

N2
. (4.32)

Taking into account (4.32) in (4.31) we see that entropy does not change:

ΔS′ = 0. (4.33)

Thus, in classical statistics, consideration of the factor 1/N ! leads to the cor-
rect calculation of the statistical integral and the circumventment of the Gibbs
paradox.

4.3 Law About Equal Distribution of Energy
Over Degrees of Freedom: Classical Theory
of Heat Capacity of an Ideal Gas

The essence of this law consists in the fact that if the motion of particles
of an ideal gas is described by equations of classical mechanics, mean values
of energy, accounting for each degree of freedom of a classical particle, are
identical and the value of this energy is determined by temperature. Note
that this result for the simplest case was obtained in Sect. 4.1, in which an
atomar ideal gas was considered and for the mean energy of each particle the
expression E/N = 3k0T/2 was obtained [see (4.16)]. In this case, inasmuch as
the degree of freedom of a particle (an atom) equals 3, energy corresponding
to each degree of freedom equals E/3N = k0T/2.

Here we will consider the more general case. Let N molecules occupy
volume V ; therewith each molecule consists of a n ≥ 2 number of atoms.
Assume that the translational and the rotational motion of a molecule and
also vibrational motions of atoms in reference to each other inside a molecule
are classical. Apply the Gibbs method to this ideal gas and find free energy,
entropy, mean energy and equation of the state of the system.

Having substituted the expression of the total internal energy of a classical
ideal gas

E(q, p) =
N∑

i=1

εi(q, p) (4.34)

into the expression of the statistical integral (4.74), we get:

Zkl =
(2π�)−3Nn

N !

[∫
e−ε(q,p)/k0T dq1dq2 . . . dq3ndp1dp2 . . . dp3n

]N

, (4.35)

here ε(q, p) is the energy of an arbitrary molecule, n is the number of atoms
in a molecule, 3n is the number of degrees of freedom of one molecule,
q1, q2, . . . , q3n are generalized coordinates, determining the position of the
molecule, and p1, p2, . . . , p3n are generalized impulses.
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It is known that the total energy is a quadratic function of coordinates
and impulses

ε(q, p) = aikpipk + bikqiqk, (4.36)

where aik and bik are intrinsic tensors of the molecule with constant compo-
nents. Then (4.35) takes the form

Zkl =
(2π�)−3Nn

N !

[∫
e−(aikpipk+bikqiqk)/k0T dq1dq2 . . .dq3ndp1dp2 . . .dp3n]N.

(4.37)
The position of a molecule as a whole can be determined by 3n coordinates,
knowing the Cartesian coordinates of each atom. However, for convenience,
coordinates determining the position of a molecule can be chosen as follows:

coordinates of the centre of masses of a molecule

q1, q2, q3 ⇒ x, y, z,

and angles of rotation of a molecule around three mutual-perpendicular axes,
passing through centres of masses

q4, q5, q6 ⇒ ϕ1, ϕ2, ϕ3.

The remaining (3n − 6) coordinates characterize the vibrational motion of
atoms in reference to each other inside the molecule.

Note that the above is true only for molecules with the number of atoms
n > 2 and when all atoms are not found in one straight line (the non-
linear configuration of a molecule). For two-atom (n = 2) and multi-atom
(n > 2) molecules, in which atoms are positioned in one straight line (the
linear molecule), the number of rotational degrees of freedom equals not 3,
but 2; therefore, for the indicated case, the number of vibrational degrees of
freedom equals (3n− 5).

Consider a gas consisting of multi-atom (n > 2) non-linear molecules. It
is clear that in the absence of an external field, energy of such molecules
ε(q, p) does not depend on coordinates determining translational (x, y, z) and
rotational (ϕ1, ϕ2, ϕ3) motions. Therefore, the integral with respect to six
coordinates in (4.37) gives the volume of the gas

∫
dq1dq2dq3 ⇒

∫
dxdy dz = V, (4.38)

and the constant angle (2π)3

∫
dq4, dq5, dq6 ⇒

∫
dφ1, dφ2, dφ3 = (2π)3. (4.39)

Taking into account (4.38) and (4.39) in (4.35), we get
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Zcl = (2π�)−3Nn

N !

×
⎡
⎣(2π)3V

∫
e−aikpipk+bikqiqk/k0T dq7dq8 . . . dq3n︸ ︷︷ ︸

3n−6

dp1dp2 . . . dp3n

⎤
⎦

N

.

(4.40)
Pass to new variables q′i and p′i:

qi =
√
k0Tq

′
i; pi =

√
k0Tp

′
i (4.41)

and denote all quantities, not depending on temperature and volume, by A =
const. Then the statistical integral acquires the very simple shape

Zcl = A(V T �/2)N . (4.42)

Here for multi-atom (n > 2) non-liner molecules

� = 6n− 6. (4.43)

In the case of two-atom (n = 2) and multi-atom (n > 2) linear molecules for
the statistical integral Zcl the same expression as (4.42) is obtained only in
this case

� = 6n− 5. (4.44)

Taking into account the expression of the statistical integral (4.42) in the
relationship F = −k0T lnZcl, for the free energy we get

F = −k0T ln A− k0NT ln V − k0NT
�

2
ln T. (4.45)

Hence, the equation of the state of an ideal gas P = − (∂F/∂V )T can be found:

P =
k0NT

V
, (4.46)

entropy S = − (∂F/∂T )V

S = k0 ln A+ k0N ln V +
�

2
k0N ln T +

�

2
k0N, (4.47)

and the total energy E = F + TS

E =
�

2
k0NT. (4.48)

Hence, two conclusions can be drawn: firstly, from (4.46) it is seen that the
pressure of an ideal gas (the thermal equation of state) does not depend on
the degree of complexity and structure of molecules � and is determined only
by the number of molecules; secondly, from (4.48) it follows that the mean
energy of an ideal gas (the caloric equation) does not depend on volume and
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is determined by temperature T and complexity of the structure of molecules,
i.e. the parameter �.

Expression for the mean energy (4.48) can be presented in the form

E

N�
=
k0T

2
. (4.49)

Hence the law about the equal distribution of energy of an ideal gas over
degrees of freedom follows: If all kinds of motion (translational, rotational
and vibrational) of molecules forming an ideal gas are classical, for each value
of the number �, associated with degrees of freedom of a molecule, the identical
energy, equal to k0T/2, accounts.

Now elucidate the relation of the number � determined by the expressions
(4.43) and (4.44) to the number of degrees of freedom. The number � can be
presented in the form

� = �t + �r + 2�v, (4.50)

where �t, �r and �v are numbers of degrees of freedom of translational,
rotational and vibrational motions, respectively.

For a one-atom gas (n = 1) : �r = �v = 0; � = �t = 3
For a two-atom (n = 2) molecule from (4.44) it follows that � = 7. This

number between degrees of freedom is distributed as follows:

�t = 3; �r = 2; �v = 1 . (4.51)

For multi-atom (n > 2) linear molecules, according to (4.44), � = 6n− 5. For
such molecules degrees of freedom equal:

�t = 3; �r = 2; �v = 3n− 5 . (4.52)

For multi-atom (n > 2) non-linear molecules from (4.43) it follows that � =
6n− 6. In this case

�t = 3; �r = 3; �v = 3n− 6 . (4.53)

In conclusion, note the following. Why is the vibrational degree of freedom
doubled, in contradistinction to translational and rotational motions, in the
number � in expression (4.50)? This is associated with the fact that in the
absence of an external field, the coordinate does not enter into the expression
of energy of translational and rotational motions, but both the impulse and
the coordinate enter into the expression of energy of the vibrational motion.
In other words, energy of the vibrational motion is the sum of kinetic and
potential energies.

4.3.1 Classical Theory of Heat Capacity of an Ideal Gas

The expression obtained above for energy of a classical ideal gas (4.48) makes
it possible to easily calculate the isochoric heat capacity CV = (∂E/∂T )V :
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CV =
�

2
k0N =

�

2
R. (4.54)

Hence it is seen that according to classical theory, the heat capacity of an ideal
gas does not depend on temperature and is determined only by the degree of
complexity and structure (�) of a molecule.

1. For an atomar gas (n = 1) � = �t = 3 and CV = 3R/2.
2. For a two-atom (n = 2) and a multi-atom (n > 2) ideal gas, consisting of

linear molecules, the heat capacity is determined by the expression

CV =
6n− 5

2
R; n ≥ 2 . (4.55)

3. For a multi-atom (n > 2) ideal gas, consisting of non-linear molecules, the
heat capacity equals

CV =
6n− 6

2
R; n > 2 . (4.56)

In the particular case, according to (4.55), the heat capacity of an ideal two-
atom gas equals CV = 7R/2. However, the test shows that the heat capacity
of a two-atom ideal gas remains constant (T0), only in the region of room
temperatures, and the value of CV equals not 7R/2, but 5R/2. For instance,
at room temperature for hydrogen H2, oxygen O2 and nitrogen N2 values of
the heat capacity CV /R equal 2.45, 2.51 and 2.51, respectively. However, with
the growth of temperature, beginning from the room, the heat capacity CV

increases, and with the lowering of temperature, it lowers. In Fig. 4.2, values
of the heat capacity CV /R, obtained on the basis of classical theory, are
indicated and the behaviour of the heat capacity depending on temperature
is schematically depicted. From the figure the nonconformity of experimental
data and classical theory is seen. Note that only quantum theory circumvents
this nonconformity (see Sect. 4.4).

CV/R

7/2

5/2

3/2

Classical theory

Experiment

T0 T0

Fig. 4.2. The temperature dependence of the heat capacity CV /R for a two-atom
ideal gas
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In conclusion, according to classical theory, determine the ratio of heat
capacities. It is known that the difference of heat capacities CP − CV is
determined by the thermal equation of the state of an ideal gas P =P (V, T ).
Inasmuch as the equation of a state does not depend on the degree of complex-
ity of molecules forming a gas, and is determined only by their concentration,
for a gas consisting of molecules of any complexity we get CP −CV = R. Tak-
ing this into account, and also relationships (4.55) and (4.56), for the ratio
CP /CV we get the following values:

1. For an atomar gas (n = 1)

CP

CV
= 1 +

R

CV
=

5
3
. (4.57)

2. For a two-atom (n = 2) and a multi-atom (n > 2) ideal gas, consisting of
linear molecules

CP

CV
= 1 +

R

CV
= 1 +

2
6n− 5

=
6n− 3
6n− 5

; n ≥ 2. (4.58)

3. For a multi-atom (n > 2) ideal gas, consisting of non-linear molecules

CP

CV
= 1 +

R

CV
= 1 +

2
6n− 6

=
3n− 2
3n− 3

; n > 2. (4.59)

As is seen from relationships (4.58) and (4.59), with the growth in the number
of atoms in a molecule, the ratio CP /CV tends to unity lim

n→∞ (CP /CV ) = 1,
whereas the difference CP −CV = R does not depend on the number of atoms
n in a molecule. This is associated with the fact that the difference CP −CV

is determined only by the equation of state. And the equation of the state
(4.46) does not depend on the degree of complexity of molecules.

4.4 Quantum Theory of Heat Capacity of an Ideal Gas:
Quantization of Rotational and Vibrational Motions

In Sect. 4.3 we noted the qualitative distinction between the experiment and
classical theory in the temperature dependence of the heat capacity of a two-
atom ideal gas (Fig. 4.2). The basic cause of this distinction resides in the
supposition that all kinds of motion of molecules (translational, rotational
and vibrational) which do not correspond to reality are classical.

Here we will consider the more general case, supposing that all motions
of molecules are quantum, i.e. the energy spectrum, corresponding to these
motions, is quantized. However we will show that at finite temperatures the
translational motion is not quantized, i.e. this motion can be considered as a
classical one. At the same time, consideration of the quantization of two other
motions (rotational and vibrational ones) is very important in the theory of
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heat capacity. The quantum theory, taking into account this quantization,
successfully circumvents the distinction indicated above.

Assume that an ideal gas, consisting of N number of two-atom molecules,
occupies volume V . The total energy of an ideal gas has the appearance

En′ =
N∑

i=1

εi
k, (4.60)

where εi
k is energy of the ith molecule, k is the totality of quantum numbers,

determining the state of one molecule, n′ is the totality of all quantum num-
bers, determining one microstate of an ideal gas as a whole. Inasmuch as we
suppose that all kinds of motions are independent of each other, the energy
of one arbitrary ith molecule can be written as:

εi
k = εt + εr + εv, (4.61)

where εt, εr, εv is energy of the translational, rotational and vibrational
motions, respectively. It is supposed that energy of all kinds of the motion
is quantized and is determined by different corresponding quantum numbers.
Their explicit form will be given slightly later. And for now the statistical sum
present in the general form

Z =
∑
n′

e−En′/k0T =
1
N !

(∑
k

e−εk/k0T

)N

, (4.62)

where the factor 1/N !, entering into this expression, takes into account the
fact that at the transposition of two molecules the state of a gas as a whole
does not change, i.e. it is regarded that molecules are identical (see Sects. 3.2
and 4.1).

If we take into account the expression of energy of a molecule (4.61) in
(4.62), we get

Z =
1
N !

(zt · zr · zv)N , (4.63)

where

zt =
∑

e−εt/k0T , (4.64)

zr =
∑

e−εr/k0T , (4.65)

zv =
∑

e−εv/k0T (4.66)

are minor statistical sums, corresponding to different motions of one arbitrary
molecule.

Note that in these expressions the summation is conducted with respect to
quantum numbers, corresponding to translational, rotational and vibrational
motions.
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If we take into account ln N ! ≈ N ln(N/e) in (4.63), the free energy of an
ideal gas F = −k0T ln Z takes the form

F = −k0TN
[
ln
( e
N
zt

)
+ ln zr + ln zv

]
. (4.67)

Then for entropy of the gas from the expression S = − (∂F/∂T )V and (4.67)
we get

S = k0N
[
ln
(

e
N zt

)
+ ln zr + ln zv

]

+ k0NT
∂

∂T
[ln zt + ln zr + ln zv] .

(4.68)

The mean energy of the gas E = F + TS is

E = k0NT
2 ∂

∂T
[ln zt + ln zr + ln zv] (4.69)

or
E = Et + Er + Ev. (4.70)

Here

Et = k0NT
2 ∂

∂T
ln zt, (4.71)

Er = k0NT
2 ∂

∂T
ln zr, (4.72)

Ev = k0NT
2 ∂

∂T
ln zv. (4.73)

The isochoric heat capacity of an ideal gas, conformable to the expression of
energy (4.69), consists of three items:

CV = Ct
V + Cr

V + Cv
V . (4.70a)

It is seen that all problems of the quantum theory of the heat capacity are
reduced to calculations of minor statistical sums zt, zr, zv of one molecule.
Calculate these sums for each kind of motions separately.

4.4.1 Translational Motion

Assume that in a cube with dimensions of sides L and volume V = L3 N
number of molecules is found. When considering the translational motion
of molecules, the complexity and construction of a molecule do not matter,
inasmuch as it is supposed to behaves as a material point with the reduced
mass at the centre of masses of the molecule. According to quantum mechanics,
energy of a material point (a particle) with the massm, translationally moving
in volume V = L3, is pre-assigned by the expression

εt =
π2

�
2

2mL2

(
n2

1 + n2
2 + n2

3

)
, (4.74)
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here ni = 1, 2, 3, . . . are quantum numbers.
In order to calculate the explicit form of the minor statistical sum,

characterizing the translational motion, substitute (4.74) into (4.64):

zt =
∑

n1n2n3

e−
π2

�
2

2mL2k0T
(n2

1+n2
2+n2

3). (4.75)

Introduce the concept of the characteristic temperature for the translational
motion

Tt =
π2

�
2

2mk0L2
(4.76)

and write down sum (4.75) in the form

zt =

( ∞∑
n=1

e−n2Tt/T

)3

. (4.77)

Inasmuch as at arbitrary values of temperature sum (4.77) cannot be presented
in the analytical form, consider two limiting cases.

Low temperatures : T � Tt. In this case in sum (4.77) it can be restricted
to the first two terms. Then

zt = e−3Tt/T
(
1 + 3e−3Tt/T

)
; T � Tt. (4.78)

Using this expression in (4.71), we get the mean energy of the translational
motion

Et = E0 + 3E0e−3Tt/T ; T � Tt , (4.79)

where

E0 = 3k0NTt =
3π2

�
2N

2mL2
(4.80)

is the zero energy of an ideal gas, when all molecules are found in the
fundamental quantum state (n1 = n2 = n3 = 1).

If (4.79) is used, the heat capacity of a gas, associated with the transla-
tional motion, at low temperatures has the appearance

Ct
V = 27k0N

(
Tt

T

)2

e−3Tt/T ; T � Tt . (4.81)

It is seen that as T → 0 the translational part of the heat capacity tends
to zero.

High temperatures: T � Tt. In the region of temperatures, satisfying this
condition, the discreteness of the translational motion can be neglected and
it can be regarded as a classical one. If we use notion (4.76), the condition of
classicity of the motion can be presented as

π2
�

2

2mL2
� k0T or λ� L, (4.82)
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where λ = h
/√

2mk0T is the de Broglie wavelength of a molecule. It is evident
that (4.82) is the condition that in the energy spectrum of the translational
motion the difference of energies of two adjacent levels is far less than that of
the thermal energy k0T . Simultaneously, the condition of classicity (4.82) can
be formulated as follows: the motion is classical if the de Broglie wavelength
of a molecule (a particle) is far less than the dimensions of the space in which
the motion occurs.

Note that the condition of classicity (4.82) can also be presented in the
form

mυL� h or St � h, (4.83)

i.e. the action of the given motion St = mυL ought to be much more than the
Planck constant h. When obtaining the condition of classicity (4.83) we sup-
posed that k0T ≈ mυ2. Therefore, (4.82) and (4.83) are equivalent conditions
of classicity of the translational motion.

The sum entering into the expression of the statistical sum (4.77) can be
presented in the form

∞∑
n=1

e−n2Tt/T =
∞∑

n=0

e−n2Tt/T − 1. (4.84)

Inasmuch as in the region of high temperatures (T � Tt) two adjacent terms
are little distinct from each other, to calculate this sum the Euler summation
formula can be used:

∞∑
n=0

f(n) =

∞∫
0

f(n)dn+
1
2

[f(0) + f(∞)] +
1
12

[f ′(∞) − f ′(0)] − · · · (4.85)

Here it is supposed that the function f(n) is integratable in the range of (0,∞)
and all its derivatives at_lower and upper limits take on finite values.

In our case f(n) = e−n2Tt/T . Taking this into account and also

∞∫
0

e−n2Tt/T dn =
1
2

√
πT

Tt
(4.86)

in (4.84), sum (4.83) can be presented in the form

∞∑
n=1

e−n2Tt/T =
1
2

[(
πT

Tt

)1/2

− 1

]
. (4.87)

Having substituted (4.86) into (4.77), for the statistical sum we get

zt =
1
8

(
πT

Tt

)3/2
[
1 − 3

(
Tt

πT

)1/2
]

; T � Tt. (4.88)
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Fig. 4.3. The temperature dependence of the translational part of the heat capacity

Taking into account this expression, and also (4.71), for the mean energy of
the translational motion in the region of high temperatures we get

Et =
3
2
k0NT

[
1 +

(
Tt

πT

)1/2
]

; T � Tt. (4.89)

and the heat capacity, corresponding to this motion, equals

Ct
V =

3
2
k0N

[
1 +

1
2

(
Tt

πT

)1/2
]

; T � Tt. (4.90)

Second items in the square bracket in (4.89) and (4.90) are quantum correc-
tions to the mean energy, associated with the quantization of the translational
motion and the heat capacity. As is seen, this correction insignificantly
increases the classical value of the heat capacity Ct

V = 3R/2. The schematic
dependence Ct

V (T ) in all temperature regions with regard to expressions (4.81)
and (4.90) is presented in Fig. 4.3, from which it is seen that there is a small
maximum.

At ultra-high temperatures (T → ∞) from (4.88) to (4.90) stems purely
classical results

zt =
1
8

(
πT

Tt

)3/2

=
V

�3

(
mk0T

2π

)3/2

, (4.91)

Et =
3
2
k0NT, (4.92)

Ct
V =

3
2
k0N. (4.93)

4.4.2 Rotational Motion

Consider an ideal gas consisting of N number of two-atom molecules; there-
with atoms with masses m1 and m2 are found at a constant distance r from
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each other. From the point of view of the rotational motion each molecule can
be considered as a rotator.

According to quantum mechanics, energy of a rotator has the appearance

εr =
�

2

2I
l(l + 1), (4.94)

where l = 0, 1, 2, . . . is the rotational quantum number, I = mr2 is the moment
of inertia of a molecule, m = m1m2/(m1 +m2) is the reduced mass of a
molecule.

To find the mean value of energy of a system, corresponding to the rota-
tional motion, according to expression (4.72), it is required to calculate the
statistical sum (4.65). It is known that energy levels (4.94) of the rotational
motion are (2l+1)-fold degenerate. Taking this into account, substitute (4.94)
into (4.65). Then for the statistical sum, corresponding to the rotation, we get

zr =
∞∑

l=0

(2l+ 1)e−
�
2

2Ik0T l(l+1). (4.95)

If we introduce the concept of the characteristic temperature for the rotational
motion

Tr =
�

2

2k0I
, (4.96)

(4.95) takes the form

zr =
∞∑

l=0

(2l+ 1)e−
Tr
T l(l+1). (4.97)

Inasmuch as at arbitrary values of temperature the sum (4.97) cannot be
presented in the analytical form, consider two limiting case.
Low temperatures : T � Tr. In this case, inasmuch as with the lowering of
temperature terms of the sum (4.97) fast decrease, it can be restricted to the
first two terms

zr ≈ 1 + 3e−2Tr/T . (4.98)

Taking this into account in (4.72), for the mean energy we get

Er = 6k0NTre−2Tr/T , (4.99)

and for the heat capacity

Cr
V = 12k0N

(
Tr
T

)2
e−2Tr/T ; T � Tr . (4.100)

Hence it is seen that with the lowering of temperature the heat capacity
exponentially drops and tends to zero.

High temperatures: T � Tr. In the region of temperatures, satisfying this
condition, the discreteness of the energy spectrum of a rotator (4.94) can be
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neglected and the motion can be regarded as a classical one. If notation (4.96)
is used, the condition of classicity of the rotational motion T � Tr can be
presented as

T � Tr; k0T � �
2

2mr2
; λ� r; Sr � �, (4.101)

where λ = �
/√

2mk0T is the de Broglie wavelength, Sr = mυr is the action
of the rotational motion, υ is the linear velocity of rotation.

In order to compute the sum (4.97) for the considered case, use the Euler
formula (4.84) and take into account that

∞∫
0

(2l + 1)e−
Tr
T l(l+1)dl =

∞∫
0

e−
Tr
T xdx =

T

Tr
. (4.102)

Then we get

zr =
T

Tr

[
1 +

1
3
Tr

T
+

1
12

(
Tr

T

)2
]

; T � Tr. (4.103)

Having substituted (4.103) into (4.72), for the mean energy of the rotational
motion we get

Er = k0NT

[
1 − 1

12

(
Tr

T

)2
]

; T � Tr, (4.104)

and for the heat capacity

Cr
V = k0N

[
1 +

1
12

(
Tr

T

)2
]

; T � Tr. (4.105)

The temperature dependence of the rotational heat capacity, according to
expressions (4.100) and (4.105), is schematically shown in Fig. 4.4. As is seen
from the figure, the function Cr

V (T ) in the region Tr has a small maximum. On
the basis of numerical computations it can be shown that the temperature at
which Cr

V (T ) takes on a maximum value equals Tmax = 0.8Tr, and the value
of the heat capacity at this temperature Cr

V (Tmax) = 1.1k0N .
Second items in the square bracket in (4.104) and (4.105) are quantum

corrections to the mean energy and heat capacity, associated with the quanti-
zation of the rotational motion. As is seen from (4.104) and (4.105), the sign
of the correction is positive.

In the limiting case (T → ∞) from expressions (4.104) and (4.105) for
energy and heat capacity purely classical results follow: Er = k0NT and Cr

V =
k0N .
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0
T

k0N

Tr

r
CV

Fig. 4.4. The temperature dependence of the rotational part of the heat capacity

4.4.3 Vibrational Motion

In two-atom molecules atoms perform small intermolecular vibrational
motions in reference to each other. Therefore a molecule can be considered as
a linear harmonic oscillator. According to quantum mechanics, energy of such
an oscillator has the appearance

εv = �ω

(
n+

1
2

)
, (4.106)

where ω =
√
χ/m is the circular frequency of vibrations, χ is the coefficient

of elasticity, m is the reduced mass of a molecule, and n = 0, 1, 2, . . . is the
oscillatory quantum number.

Consequently, a two-atom ideal gas can be considered as a gas consisting
of N number of non-interacting harmonic oscillators with the frequency ω.
Calculate the mean energy and heat capacity of such a gas. To do this substi-
tute (4.106) into (4.66) and add up with respect to the quantum number n.
As a result, for the vibrational statistical sum we get

zv =
e−�ω/2k0T

1 − e−�ω/k0T
=
[
2sh

�ω

2k0T

]−1

. (4.106a)

Having substituted (4.106a) into (4.73) for the mean energy of the vibrational
motion of molecules of a gas we get

Ev =
N�ω

2
+

N�ω

e�ω/k0T − 1
= Nε(ω, T ). (4.107)

Hence for the mean energy of one oscillator ε(ω, T ) = Ev/N we have

ε(ω, T ) =
�ω

2
+

�ω

e�ω/k0T − 1
. (4.108)

Here ε0 = �ω/2 is energy of the oscillator as T = 0, i.e. the zero energy. At
temperatures satisfying the condition of classicity k0T � �ω, from (4.108)
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Fig. 4.5. The temperature dependence of the energy of a linear harmonic oscillator

stems the known classical result for energy of an oscillator ε(T ) ≈ k0T
(Fig. 4.5).

Note that the presence of zero energy of an oscillator and the fact that
energy of a harmonic oscillator depends on the frequency are purely quan-
tum effects. Using expression (4.107), for the heat capacity Cv

V = (∂Ev/∂T ),
associated with the vibrational motion, we get

Cv
V = k0N

(
�ω

k0T

)2 e�ω/k0T(
e�ω/k0T − 1

)2 . (4.109)

If we introduce the concept of the characteristic temperature of the vibrational
motion

Tv =
�ω

k0
, (4.110)

expression for heat capacity (4.109) takes the form

Cv
V = k0N

(
Tv

T

)2 eTv/T(
eTv/T − 1

)2 . (4.111)

This expression of heat capacity applies for any value of temperature. On this
basis consider the limiting cases.

Low temperatures : T � Tv. If in this case in the denominator of (4.111)
we neglect unity compared with exp (Tv/T ) � 1, (4.111) takes the form

Cv
V ≈ k0N

(
Tv

T

)2

e−Tv/T ; T � Tv, (4.112)

i.e. the heat capacity exponentially depends on temperature and as T → 0
tends to zero.

High temperatures: T � Tv. In the region of temperatures and frequencies,
satisfying this condition, the vibrational motion is classical. This condition,
according to (4.110), can be presented in the form

�ω � k0T, (4.113)
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i.e. the discreteness (the difference between two adjacent levels) of the energy
spectrum of an oscillator ought to be of much less energy than that of the
thermal motion.

If we write down the classical law of motion of an oscillator in the form
y = ymax cosωt and accept that ẏ = υ and mυ2 ≈ k0T , the condition of
quasi-classicity (4.113) acquires the following equivalent shape:

�

mυ
� y or λ� y; � � mυy or Sv � �, (4.114)

where Sv = mυy is the action of the vibrational motion and λ = h/mυ is the
de Broglie wavelength.

In order to consider the region of high temperatures, introduce the notation
x = Tv/T and rewrite the expression of heat capacity (4.111) in the form

Cv
V = k0Nϕ(x), (4.115)

where

ϕ(x) =
(

x

ex − 1

)2

ex =
[

x/2
sh(x/2)

]2

. (4.116)

Inasmuch as in the region of high temperatures x � 1, sh(x/2) can be
expanded into a series, restricting it to the first two terms:

sh
x

2
=
x

2
+

1
6

(x
2

)3

. (4.117)

If we substitute (4.117) into (4.116), the function φ(x) takes the form

ϕ(x) =
(
1 + x2/24

)−2
=
(
1 − x2/12

)
;x� 1. (4.118)

As a result from (4.115) and (4.118) in the limiting case of high temperatures
x = Tv/T � 1 for heat capacity we get

Cv
V = k0N

[
1 − 1

12

(
Tv

T

)2
]

; T � Tv. (4.119)

Here Cv
V = k0N is the classical result, and −k0N/12 (Tv/T )2 is the correction

to heat capacity, associated with the quantization of the vibrational motion.
As is seen, this correction, in contradistinction to the correction of the rotata-
tional heat capacity, is negative. Therefore Cv

V (T ) has no maximum. The
temperature dependence of Cv

V (T ) is schematically presented in Fig. 4.6.
Note the following. At the beginning of the section we supposed that all

motions of a molecule are independent. Therefore the total energy of molecules
can be presented in the form (4.74). However, the supposition in reference to
rotational and vibrational motions is true only in the case when the vibrational
motion is harmonic. In the case of anharmonic vibrations the mean distance
between atoms changes, which leads to the change in the moment of inertia
I = mr2, and, thereby, parameters of the rotational motion changes, i.e. the
anharmonic vibration can influence the rotational motion.
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Fig. 4.6. The temperature dependence of the vibrational part of the heat capacity

4.4.4 Total Heat Capacity

Up to now we considered different forms of the motion of two-atom molecules
separately and analysed temperature dependences of heat capacities in dif-
ferent temperature ranges. Now consider temperature dependences of a two-
atom ideal gas in the wide temperature region. To do this remember that
while expounding the quantum theory of heat capacity for each kind of
motion (translational, rotational, vibrational) the notion of the characteristic
temperature (Tt, Tr, Tv) was introduced. Evaluate these temperatures.

If we accept that the reduced mass of a molecule is m = 10−24 g, and linear
dimensions of the vessel L = 0.1 cm, according to (4.76), for Tt we get

Tt =
π2

�
2

2mk0L2
∼ 10−12 K. (4.120)

If we accept that the distance between atoms is r = 10−8 cm, according to
(4.96), for Tr we have

Tr =
�

2

2mk0r2
∼ 50 K. (4.121)

If we accept that the cyclic frequency is equal to ω ≈ 1014 s−1 (the infrared
region), according to (4.110), for Tv we get

Tv =
�ω

k0
∼ 103 K. (4.122)

Apart from those indicated, there are two characteristic temperatures: temper-
ature of condensation Tcond and temperature of dissociation of molecules Td.

Note that the quantum theory of the heat capacity expounded here is
applicable only in the region of temperatures Tcond < T < Td.

Characteristic temperatures for three two-atom gases are adduced in
Table 4.1. In this table the value of Tt is absent, inasmuch as, according
to (4.120), its value almost equals zero.

From the above-adduced values of theoretical evaluations, and also from
Table 4.1 it follows that above the condensation temperature in the gaseous
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Table 4.1. Characteristic temperatures for three two-atom gases

H2 O2 N2

Tcond (K) 20 90.2 77.5
Tr (K) 85.4 2.1 2.9
Tv (K) 6.1 × 103 2.2 × 103 3.3 × 103

Td (K) 5.2 × 104 5.9 × 104 8.5 × 104

T

CV / k0N

Tr Tv

7/2

5/2

3/2

Fig. 4.7. The temperature dependence of the total heat capacity for a two-atom
ideal gas

phase the translational motion of two-atom molecules is always classical and
the corresponding isochoric heat capacity Ct

V = 3k0N/2.
When approaching the temperature of a gas Tr, the rotational motion of

molecules gets excited and, thereby, the heat capacity grows. In the region
T � Tr the rotational motion becomes classical and the total heat capacity,
corresponding to translational and rotational motions in this region, equals
5k0N/2. At the further raise of temperature, i.e. in the region Tr < T < Tv

the vibrational motion also gets excited, which leads to the growth of CV . In
the region of temperatures Td > T � Tv the vibrational motion also becomes
classical and the total heat capacity, being determined by all types of motions,
theoretically ought to reach the limiting value CV = Ct

V +Cr
V +Cv

V = 7k0N/2.
As is seen from (4.122), the characteristic temperature Tv is of rather high
magnitude; therefore in practice the limiting value is not reachable. Inasmuch
as the characteristic temperature of the translational motion Tt is triflingly
small, in the gaseous phase (Tt < Tr) the value 3k0N/2 is not reachable,
either. In Fig. 4.7 the temperature dependence of the total heat capacity is
schematically presented. If we compare this dependence with experimental
results, adduced in Fig. 4.2, it can be noticed that the experimental result
coincides with the theoretical one in the region of temperatures (Tr − ΔT ) <
T < (Tv−ΔT ), where ΔT is a certain finite range of temperatures. From this
comparison it follows that in the indicated region of temperatures translational
and rotational motions are classical, and the vibrational motion only just
begins to get excited.

So, we come to the following physical conclusions: the theory of the heat
capacity of a two-atom gas in the general case ought to be quantum one; the
translational motion of molecules is always classical; the rotational motion in
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the region T ≤ Tr bears the quantum character, and in the region T >> Tr it
is classical; the vibrational motion in the region T ≤ Tv is quantum, and in
the region T >> Tv it bears the classical character.

Thus, theoretically and experimentally studying temperature dependences
of the heat capacity in the wide temperature range, the nature of the motion
(classical or quantum) of molecules, forming a gas, can be determined. It is
possible since the heat capacity of a system (in our case, a gas) is very sensitive
to the internal structure of particles (molecules). The superiority of the heat
capacity over other thermodynamic parameters resides just in this.

4.5 Ideal Gas Consisting of Polar Molecules
in an External Electric Field

Earlier when considering an ideal gas it was supposed that particles (molecules)
forming it possess only mass (the reduced mass). We also supposed that these
particles possess neither an electric charge nor electric dipole moment. There-
fore, when such a gas is in a thermodynamic state, an external electric field
does not act on it.

Molecules depending on the distribution of an electric charge in them are
divided into polar and non-polar groups. In polar molecules centres of positive
and negative charges do not coincide, and therefore even in the absence of
an external electric field such molecules possess the intrinsic electric dipole
moment p0. If we place such a molecule in an electric field, as a result of
the change in the distance between centres of charges a supplementary dipole
moment can arise, i.e. p0 can change. However, inasmuch as in weak electric
fields this change is much less of the intrinsic dipole moment p0, it can be
said that the intrinsic moment p0 remains constant.

In non-polar molecules, centres of negative and positive charges coincide,
and the molecule does not possess the electric dipole moment. The dipole
moment in such molecules can arise only in an external electric field, since an
electric field divides centres of negative and positive charges of the molecule.

In the given section we will consider the thermodynamic properties of an
ideal gas consisting of polar molecules. It is supposed that the gas is rar-
efied and therefore the dipole–dipole interaction can be neglected. At first, we
calculate the coefficient of the orientational polarization.

4.5.1 Orientational Polarization

Assume that an ideal gas of volume V , consisting of a N number of polar
molecules with the intrinsic dipole moment p0, is found in an external uniform
electric field E. It is known that the potential energy of a dipole p0 in an
external electric field has the appearance

U = −(p0E) = −p0E cos θ, (4.123)
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where θ is the angle between the dipole moment p0 and the electric field E.
Inasmuch as in the absence of an external electric field molecules in the

volume occupied are distributed chaotically, on average the polarization is
absent in the gas.

Under action of an external electric field dipoles attempt to line up along
the field owing to the condition of the minimality of the potential energy U .
As a result of this, the gas as a whole is polarized, i.e. the dipole moment,
accounting for the unit volume – the polarization vector – becomes distinct
from zero.

We now investigate the thermodynamic properties of a polarized ideal gas.
In particular, we calculate the mean value of the polarization vector

P0 =
∑

i

p0i, (4.124)

where the summation is conducted over all polar molecules found in the unit
volume.

To do this it is necessary to know the free energy of the gas in the elec-
tric field and on the strength of (2.163) to calculate the mean value of the
polarization vector by the formula

P0 = − 1
V

(
∂F

∂E
)

T,V

. (4.125)

For definiteness consider two-atom polar molecules. Inasmuch as the polariza-
tion of a gas occurs at the expense of the rotation of molecules in an electric
field, we can restrict ourselves to the finding of the free energy associated
with the rotation of molecules: F = Fr. The presence of the translational and
vibrational motion of a molecule does not exercise influence on the dipole
moment p0.

In the expression of the free energy (4.67) we separate the part associated
only with the rotation and assume that the rotational motion is classical.
Then we get

Fr = −k0TN ln zr, (4.126)

where zr is the statistical integral associated with the rotation of one molecule.
Using the polar coordinate system, the statistical integral can be presented in
the form

zr =
∫

e−εr(θ,ϕ)/k0T dϕdθ dpϕ dpθ

(2π�)2
. (4.127)

Here

εr(θ, φ) =
1
2I

(
p2

θ +
p2

φ

sin2 θ

)
− p0E cos θ (4.128)

is the Hamilton function of a molecule in the polar coordinate system in
an electric field, I = mr2 is the moment of inertia of a molecule, m =
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m1m2/(m1 +m2) is the reduced mass of a molecule, m1 and m2 are masses
of atoms forming a molecule.

If we substitute the expression of energy (4.128) into (4.127) and take into
account the integration boundaries, we get

zr =
1

(2π�)2
2π∫
0

dϕ
π∫
0

dθ
∞∫
−∞

dpθ

∞∫
−∞

dpϕ

× exp

[
− 1

2Ik0T

(
p2

θ +
p2

ϕ

sin2 θ

)
+ a cos θ

]
,

(4.129)

where
a =

p0E
k0T

(4.130)

is the dimensionless parameter.
To integrate over dpθ and dpϕ use Appendix A. Then we get

∞∫
−∞

e−p2
θ/2Ik0T dpθ = (2πIk0T )1/2 (4.131)

and ∞∫
−∞

e−p2
ϕ/(2Ik0T sin2 θ)dpϕ = (2πIk0T )1/2 sin θ. (4.132)

If we substitute (4.131) and (4.132) into (4.129), the statistical integral takes
the form

zr =
Ik0T

�2

π∫
0

ea cos θ sin θ dθ. (4.133)

If we introduce the notation x = cos θ, for zr finally we get

zr =
2Ik0T

�2

sha

a
. (4.134)

Note that in the absence of an electric field (E = 0 or a = 0) for the case of
ultra-high temperatures (T → ∞) expression (4.134) passes into (4.103).

Having substituted the expression of the statistical integral (4.134) into
(4.126), for the free energy we get the following expression

Fr = −k0TN

[
ln
(
sh a

a

)
+ ln

(
2Ik0T

�2

)]
. (4.135)

Taking into account (4.135) in (4.125), the polarization vector takes the form

P0 = − 1
V

(
∂Fr

∂E
)

T,V

= k0T
N

V

∂

∂E (ln sh a− ln a) (4.136)
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or
P0 = k0Tn

(
ch a

sh a
− 1
a

)
∂a

∂E . (4.137)

If we take into account that ∂a/∂E = p0/k0T , for the value of the polarization
vector we get

P0 = p0nL(a), (4.138)

where
L(a) = ctha− 1

a
(4.139)

is the Langevin function, and n = N/V is the concentration of polar molecules.
In the case of weak electric fields and high temperatures (a = p0E/k0T �

1), the hyperbolic cotangent can be expanded into a series

cth a =
1
a

+
a

3
− a3

45
+ · · · (4.140)

Then in the linear approximation

L(a) =
a

3
=

p0E
3k0T

. (4.141)

Taking into account (4.141) in (4.123), for the value of the polarization vector
we get

P0 =
np2

0

3k0T
E = nαE , (4.142)

where α = p2
0

/
3k0T is the coefficient of polarisability of a molecule.

The electric induction D in this case has the appearance

D = E + 4πP0 =
(

1 +
4πnp2

0

3k0T

)
E = χE , (4.143)

where

χ = 1 +
4πnp2

0

3k0T
(4.144)

is the dielectric constant of a gas.
In another limiting case, when a = p0E/3k0T � 1, inasmuch as

lim
a→∞ cth a → 1, then lim

a→∞L(a) → 1. Thus, in strong electric fields and at low
temperatures the polarization is saturated and P = np0, which corresponds
to the orientation of all dipoles along the field.

The schematic plot of the Langevin function, constructed on the basis of
considered limiting cases, is presented in Fig. 4.8.

In the case of weak electric fields (a � 1) from (4.142) it is seen that the
polarization is inversely proportional to temperature: P0 ∼ 1/T . Therefore,
investigating the temperature dependence of the polarization, on the basis
of (4.142) the intrinsic dipole moment p0 can be calculated. The majority
of molecules possess the intrinsic dipole moment of the order p0 ≈ 10−18 of
electrostatic units = 1 D.
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Fig. 4.8. The schematic plot of the Langevin function

4.5.2 Entropy: Electrocaloric Effect

It is known that in an ideal gas a molecule can participate in three kinds of
motion: translational, rotational and vibrational. In Sect. 4.4 we showed that
to excite the vibrational motion very high temperatures (T ≈ Tv) are required.
Here we consider the region of temperatures T � Tv. In this region, molecules
perform only translational and rotational motions. Then in the expression of
free energy (4.67) it is sufficient to keep two terms

F = −k0NT
[
ln
( e
N
zt

)
+ ln zr

]
. (4.145)

Let us assume that translational and rotational motions are classical, i.e.
restrict ourselves to the region of temperature Tr � T < Tv. In this case, the
expression of the statistical integral (4.91) and (4.134) can be used, taking
account the polarization. Then free energy (4.145) takes the form

F = −k0NT

[
ln
(
eV

N�3

)(
mk0T

2π

)3/2
]

−k0NT

[
ln
(

2Ik0T

�2

)
+ ln

(
sh a

a

)]
.

(4.146)

In the considered case entropy of a gas S = − (∂F/∂T )V,E equals

S(E) = S(0) − k0N

[
aL(a) − ln

(
sh a

a

)]
, (4.147)

where S0 is entropy of a gas in the absence of an electric field:

S(0) =
5
2
k0N+k0N

[
ln
(
eV

N�3

)(
mk0T

2π

)3/2
]

+k0N ln
(

2Ik0T

�2

)
. (4.148)

It can be shown that the function
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ϕ(a) = aL(a) − ln
sh a

a
, (4.149)

entering into the expression of entropy (4.147) is positive, i.e. as a result of
the polarization entropy decreases, which is associated with the rise of the
order at the expense of the orientation of dipoles along the field and, thereby,
with the decrease in chaoticity.

At small values of the field a� 1, L(a) = a/3, sh a = a+ a3

6 . Then

ϕ(a) =
a2

6
=

1
6

(
p0E
k0T

)2

(4.150)

and

S(E) = S(0) − 1
6
k0N

(
p0E
k0T

)2

. (4.151)

Hence it follows that in ideal polar gases we can observe the electrocaloric
effect, analogous to the magnetocaloric one, and use it to lower the tempera-
ture of the gas. In order to obviously present this, in Fig. 4.9 the temperature
dependence of entropy in the absence (E = 0) and presence (E �= 0) of an
electric field is adduced.

Assume that an ideal gas is found in state 1. Switch on an electric field,
and translate the gas from this state into state 2. At that, the gas is polarized
and entropy decreases. Further adiabatically translate the gas from state 2
into state 3. At that, temperature drops from T1 to T2. By repeating these
processes many times, the temperature of the gas can be significantly lowered.

4.5.3 Mean Value of Energy: Caloric Equation of State

From the expression of free energy (4.146) and from the definition of pressure
P = − (∂F/∂V )T it is seen that the thermal equation of the state of a polar
ideal gas does not depend on the degree of polarization of the gas and has the
usual appearance of an ideal gas P = k0NT/V .

1
S0

S

0 T

2

3

T1T2

e =0

e ≠ 0

Fig. 4.9. The temperature dependence of entropy in the absence and presence of
an electric field
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In contradistinction to the thermal equation, the caloric equation of the
state of a gas (the mean value of energy) sharply depends on the degree of
polarization and an electric field. Indeed, taking into account expressions of
the free energy (4.146) and entropy (4.147) in E = F + TS , for the mean
value of energy (the caloric equation) of a two-atom gas we get

E =
5
2
k0NT −Np0EL(a), (4.152)

where L(a) is the Langevin function [see (4.139)].
The first item in this expression is the mean energy of classical translational

and rotational motions, and the second item is the mean value of the potential
energy of N number of polar molecules in an external electric field E .

Inasmuch as in weak electric fields (a � 1) the Langevin function L(a) =
a/3 = p0E/3k0T , then

E =
5
2
k0NT − T

3
k0NT

(
p0E
k0T

)2

. (4.153)

In strong electric fields (a � 1), inasmuch as ctha = 1 and the Langevin
function L(a) = (1 − 1/a), the mean energy has the appearance

E =
5
2
k0NT −Np0E

(
1 − k0T

p0E
)
. (4.154)

4.5.4 Heat Capacity: Determination
of Electric Dipole Moment of Molecule

The heat capacity of a polar ideal gas can be calculated by substituting the
expression of entropy of a gas (4.147) into CV = T (∂S/∂T )V or the expression
of the mean energy of a gas (4.152) into CV = (∂E/∂T )V . In both cases,
naturally, identical results are obtained:

CV =
5
2
k0N −Np0E ∂L(a)

∂a

∂a

∂T
. (4.155)

Finally we get

CV =
5
2
k0N + k0NA(a), (4.156)

where
A(a) = 1 + a2 − (a ctha)2 ≡ 1 −

( a

sha

)2

(4.157)

is the dimensionless function.
For weak electric fields (a � 1) it can be restricted to the first two terms

of the series in an expansion of the hyperbolic cotangent (4.140):

A(a) =
a2

3
. (4.158)
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Fig. 4.10. The schematic plot of the A(a) - functions (see (4.157))

In strong electric fields (a� 1), inasmuch as cth a = 1, from (4.158) it follows
that A(a) = 1. Thus, like the function L(a), the function A(a) changes in the
range (0–1), with the disparity that at small values of the argument A(a) ∼ a2

(compare Figs. 4.8 and 4.10).
Inasmuch as the function A(a) is always positive A(a) > 0, from (4.156)

it follows that the heat capacity in the presence of an electric field is always
larger: CV (E) > CV (0).

This conclusion can be explained as follows. In an electric field dipole
moments of molecules line up along the field, i.e. the gas is polarized. As tem-
perature rises dipoles are disordered and, thereby, entropy grows, inasmuch as
entropy is a monotonic function of temperature (∂S/∂T ) > 0. To effect disor-
der supplementary energy is required, as a result of which the heat capacity
increases.

In the considered temperature region (Tr � T � Tv) translational and
rotational motions are classical, and in the absence of an electric field (E =
0) the heat capacity of a gas CV (0) = 5/2k0N . Taking this into account,
expression (4.156) can be presented in the form

CV (E) − CV (0)
CV (0)

=
2
5
A(a). (4.159)

Thus, in the region Tr � T � Tv, measuring the heat capacity in the
absence of an electric field CV (0) and in its presence CV (E), the left-hand
side of equation (4.159) can be experimentally determined. This experimen-
tally determined value is denoted by γ = [CV (E) − CV (0)]/CV (0). Knowing γ,
it can be found that the root a = a0 of the transcendental equation

1 + a2 − (a cth a)2 =
5
2
γ, (4.160)

with the aid of which the electric dipole moment of a molecule can be
immediately determined

p0 =
k0T

E a0. (4.161)

Note that the above expressions adduced for energy (4.152) and heat capacity
(4.156) are only for two-atom polar gases.
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As for multi-atom (n > 2) non-linear molecules, the rotational degree of
freedom equals 3, and the heat capacity of such an ideal gas is calculated by
the formula

CV = 3k0N + k0NA(a), (4.162)

where CV (0) = 3k0N = 3R is the heat capacity of a gas in the absence of an
electric field (a = 0). Then instead of (4.160) it can be written as

1 + a2 − (a cth a)2 = 3γ. (4.163)

Thus, to determine the dipole moment of a multi-atom molecule (n > 2) in
(4.161) roots need to be used (4.163), but not in (4.160).

4.6 Paramagnetic Ideal Gas in External Magnetic Field

4.6.1 Classical Case

The statement of the problem in the present section is analogous to the preced-
ing one. It is supposed that an ideal gas of volume V , consisting of N number
of particles (molecules) with the intrinsic magnetic dipole moment μ, is found
in an external uniform magnetic field H. It is known that the potential energy
of a dipole μ in an external magnetic field has the appearance

U = −(μH ) = −μH cos θ, (4.164)

where θ is the angle between the magnetic dipole moment μ and the magnetic
field H.

Inasmuch as in the absence of an external magnetic field, magnetic dipoles
in the volume occupied are distributed chaotically, as a whole, the gas is not
magnetized, i.e. the magnetization vector M = 0.

Under action of the field, dipoles line up along the field owing to the
condition of minimality of the potential energy. As a result of this, the gas
as a whole is magnetized, i.e. the dipole moment accounting for the unit of
volume – the magnetization vector – becomes distinct from zero M �= 0.

Let us investigate the thermodynamic properties of such a magnetized
state of an ideal gas. In particular, let us calculate the mean value of the
magnetization vector

M =
∑

i

μi, (4.165)

where the summation is conducted over all magnetic dipoles found in the unit
of volume.

It is evident that the magnetization vector is directed along the external
magnetic field, and its numerical value equals

M = nμ cos θ, (4.166)
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where n is the concentration of magnetic dipoles, and μ cos θ is the mean value
of the projection of an arbitrary dipole in the direction of the magnetic field.

The statistically mean value of the magnetization vector in a paramagnetic
ideal gas was computed by the French physicist Paul Langevin for the first
time in 1905. It is supposed that all molecules have an identical magnetic
dipole moment, and to calculate M , according to (4.166), it is sufficient to
calculate the mean value cos θ. In 1905, when quantum mechanics as a science
did not exist, it was supposed that in a magnetic field dipoles can be found
at any angle θ, i.e. cos θ in the range 0–1 can take on any value. Using the
expression of potential energy (4.164), Paul Langevin calculated cos θ on the
strength of the Boltzmann distribution and, thereby, found the mean value
of the magnetization vector. At first, let us consider the classical method
proposed by Langevin.

In the absence of a magnetic field magnetic dipoles are positioned chaot-
ically, i.e. the probability of finding a magnetic dipole in any direction is
identical.

In the presence of an external magnetic field H every possible direction
of a magnetic dipole is non-equally probable. In this case, the distribution is
determined by the Boltzmann distribution function, corresponding to (4.164).
It is evident that the probability of the fact that the direction of the magnetic
dipole is found in an element of the solid angle dΩ = sin θ dθ dϕ ought to
be proportional to dΩ. As a result, the probability of the magnetic dipole μ
found in the element of the solid angle dΩ is

W (θ)dΩ, (4.167)

where
W (θ) = A e−

U(θ)
k0T = A e

μH
k0T cos θ (4.168)

is the probability of formation of an angle θ between the magnetic dipole and
a magnetic field. The normalizing constant A is determined from the condition

∫
W (θ)dΩ = A

2π∫
0

dϕ

π∫
0

eb cos θ sin θ dθ = 1. (4.169)

Hence it can be easily found that

A =
1
4π

· b

shb
, (4.170)

where
b =

μH

k0T
. (4.171)

As a result, for the mean value of the projection of the magnetic dipole moment
μ on the direction of a magnetic field H we have
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μ cos θ =
∫
μ cos θW (θ)dΩ =

μb

2shb

π∫
0

cos θ eb cos θ sin θ dθ. (4.172)

Introducing the notation cos θ = x, we get

π∫
0

cos θ eb cos θ sin θ dθ =
∂

∂b

1∫
−1

ebxdx =
∂

∂b

(
eb − e−b

b

)
. (4.173)

Then from the two latter expressions we finally get

μ cos θ = μL(b), (4.174)

where
L(b) = cthb− 1

b
(4.175)

is the Langevin function.
From (4.166) and (4.174) the statistical mean value of the magnetization

vector can be found:
M = nμL(b). (4.176)

The limiting value and its dependence on the argument are schematically
presented in Fig. 4.8 (see Sect. 4.5). If we take into account that in a weak
magnetic field at high temperatures b = μH/k0T � 1 and L(b) ≈ b/3, for the
mean value of the magnetization vector we get from (4.176)

M =
1
3
nμb =

nμ2H

3k0T
. (4.177)

This dependence (M ∼ H/T ) of the mean value of the magnetization on a
magnetic field and temperature corresponds to the Curie experimental law,
established in 1895.

Note that the mean value of the magnetization vector (4.176) can be
obtained also with the aid of the Gibbs method (analogous calculations are
adduced in Sect. 4.5), calculating F , and using the relationship

M = − 1
V

(
∂F

∂H

)
T,V

. (4.178)

4.6.2 Quantum Case

Up to now we reasoned classically, supposing that the magnetic moment of a
molecule in an external magnetic field can form any angle with the magnetic
field; in other words, we regarded that the projection of the magnetic dipole
moment in the direction of the magnetic field can take on any value. How-
ever, after the rise of quantum mechanics it became known that the magnetic
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moment of a molecule (the moment formed at the expense of spin and orbital
motions) cannot form any angle; therefore the projection of the magnetic
moment in the direction of the field takes on only discrete values.

For simplicity, assume that magnetic moments of molecules forming a gas
correspond to the intrinsic moment (the spin) of electrons: s�, where � =
h/2π, h is the Planck constant, and s is an integer or semi-integer number.
Along the magnetic field H the possible number of projections of moments
s� is (2s+ 1), i.e. projections along the magnetic field can take on values j�,
where j takes on values −s(−s+ 1), . . . , (s− 1), s.

From quantum mechanics it is also known that energy corresponds to the
magnetic moment of a molecule placed in a magnetic field H.

εj = −2jμBH, (4.179)

where μB = e�/2mc = 0.927 × 10−20 erg/G is the Borh magneton.
Consequently, the energy spectrum of a molecule having the spin s�

consists of (2s+ 1) levels.
In order to determine the magnetization of a gas, with regard to discrete-

ness of the energy spectrum (4.179), use the Gibbs method. To do this it is
necessary to calculate the free energy F entering into (4.178) on the basis of
the spectrum (4.179).

The free energy of an ideal gas consisting of N molecules has the appear-
ance

F = −k0TN ln z, (4.180)

where z is the statistical integral or statistical sum of one molecule which can
be presented in the form

z = z0 · zH , (4.181)

where z0 is the statistical integral of a molecule in the absence of a magnetic
field, zH is the statistical sum associated with the discreteness of spectrum
(4.179) in a magnetic field. The computation of z0 is adduced in Sect. 4.4.
Therefore it is sufficient to calculate zH , i.e. the statistical sum:

zH =
s∑

j=−s

e−εj/k0T =
s∑

j=−s

e2jμBH/k0T . (4.182)

If we take into account (4.181) in (4.180), we get

F = F0 + FH , (4.183)

where F0 is the free energy in the absence of a magnetic field (H = 0), FH is
the free energy, being determining by the statistical sum zH and depending
on a magnetic field:

FH = −k0TN ln zH . (4.184)
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Magnetization

Having substituted (4.183) and (4.184) into the definition of magnetization
(4.178) and having taken into account that F0 does not depend on a magnetic
field, for the magnetization we get

M = nk0T

(
∂

∂H
ln zH

)
T,V

, (4.185)

where n = N/V is the concentration of molecules of a gas.
To calculate the statistical sum (4.182) introduce the notation

a =
μBH

k0T
. (4.186)

Then sum (4.182) can be presented in the open form:

zH =
s∑

j=−s

e2aj = e−2as + e−2a(s−1) + e−2a(s−2) + · · ·

+e−2a + 1 + e2a + e+4a + · · · + e2as = e−2as
[
1 + e2a + e4a + · · ·

+e2a(s−1) + e2as + e2a(s+1) +e2a(s+2) + · · · + e4as
]
. (4.187)

To calculate the sum of the geometric progression, entering into (4.187) and
consisting of (2s+ 1) terms, make use of the formula

n∑
i=1

a1q
i−1 = a1

(
1 + q + q2 + · · · + qn−1

)
= a1

qn − 1
q − 1

. (4.188)

From comparison (4.188) with (4.187) it is seen that

a1 = e−2as; q = e2a; n = 2s+ 1 . (4.189)

Then we get

zH = e−2as e2a(2s+1) − 1
e2a − 1

=
sh [(2s+ 1)a]

sha
. (4.190)

If we take into account (4.184) and (4.186), the magnetic part of the free
energy takes the form:

FH = −k0TN ln
[
sh [(2s+ 1)a]

sha

]
= −k0TN ln

[
sh [(2s+ 1)(μBH)/k0T ]

sh (μBH/k0T )

]
.

(4.191)
Taking into account (4.190) in (4.185), for the magnetization of a gas we get

M = n(2s+ 1)μBBs(H), (4.192)
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where

Bs(H) = cth

[
(2s+ 1)

μBH

k0T

]
− 1

(2s+ 1)
cth

(
μBH

k0T

)
(4.193)

is the generalized Brillouin function, which is the quantum analogue of the
Langevin function.

Show that in the quasi-classical case function (4.193) passes into (4.175),
and magnetization (4.192), conformably, into (4.176). Indeed, in the quasi-
classical approximation, s → ∞, � → 0 and μB → 0 are the conditions of
continuity of the energy spectrum. If we introduce the notation (2s+ 1)μB →
μ and take into account that cth (μBH/k0T ) = k0T/μBH, the Brillouin func-
tion (4.193) passes into the Langevin function (4.175) and expressions (4.192)
and (4.176) coincide.

In the other limiting case (s = 1/2), the expression (4.193) can be
presented in the form

B1/2 (H) = cth

(
2
μBH

k0T

)
− 1

2
cth

(
μBH

k0T

)
. (4.194)

If we use the known trigonometric formula cth2x = (1 + cth2x)
/
2cth x,

(4.194) takes the form

B1/2 (H) =
1
2
th

(
μBH

k0T

)
, (4.195)

and the magnetization equals

M = nμBth

(
μBH

k0T

)
. (4.196)

In the region of high temperatures and weak magnetic fields, when the condi-
tion μBH/k0T � 1 is fulfilled, the Brillouin function (4.193) takes the form

Bs(H) =
4s(s+ 1)
3(2s+ 1)

μBH

k0T
, (4.197)

and magnetization (4.192) equals

M =
4s(s+ 1)

3
nμ2

BH

k0T
∼H
T
. (4.198)

At s = 1/2 magnetization has the appearance

M =
nμ2

BH

k0T
, (4.199)

which coincides with the result obtained from (4.196) for the considered case.
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The dependence of magnetization on a magnetic field and temperature in
the form (4.198) or (4.199) was experimentally corroborated by the French
physicist Pierre Curie in 1895 and bears the name the Curie law.

In the region of low temperatures and strong magnetic fields, when the
condition μBH/k0T � 1 is fulfilled, Brillouin function (4.193) does not depend
on a magnetic field, and takes the form

Bs(H) =
2s

2s+ 1
. (4.200)

In this case, as is seen from (4.192), magnetization is saturated to the value

M = 2snμB. (4.201)

The plot of the Brillouin function (4.193) in a wide region of the parameter
a = μBH/k0T for different values of s is adduced in Fig. 4.11.

In conclusion, note that using the expression of the magnetic part of the
free energy (4.191), mean energy, entropy and heat capacity of a paramagnetic
gas in a magnetic field can also be calculated.

Entropy, Mean Energy and Heat Capacity

Using the expression for the total free energy (4.183), with regard to (4.191)
for entropy of a paramagnetic gas S = − (∂F/∂T )V,H , we get:

S(H) = S(0) − k0Nϕ(H), (4.202)

where S(0) = − (∂F0/∂T )V,H is entropy of a paramagnetic gas in the absence
of a magnetic field, and the function ϕ(H) equals

ϕ(H) = (2s+ 1)aBs(H,T ) − ln
[
sh(2s+ 1)a
(2s+ 1)sha

]
. (4.203)
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Fig. 4.11. The plot of the Brillouin function
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It can be shown that the function φ(H), entering into the expression of entropy
(4.202), is positive; therefore, at the expense of magnetization, entropy of a
gas in a magnetic field decreases, since dipoles in a magnetic field orientising
themselves create a certain order and the chaoticity decreases.

At small values of the magnetic field and at high temperatures, when
a� 1, using (4.197) and expanding the hyperbolic sine, for entropy we get

S(H) = S(0) − k0N
4s(s+ 1)

3

(
μBH

k0T

)2

. (4.204)

In particular, at s = 1/2

S(H) = S(0) − k0N

(
μBH

k0T

)2

. (4.205)

The decrease in entropy in the magnetic field leads to the rise of the mag-
netocaloric effect, which is used to produce ultra-low temperatures (see
Sect. 2.8).

Using the expression of free energy (4.191) and entropy (4.202), for the
mean energy of a paramagnetic gas in a magnetic field we get:

E(H) = E0 − (2s+ 1)NμBHBs(H), (4.206)

where E(0) is energy of the gas in the absence of a magnetic field.
In the case of weak magnetic fields (a � 1), according to (4.197),

expression (4.206) takes the form

E(H) = E0 − 4s(s+ 1)
3

Nk0T

(
μBH

k0T

)2

. (4.207)

In the region of low temperatures and strong magnetic fields, when the condi-
tion μBH/k0T � 1 is fulfilled, according to (4.200) and (4.206), the magnetic
part of energy does not depend on temperature

E(H) − E0 = −2sNμBH, (4.208)

If we use the expression of mean energy (4.206), for heat capacity of a gas in
a magnetic field we get:

CV (H) = CV (0) − (2s+ 1)NμBH
∂

∂a
[Bs (H,T )]

∂a

∂T
, (4.209)

where CV (0) is heat capacity in the absence of a magnetic field. If the explicit
form of the Brillouin function (4.193) is taken into account, the expression for
heat capacity (4.209) takes the form

CV (H) = CV (0) + k0NA(a), (4.210)
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where

A (a) =
( a

sha

)2
{

1 −
[

(2s+ 1) sha
sh [(2s+ 1)a]

]2
}

(4.211)

is the dimensionless function.
It can be shown that the function A(a) is positive. In particular, at weak

magnetic fields (a� 1), expanding the hyperbolic sine, we get

A (a) =
4s(s+ 1)

3
a2. (4.212)

Then in this approximation heat capacity of a paramagnetic ideal gas has the
appearance

CV (H) = CV (0) +
4s(s+ 1)

3
k0N

(
μBH

k0T

)2

. (4.213)

Hence it is seen that the magnetic part of heat capacity of an ideal param-
agnetic gas in a weak magnetic field (a � 1) quadratically grows: CV (H) >
CV (0).

This result is explained by the fact that magnetic dipoles are oriented
along the magnetic field and as temperature rises this orientation is partially
destroyed. A supplementary energy is expended for the process of destruction
of the order and, thereby, heat capacity grows.

In the other limiting case of strong magnetic fields and low temperatures
(a� 1), as is seen from (4.210), the function A(a) tends to zero.

Plots of the function A(a) in a wide region of the parameter a = μBH/k0T
for different values of s are adduced in Fig. 4.12. It is seen that this function,
determining the magnetic part of heat capacity, has a maximum threat with
the growth of s and the maximum displacement is towards the small values
of the parameter a, i.e. towards the weak magnetic fields.
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Fig. 4.12. Plots of the function A(a) in a wide region of the parameter a for different
values of s (see (4.211))



150 4 Ideal Gas

Thus, the magnetic part of heat capacity of a paramagnetic gas with the
growth of the magnetic field (at the pre-assigned value of temperature) grows
quadratically first and, passing through the maximum, in very strong magnetic
fields tends to zero.

The non-monotonic dependence of the magnetic part of heat capacity is a
purely quantum effect and is easily explained by the quantization of energy
of the magnetic dipole in a magnetic field [see (4.179)].

4.7 Systems with Negative Absolute Temperature

We introduced the concept of absolute temperature in Sect. 1.8 of the first
chapter [see (1.145)]. There it was shown that in the thermodynamically
steady state the absolute temperature ought not to be negative (Sect. 1.8,
point 4).

This result for systems called “normal systems” follows also from expres-
sions of the statistical integral or statistical sum composing the basis of the
Gibbs method. “Normal systems” are systems in which energy of the particles
forming them is restricted from below but not from above, i.e energy can take
on infinitely large values:

εmin ≤ ε <∞. (4.214)

In the classical case, energy of all three types of motion (translational, rota-
tional and vibrational) of particles forming a system equals zero: εmin = 0.
In the quantum case, conformable to expressions (4.74), (4.94) and (4.106),
energy takes on the following values:

εt
min =

π2
�

2

2mL2
; εr

min = 0; εv
min =

�ω

2
. (4.215)

In both cases, energy is not restricted from above (ε→ ∞).
Indeed, for “normal systems”, satisfying condition (4.214), in order that

the statistical integral

Zcl =
∫

e−E(q,p)/k0T dq dp (4.216)

and the statistical sum
Z =

∑
n

e−En/k0T (4.217)

at large values of energy do not diverge, temperature ought to be only positive
(T > 0).

However, systems exist in which energy of particles corresponding to some
degrees of freedom changes in the finite range, i.e. energy is restricted both
from above and from below:

εmin ≤ ε ≤ εmax. (4.218)
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Such systems are called “anomalous systems”. For such systems the statistical
integral (4.216) and the statistical sum (4.217) at any value (−∞ < T < +∞)
of temperature take on finite values. Consequently, the state of a system with
negative absolute temperature (T < 0) is possible.

Consider a simplest system satisfying condition (4.218). Assume that the
considered system, consisting of N number of molecules with the magnetic
dipole moment μ, is placed in an external uniform magnetic field H. It is
supposed that the interaction between molecules (simultaneously, between
dipoles) is rather weak.

In the classical case, as is seen from (4.214), energy of a magnetic dipole
(a molecule) μ depending on the angle θ, formed between the dipole and the
magnetic field H, continuously changes from −μH to +μH

− μH ≤ ε ≤ μH. (4.219)

In the quantum case, as is seen from (4.179), energy of a magnetic dipole (a
molecule) depending on the value of s

− 2sμBH ≤ ε ≤ 2sμBH (4.220)

takes on (2s+ 1) number of discrete values. Consequently, the magnetic part
of energy of the considered system is restricted both from below εmin =
−2sμBNH = −NμH and from above εmax = +2sμBNH = NμH .

Consider the thermodynamic properties of a system, the energy spectrum
of which is restricted by condition (4.220). To do this, at first find the free
energy. The expression of the free energy associated with the magnetic field is
determined by formula (4.184) with regard to (4.190). Having combined these
expressions, for free energy we get

FH = −k0TN

{
ln sh

[
(2s+ 1)μH

k0T

]
− ln sh

(
μH

k0T

)}
, (4.221)

where the notation μ ≡ μB is introduced.
For simplicity, consider only two-level systems, i.e. systems with s = 1/2

(Fig. 4.13). In this case, the expression of the free energy takes the simple form

FH = −k0TN ln
[
2ch

(
μH

k0T

)]
, (4.222)

where the known formula sh2x = 2shx · chx is used. On the strength of
(4.222) with S = − (∂FH/∂T ), mean energy E = FH + TS and heat capacity
CV = − (∂E/∂T )V , entropy can be calculated as

S = k0N

[
ln 2 ch

(
μH

k0T

)
− μH

k0T
th
μH

k0T

]
, (4.223)

E = −μHNth μH
k0T

, (4.224)

CV = k0N

[
μH/k0T

ch (μH/k0T )

]2

. (4.225)
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Fig. 4.13. The splitting of the energy levels in a magnetic field
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Fig. 4.14. The temperature dependence of the two-level system energy

Before analyzing the expressions of entropy and mean energy, consider the
distribution of N number of particles over levels shown in Fig. 4.13.

For the number of particles N1 and N2 at the lower and upper levels,
respectively, it can be written

N1 = N e−εmin/k0T = N eμH/k0T

N2 = N e−εmax/k0T = N e−μH/k0T .
(4.226)

Hence, for N1/N2 we get N1/N2 = e2μH/k0T . If we solve this equation in
conjunction with the condition N1 +N2 = N , we get

N1 =
N eμH/k0T

2chμH/k0T
; N2 =

N e−μH/k0T

2chμH/k0T
. (4.227)

Inasmuch as the energy spectrum of a system is restricted from below and
above according to (4.220), parameters characterizing the system (E,S,CV , N1

and N2) take on finite values in all the temperature ranges −∞ < T < +∞.
For the sake of clarity, we graphically present the temperature dependence

of indicated parameters.
In Fig. 4.14 temperature dependence of energy is presented (4.224), from

which it is seen that the minimum energy (−μHN ) corresponds to temperature
T → +0, and the maximum energy (+μHN ) corresponds to temperature
T → −0. Hence, it follows that higher values of energy correspond to the
negative region of temperature (Fig. 4.15).

From the energy point of view, limiting states corresponding to tempera-
tures T = +∞ and T = −∞ are equivalent. In both cases, the mean energy of
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Fig. 4.15. Comparison of energy and temperature scales of two-level system
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Fig. 4.16. The distribution of particles on levels depending on energy and
temperature

the system E = 0, inasmuch as in this case half of the particles N/2 are found
at the level −μH and the other half N/2 at the level +μH . In Fig. 4.16 the
distribution of particles depending on energy and temperature is presented.
As is seen in the negative temperature region the number of particles N2 at
the upper level is larger than the number of particles N1 at the lower level,
i.e. inversion occurs in the distribution.

In order to pass from the positive region of temperature into the negative
one, it is necessary not to decrease energy, but, on the contrary, to increase it,
in order that temperature increases T → +∞. Limiting states of temperature
+∞ and −∞ correspond to equivalent states, and T → +0 and T → −0,
from the energy point of view, correspond to extreme limiting states. In other
words, inasmuch as the absolute zero (T → +0) is impossible to produce (the
Nernst theorem), it is also impossible to immediately pass into the state with
T → −0. Thus, in order to produce the state with T → −0, it is necessary to
pass through the state with T → ±∞ (Fig. 4.17).

As is seen from this figure, it is impossible to approach the point T = 0
either from the right or from the left (the point T = 0 is the special point);
as energy rises, beginning from the state −∞, which is equavalent to +∞, it
can approach T → −0.

We now analyse the dependence of entropy of the system on temperature
and energy. A plot of the dependence, constructed on the basis of expression
(4.223), is presented in Fig. 4.18. Inasmuch as energy rises from −μHN to 0,
entropy S also grows and (∂S/∂E) = 1/T > 0, and as energy rises from 0 to
+μHN , entropy S decreases and (∂S/∂E) = 1/T < 0.
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Fig. 4.17. The temperature dependence of the two-level system energy
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Fig. 4.18. The entropy dependence on the energy and temperature

Note that in the state T → ±0 entropy equals zero, inasmuch as in the
system there exists order: as T → +0 all magnetic dipoles are directed along
the magnetic field, and as T → −0 they all are directed against the field
(see Fig. 4.16). As T → ±∞ half of the dipoles are directed along the field
and the other half are against the field (Fig. 4.16), i.e. the system is com-
pletely disordered (chaotic) and entropy takes on values S = Smax = k0N ln 2
(Fig. 4.18).

An analysis of the expression of heat capacity (4.225) shows that at
μH/k0T = ±0 (T → ±∞) the heat capacity CV equals zero. Outside this
point CV exponentially grows, and passing through the maximum, finally
decreases. From the condition of maximum heat capacity CV

ch

(
μH

k0T

)
−
(
μH

k0T

)
sh

(
μH

k0T

)
= 0, (4.228)

it can be found that

μH

k0T
= ±1.2 orT0 = ± μH

1.2k0
. (4.229)

Calculations show that the heat capacity at the point of the maximum takes
on the value

CV (T0) = 0.44 k0N. (4.230)

In conclusion, note that the states corresponding to the negative absolute
temperature are not steady. If subsystems of this system interact between
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themselves, the system fast passes into the equilibrium state (T > 0).
Therefore, states with T < 0 are not long-lasting. In order to produce a state
with negative absolute temperature, it is nedeed to act as follows. Assume
that all magnetic moments of the system are directed along the magnetic
field. This corresponds to the state with T = +0. The direction of the mag-
netic field can be instantly changed to the opposite direction so that magnetic
moments would have no time to change their direction. Till magnetic dipole
moments that are relaxing do not pass into the steady state with T > 0, the
system in the course of a very small time interval is found in a state with
negative absolute temperature.

This process, i.e. “the inversion” of the distribution of moments, is used
when creating lasers. This state of “inversion” is frequently realized optically.
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Non-Ideals Gases

Summary. This chapter is devoted to the application of the Gibbs method to non-
ideal – real – molecular gases. At first, the equation of the state of rarefied gases,
molecules of which interact weakly among themselves, is derived in the general
form. Thereupon, thermodynamics of a non-ideal gas of the van der Waals type
is considered. In concluding the chapter, plasma – a neutral gas in which Coulomb
interaction exists between particles – is considered. In this case, the method of Debye
screening is used.

5.1 Equation of State of Rarefied Real Gases

Consider a gas of volume V consisting of N number of molecules. Assume
that the motion of molecules of the gas obeys the laws of classical mechanics,
and their concentration N/V is sufficiently small (a rarefied gas) so that the
energy of the interaction uik between two molecules is much less than the
mean kinetic energy of the molecules ε̄:

uik/ε̄� 1. (5.1)

By applying the Gibbs method in approximation (5.1), we find the equation of
the state of such a gas. The essence of the Gibbs method is given in Chap. 3.
According to this method, the equation of the state of a system (a gas) can
be found by knowing the explicit form of the free energy:

P = −
(
∂F

∂V

)
T

. (5.2)

The free energy is related to the statistical integral Z by the relationship

F = −k0T ln Z. (5.3)
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Therefore, it is necessary to calculate the statistical integral

Z =
1
N !

∫
e−E(q,p)/k0T (dq dp)

(2π�)3N
, (5.4)

where E(q, p) is the total internal energy of the system, and (dq dp) is an
element of volume in the phase space. In the classical case, the total energy
can be presented as the sum of kinetic and potential energies:

E(p,r) =
N∑

i=1

1
2m

(
p2

ix + p2
iy + p2

iz

)
+ U(r1, r2, . . . , rN ), (5.5)

where m is the reduced mass of a molecule, U(r1, r2, . . . , rN ) is the potential
energy of interaction of molecules of a gas as a whole, and pi and ri are the
impulse and radius vectors of the centre of mass of the ith molecule. Here and
henceforth, the generalized coordinates of a molecule are denoted by r. It is
assumed that an external field is absent.

On substituting (5.5) into (5.4), we get

Z =
1

N !(2π�)3N

∫
e
− 1

2mk0T

N∑
i=1

(p2
ix+p2

iy+p2
iz)

(dp)
∫

e−
1

k0T U(r1,r2,...,rN )(dr ),

(5.6)
where it is taken that (dp) ⇒ dp1dp2 . . . dpN and (dr) ⇒ dr1dr2 . . . drN .

We introduce the concept of the configurational integral

ZN =
1
V N

∫
exp

[
−U(r1, r2, . . . , rN )

k0T

]
dr1dr2, . . . ,drN , (5.7)

which is determined by energy of interaction between molecules U(r1, r2, . . . ,
rN ) depending on the configuration of particles of a gas, i.e. on the radius
vector ri of each molecule.

Then, the statistical integral (5.6) can be presented in the form

Z = Zid · ZN . (5.8)

where Zid is the statistical integral of an ideal gas (see Sect. 4.1). In the absence
of interaction between molecules, when U =0, then ZN = 1 and Z =Zid.

If we insert (5.8) in (5.3), for the free energy we get

F = Fid − k0T ln ZN , (5.9)

where Fid = − k0T lnZid is the free energy of an ideal gas. From (5.2) and
(5.9), we get the equation of state of a non-ideal gas:

P = Pid + k0T

(
∂

∂V
ln ZN

)
T

, (5.10)
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where
Pid = −

(
∂Fid

∂V

)
T

=
Nk0T

V
(5.11)

is the known equation of state of an ideal gas.
Thus, the problem of finding the explicit form of the equation of state of

a real gas is reduced to the calculation of the configurational integral ZN . As
is seen from (5.7), to calculate the configurational integral it is necessary to
know the explicit form of the energy of interaction U . However, it is known
that a universal form of the function U applicable to all systems does not exist.
The explicit form of the function U depends on the nature of interaction of
particles forming the system. Therefore, in order to calculate ZN it is necessary
to make supplementary assumptions about the function U(r1, r2, . . . , rN ), i.e.
about the interaction between particles.

Assume that the total energy of interaction U can be presented as the sum
of energies uik of the pair-wise interactions of molecules:

U =
1,N∑
i<k

uik. (5.12)

On the basis of this assumption, ZN can be presented in the form

ZN =
1
V N

∫
e
−

1,N∑
i<k

uik

/
k0T

dr1, dr2, . . . ,drN (5.13)

or
ZN =

1
V N

∫
dr1

∫
dr2e−u12/k0T

∫
dr3e−(u13+u23)/k0T

. . .

∫
drNe−(u1N+u2N +···+uN−1,N )/k0T .

(5.14)

If the integral corresponding to an arbitrary kth molecule is denoted by

Jk =
∫

drk exp
[
−u1k + u2k + . . .+ uk−1,k

k0T

]
, (5.15)

we get

ZN =
1
V N

N∏
k=1

Jk. (5.16)

Thus, in order to calculate ZN it is necessary to find the integral Jk. To do
this, we introduce the supplementary function

γik = e−uik/k0T − 1, (5.17)

which characterises the interaction between particles, too. Indeed, if uik =0,
then γik =0, and if uik �= 0, then γik �= 0. The integral Jk can be expressed
by the function γik as follows:
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Jk =
∫

drk(1 + γ1k)(1 + γ2k) . . . (1 + γk−1,k). (5.18)

On multiplication of the brackets, we get

Jk =
∫

drk

⎛
⎝1 +

k−1∑
i=1

γik +
1,k−1∑

i�=l

γikγlk + · · ·
⎞
⎠. (5.19)

The first integral corresponds to an ideal gas (γik =0) and is equal to the
volume of a gas:

J
(1)
k =

∫
drk = V ⇒ •

k (5.20)

In this case, in the sphere of action of a molecule other molecules are
absent. By inserting (5.20) in (5.16), we get ZN =1.

The second integral in (5.19), i.e.

J
(2)
k =

∫ (
k−1∑
i=1

γik

)
drk ⇒ k•

•i
(5.21)

corresponds to the case when an arbitrary kth molecule interacts with only
one molecule, i.e. in the sphere of action of the kth molecule only one molecule
is found.

The third integral in (5.19), i.e.

J
(3)
k =

∫ ⎛
⎝1,k−1∑

i,l

γikγlk

⎞
⎠drk ⇒ •k

•i

l•

(5.22)

corresponds to a state in which an arbitrary molecule k simultaneously inter-
acts with only two molecules, i.e. in the sphere of action of the kth molecule
two molecules are found.

Subsequent integrals correspond to states in which three, four and more
molecules are found in the sphere of action of an arbitrary kth molecule at
the same time.

Here we consider a rarefied real gas and assume that the concentration
of the gas is so small that in the sphere of action of each molecule only one
molecule is found. Then, we can restrict (5.19) to only the first two terms:

Jk =
∫ (

1 +
k−1∑
i=1

γik

)
drk, (5.23)

because, according to the assumptions, if γik �= 0, then γlk = 0.
In order to continue the calculations, i.e. to calculate the integral (5.23),

it is necessary to introduce a supplementary assumption of the function γik ,
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i.e. the potential of interaction uik . Assume that the potential uik does not
depend on the position of a molecule in the space ri and rk separately and is
determined only by the distance between them, i.e. a spherically symmetric
interaction takes place:

uik = uik(|rk − r i|) = uik(r), (5.24)

and, correspondingly, γik = γik (r).
In (5.23), we can change over to the spherical coordinate system and inte-

grate over the angles. As a result, in the expression (5.23) we keep the integral
which depends only on the distance between two arbitrary molecules (indices
i and k are omitted)

Jk = V − 2(k − 1)B(T ), (5.25)

where
B(T ) = −1

2

∫
γ(r)4πr2dr (5.26)

is a function that depends only on temperature; the factor (−1/2) is intro-
duced for convenience. The value of B(T ) is determined by the explicit form
of the function γ(r) and, consequently, by the dependence of the function u(r)
on the distance between the molecules:

γ(r) = e−u(r)/k0T − 1. (5.27)

Not considering the explicit form of the function u(r), substitute (5.25) into
(5.16). Then we get

ZN =
1
V N

N∏
k=1

[V − 2(k − 1)B(T )] =
N∏

k=1

[
1 − 2(k − 1)

B(T )
V

]
. (5.28)

Hence

ln ZN =
N∑

k=1

ln
[
1 − 2(k − 1)

B(T )
V

]
. (5.29)

In the case of an ideal gas, γ(r)= 0, and therefore B(T )= 0 and lnZN =0.
Because the gas is rarefied, the function B(T ) is a sufficiently small quantity
and therefore it can be taken that

NB(T )
V

� 1. (5.30)

Then, in (5.29) the following approximation can be used:

ln
[
1 − 2(k − 1)

B(T )
V

]
≈ −2(k − 1)

B(T )
V

. (5.31)

As a result, (5.29) takes the form

ln ZN = −2B(T )
V

N∑
k=1

(k − 1) = −2B(T )
V

[
N(N + 1)

2
−N

]
(5.32)
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or, for very large N

ln ZN = −N(N − 1)
B(T )
V

≈ −N2B(T )
V

. (5.33)

On substituting (5.33) in (5.9), for the free energy of a real rarefied gas we
get the simple expression

F = Fid + k0TN
2B(T )

V
. (5.34)

By substituting (5.34) into (5.2) or (5.33) into (5.10), we get the expression
for pressure of a real gas, i.e. the thermal equation of state:

P = k0T
N

V
+ k0T

(
N

V

)2

B(T ). (5.35)

If we present (5.35) in the form

P = k0T

[
N

V
+B(T )

(
N

V

)2
]
, (5.36)

we notice that pressure of a gas is obtained as an expansion of the function
in powers of the concentration of a gas N/V .

The first item corresponds to an ideal gas, and the second item cor-
responds to the case in which in the sphere of action of a molecule only
one molecule is found. If in (5.19) we keep the terms corresponding to the
fact that in the sphere of action of each molecule two, three and more
molecules are found, intuitively the following infinite series can be written for
pressure:

P = k0T

[
N

V
+B(T )

(
N

V

)2

+ C(T )
(
N

V

)3

+ · · ·
]

(5.37)

Here, the first term corresponds to an ideal gas, and the second and third
terms describe the case in which in the sphere of action of each molecule one
or two molecules, respectively, are found. Coefficients B(T ) and C(T ) entering
into the equation of state and characterizing the interaction of molecules are
called second and third virial coefficients, respectively.

Thus, if we calculate all virial coefficients, we can find the equation of state
of a real gas in the form of a series in powers of the concentration N/V .

Here and in subsequent sections, we restrict ourselves only to the sec-
ond virial coefficient in the equation of state (5.37), i.e. we make use of the
approximate expressions (5.34) and (5.36).
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In the given approximation, the entropy of a real gas, the caloric equation
of state and the heat capacity can be expressed by the second virial coefficient
B(T ):

S = Sid − k0N
2B(T )

V
− k0T

N2

V

(
∂B

∂T

)
, (5.38)

E = Eid − k0T
2N

2

V

(
∂B

∂T

)
, (5.39)

CV = C id
V − 2k0T

N2

V

(
∂B

∂T

)
− k0T

2N
2

V

(
∂2B

∂T 2

)
, (5.40)

where Sid is the entropy, Eid =3k0NT/2 is the energy and Cid
V =3k0N/2 is the

heat capacity of an ideal gas. It is seen that to construct the thermodynamics
of a non-ideal gas, it is necessary to know the explicit form of the function
B(T ).

In conclusion, we once more recall the conditions under which the obtained
results, i.e. expressions (5.34), (5.36), (5.38), (5.39) and (5.40), are justified.
They are as follows:

1. The motion of the molecules forming a gas ought to obey classical laws.
2. The energy of interaction between molecules ought to be much less than

the kinetic energy of motion (5.1).
3. An external field is absent (5.5).
4. The total potential energy of a gas can be presented as the sum of energies

of pair-wise interactions of molecules (5.12).
5. A gas ought to be sufficiently rarefied so that each molecule would interact

with only one other molecule, i.e. in the sphere of action only one molecule
would be found (5.23).

6. The energy of interaction between two molecules depends only on the
distance between them (5.24).

Note that even with the six simplifying assumptions introduced above, it is
impossible to solve the problem completely, i.e. it is impossible to determine
the dependence of the pressure, mean energy, entropy and heat capacity on
temperature. To do this, it is necessary to know the explicit form of the
function B(T ). Section 5.2 is devoted to this problem in the case of a non-ideal
van der Waals gas.

At a specified temperature where B(TB)= 0, the thermodynamic proper-
ties of a real gas (in particular, its isotherm) coincide with those of an ideal
gas. The temperature TB satisfying the equation

B(TB) = 0, (5.41)

is called the Boyle temperature.
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5.2 Second Virial Coefficient and Thermodynamics
of Van Der Waals Gas

In Sect. 5.1 we showed that to construct the thermodynamics of a non-ideal
gas it is necessary to calculate the function B(T ). To do this, as is seen from
(5.26) and (5.27), it is required to know the explicit form of the potential of
interaction u(r) between molecules:

B(T ) =
1
2

∞∫
0

(
1 − eu(r)/k0T

)
4πr2dr. (5.42)

For the potential of interaction of two molecules u(r), different models exist.
Among them the van der Waals model is the most commonly used. This
interaction can be described as follows: each molecule of a real gas is presented
as a spherically symmetric neutral particle. At very close distances, when
the distance between the centres of the molecules is equal to their diameter,
and electron clouds touch, a strong repulsion arises as a result of the elastic
deformation between molecules. At distances larger than their diameter, a
force of attraction – the van der Waals force (Fig. 5.1) – arises between them.

The rise of the van der Waals force can be presented as follows: in a
molecule that does not possess an electric dipole moment, as a result of fluc-
tuations, the symmetry of distribution of electrical charges inside the molecule
can be instantaneously violated and an instantaneous electric dipole moment
arises in the molecule. This electric dipole moment can induce a similar dipole
moment in an adjacent molecule. As a result, a dipole–dipole interaction arises
between adjacent molecules.

The potential in the case where the molecules interact via the medium of
van der Waals forces (Fig. 5.1) can be presented in the form

u(r) =
{

+∞ 0 ≤ r < d
−u0 (d/r)m

d ≤ r <∞,
(5.43)

d
0

−u0

r

u(r)

Fig. 5.1. The van der Waals interaction potential dependence on the distances
between of two molecules
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g (r)

0

−1

d r

Fig. 5.2. A plot of the function γ(r) [see (5.27)]

where d is the diameter of a molecule, r is the distance between the centres of
adjacent molecules, u0 is the maximum potential of attraction, and m is an
integer greater than 3 (m > 3).

A plot of the function γ(r) [see (5.27)] corresponding to the model
presented in Fig. 5.1 is schematically shown in Fig. 5.2.

We use this model to calculate the second virial coefficient B(T ). A real
gas corresponding to this model is called a van der Waals gas.

In conformity with Fig. 5.1 and formula (5.43), boundaries of integration
in (5.42) to calculate B(T ) can be subdivided into two regions:

B(T ) =
1
2

d∫
0

4πr2dr +
1
2

∞∫
d

(
1 − e|u(r)|/k0T

)
4πr2dr. (5.44)

Here, the first integral corresponds to the repulsion between molecules, and
the second integral corresponds to their attraction. The first integral gives
the quadrupled volume of a molecule. The exponent entering into the second
integral can be expanded into a series, since in the range d ≤ r < ∞ the
inequality u� k0T is fulfilled. As a result, we get

B(T ) = 4υ0 − 2π
k0T

∞∫
d

|u(r)| r2dr, (5.45)

where υ0 = 4π
3

(
d
2

)3
is the intrinsic volume of a spherical molecule. In order to

derive the van der Waals equation of state for real gases, we substitute (5.45)
into (5.35). Then we get

P = k0T
N

V
+ k0T

(
N

V

)2

4υ0 − 2π
(
N

V

)2
∞∫

d

|u(r)| r2dr. (5.46)
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For convenience, we introduce the constant

b = 4Nυ0, (5.47)

characterising the repulsion between molecules, and

a =
N2

2

∞∫
d

|u(r)| 4πr2dr ≈ N(N − 1)
2

∞∫
d

|u(r)| 4πr2dr, (5.48)

characterising the attraction between molecules. Then, the thermal equation
of the state of real gases (5.46) takes the form

P = k0T
N

V
+ k0T

N

V 2
b− a

V 2
(5.49)

or

P = k0T
N

V
+ k0T

(
N

V

)2(
b

N
− a

k0TN2

)
. (5.50)

If we compare (5.50) with (5.35), the second virial coefficient can be expressed
by the constants a and b:

B(T ) =
b

N
− a

k0TN2
. (5.51)

The equation of the state of a rarefied gas (5.49) can also be presented as

P = k0T
N

V

(
1 +

b

V

)
− a

V 2
. (5.52)

The specific volume of molecules b is far less than the volume of gas V , i.e.
because b � V, (1 + b/V ) = (1 − b/V )−1. As a result, the equation of state
of a non-ideal gas takes the form

P =
k0TN

V − b
− a

V 2
. (5.53)

Hence, we get the well-known van der Waals equation
(
P +

a

V 2

)
(V − b) = k0TN. (5.54)

For any real gas, a temperature TB exists at which B(TB)= 0. In our case,
from (5.51) it follows that

TB =
a

k0Nb
. (5.55)

As an example, we present the values of a and b for a diatomic gas of nitrogen
N2 obtained experimentally: a=0.14 J3 /mol2, b=3.92× 10−6 m3 /mol, and
according to (5.55), TB ≈ 600 K.
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At the temperature (5.55) called the Boyle temperature, as is seen from
(5.50), the equation of state of a real gas (the isotherm) coincides with that
of an ideal gas (the isotherm). The equation of state of a real gas (5.50) can
be also presented in the form

P = k0T
N

V
+ k0T

Nb

V 2

(
1 − TB

T

)
. (5.56)

Hence it follows that if T =TB, then Preal =Pid; if T < TB, then Preal < Pid;
if T > TB, then Preal > Pid.

Physically it will be clearer if we remember that these conclusions imme-
diately follow from (5.50). Indeed, from (5.50) it is seen that when fulfilling
the condition

a

k0NT
> b, (5.57)

the pressure of real gases ought to be less than the pressure of ideal gases
at the same temperature: Preal < Pid. This fact can be explained as follows:
if the attraction in gases (the parameter a) dominates over the repulsion (the
parameter b), as is indicated by the condition (5.57), molecules that are found
close to the walls of a vessel are attracted by other molecules that are found
in the interior of the vessel and, thereby, their impact on the wall weakens; as
a result, the pressure of a real gas decreases compared to that of an ideal gas.
If the reverse condition to (5.57) is fulfilled, i.e. the repulsion dominates over
the attraction, then Preal > Pid.

We analyse also the other thermodynamic properties of the van der Waals
gas. To do this, we substitute the expression for B(T ) from (5.51) into (5.34),
(5.38) and (5.40). As a result, we get

for the free energy

F = Fid + k0T
N

V

(
b− a

k0NT

)
, (5.58)

for entropy

S = Sid − k0N

V
b, (5.59)

for the mean energy
E = Eid − a

V
, (5.60)

and for the heat capacity
CV = C id

V . (5.61)

Note that the constants of interaction a and b enter into the above thermo-
dynamic functions in different ways: both constants a and b enter into the
expression of the free energy and the equation of state; only the repulsion
constant b enters into the expression of entropy; and only the attraction con-
stant a enters into the expression of energy. The isochoric heat capacity CV

contains none of the constants: CV =C id
V .
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We show that the isobaric heat capacity CP , on the contrary, depends on
a and b. Indeed, using the known relationship

CP = CV − T
(∂P/∂T )2V
(∂P/∂V )T

, (5.62)

and also relationships
(
∂P

∂T

)
V

=
k0N

V − b
,

(
∂P

∂V

)
T

= − k0NT

(V − b)2
+

2a
V 3

, (5.63)

obtained from the equation of state (5.53), for the isobaric heat capacity we
get

CP = CV +R

(
1 +

2a(V − b)2

RTV 3

)
, (5.64)

where R= k0N is the universal gas constant.
In the case of ideal gases, (CP − CV )id =R, and in the case of real

gases, from (5.64), it is seen that (CP − CV )real > R. Because Creal
V =Cid

V ,
the isobaric heat capacity of real gases is larger than that of ideal gases:
Creal

P > Cid
P . From the expression of heat capacity (5.64), it is also seen that

the repulsion constant b, though slightly, weakens the inequality Creal
P >

C id
P , whereas the attraction constant a sufficiently strengthens the given

inequality.
If the repulsion (b� V ) is disregarded, (5.64) takes the form

CP = CV +R

(
1 +

2a
RTV

)
. (5.65)

The fact that in real gases Creal
V =C id

V and Creal
P > Cid

P can be explained as
follows:

1. Independence of the isochoric heat capacity of interaction between mole-
cules

(
Creal

V =Cid
V

)
is explained by the fact that the heat capacity is

measured at constant volume (V = const), and therefore the mean distance
between molecules does not change; thereby, the mean value of energy of
interaction remains constant and the heat capacity associated with the
change in this interaction equals zero.

2. The fact that the isobaric heat capacity of real gases is larger than that
of ideal gases

(
Creal

P > Cid
P

)
is explained by the fact that at P =const the

volume of the gas ought to increase (only in this case P remains constant).
Therefore, the mean distance between molecules grows. In order for this
distance to increase, it is necessary to expend supplementary energy –
heat. At the expense of this energy, the heat capacity of a real gas becomes
larger.
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5.3 Neutral Gas Consisting of Charged Particles:
Plasma

In this section, we consider a special kind of real gas – plasma. In contrast
to the van der Waals gas particles, those forming plasma possess an electrical
charge. Assume that a gas of volume V and the total number of particles
N =

∑
i

Ni consists of positively and negatively charged ions. Here, Ni is the

number of ions of the ith type, Zie is the electrical charge of ions of the same
type, e is the absolute magnitude of the charge of an electron and Zi takes on
values Zi = ± 1,±2, . . .

In the particular case of high temperatures and for a completely ionized
atomic gas, Zi can take on values Z1 =Zion = + 1, Z2 =Zel = − 1, i.e. in this
case plasma consists of positively charged ions and electrons.

As a whole, a gas ought to be neutral. The condition of neutrality can be
written down in the form

∑
i

ZieNi = 0 or
∑

i

Zien0i = 0, (5.66)

where n0i =Ni/V is the mean concentration of the ith ion in the case where
the interaction between particles is disregarded and it is supposed that all
particles of the ith type are uniformly distributed over the entire volume.

Also assume that a completely ionized gas – plasma – is sufficiently rar-
efied, i.e. the mean distance r between ions is such that the energy of the
Coulomb interaction is much less than the energy of the thermal motion k0T :

Z2
i e

2

r
� k0T. (5.67)

If the concentration of all ions in the plasma is denoted by n0 =
∑
i

n0i, then

r ≈ n
−1/3
0 . Hence, the condition of rarefaction (5.67) can be rewritten in

the form

n0 �
(
k0T

Z2
i e

2

)3

. (5.68)

We derive the equation of state of rarefied plasma and calculate some ther-
modynamic quantities satisfying conditions (5.67) and (5.68). However, it
is necessary to note that the method applied to the van der Waals gas in
Sect. 5.2 cannot be applied to plasma. This is due to the fact that in plasma
the long-range-acting Coulomb interaction exists between ions:

uik =
ZiZke

2

r
∼1
r
. (5.69)

From this fact two conclusions follow: first, because the radius of action of
each ion is large, and plasma is rarefied, not one but many ions are found in
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the sphere of action of each ion; second, in the case of such an interaction,
the integral entering into the expression of the second virial coefficient (5.45)
diverges in the upper limit:

∞∫
|uik| r2dr = ZiZke

2

∞∫
r dr → ∞. (5.70)

Therefore, in order to find the free energy and the equation of state of plasma,
we use the Helmholtz relationship

E = −T 2 ∂

∂T

(
F

T

)
. (5.71)

Hence, by knowing the total energy, the free energy can be calculated by the
formula

F = −T
∫

E

T 2
dT . (5.72)

The total energy of plasma can be presented as the sum

E = Eid + Ecoul. (5.73)

Here, Eid is the energy without considering the interaction between ions (an
ideal gas), and Ecoul is the energy of the Coulomb interaction

Ecoul =
1
2

∑
i

ZieNiϕi(r), (5.74)

where ϕi(r) is the potential of the Coulomb field around the ith ion at the
point r created by all the ions except the given one.

If we substitute the expression of energy (5.73) into (5.72), we get

F = Fid + Fcoul, (5.75)

where
Fcoul = −T

∫
Ecoul

T 2
dT (5.76)

is the free energy corresponding to the Coulomb interaction.
Thus, the problem of finding the free energy is reduced to finding Ecoul or

the potential ϕi(r). In order to determine the explicit form of ϕi(r), we use the
screening method proposed by Debye and Hueckel in 1923 in the theoretical
studies of the properties of electrolytes.

The essence of this method is the fact that in a system of charged particles
(in our case, plasma) the potential created at the point of an arbitrary ion
being found can be presented in the form

ϕi(r) = lim
r→0

[
ϕ(r) − Zie

r

]
, (5.77)
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where ϕ(r) is the potential created by all charges at the point r, and Zie/r is
the potential created by the given ion at the point r. The potential ϕ(r) can
be found from the known Poisson equation

∇2ϕ(r) = −4πρ(r), (5.78)

where
ρ(r) =

∑
i

Zieni(r) (5.79)

is the density of charges at the point r, and ni(r) is the concentration of all
ions of the ith type around the point r. From the two latter expressions, we
get for the Poisson equation

∇2ϕ(r) = −4π
∑

i

Zieni(r). (5.80)

The concentration ni(r) on the right-hand side of this equation is distinct from
n0i, because ni(r) is the concentration with regard to the interaction between
ions. As a result of the interaction between ions, they are non-uniformly dis-
tributed over the entire volume, and each ion is surrounded by an ion with
the opposite charge, and the distribution resembles a mosaic. The cause of
distinction of ni(r) from n0i lies in the fact that each ion possesses the poten-
tial energy Zieϕ(r) and the distribution of charges in the potential field ϕ(r)
can be described with the aid of the Boltzmann statistics:

ni(r) = n0i exp
[
−Zieϕ(r)

k0T

]
. (5.81)

From Poisson equation (5.80) and (5.81), it follows that to calculate the poten-
tial ϕ(r) it is necessary to know the concentration ni(r), and, conversely, in
order to calculate ni(r) it is necessary to know ϕ(r). Thus, a certain self-
contradictory problem arises. Therefore, it is necessary to simultaneously solve
equations (5.80) and (5.81).

If we take into account the inequality Zieϕ(r) � k0T , equivalent to the
condition of the rarefied nature of the plasma (5.67), in (5.81), we get

ni(r) = n0i

[
1 − Zieϕ(r)

k0T

]
. (5.82)

After substituting (5.82) into (5.80), the Poisson equation takes the form

∇2ϕ (r) = −4π
∑

i

Zien0i +
4πe2

k0T

(∑
i

Z2
i n0i

)
ϕ(r). (5.83)

Taking into account the condition of neutrality of the plasma (5.66) and
introducing the notation
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r−2
0 =

4πe2

k0T

(∑
i

Z2
i n0i

)
, (5.84)

the Poisson equation (5.83) can be simplified to

∇2ϕ(r) − r−2
0 ϕ(r) = 0. (5.85)

Because in plasma the electrostatic potential close to each ion possesses spher-
ical symmetry, it is more convenient to write equation (5.85) down in the
spherical coordinate system. In this case, the potential depends only on the
quantity of the radius vector and it is sufficient to consider the radial part of
the operator ∇2:

1
r2

d
dr

(
r2

dϕ
dr

)
= r−2

0 ϕ(r). (5.86)

It is easy to show that the function

φ(r) =
A

r
exp

(
− r

r0

)
, (5.87)

satisfies this equation.
The constant A entering here can be found from the condition

lim
r→0

ϕ(r) =
Zie

r
, (5.88)

to fulfil which it is necessary to have A=Zie. Then the potential created by
any point charge Zie at the distance r is

ϕ(r) =
Zie

r
exp

(
− r

r0

)
. (5.89)

The potential ϕ(r), pre-assigned by formula (5.89), is called the screening
Coulomb potential of a point charge, and r0 is the Debye screening radius. If
in the volume only one isolated ion is found, the potential created by it at a
distance r is

ϕ0(r) =
Zie

r
. (5.90)

If a point charge is surrounded (screened) by ions with opposite charges, its
field weakens, and at the point r= r0 the potential decreases e=2.74 times
(Fig. 5.3).

Thus, if we substitute expression (5.89) into (5.77), for the potential ϕi(r)
we get

ϕi(r) = lim
r→0

[
Zie

r
exp

(
− r

r0

)
− Zie

r

]
. (5.91)

If in this limiting case we expand the exponent in powers of r/r0 � 1
and restrict ourselves to the first two terms, the potential sought has the
appearance
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0
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j (r)

j0(r)

rr0

Fig. 5.3. Screening [see (5.89)] and non-screening [see (5.90)] Coulomb potentials
of a point charge

ϕi(r) =
Zie

r0
. (5.92)

Substituting this expression as well as (5.84) in (5.74), we get for the energy
of plasma at the expense of the Coulomb interaction

Ecoul = −e3
(

π

k0T

)1/2 1
V 1/2

(∑
i

Z2
i Ni

)3/2

. (5.93)

If we introduce the notation

q0 =

(∑
i

Z2
i e

2Ni

)1/2

(5.94)

with the dimensionality of an electrical charge, the energy of the Coulomb
interaction of plasma takes the form

Ecoul = −
(

π

k0TV

)1/2

q30 . (5.95)

For the total energy of plasma, from (5.73) and (5.95) we get

E = Eid −
(

π

k0TV

)1/2

q30 , (5.96)

where Eid =3k0TN /2, and N =
∑
i

Ni is the total number of all the ions in

plasma.
If we take into account the energy of the Coulomb interaction (5.95) in

(5.76) and integrate with respect to T , and then insert the obtained expression
in (5.75), we have for the free energy of the plasma

F = Fid − 2
3

(
π

k0TV

)1/2

q30 . (5.97)

This expression enables the calculation of all thermodynamic functions and
coefficients.
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For the equation of state P = − (∂F/∂V )T , using (5.97), we have

P = Pid − q30
3V 3/2

(
π

k0T

)1/2

, (5.98)

where Pid = k0TN /V is the pressure without considering the Coulomb inter-
action.

For entropy S= − (∂F/∂T )V , from (5.97) we get

S = Sid − q30
3T 3/2

(
π

k0V

)1/2

. (5.99)

The isochoric heat capacity CV = (∂E/∂T )V with regard to the expression
(5.96) takes the form

CV = C id
V +

q30
2T 3/2

(
π

k0V

)1/2

, (5.100)

where Cid
V = 3k0N/2. Formula (5.100) can be also obtained from the relation-

ship CV =T (∂S/∂T )V using (5.99).
Finally, note two conclusions following from the obtained expressions: first,

from (5.96) to (5.100), it follows that in plasma the contribution associated
with the consideration of the Coulomb interaction decreases with increase in
temperature and volume; second, consideration of the Coulomb interaction
decreases energy, free energy, pressure and entropy, but increases heat capa-
city. This result for heat capacity is explained by the fact that in plasma
each ion attracts an ion with an opposite charge to itself. As a result, the
Coulomb field of each ion is screened and its potential weakens. Consequently,
the distribution of ions in plasma resembles a mosaic – a certain ordering.
Therefore, entropy decreases, and heat capacity increases, because in order to
destroy the order, it is necessary to expend additional energy.



6

Solids

Summary. This chapter is devoted to the classical and quantum theories of ther-
modynamic properties of non-conducting crystalline solids. At the beginning of the
chapter the Hamilton function of a vibrating simple crystalline lattice with normal
coordinates is described. Further, in the classical and quantum cases, applying the
Gibbs method, the free energy, total energy, equation of state, heat capacity and
coefficients of thermal expansion of a solid are calculated. In the classical case, the
Hamilton function is accepted as a basis, and in the quantum case the quantized
energy spectrum of vibrations of a lattice, corresponding to the Hamilton operator,
is accepted.

6.1 Vibration and Waves in a Simple
Crystalline Lattice

In this section we will consider vibrations and waves in a simple cubic crys-
talline lattice, in which only one atom or ion accounts for each elementary
cell. However, we should first determine the potential of interaction between
particles (atoms or ions) that are found at the crystalline lattice points. In
solids there exist different kinds of interactions: ionic, covalent, metallic and
van der Waals. The nature of these interactions is usually studied in quantum
mechanics. Here, note the following important circumstance. All known mech-
anisms of interaction in solids have one common peculiarity: At large distances
the interaction between atoms or ions bears a character of attraction and at
small distances, that of repulsion.

In the equilibrium state, atoms or ions positioned at crystalline lattice
points are found at a distance of the lattice constant a from each other and
all interactions between them are compensated. The non-compensated interac-
tion between particles arises when they deviate from the equilibrium position
and the distance between them is distinct from the lattice constant. The
potential of interaction between two adjacent atoms of the lattice is schemat-
ically shown in Fig. 6.1 (one of the atoms is positioned at the origin of the
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R

–U0

R00

U(R)

Fig. 6.1. The potential of interaction between two adjacent atoms

coordinates). As it is seen from this figure, lim
R→∞

U(R) = 0 and U(R0) = −U0

is the minimum of the potential energy, where R0 is the distance between
two particles in the equilibrium state. As R > R0 there arises the force
F = −grad U(R) = − (∂U/∂R)n , bearing the character of attraction, and
as R < R0 the force bears the character of repulsion, here n = R/R is the
orth-vector.

In the equilibrium state (R = R0) the force of interaction between atoms
or ions does not arise, inasmuch as the potential energy of interaction (−U0)
is the constant quantity. As a result of the thermal motion, atoms or ions
deviate from their equilibrium position and the distance between them is
distinct from R0. Here the potential energy depends on the distance between
atoms, i.e. U(R) �= −U0. The potential energy U(R) takes on the minimum
value at the point R0; therefore at small deviations x = (R − R0) � R0 can
be expanded into a series in powers of (R−R0):

U(R) = U(R0) +
(
∂U

∂R

)
R0

(R −R0) +
1
2

(
∂2U

∂R2

)
R0

(R −R0)2

+
1
6

(
∂3U

∂R3

)
R0

(R −R0)3 + · · · (6.1)

Inasmuch as the potential energy at the point R=9R0 is at a minimum,
the ratio (∂U/∂R)R0

=0. If we introduce the notations
(
∂2U/∂R2

)
R0

=
β > 0,

(
∂3U/∂R3

)
R0

= −2γ < 0 and restrict ourselves to the cubic approxi-
mation for constants, entering into (6.1), the potential energy takes the form

U(x) = −U0 +
1
2
βx2 − 1

3
γx3. (6.2)

In order that as R < R0 (x < 0) forces of repulsion dominate over forces of
attraction it ought to be

(
∂3U/∂R3

)
R0

< 0, i.e. γ > 0.
From (6.2) for the force of interaction between atoms we get

F = −∂U
∂R

= −∂U
∂x

= −βx+ γx2, (6.3)
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where β is the coefficient of elasticity, and γ is the parameter character-
izing anharmonicity of interaction. Both coefficients are determined by the
nature of interaction between atoms and are related between themselves by
the relationship β∼R0γ. Indeed, from (6.3) it is seen that only in this case
the ratio of the anharmonic item to the harmonic one satisfies the condition
γx/β∼x/R0 � 1.

At crystalline lattice points, at finite temperatures atoms (ions) perform
small vibrations with the specified frequency (translational and rotational
motions are impossible), which propagate all over the crystal in the form of
an acoustic wave. As temperature rises, vibrations with higher frequency are
excited, and simultaneously the intensity (the amplitude) of already excited
vibrations grows.

In the given crystal, at specified temperature T = θ, all possible frequen-
cies are excited. If we denote the highest frequency by ωmax, this temperature
is determined as θ = �ωmax/k0, where � = h/2π, h is the Planck constant,
k0 is the Boltzmann constant, θ is the Debye temperature (for more compre-
hensive details about the Debye temperature, see Sect. 6.3) In a crystal, at
temperatures higher than Debye’s T > θ, new frequencies are not excited, and
only the amplitude of vibrations that have arisen grows.

We are interested in the nature of vibrations of atoms (ions) at crystalline
lattice points, i.e. the vibrational motion bears classical or quantum charac-
ter. In other words, to describe the vibrational motion it is necessary to use
classical mechanics of Newton or quantum mechanics of Schrödinger.

In order to answer the question posed, determine the criterion of classical
or quantum nature of the motion. It is said that the motion is classical when
its action s is much larger than that of the Planck constant �:

s� �, (6.4)

where s ≈ Mυx is the action of the vibrational motion, M is the mass of
the vibrating atom, υ is its linear velocity, x is the displacement from the
equilibrium position. For simplicity, take x = A cosωt, then υ ∼ ẋ ∼ ωx,
where x ∼ υ/ω. Then

s ∼ Mυ2

ω
. (6.5)

If we take into account that Mυ2 ≈ k0T , we get

s ∼ k0T

ω
. (6.6)

If we rewrite condition (6.4) for the highest frequency ωmax, the condition of
classicity of the vibrational motion takes the form

k0T

ωmax
� � or k0T � �ωmax. (6.7)

Consequently, the vibrational motion of a lattice can be regarded as classical
only at temperatures satisfying the condition T � �ωmax/k0 or T � θ, i.e.
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in the region of temperatures higher than the Debye’s. At low temperatures
T ≤ θ, the condition of classicity (6.7) is not fulfilled and the vibrational
motion bears the quantum character.

It is known that to construct the statistical theory of thermodynamic
properties of a system in the classical case it is necessary to know the Hamilton
function, and in the quantum case to do the energy spectrum. We at first
consider vibrations and waves in a crystalline lattice at high temperatures
(T � θ) and find its Hamilton function. Thereupon, using the correspondence
principle, we pass from the Hamilton function to the Hamilton operator, i.e.
pass to quantum mechanics, determine the energy spectrum and, in this way,
embrace the whole temperature range.

At first consider a one-dimensional simple lattice, and then generalize the
results obtained to a simple three-dimensional lattice.

6.1.1 One-Dimensional Simple Lattice

Consider a one-dimensional simple crystalline lattice with the lattice constant
a, at points of which neutral atoms of the mass M are found. As an initial
point of reference accept any point and enumerate other points (Fig. 6.2).

Regard the displacement of atoms to the right as positive, those to the left
as negative. Therefore, un(t) > 0; un−1(t) > 0; un+1(t) < 0.

Inasmuch as each atom is connected with the adjacent one, the displace-
ment (vibrations) over the crystal propagates in the form of an elastic wave.
To describe the vibrational motion of an arbitrary point n, use the classical
equation of motion:

M
d2un(t)

dt2
= Fn. (6.8)

Here Fn is the force acting on the point n from the sides of other points. In
other cases, to find the explicit form of the force Fn accept two suppositions:

1. The potential of interaction between atoms has the parabolic form U(x) =
−U0 + βx2

/
2 (the dashed curve in Fig. 6.1), i.e., the force of interaction

between atoms bears the elastic character F = −βx.
2. Each atom interacts only with the adjacent one, i.e., the atom with number
n interacts with atoms with numbers (n − 1) and (n + 1). Displacements
of atoms at points with numbers (n± 2), (n± 3), . . . do not influence the
displacement of the considered atom n.

a n

M M

x

x
n–1 n+1

un–1 un un+1

u(x, t)

Fig. 6.2. A one-dimensional simple crystalline lattice
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On the basis of these suppositions, the force can be written as:

Fn = Fn,n−1 + Fn,n+1 = −β(un − un−1) − β(un − un+1)

or
Fn = −β(2un − un−1 − un+1). (6.9)

Thus, for the displacement of the n-atom we get the following classical
equation of motion

M
d2un(t)

dt2
= −β(2un − un−1 − un+1). (6.10)

Hence it is seen that to determine the function un(t) it is necessary to know
the displacement of adjacent atoms un±1 and to write the equation of motion.
And to do this it is necessary to know the displacement un±2. Thus, (6.10)
converts into a system of infinitive number of equations, which is practically
not possible to solve.

To circumvent this difficulty replace a one-dimensional crystalline lattice
(a chain) with a continuous string (Fig. 6.2). Such an approximation is just
for long waves. The wave equation for the displacement u(x, t) at the point x
at the instance of time t has the known form:

∂2u(x, t)
∂t2

= υ2
0

∂2u(x, t)
∂x2

. (6.11)

Here υ0 is the speed of propagation of the elastic (acoustic) wave. It is known
that the solution of (6.11) has the appearance

u(x, t) = A ei(qx−ωt), (6.12)

where A is the amplitude of the elastic wave, q is the wave number, and ω is
the frequency. If we substitute (6.12) into (6.11), we get a simple relationship
between the wave number and frequency

ω(q) = υ0q. (6.13)

Note that ω and q change in the limits:

0 ≤ q <∞; 0 ≤ ω <∞.

Return to (6.10). Its solution can be presented in the form (6.12), with the
contradistinction that in the case of the chain x takes on only discrete values
x = na. Thus, the solution of (6.10) can be written down as

un(t) = A ei(qan−ωt). (6.14)

If we substitute (6.14) into (6.10), for the frequency we get

−Mω2 = −β(2 − e−iaq − eiaq). (6.15)
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Hence we have the dispersion relationship

ω2 = 2
β

M
(1 − cos aq) = 4

β

M
sin2 aq

2
(6.16)

or
ω(q) = ω0

∣∣∣sin aq
2

∣∣∣ , (6.17)

where

ω0 = 2

√
β

M
(6.18)

is the maximum frequency of the vibration for a one-dimensional simple
lattice. For small values of the wave number (aq � 1) or for long waves
(λ� 2πa), (6.17) can be expanded into a series and in the first approximation
we get

ω(q) ≈ ω0
aq

2
=

√
β

M
aq. (6.19)

It is known that in the elastic string the speed of sound υ0 =
√
E/ρ, where

E is the Jung modulus, and ρ is the linear density of the string. For a one-
dimensional simple lattice ρ = M/a, and the Jung modulus

E =
force

relative displacement
=

|fn,n−1|
|un − un−1|a = βa. (6.20)

Consequently, the speed of sound:

υ0 =

√
β

M
a. (6.21)

Having combined (6.19) and (6.21), for the elastic string we get ω(q) = υ0q.
Thus, in the approximation of long waves we substantiated the possibility of
replacing a one-dimensional crystalline lattice with the elastic string.

Plots corresponding to the elastic string (6.13) and the expression of the
dispersion (6.17) for a one-dimensional lattice are adduced in Fig. 6.3. From
the figure it is seen that the frequency of the string changes in the limits
0 ≤ ω ≤ ∞, whereas the frequency of a one-dimensional lattice changes in the
restricted range 0 ≤ ω ≤ ω0. From (6.17) and Fig. 6.3 it is also seen that the
frequency is a periodic function of the wave number:

ω(q) = ω

(
q +

2π
a
g

)
, (6.22)

where g = 0,±1,±2, . . . are integer numbers.
If in the wave function (6.14), we replace q with q′ = q + bg (here bg =

(2π/a) g is the one-dimensional vector of the reciprocal lattice), we get

u′n(t) = A ei(q′an−ωt) = A ei(qan−ωt) · ei2πgn = un(t), (6.23)
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wmax

w(q)

w0

w (q)= u0q

q−2p/a −p/a 0 p/a 2p/a

G=N

Fig. 6.3. The frequency dependence on the wave number for a one-dimensional
lattice

where it is taken into account that exp(i2πgn) = exp(2πi·integer number) = 1.
Hence it follows that wave numbers q and q+(2π/a) g are equivalent, since

displacements corresponding to them are identical. In other words, for q it is
sufficient to consider its value in the range

− π

a
≤ q ≤ +

π

a
. (6.24)

This range, in which the wave number takes on independent values, is called
the first Brillouin zone of a one-dimensional lattice.

Consider the number of possible values of the wave number q, changing
in range (6.24). To do this make use of the condition of the Born–Carman
cyclicity

un+G(t) = un(t), (6.25)

where G is a large number, equal to the number of points in the fundamental
region of the lattice. In order that the wave (6.14) satisfy the boundary con-
ditions (6.25), exp(±iqaG) = 1, i.e. qaG = 2πg ought to take place. Hence we
get the following possible values of the wave number:

q =
2π
aG

g; g = 0,±1,±2, . . . (6.26)

If these values of q are substituted into (6.24), we get the range of the change
in the integer number G

− G

2
≤ g ≤ +

G

2
. (6.27)

It is seen that g takes on values g = 0,±1,±2, . . . ,±G/2, i.e. in all G values.
Inasmuch as one value of q corresponds to each value of g [see (6.26)], and
one value of the frequency ω(q) corresponds to each value of q [see (6.17)], the
wave number q in the range −π/a ≤ q ≤ π/a, and also the frequency in the
range 0 ≤ ω ≤ ω0 take on the G number of values.

Conclusion: Inasmuch as G is the number of degrees of freedom (the num-
ber of atoms) of a one-dimensional crystalline lattice, it can be asserted that
the number of possible values of the frequency in such a crystal is finite and
equals the number of degrees of freedom of a one-dimensional chain.
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6.1.2 Three-Dimensional Simple Crystalline Lattice

Generalize the results obtained for a one-dimensional lattice to the case of a
three-dimensional lattice. Consider a simple cubic lattice. Let dimensions of
the crystal along coordinate axes be Lx = aG1, Ly = aG2, Lz = aG3, where
a is the lattice constant, and Gi is a large integer number. If we write the
equation of motion, analogous to (6.10), for components of the displacement
ux, uy, uz we get the characteristic equation, analogous to (6.15), which in ref-
erence to ω2 is cubic. A solution of this equation gives three roots ω1(q), ω2(q)
and ω3(q). It can be shown that each of these frequencies in the q -space is a
periodic function,

ωj(q) = ωj

(
q + q0

(
2π
a

)
g

)
, (6.28)

analogous to (6.22), where q0 is the unit vector in the q -space, and g is
an integer number. Therefore it is sufficient to consider the frequency in the
q -space in the range

− π/a ≤ q ≤ +π/a. (6.29)

Thus, in contradistinction to a one-dimensional case, in a three-dimensional
lattice to each value of the wave number q , three values of the frequency ωj(q)
correspond, where j = 1, 2, 3, i.e. there exist three branches of frequencies. The
dependence of the frequency on q in the range −π/a ≤ q ≤ +π/a for the three
branches is schematically presented in Fig. 6.4.

Conditions (6.29) in the q -space separate a region restricted by six mutu-
ally perpendicular planes qx = ±π/a, qy = ±π/a, qz = ±π/a. This region
represents a cube of volume (2π)3/a3 = (2π)3/Ω0, where Ω0 = a3 is the
volume of an elementary cell of the crystalline lattice and is called the first
Brillouin zone.

Now, even if we do not know the explicit form of the function ωj(q), we
can determine the number of possible values of q and frequencies in the first
Brillouin zone, i.e. in the range −π/a ≤ q ≤ +π/a. For possible values of the
wave vector q in conformity with (6.26) it can be written as:

qx =
2π
aG1

g1, qy =
2π
aG2

g2, qz =
2π
aG3

g3, (6.30)

wj (q)

q0

N

j= 3
j = 2
j = 1

–π/a π/a

Fig. 6.4. The frequency dependence on the wave vector in the first Brillouin zone
for a three-dimensional simple crystalline lattice
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where gi = 0,±1,±2, . . . are integer numbers. In order to determine in what
range gi changes, we substitute (6.30) into (6.29). Then we get

− Gi

2
≤ gi ≤ +

Gi

2
. (6.31)

From (6.30) and (6.31) it follows that in the first Brillouin zone components
qx, qy, qz take on values G1, G2, G3, respectively.

Thus, we come to the conclusion that in the first Brillouin zone the wave
vector q takes on the finite N = G1 · G2 · G3 number of values, equal to the
number of points (atoms) in the fundamental region of a crystal.

Inasmuch as in the first Brillouin zone to each value of q , three values
of the frequency ωj(q) correspond (Fig. 6.4), the total number of frequen-
cies in the first Brillouin zone is 3N , i.e. the number of possible frequencies
equals the number of degrees of freedom in the fundamental region of the
three-dimensional simple lattice.

In conclusion, determine the volume that corresponds to each value of the
wave vector q in the first Brillouin zone. In the case of the crystalline lattice
the wave vector takes on discrete values, the number of which is finite and
therefore to each wave vector in the q -space, a small but finite volume Δq
corresponds. It is evident that this small volume equals the ratio of volume of
the first Brillouin zone (2π)3/a3 to the possible number of values of the wave
vector N

Δq =
(2π)3

a3 ·N =
(2π)3

V
, (6.32)

where V = Na3 = NΩ0 is the volume of the fundamental region of the cubic
crystal.

Note that (6.32) can be obtained also from (6.30). Indeed, if we take into
account that to two adjacent values qx, qy, qz, the range Δgi = 1 corresponds,
we have

Δq = Δqx · Δqy · Δqz =
(2π)3

a3 ·G1G2G3
=

(2π)3

V
. (6.33)

Knowing that volume (6.32), corresponds to one value of the wave-vector q ,
the number of possible values of the wave-vector in the element of volume dq
can be determined:

dq
(2π)3/V

=
V

(2π)3
dq . (6.34)

Inasmuch as the volume of the fundamental region V = Na3 is proportional
to the large number of points N in this region, the volume (2π)3

/
V , corre-

sponding to one value of the wave-vector q , is sufficiently small. Therefore
q is a quasi-continuous quantity and in computations it can be passed from
the sum with respect to q to the integral over dq . For instance, in the finite
volume of the q -space the number of values of q can be presented in the form

∑
q

1 ⇒ V

(2π)3

∫
dq . (6.35)
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For any function φ(q ) it can be passed from the sum to the integral as follows:

∑
q

φ(q ) ⇒ V

(2π)3

∫
φ(q )dq . (6.36)

6.2 Hamilton Function of Vibrating Crystalline Lattice:
Normal Coordinates

It is known that in the classical case in order to apply the Gibbs method to
solids, it is necessary to know the explicit form of its Hamilton function. There-
fore, here we find the Hamilton function, i.e. the total energy of a vibrating
lattice. The total energy E of a vibrating crystal in the classical case equals
the sum of kinetic K and the potential energies U :

E = K + U. (6.37)

For simplicity, we find the total energy of a one-dimensional simple lattice
(Fig. 6.2), and thereupon generalize the results to the case of a three-
dimensional lattice. Kinetic K and potential U energies of a one-dimensional
simple lattice, presented in Fig. 6.2, in the approximation of the nearest
neighbors can be presented in the form:

K =
M

2

G∑
n=1

u̇2
n, (6.38)

U =
β

2

G∑
n=1

(un − un−1)2, (6.39)

where G is the number of elementary cells in the fundamental region, and u̇n

is the time derivative of the displacement. The fact that the expression of the
potential energy (6.39) is true is seen from the fact that the derivative with
respect to un with the opposite sign Fn = −∂U/∂un = −β(2un−un−1−un+1)
gives the force acting on the nth atom [see (6.9)].

Inasmuch as un(t) is a periodic function, it can be expanded in harmonics.
Then the real displacement can be written down in the form:

un =
∑

q

[Aqei(qan−ωqt)+A∗qe
−i(qan−ωqt)] =

1√
G

∑
q

{
aqeiqan + a∗qe

−iqan
}
,

(6.40)
where the notation

aq =
√
GAq e−iωqt. (6.41)

is introduced. If we take into account that ȧq = −iωqaq and ȧ∗q = iωqa
∗
q ,

and substitute (6.40) into (6.38), the expression of the kinetic energy takes
the form
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K =
M

2

G∑
n=1

u̇nu̇n =
M

2

G∑
n=1

1√
G

∑
q

{
ȧqeiqan + ȧ∗qe−iqan

}

× 1√
G

∑
q′

{
ȧq′eiq

′an + ȧ∗q′e−iq′an
}

= − M

2G

∑
qq′

G∑
n=1

ωqωq′

×
{

aqaq′ei(q+q′)an − aqa∗q′ei(q−q′)an − a∗qaq′e−i(q−q′)an + a∗qa∗q′e−i(q+q′)an
}

.

������

Hence it is seen that to determine K it is necessary to calculate the sum of

the type L =
G∑

n=1
eiqan . If we take into account the value of the wave number

(6.26), for the sum sought we get

L =
G∑

n=1

eiqan =
G∑

n=1

ei 2π
G gn =

G∑
n=1

ln, (6.43)

where the notation
l = ei 2π

G g. (6.44)

is introduced.
Consider two cases:

1. q �= 0, i.e. g �= 0. In this case l �= 1 and inasmuch as lG = ei2πg = 1, then

L =
G∑

n=1

ln = l + l2 + · · · + lG =
l(1 − lG)

1 − l
= 0 (6.45)

or

L =
G∑

n=1

eiqan = 0, q �= 0. (6.46)

2. q = 0, i.e. g = 0. In this case from (6.43) it is seen that l = 1 and

L =
G∑

n=1

ln =
G∑

n=1

1 = G. (6.47)

Thus, we have
G∑

n=1

eiqan =

{
0, at q �= 0

G, at q = 0.
(6.48)

Analogously it can be written as:

G∑
n=1

ei(q±q′)an =

{
0, at q ± q′ �= 0

G, at q ± q′ = 0.
(6.49)
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If we apply the indicated rules of summation in (6.42) and take into account
that ωq = ω−q, for the kinetic energy we get:

K =
M

2

∑
q

ω2
q(2aqa

∗
q − aqa−q − a∗qa

∗
−q). (6.50)

Now we translate the expression of the potential energy (6.39). If we substitute
(6.40) into (6.39), for the potential energy, we get:

U =
β
2

G∑
n=1

(un − un−1)(un − un−1) =
β

2G
∑
qq′

G∑
n=1

×[aq eiqan + a∗qe
−iqan − aqe−iqaeiqan − a∗qe

iqae−iqan ]

×
[
aq′eiq′an + a∗q′e−iq′an − aq′e−iq′aeiq′an − a∗q′eiq′ae−iq′an

]
.

(6.51)

Having multiplied the brackets and with the aid of (6.49) having added up in
respect to n and q′, we get:

U =
M

2

∑
q

ω2
q

(
2aqa

∗
q + aqa−q + a∗qa

∗
−q

)
. (6.52)

Here it was considered that eiqa + e−iqa = 2 cosaq ; 1 − cos aq = 2 sin2 aq/2,
and also sin2 aq/2 = Mω2

q/4β was used (6.16).
If we substitute (6.50) and (6.52) into (6.37), for the total energy of a

one-dimensional crystalline lattice we get:

E = K + U = 2M
∑

q

ω2
qaqa

∗
q . (6.53)

As is seen, the total energy of a vibrating one-dimensional lattice, expressed
by quantities aq, has a very simple form. However, it is expedient to pass from
complex coordinates aq to real ones Xq and Pq as follows:

Xq = aq + a∗q = 2 Re aq

Pq = MẊq = −iMωq(aq − a∗q) = −i 2Mωq Im aq.
(6.54)

Hence we get

aq =
1
2

(
Xq + i

Pq

Mωq

)
,

a∗q =
1
2

(
Xq − i

Pq

Mωq

)
.

(6.55)

If we substitute (6.55) into (6.53), for the total energy or Hamilton function
we finally get:

E =
∑

q

{
1

2M
P 2

q +
1
2
Mω2

qX
2
q

}
=H (Xq, Pq) . (6.56)
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Here the expression within brackets under the sum sign is the energy of a
harmonic oscillator with the frequency ωq and mass M . Xq and Pq are called
normal coordinates, and vibrations expressed by these coordinates are called
normal vibrations or modes.

Inasmuch as the wave number of a one-dimensional lattice and the fre-
quency according to (6.26) take on a G = N number of values, in expression
(6.56) there enters the energy of the same number of oscillators.

Thus, expressing the Hamilton function by normal coordinates Xq and
Pq, we come to a very important conclusion: The total energy of a vibrating
one-dimensional simple crystalline lattice equals the sum of energies of non-
interacting harmonic oscillators, the number of which equals the number of
possible frequencies, i.e. the number of degrees of freedom G = N .

From this conclusion stems the advantage of the normal coordinates
compared with the displacement un.

Expression of the total energy (6.56) can be generalized also to the case
of a three-dimensional lattice. In this case, the number of frequencies ωj(q)
and, conformably, the number of oscillators equals 3N (Fig. 6.4). As a result,
the total energy (the Hamilton function) of a three-dimensional simple lattice
can be written as:

E =
∑
q

3∑
j=1

{
1

2M
P 2

qj +
M

2
ω2
qjX

2
qj

}
= H(Xqj , Pqj), (6.57)

where Xqj and Pqj are normal coordinates of a three-dimensional lattice, and
H(Xqj , Pqj) is the Hamilton function.

The simple form of the Hamilton function obtained here is very important
to construct the classical theory of thermodynamic properties of solids, to
which Sect. 6.3 is devoted.

6.3 Classical Theory of Thermodynamic Properties
of Solids

In Sect. 6.1 it was shown that at temperatures higher than that of Debye’s
(T � θ), the vibrational motion of a crystalline lattice is classical. In this
section we will consider the classical theory of the thermodynamic properties
of solids with a simple crystalline lattice in the region of high temperatures
T � θ. Consequently, all expressions for thermodynamic functions and ther-
modynamic quantities obtained in this section hold only at high temperatures
T � θ.

1. Free energy. At first apply the Gibbs method to the considered case and
calculate the free energy

F = −k0T ln Zcl, (6.58)

where Zcl is the statistical integral.
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For the given case the statistical integral can be presented in the form

Zcl =
1

(2π�)3N

∫
e−E(Xqj ,Pqj)/k0T (dX

qj
dP

qj
), (6.59)

where the symbolic notation

(dXqjdPqj) =
∏
qj

dXqjdPqj . (6.60)

is introduced. If we substitute the expression of the total energy of a three-
dimensional crystal (6.57) into (6.59), the statistical integral takes the form:

Zcl =
N∏

q=1

⎡
⎣

+∞∫
−∞

e−P 2
q /2Mk0T dPq

+∞∫
−∞

e−Mω2
qX2

q /2k0T dXq

2π�

⎤
⎦

3

. (6.61)

To integrate over dPq and dXq we make use of the formulae adduced in
Appendix A. As a result, we get

Zcl =
∏
q

(
k0T

�ωq

)3

. (6.62)

Substituting (6.62) into (6.58), we get:

F = −3k0T
∑

q

ln
(
k0T

�ωq

)
. (6.63)

Passing from the summation with respect to q to the integration, according
to (6.36), for F we get:

F =
3k0TV

(2π)3

∫
ln
(

�ωq

k0T

)
dq . (6.64)

To calculate this integral use the continuum approximation ωq = υ0q and pass
to the spherical coordinate system. The integration over angles gives 4π and
as a result we have:

F =
3k0TV

2π2

qmax∫
0

ln
(

�ωq

k0T

)
q2dq, (6.65)

where qmax is the maximally possible value of the wave number of a crystal,
which we will determine slightly later.

Introduce the dimensionless variable:

x =
�ωq

k0T
=

�υ0q

k0T
. (6.66)
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Fig. 6.5. The frequency dependence on the wave vector in the Debye model

Then free energy (6.65) takes the form:

F =
3k0TV

2π2

(
k0T

�υ0

)3
xmax∫
0

x2 ln xdx, (6.67)

where
xmax =

�υ0

k0T
qmax =

�ωmax

k0T
, (6.68)

and ωmax = υ0qmax in the continuum approximation is the maximally possible
frequency of a crystal (Fig. 6.5).

Integrating (6.67) in parts and using (6.68), for the free energy we
finally have

F =
k0TV

6π2

(
ωmax

υ0

)3 [
3 ln

(
�ωmax

k0T

)
− 1

]
. (6.69)

2. Debye temperature. We mentioned earlier in Sect. 7.1 about the Debye
temperature. Characteristic to each solid, it is defined as follows:

θ =
�ωmax

k0
. (6.70)

If we take into account this definition in (6.69), for the free energy we get

F =
k0TV

6π2

(
k0θ

�υ0

)3 [
3 ln

(
θ

T

)
− 1

]
. (6.71)

The concept of the Debye temperature was introduced by the Dutch physicist–
theorist Debye in 1912 when considering the quantum theory of the heat
capacity of solids. According to (6.70), the Debye temperature has the follow-
ing physical sense: θ is the temperature at which in the given crystal all possible
frequencies (ω ≤ ωmax) are excited. Each solid has the intrinsic maximum fre-
quency ωmax and, consequently, the Debye temperature. The magnitude of
the Debye temperature depends on the elastic properties of a crystal, and
concretely, on the speed of propagation of sound in the crystal and the lattice
constant (6.79). To determine these dependences we use the following known
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condition: The number of possible values of the wave vector q in the first Bril-
louin zone equals the number of elementary cells – in our case the number of
atoms N . If we consider that in a three-dimensional simple lattice the number
of branches of frequencies equals three, the indicated condition can be written
in the form: ∑

q

3∑
j=1

1 = 3N, (6.72)

where the summation with respect to q is carried out in the limits of the first
Brillouin zone. According to the rule of passing from the sum over the wave
vector to the integral (6.35), condition (6.72) has the appearance:

3V
(2π)3

∫
dq = 3N (6.73)

or

3V
(2π)3

qmax∫
0

4πq2dq = 3N. (6.74)

Using the Debye model (Fig. 6.5) and the relationship ω = υ0q, and also
passing from the integral over dq to the integral over dω, we get

3V
2π2υ3

0

ωmax∫
0

ω2dω = 3N, (6.75)

where ωmax = υ0qmax.
The number of frequencies found in the range 0 − ωmax can also be

presented in the form:
ωmax∫
0

g(ω)dω = 3N, (6.76)

where g(ω) is the number of frequencies in the unit range around the frequency
ω, i.e. the function of the density of frequencies. Comparing (6.76) and (6.75),
for this function we get:

g(ω) =
3V

2π2υ3
0

ω2 ∼ ω2 (6.77)

(Fig. 6.6). It is seen that in the continuum approximation ω = υ0q the den-
sity of the number of frequencies grows quadratically with the growth of the
frequency: g(ω) ∼ ω2.

From (6.75) it is easy to determine the maximum frequency ωmax.

ωmax = υ0

(
6π2N

V

)1/3

. (6.78)
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Fig. 6.6. The function of the density of frequencies

Then, according to definition (6.70), the Debye temperature θ has the appear-
ance:

θ =
�υ0

k0

(
6π2N

V

)1/3

. (6.79)

If (6.79) in substituted into (6.71), for the free energy at high temperatures
(T � θ), it can be written as:

F = 3k0TN ln (θ/T ) − k0TN ;T � θ. (6.80)

Knowing the expression of the free energy, we can calculate the basic thermo-
dynamic quantities of a solid.

3. Entropy. From the definition S = − (∂F/∂T )V and (6.80) we have

S = −3k0N ln (θ/T ) + 4k0N. (6.81)

4. Mean energy - caloric equation of state. From the relationship E = F+TS ,
and also from (6.80) and (6.81) we get

E = 3k0TN ;T � θ. (6.82)

It is seen that in the region of high temperatures the mean energy, i.e. the
caloric equation of the state of a solid depends only on temperature. Note
that this result also follows from the theorem about the equal distribution
of energy over degrees of freedom, obtained on the basis of the Boltzmann
statistics.

5. Thermal equation of state. Grüneisen parameter. The dependence of the
free energy F on volume V in (6.80) is not seen explicitly. It is determined
by the dependence of the Debye temperature on volume θ(V ) [see (6.79)].
Therefore the thermal equation of the state of a solid P = − (∂F/∂V )T

can be presented in the form:

P = −3k0TN
1
θ

dθ
dV

. (6.83)
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If the dimensionless parameter

γG = −V
θ

dθ
dV

, (6.84)

is introduced, the equation of state takes the form:

P =
3k0TN

V
γG =

E(T )
V

γG; T � θ, (6.85)

where γG is called the Grüneisen parameter. Using the definition of the Debye
temperature θ = �ωmax/k0, the Grüneisen parameter can be presented in the
different forms

γG = −V
θ

dθ
dV

= − d ln θ
d ln V

= −d ln ωmax

d ln V
= −Δωmax/ωmax

ΔV /V
. (6.86)

Then the parameter γG has the following physical sense: The Grüneisen
parameter characterizes the relative change in the Debye temperature or the
relative change in the maximum frequency, accounting for the unit of relative
change in the volume of a solid.

It can be shown that the parameter γG is associated with anharmonicity
of vibrations of atoms in a crystal. Let us demonstrate this with the example
of a simple one-dimensional crystal.

The maximum value of the wave number qmax for a one-dimensional crystal
of the length L with the number of atoms N is determined from the condition
analogous to (6.74):

L

2π

qmax∫
0

dq = N. (6.87)

Then from the relationship ωmax = υ0qmax and (6.87) we get

ωmax = 2πυ0
N

L
=

2πυ0

R0
. (6.88)

Here R0 ≡ a is the distance between two atoms in the equilibrium state (see
Fig. 6.1). If we take into account the speed of propagation of sound (6.21), in
expression (6.88), we get: ωmax = 2π

√
β/M or

ω2
max = (2π)2

β

M
. (6.89)

If we take into account that the constant of elasticity of a linear crystal, as
seen from (6.2), is β = U ′′(R0), expression (6.89) takes the form:

ω2
max =

(2π)2

M
U ′′(R0). (6.90)
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Because of the vibrations, the distance between atoms changes by ΔR0, and,
consequently, the frequency changes by Δωmax. Then (6.90) can be presented
in the form:

(ωmax + Δωmax)2 =
(2π)2

M
U ′′(R0 + ΔR0). (6.91)

Inasmuch as ΔR0 � R0 and Δωmax � ωmax, on the left-hand side of (6.91)
we can neglect (Δωmax)2, and expand the right-hand side into a series in ΔR0,
restricting it to the linear approximation. As a result, (6.91) takes the form:

Δωmax

ωmax
= −γΔR0

β
, (6.92)

where U ′′′(R0) = −2γ [see (6.2)]. As a result, according to (6.86) and (6.92),
for the Grüneisen parameter of a one-dimensional crystal we get:

γG = −Δωmax/ωmax

ΔR0/R0
= γ

R0

β
, (6.93)

where γ is the coefficient of anharmonicity of vibrations [see (6.2)]. Thus, for
the pre-assigned linear crystal γG ∼ γ. Naturally, in the expression for the
potential (6.2) the ratio of the anharmonic item to the harmonic one ought
to equal the relation of the displacement x to R0

γx

β
≈ x

R0
. (6.94)

Hence it is seen that β ≈ R0γ and from (6.93) it follows that the Grüneisen
parameter is a constant quantity on the order of unity γG ≈ 1, not depending
on temperature.

From the equations of state (6.95) and (6.93) it follows that in the harmonic
approximation (γ = 0) a crystal does not exert pressure on the surrounding
bodies P = 0.

6. Heat capacity. With regard to definitions of the heat capacity CV =
(∂E/∂T ) or CV = T (∂S/∂T ), from (6.82) or (6.81) it follows that

CV = 3k0N ;T � θ, (6.95)

i.e. at high temperatures T � θ the isochoric heat capacity is a constant
quantity, depending on neither the nature of the crystal nor the tempera-
ture. This theoretical result corresponds to the experimental Dulong–Petit
law [see Sect. 6.4, Fig. 6.7].
The difference of isobaric and isochoric heat capacities has the appearance

CP − CV = −T
(
∂P

∂T

)2

V

(
∂P

∂V

)−1

T

. (6.96)
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Hence and from equation of state (6.85) we get

CP − CV = 3k0NγG;T � θ. (6.97)

It is seen that in the harmonic approximation (γG = 0) isobaric and isochoric
heat capacities coincide CP = CV and the difference between capacities is
determined only by the anharmonicity of vibrations.

Note the following interesting fact. For a three-dimensional simple crystal
from the expression of the Debye temperature (6.79) and from the definition
of the Grüneisen parameter (6.84) it follows that γG = 1/3. If we take this
into account in (6.85) and (6.97), we get known results for an ideal gas.

7. Thermal expansion. One of the thermodynamic properties of solids is ther-
mal expansion. It can occur at the isobaric process (P = const) and is
determined by the coefficient:

αP =
1
V

(
∂V

∂T

)
P

. (6.98)

If the basic thermodynamic relationship is used (2.104), (6.98) takes the form:

αP = γT

(
∂P

∂T

)
V

, (6.99)

where γT = − 1
V

(
∂V
∂P

)
T

is the coefficient of the isothermal compressibility.
From the equations of state (6.85), (6.97) and (6.99) we get

αP = γT
3k0N

V
γG = γT

CV

V
γG. (6.100)

Hence stems the Grüneisen relationship

V αP = γTCV γG. (6.101)

This relation between thermodynamic coefficients and the parameter γG was
experimentally corroborated by Grüneisen in 1908.

From the expression (6.100) it is seen that the isobaric coefficient of the
thermal expansion αP as well as the thermal equation of state and the differ-
ence (CP −CV ) is proportional to the Grüneisen parameter γG. Consequently,
all the three indicated quantities are associated with the anharmonicity of
vibrations.

6.4 Quantum Theory of Heat Capacity of Solids:
Einstein and Debye Models

Among the thermodynamic coefficients of solids, the temperature dependence
of heat capacity occupies a special place, inasmuch as it is very sensitive to
the internal structure of the substance, to the kinds of interaction between
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Fig. 6.7. The temperature dependence of heat capacity of solids

particles forming it, and to the nature (classical or quantum) of their motion.
Because of this, at all times, interest in the theoretical and experimental inves-
tigation of the heat capacity of solids is significant. It is no mere chance that
in 1907 Einstein got interested in the heat capacity of solids and for the first
time created its quantum theory.

As far back as the beginning of the nineteenth century (1819), having
generalized available experimental facts on the heat capacity of solids, P.-L.
Dulong and A.-T. Petit determined the following appropriateness: At room
temperature and higher, the heat capacity of a solid depends on neither the
kind of solid nor temperature; the specific heat capacity of one mole equals
CV ≈ 3R ≈ 6 cal/mol · K.

Note that this experimental result, bearing the name Dulong–Petit law, is
very easily explained on the basis of classical theory. Indeed, if the vibrational
motion of the atoms at lattice points is regarded as classical, and the law
about equal distribution of energy over degrees of freedom is also taken into
account, stemming from the Boltzmann statistics [see also result (6.95)], then
in the region T � θ the classical theory completely coincides with experiment
(Fig. 6.7).

This conformity between theory and experiment was observed as long
as the heat capacity was measured only in the range of high temperatures
(T > θ). At the end of the nineteenth century with the development of
cryogenic techniques (the production of low temperatures) the measurement
of heat capacity at much lower than room temperature was begun. It was
determined that the Dulong–Petit law is not fulfilled: with the lowering of
temperature the heat capacity drops, and as temperature approaches absolute
zero it tends to zero, which is in conformity with the Nernst principle. Thus,
at low temperatures (T < θ) there arose the nonconformity between exper-
iment and the only theory existing at that time, classical theory (Fig. 6.7).
This phenomenon was observed right up to the beginning of the twentieth
century, till the time when Einstein formulated the quantum theory of the
heat capacity of a solid.
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6.4.1 Einstein’s Theory

The quantum theory of the heat capacity of a solid was proposed by Einstein
in 1907 for the first time. At that time, quantum mechanics did not exist.
However, as far back as in 1900, Planck introduced for the first time the con-
cept of the energetic portion – quantum. According to the Planck postulate, an
oscillator vibrating with the frequency ω irradiates energy by whole portions
hω, i.e. the radiation occurs by quanta. On the basis of this postulate Planck
found the function of the spectral density of energy of the black radiation (the
Planck known formula) and, in this way, explained all available experimental
facts on the radiation in wide temperature and frequency regions. Note that
in particular cases the Wien and Rayleigh–Jeans laws stem from the Planck
formula for the spectral density of energy of radiation.

As a result Planck, for the first time proposed1 the quantum expression
for the mean energy of a linear harmonic oscillator with the frequency ω:

ε =
�ω

e�ω/k0T − 1
. (6.102)

It is seen that at high temperatures, when k0T � �ω, from (6.102) stems the
known classical expression for a linear harmonic oscillator ε = k0T .

Formula (6.102) was obtained by Planck for energy of a linear inter-atom
oscillator, providing absorption and emission of light. In 1907 Einstein sup-
posed that expression (6.102) can be applied to the thermal vibration of
atoms at crystalline lattice points. This supposition made it possible to cal-
culate the mean energy of a vibrating crystal. To do this Einstein proposed
a very simple model, according to which a solid consists of N atoms at crys-
talline lattice points that vibrate independent of each other with an identical
frequency ω = ω0. The Einstein model allows one to replace a crystalline
solid, consisting of N number of atoms, with a system of N non-interacting
three-dimensional harmonic oscillators, vibrating with an identical frequency
ω0, i.e. with an ideal gas of harmonic oscillators. Schematically this model is
depicted in Fig. 6.8.

If (6.102) is used, then according this model, the total energy of a crys-
tal, consisting of N atoms, can be presented as the total energy of 3N
non-interacting harmonic linear oscillators with an identical frequency ω0:

Crystalline solid 
consisting of N atoms 
(points)   

Ideal gas consisting of  
3N number of harmonic
oscillators with identical
frequency w0 

Fig. 6.8. The illustration of the Einstein model

1 Notice that at that time the concept of zero vibrations did not exist.
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E = 3Nε(ω0) =
3N�ω0

e�ω0/k0T − 1
. (6.103)

Hence the heat capacity of a solid CV = (∂E/∂T )V equals

CV = 3k0N

(
�ω0

k0T

)2 e�ω0/k0T

(e�ω0/k0T − 1)2
. (6.104)

Introduce the concept of the Einstein characteristic temperature θ0 = �ω0/k0.
Then expression (6.104) takes the form:

CV = 3k0N

(
θ0
T

)2 exp (θ0/T )
[exp (θ0/T ) − 1]2

. (6.105)

If we accept the value of the frequency equal to ω0 ≈ 3×1013 s−1, the Einstein
temperature is on the order of room temperature: θ0 ≈ 3 × 102 K.

In the region of high temperatures (T � θ0) from (6.105) the known
classical result for the heat capacity of a solid CV = 3k0N = 3R follows.

In the region of low temperatures (T � θ0), if in the denominator of
(6.105), we neglect unity, for the heat capacity we get

CV ≈ 3k0N (θ0/T )2 exp (−θ0/T ) ; T � θ0 (6.106)

As is seen from (6.106), in the region of low temperatures (T � θ0) the
heat capacity very strongly depends on temperature and in the limiting case
(T → 0 K) CV exponentially tends to zero. Though such dependence satisfies
the known Nernst principle, with experiment it is consistent only qualitatively.
Numerous experiments show that in the region of absolute zero the function
CV (T ) behaves not as an exponent, but has the appearance CV (T ) ∼ T 3.

Such a nonconformity of the theory with experiment shows that in spite
of the fact that Einstein’s idea about mean energy of the quantum oscillator
(6.102) was right, the model proposed by him (Fig. 6.8) in the region of low
temperatures did not reflect reality. In this situation perfection of the Einstein
model was required. This was done by Debye.

6.4.2 Debye’s Theory

In 1912 the Dutch physicist Debye, having accepted Einstein’s idea as the
basis, proposed a new model, more exactly reflecting reality when calculating
energy of a crystal, thereby creating a theory, consistent with experiment.

How is the Debye model distinct from the Einstein model?
According to the Einstein model, atoms (ions) at crystalline lattice points

perform harmonic vibration, independent of each other, with the identical fre-
quency ω = ω0. Therefore, the total energy of a crystal can be presented in the
form (6.103). According to the Debye model, however, between atoms (ions)
at crystalline lattice points an elastic bond exists. Therefore, at some point
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Crystalline
lattice of N

points (solid)

Isotropis 
elastic

medium  
w =u0q

Ideal gas, consisting of 
3N linear harmonic oscillators
with frequency, changing in 
the range 0 ≤ w (q) ≤wmax

Fig. 6.9. The illustration of the Debye model

vibrations arise with the frequency ω propagating over the entire crystal in
the form of an elastic wave of corresponding length. For each crystal there
exists the specified relationship ω = ω(q) between the frequency ω and the
wave number q = 2π/λ or the frequency ω and the wavelength λ. Debye
proposed that in the specified approximation, a crystal possessing a discrete
structure can be replaced with an isotropic continuum medium (the continuum
approximation). Then the relation between ω and q can be presented in the
form ω(q) = υ0q, where υ0 is the velocity of the elastic wave (see Sect. 6.1,
Fig. 6.5).

Note that for continuum media the wave number q and frequency ω change
in the infinite range 0 ≤ q <∞, 0 ≤ ω < ∞ and take on the infinite number
of values.

Taking into account that a crystal has a discrete, but periodic structure,
and that the wave vector and frequency change in the finite range 0 ≤ q < qmax

и 0 ≤ ω < ωmax and have a finite number of values in this range, Debye
proposed a model of a crystal, depicted in Fig. 6.9.

1. Mean energy. On the basis of the Debye model and the Einstein idea, the
total energy of a solid with the simple crystalline lattice can be presented
in the form:

E = 3
∑
q
ε (ω(q)) = 3

∑
q

�ω(q)
e�ω(q)/k0T − 1

. (6.107)

Here the factor 3 is associated with the fact that to each value of the wave
vector q , three coinciding frequencies correspond.

Note that the sum (6.107) consists of N number of items. Each of them
corresponds to one value of q . Inasmuch as the number of points N is a very
large number, it can be regarded that the wave vector q changes continuously
(quasi-discretely). Therefore, taking into account (6.36) in (6.107), it can be
passed from the sum to the integral

E =
3V

(2π)3

∫
�ω(q)

e�ω(q)/k0T − 1
dq . (6.108)

If we take into account that in the considered case the q -space has a spherical
symmetry and the frequency depends only on the magnitude of the wave
vector (q), i.e. ω(q) = ω(q), (6.108) takes the form:
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E =
3V
2π2

qmax∫
0

�ω(q)
e�ω(q)/k0T − 1

q2dq. (6.109)

Here in the q -space we pass to the spherical coordinate system, where an
element of volume dq = q2dq sin θdθdφ and consider that the integration
over angles gives 4π. If we restrict ourselves to the continuum approxima-
tion ω(q) = υ0q, in (6.109) from the integration over dq we can pass to the
integration over dω. As a result, we get

E =
3V �

2π2υ3
0

ωmax∫
0

ω3dω
e�ω/k0T − 1

. (6.110)

Here ωmax = υ0qmax is the maximum possible frequency, which on the basis of
the Debye model is found from condition (6.75) and given by expression (6.78).

If it is passed to the dimensionless variable x = �ω/k0T , the expression
for energy (6.110) takes the form:

E =
3V k0T

2π2

(
k0T

�υ0

)3
xmax∫
0

x3dx
ex − 1

, (6.111)

where xmax = �ωmax
k0T .

If we use the definition of the Debye characteristic temperature θ =
�ωmax/k0 in the expression (6.111), we get

E = 3k0TND

(
θ

T

)
, (6.112)

where

D

(
θ

T

)
= 3

(
T

θ

)3
θ/T∫
0

x3dx
ex − 1

(6.113)

is the Debye function. As is seen, mean energy of a crystal (6.112) at an arbi-
trary temperature is distinct from energy (6.82) for the classical case (T � θ)
by the factor, and namely by the Debye function. Since the Debye function
cannot be calculated analytically, we consider its different asymptotes.

High temperatures: T � θ. In this case, inasmuch as x� 1, in (6.113) the
factor (ex − 1)−1 can be expanded into a series

1
ex − 1

≈ 1
x+ x2

/
2 + x3

/
6 + . . .

≈ 1
x

(
1 − x

2
+
x2

12

)
;x� 1. (6.114)

Taking this into account in (6.113) and carrying out the integration, for the
asymptote of the Debye function in the high-temperature region we get:
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D

(
θ

T

)
= 1 − 3

8

(
θ

T

)
+

1
20

(
θ

T

)2

;T � θ. (6.115)

It is seen that in the limiting case

lim
T→∞

D

(
θ

T

)
= 1. (6.113a)

Substituting (6.115) into (6.112), energy in the high-temperature region can
be written as:

E = 3k0NT − 9
8
k0Nθ +

3
20
k0NT

(
θ

T

)2

;T � θ. (6.116)

Low temperatures : T � θ. In this case, the upper boundary of the
integration in the function can be accepted as equal to θ/T → ∞. Then
we get:

D

(
θ

T

)
= 3

(
T

θ

)3
∞∫
0

x3dx
ex − 1

;T � θ. (6.117)

If from Appendix A we take into account that

∞∫
0

x3dx
ex − 1

= Γ(4)ξ(4) = 6 · π
4

90
=
π4

15
, (6.118)

then at low temperatures for the Debye function we have the asymptote

D

(
θ

T

)
=
π4

5

(
T

θ

)3

;T � θ. (6.119)

Hence it follows that
lim
T→0

D (θ/T ) = 0. (6.113b)

From asymptotic values (6.113a) and (6.113b) it follows that the Debye func-
tion changes in the limits 0–1. A plot of this function is schematically presented
in Fig. 6.10.

0.5

1.0

D

~T 3

Tθ0

Fig. 6.10. A plot of the Debye function
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According to (6.112) and (6.119), the mean energy of a crystal in the region
of low temperatures has the appearance:

E =
3π4

5
k0Nθ

(
T

θ

)4

;T � θ (6.120)

2. Heat capacity. In order to find the expression of the heat capacity of a solid
at an arbitrary temperature from the general expression of energy (6.112),
take the derivative with respect to temperature. Then we get

CV = 3k0N

[
D (θ/T ) + T

∂

∂T
D (θ/T )

]
. (6.121)

If we take into account that the derivative of the Debye function with respect
to temperature equals

∂

∂T
D

(
θ

T

)
=

3
T
D

(
θ

T

)
− 3θ
T 2

(
eθ/T − 1

)−1

, (6.122)

for the heat capacity at an arbitrary temperature we get:

CV = 3k0NLV

(
θ

T

)
, (6.123)

where the function

LV (θ/T ) = 4D
(
θ

T

)
− 3

(
θ

T

)(
eθ/T − 1

)−1

(6.124)

In the general form CV (T ) determines the temperature dependence of the
heat capacity.

If we integrate the integral entering into the Debye function (6.113) once
in parts and substitute the result into (6.124), then the function LV (θ/T ) can
be presented in the form:

LV (θ/T ) = 3
(
T

θ

)3
θ/T∫
0

x4ex

(ex − 1)2
dx. (6.125)

Inasmuch as the function LV (θ/T ) at any temperature does not have an
analytical form, consider its asymptotic behavior.

High temperatures: T � θ. In this case, in (6.125) the integration variable
is x � 1 and the integrand expression can be simplified. To do this on the
basis of expansion (6.114) it can be written as:

1
(ex − 1)2

≈ 1
x2

(
1 − x+

5x2

12

)
;x� 1 (6.126)
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and, conformably,

ex

(ex − 1)2
≈ 1
x2

(
1 − x+

5x2

12

)(
1 + x+

x2

2

)
≈ 1
x2

(
1 − x2

12

)
; x << 1.

(6.127)
Now we can easily calculate the integral (6.125) with accuracy to (θ/T )2. As
a result, we get

LV (θ/T ) = 1 − 1
20

(
θ

T

)2

;T � θ. (6.128)

Substituting this expression into (6.123), for the heat capacity in the region
of high temperatures we have

CV = 3k0N

[
1 − 1

20

(
θ

T

)2
]

;T � θ. (6.129)

Note that quantization of vibrations of a crystal decreases the heat capacity
and, as is seen from (6.129), contribution of the quantization to the heat
capacity is negative

ΔCV = Cq
V − Cc

V = − 3
20

(
θ

T

)2

k0N. (6.130)

Low temperatures : T � θ. In this case, the upper limit of the integral
(6.125) can be replaced with infinity. Then, the integral obtained, according
to Appendix A, gives

∞∫
0

x4ex

(ex − 1)2
dx =

4π4

15
(6.131)

and as a result we get

LV (θ/T ) =
4π4

5

(
T

θ

)3

;T � θ. (6.132)

Consideration of this asymptote of the LV (θ/T )-function in (6.123) for the
heat capacity in the region of low temperatures gives:

CV =
12π4

5
k0N

(
T

θ

)3

;T � θ. (6.133)

The dependence CV ∼ T 3 bears the name the Debye law. As is seen, according
to the Debye theory, in contradistinction to exponential dependence (6.106)
obtained by Einstein, at very low temperatures (T << θ) the heat capacity
tends to zero as CV ∼ T 3, which is well consistent with experiment. According
to (6.128) and (6.132), the function LV (θ/T ) determining the heat capacity in
all regions of temperature, as well as the Debye function, changes in the limits
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0–1; therewith in the region of absolute zero both these functions behave as
T 3 (see Fig. 6.10).

From the expression of the heat capacity (6.123) it is seen that only one
parameter – the Debye temperature θ – enters into the function CV (T ). This
parameter characterizes the nature of a solid, inasmuch as is determined by
the speed of sound υ0 in a solid and the lattice constant V /N = a [see (6.21)
and (6.79)].

The microscopic sense of the Debye temperature follows from the formula
(6.70). Simultaneously note that θ, as a macroscopic parameter, determines
boundaries of the classical and the quantum theory: as T � θ the vibrational
motion of atoms at crystalline lattice points is classical, and as T ≤ θ it bears
the quantum character.

Measuring the temperature dependence of the heat capacity CV (θ/T ) and
using (6.123), the Debye temperature can be experimentally determined. In
Table 6.1 theoretically and experimentally found values of θ for some solids
are adduced.

As is seen from the table, theoretical and experimental values are close to
each other and are on the order of (0.7–4.1)102 K. Of all known crystals, the
crystal of the diamond is an exception, for which θ = 1,850 K.

We will briefly dwell upon the comparison of the Debye theory with
experiment. Suppose that the Debye temperature in all temperature regions
θ = �ωmax/k0 = const, and on the basis of the Debye theory (6.123) cal-
culate the temperature dependence CV (T ), and thereupon compare it with
experiment; we see that they do not always coincide. In particular, the law
CV (T ) ∼ T 3 is fulfilled only at temperature T < 5 K. At temperature
T > 10 K results of the Debye theory and experimental data are distinct
from each other. In order to circumvent this contradistinction they suppose
that the Debye parameter θ itself depends on temperature: θ = θ(T ). This
means that for the function θ(T ), entering into LV (θ/T ), it is necessary to
pre-assign such a dependence in order that the Debye theory and experiment
would coincide. The weak dependence of θ(T ) is schematically presented in
Fig. 6.11.

The true cause of the contradistinction of the Debye theory from experi-
ment resides in the fact that the Debye theory has used the simplest dispersion
law ω(q) = υ0q (Fig. 6.5) and hence stems the function of the density of fre-
quencies g(ω) ∼ ω2 (Fig. 6.6). For real crystals, however, functions ω(q) and
g(ω) have a very complex form.

Table 6.1. The theoretical and experimental values of the Debye temperature for
some solids

Substance Al Cu Ag Au Pb NaCl

θ (K) experiment 410 310 220 185 88 275
θ (K) theory 394 342 212 158 73 302
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Fig. 6.11. The temperature dependence of the Debye temperature

In conclusion, note that having determined the Debye temperature exper-
imentally for the given crystal, according to (6.79), we can calculate the speed
of sound υ0, and thereupon from (6.21) determine the coefficient of elasticity β.

6.5 Quantum Theory of Thermodynamic
Properties of Solids

In Sect. 6.4 the quantum theory of the heat capacity of a solid proposed by
Einstein and perfected by Debye was expounded. It was constructed on the
basis of Einstein’s supposition, which made it possible to calculate energy of
a solid and, consequently, the heat capacity CV in an arbitrary temperature
region. However, this theory did not allow the consideration of other thermo-
dynamic properties such as the thermal equation of state, difference of heat
capacities (CP − CV ), coefficient of thermal expansion, etc. To solve these
questions it is necessary to construct a consecutive theory, using quantum
mechanics and the Gibbs method. This method enables the immediate cal-
culation of the free energy, finding the equation of state and considering the
thermodynamic properties of a solid.

In Sect. 6.3 on the basis of the Gibbs method the classical theory of the
thermodynamic properties of a solid in the high-temperature region (T � θ),
in which thermal vibrational motions of a lattice are classical, was developed.

In this section we dwell upon the quantum theory of thermodynamic
properties, based on the Gibbs method.

On the basis of the quantum theory there lies the spectrum of frequencies
of the vibrational motion of a crystalline lattice (Fig. 6.4). Suppose that a
simple crystalline lattice consists of N elementary points. In Sect. 6.2 we
showed that energy (the Hamilton function) of the vibrational motion of such
a crystal equals the sum of energies of 3N harmonic oscillators (6.78).

Knowing the Hamilton function and using the correspondence principle,
the Hamilton operator of the given system can be found. To do this, we
need to replace the impulse entering into the Hamilton function with the
corresponding operator. If in the Hamilton function for a crystalline lattice
(6.37) the generalized impulse is replaced with the operator

P̂qj → �

i

∂

∂Xqj
, (6.134)
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the Hamilton operator takes the form:

Ĥ =
∑
q

3∑
j=1

(
− �

2

2M
∂2

∂X2
qj

+
M

2
ω2
qjX

2
qj

)
, (6.135)

where � = h/2π, and h is the Planck constant.
Hence it is seen that the Hamilton operator (6.135) can also be presented

in the form

Ĥ =
∑
q

3∑
j=1

Ĥ qj , (6.136)

where

Ĥ qj = − �
2

2M
∂2

∂X2
qj

+
M

2
ω2
qjX

2
qj (6.137)

is the Hamilton operator of a harmonic oscillator of the (q , j)th type with
frequency ωq j . It is known that the eigenvalues of the operator (6.136), i.e.
the energy spectrum of a crystal, are

E(nq j) =
∑
q

3∑
j=1

εnqj
, (6.138)

where
εnqj = (nqj + 1/2)�ωqj (6.139)

is the energy spectrum of a harmonic oscillator with the frequency ωqj , i.e.
eigenvalues of the Hamilton operator (6.137).

The symbol (nqj) shows the totality of quantum numbers of 3N number
of oscillators

(nqj) ≡ (n11, n12, n13;n21, n22, n23, . . . ;nN1, nN2, nN3), (6.140)

where nqj = 0, 1, 2, . . . is the oscillatory quantum number of the pre-assigned
oscillator of the (q , j)th type.

As is seen from (6.138) and (6.140), each quantum state of a solid is
determined by the totality of quantum numbers of 3N oscillators.

1. Free energy. Knowing the energy spectrum (6.138), the free energy of a
crystal can be calculated:

F = −k0T ln Z, (6.141)

where

Z =
∑
(nqj)

exp
(
− 1
k0T

∑
q

3∑
j=1

εnqj

)
(6.142)

is the statistical sum. If (6.139) is substituted into (6.142), the statistical sum
takes the form:



206 6 Solids

Z =
∑
(nqj)

exp
(
− 1
k0T

∑
q

3∑
j=1

(nqj + 1/2)�ωqj

)
. (6.143)

If we add up with respect to oscillatory quantum number nqj = 0, 1, 2, . . . and
take into account that

∞∑
nqj=0

exp
(
− 1
k0T

(nqj + 1/2)�ωqj

)
=

e−�ωqj/2k0T

1 − e−�ωqj/k0T
, (6.144)

for the statistical sum we get

Z =
∏
q

3∏
j=1

e−�ωqj/2k0T

1 − e−�ωqj/k0T
. (6.145)

Thus, from (6.145) and (6.141) we get the general expression for the free
energy as:

F = E0 + k0T
∑

q

3∑
j=1

ln(1 − e−�ωqj/k0T ), (6.146)

where

E0 =
∑
q

3∑
j=1

�ωqj

2
(6.147)

is the energy of zero vibrations.
For further calculations of free energy suppose that a crystal is isotropic

and all three vibrational branches, shown in Fig. 6.4, coincide: ω1(q) =
ω2(q) = ω3(q) = ω(q). Then the expression for free energy (6.146) takes
the form:

F = E0 + 3k0T
∑
q

ln(1 − e−�ωq/k0T ), (6.148)

where the zero energy in conformity with (6.147) equals

E0 =
3
2

∑
q

�ω(q). (6.149)

If, according to (6.36), we pass from the summation with respect to the quasi-
discrete variable q to the integral, we get

F = E0 +
3k0TV

(2π)3

∫
ln(1 − e−�ωq/k0T )dq . (6.150)

In order to bring computations to the end, we use the continuum approxima-
tion ω(q) = ω(q) = υ0q and the Debye model (Fig. 6.5, 0 ≤ q ≤ qmax 0 ≤
ω(q) ≤ ωmax). As a result, we have
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F = E0 +
3k0TV

2π2υ3
0

ωmax∫
0

ln(1 − e−�ωq/k0T )ω2dω (6.151)

and

E0 =
3V �

4π2υ3
0

ωmax∫
0

ω3dω. (6.152)

Introduce the dimensionless parameter x = �ω/k0T and make use of the
definition of the Debye temperature θ = �ωmax/k0. Then for the free energy
we get:

F = E0 + 9Nk0T

(
T

θ

)3
θ/T∫
0

ln(1 − e−x)x2dx, (6.153)

and for the zero energy it is:

E0 =
9
8
Nk0θ. (6.154)

Here we take into account expressions (6.78) and (6.79) for ωmax and the
Debye temperature θ, conformably.

The integral entering into expression of the free energy (6.153) integrates
up by parts. As a result, we have

F = E0 + 3Nk0T ln(1 − e−θ/T ) − 3Nk0T

(
T

θ

)3
θ/T∫
0

x3dx
ex − 1

. (6.155)

If we use the definition of the Debye function (6.113), (6.155) takes the form:

F = E0 + 3Nk0T ln(1 − e−θ/T ) −Nk0TD

(
θ

T

)
. (6.156)

In the particular case, if we take into account the asymptote of the Debye
function (6.115) in the region of high temperatures (T � θ), for the free
energy we get a classical result (6.80).

Knowing the explicit form of the expression of free energy (6.156), in
the general form basic thermodynamic parameters of a solid with regard
to quantization of the vibrational motion of atoms at lattice points can be
calculated.

2. Entropy. From the definition S = − (∂F/∂T )V and (6.156) for entropy we
get the expression

S = −3Nk0 ln(1 − e−θ/T ) + 4Nk0D

(
θ

T

)
, (6.157)
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from which at the high temperature (T � θ) it follows the known classical
result (6.81). A new result is obtained in the low-temperature region T � θ. If
in this case we take into account the asymptote of the Debye function (6.119),
entropy takes the form

S =
4π4

5
k0N

(
T

θ

)3

;T � θ. (6.158)

3. Mean energy. From the relationship E = F +TS , and also from the expres-
sions (6.156) and (6.157) in the Debye approximation for the mean energy
we get

E =
9
8
Nk0θ + 3k0NTD

(
θ

T

)
. (6.159)

4. Isochoric heat capacity. Using the definition CV = (∂E/∂T )V and the
expression (6.159) for the heat capacity we have

CV = 3k0N

[
D

(
θ

T

)
+ T

∂

∂T
D

(
θ

T

)]
= 3k0NLV

(
θ

T

)
, (6.160)

where the function LV (θ/T ) is determined by expressions (6.124) or
(6.125).

5. Thermal equation of state. Taking into account the dependence θ = θ(V )
and using the expression of free energy (6.156), for the thermal equation
of state P = − (∂F/∂V )T we get

P = P0 +
3k0NT

V
D

(
θ

T

)
γG. (6.161)

Here (
∂D

∂θ

)
T

= −3
θ
D

(
θ

T

)
+

3
T

(eθ/T−1)−1 (6.162)

and
P0 = −∂E0

∂V
=

9
8
Nk0θ

V
γG, (6.163)

were taken into account where P0 is the zero pressure, associated with zero
vibrations of the lattice and not depending on temperature. This is purely a
quantum effect; in the classical case, such a concept does not exist.

Finally the equation of state (6.161) in an arbitrary temperature region
takes the form

P (V, T ) =
9
8
Nk0θ

V
γG

[
1 +

8
3
T

θ
D

(
θ

T

)]
. (6.164)

Using the asymptotes of the Debye function, the thermal equation of the state
of a solid (6.164) can be written for different temperature regions as:
at high temperatures (T � θ)
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P (V, T ) =
3k0NT

V
γG (6.165)

and at low temperatures (T � θ)

P (V, T ) =
9
8
k0Nθ

V
γG

[
1 +

8π4

15

(
T

θ

)4
]
. (6.166)

6. Isobaric heat capacity. Knowing the thermal equation of the state of a solid
(6.161), from relationship (6.96) for the isobaric heat capacity we get

CP = CV − T

(
∂P

∂T

)2(
∂P

∂V

)−1

, (6.167)

where CV is determined by formula (6.160). If we use relationship (6.122)
for the derivatives of the Debye function with respect to temperature
(∂/∂T )D(θ/T ), and also (6.162), the isobaric heat capacity can be written
down as

CP = 3k0NLP

(
θ

T

)
, (6.168)

where the functions

LP (θ/T ) = LV (θ/T ) + γGM1 (θ/T, γG) (6.169)

and

M1

(
θ

T
, γG

)
=

L2
V

(
θ
T

)
[

3θ
8T +D

(
θ
T

)]
(1 + γG) − γGLV

(
θ
T

) . (6.170)

are introduced.
As a result, for the difference of heat capacities (CP −CV ) and their ratio

CP /CV we get, conformably,

CP − CV = 3k0NγGM1

(
θ

T
, γG

)
(6.171)

and
CP

CV
= 1 + γGM2

(
θ

T
, γG

)
, (6.172)

where

M2

(
θ

T
, γG

)
=

LV

(
θ
T

)
[

3θ
8T +D

(
θ
T

)]
(1 + γG) − γGLV

(
θ
T

) . (6.173)

We adduce asymptotes of functions entering into expressions of heat capac-
ities. Asymptotes of the LV (θ/T )- function, determining the isochoric heat
capacity CV , are given by formulae (6.84) and (6.88).
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For other functions we have:
in the region of high temperatures T >> θ

M1

(
θ

T
, γG

)
= 1 − 1

20
(3 + 2γG)

(
θ

T

)2

, (6.174)

M2

(
θ

T
, γG

)
= 1 − 1

10
(1 + γG)

(
θ

T

)2

. (6.175)

and in the region of low temperatures T � θ

M1

(
θ

T
, γG

)
=

8
3(1 + γG)

(
4π4

5

)2(
T

θ

)7

, (6.176)

M2

(
θ

T
, γG

)
=

32π4

15(1 + γG)

(
T

θ

)4

. (6.177)

Inasmuch as in the low-temperature region M1 ∼ T 7 and M2 ∼ T 4, from
(6.171) and (6.172) it is seen that in the limiting case T → 0 isobaric and
isochoric heat capacities of a solid coincide: CP ≈ CV .

From the asymptotes adduced above, it follows that as T → 0 iso-
baric and isochoric heat capacities equally tend to zero as ∼T 3, and their
difference, according to the Nernst principle, tends to zero more strongly:
(CP − CV ) ∼ T 7.

Temperature dependences of isochoric CV and isobaric CP heat capacities
are adduced in Fig. 6.12 for clarity. And temperature dependences of their
difference (CP − CV ) and relation CP /CV are presented in Figs. 6.13 and
6.14, conformably.

7. Isobaric thermal expansion. This effect in the classical case in the region of
high temperatures (T � θ)) was considered in Sect. 6.3, where the known
Grüneisen relationship (6.101) was obtained. It can be shown that the
Grüneisen relationship (6.101) takes place in the general case, too. Using
expressions (6.99) and (6.161), for αP we get

αP =
3k0NγT

V
γGLV

(
θ

T

)
=
γT

V
γGCV . (6.178)

This expression is distinct from (6.100) by the fact that in the classical case
CV = 3k0N = 3R, and in the general case CV is determined by formula
(6.160). From (6.178) the Grüneisen relationship follows

V
αP

CV
= γTγG. (6.179)

Hence it is seen that, inasmuch as the isothermal compressibility γT and the
Grüneisen constant γG do not depend on temperature, the ratio αP /CV =
const.
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0

1 + gG

~T 3

Tq

1.0
CV /3R

CP /3R

Fig. 6.12. The temperature dependences of isochoric CV and isobaric CP heat
capacities

0

(CP − CV)/3R

~T 7

Tq

3γG

Fig. 6.13. The temperature dependences of difference (CP − CV )

0

~T 4

Tq

(1+ gG)

1.0

CP /CV

Fig. 6.14. The temperature dependences of relation CP /CV

The relationship between thermodynamic coefficients (6.179) has the gen-
eral character and is true for any temperature. As noted in Sect. 6.3, this was
experimentally corroborated by Grüneisen.

From the relationships adduced above, it follows that pressure (the ther-
mal equation of state), the isobaric heat capacity and the coefficient of thermal
expansion are proportional to the Grüneisen constant γG and, consequently,
P, CP , αP in a solid are distinct from zero only with consideration of
anharmonism of vibrations of atoms at lattice points.

In conclusion, note that in terms of the Debye theory, thermodynamic
properties of a solid are determined by the four functions adduced above:

D (θ/T ) – the Debye function determining entropy (6.157), mean energy
(6.159) and thermal equation of state (6.161) of a solid;
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LV (θ/T ) – the function determining isochoric heat capacity (6.160) and
isobaric coefficient of thermal expansion (6.178);

M1 (θ/T, γG) – the function determining the difference (CP − CV ) of
isobaric and isochoric heat capacities (6.171);

M2 (θ/T, γG) – the function determining the ratio CP /CV of isobaric and
isochoric heat capacities (6.172).

All these four functions have one common property. As temperature
changes in the range 0 < T < ∞ each of them changes in the limits from
zero to unity:

D

(
θ

T

)
= LV

(
θ

T

)
= M1

(
θ

T
, γG

)
= M2

(
θ

T
, γG

)
=
{

0;T → 0
1;T → ∞.

(6.180)
Notice that the isobaric heat capacity CP is determined by the function
LP (θ/T, γG) [see (6.168)], which changes in the limits from 0 to (1 + γG):

LP

(
θ

T
, γG

)
=
{

0; T → 0
1 + γG;T → ∞.

(6.181)
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Quantum Statistics: Equilibrium Electron Gas

Summary. It is known that statistical physics studies two kinds of macroscopic
systems: classical and quantum. Systems in which the motion of particles that con-
stitute them is described by the classical (newtonian) equation of motion and whose
state as a whole is described by the Hamilton function are called classical systems.
The condition of classicity of the motion has the appearance

s � h, (condition 1)

where h is the planck constant, s = mυL is the action of motion, m is the mass of
a particle, υ is the velocity of motion, and L are linear dimensions of the space in
which the motion occurs. The condition of classicity of the motion (see Sect. 1.2)
can also be presented in the form

L � λ or L � h /
√

mk0T , (condition 2)

where λ = h / mυ is the de Broglie wavelength of a particle, and k0 is the Boltzmann
constant: mυ2 ≈ k0T .

If the above conditions are not fulfilled, the motion is described by the
Schrödinger equation and the energy spectrum of a particle becomes discrete,
i.e. the motion is quantized. Systems consisting of such particles are called
quantum systems.

In the preceding chapters, on the basis of the Gibbs canonical distribution,
we considered both the classical and the quantum state of some systems and
constructed the classical and quantum theories of thermodynamic properties,
conformably. For instance, we became acquainted with the classical and quan-
tum theories of the heat capacity of a diatomic ideal gas and a solid. Note
that in both cases the statistics were classical; only in one case it was needed
to calculate the statistical integral, and in the other it was the statistical sum.

This chapter is devoted to quantum statistics (Fermi–Dirac and Bose–
Einstein distribution functions) and the theory of thermodynamic properties
of quantum ideal gases. What does the quantum statistics represent?

In order to answer this question, consider the following problem. Imagine
that in a vessel of volume V , N particles with identical masses and spins are
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found: for instance, a free electron gas in a metal or a photon gas in a closed
vessel.

To such systems we apply the quantum statistics, taking into account the
principle of indistinguishability of particles (see Sect. 7.2).

Classical statistics is applicable only in the case in which the distance d
between the particles of a system is much more than the de Broglie wavelength
λ (see Sect. 7.1):

d� λ or n−1/3 � h /
√

2mk0T , (condition 3)

where m and n are the mass and concentration of particles in a system,
respectively, and T is the absolute temperature.

Note that quantum theory (the theory of quantum systems) should not be
confused with quantum statistics. From a comparison of conditions of clas-
sicity of the motion (condition 2) and classicity of statistics (condition 3),
it is seen that cases where the former is satisfied, the latter can be violated
because L � d. Thus, the motion of particles in a system can be classical,
whereas their statistics can be quantum and vice versa.

Quantum statistics can be applied both to classical and quantum systems.
Quantum statistics is more general. In the particular case where condition (3)
is satisfied, results of quantum statistics pass onto the corresponding results
of classical statistics.

Before moving on to an exposition of quantum statistics, we consider
the Boltzmann distribution which forms the basis of classical statistics and
expound the basic difficulties of classical statistics.

7.1 Boltzmann Distribution:
Difficulties of Classical Statistics

The distribution of velocities of the molecules of an ideal gas was given for
the first time by the famous Scottish physicist Maxwell in 1859. In 1871, the
outstanding Austrian physicist Boltzmann generalized the Maxwell distri-
bution to the case in which a gas is found in an external potential field
(the gravitational field of the earth) and obtained the well-known barometric
formula.

The Boltzmann distribution function was found to satisfy classical systems,
i.e. for the case when the energy of a particle is determined by its impulse and
coordinates, and is equal to the sum of kinetic and potential energies. Here,
we assume that the state of each particle forming an ideal gas, i.e. its energy,
is determined by a set of quantum numbers, but the statistics is classical.

The statement of the problem is as follows: assume that in volume V there
are N particles. Let k be the totality of quantum numbers determining the
state of one particle, εk be its energy and nk be the number of particles in this
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state. It is required to find the mean number of particles n̄k in the state k. In
order that the exchange interaction be absent, the gas ought to be rarefied:

n̄k � 1. (7.1)

When solving the stated problem, we use the Gibbs grand canonical distribu-
tion for open systems. If we take the quantum state k with energy εk as an
open subsystem, and the remaining part of the gas to function as a thermostat,
the Gibbs grand canonical distribution can be presented in the form

Wnk
= e

Ωk+μnk−εknk
k0T , (7.2)

where Ωk is the grand canonical potential of the considered subsystem, and
Wnk

is the probability that in the quantum state k, i.e. in the subsystem, there
are nk particles. Then, W0 = exp (Ωk / k0T ) ≈ 1 is the probability that the
state k is empty, because according to condition (7.1) the gas is very rarefied
and the number of quantum states is far more than the number of particles. It
is clear that the probability of one particle being found in the k -state ought
to be

W1 = e
Ωk+(μ−εk)

k0T ≈ e
μ−εk
k0T � 1, (7.3)

where it is taken into account that exp (Ωk / k0T ) = 1. It is known that Ωk

entering into distribution (7.2) is determined from the normalization condition∑
nk

Wnk
= 1. Thus,

Ωk = −k0T ln
∑
nk

e
(μ−εk)nk

k0T . (7.4)

If we take into account condition (7.3) and in the sum (7.4) keep only two
terms (nk = 0; 1), we get

Ωk = −k0T ln
(
1 + e

μ−εk
k0T

)
. (7.5)

Because the second term in (7.5) is very small, at small x we can use the
approximation ln(1 + x) ≈ x. Then

Ωk = −k0T · e
μ−εk
k0T . (7.6)

As a result, the mean number of particles in the k -state equals

n̄k = −
(
∂Ωk

∂μ

)
T

= e
μ−εk
k0T . (7.7)

Denote the mean number of particles in the k -state by n̄k ≡ fk. Then we get

fk = e
μ−εk
k0T . (7.8)
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This distribution function in classical statistics bears the name Boltzmann
distribution, and a gas obeying such a distribution is called the classical ideal
gas or the Boltzmann gas.

The grand thermodynamic potential of the complete system has the
appearance

Ωcl =
∑

k

Ωk = −k0T
∑

k

e
μ−εk
k0T . (7.9)

In order to find the explicit form of the thermodynamic potential, it is neces-
sary to know the dependence of energy εk on the wave vector k. For simplicity,
the energy of a free particle is presented in the form

εk =
�

2k2

2m
, (7.10)

where m is the mass of the particle.
In the quasi-classical case, in order to pass from the summation with

respect to k to the integral, according to (6.36), we use the rule

∑
k

ϕ(k) ⇒ V g0
(2π)3

∫
ϕ(k)dk, (7.11)

where ϕ(k) is an arbitrary smooth function, g0 = 2s+ 1-fold degeneracy over
the spin and s is the spin quantum number. Then we get

Ωcl = −k0TV g0
(2π)3

∫
e

μ−εk
k0T dk. (7.12)

If we take into account that the energy of the particle depends only on the
magnitude of the wave vector, in (7.12), changing the k-space to the spherical
coordinate system dk = k2dk sin θ dθ dϕ and integrating, we get

Ωcl = −k0TV g0
2π2

∫
e

μ−εk
k0T k2dk. (7.13)

Here, from the integral over dk, according to (7.10), we can pass to the integral
over dε:

Ωcl = −k0TV (2m)3/2g0
4π2�3

eμ/k0T

∞∫
0

e−ε/k0T ε1/2dε, (7.14)

where we have taken into account

k2dk =
(2m)3/2

2�3
ε1/2dε. (7.15)

Using the dimensionless variable of integration x = ε/k0T , and according to
Appendix A, we get
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Ωcl = −g0V (k0T )5/2(2m)3/2

8π3/2�3
eμ/k0T . (7.16)

Hence, we can find the total number of particles N and the pressure P of the
system [see (2.206)]:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
P = −

(
∂Ω
∂V

)
T,μ

=
g0(k0T )5/2(2m)3/2

8π3/2�3
eμ/k0T ,

N = −
(
∂Ω
∂μ

)
V,T

=
g0V (2mk0T )3/2

8π3/2�3
eμ/k0T .

(7.17)

The solution obtained by combining (eliminating μ) these equations gives the
equation of state of a classical ideal gas: P = k0NT / V .

Using the condition of classicity of statistics n̄k ≡ fk � 1 (7.8), we can
write

e
μ−εk
k0T � 1. (7.18)

In order that this condition be fulfilled at all values of εk, including for εk = 0,
the chemical potential ought to satisfy the inequality

eμ/k0T � 1. (7.19)

To determine the explicit form of condition of classicity of statistics (7.234)
from the second equation of system (7.17), we find the chemical potential.
Then, the condition of classicity of statistics takes the form

A0 ≡ e
μ

k0T =
N

V g0

(2π�
2)3/2

(mk0T )3/2
≈
(
λ

d

)3

� 1, (7.20)

where d= (N / V )−1/3 = n−1/3 is the mean distance between particles, and
λ = h / (2mk0T )1/2 is the de Broglie wavelength. This condition of classicity
coincides with the condition (3) introduced at the beginning of this chapter.

A gas whose chemical potential satisfies (7.20) is called a classical ideal gas,
Boltzmann gas or non-degenerate gas. To satisfy this condition, it is necessary
that the chemical potential take on large negative values, i.e. (−μ / k0T ) � 1,
and to do this the concentration of particles n = N/V ought to be small, the
mass of particles m large and the temperature T high.

With the aid of the Boltzmann distribution (7.8), we find the mean energy
of a non-degenerate gas. To do this, we calculate the sum

E =
∑

k

εkfk =
∑

k

εke
μ−εk
k0T . (7.21)

In order to pass from the summation to the integration, we use (7.11) and
(7.15) and compare the obtained result with the first equation of system
(7.17). As a result, we get the very simple relationship between energy E
and pressure P :
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P =
2
3
E

V
. (7.22)

Using expression (7.20) for the chemical potential μ from (7.21), we get the
well-known expression for the mean energy of a classical ideal gas:

E =
3
2
k0TN . (7.23)

Hence, it is seen that for each degree of freedom of a free particle, there
accounts energy equal to

E

3N
=

1
2
k0T. (7.24)

Entropy of a classical ideal gas can be found using (7.16) and the relationship

Scl(V, T, μ) = −
(
∂Ωkl(V, T, μ)

∂T

)
V,μ

. (7.25)

As a result, we get

Scl(V, T, μ) =
5
2
k0g0V (2mk0T )3/2

8π3/2�3

(
1 − 2

5
μ

k0T

)
eμ/k0T . (7.26)

If we substitute expression (7.20) into (7.26), the dependence of entropy on
V, T,N takes the form

Scl(V, T,N) =
5
2
k0N − k0N ln

[
N

V g0

(
2π�

2

mk0T

)3/2
]

(7.27)

[compare with expression (4.10)]. Hence follows the well-known expression of
the isochoric heat capacity: CV = 3k0N / 2.

It can be shown that all atomic and molecular gases satisfy the condition of
classicity (7.20). Indeed, at N / V ≈ 1019 cm−3, m ≈ 10−24 g and T = 300 K,
from expression (7.20) it follows that exp (μ / k0T ) ≈ 10−4 � 1. Thus, the
Boltzmann statistics (the distribution) can be applied to all atomic and molec-
ular gases. With the obtained theoretical results, the known experimental data
are explained well.

However, there exist gases for which, when applying the Boltzmann
distribution, non-explainable principal difficulties arise between theory and
experiment. These difficulties mainly arise when applying the Boltzmann
distribution to a free electron gas in metals and to a photon gas.

We recall these difficulties.

1. The difficulty associated with the theory of the heat capacity of an electron
gas in metals.

To explain electrical and thermal conductivity of metals, the following model
is assumed: A conducting metal consists of a crystal lattice formed by ions
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and electrons (an electron gas) moving freely in the metal. The electron gas
can weakly interact with the vibrating lattice. The Drude theory of metals,
which is based on this model, well explains the Wiedemann–Franz law and
the temperature dependence of the specific resistivity of metals. However, the
application of Boltzmann statistics when calculating the heat capacity of a free
electron gas leads to nonconformity between the theory and the experiment.
Indeed, according to this model, the energy of a metal is equal to the sum of
energy of the vibratory motion of the crystalline lattice and of energy of the
translational motion of free electrons:

Emet = Elat + Eel, (7.28)

and the heat capacity, consequently, is

Cmet
V = C lat

V + Cel
V . (7.29)

For simplicity, consider a uni-valent metal. In this case, the number of ions
and, consequently, free electrons is identical and equals N .

It is known that at temperatures higher than the Debye temperature
(T � θ), the vibratory motion of ions at the crystalline lattice points is
classical (see Chap. 6) and the mean energy of the lattice Elat = 3k0NT . In
order to calculate energy of the free translational motion of electrons, we apply
the Boltzmann distribution and take into account that each degree of freedom
corresponds to k0T / 2 energy (7.24). Then we get Eel = 3k0NT / 2. Thus,
the total mean energy of a conducting crystal (a metal) equals

Emet = 3k0NT +
3
2
k0NT =

9
2
k0TN , (7.30)

and the heat capacity is

Cmet
V =

9
2
k0N =

9
2
R = 9 cal/molK. (7.31)

However, according to experimental data, at high temperatures in metals,
as well as in dielectrics, the heat capacity Cmet

V ≈ 3R ≈ 6 cal/molK. Con-
sequently, in the formation of the heat capacity of metals an electron gas
almost does not play a role. Why? The answer to this question can be found
in Sect. 7.9.

2. The second difficulty of classical statistics is associated with the Pauli
paramagnetism, i.e. the contribution of an electron gas to the magnetic
properties of a metal. It is known that a free electron possesses an
intrinsic magnetic moment, equal to the Bohr magneton μB = e�/2mc =
0.93 × 10−20 erg/G, which is associated with its spin s = 1/2. Therefore,
in a magnetic field H, at the expense of free electrons in the metal the
paramagnetic property ought to arise. If classical statistics apply to an
electron gas, when calculating the paramagnetic susceptibility χ we get the
expression [see Sect. 7.10, (7.190)]:
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χ =
M

VH
=
nμ2

B

k0T
≈ 10−4 erg/G2 cm3, (7.32)

where, to evaluate it, we have taken T = 300K, and n = 5 × 1022 cm−3.
However, by experiment, the value of χ obtained was seen to be lower by two
orders than that deduced in (7.32). At the same time, it was experimentally
established that χ is almost independent of temperature, whereas according
to classical statistics χ ∼ 1/T .

The question arises as to what causes such a strong divergence of results of
classical statistics and experiment. The comprehensive answer to this question
can be found in Sect. 7.10. Going ahead, suppose that the cause of the indi-
cated divergence is because the electron gas does not behave like a classical
gas. In order to be convinced of this, it is necessary to check the criterion of
classicity (7.20) for an electron gas in metals. If we take the temperature of
an electron gas as T = 300 K and the concentration n = 5 × 1022 cm−3, then
according to (7.20) exp (μ / k0T ) ≈ 102, which contradicts the condition of
classicity of the statistics, i.e. exp (μ / k0T ) � 1. Consequently, a free electron
gas in metals is not classical and therefore the Boltzmann statistics cannot be
applied to it.

Such a situation in the 1920s led to the development of the new quantum
statistics. During this time, quantum mechanics emerged (the principle of
indistinguishability of particles) and based on that the Fermi–Dirac quantum
statistics was formulated (see Sect. 7.3). In 1927, on the basis of quantum
statistics Pauli developed the theory of the electron paramagnetism, and in
1928 Sommerfeld circumvented the nonconformity associated with the heat
capacity of an electron gas in metals. They showed that an electron gas in
metals is not classical but a statistically degenerate quantum gas (see Sects. 7.9
and 7.10).

3. The difficulty associated with the application of the Boltzmann classical
statistics to a photon gas. It is well-known that in the rise of quan-
tum physics the experimental study of the black-body radiation played a
big role. In this field, many experimental results were accumulated and
appropriate formulae were derived, such as the Wien, Rayleigh–Jeans,
Stefan–Boltzmann laws, which in 1900 were explained by the well-known
German physicist Max Planck. It is founded on the hypothesis that atoms
on the walls of a hollow vessel act as oscillators with a specified frequency
ω and irradiate electromagnetic energy inside, not continually but by por-
tions. As a result, for the spectral density of energy of the black-body
radiation Planck obtained the well-known formula

ρ(ω, T ) =
dE(ω, T )
V dω

=
�ω3

π2c3
1

e�ω/k0T − 1
, (7.33)



7.1 Boltzmann Distribution: Difficulties of Classical Statistics 221

where E(ω, T ) is the total energy of radiation inside the vessel of volume V ,
ω is the frequency of the radiation and T is temperature of the walls of the
vessel.

The newly introduced Planck hypothesis, in conformity with (7.33), suc-
cessfully explained all experimental characteristics of black-body radiation
from formula (7.33), particular cases of which are the Rayleigh–Jeans and
Wien laws.

In 1905, Einstein put forward the following very bold hypothesis: light, i.e.
the electromagnetic field, of a particular frequency ω consists of particles –
photons – with energy and impulse:

ε = �ω,

p = �ω/c, (7.34)

where � = h/2π; h is the Planck constant, and ω and c are the frequency and
speed of light, respectively.

Consequently, an electromagnetic field filling up the hollow region of a
vessel can be presented as an ideal gas – a photon gas – consisting of pho-
tons with different energies and impulses. Hence, naturally, the idea arises
that by applying Boltzmann statistics to a photon gas, we can calculate the
energy of photons with frequencies in the range dω and, thereby, derive the
Planck formula (7.33). However, as a result of such a computation, what was
obtained was not the general Planck formula but the Wien formula, just in
the particular case of k0T � �ω. Indeed, according the Boltzmann statistics,
the number of photons with frequencies in the range dω equals

dN(ω) = const · e−ε/k0T p2dp = const · e−�ω/k0Tω2dω, (7.35)

and, consequently, the energy of photons with frequencies in the range dω is

dE(ω) = �ω dN(ω) = const · e−�ω/k0Tω3dω. (7.36)

With regard to this expression, for the spectral density we get

ρ(ω) =
dE(ω)

dω
= const · e−�ω/k0Tω3. (7.37)

The obtained expression (7.37) is not the Planck formula, but its particular
case - Wien’s law. Hence, it follows that the Boltzmann distribution cannot
be applied to a photon gas, i.e. a photon gas is not a Boltzmann gas.

The difficulty associated with the photon gas was circumvented by the
Indian physicist Satyendra Nath Bose on the basis of a new statistics worked
out especially for a photon gas (see Sect. 7.14). Slightly later, Einstein gen-
eralized the Bose statistics to the case of a gas consisting of particles with
the mass of rest different from zero. Therefore, Bose statistics got the name
Bose–Einstein statistics (see Sect. 7.3) in 1924.
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7.2 Principle of Indistinguishability of Particles:
Fermions and Bosons

In Sect. 7.1 we noted that difficulties associated with the application of
classical statistics to photon and free electron gases in metals were cir-
cumvented only after the introduction of quantum statistics. Before going
into Fermi–Dirac and Bose–Einstein distributions, which constitute the basis
of quantum statistics, we introduce the principle of indistinguishability of
particles.

Consider a system consisting ofN identical particles with identical physical
parameters (mass, charge, spin, and so on).

According to classical mechanics, in spite of the fact that all the particles
are identical, they can be distinguished. Thus, for instance, if in the initial
position we enumerate particles and at subsequent moments trace their motion
in the trajectory (according to the solution for the Hamilton equation), it can
be exactly said at which point of space the particle is found. In other words, in
classical mechanics, in spite of the fact that the characteristics of all particles
are identical, they do not lose their individuality and are distinct from each
other.

In quantum mechanics, according to the uncertainty principle, the con-
cept of the trajectory is absent, and, therefore, even if the initial position of
a particle is known, in subsequent moments its location cannot be completely
determined, i.e. if we enumerate particles in the initial state, we cannot exactly
determine their positions in space at subsequent moments of time. Conse-
quently, in quantum mechanics, in contrast to classical mechanics, particles of
a system consisting of identical particles when changing the state of the sys-
tem do not conserve their individuality and are not distinct from each other.
Therefore, in quantum mechanics of a system consisting of identical particles,
we can only speak of the system as a whole, and not of the state of individual
particles in it. In order to show this, we write the Hamilton operator for the
considered system. Assume that a system consisting of N interacting particles
is found in an external potential field that does not depend on time. Then,
for such a stationary state (∂Ĥ / ∂t = 0), the Hamilton has the appearance

Ĥ(1, 2, . . . , N) =
N∑

i=1

[
− �

2

2m
∇2

i +W (i)
]

+
N∑

i�=k=1

U(i, k), (7.38)

where i and k are the totality of all coordinates of a particle of the system,
including the spin, with the corresponding number, e.g. (i) ⇒ (xi, yi, zi, si);
∇i is the Laplace operator, W (i) is the potential energy of the ith particle in
the external potential field, m is the particle mass and U(i, k) is the energy
of interaction between particles.

Since energy of the interaction depends only on the distance between par-
ticles, U(i, k) = U(k, i). It we take this into account, from (7.38) it is seen
that at the mutual transposition of particles (i←→ k) the Hamilton operator
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does not change, because this transposition leads only to the transposition of
the items in sum (7.38). Consequently, the property of the Hamilton operator

Ĥ(1, 2, . . . , i, . . . , k, . . . , N) = Ĥ(1, 2, . . . , k, . . . , i, . . . , N) (7.39)

is the condition of identity of the particles. Indeed, if out of N particles only
one is distinct from the others, then on the transposition of this particle with
an arbitrary other one, condition (7.39) is not fulfilled.

Now we introduce the concept of the operator of the mutual transposition
of particles and denote it by P̂ik . The action of this operator leads to the fact
that particles i and k in the system exchange places, i.e. coordinates (i) and
(k) on which the wave function of the system depends mutually exchange:

P̂ikψ(1, 2, . . . , i, . . . , k, . . . , N) = ψ(1, 2, . . . , k, . . . , i, . . . , N) (7.40)

or in the shortened form

P̂ikψ(i, k) = ψ(k, i). (7.41)

From the Hamiltonian property (7.39) and the definition of the operator of the
mutual transposition of particles (7.40) it is seen that Ĥ and P̂ik commute:

P̂ikĤ− ĤP̂ik = 0. (7.42)

Note that this commutation, which is also a property of the Hamilton operator
(7.39), is the mathematical expression of the identity of particles of the system.

The wave function of the system ψ(1, 2, . . . , i, . . . , k, . . . , N) ≡ ψ(i, k)
satisfies the Schrödinger stationary equation

Ĥψ(i, k) = Eψ(i, k) (7.43)

where E is the total energy of the system.
If we act by the operator P̂ik on each side of (7.43), we get

P̂ikĤψ(i, k) = EP̂ikψ(i, k). (7.44)

If we take into account the property of commutativity of operators of Hamilton
and mutual transposition (7.42), then (7.44) takes the form

Ĥ(P̂ikψ(i, k)) = E(P̂ikψ(i, k)). (7.45)

Hence, it is seen that both the function ψ(i, k) and the function

ψ(1)(i, k) = P̂ikψ(i, k) = ψ(1, 2, . . . , k, . . . , i, . . . , N) (7.46)

satisfy the Schrödinger equation; in other words, the function ψ(1)(i, k) is also
the wave function characterising the state of the system. The functions ψ(1)

and ψ are distinguished only by the fact that in the state ψ(1) particles with
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coordinates i and k exchange places with reference to the state ψ. Continuing
the process of transposition (the exchange), we get ψ(2), ψ(3), . . . , N ! wave
functions. It is clear that each of these functions is a wave function of the state
with the total energy E. Consequently, to one value of energy E of the system
of identical particles,N ! wave functions correspond (N !-fold degeneracy). Such
a degeneracy is called the exchange degeneracy.

Thus, we have shown that separate particles of a system comprising identi-
cal particles do not conserve their individuality, i.e. independently of a particle
being found at some point or other of the space, the system is found in the
same state. In other words, we cannot speak about the state of separate par-
ticles, but only about the system as a whole, i.e. it is impossible to distinguish
the particles. This conclusion in quantum mechanics is called the principle of
indistinguishability of particles and formulated as follows: A system consist-
ing of identical particles can have only such states that do not change at the
transposition of particles.

From the linearity of the Hamilton operator and the principle of superpo-
sition, it follows that the linear combination

ψ(1, 2, . . . , N) =
∑

n

Cnψ
(n)(1, 2, . . . , N) (7.47)

of wave functions ψ(1), ψ(2), . . . also satisfies the Schrödinger equation; how-
ever, it is necessary to choose the coefficients Cn so that they describe one of
the possible states of the system.

From commutativity (7.42), it follows that eigenfunctions of operators of
transposition P̂ik and Hamilton Ĥ of system (7.38) are identical and eigen-
values of the operator P̂ik are real and conservation quantities, i.e. they are
an integral of motion. Then we can write

P̂ikψ(1, 2, . . . , i, . . . , k, . . . , N) = λψ(1, 2, . . . , i, . . . , k, . . . , N), (7.48)

where λ is the eigenvalue of the operator P̂ik , which is a real and conservation
quantity. To determine this quantity, act by the operator P̂ik on both sides of
(7.48):

P̂ 2
ikψ(1, 2, . . . , i, . . . , k, . . . , N) = λP̂ikψ(1, 2, . . . , i, . . . , k, . . . , N). (7.49)

Because on the left-hand side of the equation the operators P̂ik acts twice, and
then ψ does not change, and on the right-hand side if we take into account
(7.48), (7.49) takes the form

ψ(1, 2, . . . , i, . . . , k, . . . , N) = λ2ψ(1, 2, . . . , i, . . . , k, . . . , N). (7.50)

As a result, we get
λ2 = 1 or λ± 1. (7.51)

Consequently, eigenfunctions of the operator of the transposition P̂ik and,
correspondingly, the Hamiltons on transposition i→←k of identical particles
either do not change or only change their sign:
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P̂ikψ(1, 2, . . . , i, . . . , k, . . . , N) = ±ψ(1, 2, . . . , i, . . . , k, . . . , N). (7.52)

In the first case, the wave function is called a symmetric wave function

P̂ikψs(1, 2, . . . , i, . . . , k, . . . , N) = +ψs(1, 2, . . . , i, . . . , k, . . . , N), (7.53)

and in the second case it is an antisymmetric wave function.

P̂ikψa(1, 2, . . . , i, . . . k, . . . , N) = −ψa(1, 2, . . . , i, . . . , k, . . . , N), (7.54)

where i and k take on any integer value from 1 to N .
Thus, according to the principle of indistinguishability, the state of a sys-

tem of identical particles can be described by a symmetric or an antisymmetric
wave function. Because the eigenvalues λ = ±1 of the operator of the transpo-
sition P̂ik are an integral of motion (a conservation quantity), the symmetry
of the wave function (symmetric or antisymmetric) is absolute. This means
that if the wave function of a system possesses a specified symmetry, it can
never have the other symmetry.

Furthermore, the wave function of systems of identical particles cannot
possess a mixed symmetry, i.e. if for one transposition the wave function is
symmetric, for other transpositions it cannot be antisymmetric. Such a state is
impossible. In order to show these, suppose the reverse: assume that ψ function
in reference to the transposition i→←k is antisymmetric, and in reference to the
transpositions i→←j and j→←k it is symmetric. Then we can write

ψ(. . . , i, . . . , k, . . . , j, . . .) = −ψ(. . . , k, . . . , i, . . . , j, . . .)
= −ψ(. . . , k, . . . , j, . . . , i, . . .) = −ψ(. . . , j, . . . , k, . . . , i, . . .)
= −ψ(. . . , i, . . . , k, . . . , j, . . .). (7.55)

Hence it follows that

2ψ(. . . , i, . . . , k, . . . , j, . . .) = 0; ψ(. . . , i, . . . , k, . . . , j, . . .) = 0. (7.56)

Consequently, the state with the mixed symmetry is impossible.
Experimentally, it has been shown that in nature there exist systems

described by both symmetric and antisymmetric wave functions, and the
following rules have been established:

1. If a system consists of identical particles with a spin as a multiple of the
Planck constant, i.e.

s = 0; h; 2h, (7.57)

it is described by the symmetric wave function and the particles themselves
are called Bose particles or briefly bosons. π- and K-mesons with the spin
s = 0 and photons with the spin s = h are examples of such particles.
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2. If a system consists of identical particles with a spin as a multiple of the
odd semi-integer Planck constant, i.e.

s =
h

2
; 3
h

2
; 5
h

2
, (7.58)

it is described by the antisymmetric wave function, and the particles them-
selves are called Fermi particles or briefly fermions. An electron, proton,
neutron and their antiparticles with the spin s=h/2 are examples of fermions.

Note that these rules obtained as a result of generalization of experimental
facts were subsequently theoretically substantiated by Pauli.

If particles forming a system are not elementary, i.e. the system consists
of several elementary particles, whether they belong to fermions or bosons is
determined by the number of elementary fermions entering into their compo-
sition: if the number of fermions is even, the complex particle is a boson, and
if it is odd, the particle is concerned with fermions. According to this rule, an
atom of hydrogen and an α particle are bosons, and He3 is a fermion.

It is evident that in the general form the Schrödinger equation for inter-
acting particles cannot be solved. Therefore, we consider the particular case
– an ideal gas, consisting of N particles. In this case, because the energy of
interaction U(i, k) = 0, the operator (7.38) takes the form

Ĥ0(1, 2, . . . , N) =
N∑

i=1

Ĥi, (7.59)

where

Ĥi = − �
2

2m
∇2

i +W (i) (7.60)

is the Hamilton operator of one particle.
It is known that the eigenfunction ψ0(1, 2, . . . , N) of operator (7.59) can

be presented in the form

ψ0(1, 2, . . . , N) = ϕα1(1)ϕα2(2) . . . ϕαN (N) =
N∏

i=1

ϕαi(i), (7.61)

and its eigenvalue

E0 = εα1 + εα2 + · · · + εαN =
N∑

i=1

εαi . (7.62)

Here ϕαi(i) and εαi are, respectively, the wave function and the energy of one
particle obtained as a solution of the equation

Ĥiϕαi = εαiϕαi , (7.63)
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where αi is a totality of quantum numbers determining the state of the ith
particle.

It is evident that wave function (7.61) does not satisfy the condition of sym-
metry, which follows from the principle of indistinguishability (7.52). Indeed,
at transposition i→←k, the particle i ought to be found in the state αk, and
particle k in the state αi; thereby, the wave function ψ0 changes. Therefore, for
the wave function (7.61) it is necessary to compose linear combinations such
that the obtained functions would satisfy the condition of symmetry (7.52)
and, thereby, the principle of indistinguishability would be fulfilled. In order
words, the solution (7.61) should comprise of symmetric or antisymmetric
wave functions.

In order to obtain from (7.61) the symmetric wave function describing
the state of an ideal gas consisting of bosons, it is sufficient to add up all
functions (the number of such function is N !) obtained as a result of the pair
transposition of particles:

ψ0s(1, 2, . . . , N) =
∑

ν

P
(ν)
ik ϕα1(1)ϕα2(2) . . . ϕαN (N), (7.64)

where ν is the number of the transposition and the summation is carried out
with respect to the N ! number of transpositions.

In order to obtain from (7.61) the antisymmetric wave function describing
the state of an ideal gas consisting of fermions, when adding up with respect
to ν, in contrast to (7.64), we need to take items for even variables with the
sign “+” and for odd ones with the sign “−”:

ψ0a(1, 2, . . . , N) =
∑

ν

(−1)νP̂
(ν)
ik ϕα1(1)ϕα2(2) . . . ϕαN (N). (7.65)

This antisymmetric wave function can also be presented in the form of the
Slater determinant

ψ0a(1, 2, . . . , N) =

∣∣∣∣∣∣∣∣

ϕα1(1) ϕα1(2) . . . ϕα1(N)
ϕα2(1) ϕα2(2) . . . ϕα2(N)
. . . . . . . . . . . .
ϕαN (1) ϕαN (2) . . . ϕαN (N)

∣∣∣∣∣∣∣∣
. (7.66)

From such a form of the entry of the antisymmetric wave function (in the form
of a determinant), it follows that the wave function ψ0a(1, 2, . . . , N) satisfies
the condition (7.54). Indeed, in determinant (7.66), on mutual transposition
i→←k two corresponding columns exchange places, which leads to the change
in the sign of the determinant to the opposite one.

From the entry of the antisymmetric wave function (7.66) in the form of
the determinant follows one more important result: if the quantum states of
two arbitrarily taken particles are identical (αi = αk), then in (7.66) two rows
are identical, and this is the condition for the entire determinant to be zero, i.e.
the wave function ψ0a(1, 2, . . . , N) is zero. This is precisely the Pauli exclusion
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principle for fermions: In one quantum state, two and more fermions cannot
be found.1

From the symmetric wave function (7.64), it is seen that quantum states
of two arbitrary bosons can be identical (αi = αk); even all of them can
be found in one quantum state (α1 = α2 = · · · = αN ) and therefore
ψ0s(1, 2, . . . , N) �= 0.

General conclusion: From the principle of indistinguishability of particles,
it follows that in nature two kinds of particles exist:

1. Bosons. The spin of these particles (a photon, π -and k -mesons) equals a
multiple of the Planck constant h : s = 0; h; 2h; . . .. In one quantum state
one can find an arbitrary number nk of bosons:

nk = 0; 1; 2; 3; . . . (7.67)

A system consisting of bosons (a Bose system) is described by the symmetric
wave function.

2. Fermions. The spin of these particles (an electron, proton, neutron and
their anti-particles) equals an odd multiple semi-integer of the Planck con-
stant h: s = h

2 ; 3h
2 ; 5h

2 ; . . .. In one quantum state one can find only one
fermion

nk = 0; 1. (7.68)

A system consisting of fermions (a Fermi system) is described by the antisym-
metric wave function.

Statistics for Fermi and Bose systems formulated on the basis of quantum
mechanics (with regard to the principle of indistinguishability of particles) is
called quantum statistics. If interaction between particles is neglected, Fermi
and Bose systems are called ideal Fermi and Bose gases or ideal quantum
gases.

The principal propositions of quantum statistics are explained in subse-
quent sections.

In conclusion, we note the following. From the indistinguishability of par-
ticles, it follows that to one value of energy of the system N !-fold exchange
degeneracies correspond. The principle of indistinguishability of particles cir-
cumvents this degeneracy, since the state of the system is described by only
the symmetric or antisymmetric wave function. On the other hand, it is known
that the degeneracy is removed by external forces or by interactions inside the
system. In the quantum case, such an interaction can be “the exchange inter-
action”, which does not have an analogue in classical physics. Later we will
show that this interaction manifests itself when the de Broglie wavelength of
a particle λ is of the order of the mean distance d between particles (λ ≈ d).
Only in this case, particles of a system comprising identical particles lose their
individuality and one cannot assert which particle is found in which state.
1 Note that the Pauli principle is true not only for an ideal gas, but also for any

system of fermions with the antisymmetric wave function.
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It is interesting also to note that, because in the particular quantum state
there can be any number of bosons but only one fermion, the exchange interac-
tion between bosons can be treated as “attraction” and that between fermions
as “repulsion”.

7.3 Distribution Functions of Quantum Statistics

In this section, on the basis of the principle of indistinguishability of particles
we will find the distribution function of an ideal gas consisting of fermions or
bosons. Assume that a gas of volume V contains N non-interacting fermions
or bosons. It is required to find the mean number n̄k of fermions or bosons in
the quantum state k with energy εk at temperature T . This problem can be
solved in different ways. We make use of the method proposed by Landau.

Assume that N fermions or bosons are distributed over quantum states
k with energy εk. The number of particles in these states is denoted by nk.
Particles can come into or move out of this state; i.e. nk can change. If we
take a multitude of particles in the k state as a subsystem and the rest as a
thermostat, we can apply the Gibbs grand canonical distribution for an open
system [see (3.68)]. Because in our case the particles do not interact, in (3.68)
we can replace the energy of the subsystem by

EnN ⇒ nkεk (7.69)

and the number of particles by

N ⇒ nk. (7.70)

As a result, (3.68) takes the form

Wnk
= e

Ωk+μnk−εknk
k0T , (7.71)

where Wnk
is the probability of nk particles found in the quantum state k

with energy εk, and Ωk is the grand thermodynamic potential of a subsystem,
which is found from the normalization condition∑

nk

Wnk
= 1. (7.72)

Thus,
Ωk = −k0T ln

∑
nk

e
(μ−εk)nk

k0T . (7.73)

Hence we can find the mean value of the number of particles n̄k in the quantum
state k, i.e. the distribution sought [see (2.206)], by the formula

n̄k = −
(
∂Ωk

∂μ

)
T,V

. (7.74)
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Consequently, to determine the explicit form of the distribution function
n̄k for fermions and bosons, it is necessary to calculate the sum in the
expression (7.73).

Because systems of fermions and bosons are described by wave functions
of different symmetries, it is necessary to consider them separately.

Fermi–Dirac distribution. This distribution, which is applicable to any sys-
tem of fermions, was proposed by Fermi in 1926 for an electron gas the same
year Dirac determined its relation with quantum mechanics. In 1927, Pauli,
on the basis of the Fermi–Dirac statistics, resolved the difficulties associated
with paramagnetism of free electrons in metals (see Sect. 7.10). In 1928, Som-
merfeld, on applying this distribution to the free electron gas, circumvented
the contradiction associated with the heat capacity of metals (see Sect. 7.9).

In Sect. 7.2, we showed that a system of fermions, in the particular case of a
quantum ideal gas, is described by the antisymmetric wave function and that
fermions are governed by the Pauli exclusion principle, according to which the
number of fermions in the quantum state k cannot be more than one:

nk = 0; 1. (7.75)

In this case, the sum in (7.73) ought to consist of only two terms:

Ωk = −k0T ln(1 + e(μ−εk)/k0T ). (7.76)

Note that the expression of the grand thermodynamic potential (7.76) is dif-
ferent from (7.5); as a matter of fact, in expression (7.5) the second term
under the logarithm sign is much smaller than unity, while in (7.76) this term
can take on arbitrary values. This means that in (7.5), in the case of the
Boltzmann distribution, the chemical potential ought to be negative (μ < 0)
in order that exp (μ /k0T ) � 1 is satisfied. And in the case of Fermi distribu-
tion, the chemical potential can change in the range −∞ < μ < +∞, i.e. it is
an arbitrary quantity.

On substituting the expression of the grand thermodynamic potential
(7.76) into (7.74), we get the final expression for the Fermi–Dirac distribution

n̄k ≡ f(εk) =
1

e(εk−μ)/k0T + 1
; −∞ < μ < +∞. (7.77)

We denote by n̄k ≡ f(εk) ≡ f(k) ≡ f(ε) the distribution function for fermions
and henceforth will use these notations. This distribution can be interpreted in
two ways: Distribution function (7.77) shows the mean number of fermions in
the quantum state k with energy εk at temperature T , or it is the probability
of fermions found in the quantum state k with energy εk at temperature T .

We analyse the Fermi–Dirac distribution function (7.77) for different values
of the chemical potential and temperature entering into the distribution as
parameters. We first consider the case where the chemical potential is positive
(μ = μ0 > 0). The positive quantity μ0 is called the Fermi boundary energy
or, briefly, the Fermi boundary. If εk < μ0, then (εk − μ0) < 0. Then in the
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Fig. 7.1. The Fermi-Dirac distributions function

limit T → 0, the exponent in (7.33) tends to zero and f(εk) = 1. In other
words, all states with energy εk < μ0 are filled up. If, however, εk > μ0, then
(εk − μ0) > 0 and as T → 0 the index of the exponent in (7.77) becomes a
very large positive quantity and as a result f(εk > μ) = 0.

At finite temperatures T �= 0, the function f(ε) = 1 only in the case where
the energy is much smaller than the Fermi boundary energy. It is seen that at
εk = μ0 the function f(εk) = 1 /2 . If energy εk is less than the Fermi boundary
energy μ0, at finite temperatures T �= 0 the Fermi distribution function is less
than unity: f (εk < μ0) < 1, and in the limiting case of large energies

lim
εk→∞

f(εk) = 0. (7.78)

The Fermi–Dirac distributions for positive values of the chemical potential
μ = μ0 > 0 at T = 0 and T �= 0 are schematically presented in Fig. 7.1.

With the aid of the Fermi–Dirac distribution (7.77), we can find the total
number of fermions

N =
∑

k

n̄k =
∑

k

f(εk) =
∑

k

1
e(εk−μ)/k0T + 1

(7.79)

and the mean value of the total energy of fermions

E =
∑

k

εkn̄k =
∑

k

εkf(εk) =
∑

k

εk

e(εk−μ)/k0T + 1
. (7.80)

Using (7.76), we can calculate the grand thermodynamic potential of a Fermi
gas:

Ω =
∑

k

Ωk = −k0T
∑

k

ln
(
1 + e(μ−εk)/k0T

)
. (7.81)

Bose–Einstein distribution. This distribution of bosons was proposed by the
Indian physicist Satyendra Nath Bose for a photon gas. Thereby, he statis-
tically substantiated the Planck formula. Subsequently, Einstein generalized
this distribution to bosons with the mass at rest, distinct from zero.

In Sect. 7.2, we showed that a Bose gas is described by the symmetric wave
function and for its particles the Pauli exclusion principle does not exist, i.e.
in one quantum state there can be an arbitrary number of bosons:
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nk = 0; 1; 2; 3; . . . (7.82)

If we take into account this fact in (7.73), the grand thermodynamic potential
for a Bose gas Ωk takes the form

Ωk = −k0T ln
(
1 + e(μ−εk)/k0T + e2(μ−εk)/k0T + · · ·

)
. (7.83)

Because the energy is always positive, i.e. εk ≥ 0, in order that the series
in (7.83) would converge also at εk = 0, the chemical potential ought to be
negative, i.e. μ < 0. Under this condition, the series under the logarithm
becomes an infinitely decreasing geometric progression, the sum of which is
easily determined:

(
1 + e(μ−εk)/k0T + e2(μ−εk)/k0T + · · ·

)
=
(
1 − e(μ−εk)/k0T

)−1

. (7.84)

Thus, for the grand thermodynamic potential of a Bose gas we finally get

Ωk = k0T ln
(
1 − e(μ−εk)/k0T

)
, (7.85)

and the Bose–Einstein distribution sought, i.e. n̄k = − (∂Ωk /∂μ )T,V , takes
the form

n̄k =
1

e(εk−μ)/k0T − 1
; μ < 0. (7.86)

This distribution can be also treated in two ways: Distribution function (7.86)
gives the mean number of bosons in the quantum state k with energy εk at
temperature T , or it is the probability of bosons being found in the quantum
state k with energy εk at temperature T .

Temperature T and the chemical potential μ enter into the distribu-
tion function (7.86) as parameters. We now analyse the dependence of the
Bose–Einstein distribution on energy εk for different limiting values of these
parameters.

In the limiting case when the chemical potential μ→ −0 and temperature
T → 0 at small values of energy εk → 0, the exponent in (7.86) tends to unity
and the distribution function becomes infinite: n̄(εk) → ∞.

If the chemical potential takes on finite negative values (μ < 0), even for
the value of energy εk = 0 the distribution function takes on finite values
nk(0) �= 0, and with increasing energy εk, it decreases. At very large negative
values of the chemical potential (μ → −∞), the distribution function (7.86)
passes into the Boltzmann distribution (Fig. 7.2).

For comparison, plots of the Bose–Einstein and the Fermi–Dirac distribu-
tion function at T = 0 are shown in Fig. 7.3.

From the figure it is seen that in the case μ→ −0 at T = 0, the majority
of bosons (it can be said, all) pass to the lowermost energy level with εk =
0: n̄k(0) → N . This phenomenon is called Bose–Einstein condensation (see
Sect. 7.13).
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Fig. 7.3. The comparison of the Bose-Einstein and the Fermi-Dirac distribution
function at T = 0

With the aid of the Bose–Einstein distribution (7.86), we can find the total
number of bosons

N =
∑

k

n̄k =
∑

k

1
e(εk−μ)/k0T − 1

(7.87)

and the mean value of the total energy of bosons

E =
∑

k

εkn̄k =
∑

k

εk

e(εk−μ)/k0T − 1
. (7.88)

And using (7.85), we can calculate the grand thermodynamic potential of a
Bose gas:

Ω =
∑

k

Ωk = +k0T
∑

k

ln
(
1 − e(μ−εk)/k0T

)
. (7.89)

In conclusion, note that just as symmetric and antisymmetric wave functions
of quantum ideal gases cannot pass into each other, so also the distribution
functions do not pass into each other. However, under some conditions (such
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as μ → −∞), both quantum distributions pass into the classical Boltzmann
distribution (7.8). Indeed, the passage

lim
μ→−∞

[
e(εk−μ)/k0T ± 1

]−1

= e(μ−εk)/k0T (7.90)

does not depend on which particles (fermions or bosons) the gas consists of.

7.4 Equations of States of Fermi and Bose Gases

The thermal equation of the state of Fermi and Bose gases2 can be found from
the system of equations [see (2.206)]

⎧⎪⎪⎨
⎪⎪⎩
P = −

(
∂Ω(V, T, μ)

∂V

)
T,μ

,

N = −
(
∂Ω(V, T, μ)

∂μ

)
V,T

,
(7.91)

where Ω(V, T, μ) is the grand thermodynamic potential of the system.
Solving these equations together, by eliminating the chemical potential μ,

i.e. finding μ = μ(T, V,N) from the second equation of (7.91), and substituting
it into the first, we get the thermal equation of state

P = P (V, T,N). (7.92)

Thus, from (7.91) it is seen that the determination of the thermal equation
of state is reduced to finding the explicit form of the grand thermodynamic
potential Ω = Ω(V, T, μ).

Assume that an ideal quantum gas of volume V consists of N fermions or
bosons. The expression of the grand thermodynamic potential of such gases
has the form [see (7.81) and (7.89)]

Ω = ∓k0T
∑

k

ln
(
1 ± e(μ−εk)/k0T

)
. (7.93)

Here and henceforth, in formulae the upper sign refers to fermions and the
lower sign refers to bosons. Then, according to this rule, for the upper sign
the chemical potential changes in the range −∞ < μ < +∞, and for the lower
one it is μ < 0.

To determine the explicit form of the grand thermodynamic potential Ω =
Ω(V, T, μ), it is necessary to know the dependence of ε on k, which can be
quite complex. Therefore, consider a simple case when the energy of a particle
εk is pre-assigned by the quadratic dependence on the wave vector k (7.10).
2 Note that here and further all results received for Fermi-gas are true for electron

gas
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This model is well suited not only for free particles with the mass m but also
can be applied for free electrons in metals as well as conduction electrons and
holes in semiconductors; however, in these cases it is necessary to replace the
mass m with the effective mass m∗.

To calculate the sum (7.93), it is necessary, according to rule (7.11), to
pass from the summation with respect to k to the integration

Ω = ∓k0TVg0

(2π)3

∫
ln(1 ± e(μ−εk)/ k0T )dk, (7.94)

where g0 = (2s+ 1) is the multiplicity of degeneracy with respect to the spin
s, which is the spin quantum number of a particle. Because the energy εk of
a particle depends only on the magnitude of the wave vector k, in (7.94) we
move to the spherical coordinate system dk = sin θ dθ dϕk2 dk and take into
account that the integral over angles equals 4π. Then we get

Ω = ∓k0TV g0
2π2

∞∫
0

ln
(
1 ± e(μ−εk)/k0T

)
k2dk. (7.95)

On the strength of the model (7.10), it is more favourable to pass from the
integral over dk to the integral over dε. Then, the expression (7.95) takes the
following final form:

Ω = ∓k0TVg0

(2π)2
(2m)3/2

�3

∞∫
0

ln
(
1 ± e(μ−ε)/k0T

)
ε1/2dε. (7.96)

Here and henceforth, we will follow the notation εk ≡ ε.
If we take into account the expression of the grand thermodynamic

potential (7.96) in (7.91), we get the following expression for pressure:

P = ±k0Tg0

(2π)2
(2m)3/2

�3

∞∫
0

ln
(
1 ± e(μ−ε)/k0T

)
ε1/2dε. (7.97)

This expression can be integrated by parts once; thereupon take the deriva-
tives from (7.96) with respect to μ and substitute it in the second equation of
(7.91). As a result, the system of equations (7.91) acquires the form

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

P =
2
3

g0(2m)3/2

(2π)2�3

∞∫
0

ε3/2dε
e(ε−μ)/k0T ± 1

,

N =
Vg0(2m)3/2

(2π)2�3

∞∫
0

ε1/2dε
e(ε−μ)/k0T ± 1

.

(7.98)

This system of equations in the general case is the parametric form of the
thermal equation of state of Fermi and Bose gases, in which μ is a parameter.
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Solving this system of equations and eliminating from it the parameter μ, we
get the thermal equation of state P = P (N,V, T ).

Now, we find the caloric equation of state of an ideal quantum gas, i.e. the
dependence of energy on V, T,N . To do this, we combine expressions (7.80)
and (7.88), pass from the summation with respect to k to the integration [see
(7.11)] and take into account (7.10). As a result, the mean value of the total
internal energy takes the form

E =
Vg0(2m)3/2

(2π)2�3

∞∫
0

ε3/2dε
e(ε−μ)/k0T ± 1

. (7.99)

Hence, it is seen that energy is a function of temperature, volume and chemical
potential: E = E(T, V, μ). If from the second equation of (7.98) we find μ =
μ(T, V,N) and substitute it into (7.99), we get the dependence of energy on
temperature, volume and number of particles: E = E(T, V,N).

Comparing (7.98) with (7.99), find the simple relationship between the
energy density and pressure

P =
2
3
E

V
, (7.100)

which under the accepted model is general and is independent of the kind of
particles (fermions or bosons) and the degree of degeneracy of the gas.

On the other hand, the energy density can be presented in the form

E

V
=

∞∫
0

g(ε)εf(ε)dε. (7.101)

From a comparison of this equation with (7.99), we can find the function of
the density of states g(ε), i.e. the number of quantum states accounting for
the unit range of energy close to ε:

g(ε) =
g0(2m)3/2

(2π)2�3
ε1/2 ∼ ε1/2. (7.102)

This dependence is schematically presented in Fig. 7.4.

g (ε)

0

∼ e 1/2

ε

Fig. 7.4. The function of the density of states g(ε)
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7.5 Thermodynamic Properties
of Weakly Degenerate Fermi and Bose Gases

In order to construct a statistical theory of thermodynamic properties of quan-
tum gases, i.e. to find the explicit form of thermal and caloric equations of
state, as well as the temperature dependences of the heat capacity and other
thermodynamic quantities, it is necessary to solve the system of equations
(7.98) and (7.99). It is evident that it is impossible to solve these equations
in the general form (for any degree of degeneracy). Therefore, we consider the
particular limiting cases of weak and strong degeneracy. In this section we
analyse the influence of weak degeneracy on the thermodynamic properties
of Bose and Fermi gases. Thermodynamics of a strongly degenerate quantum
gas is considered in subsequent sections.

A gas whose statistical properties are described by the Boltzmann dis-
tribution (7.8), i.e. they satisfy conditions (7.18) or (7.234), is called non-
degenerate. If these conditions are not fulfilled, the Boltzmann distribution
cannot be applied. In such a case, the statistical properties of the gas are
determined by Fermi–Dirac or Bose–Einstein distributions. Such gases are
called quantum or degenerate gases.

Under some conditions, the behaviour of a gas does not obey the Boltz-
mann distribution (the classical statistics), but is only slightly different from
the classical one, i.e. degeneracy begins to manifest itself. Such gases are called
weakly degenerate. For them, criteria (7.18) and (7.234) are not very strongly
satisfied:

e(μ−εk)/k0T < 1 or eμ/k0T < 1. (7.103)

In the non-degenerate case, when conditions (7.18) and (7.234) are fulfilled,
the disparity between Bose and Fermi gases disappears [see (7.90)] and the
gas is called classical.

We will consider the statistics of the thermodynamic properties of Bose
and Fermi gases satisfying conditions (7.103). Because in this approximation
Bose and Fermi gases are not different from each other, from classical theory
they can be analysed simultaneously on the basis of the general equation of
state (7.98).

The system of equations determining the thermal equation of state can be
presented in the following form:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

P =
2
3
g0(2m)3/2

(2π)2�3
A
∞∫
0

ε3/2e−ε/k0T dε
1 ±A e−ε/ k0T

,

N =
V g0(2m)3/2

(2π)2�3
A
∞∫
0

ε1/2e−ε/k0T dε
1 ±A e−ε/k0T

,

(7.104)

where
A = eμ/k0T < 1. (7.105)
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We solve the system of equations (7.104) in consecutive approximations with
respect to the parameter A < 1.

In the zeroth approximation, in the denominator of the integrand expres-
sion the second item can be neglected compared to unity. Then, the system
of equations (7.104) passes into (7.7) and we get the equation of state of an
ideal classical gas, i.e. P = k0NT / V . The parameter A, which in the zeroth
approximation we denote by A0, is

A0 =
N

Vg0

(
2π�

2

mk0T

)3/2

� 1. (7.106)

We now analyse the influence of weak degeneracy on the thermodynamic
properties of a gas. To do this, we take into account weak degeneracy (7.103),
expand into a series the fraction under the integral sign (7.104) and restrict
ourselves to the first approximation. Then, (7.104) takes the form⎧⎪⎪⎨

⎪⎪⎩
P =

2g0(2m)3/2(k0T )5/2

3(2π)2�3
A
∞∫
0

x3/2(1 ∓A0 e−x)e−xdx,

N =
V g0(2m)3/2(k0T )3/2

(2π)2�3
A
∞∫
0

x1/2(1 ∓A0 e−x)e−xdx.
(7.107)

Here, in the second item we replaced the small parameter A with its value in
the zeroth approximation A0, as in (7.106), and introduced the dimensionless
integration variable x = ε / k0T .

Fulfilling the elementary integration (see Appendix A), from the second
equation of system (7.107) in the first approximation for the parameter A we
have

A = A0(1 ± 2−3/2A0). (7.108)

On substituting this expression into the first equation of (7.107) and taking
into account (7.106), for the explicit form of the thermal equation of state in
the first approximation we get

P =
k0TN
V

[
1 ± π3/2

�
3

2g0(mk0T )3/2

N

V

]
. (7.109)

As can be seen, ΔP = (P − Pcl) ∼ ±T−1/2. If we remember that in (7.109)
the upper sign refers to a Fermi gas and the lower one to a Bose gas, it can
be said that even by considering weak degeneracy, the pressure of a Fermi
gas compared to a Boltzmann gas increases, and the pressure of a Bose gas
decreases (Fig. 7.5). This shows that the exchange interaction between bosons
bears the character of “attraction”, and that between fermions is a “repulsion”.
An interaction of such a kind has no classical analogue and is a purely quantum
effect, i.e. it is associated with the principle of indistinguishability of particles.

The caloric equation of state of Fermi and Bose gases can be determined
by solving the system of equations consisting of (7.111) and the second equa-
tion of (7.98) in the first approximation, or by simply using the relationships
(7.100) and (7.109):
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E =
3
2
PV =

3k0TN
2

[
1 ± π3/2

�
3

2g0(mk0T )3/2

N

V

]
. (7.110)

Notice that the temperature dependence of energy is the same as for pressure
(Fig. 7.5).

If from (7.110) we take the derivative with respect to T , we get the
expression for the heat capacity of a weakly degenerate ideal quantum gas:

CV =
3k0N

2

[
1 ∓ π3/2

�
3

4g0(mk0T )3/2

N

V

]
. (7.111)

It is seen that ΔCV = (CV − Ccl
V ) ∼ ∓T−3/2.

The expression of the heat capacity also shows that the exchange inter-
action between bosons bears the character of “attraction”, and that between
fermions is “repulsion” (see Fig. 7.6).

Note that small corrections to pressure (7.109), energy (7.110) and heat
capacity (7.111), naturally, coincide with conditions of classicity of the statis-
tics (7.106), and as T → ∞ they also tend to zero and, thereby, the obtained
results coincide with those for a classical gas (see Figs. 7.5 and 7.6).

In order to determine the contribution of weak degeneracy to the entropy
of Bose and Fermi gases, it is necessary to use the expression of the grand ther-
modynamic potential (7.96) in the approximation eμ/k0T < 1. Then, in this
approximation we get Ω = Ω(V, T, μ) and find entropy S = − (∂Ω / ∂T )V,μ =
S(V, T, μ). Thereupon, substituting (7.108) into the obtained expression, we
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find entropy as a function of volume, temperature and the number of particles:
S = S(V, T,N).

7.6 Completely Degenerate Fermi Gas: Electron Gas:
Temperature of Degeneracy

While the thermodynamic properties of weakly degenerate Bose and Fermi
gases can be analysed altogether (Sect. 7.5), it is necessary to consider strongly
degenerate gases separately, because the distribution function and statistical
properties of degenerate, especially completely degenerate, Bose and Fermi
gases sharply differ from each other (Fig. 7.3).

In this section we will analyse the statistical properties of a completely
degenerate Fermi gas – electron gas. Assume that an ideal gas consisting of
N fermions (electrons) occupies a volume V . It can be both classical and
quantum. If the gas satisfies condition (7.20), it behaves as a Boltzmann gas
(Sect. 7.1). In the general case, assume that the gas does not satisfy condition
(7.20) and is described by the Fermi distribution function. Simultaneously,
assume that energy of fermions is given by a simple parabolic dispersion law,
i.e. by expression (7.10). Then the equation of state of quantum gases is given
by the system of equations (7.98). This system for a Fermi gas can be rewritten
in the form

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

P =
2
3
g0(2m)3/2

(2π)2�3

∞∫
0

ε3/2f(ε)dε,

N =
V g0(2m)3/2

(2π)2�3

∞∫
0

ε3/2f(ε)dε,

(7.112)

where f(ε) is the Fermi distribution function, determined by (7.77).
Here, we consider the case of the absolute zero of temperature (T = 0).3 To

do this, we have to evaluate the integrals entering into (7.112) by integrating
by parts once. Then, this system of equations takes the form

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

P =
4
15
g0(2m)3/2

(2π)2�3

∞∫
0

(
−∂f
∂ε

)
ε5/2dε,

N =
2
3

Vg0(2m)3/2

(2π)2�3

∞∫
0

(
−∂f
∂ε

)
ε3/2dε.

(7.113)

Because it is assumed that the total number of fermions in this case is constant,
i.e. N =const, at T = 0 the filling of the energy spectrum by fermions has
the appearance shown in Fig. 7.7. In other words, the energy spectrum is
completely filled up to the Fermi boundary μ0, and the levels above are empty.

3 The case of finite temperatures (T �= 0) will be considered in Sect. 7.7.
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The distribution function in this case has a step-like form:

lim
T→0

f(ε) =
{

1, ε ≤ μ0

0, ε > μ0.
(7.114)

Plots of the distribution function and its derivative are schematically pre-
sented in Fig. 7.8.

As seen from Fig. 7.8, at T = 0 the derivative of the distribution function
with respect to ε behaves like the δ-function:

lim
T→0

(
−∂f
∂ε

)
= δ(ε− μ0). (7.114a)

A gas described by such a distribution is called a completely degenerate
Fermi gas.

If we take into account the property of the distribution function (7.114a),
then the integration in the system of equations (7.113) is easily fulfilled. As a
result, we get ⎧⎪⎪⎪⎨

⎪⎪⎪⎩

P0 =
4
15
g0(2m)3/2

(2π)2�3
μ

5/2
0 ,

N =
2
3

Vg0(2m)3/2

(2π)2�3
μ

3/2
0 .

(7.115)

Hence, for the considered gas we can find the following:
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Fermi boundary energy

μ0 =
�

2

2m

(
6π2

g0

N

V

)2/3

, (7.116)

Fermi impulse

P0 = �k0 = (2mμ0)1/2 = �

(
6π2

g0

N

V

)1/3

, (7.117)

Zero pressure of a Fermi gas

P0 =
2
5

�
2

2m

(
6π2

g0

)2/3(
N

V

)5/3

(7.118)

Zero energy

E0 =
3
5

�
2

2m

(
6π2

g0

N

V

)2/3

N. (7.119)

Here, we have used the relationship (7.100), i.e. E0 = 3VP0 / 2.
Applying the general expression (7.96) or using the known expression

Ω0 = −P0V for the grand thermodynamic potential at T = 0, we get

Ω0 = − 4
15

Vg0(2m)3/2

(2π)2�3
μ

5/2
0 , (7.120)

where we introduced the notation Ω0 = Ω(0, V, μ0).
The fact that, in contrast to a classical gas, at the absolute zero tem-

perature, a Fermi gas possesses the finite energy E0, pressure P0 and the
limiting impulse fermion p0 is a purely quantum effect. Naturally, this effect
is associated with the exchange interaction of the type of “repulsion” between
fermions, which follows from the Pauli exclusion principle. Also note that as a
result of the quantum effect the zero pressure P0 depends on the concentration
n = N / V not linearly but more strongly: P0 ∼ (N / V )5/3.

From the expression of the total zero energy (7.119) and Fermi bound-
ary energy (7.116), it follows that at the absolute zero temperature, energy
accounting for each fermion comprises 60% of the Fermi boundary energy:

ε0 =
E0

N
=

3
5
μ0. (7.121)

From (7.121) follows the simple relationship between the total energy and the
boundary energy μ0:

E0 =
3
5
μ0N. (7.122)

Note one more peculiarity of an ideal Fermi gas. According to the classical
theory, the small concentration of the gas is one of the conditions for its
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ideality, i.e. the gas ought to be sufficiently rarefied. In a Fermi gas, on the
contrary, when increasing the concentration, a gas still further approaches the
ideal one. We show this with an example of an electron gas in metals. Indeed,
according to the condition of ideality, the interaction energy between particles
ought to be much less than the mean energy: εint � ε0. Interaction between
free electrons in metals bears the Coulomb character: εint ∼ e2/d, where
d=(V/N)1/3 is the mean distance between electrons, and e is the electric
charge of an electron. Therefore, the condition of ideality of the gas takes the
form

e2

d
� ε0. (7.123)

If we use the expression for ε0 (7.121) and boundary energy (7.116), the
condition of ideality takes the following explicit form:

3�
2

10e2m

(
6π2

g0

)2/3(
N

V

)1/3

� 1. (7.124)

As seen from (7.124), as the concentration increases, an electron gas satisfies
the condition of ideality better.

Temperature of degeneracy. Consider one more important characteristic
parameter of the Fermi gas, called the temperature of degeneracy T0, which is
defined as

k0T0 = μ0 or T0 = μ0 / k0. (7.125)

With regard to the expression of the Fermi boundary energy μ0 (7.116), the
temperature of degeneracy takes the following form:

T0 =
�

2

2mk0

(
6π2

g0

N

V

)2/3

. (7.126)

Note that temperature of degeneracy is that temperature at which all fermions
(even fermions at the zero level ε = 0) filling up the energy spectrum partici-
pate in the thermal motion. However, at temperature T = T0 not all fermions
possess the identical energy 3k0T / 2.

A Fermi gas with a constant number of fermions (N = const) in different
temperature regions (in reference to temperature of degeneracy) is found in
different statistical states:

1. As T → 0, a Fermi gas is completely degenerate (Sect. 7.6, Figs. 7.7 and 7.8);
2. As T � T0, the gas is found in a state of strong degeneracy (Sect. 7.7,

Figs. 7.9 and 7.10);
3. As T ≈ T0, the gas is found in a state of an arbitrary degree of degeneracy

(Sect. 7.8);
4. As T � T0, the gas is weakly degenerate (Sect. 7.5);
5. As T → ∞, the gas is found in a non-degenerate (classical) state (Sect. 7.1).
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Fig. 7.10. The plots of the distribution function Fermi and its derivative at
temperature distinct from zero

7.7 Thermodynamic Properties
of Strongly Degenerate Fermi Gas: Electron Gas

When we speak of a strongly degenerate Fermi gas – electron gas – we imply
a gas that is found in the statistical state schematically presented in Figs. 7.9
and 7.10. This state is characterized by the fact that under the action of finite
but small (T � T0) temperatures, a small part of fermions – electrons – found
in quantum states below the Fermi boundary pass to higher levels. As a result,
the Fermi boundary acquires a finite width on the order of 2k0T . However,
note that this width is much smaller than the boundary energy: 2k0T � μ0.

We analyse the thermodynamic properties of a Fermi gas – electron gas –
found in such a statistical state. To do this, we take the system of equations
(7.113) as the basis. In the zeroth approximation (at T = 0), this system, as a
result of the property of the Fermi distribution function (7.114a), passes into
the system (7.115), which we solved in Sect. 7.6.

Here, we solve the system of equations (7.113) in the first approximation
with respect to the dimensionless small parameter k0T / μ0 = T / T0 � 1 and
consider the influence of strong degeneracy on the thermodynamic properties
of the gas. Here, T0 = μ0 / k0 is temperature of degeneracy.
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From the system of equations (7.113), it is seen that to find the equation
of state it is necessary to calculate integrals of the type

I =

∞∫
0

(
−∂f
∂ε

)
ϕ(ε)dε (7.127)

in the first approximation with respect to the parameter k0T/μ0 � 1. In our
case, ϕ(ε) = ε5/2 and ϕ(ε) = ε3/2. The distribution function of a strongly
degenerate gas and its derivative are presented in Fig. 7.10. From the figure,
it is seen that at finite temperature the derivative (−∂f / ∂ε) for the value of
energy ε = μ(T ) is maximum, where μ is the Fermi level at temperature T .
Therefore, to calculate the integral (7.127) the function ϕ(ε) can be expanded
into a series around μ in powers of (ε − μ). Then, integral (7.127) takes the
form

I = ϕ(μ) + I1

(
dϕ
dε

)
ε=μ

+
1
2
I2

(
d2ϕ

dε2

)
ε=μ

+ · · · (7.128)

Here, we used the property of the distribution function (7.114a) and employed
the following notations:

I1 =

∞∫
0

(ε− μ)
(
−∂f
∂ε

)
dε; I2 =

∞∫
0

(ε− μ)2
(
−∂f
∂ε

)
dε. (7.129)

We introduce the new dimensionless variable x= (ε− μ) / k0T . At tempera-
ture T � T0, when μ / k0T � 1, the lower boundary of integrals (7.129) with
respect to x can be replaced with −∞. Simultaneously, we take into account
that the function (−∂f / ∂x)= ex / (ex + 1)2 is even: ex / (ex + 1)2 = e−x /
(e−x + 1)2. Then, because the function x(−∂f / ∂x) under the first integral
sign is odd, the first integral is equal to zero, i.e.

I1 = k0T

∞∫
−∞

x

(
−∂f
∂x

)
dx = 0, (7.130)

and the second one

I2 = (k0T )2
∞∫
−∞

x2

(
−∂f
∂x

)
dx = 2(k0T )2

∞∫
0

x2

(
−∂f
∂x

)
dx. (7.131)

On integrating (7.131) once by parts, we get

I2 = 4(k0T )2
∞∫
0

x

ex + 1
dx. (7.132)



246 7 Quantum Statistics: Equilibrium Electron Gas

If we take into account that (according to Appendix A)

∞∫
0

xdx
ex + 1

=
π2

12
, (7.133)

then integral (7.127) takes the form

∞∫
0

(
−∂f
∂ε

)
ϕ(ε)dε = ϕ(μ) +

π2

6
(k0T )2

(
d2ϕ

dε2

)
ε=μ

+ · · · (7.134)

On applying this formula for the approximate integration to the system of
equations (7.113) and in the first approximation, distinct from zero, with
respect to the parameter (k0T / μ) we get

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

P =
4
15
g0(2m)3/2

(2π)2�3
μ5/2

[
1 +

5π2

24

(
k0T

μ0

)2
]

; T � T0,

N =
2
3

Vg0(2m)3/2

(2π)2�3
μ3/2

[
1 +

π2

8

(
k0T

μ0

)2
]

; T � T0,

(7.135)

where in the terms proportional to (∼ T 2) we replaced μ = μ0.
From the second equation of this system in the first approximation with

respect to degeneracy, we can find the temperature dependence of the Fermi
level (boundary):

μ(T ) = μ0

[
1 − π2

12

(
k0T

μ0

)2
]

; T � T0. (7.136)

Here μ0 is the Fermi boundary energy at T =0, derived in (7.116). It is seen
that at finite but small temperatures the Fermi boundary decreases. The
reason for this lies in the fact that the density of quantum states increases
as g(ε) ∼ √

ε (Fig. 7.4), i.e. the density of quantum states above the Fermi
boundary μ0 is somewhat more than that below the Fermi boundary. There-
fore, a specified amount of fermions – electrons – passing the Fermi boundary
upwards occupies a narrower strip of energy. As a result, on average the Fermi
level decreases.

If we substitute the expression for the chemical potential (7.136) into the
first equation of the system (7.135), at very low temperatures (T � T0) the
equation of the state of a Fermi gas takes the form

P (T ) = P0

[
1 +

5π2

12

(
k0T

μ0

)2
]

; T � T0, (7.137)

where P0 = 2
5

N
V μ0 is the zero pressure of a Fermi gas [see (7.115)].
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Fig. 7.11. The temperature dependence of the chemical potential

T0

P0

ΔP~T –1/2

~T2

~T

0

P(T )

T

Classical
gas

Fig. 7.12. The temperature dependence of pressure of a Fermi gas

We derive one more expression for the chemical potential (7.20) of a
classical non-degenerate electron gas:

μ(T ) = −k0T ln

[
Vg0

N

(
mk0T

2π�2

)3/2
]

; T � T0. (7.138)

The temperature dependence of the chemical potential μ(T ) based on the
expressions (7.136) and (7.138) is schematically presented in Fig. 7.11. It is
seen that at the temperature of degeneracy T0 the chemical potential passes
through zero: μ(T0) = 0.

In order to gravarphically present the dependence of pressure of a Fermi
gas in all temperature regions of degeneracy, we turn our attention to (7.109),
(7.137) and Fig. 7.5. Then we get the dependence schematically shown in
Fig. 7.12.

The mean energy of a degenerate Fermi gas – electron gas – in the
first approximation can be found using the relationship E=3PV 2/ and also
expressions (7.135) and (7.136):

E = E0 +
π2

4
μ0N

(
k0T

μ0

)2

; T � T0. (7.139)
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In the same approximation, the heat capacity of a Fermi gas – electron
gas – equals

CV =
π2

2
k0N

(
k0T

μ0

)
; T � T0 (7.140)

In order to calculate the entropy of a Fermi gas – electron gas – in the
considered approximation, we use the general expression of the grand ther-
modynamic potential (7.96): S = −(∂Ω(V, T, μ) / ∂T )V,μ. If we preliminarily
integrate the expression (7.96) twice by parts, we get

Ω = − 4
15

Vg0

(2π)2
(2m)3/2

�3

∞∫
0

ε5/2

(
−∂f
∂ε

)
dε. (7.141)

Note that from comparison of expressions (7.113) and (7.141) follows the
known thermodynamic relationship Ω = −PV .

On applying the approximation (7.134) to the expression of the grand
thermodynamic potential (7.141), with the necessary accuracy we get

Ω = − 4
15

Vg0

(2π)2
(2m)3/2

�3
μ5/2

[
1 +

5π2

8

(
k0T

μ

)2
]

; T � T0. (7.142)

If in (7.142) we take the derivative with respect to T at constant volume V
and the chemical potential μ(μ = μ0), the entropy of a Fermi gas – electron
gas – takes the very simple form

S =
π2

2
k0N

(
k0T

μ0

)
; T � T0. (7.143)

Note that the expression of the heat capacity CV = T (∂S / ∂T )V taken from
(7.143) coincides with (7.140) obtained with the aid of the relationship CV =
(∂E / ∂T )V .

If we combine the result for a Fermi-gas – electron gas – coming from
(7.111) with the temperature dependence (7.140), we get the schematic
dependence CV (T ) depicted in Fig. 7.13.

0 T

2
3

T0

k0N
ΔCV ~T –3/2

~T

CV (T )

Classical gas

Fig. 7.13. The temperature dependence of the heat capacity of a Fermi gas
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7.8 General Case: Criteria of Classicity
and Degeneracy of Fermi Gas: Electron Gas

If we introduce the concept of the reduced chemical potential of an ideal gas

η =
μ

k0T
, (7.144)

the Fermi–Dirac distribution function can be presented as follows:

f(ε) = (eε/ k0T−η + 1)−1. (7.145)

It is seen that if the reduced chemical potential satisfies the condition

A ≡ exp(η) � 1, (7.146)

the distribution function (7.145) passes into the Boltzmann distribution:

lim
η→−∞(eε/ k0T−η + 1)−1 = eη−ε/ k0T = e(μ−ε)/k0T . (7.147)

Therefore, if the chemical potential of a gas satisfies condition (7.146), such
a gas is called non-degenerate or classical ; in other words, it is a Boltzmann
gas. Note that a classical gas, non-degenerate gas and Boltzmann gas are
equivalent concepts.

Thus, in order that an ideal gas be non-degenerate, its reduced chemical
potential η ought to satisfy condition (7.146), i.e. η ought to be a very large
negative quantity:

(−η) � 1. (7.148)

The basic criterion of classicity or non-degeneracy of a Fermi gas – electron
gas (7.146) can be rewritten also in another form [see (7.20)]:

n

2

(
2π�

2

mk0T

)3/2

� 1, (7.149)

where n = N / V is the concentration, and g0 = 2.
From the condition of classicity presented in form (7.146), it follows that

in order that a gas be classical (non-degenerate), it is necessary that the
concentration be small, temperature high and the mass of particles large.

If we take into account the de Broglie wavelength λ=h/
√

2mk0T of parti-
cles and the mean distance between them d = n−1/3, condition (7.149) takes
the form

1
2π3/2

(
λ

d

)3

� 1. (7.150)

Hence it follows that in order that a gas be non-degenerate, it is necessary that
the de Broglie wavelength λ of a particle be much less than the mean distance
d between them; in other words, the gas ought to be sufficiently rarefied. Note
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that only when fulfilling the condition λ � d, the particles conserve their
individuality; therefore the principle of indistinguishability of particles does
not play any role, in the system the exchange interaction is absent and the
gas behaves as a Boltzmann gas.

Note that the above-presented inequalities (7.148)–(7.150) are different
forms of the criterion of non-degeneracy (classicity) of an ideal gas (7.146)
and they are all equivalent.

A gas not satisfying the indicated conditions, especially (7.146), is called a
degenerate, quantum or Fermi gas. Consequently, degenerate gases are those
whose chemical potential satisfies the condition

exp(η) ≥ 1 or η ≥ 0. (7.151)

A gas can exist in different degrees of degeneracy: completely degenerate,
strongly degenerate, moderately degenerate and weakly degenerate.

A concretely pre-assigned gas (with the known concentration n and mass
m), depending on which temperature region it is found in, can possess different
degrees of degeneracy. These temperature regions are determined in reference
to the temperature of degeneracy T0, the expression of which is given in (7.125)
or (7.126).

The temperature of degeneracy T0 characterises the statistical state of a
Fermi gas. At temperature T � T0, i.e. in the approximation T → 0, a Fermi
gas is called completely degenerate. This case was considered in Sect. 7.6.

Finite temperatures with reference to the temperature of degeneracy T0

can be divided into three regions:

7.8.1 Low Temperatures

T � T0 or T � μ0 / k0. (7.152)

A Fermi gas satisfying this condition is called a strongly degenerate gas.
Because in this case there exists the small parameter η−1 = k0T / μ0 � 1, we
can construct the approximate analytical statistics of this gas (see Sect. 7.7).

If we use the temperature of degeneracy (7.126), the condition for strong
degeneracy (7.152) takes the form

�

2mk0T
(3π2n)2/3 � 1. (7.153)

Thus, in order that a gas be found in the strongly degenerate state, it is
necessary that its concentration n be large, the mass of fermions small and
the temperature low.

The condition for strong degeneracy (7.153) can be rewritten in the form

1
4

(
3
π

)2/3(
λ

d

)2

� 1, (7.154)
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where
d = n−1/3, λ = h /

√
2mk0T .

Consequently, in order that a gas be found in the strongly degenerate state,
the de Broglie wavelength λ ought to be much larger than the mean distance
d between fermions. When fulfilling this condition, particles lose their indi-
viduality, and therefore it is necessary to take into account the principle of
indistinguishability.

7.8.2 High Temperatures

T > T0 or T > μ0 / k0. (7.155)

A gas satisfying this condition is called a weakly degenerate gas. Because in
this case there exists the small parameter η = μ0 / k0T < 1, we can construct
the approximate analytical theory of this gas (see Sect. 7.5).

The condition of weak degeneracy (7.155) can be rewritten in the form

�
2

2mk0T
(3π2n)2/3 > 1 (7.156)

or
1
4

(
3
π

)2/3(
λ

d

)2

< 1. (7.157)

If temperature satisfies the condition T � T0, (7.157) passes into a strong
inequality

1
4

(
3
π

)2/3(
λ

d

)2

� 1, (7.158)

which corresponds to (7.150), i.e. in the region T � T0, a gas passes into the
non-degenerate (classical) state.

Consequently, at the not very high temperature of degeneracy T0 (T0 ≈
300–400 K), by changing the temperature of the gas from T = 0 to T � T0,
we can change the state of the gas from the completely degenerate state to
the classical one.

7.8.3 Moderate Temperatures: T ≈ T0

This temperature region corresponds to the state η = μ0 / k0T ≈ 1, i.e. the
small parameter is absent. Therefore, it is impossible to solve the problem
analytically. In this case, the problem can be solved only numerically.

If we introduce the dimensionless quantities x= ε / k0T , η=μ0 / k0T and
take g0 = 2, the general form of the equation of state (7.112) for a Fermi gas –
electron gas – takes the following form:
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⎧⎪⎪⎪⎨
⎪⎪⎪⎩

P =
(2m)3/2(k0T )5/2

3π2�3

∞∫
0

x3/2dx
ex−η + 1

,

n =
(2mk0T )3/2

2π2�3

∞∫
0

x1/2dx
ex−η + 1

.

(7.159)

If the concentration of the gas n and the mass of fermions m are known, as
a result of a numerical computation from the second equation of the system
we can find the reduced chemical potential η at the particular temperature.
Thereupon, on substituting η into the first equation of (7.159), we can find
the pressure at the given temperature. By repeating the computations at dif-
ferent temperatures, we can find the temperature dependences of the chemical
potential μ(T ) = k0Tη(T ) and pressure P = P (T ). Parts of the dependences
μ = μ(T ) and P =P (T ) in the limiting cases are shown in Figs. 7.11 and 7.12.

Note that the equation of state (7.159) in the general form can be also
expressed by the known Fermi integral. To do this, it is necessary to integrate
(7.159) once by parts. As a result, we get

⎧⎪⎪⎨
⎪⎪⎩
P =

2(2m)3/2(k0T )5/2

15π2�3
F5/2(η)

n =
(2mk0T )3/2

3π2�3
F3/2(η),

(7.160)

where

Fk(η) =

∞∫ (
−∂f
∂x

)
xkdx (7.161)

is the Fermi integral, and f(x) = [ex−η + 1]−1 is the Fermi–Dirac distribution
function in dimensionless variables.

We now find the equation of the state of a Fermi gas using asymptotes of
the Fermi integral in two limiting cases.

(a) Non-degenerate and weakly degenerate limiting cases : A= eη � 1. In the
zeroth approximation with respect to the small parameter, the Fermi
integral takes the form

Fk(η) = A0Γ(κ+ 1), (7.162)

where A0 is the value of exp(η) in this approximation, which is determined
by the expression (7.106), and

Ã(k + 1) =

∞∫
0

xke−xdx (7.163)

is the Euler integral of the second kind or the gamma function (see
Appendix A).



7.8 Criteria of Classicity and Degeneracy of Fermi Gas: Electron Gas 253

If we substitute asymptotes of the Fermi integral (7.162) into (7.160), we
can find the value of the parameter A0, i.e. the chemical potential [see (7.20)],
and the equation of state of a non-degenerate (classical) ideal gas.

In order to calculate the chemical potential (7.108) and the equation of
state (7.109) of a weakly degenerate gas, it is necessary to use the asymptote
of the Fermi integral

Fk(η) = AΓ(k + 1)
(

1 − A0

2k

)
(7.164)

in the equation of state (7.160).

(b) Completely and strongly degenerate limiting cases: eη = eμ/k0T � 1. In
this case, using expansion (7.134) in the zeroth approximation for the
Fermi integral we get

Fk(η) = ηk
0 =

(
μ0

k0T

)k

. (7.165)

Taking into account this asymptote of the Fermi integral in (7.160), for a
completely degenerate gas we get the results deduced in Sect. 7.6.

Using the expansion (7.134) in the first approximation for the Fermi
integral, we get the asymptote

Fk(η) = ηk

[
1 +

π2

6
k(k − 1)

η2
0

]
, (7.166)

where in the second term we took η = η0. On substituting this asymptote into
(7.160), for a degenerate Fermi gas (electron gas) we get the results deduced
in Sect. 7.7.

In conclusion, in Table 7.1 we summarise the conditions of a Fermi gas
found in different statistical states.

In the next two sections, on the basis of the general statistical theory,
we will consider the heat capacity and paramagnetism of an electron gas in
metals and show that consideration of statistical degeneracy of an electron
gas circumvents difficulties arising in classical statistics.

Table 7.1. The conditions of degeneracy of a Fermi gas

Completely
degenerate gas

Degenerate gas Non-degenerate
gas

Basic condition A = exp(η) � 1 A = exp(η) ≥ 1 A = exp(η) � 1

Equivalent η = μ / k0T � 1 η = μ/k0T ≈ 0 −η = (−μ/k0T ) � 1

conditions, λ � d λ ≥ d λ � d
stemming from the T � T0 T ≤ T0 T � T0

basic condition
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7.9 Heat Capacity of Metals:
First Difficulty of Classical Statistics

At the beginning of this chapter (Sect. 7.1), we saw that application of the
Boltzmann classical statistics to the heat capacity of a free electron gas in
metals leads to non-conformity between theory and experiment. It turned out
that in the formation of the heat capacity in metals, an electron gas does not
play any role. In this section we will show that the application of quantum
statistics to an electron gas circumvents this non-conformity and makes it
possible to understand why the presence of an electron gas does not influence
the heat capacity of metals. As a result, we show that an electron gas in
metals is not a usual classical gas but a quantum gas and, therefore, we cannot
apply the Boltzmann distribution to it but we need to apply the Fermi–Dirac
quantum statistics. We discuss all this more comprehensively below.

Assume that a crystalline lattice of a metal of volume V consists of N
points at each of which one atom (ion) is found. If each atom loses one electron
found at the last valence orbit, in the metal there arises a gas consisting of
N electrons. The metal Na can serve as an example. If each atom of Na loses
the only electron from the 3s level, the metal Na would consist of N positive
ions and a gas consisting of the same number of free electrons.

Note that the free electron gas in metals is not associated with temper-
ature, but due to a purely quantum effect, i.e. the ionization of atoms (the
loss of electron) of a metal occurs not because of thermal motion but because
of the overlap of wave functions of the valence electrons. The overlap of wave
functions leads to the intermixing of valence electrons, so they do not belong
to some specified point but move freely among them. For this reason, in met-
als a free electron gas exists at any temperature, even at the temperature of
absolute zero.

Consequently, it can be regarded that in all temperature regions a metal
consists of two subsystems: a crystalline lattice of ions and a free electron
gas. Therefore, the heat capacity of a metal can be presented as a sum of two
items:

Cmet
V = C lat

V + Cel
V . (7.167)

We analysed the temperature dependence of the heat capacity of a crystalline
lattice C lat

V comprehensively in Sect. 6.4, in which we showed that the analyti-
cal expression of the heat capacity of the lattice can be found at temperatures
above and below the Debye characteristic temperature θ:

Clat
V = 3k0N ; T � θ (7.168)

and

C lat
V =

12π4

5
k0N

(
T

θ

)3

; T � θ, (7.169)

where θ = �ωmax / k0 is the Debye characteristic temperature, and ωmax is the
maximum possible frequency of the crystalline lattice. If we take the frequency
ωmax ≈ 5 × 1013 s−1, then θ ≈ 300 K.
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Because the electron gas is a Fermi gas, in order to find its heat capacity
we apply the results obtained in Sects. 7.5 and 7.7. Then for Cel

V we can write
the expressions in two limiting cases [see (7.111) and (7.140)]:

Cel
V =

3k0N

2
; T � T el

0 , (7.170)

corresponding to a non-degenerate electron gas and

Cel
V =

π2

2
k0N

k0T

μel
0

=
π2

2
k0N

T

T el
0

; T � T el
0 , (7.171)

corresponding to a strongly degenerate electron gas, where

T el
0 =

μel
0

k0
=

�
2

2mk0

(
6π2

g0
n

)2/3

(7.172)

is the temperature of degeneracy of the free electron gas in metals [see (7.126)],
n = N / V is its concentration,m is the effective mass of an electron in metals,
μel

0 is the Fermi boundary and g0 = 2.
The linear dependence of the heat capacity of a strongly degenerate elec-

tron gas on temperature physically can be explained as follows: From Figs. 7.9
and 7.10, it is seen that when supplying heat externally, only electrons that
are found close to the Fermi boundary at the distance k0T receive heat and
pass onto the levels lying above. Electrons that are found far below the Fermi
boundary do not receive heat since the neighbouring levels are occupied (the
Pauli principle). Because the number of electrons that receive heat is propor-
tional to the width k0T , and energy of each electron is on the order of k0T ,
the thermal energy of the system of electrons E ∼ (k0T )2 ∼ T 2. In conformity
with this, it follows that CV ∼ T .

We evaluate the temperature of degeneracy of an electron gas T el
0 . To do

this, assume that m ≈ 9.1×10−28 g and n ≈ 5×1022 cm−3. Then from (7.172),
we get T el

0 ≈ 3 × 104 K. It is seen that temperature of degeneracy of a free
electron gas is much higher than the Debye temperature, which characterises
the vibrations of the lattice: T el

0 � θ ≈ 3 × 102 K.
In Table 7.2, we indicate the Debye temperature θ, the temperature of

degeneracy of an electron gas T el
0 and expressions of the above-deduced

asymptotes of Cel
V and C lat

V .
From the table it is seen that the expression of the heat capacity Cel

V in the
temperature region θ � T � T el

0 is the same as in the region T � θ, because

Table 7.2. The comparison the lattice and electron parts of the heat capacity metals
at various temperature regions

Cel
v

π2

2
k0N

T

T el
0

π2

2
k0N

T

T el
0

Clat
v

12π4

5
k0N

(
T

θ

)3

θ 3k0N T e1
0
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T el
0 � θ. The temperature region T > T el

0 practically cannot be realized since
T el

0 is larger than the melting temperature of metals. In other words, the
classical expression of the heat capacity of an electron gas Cel

V = 3k0N / 2 is
not applicable in any temperature region.

We now derive the asymptotic expressions of total heat capacities of metals
measurable by experiments for different temperature regions.

7.9.1 Low Temperatures

T � θ. It is clear that in this temperature region automatically the condition
T � T el

0 is fulfilled, because θ � T el
0 . The total heat capacity Cmet

V in this
case ought to be equal to the sum of the expressions (7.169) and (7.171):

Cmet
V =

12π4

5
k0N

(
T

θ

)3

+
π2

2
k0N

(
T

T el
0

)
; T � θ. (7.173)

This expression can also be presented in the form

Cmet
V / T = a+ bT 2, (7.174)

where

a =
π2

2
k0N

T el
0

; b =
12π4

5
k0N

θ3
. (7.175)

If, at low temperatures, we experimentally find the temperature dependence
of the heat capacity Cmet

V = f(T ) and construct a plot as the dependence
Cmet

V / T on T 2, we get a straight line. The coordinate of the point of inter-
section of this straight line with the ordinate axis corresponds to the parameter
a, and the slope tg ϕ gives the parameter b (Fig. 7.14). Thus, with the exper-
imentally determined parameters a and b, and using (7.175), we can find the
temperature of degeneracy T el

0 and the Debye temperature θ.

7.9.2 Region of Temperatures

θ � T � T el
0 . From Table 7.2, it is seen that the total heat capacity of a metal

in this region is determined by the expression

a

T

tgj = b

T 20

ϕ

CV
met

Fig. 7.14. The dependence Cmet
V / T on T 2
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Cmet
V = 3k0N +

π2

2
k0N

T

T el
0

. (7.176)

We evaluate the ratio of the second term to the first term, i.e. Cel
V / C lat

V , in
the expression (7.176). Then we get

Cel
V

C lat
V

=
π2

6
T

T el
0

=
π2

6
k0T

μel
0

� 1. (7.177)

Because the temperature of degeneracy is on the order of T el
0 ≈ 104 K, at

all real temperatures and even above the Debye temperature θ, conditions
T � T el

0 and k0T � μel
0 are satisfied. Therefore, at high temperatures (T � θ)

the contribution of the electron gas to the heat capacity of metals is very small.
As seen from (7.177), at a temperature T = 500 K the ratio Cel

V / C lat
V ≈ 0.07,

i.e. the contribution of Cel
V , comprises in all 7%.

Note that contributions of the electron gas and lattice to the heat capacity
of a metal can be comparable only in the region of very high temperatures:
T � T el

0 . Such temperatures are non-real, because in this case the metal will
not be in the solid state and the concept of a crystalline lattice loses sense.

Thus, we explained the first difficulty associated with application of the
Boltzmann statistics when calculating the heat capacity of an electron gas in
metals, which we noted at the beginning of this chapter (Sect. 7.1). It has now
become clear that the divergence between theory and experiment is associated
with the fact that in all temperature regions (T � T el

0 ≈ 104 K) an electron
gas is a strongly degenerate quantum gas. Therefore, in all real temperature
regions its heat capacity is determined not by (7.170) but by (7.171).

In conclusion, we note the following. We showed that at high temperatures
(T � θ) the contribution of an electron gas to the heat capacity of a crystal
is very small: Cel

V � C lat
V . However, at ultra-low temperatures, Cel

V can be
greater than Clat

V (Fig. 7.15). This is associated with the fact that at T � θ
the heat capacity C lat

V ∼ T 3, whereas Cel
V ∼ T . Therefore, as T → 0, the heat

capacity Clat
V tends to zero much faster than Cel

V (Fig. 7.15).
As is seen from the figure, as T < T1 the heat capacity Cel

V > Clat
V , where

T1 is determined from the condition Cel
V (T1) = Clat

V (T1). Hence, and also from
(7.169) and (7.171), we get

T0 T1

~T3

~T

CV CV
lat

Fig. 7.15. The lattice and electron parts of the heat capacity dependence at ultra-
low temperatures
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T1 ≈ θ

2π

(
θ

T el
0

)1/2

. (7.178)

If we take θ = 3 × 102 K and T el
0 = 3 × 104 K, we find T1 ≈ 5 K.

7.10 Pauli Paramagnetism:
Second Difficulty of Classical Statistics

The second difficulty of the Boltzmann classical statistics is associated with
calculating the paramagnetic susceptibility χ of a free electron gas in metals
(see Sect. 7.1). The paramagnetic susceptibility calculated on the basis of the
Boltzmann statistics and its temperature dependence do not coincide with
values from experiment. Thus, for instance, the experimental value of the
paramagnetic susceptibility is lower by two orders of magnitude and does not
depend on temperature, whereas according to the classical statistics χ ∼ 1 / T .

This difficulty was circumvented by Pauli in 1927, after applying the new
Fermi statistics to compute the paramagnetic susceptibility. He came to the
conclusion that the cause of the divergence is the fact that an electron gas is
not classical but a strongly degenerate quantum gas.

Assume that in a metal of volume V there is a gas consisting of N free
electrons. Each electron possesses an intrinsic magnetic moment associated
with the spin, which is equal to the Borh magneton μB = e� / 2mc. In the
absence of an external magnetic field, the intrinsic magnetic moments com-
pensate each other (since, according to the Pauli principle in one quantum
level there exist two electrons with opposite spins) and the magnetic moment
of the metal as a whole equals zero.

On placing the metal in an external uniform magnetic field H , the number
of electrons with spins directed along the magnetic field is more than that with
the opposite spins, and therefore the electron gas possesses a paramagnetic
moment. Using the Fermi statistics, we can calculate the magnetization of an
electron gas in metals.

Energy of an electron in an external magnetic field H with regard to the
spin has the form

ε =
h2k2

2m
+ σg0μBH, (7.179)

where m is the electron mass, μB = e� / 2mc =0.93 × 10−20 erg/G is the
Bohr magneton, σ = ∓1 / 2 (the sign “−” refers to electrons whose intrin-
sic magnetic moments are directed along the magnetic field, and “+” refers
to electrons whose intrinsic magnetic moments are directed opposite to the
field) and g0 =(2s + 1) is the degree of the spin splitting degeneracy (for a
free electron s = 1 / 2 and g0 = 2). Energy spectra of an electron gas in the
absence and in the presence of a magnetic field are schematically shown in
Fig. 7.16.
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Fig. 7.16. The energy spectra of an electron gas in the absence and in the presence
of a magnetic field

The total number of electrons can be found as follows:

N =
∑
k,σ

f(k, σ) =
V

(2π)3
∑

σ

∫
f(k, σ) dk. (7.180)

Here f(k, σ) is the Fermi–Dirac distribution function and, according to (7.11)
we have changed from the summation with respect to k to the integration.
If in the k-space we change to the spherical coordinate system and take into
account that the integral over angles equals 4π and, also, according to (7.179)
change from the integration over dk to the integration over dε, (7.180) takes
the form

N =
V

(2π)2
(2m)3/2

�3

∑
σ

∞∫
−σg0μBH

f(ε)(ε+ σg0μBH)1/2dε. (7.181)

We integrate the integral entering into (7.181) once more by parts. Then we
get

N =
2V

3(2π)2
(2m)3/2

�3

∑
σ

∞∫
−σg0μBH

(
−∂f
∂ε

)
(ε+ σg0μBH)3/2dε. (7.182)

If we add up with respect to σ = ±1 / 2 and take g0 = 2, (7.182) takes the
form

N = N+ +N−, (7.183)

where

N− =
2V

3(2π)2
(2m)3/2

�3

∞∫
−μBH

(
−∂f
∂ε

)
(ε+ μBH)3/2dε (7.184)



260 7 Quantum Statistics: Equilibrium Electron Gas

is the number of electrons whose spins are parallel to the magnetic fieldH , and

N+ =
2V

3(2π)2
(2m)3/2

�3

∞∫
+μBH

(
−∂f
∂ε

)
(ε− μBH)3/2dε (7.185)

is the number of electrons whose spins are antiparallel to the magnetic field H .
It is evident that as a whole the paramagnetic moment of an electron gas

in metal can be defined as

M = μB(N− −N+). (7.186)

We first consider the classical (a non-degenerate electron gas) case. In this
case, f(ε) = exp ((μ− ε) / k0T ). Then, (7.186) takes the form

M =
V μB

4π3/2

(2mk0T )3/2

h3
eμ/k0T sh(μBH/k0T ). (7.187)

The chemical potential μ entering into this expression is found from (7.183)
with regard to (7.184) and (7.185):

eμ/k0T =
N

V

4π3/2h3

(2mk0T )3/2
ch−1(μBH/k0T ). (7.188)

If we take into account this expression in (7.187), for the paramagnetic
moment per unit volume we get the well-known result

M = NμBth (μBH / k0T ) . (7.189)

In the region of weak magnetic fields, when μBH � k0T , from (7.189), for
the paramagnetic susceptibility we get

χ =
M

VH
=
nμ2

B

k0T
, (7.190)

where n = N / V is the concentration of electrons. Note that in experiments
this classical result (7.190) is just not observed.

Therefore, it is necessary to consider the case using quantum statis-
tics. If we take into account that for a completely degenerate electron gas
(−∂f / ∂ε) = δ(ε− μF), from (7.184) to (7.186) we get

M =
μB2V
3(2π)2

(2m)3/2

�3
μ

3/2
F

[(
1 +

μBH

μF

)3/2

−
(

1 − μBH

μF

)3/2
]
. (7.191)

In a weak magnetic field (μBH � μF), from (7.191) it follows that

M =
V μ2

B

2π2

(2m)3/2

�3
μ

1/2
F H. (7.192)
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The Fermi boundary μF entering into this expression is found from the expres-
sions (7.183)–(7.185). It can be shown that the Fermi boundary μF, to a first
approximation with respect to the parameter μBH / μF � 1, does not depend
on the magnetic field and is determined by the known expression [see (7.116)]

μF =
�

2

2m
(3π2n)2/3. (7.193)

For the paramagnetic susceptibility χ0 = M / VH of a completely degenerate
electron gas, from (7.192) we get the simple expression

χ0 = μ2
Bg(μF), (7.194)

where

g(μF) =
(2m)3/2

2π2�3
μ

1/2
F (7.195)

is a function of the density of quantum states on the Fermi boundary.
From (7.194), it is seen that the paramagnetic susceptibility χ0 of a degen-

erate electron gas does not depend on temperature (7.194) and its ratio to χ
(7.190) is given the expression

χ0

χ
=
k0T

n
g(μF). (7.196)

If we determine the concentration of electrons n from (7.193) with regard to
(7.195) and substitute it into (7.196), we get

χ0

χ
=

3
2
k0T

μF
=

3
2
T

T el
0

� 1, (7.197)

where T el
0 = μF / k0 ≈ 3 × 104 K is the temperature of degeneracy of the

electron gas. At room temperature (T ≈ 3 × 102 K), for ratio (7.197) we get
χ0 / χ = 10−2.

Note that the ratio (7.197) is almost the same as the ratio of corresponding
heat capacities of an electron gas. Indeed, if we take the ratio of (7.171) to
Ccl

V = 3k0N / 2, we get

Cel
V

Ccl
V

=
π2

3
k0T

μel
F

=
π2

3
T

T el
0

. (7.198)

Thus, in all the cases we get results consistent with experiments, i.e. we are
convinced that the free electron gas in metals is not a classical gas but a
strongly degenerate quantum gas.

If at finite values of temperature with the aid of (7.134) we calculate
integrals (7.184) and (7.185), for the paramagnetic susceptibility we get

χ0(T ) = μ2
Bg(μF)

(
1 − π2

12
k0T

μF

)
. (7.199)

Hence, it is seen that at temperatures k0T � μF the paramagnetic suscepti-
bility χ0 depends on temperature T very weakly.
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7.11 “Ultra-Relativistic” Electron Gas in Semiconductors

In this case, the energy of a particle linearly depends on the absolute value of
the wave vector:

ε = υp = υ�k. (7.200)

Photons and phonons satisfy this model of the energy spectrum. In expression
(7.200), in the case of photons the velocity ought to be replaced with the
velocity of light υ = c, and for phonons with the speed of sound υ = υ0.4

The conduction electrons of some complex narrow-band semiconductors
(CdxHg1−x Te; x = 0.16) also are described by the expression (7.200). For
conduction electrons of these semiconductors, we need to replace υ with the
expression

υ = (εg / 2m∗)1/2
, ε = (εg / 2m∗)1/2

�k, (7.200a)

where εg is the band gap width, and m∗ is the effective mass of an electron.
In this section we will consider an electron gas with the “ultra-relativistic”

spectrum (7.200a). We will start from the expression of the grand thermo-
dynamic potential (7.95). For fermions, in (7.95) we need to take the upper
signs. Then, according to (7.200a), we go over from the integral over dk to the
integral over dε. Then, the expression of the thermodynamic potential takes
the form

Ω = − V g0
2π2�3

(
2m∗

εg

)3/2

k0T

∞∫
0

ln
(
1 + e(μ−ε)/k0T

)
ε2dε. (7.201)

If we take this expression in the system of equations (7.91) and integrate
by parts, we find the general form of the thermal equation of state of a gas
consisting of “ultra-relativistic” electrons:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
P =

g0
6π2�3

(
2m∗

εg

)3/2 ∞∫
0

ε3dε
e(ε−μ)/k0T + 1

,

N =
Vg0

2π2�3

(
2m∗

εg

)3/2 ∞∫
0

ε2dε
e(ε−μ)/k0T + 1

.

(7.202)

From (7.80), it is easy to find the mean value of energy of an “ultra-relativistic”
electron gas:

E =
Vg0

2π2�3

(
2m∗

εg

)3/2
∞∫
0

ε3dε
e(ε−μ)/k0T + 1

. (7.203)

4 In the capacity of an example of the ultra-relativistic Bose gas in Sects. 7.14 and
7.15 photon and phonon gases will be considered, respectively.
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Fig. 7.17. The density of quantum states for the “ultra-relativistic” spectra

If we compare this expression with the first equation of the system (7.202),
we get the relation between the energy density and pressure:

P =
1
3
E

V
, (7.204)

which does not depend on the degree of degeneracy of the electron gas
[compare (7.100) with the “ultra-relativistic” case].

From a comparison of expressions of energies (7.101) and (7.203), for the
density of quantum states g(ε) we get the quadratic dependence (Fig. 7.17)

g(ε) =
g0ε

2

2π2�3

(
2m∗

εg

)3/2

∼ ε2. (7.205)

It is seen that in this case the dependence of the density of states on energy
g(ε) is sharper compared to the usual parabolic case (Fig. 7.4).

If we integrate the expression for energy (7.203) and the second equation of
(7.202) once by parts, we get the system of equations determining the caloric
equation of states of an “ultra-relativistic” electron gas:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
E =

Vg0

8π2�3

(
2m∗

εg

)3/2 ∞∫
0

(
−∂f
∂ε

)
ε4dε,

N =
Vg0

6π2�3

(
2m∗

εg

)3/2 ∞∫
0

(
−∂f
∂ε

)
ε3dε.

(7.206)

We first consider a completely degenerate electron gas (T = 0). If we take
into account that in this case (−∂f / ∂ε) = δ(ε−μ0), from (7.206) we get the
expressions for the Fermi boundary as

μ0 =
(

6π2

g0
n

)1/3

�

( εg
2m∗

)1/2

=
( εg

2m∗
)1/2

p0, (7.207)

for the Fermi impulse as

p0 =
(

6π2

g0
n

)1/3

�, (7.208)
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for the zero energy as

E0 =
Vg0

8π2�3

(
2m∗

εg

)3/2

μ4
0 =

3
4
μ0N (7.209)

and for the zero pressure of the electron gas as

P0 =
g0

24π2�3

(
2m∗

εg

)3/2

μ4
0 =

1
4
nμ0, (7.210)

where we used the relationship (7.204); n = N / V is the concentration of
electrons. Because at the Fermi boundary μ0 ∼ n1/3 (7.207), from (7.210)
it follows that the zero pressure of a degenerate electron gas P0 ∼ n4/3.
The temperature of degeneracy in the considered case is determined by the
expression T0 = μ0 / k0.

Consider a strongly degenerate electron gas when k0T � μ0. In this case,
using (7.134) we can calculate the integrals entering into (7.206). As a result,
we get

E =
Vg0

8π2�3

(
2m∗

εg

)3/2

μ4

[
1 + 2π2

(
k0T

μ0

)2
]
, (7.211)

N =
Vg0

6π2�3

(
2m∗

εg

)3/2

μ3

[
1 + π2

(
k0T

μ0

)2
]
. (7.212)

Here, in the term associated with temperature we have assumed μ = μ0. From
(7.212) on determining the chemical potential

μ(T ) = μ0

[
1 − π2

3

(
k0T

μ0

)2
]
, (7.213)

and substituting it into (7.211), and restricting ourselves to the first approxi-
mation, for the caloric equation (for the total energy) we get

E(T ) = E0 +
π2

2
μ0N

(
k0T

μ0

)2

. (7.214)

Hence, for the heat capacity we have

CV = π2k0N

(
k0T

μ0

)
=
π2k2

0N

�

(
2m∗

εg

)1/2 ( g0
6π2n

)1/3

T ∼ n−1/3. (7.215)

From relationship (7.204) and expression (7.214), we can obtain the ther-
mal equation of state (pressure) ofan “ultra-relativistic” electron gas at finite
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temperatures:

P (T ) = P0 +
π2

6
μ0n

(
k0T

μ0

)2

, (7.216)

where P0 is the zero pressure determined by (7.210).
If we compare the results obtained here with those obtained in Sect. 7.6, we

notice the disparity between a degenerate electron gas with the usual parabolic
spectrum and an “ultra-relativistic” gas. In particular, a comparison of the
expressions (7.213) and (7.136) shows that in the “ultra-relativistic” case the
Fermi boundary decreases according to the temperature. This is associated
with the fact that in the “ultra-relativistic” case the function of the density of
quantum states depends more strongly on energy (compare Figs. 7.4 and 7.17).

7.12 Statistics of Charge Carriers in Semiconductors

According to quantum mechanics, electrons in a completely isolated atom
possess a discrete energy spectrum: 1s 2s 2p 3s 3p 3d 4s . . .. At each discrete
energy level, a specified number of electrons can be found, e.g. at the s-level
there can be a maximum 2 electrons, at the p-level there can be 6, at the -level
there can 10: 1s2 2s2 2p6 3s2 3p6 3d10 4s2 . . ..

Assume that a crystalline lattice (solid) is formed of N atoms. Then, each
discrete energy level of the system (the crystalline lattice) is N -fold degener-
ate. Under the action of a periodic Coulomb field produced by other electrons
and nuclei, this degeneracy is removed partially or completely. As a result,
each discrete energy level converts into an energy band 1s2 2s2 2p6 . . . of a
certain width. Therefore, the energy spectrum of electrons in a crystalline lat-
tice consists of possible energy strips, separated from each other by forbidden
energy ranges - band gaps.

Note that the band theory of solids analytically follows from the solution of
the Schrödinger equation for the motion of an electron in a periodic potential
field of the crystalline lattice.

According to the band theory, all crystalline solids are divided into two
classes based on the electrical conductivity in the fundamental non-excited
state: conductors and insulators.

We explain this classification. In a crystal consisting of N atoms with the
ordinal number Z, there exists a ZN number of electrons. In the fundamental
state, these electrons occupy the lowermost energy bands. According to the
Pauli principle, in each energy band there can be found a finite number of
electrons. For instance, in the s-energy band, corresponding to the discrete
level s, we can find a maximum of 2Nelectrons, in the p-band there can be a
maximum of 6N electrons, etc.

Depending on the distribution of electrons over the energy bands, there
are two possible cases.
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1. If ZN number of electrons occupy some energy bands completely and
subsequent bands partially, such a crystal is called a conductor. For
instance, in Na crystal, consisting of Na atoms with Z = 11, of 11N elec-
trons, 2N electrons are positioned in the energy band 1s, 2N are in 2s,
6N are in 2p and N are in 3s. Thus, the 3s energy band is half-filled. In Al
atom with Z = 13, there are completely filled 1s 2s 2p 3s bands, and the
3p band is filled to one-sixth. Notice that a completely filled energy band
does not take part in the electrical conductivity because an external elec-
tric field cannot influence the distribution of electrons of completely filled
bands. Only electrons of partially filled bands can participate in the conduc-
tivity because inside the band, energy levels are positioned infinitely close
to each other and an external electric field changes the symmetry of the
distribution of electrons in the k-space, and thereby electrical conductivity
arises in the crystal. Thus, Na and Al ought to conduct an electric current
well. Remember that a conductor and a metal are used synonymously here,
because most metals possess good electrical conductivity.

2. If ZN number of electrons completely fill a specified number of lowest
energy bands, and the subsequent energy bands are absolutely empty, then,
according to the above-mentioned reasons such a crystal is an insulator. The
energy range between the completely filled energy band and the absolutely
empty band is called a forbidden energy band or band gap. The completely
filled band is called the valence band and the upper empty band is the
conduction band.

Thus, at the absolute zero temperature (T = 0), all crystalline solids can be
found in one of two fundamental (non-excited) states: conductors or insulators.

If the width of the band gap εg is sufficiently small (εg < 2 eV), at finite
temperatures (T �= 0) some of the electrons pass from the completely filled
(valence) band into the empty (conduction) band. The electrons passing into
the conduction band can participate in the conductivity and therefore are
called conduction electrons. The remaining free quantum states of the valence
band behave as quasi-particles and are called holes. Holes are quasi-particles
with a positive charge which is numerically equal to the charge of an electron.
It is clear that holes are also fermions like electrons. Their effective mass
is positive and distinct from the effective mass of electrons. Holes that are
formed in the valence band also participate in the electrical conductivity.

Insulators that are found in such an excited state are called semiconduc-
tors. Thus, semiconductors are insulators with a small width of the band gap
and easily pass into the excited state. In other words, a semiconductor is an
excited insulator.

Consequently, free electrons are charge carriers in metals, and conduction
electrons and free holes in the valence band are carriers in semiconductors.

Statistical properties of a free electron gas in metals were studied in
Sect. 7.11. The basic distinction of metals from semiconductors consists in the
fact that in metals the concentration of the conduction electrons is constant
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Fig. 7.18. Conduction band electrons and valence band holes, i.e. current carriers
in semiconductors

whereas in semiconductors the concentration depends on temperature and on
the presence or absence of impurities. In the given section we will consider
the statistics of charge carriers, i.e. electron–hole systems, and analyse the
temperature dependences of their chemical potential and concentration.

To do this it, is necessary to know the structure of the conduction band
and the valence band, i.e. the dependence of energy on the quasi-impulse or
wave vector (the dispersion law). It is a task of quantum mechanics. Note that
the structure of the conduction band and the valence band can be quite com-
plex. This depends on the construction of electron shell of the atoms forming
the crystal and also on the symmetry of the crystalline lattice. Here, we will
assume that energy of conduction electrons and holes depends parabolically
on the wave vector (Fig. 7.18). On the basis of this model, called a stan-
dard or parabolic model, we will consider three cases: intrinsic (impurity-free)
semiconductors, semi-metals and impurity semiconductors.

Intrinsic semiconductors. Consider an ideal (perfect) impurity-free semi-
conducting crystal. This means that the crystal consists of intrinsic atoms. The
valence electrons form covalent bonds between adjacent atoms. For instance,
in the tetravalent Ge or Si crystal, they are surrounded by four adjacent
atoms. At the temperature of absolute zero, all four electrons participate in
the formation of the bond, i.e. at T = 0, the valence band is completely filled
and the conduction band is completely free.5 At a finite temperature, some
of the electrons participating in the formation of the covalent bond, under

5 Note that according to the electron distribution over energy bands the crystals
of germanium and silicon formally ought to be conductors. Indeed, in an atom of
silicon with Z = 14 the level 3p2 is filled to 1/3, in germanium with Z = 32 the
level 4p2 is also filled to 1/3. Consequently, at temperature of absolute zero also
these crystals ought to be conductors. However, theory and numerous experiments
show that Ge and Si possess the complex band structure: the band gap width for
Ge equals εg = 0.7 eV, and for Si equals εg = 1.1 eV. So, according to the real
band structure, Ge and Si are not conductors, but semiconductors.
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action of the thermal motion (temperature), break away from the chemical
bond and move freely inside the crystal. Holes are produced in the vacancies
created by the electrons, which also move freely in the crystal. In the impulse
or the k-space, this process corresponds to the fact that a specified number
of electrons pass from the valence band into the conduction band, as a result
of which the same number of holes arise in the valence band.

In order to consider the statistics of an electron–hole system in intrinsic
semiconductors, consider a model of the band as depicted in Fig. 7.18. This
model is characterised by three parameters: the effective mass of conduction
electrons mn, the effective mass of holes mp and the width of the band gap εg.

If energy is taken from the bottom of the conduction band, the energy of
the conduction electrons is

ε =
�

2k2

2mn
, (7.217)

and the energy of holes is

ε = −εg − �
2k2

2mp
= −εg − ε′. (7.218)

The concentration of conduction electrons in the general case, according to
(7.160), is

n =
(2mnk0T )3/2

3π2�3
F3/2(η), (7.219)

where F3/2(η) is the Fermi integral determined by (7.161), and η = μ/k0T is
the reduced chemical potential.

If we use the asymptote of the Fermi integral (7.162), the concentration of
a non-degenerate electron gas in the conduction band is

n =
(2mnk0T )3/2

4π3/2�3
exp(η). (7.219a)

In order to find the concentration of holes, first we determine their dis-
tribution function. It is known that the probability of an electron found
at a level with energy ε is given by the Fermi–Dirac distribution function
f = [1 + exp(ε− μ) /k0T ]−1. Then, the probability that a level with energy
ε is empty (the hole), i.e. the distribution function of holes, is

fp(ε) = 1 − f(ε) = [1 + exp(μ− ε)/k0T ]−1
. (7.220)

If we substitute the expression for the energy of holes (7.218) in (7.220) and
introduce the notation for the chemical potential of holes

μp = −εg − μ, (7.221)
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then distribution function of holes takes the form

fp(ε′) = [1 + exp(ε′ − μp) /k0T ]−1
, (7.222)

where ε′ is energy taken from the top of the valence band. So, in order to find
the distribution function of holes, it is sufficient to replace ε with ε′ in the
distribution function of electrons and μ with μp. Thus, in order to find the
concentration of holes in the parabolic valence band, in (7.219) it is necessary
to carry out the replacements mn → mp and η → ηp = μp /k0T .

Consequently, the concentration of a hole gas of any degree of degeneracy
is calculated by the formula

p =
(2mpk0T )3/2

3π2�3
F3/2(ηp), ηp = μp /k0T . (7.223)

It is clear that the condition of non-degeneracy of a hole gas has the app-
earance

exp(ηp) � 1 or (εg + μ) /k0T � 1. (7.224)

If use the asymptote of the Fermi gas (7.162), for the concentration of a
non-degenerate hole gas we get

p =
(2mpk0T )3/2

4π3/2�3
exp(ηp). (7.225)

The chemical potential of an electron–hole gas is determined from the condi-
tion of neutrality of the crystal

n(μ, T ) = p(μ, T ). (7.226)

If we take into account (7.219) and (7.223) in this equation, we get

m3/2
n F3/2(η) = m3/2

p F3/2(−η − ε∗g), (7.227)

where ε∗g = εg /k0T is the reduced band gap width. A solution of (7.227), in
principle, enables one to determine the dependence of the reduced chemical
potential of an electron–hole gas as a function of the parameters of the band:

η = η(mn,mp, ε
∗
g). (7.228)

However, in the general case (7.227) can be solved only numerically. If we take
into account that a conduction electron and a hole gas in intrinsic semicon-
ductors are usually found in the non-degenerate state, on the strength of the
asymptote (7.162), expression (7.227) takes the simple form

m3/2
n exp(η) = m3/2

p exp(−η − ε∗g). (7.229)
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Fig. 7.19. The temperature dependence of chemical potential for intrinsic semicon-
ductors

Hence, it is easy to find the chemical potential of an electron–hole gas:

μ = −εg
2

+
3
4
k0T ln

mp

mn
. (7.230)

From (7.230), it is seen that at T =0 (for any values of mp and mn), and
also if mn = mp, at all temperatures the chemical potential passes through
the middle of the band gap. If, however, the effective masses are different
(mn �= mp), with the increase of temperature starting from zero, depending
on the ratio mp /mn the chemical potential moves to the conduction band or
the valence band (Fig. 7.19).

Usually, in semiconductors mp > mn, and therefore the chemical poten-
tial moves to the conduction band. The fact that at T = 0 the chemical
potential equals half εg has a deep physical meaning. It is known that the
chemical potential is the free energy (the spent work) necessary to increase
the number of particles by unity. In our case, because the system consists of
conduction electrons and holes, in the process of passage of one electron from
the valence band into the conduction band the energy εg is spent. As a result
of this, in the system there arise two quasi-particles: a conduction electron
and a hole. Therefore, at T =0 each arising particle accounts for a free energy
equal to μ = −εg /2 .

If we substitute the value of exp(η) from (7.229) into (7.219a) and (7.225),
we get identical dependences for the concentration of free electrons and holes
in intrinsic semiconductors:

ni = pi =

(
2√mpmnk0T

)3/2

4π3/2�3
exp

(
− εg

2k0T

)
. (7.231)

If from experiment we can find ni or pi, with the aid of (7.231) we can deter-
mine the band gap width εg. This is the most common classical method for
the determination of εg.

If the conduction band and the valence band touch each other, i.e. εg = 0,
(7.227) takes the form

m3/2
n F3/2(η) = m3/2

p F3/2(−η). (7.232)
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Because temperature does not enter into this equation, the solution of the
equation does not depend on temperature, i.e. η= η0 =const. Then concen-
tration of conduction electrons (7.219) can be written down in the form

ni =
(2mnk0T )3/2

3π2�3
F3/2(η0) ∼ T 3/2. (7.233)

Thus, at εg = 0 the concentration depends on temperature not exponentially,
as is shown in (7.231), but has power dependence n ∼ T 3/2. It is clear the
concentration of holes is

pi =
(2mpk0T )3/2

3π2�3
F3/2(−η0) ∼ T 3/2. (7.234)

As seen from (7.232), in order that the reduced chemical potential η = η0 =
const, it is necessary to satisfy the equality ni = pi.

Note that dependence ni = pi ∼ T 3/2 is correct only in the case when both
the conduction band and the valence band are parabolic.

Semi-metals. In the preceding paragraph, we considered semiconductors
with the band gap width εg ≥ 0. In these, the charge carriers arise only at
finite temperatures T �= 0, i.e. at T = 0 they do not possess any conductivity.
However, there exist crystals in which the valence band and the conduction
band overlap each other by a magnitude ε0 (Fig. 7.20). Such crystals are called
semi-metals. A crystal of bismuth is an example of a semi-metal. In such
crystals, the top of the valence band is above the bottom of the conduction
band and, even at T = 0, a part of the electrons spontaneously pass from the
valence band into the conduction band, as a result of which an equal number
of free electrons and holes arise. The passage of electrons from the valence
band into the conduction band continues as long as the chemical potential
(the Fermi level) does not become identical in both bands (as the level of a
liquid in connected vessels).

Consequently, at the temperature of absolute zero, in semi-metals electrical
conductivity is possible. The Fermi level in semi-metals at temperature T can
be determined from the condition of neutrality n = p, using equality (7.227).
To do this, it is necessary to carry out the replacement −εg → ε0 in (7.227),
because, as seen from Fig. 7.20, the distance between the top of the valence
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band and the bottom of the conduction band equals ε0. As a result, in the
case of a semi-metal the condition of neutrality n = p takes the form

m3/2
n F3/2(η) = m3/2

p F3/2(ε∗0 − η), (7.235)

where ε∗ = ε0 /k0T , ε0 is the overlap of the bands andmn andmp are effective
masses of conduction electrons and holes, respectively.

Because at low temperatures k0T � ε0, electron and hole gases are found
in the degenerate state. Then, using (7.165), for the Fermi integral we get
Fk(ηF) = ηk

F and condition (7.235) takes the form

mnηF = mp(ε∗0 − ηF). (7.236)

Hence
ηF =

mp

mn +mp
ε∗0 or μF =

mp

mn +mp
ε0. (7.237)

The concentration of electrons, in conformity with (7.160) and (7.165), can
be written down in the form

n =
(2mnk0T )3/2

3π2�3
η
3/2
F , (7.238)

and the concentration of holes as

p =
(2mpk0T )3/2

3π2�3
(ε∗0 − ηF)3/2. (7.239)

On substituting (7.236) and (7.237) into these expressions, we get

n = p = (3π2
�

3)−1 (2mnmpε0 /2mnmpε0(mn +mp) )3/2
. (7.240)

Consequently, in semi-metals at T = 0, the concentration of electrons and
holes is finite and is determined by the band parameters mn, mp and ε0.

Impurity semiconductors. Different defects – extraneous atoms (impuri-
ties), empty points, atoms between points, etc. – are inherent to real crystals.
Here we will consider only defects associated with impurity atoms. Such
defects can be artificially created, and therefore their concentration and types
can be controlled. Assume that in a crystalline lattice of an element of the
fourth group, for instance germanium or silicon, a minute part is replaced by
atoms of elements of the third (In,Ga) or the fifth (Sb,As) group. This means
that crystals of Ge or Si are doped by extraneous atoms In,Ga, Sb and As.
If the concentration of impurity atoms Ni is small, i.e. the distance between
them di ≈ N

−1/3
i is far greater than the radius of the first Bohr orbit a0, then

wave functions of impurity atoms do not overlap each other, and therefore
impurity energy bands do not arise and in the band gap they create discrete
energy levels. Depending on the type of impurity atoms, discrete impurity
levels are positioned close to either the bottom of the conduction band or the
top of the valence band.
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Fig. 7.21. Diagrams of bands of semiconductors with donor and acceptor impurities

If Ge and Si crystals are doped by pentavalent atoms Sb or As, four of the
five electrons found in the outer electronic level of Sb or As form bonds with
the adjacent atoms of Ge or Si. The remaining fifth electron is weakly bound
with impurity atoms and, therefore, under action of temperature easily leaves
the atom and becomes free. This means that atoms of the fifth group create
discrete levels in crystals of Ge and Si close to the conduction band and the
fifth valent electron easily passes into this band. Impurities of such type are
called donors, and such crystals are electronic semiconductors.

If crystals of Ge and Si are doped by trivalent atoms In or Ga, then three
valence electrons of In or Ga are not sufficient to form covalent bonds with
adjacent atoms of Ge or Si. Therefore, they attract one electron from the adja-
cent covalent bond, as a result of which a non-saturated bond arises between
the fundamental atoms. This means that one electron passes from the valence
band to the discrete impurity level, and one free hole arises in the valence
band. Impurities of such a type are called acceptors, and such crystals are
hole semiconductors.

In Fig. 7.21, the band structure of semiconductors with donor and acceptor
impurities is schematically presented. Because in the figure energy is taken
from the bottom of the conduction band upwards, we denote the energy of
donor levels by −εd, acceptor levels by −εa and the band gap width by −εg;
Nd and Na are concentrations of donor and acceptor atoms, respectively; the
rest of the notations in the figure are as usual.

It is evident that even at the temperature of absolute zero, T = 0, weakly
bound electrons pass from the donor level to the acceptor level and, depending
on the ratio Nd /Na , the donor or acceptor level is compensated: if Nd > Na,
acceptors are completely compensated and N ′d = Nd −Na number of donors
remains neutral; On the contrary, if Na > Nd, donor atoms are compensated
completely, and N ′a = Na −Nd number of acceptors remains neutral.
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At finite temperature (T �= 0), when Nd > Na, an electron passes from
neutral donor levels into the conduction band and, when Na > Nd, an electron
passes from the valence band into the non-compensated acceptor level. In the
first case, a crystal is called a compensated electronic semiconductor, and in
the second case it is a compensated hole semiconductor.

Thus, at a particular finite temperature and in the thermodynamic equi-
librium in a crystal, there are a specified number of free electrons in the
conduction band, free holes in the valence band, positively charged donor lev-
els (“bound holes”) and negatively charged acceptor ions. It is clear that in
the equilibrium state this system of charges ought to be characterised by only
the chemical potential, which is found from the condition of neutrality.

The condition of neutrality: the sum of the concentration of electrons in
the conduction band n and negatively ionised acceptors na = N−a ought to
equal the sum of the concentration of free holes of the valence band p and the
concentration of the “bound holes” pd = N+

d = Nd − nd at donor levels; here,
nd is the concentration of electrons at the donor level. Thus, the condition of
neutrality of a crystal has the form

n+ na = p+ pd. (7.241)

Concentrations of conduction electrons n and free holes p are given by the
expressions (7.219) and (7.223), respectively. In order to calculate na and pd,
we use the expression for the mean number of electrons at the impurity level
with energy εi:

n(εi) = [1 + β exp(εi − μ) /k0T ]−1
. (7.242)

Here the factor β is associated with the degeneracy of the impurity level. If
at the impurity level there is degeneracy only with respect to the spin, then
β = 1/2. In this case, the mean concentration of electrons at the donor level
with energy εi = −εd is

nd = Nd

[
1 +

1
2

exp (−(εd + μ) /k0T )
]−1

. (7.243)

Then the concentration pd entering into (7.241) can be presented in the form

pd = Nd − nd = Nd [1 + 2 exp(εd + μ) /k0T ]−1
. (7.244)

For impurities of the acceptor type, β = 2. Then the mean concentration of
electrons at the acceptor level with energy εi = −εa is

na = Na

[
1 + 2 exp

(
−εa + μ

k0T

)]−1

. (7.245)

If we substitute (7.219), (7.223), (7.244) and (7.245) into (7.241), the condition
of neutrality in the general case takes the form
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(2mnk0T )3/2

3π2�3
F3/2(η) +Na [1 + 2 exp(−ε∗a − η)]−1 =

=
(2mpk0T )3/2

3π2�3
F3/2(−ε∗g − η) +Nd [1 + 2 exp(ε∗d + η)]−1

, (7.246)

where
ε∗d = εd/k0T , ε

∗
a = εa/k0T и η = μ/k0T .

If parameters of the energy band mn, mp, εg, εd, εa, Nd and Na (see Fig. 7.21)
are known, from (7.246), in principle, we can find the dependence of the
reduced chemical potential on these parameters, and also on the temperature
η(T ). Knowing the dependence η(T ), according to (7.219) and (7.223), we can
determine the temperature dependences of the concentration of free charge
carriers n(T ) and p(T ). However, the transcendental equation (7.246) in the
general form is impossible to solve with reference to η. Therefore (7.246) can
be solved only analytically in particular cases.

Intrinsic semiconductors. This case corresponds to the impurity-free crys-
tal (Nd = Na = 0), which we considered at the beginning of the section.

Electronic semiconductors. As a more comprehensive example, we consider
semiconductors with donor impurities. In this case, Na = 0, Nd �= 0 and
(7.246) acquires the form

(2mnk0T )3/2

3π2�3
F3/2(η) = Nd [1 + 2 exp(ε∗d + η)]−1

. (7.247)

If the free electron gas in the conduction band is degenerate, even the simpli-
fied equation of neutrality (7.247) is impossible to be solved analytically; we
can solve it only numerically and construct the graphic dependence η(T ).

If, however, we suppose that the electron gas is non-degenerate, and,
according to (7.162) use the asymptote F3/2(η) = 3

√
π/4 exp(η), (7.247) can

be rewritten in the form

(2mnk0T )3/2

4π3/2�3
exp(η) = Nd [1 + 2 exp(ε∗d + η)]−1

. (7.248)

This is a quadratic equation with respect to exp(η). Solving it for the chemical
potential, we get

μ = −εd + k0T ln

[
1
4

(√
1 +

32π3/2�3Nd

(2mnk0T )3/2
exp(ε∗d) − 1

)]
. (7.249)

Here, the solution of the quadratic equation for which the condition exp(η) > 0
is fulfilled is conserved.

Expression (7.249) obtained for the simplest case has a very complex
appearance. To obtain physically meaningful results, on the basis of (7.249)
we consider concrete cases.
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(1) Region of low temperatures. Assume that the temperature T satisfies the
inequality

exp
(
εd
k0T

)
� (2mnk0T )3/2

32π3/2�3Nd
. (7.250)

Then, from (7.249) we get for the chemical potential

μ = −εd
2

+
k0T

2
ln
[

2π3/2
�

3Nd

(2mnk0T )3/2

]
. (7.251)

Hence, we arrive at the following conclusions:

(a) At the temperature of absolute zero (T = 0), the chemical potential equals
one-half εd. This result completely satisfies the physical sense, according
to which on the passage of one electron from the donor level into the
conduction band, two particles arise in the system: a free electron and a
“bound hole,” and energy εd is expended in this process.

(b) The sign of the second item in (7.251) depends on the value of the
expression under the logarithm sign, i.e. on temperature. Thus far, the
temperature satisfies the condition

2π3/2
�

3Nd > (2mnk0T )3/2, (7.252)

where the second term in (7.251) is positive and μ approaches the bottom of
the conduction band. If the concentration of donors is sufficiently large, i.e.
(Nd > 1018 cm−3), μ can even pass into the conduction band (Fig. 7.22). At
even higher temperatures, when the condition reverse to (7.252) is fulfilled, μ,
which is decreasing, can pass to a level below −εd /2 . If the chemical potential
passes into the conduction band, from Fig. 7.22 it is seen that an electron gas
in the conduction band in the range of temperatures ΔT = T2 − T1 can be
found in the degenerate state.

It is clear that outside this range (T < T1 and T > T2) the chemical poten-
tial μ < 0, and therefore the concentration of conduction electrons depends
exponentially on the temperature.

0
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Fig. 7.22. Fermi level variation with temperature in an electron semiconductor
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(2) Region of relatively “high” temperatures. When the condition reverse to
(7.250) is fulfilled, the second term of the expression (7.249) is much
smaller than unity and the square root can be expanded into a series.
Then, in this region of temperatures the chemical potential takes the very
simple form

μ = k0T ln
[

4π3/2
�

3Nd

(2mnk0T )3/2

]
. (7.253)

From (7.253) and the condition reverse to (7.250), it follows that in the con-
sidered temperature region the chemical potential sinks below donor levels
−εd (Fig. 7.22).

At still higher temperatures, electrons begin to pass from the valence
band into the conduction band, as a result of which the intrinsic conduc-
tivity dominates over the electronic cinductivity and the chemical potential
asymptotically approaches −εg /2 (Fig. 7.22).

If the expression of the chemical potential (7.253) is substituted into
(7.219a), we get

n = Nd. (7.254)

This means that in the considered temperature region all donor levels are
singly ionised, i.e. all valence electrons have passed from the donor levels
into the conduction band. The concentration of conduction electrons remains
constant, i.e. n = Nd, as long as the intrinsic conductivity does not begin.

In a like manner, hole semiconductors (Nd = 0, Na �= 0) also can be
analysed.

In conclusion, we notice one interesting fact. From expressions of con-
centrations of conduction electrons (7.219a) and free holes (7.225) of non-
degenerate semiconductors, it is seen that the product np does not depend on
the chemical potential μ. From comparison of the product np from (7.231),
we get the very simple equality

np = n2
i = p2

i . (7.255)

This relationship shows that if an electron gas in the conduction band and
free hole gas in the valence band are non-degenerate, the product np does not
depend on the amount of impurities and their distribution. This result also
follows from the fact that the amount of impurities and their distribution
determine the value of the chemical potential μ, and the product np does not
depend on μ.

7.13 Degenerate Bose Gas: Bose–Einstein Condensation

We construct a statistical theory of the thermodynamic properties of a Bose
gas of volume V consisting of N bosons of the mass m. To do this, on the
strength of (7.98) we write the equations of state of a Bose gas:



278 7 Quantum Statistics: Equilibrium Electron Gas
⎧⎪⎪⎨
⎪⎪⎩
P =

2
3
g0(2m)3/2

(2π)2�3

∞∫
0

ε3/2dε
e(ε−μ)/k0T − 1

,

N =
V g0(2m)3/2

(2π)2�3

∞∫
0

ε1/2dε
e(ε−μ)/k0T − 1

.

(7.256)

It is clear that, in the general form, the system of equations (7.256) at arbi-
trary temperature is impossible to solve analytically. Therefore, we consider
only high- and low-temperature regions. If the concentration of the gas is con-
stant, at high temperatures, the chemical potential, according to (7.20), can
satisfy the condition of classicity: A = exp(η) � 1. Then system of equations
(7.256) can be solved by expanding it into a series with respect to the param-
eter A � 1. In the zeroth approximation, we obtain the well-known classical
results (see Sect. 7.1). In the first approximation (the approximation of weak
degeneracy), for a Bose gas as well as for a Fermi gas we obtain results that dif-
fer a little from those for a classical Boltzmann gas (see Sect. 7.5). Therefore,
in this section we will consider the low-temperature region, i.e. the state of
degeneracy. Qualitatively new physical results are obtained just in this case.
At first, we analyse the temperature dependence of the chemical potential
μ(T ) of a Bose gas with a particular number of particles: N = const. Recall
that the chemical potential of a Bose gas at any temperature can never be
positive:

μ(T ) ≤ 0. (7.257)

It is known that at high temperatures the chemical potential takes on very
large negative values. In order to elucidate how the function μ(T ) behaves with
the lowering of temperature, take the derivative with respect to T on each side
of the second equation of the system of equations (7.256) at N = const. As a
result, we get

(
∂μ

∂T

)
N

= − 1
T

∞∫
0

[
exp

(
ε−μ
k0T

)
− 1

]−2

(ε− μ) exp
(

ε−μ
k0T

)
ε1/2dε

∞∫
0

[
exp

(
ε−μ
k0T

)
− 1

]−2

exp
(

ε−μ
k0T

)
ε1/2dε

. (7.258)

If we take into account the condition (7.257), from (7.258) it follows that(
∂μ

∂T

)
N

< 0. (7.259)

Hence, it is seen that with the increase in T the chemical potential μ(T ),
remaining negative in magnitude, decreases, and at a specified, finite temper-
ature θ0 becomes zero, and on further decrease in temperature, according to
(7.257) and (7.259), remains equal to zero:

μ(T )|T≤θ0
= 0. (7.260)

In Fig. 7.23, the temperature dependence of the chemical potential of a Bose
gas at N = const is schematically presented.
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Fig. 7.23. The temperature dependence of the chemical potential of a Bose gas

Temperature θ0 can be determined from the second equation of the system
of equations (7.256) using condition (7.260):

N =
Vg0(2m)3/2

(2π)2�3

∞∫
0

ε1/2dε
eε/k0θ0 − 1

. (7.261)

If we change to the dimensionless variable of integration x = ε /k0θ0 , (7.261)
takes the form

N =
Vg0(2mk0θ0)3/2

(2π)2�3

∞∫
0

x1/2dx
ex − 1

. (7.262)

The finite integral entering into this equation (according to Appendix A)
equals Γ (3/2) ζ (3/2) =

√
π

2 · 2.61 = 2.3. Then, from (7.262) we get

θ0 =
(2π)4/3

(2.3g0)2/3

�
2

2mk0

(
N

V

)2/3

. (7.263)

θ0 is called temperature of degeneracy of a Bose gas. Note that if the masses of
fermions and bosons are identical, from a comparison of (7.263) and (7.126)
it follows that the temperature of degeneracy of a Bose gas θ0 and that of a
Fermi gas T0 are of the same order.

We now analyse the thermodynamic properties of a Bose gas in the region
of degeneracy T < θ0. Taking into account condition (7.260), from (7.256) in
the region T < θ0 we get

N =
Vg0(2m)3/2

(2π)2�3

∞∫
0

ε1/2dε
eε/k0T − 1

; T ≤ θ0. (7.264)

Note that this expression in the region of temperatures T < θ0 contains a
certain paradox. Indeed, though the left-hand side of (7.264) (N = const)
does not depend on temperature, the right-hand side depends on temperature
as ∼ T 3/2.

This paradox was resolved by Einstein in 1925. He paid attention to the
fact that, because the function of the density of states g(ε) ∼ ε1/2, in integral
(7.264) we have not taken into account the number of particles with energy
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ε = 0. This means that the right-hand side of (7.264) determines not the total
number of bosons but the number of bosons with energy different from zero
(ε > 0). In the temperature region T ≤ θ0, a part of bosons passes to the
level of energy ε = 0, i.e. it is “condensed”. This phenomenon is called Bose–
Einstein condensation. Consequently, according to Einstein’s reasoning, the
right-hand side of equality (7.264) shows not the total number of bosons but
the number of non-condensed bosons, i.e. the number of bosons at levels ε > 0.
If we denote the number of these bosons by N1, the number of “condensed”
bosons at the level ε = 0 is

N0 = N −N1, (7.265)

where N1 is determined by (7.264) with regard to Einstein’s idea

N1 =
Vg0(2m)3/2

(2π)2�3

∞∫
ε>0

ε1/2dε
eε/k0T − 1

; T ≤ θ0. (7.266)

We introduce the dimensionless integration variable ε /k0θ0 = x and take into
account (7.262). Then the number of non-condensed bosons equals

N1 = N

(
T

θ0

)3/2

; T ≤ θ0, (7.267)

and the number of condensed bosons at the level ε = 0, according to (7.265)
and (7.267), is

N0 = N

[
1 −

(
T

θ0

)3/2
]

; T ≤ θ0. (7.268)

It is seen that at the point T = θ0 the number of condensed bosons is
N0 = 0. With the lowering of temperature, beginning from θ0, the number N0

increases, and at the temperature of absolute zero N0 = N , i.e. all bosons pass
to the level ε = 0 and a Bose gas is completely condensed. Thus, temperature
T = θ0 is the beginning of the process of condensation, i.e. temperature of
degeneracy, of a Bose gas. For usual molecular Bose gases, θ0 is very small.
For instance, at m = 10−24g, and N/V ≈ 1018 cm−3, from (7.263) it follows
that θ0 ≈ 10−2 K. This is a temperature much lower than the temperature
of liquefaction of any gas. Therefore, the phenomenon of the Bose–Einstein
condensation in practice is very difficult to observe.

However, it is interesting to note that in 1995 the American scientists Eric
Cornell, Carl Wieman and Wolfgang Ketterle, on cooling a very rarefied gas
consisting of atoms of rubidium and sodium with the aid of laser techniques
to 10−8 K, achieved Bose–Einstein condensation. In 2001, they received the
Nobel Prize for this work.

Recall that the Bose–Einstein condensation should not be confused with
the usual condensation in the three-dimensional space. In the process of
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Bose–Einstein condensation, bosons in the p-space, on losing their impulses,
are accumulated at the point p = 0 or at the energy level ε = 0.

We consider the thermodynamic properties of a Bose gas in the region of
condensation (T ≤ θ0). To do this, we recall that in the region of condensation
the chemical potential equals zero μ(T ≤ θ0) = 0. If we take this into account
in (7.256) and introduce the dimensionless variable x = ε/k0T , the pressure
of a Bose gas is

P =
2
3
g0(2m)3/2(k0T )5/2

(2π)2�3

∞∫
0

x3/2dx
ex − 1

; T ≤ θ0. (7.269)

Because the integral in this expression (according to Appendix A) equals
Γ (5/2) ζ (5/2) ≈ 1.8,

P =
1.2g0(2m)3/2(k0T )5/2

(2π)2�3
; T ≤ θ0. (7.270)

From this expression, it is seen that pressure of a degenerate Bose gas strongly
depends on temperature as P ∼ T 5/2, whereas it does not depend on the vol-
ume. This fact resembles the independence of pressure of a saturated vapour
on volume V , and is explained by the fact that with an increase in V the
temperature of condensation θ0 rises [see (7.263)]; thereby, a larger number
of bosons pass to the level with ε = 0 [see (7.268)], i.e. they are condensed,
as a result of which the density of non-condensed bosons does not changes.
Because the impulse of bosons, on passing to the level with ε = 0, equals zero,
i.e.p = 0, they do not create pressure.

If we consider the expressions (7.109) for high temperatures and (7.270)
for low temperatures, we get the schematic dependence of pressure on tem-
perature P (T ) in all the temperature regions, which is shown in Fig. 7.24.

The energy of a Bose gas in the region of condensation (T ≤ θ0) can be
found from the relationship E = 3PV /2 and expression (7.270):

E =
1.8g0V (2m)3/2(k0T )5/2

(2π)2�3
; T ≤ θ0. (7.271)
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Fig. 7.24. The temperature dependence of the pressure of a Bose gas
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Fig. 7.25. The temperature dependence of the heat capacity of a Bose gas

Hence, for the heat capacity CV = (∂E/∂T )V we have

CV =
4.5g0V k0(2mk0T )3/2

(2π)2�3
; T ≤ θ0. (7.272)

As is seen, for the heat capacity the Nernst principle is fulfilled: CV (T →
0) → 0.

If we take into account expressions (7.111) and (7.172), we can deter-
mine the temperature dependence of the heat capacity of a Bose gas CV (T )
in all the temperature regions, which is presented in Fig. 7.25. The portion
corresponding to the high-temperature region is taken from Fig. 7.6.

7.14 Photon Gas: Third Difficulty of Classical Statistics

In Sect. 7.1, we noted the difficulties associated with the application of the
Boltzmann classical statistics to a photon gas. In this section, we will show
how this difficulty is circumvented.

Assume that a vessel of volume V and temperature of the inner walls T
radiates inside electromagnetic waves of different frequencies ω(k); k = 2π/λ
is the wavenumber of these waves, and λ is the wavelength. In thermodynamic
equilibrium between the electromagnetic field and walls of the vessel, there
arises an energy balance, i.e. walls of the vessel in unit of time absorb the same
amount of energy that they radiate. In 1900, Planck put forward the idea that
this process of absorption and radiation occurs not continuously but in quanta
and, in this way, explained all experimental observations associated with the
radiation of a black body. Therefore, the year 1900 is regarded as the beginning
of quantum physics. According to Planck, walls of the vessel radiating or
absorbing electromagnetic waves with the frequency ω(k) radiate or absorb
energy in multiples of �ω, i.e. �ω, 2�ω, 3�ω, . . . , n�ω. Here, � = h/2π, h
being the Planck constant.

In 1905, Einstein proposed to associate a particle with energy ε = �ω and
impulse p = �ω/c with each portion of the energy of a quantum being absorbed
or irradiated. This particle was called a photon. According to Einstein, the
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process of absorption or radiation can be presented as the absorption or
radiation of one or several photons by the walls of the vessel.

According to Maxwell’s equations, there exists a simple relationship ω = ck
(c is the velocity of light) between the frequency of an electromagnetic wave
ω and the wavenumber k = 2π/λ. Taking this into account, the energy ε and
the impulse p of a photon can be written as

{
ε = �ω,

p = �k.
(7.273)

Later, quantum mechanics was introduced and the principle of dualism was
formulated. According to this principle, the relationship (7.273) can be applied
to all elementary particles with the mass at rest different from zero, and they
can be read in two ways: from the left to the right and from the right to the
left.

From the left to the right : each elementary particle with energy ε and
impulse p can be considered as a wave with frequency ω = ε/� and wavenum-
ber k = p/� = 2/πλ.

From the right to the left: each wave with the frequency ω and wave number
k = 2π/λ can be considered as an elementary particle with energy ε = �ω
and impulse p = �k.

The wave that represents the elementary particle is called the de Broglie
wave and its length is determined by the impulse of the elementary particle
λ = h/p = h/mυ, i.e. the mass and velocity. Note that in (7.273) the first
equality is called the Einstein relationship, and the second is the de Broglie
formula. Remember also that quantities ε and p characterising a particle are
related to the corresponding parameters of the wave ω and k by the universal
constant �.

Thus, an electromagnetic field inside a vessel can be considered as an
ideal photon gas filling its volume V . A photon gas is regarded as ideal,
because, as the Maxwell equations are linear and for an electromagnetic field
the superposition principle is satisfied, photons do not interact with each
other.

In the composition of a photon gas, there exist photons of different types,
which is determined by the frequency ω and wave vector k. Inside the gas,
the mean number of photons of the type (ω, k) corresponds to the intensity
(the square of amplitude) of a wave with frequency ω.

Consequently, the study of an electromagnetic field is reduced to consider-
ation of the statistical properties of an ideal photon gas. Difficulties that arise
from the application of classical statistics to a photon gas were considered in
Sect. 7.1. Therefore, here we will apply quantum statistics to a photon gas.

Note that the number of photons with identical frequency can take on any
value; therefore, a photon is a boson with spin equal to unity. Hence, it follows
that we need to apply the Bose–Einstein distribution to the photon gas.
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Then, for the mean number of photons n̄k of the type (ω, k) with energy
ε = �ω at temperature T , we can write

n̄k =
1

e(�ωk−μ)/k0T − 1
, (7.274)

where T is temperature of the inner walls of the vessel which is in equilibrium
with the photon gas, and μ is the chemical potential of the photon gas.

It is clear that the total number of photons N(T ) in the vessel is not
constant but depends on temperature of the inner walls T . In order that
at a pre-assigned temperature and volume a photon gas would be found in
thermodynamic equilibrium with the walls of the vessel, it is necessary that
the free energy F of the photon gas be a minimum, i.e. it should fulfil the
condition (

∂F

∂N

)
V,T

= 0. (7.275)

This means that when changing the number of photons the free energy of
such a gas remains constant. This result also follows from the fact that in the
state of thermodynamic equilibrium, the walls of the vessel, when absorbing or
emitting a particular amount of energy, can absorb or radiate various number
of photons. It is evident that during the processes of radiation or absorption
of photons the law of conservation of energy is satisfied.

On the other hand, it is known that the chemical potential of the system
is the change in the free energy when changing the number of particles by
unity: (∂F/∂N)V,T = μ(T ). Therefore, the condition of equilibrium (7.275)
can be rewritten in the form

μ(T ) = 0, (7.276)

i.e. in thermodynamic equilibrium, the chemical potential of a photon gas
ought to be equal to zero at all temperatures.

Thus, the following definition can be given to a photon gas: a photon gas
is an ultra-relativistic (ε = �ck) quantum gas with the zero chemical potential
(μ(T ) = 0) at all temperatures.

As a result, from (7.274) and (7.276) the Bose distribution for a photon
gas takes the form

n̄k =
1

e�ωk/k0T − 1
. (7.277)

Using this distribution function, we can construct the statistical theory of all
thermodynamic properties of a photon gas.

The mean number of photons in a vessel of volume V at temperature T is
defined by

N(T ) =
∑

k

n̄k =
2V

(2π)3

∫
n̄kdk, (7.278)

where the formula of passage (7.11) is used; the factor 2 on the right-hand
side of the expression takes into account the presence of two plane-polarized
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transverse electromagnetic waves. If we take into account that in the spherical
coordinate system dk = 4πk2dk, use ω = ck and in (7.278) pass from the
integration over dk to the integration over dω, we get

N(T ) =
V

π2c3

∞∫
0

ω2dω
e�ω/k0T − 1

=

∞∫
0

g(ω)n(ω)dω, (7.279)

where
g(ω) =

V

π2c3
ω2 (7.280)

is the number of frequencies found in the unit range taken close to ω, i.e. the
function of the density of frequencies (analogously see Fig. 7.17).

We introduce the dimensionless integration variable x = �ω/k0T . Then
(7.279) takes the form

N(T ) =
V

π2c3

(
k0T

�

)3
∞∫
0

x2dx
ex − 1

. (7.281)

If we take into account the value of the integral (according to Appendix I) as
Γ(3)ξ(3) = 2.4, for N(T ) finally we get

N(T ) =
2, 4V
π2c3

(
k0T

�

)3

∼ T 3. (7.282)

The total energy of a photon gas has the form

E(T ) =
∑

k

�ω(k)n̄k =
2V �

(2π)3

∫
ω(k)n̄kdk. (7.283)

If we transform the integral in (7.283), for the mean total energy of a photon
gas we get the expression

E(T ) =
V �

π2c3

∞∫
0

ω3dω
e�ω/k0T − 1

, (7.284)

which can be presented also in the form

E(T ) =

∞∫
0

ρ(ω, T )dω, (7.285)

where ρ(ω, T ) is called the spectral density of the radiation and shows the
energy of photons found in unit frequency range taken close to ω. From a
comparison of (7.284) and (7.285) follows the known Planck formula for the
spectral density of the radiation:
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ρ(ω, T ) =
V �

π2c3
ω3

e�ω/k0T − 1
. (7.286)

This formula shows the distribution of energy of a photon gas over frequencies
at a particular temperature.

Thus, the Planck formula follows from application of the Bose distribution
to a photon gas (7.277). Thereby, the third difficulty of the classical statistics
is circumvented. In the process, we come to the conclusion that a photon gas
is not a classical gas but a quantum gas obeying the Bose distribution.

All laws of radiation of the black body follow from (7.286), for any
frequency.

Consider different regions of frequencies at a particular temperature:

1. Low (infrared) frequencies: �ω � k0T . In this case, in (7.286) the exponent
can be expanded into a series. As a result, we get the well-known Rayleigh–
Jeans law

ρ(ω, T ) =
V k0T

π2c3
ω2; �ω � k0T. (7.287)

The Planck constant does not enter into this expression, and therefore the
classical explanation can be given to it. Indeed, we can consider normal elec-
tromagnetic vibrations in volume V in terms of classical oscillators taking
into account that energy k0T corresponds to each of them. Then, multiplying
the number of frequencies in the unit range of energy (7.280) by k0T , we get
(7.287). Recall that (7.287) is applicable only for low infrared frequencies. If
we integrate (7.287) in the range of frequencies from 0 to ∞, the integral
diverges. This phenomenon bears the name of “ultraviolet” catastrophe and
shows that in actuality (7.287) cannot be applied to high frequencies.

2. High (ultraviolet) frequencies: �ω � k0T . In this case, in (7.286) unity
can be neglected compared to the exponent, and as a result we get the
well-known Wien’s law:

ρ(ω, T ) =
V �

π2c3
ω3 e−�ω/k0T ; �ω � k0T. (7.288)

The fact that the Planck constant � is present in this expression is natu-
ral, because in the region of frequencies �ω � k0T the vibrational motion
of an oscillator bears quantum character with energy not k0T but �ω. Note
that the spectral density determined by (7.288) can be obviously explained
on the principal propositions of photons. Indeed, in order to obtain formula
(7.288), it is sufficient to use three functions: density of frequencies (7.280),
energy of photons ε = �ω and the distribution of high-frequency photons
n(ω) = exp(−�ω/k0T ). In this explanation, the main fact is that the Boltz-
mann distribution is used. This is due to the fact that at all temperatures the
chemical potential of a photon gas μ(T ) = 0, and for high-frequency photons
(�ω � k0T ) from the Bose distribution (7.274) the Boltzmann distribution
n(ω) = exp(−�ω/k0T ) follows.



7.14 Photon Gas: Third Difficulty of Classical Statistics 287

3. Arbitrary frequencies. We analyse the distribution of energy over frequen-
cies at a particular temperature. If we introduce the dimensionless variable
x = �ω/k0T , (7.286) takes the form

ρ(ω, T ) =
V �

π2c3

(
k0T

�

)
ϕ(x), (7.289)

where

ϕ(x) =
x3

ex − 1
. (7.290)

A plot of function (7.290) that characterises the frequency dependence of the
spectral density at a particular temperature is shown in Fig. 7.26. As can be
seen, the function ϕ(x) takes on a maximum value at the specified x = xmax,
which is found from the equation

(3 − xmax) exmax = 3. (7.291)

A solution of this transcendental equation gives xmax = 2.822. Then, ϕ
(xmax) = 1.421.

Thus, the distribution of energy of a photon gas over the frequencies is
non-uniform. The maximum density of energy corresponds to the frequency

ωmax = 2.822
k0

�
T, (7.292)

which, depending on the temperature, moves to the side of high frequencies:
ωmax ∼ T .

This rule is called the Wien displacement law and is well satisfied in
experiments. Note that by experimentally determining ωmax at a particular
temperature T from (7.292), we can determine the Planck constant �.

From (7.284), we can determine the total energy of a photon gas:

E(T ) =
V �

π2c3

(
k0T

�

)4 ∞∫
0

x3 dx
ex − 1

. (7.293)
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Fig. 7.26. The frequency dependence of the spectral density at a particular
temperature
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If we take into account that the finite integral in (7.293) equals Γ(4)ζ(4) =
π4/15 (see Appendix A), for the temperature dependence of the total energy
we get the well-known Stefan–Boltzmann law

E =
π2V �

15c3

(
k0T

�

)4

∼ T 4. (7.294)

Hence, for the heat capacity of a photon gas CV = (∂E/∂T )V we have

CV =
4π2V k4

0

15c3�3
T 3 ∼ T 3. (7.295)

From expression S =
∫

CV

T dT and (7.295), the expression of entropy of a
photon gas follows:

S =
4π2V k0

45c3�3
(k0T )3 ∼ T 3. (7.296)

It is seen that a photon gas satisfies the Nernst principle, S(T → 0) → 0, too.
On combining (7.294) and the relationship (7.204) for all ultra-relativistic

gases, we can find the pressure of the photon gas:

P =
π2

45c3�3
(k0T )4 ∼ T 4. (7.297)

The fact that a photon gas does not depend on volume V of the vessel resem-
bles a saturated vapour over a liquid. This can be explained as follows: In
thermodynamic equilibrium, on isothermal decrease (increase) of volume of
the vessel with a photon gas, a specified number of photons are absorbed (irra-
diated) by the walls of the vessel, as a result of which the density of energy
of a photon gas E/V does not change, and therefore the pressure remains
constant and does not depend on the volume.

From the expression of pressure (7.297) follows the relationship

PT−4 = const. (7.298)

On the other hand, for an adiabatic process (S = const), from (7.296) the
relationship between volume and temperature follows:

V T 3 = const. (7.299)

On combining the two latter relationships, we get the relation between
pressure and volume:

PV 4/3 = const. (7.300)

In contrast to the isothermal process, from (7.300) it is seen that on adiabatic
change in volume, the pressure of a photon gas changes. This can be explained
as follows: Indeed, from (7.299) it follows that on adiabatic expansion or
compression the temperature changes, and therefore the pressure of a photon
gas changes.
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If we define the intensity of radiation I(T ) as the energy radiated by unit
area of the surface per second, we get

I(T ) =
(
E

V

)
c, (7.301)

where c is the velocity of light.
Substituting (7.294) into (7.301), for the intensity we have

I(T ) =
π2

15
(k0T )4

c2�3
∼ σT 4, (7.302)

where σ = π2k4
0 / 15c2�3 is the Stefan–Boltzmann constant.

It is to be noted that black-body radiation has been thoroughly stud-
ied experimentally. The results obtained are well explained theoretically, and
investigations in this direction played an important role in the development
of quantum physics.

In conclusion, we show that thermodynamics of a photon gas (the defini-
tion of energy, entropy and equations of state) can be immediately constructed
with the aid of the grand thermodynamic potential as well. In order to obtain
the expression of the grand thermodynamic potential for a photon gas, in
expression (7.95) we need to consider the lower signs and take into account
the relationships ε = �ω = �ck and μ = 0 (7.276). As a result, the grand
thermodynamic potential of a photon gas takes the form

Ω =
Vk0T

π2c3

∞∫
0

ω2 ln
(
1 − e−�ω/k0T

)
dω, (7.303)

where we have taken g0 = 2.
Integrating by parts twice the integral in (7.303) and introducing the

dimensionless integration variable x = �ω / k0T , we get

Ω = −V (k0T )4

3π2c3�3

∞∫
0

x3 dx
ex − 1

= −V π
2

45
(k0T )4

(c�)3
. (7.304)

If we use this expression in relationships P = −Ω / V, S = − (∂Ω / ∂T )V ,
E = F + TS = Ω + TS and CV = (∂E / ∂T )V , we get all the above-derived
results. The equality E = Ω + TS is not surprising, because at μ(T ) = 0
the grand thermodynamic potential Ω and the free energy F are equal: F =
Φ − PV = μN + Ω = Ω.

7.15 Phonon Gas

One of the systems to which quantum statistics is applied is a phonon gas.
A phonon is a quasi-particle, corresponding to an elastic acoustic wave prop-
agating in a crystalline lattice. In other words, a phonon is a quantum of a
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wave field created by the propagation of thermal or mechanical vibrations in a
crystalline solid. A phonon can also be presented as an elementary excitation
of a crystalline lattice. The phonon is a boson; therefore phonon gases obey the
Bose–Einstein statistics. The concept of phonon, as in the case of a photon,
also stems from the principle of dualism presented in the form (7.273).

In order to imagine how the concept of the phonon arises when studying
the vibrational motion of a crystalline lattice, it is necessary to proceed from
the principles of quantum mechanics. However, at first we recall the spectrum
of frequencies of a vibrating crystal, which was comprehensively described in
Chap. 6.

For simplicity, consider a simple crystalline lattice consisting of N elemen-
tary cells (in each elementary cell there is one atom). Then the number of
degrees of freedom of the crystal is 3N . In Sect. 6.1, we showed that the num-
ber of possible frequencies in such a crystal equals the number of degrees of
freedom, i.e. 3N . Because the number of possible values of the wave vector q
in the range −π / a ≤ q ≤ π / a equals N , the entire frequency spectrum is
formed by 3N number of frequencies (Fig. 6.4). Each frequency of this spec-
trum is determined by specifying two quantities: the wave vector q and the
number of the branch j which takes on three values: j = 1, 2, 3, and is denoted
as ωqj ≡ ωj(q).

On the other hand, in Sect. 6.2 it was shown that the total energy E of
a three-dimensional lattice equals the sum of energies of 3N linear harmonic
oscillators [see (6.57)]. In quantum mechanics (see Sect. 6.5), this result is
written down in the form

E =
∑

q

3∑
j=1

(
nqj +

1
2

)
�ωj(q), (7.305)

where nqj = 0, 1, 2, . . . is the quantum number of an oscillator with the
frequency ωj(q). This expression can be also presented in the form

E = E0 +
∑

q

3∑
j=1

nqj�ωj(q), (7.306)

where

E0 =
1
2

∑
q

3∑
j=1

�ωj(q) (7.307)

is the energy of zero vibrations.
We analyse the expression for energy (7.306). If all the oscillators are found

at the fundamental level, i.e. for all (qj) the quantum number nqj = 0, then

E = E0, (7.308)

which corresponds to the fundamental state of the crystalline lattice at the
temperature of absolute zero (T = 0). We can imagine this state of the crystal
as an empty vessel (vacuum) of the same volume (Fig. 7.27a).
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Fig. 7.27. Illustration of equivalence of the excited state of a crystal and phonon
gas

At a temperature different from zero, some oscillators pass into the first
excited state (nqj = 1) and the energy of the crystal increases by the magni-
tude �ωj(q). On the passage of each oscillator into the new excited state, the
energy of the crystal increases by a multiple of �ωj(q). The increase in the
energy of the crystal by the magnitude �ωj(q) can be presented as the appear-
ance of one quasi-particle with energy εj(q) = �ωj(q) and impulse p = �q
in the vessel with volume V , which is equal to the volume of the crystalline
lattice.

Such a quasi-particle is called a phonon:

εj(q) = �ωj(q)
p = �q

}
phonon. (7.309)

As can be seen, a phonon is a quantum of energy of a thermal (elastic) wave
or an elementary thermal excitation of a crystal.

Because one phonon corresponds to each frequency ωj(q), the type of
phonon is determined by the wave vector (q) and the number of branch j
in the frequency spectrum (Fig. 6.4). This means that in a simple crystalline
lattice of N elementary cells, 3N types of phonons are possible. In our case
(for a simple cell), these phonon are called acoustic phonons.6

As the temperature rises, the dynamics of filling the volume V with
phonons can be described as follows: at T = 0 the energy of a crystal equals the
energy of the fundamental state E = E0, and the hypothetic vessel of volume
V is empty (Fig. 7.27a). At finite temperatures (T �= 0), first phonons with a
small energy (low-frequency phonons) appear. As the temperature increases
further, more and more new types of phonons appear and simultaneously the
number of phonons that have already appeared increases. At the temperature
equal to the Debye temperature, i.e. T = θ, all types of phonons are excited.

6 If the crystalline lattice is a complex one with the elementary cell, in which there
are found s atoms, then there are possible 3s vibrational branches; therewith 3
of them are called acoustic, and (3s − 3) are optical. Consequently, in a complex
crystalline lattice the frequency spectrum consists of 3Ns frequencies, to which
the same number of types of phonons corresponds. Of these phonons 3N are of
the acoustic, and (3s − 3)N are the optical type.
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On further increase of temperature T > θ, new types of phonons do not arise,
and only the number of excited phonons increases.

In the language of classical statistics, the frequency of a harmonic vibra-
tion propagating in a crystal corresponds to each type of phonons, and their
number corresponds to the intensity (the square of the amplitude).

The total energy of a crystal, according to (7.306), can be presented as

E = E0 + Ef , (7.310)

where

Ef =
∑

q

3∑
j=1

nqj�ω(q) (7.311)

is the energy of a phonon gas. From this expression, it is seen that the oscil-
latory quantum number has an explicit physical sense: nqj is the number
of phonons with the frequency ωj(q), i.e. the number of phonons of the
type (q, j).

Because the number of phonons of one particular type can take on any
value (nqj takes on any value), a phonon is a boson. Therefore, in order to
find the mean number n̄qj of phonons of the type (q, j), we need to use
the Bose–Einstein distribution. However, first note a certain peculiarity of
a phonon gas. It is known that the mean number of phonons depends on
the temperature: at T = 0, the mean number of phonons n̄qj = 0. With
an increase of temperature in the hypothetical vessel, corresponding to the
crystal, the number of phonons N(T ) increases (Fig. 7.27b). Because in ther-
modynamic equilibrium at a particular temperature T and volume V the free
energy of a phonon gas ought to be minimum, the chemical potential of a
phonon gas, as also in the case of a photon gas [see (7.307)], equals zero:
(∂F / ∂N)V,T = μ(T ) = 0. If we take this into account, from the Bose–
Einstein distribution it follows that the mean number of phonons with energy
εj(q) = �ωj(q) at temperature T is equal to

n̄qj =
1

e�ωj(q)/k0T − 1
. (7.312)

Thus, a phonon gas is an ultra-relativistic Bose gas, the chemical potential of
which is equal to zero (μ(T ) = 0) at all temperatures. With the help of this
distribution (7.312), called the Planck function, we can calculate the mean
number of phonons at a particular temperature T :

N(T ) =
∑

q

3∑
j=1

nqj =
∑

q

3∑
j=1

1
e�ωj(q)/k0T

, (7.313)

and the mean energy of a phonon gas is

E(T ) =
∑

q

3∑
j=1

�ωj(q)nqj =
∑

q

3∑
j=1

�ωj(q)
e�ωj(q)/k0T − 1

. (7.314)
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Energy calculated with this expression is also the mean energy of the thermal
motion of a crystal at temperature T .

In order to calculate the mean number of phonons N(T ) and the mean
energyE(T ) of a phonon gas, we use the simple Debye model. Assume a simple
crystalline lattice (s = 1). In this case, in the crystal only acoustic vibrations
are possible (Fig. 6.4): j = 1, 2, 3. Also, assume that the crystal is isotropic
and the branches indicated in Fig. 6.4 coincide: ω1(q) = ω2(q) = ω3(q) =
ω(q). In the Debye model, a crystal is replaced with an elastic medium and
the frequency of vibrations ω depends on the wave number linearly:

ω(q) = υ0q, (7.315)

where υ0 is the speed of propagation of sound in the crystal (Fig. 6.5). Accord-
ing to this model, the wave number q and frequency ω change in the restricted
range

0 ≤ q ≤ qmax; 0 ≤ ω ≤ ωmax. (7.316)
The maximum possible frequency ωmax in the crystal is determined by
formula (6.78).

On the basis of this model, the number of frequencies in the range 0−ωmax

equals the number of degrees of freedom of the crystalline lattice: i.e. 3N . If we
take into account that, by our supposition, the vibrational branches coincide,
i.e. (ω1(q) = ω2(q) = ω3(q) = ω(q)), in (7.313) the summation with respect
to j gives the answer 3. As a result, (7.313) acquires the shape

N(T ) = 3
∑

q

1
e�ω(q)/k0T − 1

. (7.317)

If we pass from the sum with respect to the quasi-discrete variable q (6.35)
to the integral, we get

N(T ) =
3V

(2π)3

∫
dq

e�ω(q)/k0T − 1
. (7.318)

If we pass to the spherical coordinate system and integrate over angles dq =
4πq2dq with regard to (7.315), (7.318) takes the form

N(T ) =
3V

2π2υ3
0

ωmax∫
0

ω2dω
e�ω/k0T − 1

. (7.319)

We introduce the dimensionless variable x = �ω / k0T . Then we get

N(T ) =
3V

2π2υ3
0

(
k0T

�

)3
θ/T∫
0

x2dx
ex − 1

, (7.320)

where θ = �ωmax / k0 is the Debye temperature [see (6.79)]

θ =
�υ0

k0

(
6π2N

V

)1/3

. (7.321)
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If we substitute the expression of θ (7.321) into (7.320), the mean number of
phonons equals

N(T ) = 9N
(
T

θ

)3
θ/T∫
0

x2dx
ex − 1

. (7.322)

At low temperatures, T � θ, the upper boundary of the integral can be
replaced with θ / T → ∞. Then we get

N(T ) = 9N
(
T

θ

)3
∞∫
0

x2dx
ex − 1

; T � θ. (7.323)

If we take into account that the integral in (7.323) equals Γ(3)ζ(3) = 2.4 (see
Appendix A), (7.323) takes the form

N(T ) = 21.6N
(
T

θ

)3

∼T 3; T � θ. (7.324)

At high temperatures, T � θ, we can use the expansion ex = 1 + x + · · · in
the integrand function. Then, (7.322) acquires the form

N(T ) = 4.5N
(
T

θ

)
∼ T ; T � θ. (7.325)

As can be seen, at low temperatures the mean number of phonons is propor-
tional to the cube of temperature, and at high temperatures it varies linearly
with the temperature T (Fig. 7.28).

Because the chemical potential of a phonon gas μ(T ) = 0, the grand ther-
modynamic potential and free energy coincide: F = Φ − PV = μN + Ω = Ω.
Therefore, if the grand thermodynamic potential is known, we can also know
the free energy. In order to obtain the expression of the grand thermodynamic
potential for a phonon gas (7.95), we need to take the lower signs and take into

0 Tθ

~Tphoton
gas 

~T 3

~T 3

phonon
gas 

N (T )

Fig. 7.28. The comparison of the temperature dependence of the mean number of
photons and phonons
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account relationships ε = �ω = �υ0q, μ = 0 and g0 = 3, and the upper limit
of the integral to be ωmax. As a result, the grand thermodynamic potential Ω
or the free energy F of a phonon gas takes the form7

F = Ω =
3V
2π2

k0T

υ3
0

ωmax∫
0

ω2 ln
(
1 − e−�ω/k0T

)
dω. (7.326)

If we integrate (7.326) once by parts, for the free energy of a phonon gas F
we get

F = 3Nk0T ln(1 − eθ/T ) − Nk0T (θ / T ) , (7.327)

where D (θ / T ) is the Debye function (6.113), and θ (6.70) is the Debye
temperature.

Using (7.327), we can calculate entropy, mean energy and heat capacity of
a phonon gas, which coincide with corresponding results derived in Sect. 6.5.

With reference to the thermal equation of state, i.e. pressure P =
−(∂F/∂V )T , we need to note the following. Because the phonon gas is
obtained in the harmonic approximation, the Debye temperature for the
phonon gas in this approximation does not depend on the volume V . It
is known that the Debye temperature θ depends on volume only in the
anharmonic approximation (see Sect. 6.3). Consequently, from (7.327) and
P = − (∂F / ∂V )T , it follows that the pressure of a phonon gas ought to
equal zero: i.e. P = 0.

Note that pressure of a solid also equals zero; it is different from zero
only in the anharmonic approximation, when the Grüneisen parameter γG is
a finite quantity, since P ∼ γG [see formula (6.161)].

These coincidences show that the concepts of phonon and phonon gas
are very convenient to use when formulating the theory of thermodynamic
properties of crystals. In that case, a vibrating crystalline lattice is replaced
with an ideal phonon gas. Theoretical results obtained for the phonon gas are
concerned with the thermal properties of a crystal. The concept of a phonon is
also convenient when formulating the theory of thermal conductivity and the
interaction of conduction electrons with a crystalline lattice. In these cases,
instead of a vibrating crystal it is sufficient to take an ideal phonon gas and
consider the interaction of an electron with the phonon gas (radiation or
emission of a phonon by an electron).

In conclusion, note the basic distinctions between photons and phonons:

• A photon is a real particle; a phonon is a quasi-particle.
• The frequency of a photon changes in the limit 0 ≤ ω ≤ ∞, and the

frequency of a phonon is restricted to the range 0 ≤ ω ≤ ωmax.

7 Notice that the expression of free energy (7.326) coincides with formula (6.151)
without consideration of the zero energy E0. Hence it follows that thermodynamic
parameters calculated for a phonon gas ought to coincide with thermodynamic
parameters of a vibrating (exciting) crystal.
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• The impulse of a photon p = �k is single-valued and changes in the infinite
range 0 ≤ p ≤ ∞; the wave vector of a phonon q and, therefore, its impulse
p = �q are not single-valued, since q is determined with accuracy to an
arbitrary vector of a reciprocal lattice bg, i.e. ω(q) = ω(q + bg);

• A photon can exist in vacuum whereas a phonon exists only inside a lattice;
outside a crystal a phonon does not exist.

• The mean value of the total number of photons over the entire temperature
region changes as N(T ) ∼ T 3, whereas the mean number of phonons in
the Debye approximation in different temperature regions depends on T
in different ways (Fig. 7.28):

N(T ) ∼ T 3; T � θ,

N(T ) ∼ T ; T � θ; (7.328)

• The total energy of a photon gas over the entire temperature region equally
depends on temperature, whereas in the Debye approximation over differ-
ent temperature regions the total energy of a phonon gas depends on T in
different ways:

E(T ) ∼ T 4; T � θ,

E(T ) ∼ T ; T � θ; (7.329)

• In contrast to a photon gas, the pressure of a phonon gas equals zero.
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Electron Gas in Quantizing Magnetic Field

Summary. In this chapter, a statistical theory of thermodynamic properties of an
electron gas taking into account the energy-spectrum quantization in an external
magnetic field is expounded. On the basis of the grand thermodynamic potential,
the chemical potential, thermal equation of state, entropy and heat capacity of an
electron gas are found. The Landau diamagnetism is considered. It is shown that
all results of the quantum theory in the quasi-classical approximation pass into the
known classical ones.

8.1 Motion of Electron in External Uniform Magnetic
Field: Quantization of Energy Spectrum

According to classical mechanics, a charged particle in a constant uniform
magnetic field H under the action of the Lorentz force moves in a circular
helix with the axis along the magnetic field and with radius

r =
υ⊥
ωc
, (8.1)

where υ⊥ is the component of velocity in the plane perpendicular to the
magnetic field, and

ωc =
eH
mc

(8.2)

is the cyclic frequency of rotation of a particle in this plane, called also the
cyclotron frequency; c is the velocity of light; e and m are the charge and mass
of a particle, respectively. The particle at the same time participates in two
motions: a uniform rotation with the angular velocity ωc in the plane perpen-
dicular to the field and translational motion in the direction of a magnetic
field. If the velocity of the particle along the field equals zero, the particle
performs only a circular motion.

Note that the longitudinal translational motion along the direction of a
magnetic field is infinite and is always classical. However, the rotational motion
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in the plane perpendicular to a magnetic field is not always classical. It is
classical only in the case when its action mυ⊥r is much more of the Planck
constant �:

mυ⊥r >> � or r >>λ, (8.3)

where λ = h/mυ⊥ is the de Broglie wavelength.
If we take into account (8.1), the condition of classicity (8.3) can be

rewritten in the form

mυ2
⊥ >> �ωc or k0T >> �ωc, (8.4)

where k0 is the Boltzmann constant, and T is the absolute temperature.
In the case when adduced conditions of classicity of the rotational motion

are not fulfilled, i.e. when r ≤ λ or k0T ≤ �ωc, the motion is quantum and
the problem should be solved on the basis of the Schrödinger equation.

The problem of the motion of a charged particle (an electron) in an external
uniform magnetic field on the basis of quantum mechanics was solved for the
first time by Landau when determining the diamagnetic susceptibility of a
free electron gas in metals. He showed that the spectrum of an electron in a
uniform magnetic field becomes partially discrete, i.e. the circular motion of an
electron in the plane perpendicular to the field is quantized. On the basis of the
obtained spectrum, the diamagnetic susceptibility of a free electron gas was
calculated (according to classical notions, in a free electron gas diamagnetism
is absent) and it was shown that the diamagnetic susceptibility of an electron
gas equals 1/3 of the paramagnetic susceptibility, due to the spin of electrons.
Subsequently, the presence of diamagnetic properties in the free electron gas
was named the Landau diamagnetism.

Here in brief we adduce the Landau solution. We consider the motion of a
conduction electron with the effective mass m in an external constant uniform
magnetic field H . We disregard the spin of an electron. Then the Hamiltonian
of an electron in a magnetic field in the effective mass approximation has the
appearance

Ĥ =
1

2m

(
p̂ +

e

c
A
)2

, (8.5)

where p̂ = −i�∇ is the operator of the impulse, e is the charge magnitude of
an electron, and A is the vector-potential of a magnetic field.

The z-coordinate axis is directed along the external magnetic field. Then,
Hx = Hy = 0, Hz = H . To such a magnetic field, different calibrations of the
vector-potential A correspond. Choose the following calibration:

Ax = 0,Ay = Hx ,Az = 0, (8.6)

then Hamiltonian (8.5) takes the form

Ĥ =
1

2m

[
p̂2

x +
(
p̂2

y +mωcx
)2

+ p̂2
z

]
, (8.7)

where ωc is cyclotron frequency (8.2).



8.1 Motion of Electron in External Uniform Magnetic Field 299

Inasmuch as Hamiltonian (8.7) commutates with operators p̂y and p̂z, there
are conserved y- and z- components of the impulse which have the following
eigenvalues1:

py = �ky; pz = �kz, (8.8)

where ky and kz are corresponding components of the wave vector k . Therefore
the motion of an electron in y- and z-directions is described by the plane wave,
and a solution of the Schrödinger equation ε

Ĥ Ψ = εΨ (8.9)

can be found in the form

Ψ(r) = ϕ(x) exp[i(kyy + kzz)]. (8.10)

Substituting this solution into (8.9), with regard to (8.7), we get an equation
for the unknown function ϕ(x):

− �
2

2m
d2ϕ

dx2
+

1
2
mω2

c (x− x0)2ϕ = εNϕ, (8.11)

where the following notations are introduced

x0 = − �ky

ωcm
, εN = ε− �

2k2
z

2m
. (8.12)

Notice that (8.11) is the equation of a linear harmonic oscillator with the
frequency ωc = eH /mc with the centre x = x0, eigenfunctions and eigenvalues
of which are

ϕ(x − x0) =
1√
R
HN

(
x− x0

R

)
exp

[
−1

2

(
x− x0

R

)2
]
, (8.13)

εN =
(
N +

1
2

)
�ωc, (8.14)

where N = 0, 1, 2, 3 . . . is the oscillatory quantum number, HN is the Hermite
polynomial of order N ,

R =
(

�

ωcm

)1/2

=
(

�c

eH

)1/2

(8.15)

is so-called the magnetic length.
As a result, substituting (8.14) into (8.12), for energy and the wave func-

tion of an electron in a magnetic field directed along the z-axis, we get the
following expressions:
1 If we would choose another calibration, e.g. Ax = −Hy, Ay = Az = 0, px and

pz components would be conserved.
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ε ≡ ε(N, kz) =
(
N +

1
2

)
�ωc +

�
2k2

z

2m
, (8.16)

Ψα(r) = ϕN (x− x0) exp [i(kyy + kzz)] , (8.17)

where α ≡ (N, ky , kz) is a set of quantum numbers, determining the state of
an electron in a magnetic field, ϕN (x − x0) is the normalized wave-function
of a linear harmonic oscillator with the quantum number N , vibrating near
the equilibrium position

x0 = − �ky

ωcm
= −R2ky. (8.18)

Energy spectrum (8.16) can be also presented in the form

ε ≡ ε(N, kz) = (2N + 1)μH +
�

2k2
z

2m
, (8.19)

where μ = e�/2mc is the effective Bohr magneton.
The spectrum of an electron in a magnetic field, as is seen from (8.19),

becomes partially discrete. Energy (8.19) consists of two parts: one is contin-
uously depending on kz, corresponding to the motion of an electron along the
magnetic field, and the second is discrete, corresponding to the quantization
of the circular motion in the plane perpendicular to the magnetic field.

The influence of quantization of the motion in a magnetic field on the
energy spectrum of an electron on the basis of (8.19) is schematically shown
in Fig. 8.1a. For comparison the same is found in (Fig. 8.1b), where the depen-
dence of energy on the wave vector ε(k ) in the absence of a magnetic field is
adduced. It is seen that in the presence of a magnetic field, in the spectrum
discrete levels separated from each other by the energy distance 2μH appear.
These are called the Landau levels.

For the given level, energy continuously depends only on kz , i.e. one-
dimensional parabolic energy bands appear. It is also seen that the bottom

00

e0 e0

e(N, kz) e(k)

kkz

N = 2

N = 1 3mH

mH

5mH

N = 0

(a) (b)

Fig. 8.1. Energy as a function of wave vector: a) in the absence of magnetic field,
b) in the presence of magnetic field, discrete Landau levels and one-dimensional
bands appear
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of the conduction band ascends by the magnitude of μH and, thereby, the
forbidden bandwidth increases.

Using the correspondence principle, the quantization of motion in the
quasi-classical approximation can be obviously imagined. According to clas-
sical physics, any values of energy ε⊥, associated with the motion in the
plane perpendicular to the magnetic field, are permissible. Inasmuch as ε⊥ is
related to the radius of the orbit r by the simple relationship ε⊥ = mυ2

⊥
/
2 =

mω2
cr

2
/
2, any circular orbits with the radius r are possible. From the point

of view of quantum mechanics, according to (8.16), ε⊥ = (N + 1/2) �ωc,
i.e. energy of the transverse motion cannot take on any values. If we bring
into correspondence these two expressions for energy, we see that only orbits
with radii

rN = (2N + 1)1/2R, N = 0, 1, 2, 3, . . . (8.20)

are possible. Hence it is seen that magnetic length (8.15) is the radius of the
first possible orbit R = r0. Thus, by quasi-classical notions an electron can
rotate around the magnetic field in discrete orbits with radii (8.20). For an
electron to pass from one orbit to an adjacent one with a larger radius, it is
necessary to expend the energy �ωc.

We have seen that in the r -space the quantization corresponds to the pres-
ence of discrete orbits, and that for the given magnetic field there is an orbit
with a minimum radius R. It is of interest to consider how the distribution of
states of an electron in the k -space, when quantizing the motion, changes. It
is known that in the simple parabolic case, states of an electron with energies
less than ε0 in the k -space in the absence of a magnetic field continuously
fill a sphere with the radius k = (1/�)(2mε0)1/2. In a magnetic field directed
along the z-axis, the part of energy �

2k2
z

/
2m does not change, and to the

energy �
2k2
⊥
/
2m, the expression ε⊥ = (N + 1/2) �ωc corresponds. From this

correspondence, it follows that only discrete values of k⊥ are possible, namely

k⊥ = k⊥N = (2N + 1)1/2R−1, N = 0, 1, 2, 3, . . . (8.21)

where R is the magnetic length (8.15).
This means that all states continuously filling the volume inside the sphere

ε0 = const , in the presence of a magnetic field, are found only on surfaces
of co-axial discrete cylinders with the axis parallel to kz with radii (8.21)
(see Fig. 8.2a). The height of the possible cylinder with number N for the
pre-assigned value of energy of an electron ε0, according to (8.19), equals2

kzN =
[
2(2m)1/2

/
�

]
[ε0 − (2N + 1)μH ]1/2. (8.22)

Inasmuch as the height ought to be a real quantity, a maximum number of
possible cylinders, corresponding to energies less than ε0, equals the integer
part of the fraction

2 The factor 2 takes into account the positive and negative directions of kz.
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Fig. 8.2. Quantum state distribution variation in magnetic field

[
ε0 − μH

2μH

]
= Nmax. (8.23)

Hence it is seen that the number of cylinders inside the sphere ε0 = const
decreases with the growth of the magnetic field.

Thus, according to quasi-classical notions, in the presence of a quantizing
magnetic field all states of an electron with energies less than ε0 in the k -space
are found on surfaces of co-axial cylinders with the axis along kz , with radii
(8.21) and heights (8.22) (see Fig. 8.2a), the number of which is determined
by (8.23).

It should be noted that such a quasi-classical notion of the distribution
of states in a magnetic field holds true only in the case when inside the
given isoenergetic surface ε0 = const if only several_cylinders are placed,
i.e. Nmax > 1. At strong magnetic fields in the indicated sphere, in all only
one cylinder is placed and in the limit H → ∞ the radius of this cylin-
der k⊥0 = R−1 → ∞ becomes larger than that of the radius of the sphere
k = (1/�)(2mε0)1/2, and its height tends to zero, i.e. all quantum states in
the limiting strong magnetic field – the quantum limit – are found on a sur-
face of the narrow ring with the large radius k⊥0 = R−1 = (eH /�c)1/2 (see
Fig. 8.2b).

8.2 Density of Quantum States
in Strong Magnetic Field

Now we will determine the density of quantum states of an electron in a
magnetic field. In the preceding section/chapter we showed that one quan-
tum state in a magnetic field is determined by two quasi-continuous (ky, kz)
numbers and one discrete quantum number N .
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Therefore, the total number of quantum states of a unit of volume in a
magnetic field equals

Z =
2
V

∑
Nkykz

→ 2L2L3

V (2π)2
∑
N

∫
dkydkz , (8.24)

where L2 and L3 are corresponding linear dimensions of a system of volume
V = L1L2L3, in which an electron gas is found, and the factor 2 takes into
account degeneracy with respect to the spin.

From (8.19) it is seen that energy of a conduction electron depends only
on two quantum numbers (N, kz), i.e. with respect to ky there is degeneracy.
By virtue of this, the integral over dky in (8.24) can be taken, if we take into
account (8.18):

∫
dky =

1
R2

L/2∫
−L/2

dx0 =
L1

R2
. (8.25)

From the latter two formulae, after passing to the integral with respect to
energy, we have

Z =
4

(2πR)2
∑
N

∫
dkz(ε,N)

dε
dε =

∫
gH(ε)dε, (8.26)

where
gH(ε) =

4
(2πR)2

∑
N

dkz(ε,N)
dε

(8.27)

is the density of quantum states in a magnetic field; the factor 2 in (8.26) and
in (8.27) takes into account the fact that ε is an even function of kz .

In order to find the explicit form of gH(ε), it is necessary to begin with
a concrete form of the dispersion law ε(kz, N, ), where the spin splitting is
disregarded. Then the summation with respect to spin is reduced to the factor
2 and by virtue of (8.16) density of states (8.27) takes the form

gH(ε) =
4

(2πR)2
(2m)1/2

�

∑
N

[ε− (N + 1/2)�ωc]
−1/2

. (8.28)

The summation in (8.28) is carried out with respect to all integer values of
N , for which the radicand expression is positive.

Note that if in weak magnetic fields (�ωc � ε) in (8.28) from the
summation with respect to N pass to the integral in the limits from 0 to
(ε− 1/2�ωc) /�ωc = Nmax, we get the known result (7.102) for the density of
states without a magnetic field.

From (8.28) it is seen that the density of states has a certain peculiarity:
every time, when energy coincides with one of the Landau levels, it is con-
verted to infinity. The behaviour of gH(ε) is schematically shown in Fig. 8.3.
Continuously distributed quantum states in the k-space in the presence of a
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Fig. 8.3. Quantum state densities in magnetic field, gH(ε). State densities in the
absence of magnetic field, g0(ε) is also shown for comparison

magnetic field basically group at Landau levels, but because of that the total
number of states is conserved. The fact that many quantum states account for
one Landau level is associated with the fact that each level in the magnetic
field is degenerate with respect to the quantum number ky. The degeneracy
multiplicity, according to (8.25), equals

∑
ky

→ L2

2π

∫
dky =

L1L2

2πR2
=
L1L2

2π
eH
�c
. (8.29)

It should be noted that oscillations of the magnetic susceptibility and other
physical properties of conducting crystals in a strong magnetic field are due
to just such a singular behaviour of density of states (8.25).

8.3 Grand Thermodynamic Potential and Statistics
of Electron Gas in Quantizing Magnetic Field

To determine the criterion of degeneracy of an electron gas in a quantizing
magnetic field, it is necessary to find the relation of its chemical potential to
concentration and temperature. To do this, it is needed to know the explicit
form of the grand thermodynamic potential Ωe as a function of volume, tem-
perature, chemical potential and magnetic field: Ωe = Ωe(V, T, ζ,H). The
thermodynamic relationship for Ωe in a magnetic field, according to (2.208),
has the appearance

dΩe = −S dT − P dV −Nedζ − VM dH, (8.30)

where Ne is the number of free electrons, V and ζ are volume and chemical
potential of an electron gas, respectively3, M is the magnetization, and the
rest of the notations are generally accepted.
3 In this chapter, we denote the chemical potential by ζ, in order not to confuse it

with the intrinsic magnetic moment μ.
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From (8.30) it is seen that if the explicit form of the function Ωe =
Ωe(T, V, ζ,H) is known, the total number of electrons Ne can be found as
follows

Ne = − (∂Ωe/∂ζ)T,V,H . (8.31)

Grand thermodynamic potential for fermions (electrons) (7.81) in our case
has the appearance

Ωe = Ωe(T, V, ζ,H) = −2k0T
∑

N,ky,kz

ln
[
1 + exp

(
ζ − ε(N, kz)

k0T

)]
, (8.32)

since one quantum state of an electron is determined by three quantum num-
bers k → (N, ky, kz); ε(N, kz) is given by formula (8.19), the factor 2 takes
into account degeneracy with respect to the spin.

Assume that an electron gas occupies volume V = L1L2L3, where Li are
linear dimensions of volume along corresponding coordinate axes.

According to the known rule (8.24), in (8.32) we pass from the summation
with respect to ky and kz to the integration over dky and dkz and take into
account (8.25). Then from the integral over dkz we pass to the integral over
energy dε. As a result, (8.32) takes the form

Ωe = −4k0TV
(2πR)2

∑
N

∞∫
εN

dkz(ε,N)
dε

ln
[
1 + exp

(
ζ − ε

k0T

)]
dε, (8.33)

where the lower boundary of the integral εN = (N + 1/2)�ωc, according to
spectrum (8.19), is a root of the equation kz(ε, εN ) = 0. The factor 2 shows
that two values of kz correspond to one value of energy (Fig. 8.1).

Integrate up (8.33) once by parts. Then we get

Ωe = − 4V
(2πR)2

∑
N

∞∫
εN

kz(ε,N)f(ε)dε, (8.34)

where f(ε) = [1 + exp(ε− ζ)/k0T ]−1 is the Fermi distribution function.
If we take into account that (∂f/∂ζ) = − (∂f/∂ε), then, according to

(8.31) and (8.34), the concentration of an electron gas n = Ne/V is

n =
4V

(2πR)2
∑
N

∞∫
εN

(
−∂f
∂ε

)
kz(ε,N)dε. (8.35)

Using (8.19), for kz(ε,N) we can write

kz(ε,N) =
√

2m
�

(ε− εN )1/2. (8.36)
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Substituting (8.36) into (8.35), we get

n =
4(2m)1/2

�(2πR)2
∑
N

∞∫
εN

(
−∂f
∂ε

)
(ε− εN )1/2dε. (8.37)

Consider particular cases.

1. Non-degenerate electron gas. In this case, the distribution function has
the appearance f(ε) = exp [(ζ − ε)/k0T ]. Then (8.37) can be rewritten in
the form

n =
4(2m)1/2

�(2πR)2k0T
eζ/k0T

∑
N

∞∫
εN

(ε− εN )1/2e−ε/k0T dε. (8.38)

Introduce the notation ε− εN = ε′ and pass to the dimensionless integration
variable x = ε′/k0T . Then the integral over dx is easily fulfilled and as a result
we get

n =
2(2πmk0T )1/2

�(2πR)2
eζ/k0T

∞∑
N=0

e−(2N+1)μH/k0T . (8.39)

The summation with respect to N gives

∞∑
N=0

e−(2N+1)μH/k0T = [2sh (μH/k0T )]−1
. (8.40)

Taking this into account, from (8.39) for the chemical potential we get

eζ/k0T =
n�(2πR)2 [sh (μH/k0T )]

(2πmk0T )1/2
. (8.41)

This expression for a non-degenerate gas, presented in the form

eζ/k0T = 4n
π3/2

�
3

(2mk0T )3/2

sh (μH/k0T )
μH/k0T

, (8.42)

holds true for any value of a strong field, including a quantizing magnetic field.
In the quasi-classical approximation, when the energy of the thermal

motion k0T is larger than the difference between two adjacent Landau lev-
els (k0T � �ωc = 2μH), from (8.42) follows the known expression for the
chemical potential (7.20).

In the region of strong magnetic fields, when 2μH � k0T , the hyperbolic
sine in (8.42) can be replaced by an exponent. Then we get

e(ζ−μH)/k0T =
2π3/2

�
3n

(2mk0T )3/2

k0T

μH
. (8.43)
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Notice that (8.43) can be obtained immediately from (8.39), restricting to the
first term of the summation N = 0. Such a state, when electrons are found
at the zero Landau level, bears the name the quantum limit. Thus, for a non-
degenerate electron gas the quantum limit is realized as 2μH � k0T , and the
criterion of the absence of degeneracy exp [(ζ − μH)/k0T ] � 1, according to
(8.42), has the explicit appearance

[
4π3/2

�
3n

(2mk0T )3/2

]
(k0T/2μH) � 1. (8.44)

It is seen that in the quantum limit an increase in a magnetic field promotes
the fulfilment of the criterion of the degeneracy absence of an electron gas.
This is also seen from (8.43), if it is rewritten in the form

ζ − μH = k0T ln
[

4π3/2
�

3n

(2mk0T )3/2

]
− k0T ln

2μH
k0T

. (8.45)

Hence it follows that the distance between the chemical potential level and
the bottom of the conduction band in a magnetic field (ζ−μH) at the expense
of the latter term in (8.45) grows with an increase in a magnetic field.
2. Degenerate electron gas. For any degree of degeneracy from (8.37) it is

impossible to find analytically the chemical potential ζ = ζ(n,H, T ).
Therefore, consider the other limiting case of a degenerate electron gas
with the pre-assigned concentration n. In this case, replace (−∂f/∂ε) with
the δ(ε− ζ)-function and from (8.37) we get

n =
(2m)3/2

π2�3
μH

∑
N

[ζ(H) − (2N + 1)μH]1/2
. (8.46)

As H → 0 in (8.46) from the sum with respect to N we can pass to the
integration and easily obtain the Fermi boundary ζ(0) in the absence of a
magnetic field (7.116).

The latter formula gives the possibility to determine ζ(n,H) for a degen-
erate electron gas at any value of the magnetic field. A simple analytical
dependence ζ(n,H) can be obtained only in the region of the quantum limit,
when electrons are found on the lower-most Landau parabola with the num-
ber N = 0. In the case of the quantum limit ζ(H) < 3μH , and in (8.16) it is
needed to restrict only the term with N = 0. Then from (8.46) it is easy to
obtain

ζ(n,H) = μH [1 + 3 (ζ(0)/3μH)3], (8.47)

where ζ(0) = (�2
/
2m)(3π2n)2/3 is the Fermi boundary at H = 0 (7.116).

It is seen that in the region of the quantum limit (ζ(H) < 3μH) the relation
of the Fermi boundary in a magnetic field ζ(H) to the Fermi boundary ζ(0) at
H = 0 can be found. From (8.47) it is easy to show that in this region ζ(n, H)
is always more of ζ(0) (Fig. 8.4). As H → ∞, the Fermi boundary ζ(H) → μH
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Fig. 8.4. Fermi level of electron gas with specified concentration as a function of
magnetic field

and all electrons are “condensed” at the Landau level with N = 0. Inasmuch
as all levels in a magnetic field, including the level with N = 0, are degenerate
with multiplicity (8.29), the number of quantum states at the level N = 0 is
sufficient to find in it all electrons. Such an extreme distribution of electrons
corresponds to the picture in Fig. 8.2b, where the radius of a cylinder, on
the surface of which electrons are positioned, is larger than the radius of the
Fermi sphere at H = 0. In the limit H → ∞ the height of this cylinder tends
to zero, and the radius k⊥0 = R−1 → ∞. In such a state, the motion of an
electron along the magnetic field is completely absent, i.e. kz = 0. Notice
that the described picture of the distribution takes place at the pre-assigned
concentration of an electron gas n = const.

Formula (8.47) is just in the range of a magnetic field, restricted from
below by the quantum limit condition ζ(H) < 3μH

3μH >

(
3
2

)1/3

ζ(0), (8.48)

and from the above by the strong-degeneracy criterion [ζ(H) − μ(H)] � k0T

ζ(0)
k0T

(
ζ(0)
3μH

)2

� 1. (8.49)

From the latter inequality it is seen that in the quantum limit an increase
in a magnetic field leads to the degeneracy-criterion violation, i.e. promotes
the degeneracy removal. This circumstance is associated with the fact that
the density of state is proportional to H (8.28). Therefore, with the growth
of a magnetic field at the bottom of the conduction band more electrons are
placed and thereby the Fermi boundary energy decreases.

If the latter two conditions are combined, we get inequalities determining
the region of a magnetic field, where an electron gas is strongly degenerate
and the quantum limit takes place
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(
3
2

)1/3
ζ(0)
3μ

< H � ζ(0)
3μ

(
ζ(0)
k0T

)1/2

, (8.50)

i.e. in this region formula (8.47) is right.
Using formula (7.134) to calculate the temperature smearing of the Fermi

boundary, with accuracy to (k0T )2, we get

ζ(H,T ) = ζ(H, 0) +
π2

12
(k0T )2

ζ(H) − μH
. (8.51)

Notice that the temperature correction in (8.51) and (7.136) are distinct by the
sign. This is associated with the fact that in the quantum limit the density of
states with the growth of energy decreases (the right branch in Fig. 8.3), since
the electron gas behaves as though it is one-dimensional. Therefore, electrons
that are found in the energy range k0T below the Fermi boundary which get
excited by the heat motion occupy a wider range of energy than k0T , and,
consequently, the mean position of the Fermi level ζ(H,T ) is found above the
absolute zero temperature. Inasmuch as in the absence of a magnetic field the
density of states g0(ε) grows with energy (Fig. 8.3), ζ(T ) ought to be found
below ζ(0) [see (7.136)].

We have found the relation (8.47) between the Fermi boundary in a mag-
netic field ζ(H) and one without a magnetic field ζ(0) in the quantum limit,
when below the boundary ζ(H) there is in all one Landau level with N = 0.
In that case, when two and more Landau levels are found below the Fermi
boundary, from (8.46) it is difficult to find this relation analytically for the
whole region of the magnetic field. However, this can be done for pre-assigned
values of HN , at which the Fermi boundary ζ(H) coincides with some Landau
level. Assume that the number of this level is N . Then ζ(HN ) = (2N+1)μHN .
Substituting this value into (8.46) we get

n =
(2m)3/2

π2�3
μHN

N∑
N ′=0

[2(N −N ′)μHN ]1/2
, (8.52)

which gives the relation between the Fermi boundary ζ(0) at H = 0 and the
Fermi boundary for magnetic fields HN , at which it coincides with the Landau
level with number N :

ζ(HN ) =
N + 1/2(

3
2

N∑
k=0

√
k

)2/3
ζ(0), N �= 0. (8.53)

Hence it can be evaluated that ζ(H1) = (3/2)1/3ζ(0) ≈ 1,146ζ(0), ζ(H2) ≈
1,058ζ(0), etc. It is easy to show that for large N relationship (8.53) gives
ζ(HN ) ≈ ζ(0). The behaviour of the function ζ(H) with regard to (8.47) is
schematically shown in Fig. 8.4. It is seen that the Fermi boundary is a pulsat-
ing function of the magnetic field: the Fermi boundary does not much expand
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every time, when some Landau level intersects it. After that all Landau levels,
except the zero one, go out of the Fermi boundary, i.e. ζ(H) < 3μH , with a
further increase in the magnetic field, where the Fermi boundary monotoni-
cally grows and asymptotically approaches the zero Landau level with energy
ε0 = μH .

8.4 Thermodynamic Properties of Electron Gas
in Quantizing Magnetic Field

In this section on the basis of relationship (8.30) and the expression of the
grand thermodynamic potential (8.34), we consider the basic thermodynamic
properties of an electron gas in a quantizing magnetic field. Finding the
explicit form of the equation of state, we calculate entropy and heat capacity.

1. Thermal equation of state. From (8.30) it is seen that knowing the explicit
form of Ωe = Ωe(T, V, ζ,H), pressure can be determined as follows:

P = − (∂Ωe/∂V )ζ,H,T . (8.54)

Hence and from (8.34) it follows that

P =
4

(2πR)2
∑
N

∞∫
εN

kz(ε,N)f(ε)dε. (8.55)

If we use (8.36), (8.55) takes the form

P =
4(2m)1/2

�(2πR)2
∑
N

∞∫
εN

(ε− εN)1/2f(ε)dε. (8.56)

Integrate this expression once by parts. Then we get

P =
8(2m)1/2

3�(2πR)2
∑
N

∞∫
εN

(ε− εN )3/2

(
−∂f
∂ε

)
dε. (8.57)

For an arbitrary degree of degeneracy of an electron gas the integral in (8.57)
cannot be analytically calculated. Therefore consider particular cases.

Non-degenerate electron gas. If we take into account that f(ε) = exp
((ζ − ε)/k0T ) and (−∂f/∂ε) = (1/k0T ) exp ((ζ − ε)/k0T ), carry out the
change of the integration variable (ε − εN) = ε′, and also integrate over dε′,
then the integral in (8.57) acquires the shape:

∞∫
εN

(ε− εN )3/2

(
−∂f
∂ε

)
dε =

3
√
π

4
(k0T )3/2 exp

(
ζ − εN

k0T

)
. (8.58)
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Taking into account (8.58) in (8.57), we have

P =
8(2m)1/2

3�(2πR)2
3
√
π

4
(k0T )3/2eζ/k0T

∞∑
N=0

e−(2N+1)μH/k0T . (8.59)

The summation with respect to N in (8.59), according to (8.40), is easily ful-
filled and as a result, for the thermal equation of the state of a non-degenerate
electron gas P = P (T,N, ζ) in indicated variables we get

P =
(2πm)1/2(k0T )3/2

�(2πR)2
exp (ζ/k0T )
sh (μH/k0T )

. (8.60)

If substituted the expression for exp (ζ/k0T ) from (8.42) into (8.60), we get
pressure as a function of the concentration and temperature

P = nk0T. (8.61)

It is seen that pressure of a non-degenerate electron gas does not depend on
the magnetic field and has a known classical appearance.

Degenerate electron gas. In this case, if in the zeroth approximation with
respect to temperature we take into account that (−∂f/∂ε) = δ(ε− ζF), from
(8.57) for the zero pressure (at T = 0) we get

P0 =
8(2m)1/2

3�(2πR)2

N0∑
N=0

[ζF − (2N + 1)μH]3/2
, (8.62)

where N0 = (ζ − μH)/2μH .
In the quasi-classical approximation, when many Landau levels (ζF/

2μH � 1) are found below the Fermi boundary energy, we can replace the
sum with respect to N with the integral and integrate up in indicated limits.
Then we get the known expression for the zero pressure of a Fermi gas in the
absence of the magnetic field [see (7.115)].

Applying the Euler summation formula (4.85) to (8.62), the quantum cor-
rection to the zero pressure, associated with discreteness of the spectrum, can
be obtained.

In the quantum limit, when all electrons are found at the zero Landau
level, i.e. when μH < ζF < 3μH , in sum (8.62) it can be restricted to the
term with N = 0 and from (8.62) it follows that

P0 =
8(2m)1/2

3�(2πR)2
(ζF − μH)3/2. (8.63)

Substitute the expression for (ζF − μH) from (8.47) into (8.63). Then for the
thermal equation of the state of a degenerate electron gas in the quantum
limit we get

P0 =
π2

3
�

4c3

me2

n3

H2
≈ n3

H2
. (8.64)
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Hence it is seen that in contradistinction to the non-degenerate case, the zero
pressure of a degenerate electron gas in the quantum limit strongly depends
on the concentration n and magnetic field P0 ∼ n3

/
H2.

Applying the approximate formula (7.134) to the integral in (8.57), the
temperature correction to the zero pressure of a degenerate electron gas can
be obtained.

2. The caloric equation of state or mean energy of an electron gas is defined
as follows

E = 3 × 2
∑

N,kykz

(ε− εN)f(εNkz
). (8.65)

Here the factor 2 takes into account degeneracy with respect to the spin, and
the factor 3 appears owing to equivalency of all three directions of a magnetic
field in the isotropic space.

We pass from the summation with respect to quasi-continuous quantum
numbers ky and kz to integrals, according to the known rule (8.24), and take
into account (8.25). Then (8.65) takes the form:

E =
6V

(2πR)2
∑
N

∫
(ε− εN)f(ε)dkz . (8.66)

From the integration over dkz we pass to the integration over dε and multiply
by 2, taking into account that two values ±kz correspond to one value of ε.
As a result, we have

E =
12V

(2πR)2
∑
N

∞∫
εN

(ε− εN )f(ε)
(

dkz

dε

)
dε. (8.67)

According to (8.36), we can write

dkz

dε
=

(2m)1/2

2�
(ε− εN)1/2. (8.68)

Taking this into account in (8.67), for the caloric equation of state (the mean
energy) we get

E =
6V

�(2πR)2
∑
N

∞∫
εN

(ε− εN )1/2f(ε)dε. (8.69)

Comparing this expression with (8.56), we get the known relationship, relating
the thermal equation of the state of a free electron gas to the caloric one

P =
2
3
E

V
. (8.70)
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3. Entropy. According to (8.30), entropy of an electron gas is defined as
follows:

S = − (∂Ωe/∂T )V,ζ,H . (8.71)

We started with the expression (8.34) for the grand thermodynamic potential
Ωe. From this expression it is seen that only the Fermi distribution function
f(ε) depends on temperature. If we take into account that

(
∂f

∂T

)
ζ,H

=
(ε− ζ)
T

(
∂f

∂ε

)
, (8.72)

from (8.34) and (8.71) for entropy of an electron gas in a quantizing magnetic
field we get

S =
4V

(2πR)2T

∑
N

∞∫
εN

kz(ε, εN )(ε− ζ)
(
−∂f
∂ε

)
dε (8.73)

or, if we take into account (8.36), we have

S =
4V

(2πR)2T
(2m)1/2

�

∑
N

∞∫
εN

(ε− εN )1/2(ε− ζ)
(
−∂f
∂ε

)
dε. (8.74)

On the basis of this general formula, different particular cases can be consid-
ered.

4. The heat capacity of an electron gas in a quantizing magnetic field can
be calculated, using the expression either for entropy (8.74), as CV =
T (∂S/∂T )V , or for energy (8.69), as CV = (∂E/∂T )V . We use the second
variant.

In the case of a non-degenerate electron gas, by virtue of (8.61) and (8.70),
the heat capacity has a surprisingly simple appearance:

CV =
3
2
k0Ne. (8.75)

Consequently, in the case of a non-degenerate electron gas a quantizing mag-
netic field (discreteness of the energy spectrum) influences neither the equation
of state nor the heat capacity. To all appearance, it is associated with the fact
that the high temperatures, at which discreteness of the spectrum becomes
unessential, are required in order that an electron gas be non-degenerate.

To calculate heat capacity of a degenerate electron gas (8.69) integrate up
by parts:

E =
4V (2m)1/2

�(2πR)2
∑
N

∞∫
εN

[ε− (2N + 1)μH ]3/2

(
−∂f
∂ε

)
dε. (8.76)
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In order to find the temperature correction to energy, apply formula (7.134).
As a result, we have

E = E0 +
π2

2
(k0T )2

V (2m)1/2

�(2πR)2
∑
N

[ζF − (2N + 1)μH ]−1/2, (8.77)

where E0 = 3P0V /2 is the zero energy at T = 0, and P0 is determined
by (8.62).

From (8.77) for the heat capacity of a degenerate electron gas in a
quantizing magnetic field we get the expression:

CV = π2k2
0T

V (2m)1/2

�(2πR)2
∑
N

[ζF − (2N + 1)μH ]−1/2, (8.78)

which can be presented as

CV =
π2

4
k2
0TVgH(ζF), (8.79)

where gH(ζF) is the density of quantum states at the Fermi level [see (8.28)].
From these formulae it is seen that with the change in the magnetic field,

every time the Landau level εN = (2N + 1)μH coincides with the Fermi
boundary the heat capacity experiences a sharp jump, i.e. has a peculiarity.

In weak magnetic fields (ζF >> μH) in (8.78) from the summation with
respect toN we can pass to the integration and show that in the quasi-classical
approximation (8.78) coincides with the known expression (7.140).

In the quantum limit (ζF < 3μH) in (8.78) it can be restricted to the term
with N = 0 and the heat capacity takes the form:

CV = π2k2
0T

V (2m)1/2

�(2πR)2
(ζF − μH)−1/2. (8.80)

If we used (8.47), for the heat capacity of a degenerate electron gas in the
quantum limit we get

CV =
k2
0TV (2m)3

(2π)2�6n
(μH)2 ∼ H2. (8.81)

It is seen that, in contradistinction to the non-degenerate case, the heat capac-
ity of a degenerate electron gas in the quantum limit strongly depends on the
magnetic field.

8.5 Landau Diamagnetism

According to classical mechanics, free electrons in metals placed in a uniform
magnetic field move in spiral trajectories, and in the plane perpendicular to
the magnetic field follow a cyclotron orbit. The motion of each electron in
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the circular orbit creates a closed electric current, and thereby a magnetic
moment, directed against the external field, arises. As a result of this, a free
electron gas in metal ought to possess diamagnetism, which is observed on test.

However, if it is attempted to calculate the diamagnetic moment of an
electron gas in the quasi-classical approximation, zero is obtained. Indeed,
the Hamilton function of a free electron in a magnetic field is distinct from
that without a magnetic field by the fact that in it the impulse P is replaced
with P ′ = (P + e/cA), where e is the electron charge magnitude, A is
the vector potential of the magnetic field H = rotA. If we calculate the
statistical integral, it is easy to show that it and, consequently, the free
energy F do not depend on the magnetic field H , inasmuch as integrals with
respect to components of the impulse P ′x, P

′
y, P

′
z are also taken in the lim-

its from −∞ to +∞. Hence it follows that the diamagnetic magnetization
M = −1/V (∂F/∂H )T,V = 0.

Note that this quasi-classical result (M = 0) was obtained by Nils Bohr
as far back as in 1911. He showed that magnetic moments, formed by circular
orbits of free electrons in the magnetic field, are compensated by magnetic
moments of non-closed orbits close to the surface of metal.

The further exposition of the given section will show that the absence of
diamagnetism does not depend on whether an electron gas obeys the Boltz-
mann classical statistics or the Fermi quantum statistics. The main question
is whether the motion of an electron is classical or quantum.

In 1930 L.D. Landau showed that if the motion of an electron is considered
on the basis of quantum mechanics and quantization of energy of free electrons
in a magnetic field is taken into account (8.16), the diamagnetic susceptibility
of an electron gas does not equal zero. Here we expound the theory of Landau
diamagnetism on the basis of energy spectrum (8.19).

From (8.30) it follows that the magnetization of an electron gas M can be
found originating from the explicit form of the grand thermodynamic potential
Ωe = Ωe(T, V, ζ,H) as follows:

M = − 1
V

(
∂Ωe

∂H

)
T,V,ζ

. (8.82)

If we substitute (8.36) into (8.34) and once integrate up by parts, for the
grand thermodynamic potential we get:

Ωe = −8V (2m)1/2

3�(2πR)2
∑
N

∞∫
εN

(ε− εN )3/2

(
−∂f
∂ε

)
dε. (8.83)

For any degree of degeneracy of an electron gas it is impossible to find the
analytical form of Ωe; therefore the classical and the quantum statistics are
considered separately.

Non-degenerate electron gas. In this case, the distribution function has
the appearance f(ε) = exp [(ζ − ε)/k0T ]. If in (8.83) we take into account
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that (−∂f/∂ε) = −(1/k0T ) exp [(ζ − ε)/k0T ] and introduce the notation ε′ =
ε− εN , the integral with respect to ε′ is easily calculated (see Appendix A).
As a result, we get

Ωe = −2V (2πm)1/2(k0T )3/2

�(2πR)2
eζ/k0T

∞∑
N=0

e−(2N+1)μH/k0T . (8.84)

The summation with respect to N in (8.84), according to (8.40), is easily
fulfilled and Ωe has the appearance

Ωe = −V (2πm)1/2(k0T )3/2

�(2πR)2
exp(ζ/k0T )
sh(μH/k0T )

. (8.85)

In the quasi-classical approximation, when inequality (8.4) analogous to μH �
k0T is satisfied, in (8.85) sh(μH/k0T ) ≈ μH/k0T can be replaced, and if we
take into account (8.15), we see that Ωe does not depend on the magnetic
field and coincides with the classical value (7.16). Thereby the magnetization
in this case, according to (8.82), equals zero. This result can be obtained if in
(8.84) from the sum with respect to N it is passed to the integral.

Note that to realize this case the simultaneous fulfilment of two inequalities
is required:

k0T � μH and k0T � ζ0, (8.86)

which can also be presented in the form

λ� R and λ� d, (8.87)

where ζ0 is the Fermi boundary energy (7.116), λ is the de Broglie wavelength,
d = n−1/3 is the mean distance between electrons, and R is the magnetic
length.

From (8.82) and (8.85) for the magnetization of a non-degenerate electron
gas in an arbitrary quantizing magnetic field we get the following expression

M =
(2πm)1/2(k0T )3/2

(2π)2�2

e

c

exp(ζ/k0T )
sh(μH/k0T )

× [1 − μH/k0T cth(μH/k0T )] (8.88)

If we substitute the expression of the chemical potential (8.41) into (8.88), for
the diamagnetic magnetization of a non-degenerate electron gas we finally get

M = −nμ
[
cth(μH/k0T ) − 1

(μH/k0T )

]
(8.89)

or
M = −nμL(μH/k0T ), (8.90)

where L(μH/k0T ) is the Langevin function (4.175).
In a weak magnetic field (μH � k0T ), if it is restricted to the zeroth,

i.e. the quasi-classical approximation, and one item kept in an expansion
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of a hyperbolic cotangent cth(μH/k0T ) ≈ k0T/μH , then L(μH/k0T ) = 0
and, consequently, the magnetization equals zero. The magnetization is dis-
tinct from zero only in the approximation when cth(μH/k0T ) = (k0T/μH)+
μH/3k0T . Then from (8.89) we have:

M = −nμ
2H

3k0T
; μH � k0T. (8.91)

The diamagnetic susceptibility χdia = M/H , conformably, equals

χdia= − mμ2

3k0T
. (8.92)

If we compare (8.92) with the paramagnetic susceptibility χpara, associated
with the spin of an electron (7.190), we get the Landau result

χdia

χpara
= −1

3

(
μ

μB

)2

= −1
3

(m0

m

)2

, (8.93)

where m0 is the mass of a free electron m is the effective mass of an electron
in metal or semiconductor. Usually in semiconductors m < m0; therefore
diamagnetism of an electron gas in them dominates.

In the quantum limit, when the magnetic field satisfies the condition μH �
k0T , all electrons are found at the first Landau level and from (8.89) we get
a simple result

M = −nμ; μH � k0T. (8.94)

The diamagnetic susceptibility in this case depends on the magnetic field

χdia = −nμ
H
. (8.95)

From the expression (7.189) in the strong magnetic field μBH � k0T we find
the paramagnetic susceptibility and determine the relationship

χdia

χpara
= − μ

μB
= −m0

m
. (8.96)

From the comparison (8.93) and (8.96) it is seen that in the strong magnetic
field the ratio χdia/χpara is distinct from the case of the weak magnetic field.
The obtained result (8.94) is true when fulfilling the condition: ζ0 � k0T �
μH , which can also be presented as R � λ� d.

Degenerate electron gas. In this case in the zeroth approximation with
respect to temperature (−∂f/∂ε) = δ(ε − ζF) and from (8.83) for the grand
thermodynamic potential of a degenerate electron gas Ωe we get

Ωe = −8
3
V (2m)1/2

(2πR)2

N0∑
N=0

[ζF − (2N + 1)μH ]3/2, (8.97)
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where N0 = (ζF − μH)/2μH .
In the general form for an arbitrary value of the magnetic field it is impos-

sible to conduct the summation in (8.97). Therefore we consider different
limiting cases.

In weak magnetic fields, when μH � ζF, i.e. at large N0, in the zeroth
quasi-classical approximation in (8.97) the summation with respect to N we
can replace the integral in indicated limits and regard that ζF = ζ0. Then
in the zeroth approximation for the grand thermodynamic potential of a
completely degenerate electron gas we get the following result:

Ωe= − 8
15

V (2m)3/2

(2π)2�3
ζ
5/2
0 , (8.98)

not depending on the magnetic field and coinciding with the known expression
(7.120).

Inasmuch as Ωe(0) does not depend on the magnetic field, the magnetiza-
tion in the quasi-classical approximation equals zero.

Note that independent of the kind of statistics (an electron gas is degen-
erate or non-denerate) in the quasi-classical approximation, diamagnetism is
absent. So, the question lies not in the statistics, but in the nature of the
motion of an electron in the magnetic field: if the motion is classical, dia-
magnetism is absent, and if the motion is quantum, diamagnetism of a free
electron gas exists.

In order to find the quantum correction to the grand thermodynamic
potential, we calculate the sum in (8.97) with the aid of the Euler summation
formula (4.85) and everywhere neglect μH compared with ζ0. As a result,
we get

Ωe = Ω′(0)e +
V (2m)3/2

3�3(2π)2
ζ
5/2
0 (μH)2, (8.99)

where Ω′(0)e does not depend on the magnetic field part of the grand thermo-
dynamic potential.

From (8.82) and (8.99) for the diamagnetic magnetization we have

Mdia = − (2m)3/2

6π2�3
μ2Hζ

5/2
0 . (8.100)

If we compare (8.100) with paramagnetic susceptibility (7.192), for the ratio
Mdia/Mpara = χdia/χpara we get the same result as for a non-degenerate
electron gas in a weak magnetic field (8.93).

In the quantum limit, when ζF < 3μH , in sum (8.97) it can be restricted
only to one term (N = 0). Then we have

Ωe = −8
3
V (2m)3/2

3�3(2π2)
eH

�c
(ζF − μH)3/2. (8.101)
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Hence, according to (8.82), find the magnetization M , where for (ζF − μH)
we use (8.47). As a result, we get

M =
8
3

(2m)3/2

�(2π2)
e

�c
ζ
3/2
0

[(
ζ0

3μH

)3

− 1
2

]
. (8.102)

If we leave out the first term in the square bracket and use the expression for
the boundary Fermi energy ζ0 (7.193) at H = 0, for the magnetization we get
the same result as in the case of a non-degenerate electron gas in the quantum
limit: M = −nμ (8.94).



9

Non-Equilibrium Electron Gas in Solids

Summary. An ideal Fermi gas, in particular an electron gas in an equilibrium
state, is dealt with in Chap. 7. There the state equation is found, thermodynamic
coefficients are calculated and Pauli’s paramagnetism due to the free electron spin
in metals is investigated.

In this chapter electron gas in metals and semiconductors is dealt with in
a nonequilibrium state. Nonequilibrium processes associated with charge carriers’
motion in a crystal under external disturbances such as electric field, tempera-
ture gradient, magnetic field, etc. are referred to as electron transport phenom-
ena or kinetic effects. They include electric conductivity, thermal conductivity,
thermoelectric, galvanomagnetic and thermomagnetic effects.

If the values governing transport phenomena, i.e. electric current density, heat
flux, electric field strength, etc. do not depend on time, the charge or energy trans-
port process is referred to as stationary. Here, we shall discuss stationary transport
phenomena only. The definition and classification of these phenomena are presented
below.

In the classical case, the Boltzmann equation for a nonequilibrium charge carrier
distribution function which accounts for the interaction with a crystal lattice is used
to construct a microscopic theory of transport phenomena.

9.1 Boltzmann Equation and Its Applicability
Conditions

9.1.1 Nonequilibrium Distribution Function

The conduction electrons at thermodynamic equilibrium are described by the
equilibrium Fermi–Dirac distribution function. In the presence of an external
electric field, temperature or concentration gradients, or other effects, the
electron gas is in a nonequilibrium state; therefore it cannot be described by an
equilibrium distribution function f0(k). In a quasiclassical approximation in
the nonequilibrium case, the distribution function f(k, r, t) can be introduced
while giving it a physical meaning, namely the local concentration near a point
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r at time t of electrons in the k-state. Knowing the nonequilibrium distribution
function f(k, r, t) it is possible to calculate the current density

j(r, t) = −2e
V

∑
k

υ(k)f(k, r, t) = − 2e
(2π)3

∫
υ(k)f(k, r, t)dk (9.1)

and the heat energy flux density

w(r, t) =
2

V

∑
k

(ε(k) − μ)υ(k)f(k, r, t) =
2

(2π)3

∫
(ε(k) − μ)υ(k)f(k, r, t)dk,

�����

which makes it possible to find an explicit transport equation form

ji = σikEk − βik∇kT,

wi = γikEk − κik∇kT i, k = x, y, z (9.3)

Here Ek = −∇kϕ, wi = w∗i − ϕji, ϕ = ϕ0 − (μ/e) is the electrochemical
potential, ϕ0 the electrostatic potential, μ the chemical potential, (−e) the
electron charge, and wi

∗ the component of energy flux density transported
by the conduction electrons. The value ϕji derived from the total energy
density is associated with the fact that every electron transports energy eϕ
and, consequently, wi is none other than the flux density of kinetic or heat
energies transported by the conduction electrons.

The tensor components entering into (9.3) are the magnetic field functions
H and they satisfy the following relations from the symmetry principle of
kinetic coefficients:

σik(H) = σki(−H)
κik(H) = κki(−H) (9.4)
γik(H) = Tβki(−H).

The advantage of writing the relations in the form of (9.3) is that the
coefficients involved are derived immediately from the Boltzmann equation
solution.

In the expressions (9.1) and (9.2), the factor 2 appears due to electron
spin, υ(k) is the electron velocity in the k -state with energy ε(k). If in (9.1)
and (9.2) f(k, r, t) is replaced by f0(k) = f0(ε(k)), then by virtue of energy
evenness ε(k) = ε(−k) and velocity oddness υ(−k) = −υ(k), the electric
current and energy flux are equal to zero, i.e. in the equilibrium state there
are no currents and fluxes.

In order to calculate j and w it is necessary to know the nonequilib-
rium distribution function f(k, r, t) that can be derived from the Boltzmann
equation.
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9.1.2 Boltzmann Equation

By definition, the nonequilibrium distribution function f(k, r, t) is the num-
ber of electrons which at time t are in a unit volume near the point r and
have a wave vector k. Except for (∂f/∂t), their number can vary due to the
following three physical processes: diffusion associated with temperature or
concentration gradients, leading to a variation with respect to r; acceleration
by external fields causing a variation of the wave electron vector k; electron
scattering by phonons or by other lattice defects which also cause a variation
in k.

The total effect of all these processes must be equal to the distribution
function variation per unit time, i.e. we can write

∂f/∂t = (∂f/∂t)diff + (∂f/∂t)field + (∂f/∂t)scat (9.5)

This is a symbolic writing of the Boltzmann equation where the terms of the
right-hand side correspond to the variation rate due to the above processes.
In order to find an explicit form of the Boltzmann equation (9.5) we shall
consider these processes separately.

In the presence of a temperature or concentration gradient diffusion takes
place in the conductor; therefore the charge carriers arrive at the special region
near the point r and then leave it. Of interest is the variation in the electron
concentration with wave vector k. The electrons have the velocity υ(k) =
�
−1∇kε(k). The concentration of these k-electrons near the point r at time
t is f(k, r, t). After a time interval Δt, these electrons will be near the point
r + Δr, acquiring the concentration f(k, r + Δr, t+ Δt). In accordance with
the Liouville theorem on the invariance of the phase space volume the charge
carrier concentration in the vicinity of the point r at time t is equal to their
concentration in the vicinity of the point r + Δr at time t+ Δt, i.e.

f(k, r, t) = f(k, r + Δr, t+ Δt). (9.6)

Decomposing the right-hand side near the point r, taking account of Δr =
υ(k)Δt and making Δt→ 0, we obtain

(∂f/∂t)diff = −υ(k)(∂f/∂r) = −υ(k)∇rf (9.7)

for the rate of the nonequilibrium distribution function variation because of
diffusion.

The external force F , accelerating the electrons, varies their wave vector
such that k̇ = �

−1F , and consequently the number of k-electrons near the
point r. If these considerations are also repeated for the k-space it is possible
to write

f(k, r, t) = f(k + Δk, r, t+ Δt) (9.8)

which yields
(∂f/∂t)field = −k̇(∂f/∂k) = −�

−1F∇kf (9.9)
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for the rate of variation of f(k, r, t) owing to the external force F .
Let us assume that a conductor is in an external electric field E0 and

magnetic field H . Then a Lorentz force

F = −e
(

E0 +
1
c

[υ(k)H ]
)
, (9.10)

where υ(k) = �
−1∇kε(k) is the electron velocity and c the velocity of light,

acts upon an electron with charge (−e).
The Boltzmann equation (9.5) for conduction electrons while accounting

for (9.7), (9.9) and (9.10) has the form

∂f

∂t
+ υ(k)∇rf − e

�

(
E0 +

1
c

[υ(k)H ]
)
∇kf =

(
∂f

∂t

)
scat

(9.11)

In order to find
(

∂f
∂t

)
scat

we shall introduce a function W (k,k′) which is the
per-unit-time probability of electron transition from the state k to the state
k′ as a result of scattering by a lattice defect. The transitions from state k
to every possible k′-states will take place if there is an electron in the k-state
and the k′-states are vacant (Pauli’s exclusion principle). Therefore, because
of the transitions k → k′ the number of k-electrons decreases, i.e. leaving
the k-state, in unit time by

∑
k

W (k,k′)f(k)(1 − f(k′)). The number of k-

electrons, i.e. the function f(k, r), increases due to electron transition from

every possible k′-state to the k-state by
′∑
k

W (k′,k)f(k′)(1 − f(k)) per unit

time. The difference between the numbers of electrons arriving and leaving
gives the rate of variation of the nonequilibrium distribution function

(∂f/∂t)scat =
∑
k′

{
W (k′,k)f(k′)(1 − f(k)) −W (k,k′)f(k)(1 − f(k′))

}
.

(9.12)

Further, we shall consider the stationary case where the external fields do not
explicitly depend on time and, consequently, df/dt = 0. In the stationary
case, from (9.11) and (9.12) we can obtain an explicit form of the Boltzmann
equation for the conduction electrons in electric and magnetic fields:

υ(k)∇rf − e

�

(
E0 +

1
c

[υ(k)H ]
)
∇kf

=
∑
k′

{
W (k′,k)f(k′)(1 − f(k)) −W (k,k′)f(k)(1 − f(k′))

}

(9.13)

Converting the summation with respect to k′ to integration we shall see
that the Boltzmann equation (9.13) is an integro-differential equation. The
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function W (k,k′) entering into the collision part of the Boltzmann equation
depends on the nature of the conduction electron–scatterer interaction, and
for a particular mechanism it is governed by the quantum theory of scattering.

Thus the calculation of the currents (9.1) and (9.2) is reduced to two inde-
pendent problems, namely the calculation of W (k,k′) for different scattering
mechanisms and the solution of the Boltzmann equation (9.13) in order to find
the nonequilibrium distribution function f(k, r). Of course, these problems
are not solved in a general form. Some approximate solutions of the Boltz-
mann equation will be discussed in subsequent paragraphs, but now we shall
dwell upon the applicability criteria of the Boltzmann equation itself.

9.1.3 Applicability Conditions of the Boltzmann Equation

From both the definition of the nonequilibrium distribution function f(k, r)
and the derivation of the Boltzmann equation (9.11) it is seen that it is valid
only in the quasiclassical case where the notion of trajectory is used and the
states of the electron gas are specified in a phase space. The quasiclassical
condition imposes a limitation on the generalized force, namely the electro-
chemical potential gradient −∇(ϕ0 − (μ/e)), as well as on the magnetic field
strength H , and it defines the applicability limit of the Boltzmann equation.
We shall now dwell upon it.

The quasiclassical condition runs as follows: the properties of a free system
can be considered using classical mechanics if the de Broglie wavelengths λ of
the particles are small as compared with the sizes L that are typical of the
given problem, i.e. λ� L. If the system is not free and a certain force F acts
upon it, the quasiclassical condition has the form

(λ/2π) |dλ/dx| � λ (9.14)

i.e. the electron wavelength λ must vary slightly over a distance equal to the
wavelength itself. Accounting for λ = h/p(x) where h is the Planck constant
and p(x) the electron impulse in the external field U(x), the quasiclassical
condition (9.14) can be written as follows:

(mh/p3) |F | � 1, (9.15)

where m is the effective mass of conduction electron, and F is the force acting
upon the electron. In the general case where there are dynamic (electric field)
and static (temperature or concentration gradients) disturbances, the force F
depends on the electrochemical potential gradient

F = e∇(φ0 − (μ/e)). (9.16)

When λ = h/p and p2 ≈ mε are taken into account, (9.15) reduces to the
applicability condition of the Boltzmann equation in general form

λ |F | � ε, (9.17)
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which has an explicit physical meaning: the energy gained by a electron due
to the action of the disturbing force F at a distance λ must be much less than
the mean electron energy ε.

From (9.17), for the electric field E0 it is easy to obtain the condition

λeE0 � ε (9.18)

for the Boltzmann equation to be applicable. In nondegenerate semicon-
ductors, ε ≈ k0 T , while in degenerate ones, ε as μF . At T = 100 K and
λ = 10−7 cm, we obtain from (9.18) E0 � 105 V/cm for nondegenerate semi-
conductors. Thus, the Boltzmann equation is valid up to very strong electric
fields.

In the case of nonuniform semiconductors, the condition (9.17) while
accounting for (9.16) also determines the chemical potential gradient

(∂μ/∂x)λ� ε (9.19)

when the Boltzmann equation is valid. If the nonuniformity is caused by a
temperature gradient, then (9.19) assumes the form

(∂μ/∂T )λ∇T � ε.

Finding ∂μ/∂T from (7.20) and (7.136) we shall obtain respectively

|μ/k0T − 3/2|λ |∇T | � T (9.20)

for a nondegenerate electron gas, and

(k0T/μF )λ |∇T | � T0 (9.21)

for a degenerate electron gas, where T0 = μF /k0T is the degeneracy tem-
perature of the electron gas. Conditions similar to (9.19)–(9.21) can also be
obtained from (9.19) for the concentration gradient ∇n.

Now we shall consider the limitations imposed on the magnetic field
strength H for applying the Boltzmann equation. An electron moving in a
uniform magnetic field is under the action of the Lorentz force F = (e/c)υ⊥H
along a helix with axis parallel to the magnetic field of radius

r = υ⊥/Ω (9.22)

where υ⊥ is the velocity component in a plane perpendicular to the magnetic
field,

Ω = eH/mc (9.23)

is the cyclic frequency of the electron revolution in this plane and is referred
to as the cyclotron frequency, and m is the effective electron mass.

Substituting the Lorentz force F = (e/c)υ⊥H into the general condition
(9.17) and accounting for λ ≈ �/mυ⊥ we obtain the following applicability
criterion of the Boltzmann equation in the magnetic field
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�Ω � k0T, or e�H/mc� k0T (9.24)

for nondegenerate semiconductors, and

�Ω � μF , or e�H/mc� μF (9.25)

for degenerate semiconductors. It is easy to see that these conditions can be
rewritten in the form

r � λ (9.26)

In the case of degenerate semiconductors, λ in (9.26) is to be replaced by the
wavelength for electrons on the Fermi surface, λF ≈ �/mυF .

The last inequality is nothing more than the quasiclassical condition: The
Boltzmann equation is applicable in magnetic fields where the wavelength λ is
much less than the radius r of cyclotron electron orbit.

A quantomechanical analysis of the motion of charge carriers in a magnetic
field shows that their motions are quantized in a plane perpendicular to the
direction of the magnetic field and the energy separation between neighbouring
discrete levels (Landau levels) is equal to �Ω (see Chap. 8).

In magnetic fields satisfying (9.24) or (9.25) spectrum quantization
becomes insignificant. These magnetic fields are referred to as classical or non-
quantizing magnetic fields. In such a region of magnetic fields the Boltzmann
equation can be applied to calculate the kinetic effects.

In sufficiently strong magnetic fields and at low temperatures, the condi-
tions (9.24) and (9.25) cannot be fulfilled while �Ω ≥ k0T or �Ω ≥ μF can
take place (same for λ ≥ r), and spectrum discreteness becomes important.
Such magnetic fields are referred to as quantizing fields. In quantizing mag-
netic fields, the Boltzmann equation is not valid and the problem should be
solved by methods of the quantum transport theory.

There is another condition limiting the scope of applicability of the Boltz-
mann equation (9.13) which is associated with charge carriers’ scattering by
various lattice defects. If Δt denotes scattering duration (collision time with
defects), then according to the uncertainty principle (ΔεΔt ≥ �) an uncer-
tainty Δε ≥ �/Δt appears in the energy. It is possible to use a distribution
function that varies significantly in an energy interval on the order of k0T only
in the case where Δε < k0T . This means that the collision duration must be
relatively large: Δt � �/k0T . On the other hand, the collision time Δt can-
not be too large since the right-hand side of the Boltzmann equation (9.13)
suggests that the interaction of the charge carriers with the crystal lattice
occurs as separate scattering events with the probability W (k,k′) and this
interaction does not change the electron energy (basically the charge carriers
move freely in the crystal though sometimes scattered by the lattice defects).
Therefore, Δt must be less than the mean free time τ (i.e. the relaxation
time). As a result, we come to the inequality

τ � �/k0T, (9.27)
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which is the condition for the collision duration to be small compared with
the time between two successive collisions.

Since the mobility of the charge carriers is u = eτ̄/m the criterion (9.27)
can be expressed as

u� e�/mk0T. (9.28)

The above condition is well fulfilled for a wide class of semiconductors, except
for substances with an abnormally small mobility of charge carriers.

The criterion (9.27) can also be written in another form. If both sides are
multiplied by the mean velocity of the charge carriers ῡ, and accounting for
k0T/ῡ = p̄ and h/p̄ ≈ λ we shall obtain

l̄ � λ, (9.29)

where l̄ = ῡτ̄ is the mean free path. Then it is possible to say that the
Boltzmann equation is applicable if the mean free path of the charge carriers
is much larger than the de Broglie wavelength.

9.2 Solution of Boltzmann Equation in Relaxation
Time Approximation

Let us consider a conductor with an arbitrary spherically symmetric band.
That is, we assume that the energy of charge carriers ε is an arbitrary function
of the wave vector of magnitude k:

ε(kx, ky, ky) = ε(k). (9.30)

This property is inherent in the dispersion relation of the conduction electrons
for metals and many semiconductor compounds of types AIIIBV and AIIBVI.

9.2.1 Relaxation Time

First we transfer the collision term of the Boltzmann equation (9.13). To do
this, we shall use the principle of detailed equilibrium, according to which, in
the state of equilibrium where f(k, r) = f0(k), in unit time the number of
electrons coming into the k-state from the k′-state is equal to that of electrons
coming out from the k-state into the k′-state:

W (k′,k)f0(k′)(1 − f0(k)) = W (k,k′)f0(k)(1 − f0(k′)). (9.31)

Using the explicit form of the Fermi–Dirac distribution function (7.77) we
shall obtain from (9.31) the following expression:

W (k′,k)
W (k,k′)

= exp
(
ε(k′) − ε(k)

k0T

)
. (9.32)
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For ε(k) < ε(k′), as seen from (9.32), W (k,k′) < W (k′,k), i.e. the scattering
k → k′ is less probable for an increase in the energy than for a decrease. The
smaller probability of transition from states of smaller energies is compensated
by their greater occupation f0(k), which provides detailed equilibrium.

Solution of the Boltzmann equation (9.13) can be presented in the following
form:

f(k) = f0(k) + f1(k), (9.33)

where f0(k) ≡ f0(ε(k)) is the equilibrium function, while f1(k) is a non-
equilibrium supplement to be defined. It is obvious that f1(k) is an odd
function of k while f0(k) is an even function of k. In addition, f1(k) must
be proportional to the electric field and the temperature gradient, since
these forces result in a deviation from the equilibrium conduction electron
distribution in the k-state.

Almost in all real cases the deviation from equilibrium is small, i.e.

|f1| = |f − f0| � f0. (9.34)

In the absence of quantization, when the inequality (9.24) takes place the
probability of the transition W (k,k′) does not depend on the magnetic field.
It is reasonable to assume that this function does not depend on the electric
field and the temperature gradient either, i.e. W (k,k′) is one and the same for
both the equilibrium and nonequilibrium states. Then it is possible to resort
to the equation of detailed equilibrium (9.31) to transform the scattering term
(9.12) in the Boltzmann equation.

Let us substitute (9.33) into (9.12) and use (9.31). Accounting for (9.34)
we confine ourselves to terms that are linear with respect to f1(k). As a result,
we obtain

(∂f/∂t)scatt = −f1(k)/τ(k), (9.35)

where the notation

1
τ(k)

=
∑
k′
W (k,k′)

{
1 − f0(ε′)
1 − f0(ε)

− f0(ε)
f0(ε′)

f1(k′)
f1(k)

}
, (9.36)

has been used.
Magnitude τ(k) is referred to as relaxation time, the meaning of which

can be explained as follows. Assume that the external forces violate the equi-
librium of the conduction electron system. If at time t = 0 the external field is
switched off, F = 0, and the temperature gradient is canceled, ∇rf = 0, the
nonequilibrium function f(k, t) will tend to an equilibrium function f0(k). In
this case, f(k, t) satisfies the equation

∂f(k, t)
∂t

+
f(k, t) − f0(k)

τ(k)
= 0, (9.37)

which is derived from (9.11), taking into account (9.35).
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From (9.37) we obtain the following law of the nonequilibrium function
variation,

(f − f0)t = (f − f0)t=0 exp(−t/τ). (9.38)

It is seen that the relaxation time τ characterizes the speed of recovery of the
equilibrium state.

Substituting (9.35) into the right-hand side of (9.13) we obtain the
following simple form of the Boltzmann equation,

υ(k)∇rf − e

�

(
E0 +

1
c

[υ(k)H ]
)
∇kf = −f − f0

τ(k)
. (9.39)

Thus, introducing the notion of relaxation time we formally reduce the
integro-differential equation (9.13) to the differential equation (9.39) for the
nonequilibrium distribution function f . However, in the general case this is a
seeming simplification of the Boltzmann equation (9.13). Indeed, the ratio of
two values of the unknown function f1 enters into the right-hand side of (9.39)
in terms of τ(k) of (2.36) under the summation (integration) sign. In the case
where the ratio f1(k′)/f1(k′) does not depend on both the type and the magni-
tude of the disturbance (electric field or temperature gradient) which causes a
deviation of the distribution function from the equilibrium function, the value
τ(k) is a characteristic of the conductor and has a reasonable physical sense.

9.2.2 Solution of the Boltzmann Equation in the Absence
of Magnetic Field

In this case, (9.39) has the form

υ(k)∇rf − eE0/�∇kf = −f − f0
τ(k)

, (9.40)

from which it is possible to find a nonequilibrium function, assuming that τ(k)
does not depend on the electric field and temperature gradient. To do this,
we substitute (9.33) into (9.40) and confine ourselves to the function f0(k) on
the left-hand side, assuming that in the presence of a temperature gradient
the equilibrium function f0(k) depends on the local temperature T (r) and
chemical potential μ(r), i.e.

f0(k, r) =
[
1 + exp

(
ε(k) − μ(r)
k0T (r)

)]−1

. (9.41)

Taking into account

∇kf0(k) =
(
∂f0
∂ε

)(
∂ε

∂k

)
=
(
∂f0
∂ε

)
��υ(k) (9.42)

and
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∇rf0(k, r) = k0T

(
∂f0
∂ε

)
∇r

(
ε− μ(r)
k0T (r)

)
(9.43)

we obtain, as a result, the expression

f(k) = f0(k) − τ(k)(υ(k)φ0(ε))
(
∂f0
∂ε

)
(9.44)

for the nonequilibrium but stationary distribution function f(k) in linear
approximation with respect to electric field and temperature gradient, where

φ0(ε) = −eE0 + k0T∇r

(
ε− μ

k0T

)
= −eE − ε− μ

k0T
k0∇T (9.45)

is the generalized disturbing force (dynamic and static) causing a deviation
from the equilibrium distribution, E = E0+(1/e)∇μ = −∇(ϕ0−(μ/e)) being
the electrochemical potential gradient.

Now consider again the expression for the relaxation time. Substituting
(9.44) into (9.36) and accounting for

f0(ε)(1 − f0(ε)) = − 1
k0T

(
∂f0
∂ε

)
(9.46)

gives the following integral equation for τ(k):

1
τ(k)

=
∑
k′
W (k, k′)

1 − f0(ε′)
1 − f0(ε)

{
1 − τ(k′)

τ(k)
(υ(k′)φ0(ε

′))
(υ(k)φ0(ε))

}
. (9.47)

As we are considering spherically symmetric bands, the scattering must be
isotropic, i.e. the transition probability W (k, k′) does not depend on k and
k′ separately but on both k and k′ and the angle between them, i.e.

W (k, k′) = W (k, k′, (kk′)). (9.48)

In the case of isotropic scattering it is obvious that the relaxation time τ will
only depend on the magnitude k = |k|. Moreover, for the isotropic dispersion
relation (9.30) the directions of the electron velocity υ and wave vector k
coincide and

υ(k) =
�k

m(k)
, (9.49)

where m(k) is the effective electron mass.
Let us take into account these consequences of the band isotropy and apply

spherical coordinates in (9.47). If the polar axis is directed along k, and the
polar angles of the vectors k′ and φ0(ε′) are denoted by (θ, φ) and (α, β)
respectively, then, as is well known, we have

cos(k′,φ0(ε
′)) = cos θ cosα+ sin θ sinα cos(φ− β). (9.50)
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Then, from (9.47) it is easy to obtain

1
τ(k)

=
∑
k′
W (k, k′)

1 − f0(ε′)
1 − f0(ε)

{
1 − τ(k′)

τ(k)
(υ(k′)φ0(ε

′))
(υ(k)φ0(ε))

υ(k)υ(k′)
υ2(k)

}
.

(9.51)

Note that this integral relation, from which it is possible to define τ(k), is
obtained on two assumptions: the smallness of the deviation from the equi-
librium distribution (9.34) and the isotropy of the dispersion relation (9.30).
However, (9.51) is an inconvenient relation since it contains an equilibrium-
disturbing force φ0(ε) (electric field E and temperature gradient ∇T ) given
by (9.45). Consequently, τ(k) as derived from (9.50) will not be universal;
it will depend on the disturbance type and magnitude (E and ∇T ). There-
fore, it is necessary to make another assumption referring to the scattering
nature. Assuming that the charge carriers’ scattering caused by lattice defects
is purely elastic, ε(k′) = ε(k), and consequently k = k′, i.e. the charge carriers
exchange during scattering by the lattice only by impulses, (9.51) simplifies
considerably and τ(k) becomes a universal function characterizing the system
relaxation. In this case, the relaxation speed τ̄−1(k) does not depend on the
force (E or ∇T ) causing the deviation of the distribution from the equilibrium
function but characterizes the conductor itself. Taking into consideration the
scattering elasticity ε′ = ε as well as (9.50), we obtain from (9.51) a simple
expression for the relaxation time1:

1
τ(k)

=
∑
k′
W (k, k′)

(
1 − kk′

k2

)
(9.52)

This simple expression for the relaxation time is valid when four conditions are
satisfied, namely, smallness of deviation from equilibrium (9.34), isotropy of
spectrum (9.30), scattering probability (9.48) and scattering elasticity ε′ = ε.
In the case where these conditions are fulfilled simultaneously the determina-
tion of the nonequilibrium distribution function is reduced to two independent
problems: the calculation of τ(k) from (9.52) and the solution of the differential
Boltzmann equation (9.39).

Section 9.4 is devoted to the calculation of τ(k) for different scattering
mechanisms. But here we shall present the solution of the Boltzmann equation
(9.39) in the relaxation time approximation.

We have found the solution of the Boltzmann equation (9.39) in the
absence of magnetic field (H = 0). It has the form of (9.44). Using this
solution we shall first find the constraints to be imposed on the electric field
and temperature gradient to satisfy the condition for linear approximation or
1 Note that the relaxation time can also be introduced in the case of inelastic scat-

tering if the transition probability satisfies the condition W (k, k′) = W (k,−k′)
which takes place in the case of scattering by nonpolar optical phonons without
accounting for the dispersion. This conclusion follows immediately from (2.22).
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the condition for smallness of deviation of the distribution function f(k) from
the equilibrium function f0(k). If only the electric field is present from (9.44)
and (9.45) we have

f(k) = f0(k) − eτ(k)(υE0) (−∂f0/∂ε). (9.53)

For a nondegenerate electron gas, f0(ε) = exp((μ − ε)/k0T ) and we obtain
from (9.53) an explicit form of the condition for small deviations (9.34):

l̄eE0 � k0T, (9.54)

where l̄ = ῡτ̄ is the mean free path.
It is seen from (9.54) that the energy acquired by an electron in the electric

field for one mean free path must be much less than the mean thermal energy
k0T to satisfy an approximation that is linear in E0 or the nonequilibrium
addition f1 < f0. A comparison of (9.54) with the applicability condition for
the Boltzmann equation (9.18) shows that the field for which linear approx-
imation is valid must be weaker by a factor λ/l. Since in a nondegenerate
semiconductor λ/l ≈ 10−1, linear approximation is valid up to rather large
fields E0 ≈ 104 V/cm.

Accounting for k0T ∼ mυ2 the condition (9.54) can be rewritten as follows:

υd � υ, (9.55)

where υd = (eτ/m)E0 is the electron drift velocity and υ is the mean value
of the thermal velocity.

In strong degenerate electron gas, instead of (9.54), (9.55) and (9.53), we
obtain the following inequalities

l(μ)eE0 � μ or υd � υ(μ), (9.56)

where l(μ) = τ(μ)υ(μ) is the mean free path of an electron on the Fermi level,
υd = (eτ(μ)/m(μ))E0 is the drift velocity, and υ(μ) is the electron velocity
on the Fermi surface.

We now consider the conditions to be imposed on the temperature gra-
dient. In the presence of a temperature gradient, from (9.44) and (9.45) we
obtain

f(k) = f0(k) − τ(k)
ε− μ

T
(υ∇T )

(
−∂f0
∂ε

)
. (9.57)

For nondegenerate semiconductors, (9.57) and (9.34) yield the following
inequality governing the applicability of the linear approximation of the
solution with respect to temperature gradient

|μ/k0T − 1| l |∇T | � T. (9.58)

As in a nondegenerate semiconductor, we usually have |(μ/k0T ) − 1| ∼ 10,
so it can be said that the temperature variation over a length ∼ 10l must
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be much smaller than the temperature T itself to satisfy the condition of the
deviation from the equilibrium distribution (9.34).

In the conclusion of this subsection, we shall demonstrate the difference
of stationary distribution from equilibrium distribution in the k-space. To do
this, the solution (9.44) will be presented as follows:

f(k) = f0(k) − τ(k)
�

φ0(ε)
(
∂f0
∂k

)
. (9.59)

Consider the action of the electric field and temperature gradient separately.
In the presence of an electric field φ0 = −eE0, and, according to (9.59),
the stationary distribution f(k) is related to the equilibrium distribution as
follows:

f(k) = f0(k) +
τ(k)

�
eE0

(
∂f0
∂k

)
(9.60)

or
f(k) ≈ f0 (k + τ(k)eE0/�) = f0(k − Δk). (9.61)

It is seen that the stationary distribution f(k) is identical with the equilibrium
distribution f0(k) except that the coordinate origin in the k-space is shifted
from the point k = 0 to the point k − Δk = −τeE0/�. Figure 9.1 shows
schematically f(k) and f0(k) in the case of a degenerate electron gas. This
result is clear from the standpoint of the influence of the electric field on each
quantum state. Indeed, it follows from ṗ = F that the variation speed k under
the action of the force F = −eE0 is the same for all electrons. Therefore, the
distribution in the k-space will drift in the field, holding its shape invariant, at
a constant speed dk/dt = −eE0/�. However, scattering processes that tend to
return the system to the equilibrium state restrict this drift by Δk = −eE0τ/�
and establish the stationary (time-independent) electron distribution in the k-
space (dash line in Fig. 9.1). As seen from Fig. 9.1, the stationary distribution
f(k), in contrast to the equilibrium distribution f0(k), is nonsymmetric with
respect to the point k = 0. Therefore this state corresponds to a finite constant
current in a conductor.

k–k 0
Δk = −

E0

k–k –k0 0

ÑT

k0

f (k) f0(k) f (k) f0(k)

τeE0

η

(a) (b)

Fig. 9.1. Equilibrium (solid line) and nonequilibrium but stationary (dash line)
distribution functions for a degenerate electron gas in k - space: a) in the presence
of electric field, b) in the presence of temperature gradient
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Note, however, that the mean energy of the electron system in a stationary
state is equal to the energy in an equilibrium state. Actually, using (9.60) we
have ∫

ε(k)f(k)dk =
∫
ε(k)f0(k)dk, (9.62)

since as ε(k) is an even function of k the addend of (9.60) does not make a
contribution to the integral (9.62). Physically, this is associated with the fact
that the electrons, moving in the direction of the electric field and accelerating,
reduce (due to their negative charge) their wave vector by Δk. The electrons
moving against the field increase their k by the same value (see Fig.9.1). As
ε(k) is an even function of k, on average the electron system energy does not
vary.

In the presence of the temperature gradient φ0(ε) = − ( ε−μ
T

)∇T , accord-
ing to (9.59) the stationary distribution is

f(k) = f0(k) +
(ε− μ)τ(k)

�

∇T
T

∂f0
∂k

, (9.63)

which can be presented in the following form:

f(k) ≈ f0

(
k +

(ε− μ)τ(k)
�

∇T
T

)
= f0(k − Δk), (9.64)

where
Δk = − (ε− μ)τ(k)

T�
∇T. (9.65)

In the case of a degenerate electron gas with a parabolic dispersion relation
μ = �

2k2
0/2m, from (9.65) we have

Δk = −�τ(k)
2mT

(k2 − k2
0)∇T, (9.66)

where m is the effective conduction electron mass, and k0 is the wave vector
of an electron on the Fermi surface.

The function (9.64) is formally similar to (9.61). However, in contrast to
the electric field in the presence of a temperature gradient the shift Δk of the
stationary distribution relative to the equilibrium distribution f0(k) depends
on the value k. In particular, for k = k0, Δk = 0 and f(k0) = f0(k0).
For electrons with k > k0 the distribution shift is ∇k < 0 if the electron
moves along the temperature gradient ∇T , and Δk > 0 if the electron moves
against ∇T , and vice verse for electrons with wave vector k < k0: the shift
is Δk > 0 for motion along the gradient and Δk < 0 if the electrons move
against ∇T . An equilibrium distribution f0(k) and a stationary one f(k) for a
degenerate electron gas in the presence of the temperature gradient are shown
schematically in Fig. 9.1b. As seen from this figure, in the presence of the
temperature gradient the smearing width of the Fermi level in the distribution
of electrons moving against ∇T becomes greater (left part of Fig. 9.1b), for the
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electrons moving along ∇T the smearing width of the Fermi level is smaller
(right part of Fig. 9.1b) than the width for zero gradient of the temperature,
which is the same for all electrons.

This result can be understood from the following obvious considerations. A
crystal electron which is at the point r0 moving in the direction of increasing
temperature (in the direction of ∇T ) has to experience its last collision at the
point where the temperature is less than T (r) by τυ∇T . This suggests that the
distribution width for such electrons will be relatively smaller. Similarly, an
electron at the point r moving against ∇T must experience the last collision
at a higher temperature. Therefore, the distribution width for such electrons
will be greater than the mean width.

Thus, a temperature gradient causes violation of the symmetric electron
distribution with respect to the point k = 0 (see Fig. 9.1b) and thereby causes
a finite electric current proportional to ∇T .

Note that only for degenerate electron gases, as seen from Fig. 9.1, the
behaviour of the distribution deviation would be different from the equilibrium
one depending on the causes of this deviation, namely: an electric field or a
temperature gradient. When the electron gas is nondegenerate, (ε − μ) > 0.
Therefore, as seen from (9.61) and (9.64), in contrast to the degenerate case a
shift of the stationary electron gas distribution relative to an equilibrium one
is of the same nature for disturbance by an electric field or by a temperature
gradient. In both cases, the shift occurs in a direction opposite to the action
of E0 or ∇T (Fig. 9.2). In Fig. 9.2 the equilibrium (solid line) and stationary
(dash line) distribution functions for nondegenerate electron gas in k-space
are represented.

9.2.3 Solution of Boltzmann Equation with an Arbitrary
Nonquantizing Magnetic Field

We have shown that in the absence of a magnetic field in the τ -approximation
the Boltzmann equation solution (9.39) has the form of (9.44). In this solution
the vector Φ0(ε) possesses an explicit physical meaning, namely a generalized
force disturbing the equilibrium electron distribution in the k-space. Obvi-
ously, in a magnetic field H this force will be different. The disturbing force,
changed by the magnetic field, will be denoted as Φ(ε) = Φ(ε,E0,∇T,H ).
Then, the general solution of equation (9.39) will be

k–k Dk

f (k) f0(k)

Fig. 9.2. Equilibrium (solid line) and stationary (dash line) distribution function
for a nondegenerate electron gas in k -space
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f(k) = f0(k) − τ(k)(υ(k)Φ(ε))(∂f0/∂ε). (9.67)

Thus, the problem is reduced to finding the disturbing force Φ0(ε) in a mag-
netic field. To do this, substitute (9.67) into equation (9.39) and take into
account that it is possible to confine oneself to the equilibrium function in
the terms ∇rf and E0∇kf , while in the term involving the magnetic field,
[υH ], it is necessary to retain the nonequilibrium addition since, according to
(9.42), in a zero approximation this term is identical to zero. As a result, in a
first nonvanishing approximation for Φ0(ε), we obtain the following equation:

(υΦ0) +
e

�c
[υH ]∇κ(τυΦ) = (υΦ), (9.68)

where Φ0 is defined by (9.45).
To solve the equation (9.68), it is convenient to introduce the vector

P (ε) = τ(k)Φ(ε), (9.69)

which has the significance of the impulse of a disturbing force in the magnetic
field.

Then, P (ε) will satisfy the equation

(υΦ0) +
e

�c
[υH ]∇κ(υP ) =

1
τ(k)

(υP ). (9.70)

Let us transform the expression ∇κ(υP (ε)) using the known formula of the
vector analysis

∇κ(υP ) = (P∇κ)υ + (υ∇κ)P + [υ rotP ] + [P rotυ] . (9.71)

The last term in (9.71) vanishes since rotυ = (1/�)rot grad ε(k) ≡ 0. It
is known that in the case of a spherically symmetric zone the velocity υ is
directed along the k-vector and is determined by the expression (9.49). Taking
this into consideration it is easy to show that the first term of the right-hand
side of (9.71) is

(P∇κ)υ =
2m(k)
k

∂

∂k

(
1

m(k)

)
(kP )υ +

�

m(k)
P . (9.72)

By means of direct calculation it is possible to obtain

(υ∇k)P + [υ rotP ] =
(
kx
∂Px

∂ε
+ ky

∂Py

∂ε
+ kz

∂Pz

∂ε

)
�

2

m(ε)
υ. (9.73)

Substituting (9.72) and (9.73) into (9.70) and considering that all terms con-
taining the velocity υ vanish on scalar multiplication by [υH ] we obtain the
equation

(υΦ0) +
eτ(k)
cm(k)

([υH ] Φ) = (υΦ), (9.74)
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where, according to (9.69), we have gone on from P (ε) to the sought vector
Φ(ε).

The value m(k) entering into equation (9.74) is the effective mass of charge
carriers in the case of an isotropic band:

m(k) = �
2k

∂k

∂ε(k)
. (9.75)

Assuming υ �= 0 we obtain from (9.74) an ordinary vector equation for Φ(ε):

Φ0 +
e

c

τ(k)
m(k)

[HΦ] = Φ. (9.76)

To define Φ(ε) from this equation we shall proceed as follows. Equation (9.76)
is multiplied by H scalarly to give

(HΦ0) = (HΦ). (9.77)

Next, (9.76) is multiplied by H vectorially from the left:

[HΦ0] =
e

c

τ(k)
m(k)

H2Φ − e

c

τ(k)
m(k)

(HΦ)H + [HΦ] . (9.78)

From the last three equations it is easy to derive the final expression for the
disturbing force in the magnetic filed Φ(ε):

Φ(ε) =
1

1 + ν2

{
Φ0 +

e

c

τ

m
[HΦ0] +

( eτ
cm

)2

H(HΦ0)
}
. (9.79)

Here
ν = Ωτ, (9.80)

where Ω = eH/cm(k) is the cyclotron frequency.
The function (9.79), together with (9.67), gives the general linear solution

of the Boltzmann equation with an arbitrary nonquantizing magnetic field
for an arbitrary isotropic band in the relaxation time approximation. This
solution in the above approximation forms the basis of the theory of electron
transport phenomena in the classical domain. The applicability limits of this
solution are defined by the inequalities (9.24) and (9.26).

Now we shall take note of some general conclusions resulting from the
solution (9.79) for an isotropic band.

First, when the magnetic field H is directed along the disturbing force Φ0,
from (9.79) it follows that

Φ(ε) = Φ0(ε), (9.81)

i.e. in conductors with an isotropic dispersion relation the longitudinal mag-
netic field (H ||Φ0) does not change the disturbing force and, consequently,
there are no longitudinal effects in such conductors.
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Second, if the magnetic field H is perpendicular to the disturbing force
Φ0, then from (9.79) we have

Φ(ε) =
1

1 + ν2

{
Φ0 +

e

c

τ

m
[HΦ0]

}
, (9.82)

i.e. there will appear a disturbing force component perpendicular to H
and Φ0 which corresponds to the appearance of the current in this direc-
tion and, consequently, the appearance of such transverse effects asHall,
Nernst–Ettingshausen effects, etc.

Third, if we consider the projection of the disturbing force in the magnetic
field Φ(ε) on the direction of the vector Φ0, then from (9.79) we obtain

Φ(ε) =
1 + ν2 cos2 α

1 + ν2
Φ0(ε), (9.83)

where α is the angle between the magnetic field H and Φ0.
For α = 0, the first case (9.81) follows from (9.83). When α �= 0, i.e.

when there is a transverse component of the magnetic field with respect to
the direction Φ0, the projection of the disturbing force is less than the force
in the absence of the field: Φ(ε) < Φ0(ε). This means that in the presence of a
transverse magnetic field the specimen conductivity is less than that without
the field. That is, the specific resistance in the magnetic field, i.e. the magnetic
resistance, must increase.

At the end of this subsection we shall emphasize the following circum-
stance. As seen from (9.79), the magnetic field H enters into the Boltzmann
equation solution in terms of a nondimensional parameter ν = Ωτ =
(eH /mc)τ . The question arises whether it is possible to apply the solution
(9.79) to fields for which this nondimensional parameter is much greater than
unity, i.e.

ν = Ωτ � 1 orH � mc
eτ

≡ H0 (9.84)

as we know that the Boltzmann equation itself is applicable to magnetic fields
with an upper bound set by the condition (9.24). In other words, are the
conditions (9.84) and (9.24) compatible? If we combine these two conditions,
we shall obtain (

τk0T

�

)
H0 � H � H0. (9.85)

According to (9.56), we have
(

τk0T
�

) � 1; therefore the double inequality
(9.85) may take place. Consequently, the conditions (9.84) and (9.24) are
compatible and there is an extensive range of the magnetic field magnitude
for which the condition (9.84) is fulfilled while the quantization has not yet
begun.
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9.3 General Expressions of Main Kinetic Coefficients

The results obtained in the previous sections allow us to construct the trans-
port phenomenon theory in conductors with a spherically symmetric band. In
this section we consider an arbitrary isotropic band and obtain the general
expression for main kinetic coefficients.

All kinetic coefficients of interest measured in experiments can be expressed
in terms of galvanomagnetic and thermomagnetic tensor components σik , βik

and κik . In order to obtain an explicit form of these tensor components it
is necessary to find the relation of current density and energy flux to electric
field and temperature gradient. The afore-named relation is realized by means
of conductivity tensors.

9.3.1 Current Density and General Form
of Conductivity Tensors

Substituting the general solution of the Boltzmann equation (9.67) into (9.1)
and (9.2) we shall obtain for the current density and energy flux:

j =
e

4π3

∫
τ(κ)υ(k)(υ(k)Φ(ε))

(
∂f0
∂ε

)
dk, (9.86)

w = − 1
4π3

∫
(ε− μ)τ(κ)υ(k)(υ(k)Φ(ε))

(
∂f0
∂ε

)
dk. (9.87)

Proceeding to a spherical coordinate system in the k-space and integrating
over the angles we obtain for the current density and energy flux components:

ji =
e

3π2�2

∫ (
∂ε

∂k

)2

τ(k)Φi(ε)
(
∂f0
∂ε

)
k2dk, (9.88)

wi = − 1
3π2�2

∫ (
∂ε

∂k

)2

(ε− μ)τ(k)Φi(ε)
(
∂f0
∂ε

)
k2dk. (9.89)

Passing from the integration over the wave vector magnitude to integration
over energy, we have:

ji = − e

3π2

∫ (
−∂f0
∂ε

)
τ(ε)
m(ε)

Φi(ε)k3(ε)dε, (9.90)

wi =
1

3π2

∫ (
−∂f0
∂ε

)
(ε− μ)

τ(ε)
m(ε)

Φi(ε)k3(ε)dε. (9.91)

Here such definition of the electron effective mass for the arbitrary isotropic
band 1/m(ε) = (1/�2k)(∂ε/∂k) is used.

It is seen that the current and energy flux density components are governed
by the respective components of the force Φ(ε), whose explicit form is derived
from the Boltzmann equation solution and was presented in (9.79). Without
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loss of generality assume that the magnetic field is directed along the z-axis:
Hx = Hy = 0, Hz = H . Electric field and temperature gradient are in a
xy-plane. Then, according to (9.79), the components of Φ(ε) will have the
following form:

Φx =
1

1 + ν2
(Φ0x − νΦ0y) , (9.92)

Φy =
1

1 + ν2
(Φ0y + νΦ0x) , (9.93)

Φz = Φ0z, (9.94)

where Φ0x, Φ0y and Φ0z are given by the formula (9.45).
From (9.90) and (9.94) it follows that the longitudinal current density com-

ponent jz does not depend on the magnetic field, i.e. there is no longitudinal
magnetoresistance for a spherical band, as might be expected.

Using (9.92) and (9.93) in (9.90) we obtain the following expressions:

jx = σ11Ex − σ12Ey − β11∇xT + β12∇yT,

jy = σ12Ex + σ11Ey − β12∇xT − β11∇yT (9.95)

for the current density components in conductors with a spherically symmetric
band in an arbitrary nonquantizing magnetic field.

From (9.92), (9.93) and (9.91) while accounting for the lattice ther-
mal conductivity κph we obtain for the energy flux density the following
expressions:

wx = Tβ11Ex − Tβ12Ey − (κ11 + κph)∇xT + κ12∇yT,

wy = Tβ12Ex + Tβ11Ey − κ12∇xT − (κ11 + κph)∇yT. (9.96)

Kinetic tensor components included in expressions (9.95) and (9.96) have the
following form:

σ11 = ne2
〈
τ

m

1
1 + ν2

〉
, σ12 = ne2

〈
τ

m

ν

1 + ν2

〉
, (9.97)

β11 = −ne
T

〈
τ

m

(ε− μ)
1 + ν2

〉
, β12 = −ne

T

〈
τ

m

(ε− μ)ν
1 + ν2

〉
, (9.98)

κ11 =
n

T

〈
τ

m

(ε− μ)2

1 + ν2

〉
, κ12 =

n

T

〈
τ

m

(ε− μ)2ν
1 + ν2

〉
. (9.99)

The averaging symbol 〈. . .〉 denotes integrals of the following form

〈A(ε)〉 =
1

3π2n

∞∫ (
−∂f0
∂ε

)
k3(ε)A(ε)dε, (9.100)

where n is the conduction electron concentration, ν = Ωτ .
In (9.95) and (9.96) we took into account the symmetry of the conductivity

tensor components: σ21 = −σ12, σ22 = σ11, β21 = −β12, β22 = β11, κ21 =
−κ12, κ22 = κ11, which follows from the general formula (9.4).
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9.3.2 General Expressions of Main Kinetic Coefficients

Below we shall give definitions of the basic kinetic coefficients.

Galvanomagnetic Effects

Hall effect, i.e. the initiation of a transverse electric field Ey in the presence
of a current jx in the x -direction and in the absence of current jy if the
magnetic field is directed along the z-axis is determined from the conditions
jy = 0, ∇xT = ∇yT = 0 and characterized by a constant R. Then we have

R = Ey/jxH. (9.101)

Resistance in a magnetic field is determined from the conditions: jy = 0,
∇xT = ∇yT = 0. Then we have

ρ(H) = Ex/jx. (9.102)

Nernst effect, i.e. the initiation of a longitudinal temperature gradient in the
absence of heat flux in this direction: wx = 0, jy = 0,∇yT = 0. Then we have

B = ∇xT/jx. (9.103)

Note that this effect also takes place in the absence of a magnetic field. The
presence of a transverse magnetic field alters only the value B.

Ettingshausen effect, i.e. the initiation of transverse temperature difference
in the presence of electric current in the x-direction (jx �= 0) and in the absence
of current in the y-direction: jy = 0, wy = 0, as well as in the absence of the
gradient ∇xT = 0. Then for the Ettingshausen coefficient P we have

P = −∇yT/Hjx. (9.104)

Thermomagnetic Effects

Transverse Nernst–Ettingshausen effect, i.e. the transverse electric field Ey

associated with a temperature gradient ∇xT is determined from the conditions
jx = jy = 0,∇yT = 0 and characterized by the coefficient Q:

Q = −Ey/H∇xT. (9.105)

Longitudinal Nernst–Ettingshausen effect, i.e. the variations of the ther-
mopower in a transverse magnetic field is found from the conditions jx =
jy = 0, ∇xT �= 0. Then we have:

α(H) = Ex/∇xT. (9.106)
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Maggi–Righi–Leduc effect, i.e. the thermal conductivity variation in a trans-
verse magnetic field is determined from the conditions jx = jy = 0, ∇yT = 0.
Then we have:

κ(H) = −wx/∇xT. (9.107)

Righi–Leduc effect, i.e. the transverse temperature difference ∇yT associated
with the presence of the gradient ∇xT is determined from the conditions
jx = jy = 0, wy = 0 and characterized by the coefficient S:

S = −∇yT/H∇xT. (9.108)

Proceeding from the definition of the main kinetic coefficients and the relations
(9.95) and (9.96) it is easy to show that the kinetic coefficients are found in
terms of the components σik , βik and κik in the following way:

resistance in a transverse magnetic field

ρ(H) = σ11(σ2
11 + σ2

12)
−1, (9.109)

Hall coefficient
R = −H−1σ12(σ2

11 + σ2
12)
−1, (9.110)

transverse Nernst–Ettingshausen effect

Q = H−1 (σ12β11 − σ11β12) (σ2
11 + σ2

12)
−1, (9.111)

thermopower in a transverse magnetic field

α(H) = (σ11β11 + σ12β12) (σ2
11 + σ2

12)
−1, (9.112)

thermal conductivity in a transverse magnetic field

κ(H) = κph + κ11 − Tβ11α(H) − TH β12Q, (9.113)

Righi–Leduc coefficient

S =
1
H

1
κ(H)

[TH β11Q− Tβ12α(H) + κ12] . (9.114)

Nernst coefficient B and Ettingshausen coefficient P can be expressed by
α(H), Q and κ(H) as follows:

B = Tα(H)/κ(H), P = TQ/κ(H). (9.115)

Substituting expressions (9.97)–(9.99) into (9.109)–(9.112), for the first four
kinetic coefficients we obtain

ρ(H) =
1

ne2

1
D

〈
τ

m

1
1 + ν2

〉
, (9.116)

R = − 1
ne2H

1
D

〈
τ

m

ν

1 + ν2

〉
, (9.117)
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Q =
k0

e

1

DH

[〈
τ

m

1

1 + ν2

〉〈
τ

m

νx

1 + ν2

〉
−
〈

τ

m

x

1 + ν2

〉〈
τ

m

ν

1 + ν2

〉]
, �������

α(H) = −k0

e

{
1

D

[〈
τ

m

1

1 + ν2

〉〈
τ

m

x

1 + ν2

〉
+

〈
τ

m

xν

1 + ν2

〉〈
τ

m

ν

1 + ν2

〉]
− η

}
,

�������

where η = μ/k0T is the reduced chemical potential, x = ε/k0T is the reduced
energy, and

D =
〈
τ

m

1
1 + ν2

〉2

+
〈
τ

m

ν

1 + ν2

〉2

. (9.120)

The formulae (9.116)–(9.119) are common for conductors with an arbitrary
isotropic band. Using the above-mentioned formulae (9.116)–(9.119) it is
possible to calculate other kinetic coefficients B and P .

Using the above-mentioned general formulae it is possible to consider var-
ious limiting cases: absence of a magnetic field (ν = 0), weak (ν � 1) and
strong (ν � 1) magnetic field.

From formulae (9.116)–(9.119) it follows that for determination of analyt-
ical dependences of kinetic coefficient it is necessary to know an explicit form
of the dispersion law ε(k), and also the dependence of effective mass m and
relaxation time τ from energy. Let us note that components of kinetic tensors
include only the relation τ/m.

The dispersion law is determined from the decision of Schrödinger’s equa-
tion and the finding of the dependence τ(ε) is determined from the theory of
scattering. The following section is devoted to calculation of the relaxation
time for various scattering mechanisms.

9.4 Main Relaxation Mechanisms

In this section we shall consider some basic mechanisms of charge carrier
scattering in conductors with the isotropic dispersion relation and give the
respective relaxation times.

In the case where it is possible to introduce the notion of relaxation time
the problem of transport phenomena theory is greatly simplified and is divided
into three essentially independent problems: (1) the Boltzmann equation solu-
tion in the relaxation time approximation; (2) calculation of the current
densities and energy flux, and consequently the calculation of kinetic coef-
ficients measured experimentally; and (3) calculation of the relaxation time
τ(k) for different scattering mechanisms. We have solved the first and sec-
ond problems in the preceding sections/chapters. The present section/chapter
deals with the third problem.

We shall dwell upon some basic mechanisms of charge carriers’ scattering
and derive the respective expressions for relaxation time for any spherically
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symmetric band. As seen from (9.52), in order to calculate the relaxation
time τ(k) it is necessary to know the probability of transition of a charge
carrier W (k,k′) from one state with wave vector k to another with k′ due to
scattering by lattice defects.

Using the method of the nonstationary disturbance theory it is possible to
show that the transition probability during unit time takes the form:

W (k,k′) =
2π
�

∣∣∣〈k′
∣∣∣Ĥ ′

∣∣∣k〉
∣∣∣2 δ(εk′ − εk), (9.121)

where Ĥ ′ describes the interaction of the electron with impurities (defects) or
with phonons, considered as a small disturbance.

This formula underlies the theory of charge carrier scattering. Therefore,
note once again the conditions under which the formula (9.121) was derived.

First, the formula (9.121) was derived in the first order disturbance theory
which imposes the condition Ĥ ′ � Ĥ on the disturbance magnitude (Ĥ is
the nondisturbed Hamiltonian). This corresponds to the Born approximation
in the scattering theory.

Second, the disturbance action time Δt must be much less than the time
between two successive disturbance inclusions, i.e. Δt � τ , where τ is the
relaxation time. Only with the fulfilment of this condition is the Boltzmann
equation considered fair.

Now we shall go on to a discussion of particular scattering mechanisms
using the formulae (9.52) and (9.121).

9.4.1 Charge Carrier Scattering by Ionized Impurity Atoms

At low temperatures for which lattice oscillations are not intensive and phonon
gas is rarefied, the basic scattering mechanism in conductors is the scattering
of charge carriers by impurity atoms.

In the present problem in the plane-wave approximation the following
expression for the transition probability takes place:

W (k,k′) =
2π
�

Ni

V

∣∣∣∣
∫
U(r) exp

[
i(k − k′, r)

]
dr

∣∣∣∣
2

δ(εk′ − εk). (9.122)

where Ni = N/V is the impurity atom concentration, and U(r) is the
scattering potential.

The general formula (9.122) can be used to calculate the transition prob-
ability in the case of scattering by different potentials produced by impurity
atoms or lattice defects.

Impurity atoms usually form discrete energy levels in the energy gap near
the edges of allowed bands. They are therefore ionized easily, and at low
temperatures the main mechanism is scattering by impurity ions. A positive
(donor) or a negative (acceptor) impurity ion generates a long-range Coulomb
field with potential ϕ = ±e/ær at a point r of the semiconductor lattice,
where æ is the dielectric constant of the crystal, and e is the ion charge.
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If in (9.122) U(r) = eϕ = ±e2/ær is used as the disturbance potential and
the relaxation time is calculated in accordance with (9.52), it is easy to see
that τ−1 diverges logarithmically, and consequently the notion of mobility
loses its sense. In order to obtain a finite time of relaxation (and mobility) it
is necessary to make an attempt to somehow confine the sphere of action of
the Coulomb impurity ion potential. The first attempt to solve this problem
was made by Conwell and Weisskopf. They confined the ion action to a sphere
of radius equal to half of the mean distance between adjacent impurity ions.
This seemingly artificial approach provided a qualitatively correct result for
the temperature dependence of mobility at low temperatures.

A more rigorous consideration of the problem of charge carrier scattering
by impurity ions consists in taking account of the Coulomb potential screening
by charge carriers. In this case, the potential of a singly ionized impurity atom
at a point distance r from the ion location can be presented as

ϕ(r) = ±(e/ær) exp(−r/r0), (9.123)

where r0 is referred to as the radius of ion field screening and is defined
generally by the formula

r−2
0 = (4πe2/æ)

∫
(−∂f0/∂ε)g(ε)dε, (9.124)

where f0(ε) is the equilibrium electron distribution function, g(ε) is the state
density for an arbitrary isotropic band defined by the formula

g(ε) = (1/π2)k2(ε)dk(ε)/dε. (9.125)

Using the scattering potential U(r) = eϕ(r) in (9.122) and accounting for the
spherical symmetry of this potential we obtain for the transition probability
the expression

W (k,k′) =
2π
�

Ni

V

(
4πe2

æ

)2
δ(εk′ − εk)[

(k − k′)2 + r−2
0

]2 . (9.126)

As noted above and as seen from (9.126), scattering by impurity ions is elastic.
Therefore, this process can be characterized by the relaxation time and it is
possible to use the formula (9.52). Substituting (9.126) into (9.52) and going
on to spherical coordinates with polar axis along k integrating with respect
to k′ using δ-functions, and taking into account that the root of the equation
ε(k′) = ε(k) is k′ = k, we finally obtain for the relaxation time the expression

τ(k) =
�æ2

2πe4NiFimp(k)
k2

(
∂ε

∂k

)
, (9.127)

where
Fimp(k) = ln(1 + ξ) − ξ

(1 + ξ)
, ξ = (2kr0)2. (9.128)



9.4 Main Relaxation Mechanisms 347

In the case of a simple parabolic band accurate to a slowly varying factor
Fimp(k) we have from (9.127) τ ∼ ε3/2, or

τ(ε) =
æ2(2mn)1/2(k0T )3/2

πe4NiFimp(ε)

(
ε

k0T

)3/2

, (9.129)

where Fimp(ε) is given by (9.128) with ξ = 8mnεr
2
0/�

2. By virtue of (9.124)
the screening radius in this case is

r20 =
æk0T

6πe2n
F3/2

F1/2
. (9.130)

It is easy to obtain

r0 =
(

æk0T

4π e2n

)1/2

(9.131)

for nondegenerate electron gas, and

r0 =
[

æ�
2

4mne2

( π
3n

)1/3
]1/2

(9.132)

for strongly degenerate electron gas.
It is possible to consider two limiting cases depending on the value of the

product kr0.
For kr0 � 1 we have from (9.127) and (9.128)

τ(k) =
�æ2

2πe4Ni
k2

(
∂ε

∂k

)
1

ln(4k2r20)
. (9.133)

It is seen that for r0 → ∞, τ(k) → 0. Thus, to obtain a finite mobility
it is necessary to take into account the impurity ion of Coulomb potential
screening.

For kr0 � 1 we obtain from (9.127) and (9.128) the following expression

τ(k) =
�æ2

16πe4Nir40
k−2

(
∂ε

∂k

)
. (9.134)

In this limiting case of strong screening a charged impurity atom behaves as
a point defect with a short-range potential.

For a nondegenerate electron gas with a parabolic dispersion relation we
shall write down, according to (9.129), an explicit form for the applicability
condition of the Boltzmann equation in the case of scattering by a weakly
screened charged impurity atom (9.133). The condition τ(k0T ) � �/k0T
imposes the following restrictions on the impurity ion concentration Ni:

Ni � æ2(2mn)1/2(k0T )5/2

π�e4 ln(8mnk0Tr20/�
2)
. (9.135)

At such impurity ion concentrations, charge carriers’ scattering occurs as a
separate event by different centres and the mean free time between two suc-
cessive collisions becomes much larger than the time of the carrier’s presence
in the scattering ion field.



348 9 Non-Equilibrium Electron Gas in Solids

9.4.2 Charge Carrier Scattering by Phonons in Conductors
with Arbitrary Isotropic Band

At relatively high temperatures, charge carriers’ scattering by phonons
becomes the dominant relaxation mechanism. This occurs because of two rea-
sons. First, according to (9.129), the relaxation time defined for scattering
by impurity ions, τi ∼ ε3/2, increases as the temperature (energy) τi rises, so
that this mechanism is not too effective; in other words, charge carriers of high
energy easily go past the impurity ions without changing their motion direc-
tion, i.e. without scattering. Second, as the temperature increases, the phonon
number rises, and consequently the probability of the charge carrier-phonon
“collisions” increases.

Now we shall lead the relaxation time for charge carriers’ scattering by
phonons of various types: acoustic, nonpolar and polar optical phonons. To
do this, it is necessary to find explicitly the Hamiltonian of the disturbance
Ĥ′ describing the conduction electron interaction with the various types of
phonons.

Scattering by Acoustic Phonons, Deformation Potential Method

The conduction electron–lattice interaction energy Ĥ ′ is in essence electron
energy variation due to lattice oscillations. This variation, which is due to
electron motion disturbance, can be found using different methods. The first
method of the determination of Ĥ ′ was based on Bloch’s assumption of
deformed ions.

Here, we shall use the method of deformation potential which was proposed
by Bardeen and Schockley. The essence of this method is as follows.

When an elastic wave propagates in a crystal, an elementary cell becomes
deformed and changes its volume (the lattice constant changes), which results
in a variation of the positions of the bottom of the conduction band and the top
of the valence band as the bandwidth is sensitive to the lattice constant value.
It is the former variation that is the energy of the interaction of conduction
electrons with lattice oscillations. Obviously, it must be related to the shift
value. It is known that for acoustic oscillations at q → 0 all atoms in the
elementary cell oscillate in phase. Then, in this case, it is possible to write the
following expression for the shift uacous(r):

uacous(r) =
1√
N

∑
q

3∑
j=1

ej(q) {bj(q) exp(iqr) + b∗j(q) exp(−iqr)}, (9.136)

where ej(q) is the polarization unit vector, q is the wave vector, and bj(q) ∼
exp(−iωj(q)t) are the complex normal coordinates that depend harmonically
on time.

Since for long-wave acoustic oscillations the elementary cell almost does
not deform (only the centre of mass oscillates), the interaction energy cannot
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be proportional to the shift itself, but must be a linear function of the first
shift derivatives uacous(r) with respect to the coordinates:

Ĥ ′
acous = E1div uacous(r), (9.137)

which is referred to as the deformation potential and the coefficient of pro-
portionality E1 as the deformation potential constant which is to be obtained
experimentally (∼10 eV ).

Considering formulae (9.136) and (9.137) we shall have for the probability
of electron transition from the state k to the state k′ owing to the interaction
with acoustic phonons the following final expression:

Wacous(k,k′) =
∑

q

w1(q)
(
A+

kk′ (q) +A−kk′ (q)
)
, (9.138)

where

A+
kk′ (q) =

(
Nq +

1
2
∓ 1

2

)
δ(εk′ − εk ∓ �ω(q))δk′,k±q (9.139)

and

w1(q) =
πE2

1q
2

NMω(q)
, (9.140)

where ω(q) is the longitudinal acoustic phonon frequency.
The first term in the right-hand side of the expression (9.138) is the transi-

tion probability k → k′ due to phonon absorption, while the second is due to
phonon emission; the δ -functions and δ-symbols entering into (9.138) express
the laws of energy and impulse conservation respectively:

εk′ = εk ± �ω(q), k′ = k ± q. (9.141)

It is seen that scattering by acoustic phonons is, generally speaking, not elastic.
However, we shall show that at not very low temperatures this process is of
an elastic nature. To do this, using ω(q) = υ0q and the impulse conservation
law q =

∣∣k′ − k
∣∣ we estimate that

�ω(q)
ε̄k

=
υ0

√
mk0T

k0T
=

√
T0

T
� 1, (9.142)

where we have assumed that �
∣∣k′ − k

∣∣ ≈ √
mk0T , ε̄k ≈ k0T . In the expression

(9.142) T0 = mυ2
0/k0, υ0 is the sound velocity in crystal, and m is the effective

mass of the charge carriers. Assuming that m ≈ 10−28g, υ0 = 3 × 105 cm/s
we obtain T0 ≈ 1K. Thus, at T � T0 ≈ 1K the energy of absorbed or
emitted phonons is negligible compared with the charge carrier energy, and
the scattering is almost elastic. Therefore, in the calculations where applicable
we can assume �ω(q) � εk and neglect the phonon energy.
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In the case of a degenerate electron gas, we have ε̄k ≈ μF and the ratio

�ω(q)
ε̄k

≈
√

T0

Tdeg
� 1, (9.143)

where Tdeg = μF /k0 is the electron gas degeneracy temperature. Thus, the
nonelasticity of scattering can be neglected for both nondegenerate and degen-
erate electron gases. In addition, as seen from (9.142), �ω(q) � k0T ; therefore
it is possible to expand the Planck function. Then we have

Nq + 1 ≈ Nq ≈ k0T/�ω(q). (9.144)

As electron scattering by acoustic phonons is elastic it is possible to neglect the
phonon energy in the arguments of the δ-functions in (9.139). Then accounting
for (9.140) and (9.144) after a trivial summation over q using the impulse
conservation law we obtain from (9.138) a simple expression for the probability
of the transition k → k′ in the case of scattering by acoustic phonons:

Wacous(k,k′) =
2π
MN

E2
1

�υ2
0

k0Tδ(εk′ − εk). (9.145)

Then it is possible to substitute (9.145) into (9.52) and calculate the relaxation
time:

1
τ(k)

=
2π
MN

E2
1

�υ2
0

k0T
∑
k′

(
1 − kk′

kk′

)
δ(εk′ − εk). (9.146)

Hence, it follows that in the summation over k′ the second term yields zero.
Consequently, in the elastic approximation and when (9.145) is fulfilled the
arrival in the k-state from every possible k′-state during the relaxation is of
no account.

Later we shall consider an arbitrary isotropic, i.e. spherically symmetric
band, and turn the summation over k′ in (9.146) into an integral. If in the
integral obtained the volume elements in k′-space are written in spherical
coordinates, the integral over the angles will yield 4π while the integral over
the magnitude k′ can be taken using δ-functions. As a result, we shall obtain
for the relaxation time the expression

τ(k) =
π�ρ

E2
1

υ2
0

k0T

1
k2

(
∂ε

∂k

)
, (9.147)

where ρ = MN/V is the crystal density.
In the case of a standard band, we have εk = �

2k2/2mn and from (9.147)
follows the well-known formula

τ(k) =
2π�

4ρυ2
0

E2
1(2mnk0T )3/2

(
ε

k0T

)−1/2

, (9.148)
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from which it is seen that the relaxation time of the charge carriers with
respect to acoustic phonons is τ ∼ T−1ε−1/2.

Scattering by acoustic lattice oscillations takes place in all crystals irre-
spective of the elementary cell complexity. However, if the crystal has a simple
lattice (one atom in each elementary cell), scattering by acoustic oscillations
is the only mechanism of charge carrier–lattice interaction. In those crys-
tals where the lattice is complex, i.e. two or more atoms or ions are in each
elementary cell, alongside with scattering by acoustic oscillations there are
other mechanisms of charge carrier–lattice interaction which are sometimes
more important than acoustic scattering. They include scattering by nonpo-
lar and polar optical lattice oscillations. We shall dwell upon these scattering
mechanisms separately.

Scattering by Nonpolar Optical Phonons, Deformation
Potential Method

It is known that for long-wave optical oscillations q → 0 atoms in an elemen-
tary cell oscillate almost out of phase so that the center of gravity remains
immovable. Therefore, in this case the crystal deformation and accordingly
the band edge variation, i.e. the interaction energy, will be proportional to
the shift of any atom in an elementary cell uk(r):

uk(r) =
1√
N

∑
qj

ekj(q) {bj(q) exp(i qr) + b∗j(q) exp(−i qr)} . (9.149)

Consequently, the interaction operator of the charge carriers with optical
lattice oscillations can be presented as

Ĥ ′
opt =

3s∑
j=4

Ajuj , (9.150)

where uj is the shift corresponding to the jth branch, Aj is a constant vector
that is governed by the symmetry of arrangement of the charge carrier energy
band minima.

For the sake of simplicity, let us consider the scattering of charge carriers
as occurring at a specified minimum on one optical branch, and present the
vector A in the form

A = E0bg, (9.151)

where bg = (π/a)g is the reciprocal lattice vector, a is the lattice constant,
g is a unit vector directed from the Brillouin zone center towards the mini-
mum, and Eo is the optical deformation potential constant with dimensions
of energy.

Taking account of the last two relations as well as (9.149), we shall find for
the Hamiltonian of the deformation interaction of the electrons with long-wave
optical lattice oscillations the following expression:
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Ĥ ′
opt =

π

a

E0√
N

∑
q

(ge) {b(q) exp(i qr) + b∗(q) exp(−i qr)}. (9.152)

As a result, for the transition probability k → k′ due to scattering by non-
polar optical phonons we obtain, similarly to (9.138), the expression

Wopt(k, k′) =
∑

q

w0(q)
(
A+

kk′ (q) +A−kk′ (q)
)
, (9.153)

where A+
kk′ (q) is given by the formula (9.139) and

w0(q) =
πE2

0

NMω(q)

(π
a

)2

(ge)2. (9.154)

If optical phonon dispersion is not taken into account, i.e. we assume that at
q → 0

ω(q) = ω0 (9.155)

the expression under the sum sign in (9.153) will not depend on the phonon
wave vector q and the summation over q becomes trivial. We then have

Wopt(k, k′) = w0 [N0δ(εk′ − εk − �ω(q)) + (N0 + 1)δ(εk′ − εk + �ω(q))] ,
(9.156)

where

w0(q) =
πE2

0

NMω0

(π
a

)2

(9.157)

and
N0 = [exp (�ω0/k0T ) − 1]−1 (9.158)

is the number of optical phonons with the limiting frequency ω0 at tempera-
ture T . During the transition from (9.154) to (9.157) we have assumed that
(ge) = 1.

The optical phonon energy �ω0 is not small and scattering in this case
is essentially nonelastic. Therefore, generally speaking, scattering by optical
phonons cannot be described by the relaxation time. However, if the transition
probability W (k, k′) is an even function of k′, i.e. W (k, k′) = W (k, −k′), the
relaxation time can be introduced even in the case of nonelastic scattering.
Indeed, if in (9.36) we take into account W (k, k′) = W (k, −k′) as well as
a nonequilibrium addition to the distribution function f1 ∼ k′, then in the
summation over k′ the second term in (9.36) vanishes, and the relaxation time
assumes the form

1
τ(k)

=
∑
k′
W (k, k′)

1 − f0(εk′ )
1 − f0(εk)

. (9.159)

It is seen that in this case relaxation is governed by the process where electrons
leave the k-states while the process of arriving in this state is of no account.
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The above condition W (k, k′) = W (k, −k′) is satisfied by the scattering
probability of the charge carriers with the isotropic dispersion relation (9.156)
by nonpolar optical phonons with limiting frequency ω0. Substituting (9.156)
into (9.159) and going over to integrate over k′ shall obtain for the relaxation
time the following

1
τ(k)

=
V w0

6π2

N0

f0(ε)

[
f0(ε+ �ω0) exp

(
�ω0

k0T

)
∂

∂ε
k3(ε+ �ω0)

+ Θ(ε− �ω0)f0(ε− �ω0)
∂

∂ε
k3(ε− �ω0)

]
, (9.160)

where Θ(x) is the step function: Θ(x) = 0 at x < 0, Θ(x) = 1 at x > 0,
and k(ε) is an arbitrary function of energy which establishes the dispersion
relation of charge carriers.

Note that (9.160) is the general expression for the relaxation time in the
case of scattering by nonpolar phonons from which all particular cases follow.
At high temperatures when k0T � �ω0 and it is possible to neglect the
nonelasticity, τ does not depend on the degree of degeneracy of the carriers,
and the following simple expression for the relaxation time of an arbitrary
isotropic band follows from (9.160), taking into account (9.158):

τ(k) =
1
π�

(
�ω0

E0

)3
ρa3

k0T

1
k2

(
∂ε

∂k

)
. (9.161)

A comparison of this formula with (9.147) shows that the function τ(ε, T )
at high temperatures in the cases of scattering by acoustic phonons and by
nonpolar optical phonons is the same: τ ∼ T−1k−2(ε) ∂ε

∂k .
For a parabolic band we have k(ε) = (1/�)(2mnε)1/2, and it follows from

(9.161) that

τ(ε) =
2
π

(
�ω0

E0

)2
�

2ρa2

(2mnk0T )3/2

(
ε

k0T

)−1/2

. (9.162)

In the case of a nondegenerate electron gas, (9.160) assumes the form (9.162)
at high temperatures k0T � �ω0, ε > �ω0, while at low temperatures k0T �
�ω0, ε < �ω0 the phonon emission process is not possible and

τ =
√

2
π

(�ω0)1/2

E2
0

�
2ρa2

m
3/2
n

exp
(

�ω0

k0T

)
, (9.163)

which depends only on the absorption of phonons with energy ε < �ω0. It
is seen that at low temperatures the relaxation time for scattering by non-
polar optical phonons does not depend on energy but rather on temperature
exponentially.
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Scattering by Polar Optical Phonons

The mechanism of scattering by nonpolar optical phonons discussed in the
preceding subsection is the only mechanism of interaction of the charge car-
riers with optical oscillations in crystals with a covalent bond, i.e. homopolar
crystals. Among these are semiconductors of the n-Ge type. The elementary
cell of these crystals consists of neutral atoms, and therefore in case of optical
oscillations only deformation potential occurs. However, in heteropolar crys-
tals, i.e. ion crystals (NaCl, KCl, etc.) or crystals with an ionic fraction of the
chemical bond (compounds of the AIIIBV type such as InSb, GaAs etc.), for
optical lattice oscillations electric polarization occurs alongside with deforma-
tion potential, which causes additional interaction of these oscillations with
charge carriers. This mechanism, which is referred to as scattering by polar
optical phonons, is more significant in many crystals than scattering by acous-
tic and optical deformation potentials. The present point is devoted to this
scattering mechanism.

Let us consider a cubic crystal with an ionic fraction of the chemical
bond with two ions in an elementary cell (semiconductors of the AIIIBV and
AIIBV I types). Long-wave optical oscillations are of interest to us when ions
of different signs, shifting towards opposite sides, cause lattice polarization.
Such polarization propagates in the crystal and forms a polarization wave.
The polarization vector which occurs in this case at the point r has the form

P (r) =
(
NM0ω

2(q)
4πVæ∗

)1/2

(u1 − u2) , (9.164)

where M0 = M1M2/ (M1 +M2) is the reduced elementary cell mass, M1, M2

are the ion masses, ω(q) is the frequency of the longitudinal optical phonons,

1/æ∗ = 1/æ∞ − 1/æ0, (9.165)

where æ∞ and æ0 are, respectively, the high-frequency and static dielectric
constants of the crystal, and N is the number of elementary cells in the crystal
of volume V .

Accounting for (9.149) the expression (9.164) assumes the following form:

P (r) =
(
M0ω

2

4πVæ∗

)1/2∑
q

∑
j=4,5,6

ej

{
bj(q) exp(i qr) + b∗j (q) exp(−i qr)

}
,

(9.166)
where M = M1 +M2 is the elementary cell mass.

The polarization vector P (r) is equivalent to the presence of a bound
charge with density ρg(r) = −div P (r), which corresponds to the scalar
potential ϕ satisfying the Poisson equation

∇ϕ = −4πρg = 4π div P (r). (9.167)
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Substituting (9.166) into this equation it is possible to find ϕ and thereby
find the disturbance energy Ĥ ′

pol = ±eϕ related to optical polarization lattice
oscillations. As a result, we have

Ĥ ′
pol = ∓i e

(
4πMω2(q)
V æ∗

)1/2∑
q

∑
j=4,5,6

1
q2

(ejq) {bj(q) exp(i qr)

+b∗j(q) exp(−i qr)} . (9.168)

It is seen from this expression that the charge carriers interact only with the
longitudinal optical polarization oscillations, for which ej ||q and (ejq) = q.
Therefore, only one term remains in the sum over j, and in further discussions
we shall omit the index showing the branch number.

Following the same procedure as in the case of scattering by acoustic
phonons, it is easy to obtain from (9.168) the transition probability k → k′

caused by interaction of the charge carriers with polar optical phonons:

Wpol(k,k′) =
∑

q

w(q)
(
A+

kk′ (q) +A−kk′ (q)
)
, (9.169)

where A±kk′ (q) is given by the formula (9.139) and

w(q) =
4π2e2ω(q)
V æ∗q2

, (9.170)

where ω(q) is the longitudinal optical oscillation frequency.
If the optical phonon dispersion ω(q) = ω0 is not taken into account, the

summation over q in (9.168) using the impulse conservation law yields the
closed expression for the transition probability in the case of scattering by
polar optical phonons

Wpol(k,k′) =
4π2e2

V æ∗
ω

(k′ − k)2
[N0δ(εk′ − εk − �ω0)

+(N0 + 1)δ(εk′ − εk + �ω0)] , (9.171)

where No is the number of optical phonons with limiting frequency ω0.
It is seen from (9.171) that, in contrast to nonpolar phonons, the transition

probability for scattering by polar optical phonons depends significantly on
the directions of k and k′. Therefore, the formula (9.159) for polar optical
phonons is not valid, and in the general case it is impossible to introduce a
relaxation time for scattering by polar optical oscillations.

The process of scattering by polar optical phonons can be described in
terms of a relaxation time only in two limiting cases: high temperatures
(k0T � �ω0) and low temperatures (k0T � �ω0). Let us consider these
cases separately.

In the region of high temperatures (k0T � �ω0) the nonelasticity can be
neglected and we have εk′ ≈ εk and N0 + 1 ≈ N0 ≈ k0T/�ω. Then (9.171)
assumes the form
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Wpol(k,k′) =
8π2e2

V æ∗
k0T

�

1
(k′ − k)2

δ(εk′ − εk). (9.172)

Substituting (9.172) into (9.52), changing the summation to integrate over
dk′ in spherical coordinates and using a δ-function in the integral over k′ it
is easy to obtain the expression τ(k) below which is valid for an arbitrary
isotropic band

τ(k) =
æ∗�

2e2k0T

(
∂ε

∂k

)
. (9.173)

Note that, in contrast to nonpolar optics, τ(k) does not depend on the phonon
frequency (the formulae (9.173) and (9.161)) for scattering by polar optical
phonons at high temperatures. As for a standard band ε = �

2k2/2m (9.173)
assumes the known form

τ(ε) =
1
2α

(
�

ω0k0T

)1/2(
ε

k0T

)1/2

, (9.174)

where

α =
e2

æ∗�

(
mn

2�ω0

)1/2

(9.175)

is the nondimensional parameter introduced by Frohlich which characterizes
the interaction of a conduction electron with longitudinal long-wave optical
phonons in ionic crystals.

The relaxation time calculation presented here is based on the disturbance
theory and is valid for α < 1.

Note that τpol ∼ T−1ε1/2, while τnonpol ∼ T−1ε−1/2 (9.162). Conse-
quently, as the energy ε increases, scattering by nonpolar phonons can become
dominant (τnonpol < τpol).

In the region of low temperatures (k0T � �ω0) the scattering process
by optical phonons is essentially nonelastic, and it is impossible to introduce
relaxation time as we have done for elastic interaction (see the formula (9.52)).
However, other circumstances make it possible here to describe the relaxation
process in terms of a relaxation time. We know that in this case the interac-
tion mechanism consists of the transitions ε(k) → ε(k′) = ε(k)±�ω0 (leaving
the state k) and ε(k′) ± �ω0 → ε(k) (arrival in the k-state) due to phonon
absorption and emission. It is obvious that at low temperatures (k0T � �ω0)
only one of these four processes can take place: ε(k) → ε(k′) = ε(k) + �ω0,
i.e. only leaving the k-state for other k′- states is possible with phonon
absorption. Having absorbed the phonon, the same electrons instantaneously
(spontaneously) emit a phonon with the same energy �ω0 since the ratio
of the emission probability to the absorption probability is (N0 + 1)/N0 ≈
exp(�ω0/k0T ) � 1. Owing to this process there occurs a relaxation with
respect to impulse, and the electron energy does not change. Since these
processes of phonon absorption and emission occur instantaneously the dis-
tribution function f(k′) has no time to change. Therefore, it is possible to
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neglect in (9.36) the term proportional to f1(k′). Then the relaxation time
will assume the form of (9.159) but with the difference that (9.159) will now
include the portion of the probability (9.171) that is associated with phonon
absorption, i.e. in this case we have

1
τ(k)

=
4π2e2ω0N0

V æ∗
∑
k′

1 − f0(εk′)
1 − f0(εk)

1
(k′ − k)2

δ(εk′ − εk − �ω0). (9.176)

Converting the summation into integration over dk′ and using spherical
coordinates we first calculate the integration over angles. We then go from
integration over dk′ to that over dε′ and apply the energy conservation law.
As a result, for an arbitrary isotropic band at an arbitrary degree of degeneracy
of charge carriers we obtain the following expression:

1
τ(ε)

=
e2ω0

æ∗
f0(ε+ �ω0)

f0(ε)
k(ε+ �ω0)

k(ε)
∂k(ε+ �ω0)

∂ε
ln
[
k(ε+ �ω0) + k(ε)
k(ε+ �ω0) − k(ε)

]
.

(9.177)

In this formula it is assumed that ε� �ω0 and thereforeN0 ≈ exp(−�ω0/k0T ).
For a parabolic band k(ε) = (1/�)(2mnε)1/2. If the logarithmic term is

expanded in terms of the small quantity ε/�ω0 then the simple expression
follows from (9.177)

1
τ(ε)

=
2αω0f0(ε+ �ω0)

f0(ε)
, (9.178)

where α is given by the formula (9.175).
In the absence of degeneracy we have f0(ε) = exp((μ− ε)/k0T ) and from

(9.178) we obtain the well-known result

τ = (2αω0)−1 exp(�ω0/k0T ). (9.179)

It is seen that for scattering by polar optical phonons τ does not depend only
on ε in the case of a nondegenerate electron gas with a simple parabolic band.
In the general case, as it follows from (9.177) and (9.178), it does depend on
energy, but not as a power law. On the other hand, τ depends on temperature
exponentially.

9.4.3 Generalized Formula for Relaxation Time

Now we shall sum up the obtained results from the preceding sections.
In the simplest case where the band has a parabolic shape and the charge

carriers’ motion is described by a plane-wave, the relaxation time for all elastic
scattering mechanisms can be reduced to the formula

τ(ε) = τ0r(T ) (ε/k0T )r−1/2
. (9.180)
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Table 9.1. Values of parameters entering into the expressions (9.181) and (9.183)
for relaxation time for different mechanisms of elastic scattering

Scattering
mechanism

Scattering
parameter
r

τ0r(T ) A0r

Acoustic phonons
(deformation
potential)

0
2π�

4ρυ2
0

E2
1(2mnk0T )3/2

πE2
1k0T

�ρυ2
0

Nonpolar optical
phonons at high
temperatures
(k0T � �ω0)

a

0
2

π

(
�ω0

E0

)2
�

2ρα2

(2mnk0T )3/2
π3

�

(
E0

�ω0

)2
k0T

ρα2

Polar optical
phonons at high
temperatures
(k0T � �ω0)

a

1
1

2α

(
�

ω0k0T

)1/2
2π2e2k0T

æ∗�

Impurity ions 2
æ2(2mn)1/2(k0T )3/2

πe4NiFimp(ε)

2π3NiFimp(k)

�æ2

a At low temperatures (k0T � �ω0) in the case of scattering by polar or nonpolar
optical phonons τ does not depend on energy (r = 1/2), and for a parabolic band
it is given by the formulae (9.162) and (9.179) respectively.

The values of the scattering parameter r and the mean relaxation time τ0r(T )
which are obtained as a result of a comparison of (9.180) with the formulae
(9.129), (9.148), (9.162) and (9.174) for different elastic scattering mechanisms
are given in Table 9.1.

It is seen that for almost all scattering mechanisms τ0r(T ) does not depend
on energy, and τ(ε) is a power function of energy. An exception is scattering
by impurity ions. In this case, the function Fimp(ε) occurs in τ0r(T ) due to
screening, the explicit form of which is given by (9.128). However, this function
has a rather weak dependence on energy; therefore in the integration it is
usually considered as constant and factored outside the integral sign, assuming
that ε = ε̄, ε̄ is the mean charge carriers’ energy.

If the band is parabolic, it is convenient to present the τ−1(ε) as follows:

τ−1 = a0r(T )εrg(ε), (9.181)

where g(ε) = (2mn)3/2ε1/2

2π2�3 is the state density for the parabolic band and

a0r(T ) =
(k0T )r−1/2

τ0r(T )
2π2

�
3

(2mn)3/2
. (9.182)

Assume that the band is nonparabolic but spherically symmetric, i.e. the
energy is an arbitrary function of the wave number ε = ε(k) or is the same k
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in an arbitrary energy function k = k(ε). However, we shall assume that charge
carriers are described by the plane wave. In this case, according to the formulae
(9.128), (9.147), (9.161), (9.173) and (9.127), τ−1(ε) for all mechanisms has
the form

τ−1 = A0rk
−2r(ε)g(k(ε)), (9.183)

where g(k(ε)) = (1/3π2)dk3(ε)/dε is the state density of an arbitrary
spherically symmetric band, and the values of A0r are given in Table 9.1.

From (9.181) and (9.183) it follows that τ−1 has a common structure

τ−1 ∼W (ε)g(ε), (9.184)

where W (ε) is the scattering probability. It is seen that for different scattering
mechanisms, for a parabolic band we have

W (ε) ∼ ε−r, (9.185)

while for a nonparabolic band

W (ε) ∼ k−2r(ε). (9.186)

Note, however, that for deriving (9.183) and consequently (9.186) the non-
parabolicity was taken into account inconsistently. It was assumed that the
dispersion relation of charge carriers was nonparabolic, but when the matrix
element, i.e. the transition probability k → k′, was calculated the plane wave
was used as the wave functions of the initial and final states.

9.5 Boltzmann Equation Solution for Anisotropic Band
in Relaxation Time Tensor Approximation

9.5.1 Current Density

The present section/chapter briefly discusses the Boltzmann equation solution
for conductors with anisotropic band in relaxation time tensor approximation
by which the current density is found. The anisotropic band nonparabolicity
is taken into account and the degree of charge carriers’ degeneracy is taken
to be arbitrary. The results obtained are applicable to n−Ge, n−Si and lead
chalcogenides: PbTe, PbSe and PbS.

For accuracy, we shall consider an electron semiconductor with many min-
ima in the energy spectrum. The isoenergetic surface near each minimum is
an ellipsoid of the general form described by the following equation:

B(ε) =
�

2

2

(
k2

x

m01
+

k2
y

m02
+

k2
z

m03

)
, (9.187)

where m0i are the effective mass components at the conduction band bottom,
andB(ε) is any smooth function of energy ε. In particular, for n−Ge and n−Si,
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B(ε) = ε; for lead chalcogenides (PbTe, PbSe,PbS), B(ε) = ε(1 + ε/εg); and
for all the above-mentioned semiconductors, m01 = m02 = m0⊥, m03 = m0||
is an ellipsoid of revolution.

The effective mass tensor relative to the major ellipsoid axes will be,
naturally, diagonal:

m−1
ik = m−1

i δik , (9.188)

where mi are the diagonal components of the effective mass relating the
velocity and impulse components:

υi = �
−1(∂ε/∂ki) = �ki/m. (9.189)

In the general case, m−1
i = (1/�2ki)(∂ε/∂ki) depends on energy and this

dependence is given by the function B(ε):

mi(ε) = m0i(∂B(ε)/∂ε). (9.190)

9.5.2 The Boltzmann Equation Solution

If we confine our discussion to elastic scattering (ε = ε′), then in accor-
dance with the principle of detailed equilibrium W (k,k′) = W (k′,k), and
the Boltzmann equation can be rewritten as

υ∇rf − e

�

(
E0 +

1
c

[υH ]
)
∇kf =

∑
k′
W (k,k′)(f(k′) − f(k)), (9.191)

whose solution can be presented as

f(k) = f0(k) − (∂f0/∂ε)(υP (ε)), (9.192)

where P (ε) is an unknown vector to be defined and has the meaning of a
generalized force impulse.

Let us substitute (9.192) into the right-hand side of (9.191) and introduce
the inverse relaxation time tensor τ̂−1 as follows:
∑
k′
W (k,k′)(f(k′) − f(k))

= −
(
∂f0
∂ε

)
P (ε)

∑
k′
W (k,k′)(υ′ − υ) ⇒

(
∂f0
∂ε

)
P (τ̂−1υ). (9.193)

Then, in a linear approximation the equation (9.191) assumes the form

υ∇rf0 − e

�
E0∇kf0 +

e

c�
[υH ]∇k(υP (ε)) =

(
∂f0
∂ε

)
P (τ̂−1υ). (9.194)

In a coordinate system with axes along the major ellipsoid axes (9.187), the
relaxation time tensor τ̂−1, in accordance with (9.188), is diagonal:
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τik = τiδik . (9.195)

To transform the factor ∇k(υP ) in (9.194) we introduce the unit vector n in
the k-space. Then

∇k(υP ) =
∑
αβ

nα
∂

∂kα
(υβPβ) =

∑
αβ

nα

(
Pβ
∂υβ

∂kα
+ υβ

∂Pβ

∂kα

)
, (9.196)

where nα are the unit vector components in the k-space. If (9.189) and ∂υβ

∂kα
=

�

mβ
δαβ are taken into account, (9.196) can be presented as follows:

∇k(υP ) = �(m̂−1P ) + �υ
∑

β

υβ
∂Pβ

∂ε
, (9.197)

where m̂−1 is the diagonal tensor of the inverse effective mass (9.188).
Substituting (9.197) into (9.194) and accounting for (9.42) and (9.43), we

obtain the following expression for the vector P (ε):

(υΦ0) +
e

c
υ
[
H (m̂−1P )

]
= (P (τ̂−1υ)), (9.198)

where Φ0 is the generalized disturbing force (9.45). To solve the vector
equation (9.198) it is convenient to present P (ε) in the form

P (ε) = (τ̂−1Φ(ε)). (9.199)

Then, accounting for the diagonality of the tensor τ̂−1 (9.195), the right-hand
side of (9.198) will assume the form

(P (τ̂−1υ)) = (Φυ). (9.200)

Taking account of the last two relations and noting that υ �= 0, we obtain an
equation for Φ(ε) from (9.198),

Φ0 +
e

c

[
Hm̂−1(τ̂Φ)

]
= Φ. (9.201)

Solving this equation while accounting for the tensor diagonalities m̂ and τ̂ ,
(9.188) and (9.195), it is possible to find the vector components Φ(ε). As a
result, we have the following compact solution for the required vector P (ε)
(9.199)

P (ε) =
1

1 + ν2
0

{
τ̂Φ0 +

e

c
τ̂
[
Hm̂−1(τ̂Φ0)

]
+
e2

c2
|τ̂ |
|m̂| (HΦ0)(m̂H)

}
, (9.202)

where

ν2
0 =

e2

c2
|τ̂ |
|m̂| (m̂H)(τ̂−1H) (9.203)

and |τ̂ | = τ1τ2τ3 |m̂| = m1m2m3 are the determinants of the diagonal
relaxation time tensors τ̂ and effective mass tensor m̂.

Note that in the case of scalar effective mass and relaxation time, (9.202)
is reduced to the well-known solution (9.69) with (9.79).
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9.5.3 Current Density

The solution (9.202) provides the possibility of calculating current density in
the most general case of anisotropic spectrum and scattering in an arbitrary
magnetic field.

Based on the general expression (9.1) it is possible to reduce the ith current
density component for the spectrum (9.187) to the form

ji = −e(8m01m02m03)1/2

3π2�3

∫ (
−∂f0
∂ε

)
B3/2(ε)

Pi(ε)
mi(ε)

dε. (9.204)

In this case, we deform the ellipsoid (9.187) by the substitution ki =
√
m0ik

′
i

and go on to integrate over energy, accounting for the fact that Pi and mi

depend on ε. Let us introduce an averaging formula for anisotropic spectrum
(9.187):

〈A(ε)〉 =
(8m01m02m03)1/2

3π2�3n0

∫ (
−∂f0
∂ε

)
B3/2(ε)A(ε)dε, (9.205)

where

n0 =
(8m01m02m03)1/2

3π2�3

∫ (
−∂f0
∂ε

)
B3/2(ε)dε (9.206)

is the charge carriers’ concentration in a valley with the spectrum (9.187).
Then (9.204) has the symbolic form

ji = −en0

〈
Pi(ε)
mi(ε)

〉
. (9.207)

This formula has an obvious physical sense: current density components are
defined by the average of the corresponding drift velocity components, since
Pi are the impulse components of the force that gives rise to drift, and Pi/mi

is the drift velocity.



A

Definite Integrals Frequently Met
in Statistical Physics

A.1 Gamma-Function or Euler Integral of Second Kind

Γ(n) =

∞∫
0

xn−1e−xdx; n > 0. (A.1)

Write down this integral for Γ(n + 1) and integrate up by parts once. As a
result, we get the following recurrent formula

Γ(n+ 1) = nΓ(n). (A.2)

For any integer number (n > 0) from (A.2) it follows that

Γ(n+ 1) = n · (n− 1) · (n− 2) . . . 1Γ(1). (A.3)

Inasmuch as the integral entering here is

Γ(1) =

∞∫
0

e−xdx = 1, (A.4)

then (A.3) takes the form
Γ(n+ 1) = n! (A.5)

For a semi-integer n = 2k+1
2 from (A.2) it follows that

Γ
(

3
2

)
=

1
2
Γ
(

1
2

)
; Γ
(

5
2

)
=

1
2
· 3
2
Γ
(

1
2

)
;

Γ
(

7
2

)
=

1
2
· 3
2
· 5
2
Γ
(

1
2

)
.

(A.6)
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In the general case

Γ
(

2k + 1
2

)
=

(2k − 1)!!
2k

Γ(1/2); k = 1, 2, 3, . . . (A.7)

Here the double factorial (2k− 1)!! is the product of subsequent odd numbers
from 1 to (2k − 1), i.e. (2k − 1)!! = 1 · 3 · 5 · . . . · (2k − 1). According to the
definition

Γ(1/2) =

∞∫
0

x−1/2e−xdx. (A.8)

To calculate this integral introduce the replacement x1/2 = t. Then we get

Γ(1/2) = 2

∞∫
0

e−t2dt. (A.9)

In as much as the latter integral equals
√
π/2, then

Γ(1/2) =
√
π. (A.10)

As a result, for an arbitrary semi-integer argument (A.7) takes the form

Γ
(

2k + 1
2

)
=

(2k − 1)!!
2k

√
π; k = 0, 1, 2, 3, . . . (A.11)

A.2 Integral of Type

In =

∞∫
0

xne−ax2
dx; a > 0, n ≥ 0 is an integer number. (A.12)

Carry out the replacement ax 2 = y. Then we have

In =
1
2
a−

n+1
2

∞∫
0

e−yy
n−1

2 dy =
1
2
a−

n+1
2 Γ

(
n+ 1

2

)
. (A.13)

Hence for n = 0

I0 =
1
2
a−1/2Γ(1/2) =

1
2

√
π

a
, (A.14)

for even n, i.e. n = 2k

I2k =
1
2
a−

2k+1
2 Γ

(
2k + 1

2

)
(A.15)
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or [(see A.11)]

I2k =
(2k − 1)!!

2k+1

√
π

a2k+1
, k ≥ 1 (A.16)

for odd n, i.e. n = (2k + 1)

I2k+1 =
1
2

1
ak+1

Γ (k + 1) =
k!

2ak+1
, k ≥ 0. (A.17)

Adduce values of the integral In in particular cases:

I1 =
1
2a

; I2 =
1
4

√
π

a3/2
; I3 =

1
2a2

; I1 =
3
8

√
π

a5/2
. (A.18)

If in an integral (A.12) the boundaries change in the limits from −∞ to +∞,
for odd n we get

∞∫
−∞

xne−ax2
dx = 0, (A.19)

and for even n ∞∫
−∞

xne−ax2
dx = 2

∞∫
0

xne−ax2
dx. (A.20)

A.3 Integral of Type

Kn =

∞∫
0

xndx
ex − 1

, (A.21)

n is an integer or a semi-integer positive number. Transpose a certain part of
the integrand:

1
ex − 1

=
e−x

1 − e−x
= e−x(1 + e−x + e−2x + · · · ) = e−x

∞∑
k=0

e−kx (A.22)

and substitute this series into (A.21). As a result we have

Kn =

∞∫
0

xn
∞∑

k=0

e−(k+1)xdx. (A.23)

If we introduce the replacement of variables (k + 1)x = t, then

Kn =
∞∑

k=0

(k + 1)−(n+1)x

∞∫
0

tne−tdt (A.24)
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and we get
Kn = Γ(n+ 1)ζ(n+ 1), (A.25)

where Γ(n) is the gamma-function [see (A.1)], and

ζ(n) =
∞∑

k=1

1
kn

(A.26)

is the Riemann function.
All information about the Γ(n)- function are given in Appendix A.
Adduce some values of ζ(n) function:

ζ(2) = π2

6 ; ζ(3) = 1, 202; ζ(4) = π4

90 ;

ζ(5) = 1, 037; ζ(3/2) = 2, 612; ζ(5/2) = 1, 341.
(A.27)

If we take into account these values, we can find necessary values of the integral
of the Kn type

K1/2 = Γ(3/2)ζ(3/2) = 2, 33;K1 = Γ(2)ζ(2) =
π2

6
; (A.28)

K3/2 = Γ(5/2)ζ(5/2) = 1, 78;K2 = Γ(3)ζ(3) = 2, 4; (A.29)

K3 = Γ(4)ζ(4) =
π4

15
. (A.30)

A.4 Integral of Type

Mn =

∞∫
0

xnexdx
(ex − 1)2

; n > 1. (A.31)

In order to calculate this integral, we expand a certain part of the integrand
function into an infinitive series

(ex − 1)−2 = e−2x(1 − e−x)−2 = e−2x(1 + 2e−x + 3e−2x + · · · )
or

(ex − 1)−2 = e−2x
∞∑

m=0

(m+ 1)e−mx . (A.32)

Substituting (A.32) into (A.31), we get

Mn =
∞∑

m=0

(m+ 1)

∞∫
0

xne−(m+1)xdx. (A.33)
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Introducing the replacement of variables (m+ 1)x = t, we get

Mn =
∞∑

m=0

(m+ 1)−n

∞∫
0

tne−tdt;n > 1. (A.34)

If we take into account definitions of Γ(n) (A.1) and ζ(n) (A.26) functions,
the integral takes the form

Mn = Γ(n+ 1)ζ(n). (A.35)

In particular cases

M3/2 = Γ(5/2)ζ(3/2) = 3, 48;M2 = Γ(3)ζ(2) =
π2

3
; (A.36)

M5/2 = Γ(7/2)ζ(5/2) = 4, 45;M3 = Γ(4)ζ(3) = 7, 21; (A.37)

M4 = Γ(5)ζ(4) =
4π4

15
. (A.38)

A.5 Integral of Type

Ln =

∞∫
0

xndx
ex + 1

. (A.39)

To compute this integral, expand the expression (ex + 1)−1 into a series in
powers of e−x:

(ex + 1)−1 = e−x(1 + e−x)−1 = e−x
∞∑

k=0

(−1)ke−kx. (A.40)

Having substituted the latter expression into (A.39), we get

Ln =
∞∑

k=0

(−1)k

∞∫
0

xne−(k+1)xdx. (A.41)

If we introduce the replacement of variables (k + 1)x = t, the integral takes
the form

Ln =
∞∑

k=0

(−1)k

(k + 1)n+1

∞∫
0

tne−tdt = Γ(n+ 1)
∞∑

k=0

(−1)k

(k + 1)n+1
. (A.42)

Transpose the series entering into this expression. To do this in (A.42) add
and subtract a series consisting of k. As a result we get:
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∞∑
k=0

(−1)k

(k + 1)n+1
=
∞∑

k=0

1
(k + 1)n+1

− 2
∞∑

m=0

1
(2m+ 2)n+1

(A.43)

or
∞∑

k=0

(−1)k

(k + 1)n+1
= (1 − 2−n)

∞∑
k=0

1
(k + 1)n+1

= (1 − 2−n)ζ(n + 1). (A.44)

Substituting (A.44) into (A.42), we finally get

Ln = (1 − 2−n)Γ(n+ 1)ζ(n+ 1). (A.45)

Note that at n = 0 expression (A.45) turns into uncertainty, inasmuch as
ζ(1) = ∞.

However, at n = 0 integral (A.39) can be calculated immediately. Indeed,
at n = 0

L0 =

∞∫
0

dx
ex + 1

=

∞∫
1

dy
y(y + 1)

= − ln
(

1 + y

y

)∣∣∣∣
∞

1

= ln 2. (A.46)

In particular cases from (A.45) we find

L1/2 = (1 − 2−1/2)Γ(3/2)ζ(3/2) = 0.673, (A.47)

L1 =
1
2
Γ(2)ζ(2) =

π2

12
, (A.48)

L2 = (1 − 2−2)Γ(3)ζ(3) = 1.8, (A.49)

L3 = (1 − 2−3)Γ(4)ζ(4) =
7π4

120
. (A.50)



B

Jacobian and Its Properties

The Jacobian, defined as

∂(u, υ)
∂(x, y)

=

∣∣∣∣∣∣∣

∂u

∂x

∂u

∂y
∂υ

∂x

∂υ

∂y

∣∣∣∣∣∣∣
, (B.1)

possesses the following properties:

1.
∂(u, υ)
∂(x, y)

=
(
∂u

∂x

)
y

(
∂υ

∂y

)
x

−
(
∂u

∂y

)
x

(
∂υ

∂x

)
y

. (B.2)

2.
∂(u, υ)
∂(x, y)

= −∂(υ, u)
∂(x, y)

;
∂(u, υ)
∂(x, y)

= −∂(u, υ)
∂(y, x)

. (B.3)

3.
∂(u, y)
∂(x, y)

=
(
∂u

∂x

)
y

. (B.4)

4.
∂(u, υ)
∂(x, y)

=
∂(u, υ)
∂(t, s)

∂(t, s)
∂(x, y)

. (B.5)

5.
d
dt
∂(u, υ)
∂(x, y)

=
∂
(

du
dt , υ

)
∂(x, y)

+
∂
(
u, dυ

dt

)
∂(x, y)

. (B.6)

These properties of the Jacobian are frequently used when finding thermody-
namic relationships and calculating thermodynamic coefficients.
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