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Preface

The omnipresence of electronic devices in everyday life is accompanied by the

decreasing size and the ever-increasing complexity of digital circuits. This

comprehensive and easy-to-understand work deals with the basic principles of digital

electronics and allows the reader to grasp the subtleties of digital circuits, from logic

gates to finite-state machines. It presents all the aspects related to combinational

logic and sequential logic. It introduces techniques for simply and concisely

establishing logic equations as well as methods for the analysis and design of digital

circuits. Emphasis has been especially laid on design approaches that can be used to

ensure a reliable operation of finite-state machines. Various programmable logic

circuit structures and their applications have also been presented. Each chapter is

completed by practical examples and well-designed exercises that are accompanied

by worked solutions.

This book discusses all the different aspects of digital electronics, using

a descriptive approach combined with a gradual, detailed and comprehensive

presentation of basic concepts. The principles of combinational and sequential logic

are presented, as well as the underlying techniques to the analysis and design of

digital circuits. The analysis and design of digital circuits with increasing complexity

is facilitated by the use of abstractions at the circuit and architecture levels. There are

three volumes in this series devoted to the following subjects:

1) combinational logic circuits;

2) sequential and arithmetic logic circuits;

3) finite-state machines.

A progressive approach has been chosen and the chapters are relatively

independent of each other. To help master the subject matter and put into practice the

different concepts and techniques, the books are complemented by a selection of

exercises and solutions.
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1. Summary

Volume 1 deals with combinational logic circuits. Logic gates are basic

components in digital circuits. They implement Boolean logic functions and

operations that are applied to binary-coded data. Combinational logic is used only

for logic functions and operations whose outputs depend solely on the inputs. This

first volume contains the following four chapters:

1) Number Systems;

2) Logic Gates;

3) Function Blocks of Combinational Logic;

4) Systematic Methods for the Simplification of Logic Functions.

2. The reader

This book is an indispensable tool for all engineering students in bachelors or

masters course who wish to acquire detailed and practical knowledge of digital

electronics. It is detailed enough to serve as a reference for electronic, automation

and computer engineers.

Tertulien NDJOUNTCHE

April 2016



1

Number Systems

1.1. Introduction

Digital systems are used to process data and to perform calculations in most

instrumentation, monitoring and communication devices. As physical quantities and

signals can only take discrete values in a digital system, the interpretation of

real-world information requires the use of interface circuits such as data converters.

In general, numbers may be represented in different numeration systems. The

decimal system is commonly used in routine transactions while the binary system is

the basis for digital electronics. Every number (or numeration) system is defined by a

base (or radix), which is a collection of distinct symbols. The representation of a

number in a numeration system may be considered as a change in base. In a

positional number system, a value of a number depends on the place occupied by

each of its digits in the representation.

1.2. Decimal numbers

The decimal number system uses the following 10 numbers or symbols: 0, 1, 2, 3,

4, 5, 6, 7, 8, 9. The radix is thus 10.

EXAMPLE 1.1.– Decompose the numbers 734 and 12345 into powers of 10.

The decomposition of the number 734 takes the form:

734 = (7× 102) + (3× 101) + (4× 100)
= 73410

Digital Electronics 1: Combinational Logic Circuits, First Edition. Tertulien Ndjountche.
© ISTE Ltd 2016. Published by ISTE Ltd and John Wiley & Sons, Inc.
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For the number 12345, we have:

12 345 = (1× 104) + (2× 103) + (3× 102) + (4× 101) + (5× 100)
= 12 34510

Depending on its position, each number is multiplied by the appropriate power of

10. The right-most digit represents the unit digit.

1.3. Binary numbers

Binary number system is based on two-level logic, conventionally noted as 0 (low

level) and 1 (high level). It is a system with a radix of two.

EXAMPLE 1.2.– Convert the decimal numbers 13 and 125 into binary numbers.

The decomposition of the number 13 in powers of 2 is written as:

1310 = (1× 23) + (1× 22) + (0× 21) + (1× 20)
= 11012

For the number 125, we have:

12510 = (1× 26) + (1× 25) + (1× 24) + (1× 23) + (1× 22) + (0× 21)
+(1× 20) = 11111012

The binary code that is then obtained for a positive number is called a natural

binary code.

The coefficients or numbers (0 or 1) used in the binary representation of a number

are called bits.

The right-most bit is called the least significant bit (LSB), while the left-most bit

is called the most significant bit (MSB).

In practice, the conversion of a decimal number to a binary number can be carried

out by reading, from last to first, the remainders of a series of integer divisions as

illustrated by Figure 1.1.

The arithmetic and logic unit of a microprocessor manipulates binary numbers or

words with a fixed number of bits.
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125÷ 2 = 62 Remainder 1 (LSB)

62÷ 2 = 31 Remainder 0

31÷ 2 = 15 Remainder 1

13÷ 2 = 6 Remainder 1 (LSB) 15÷ 2 = 7 Remainder 1

6÷ 2 = 3 Remainder 0 7÷ 2 = 3 Remainder 1

3÷ 2 = 1 Remainder 1 3÷ 2 = 1 Remainder 1

1÷ 2 = 0 Remainder 1 (MSB) 1÷ 2 = 0 Remainder 1 (MSB)

1310 = 11012 12510 = 11111012

MSB

2

2

2

2

2

2

13

0

1

1
1
1

LSB

3

2

2

2

0

2

6

MSB

2

0

1

7
1

LSB

31

1
3

1
1

62

125
1

15

0
1

Figure 1.1. Decimal-binary conversion using
successive division methods

Region

H

VL
VLmin

VLmax

VHmax

VHmin

Voltage

Region

Forbidden region

V

Figure 1.2. Representation of logic voltage levels

A byte is an 8-bit word.

In practice, the bits 0 and 1 are represented by voltage or current levels.

Figure 1.2 shows the representation of logic voltage levels. The two regions VH and

VB are separated by a forbidden region where the logical level is undefined.

Logical states may be assigned to regions based on positive logic or negative logic.

In the case of positive logic, the region VH corresponds to 1 (or the high level), and
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the region VB corresponds to 0 (or the low level); and in the case of negative logic,

the region VH corresponds to 0 (or low level), and the region VB corresponds to 1 (or

high level).

1.4. Octal numbers

The octal number system or a representation with radix eight consists of the

following symbols: 0, 1, 2, 3, 4, 5, 6, 7.

EXAMPLE 1.3.– Convert the decimal numbers 250 and 777 to octal numbers.

In radix 8 representation, the number 250 takes the form:

25010 = (3× 82) + (7× 81) + (2× 80)
= 3728

In the case of the number 777, we have:

77710 = (1× 83) + (4× 82) + (1× 81) + (1× 80)
= 1 4118

The right-most digit is called the least significant digit (LSD), while the left-most

digit is called the most significant digit (MSD).

A practical approach to converting a decimal number to an octal number consists

of carrying out a series of integer divisions as illustrated in Figure 1.3.

777÷ 8 = 97 Remainder 1 (LSD)

250÷ 8 = 31 Remainder 2 (LSD) 97÷ 8 = 12 Remainder 1

31÷ 8 = 3 Remainder 7 12÷ 8 = 1 Remainder 4

3÷ 8 = 0 Remainder 3 (MSD) 1÷ 8 = 0 Remainder 1 (MSD)

25010 = 3728 77710 = 14118

LSD

7

3
0

3

8

8

8

31

8

1

4

0
1

LSD

12

97

777
1

250
2

MSD

8

8

8
MSD

1

Figure 1.3. Decimal-octal conversion using the
successive division method
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Octal numeration may be deduced from binary numeration by grouping,

beginning from the right, consecutive bits in triplets or, conversely, by replacing each

octal number by its three corresponding bits.

EXAMPLE 1.4.– Determine the radix 8 representation for the decimal numbers 85 and

129.

Radix 8 representations are obtained by replacing each group of three bits by the

equivalent octal number. We can therefore write:

8510 = 10101012 = 001︸︷︷︸
1

010︸︷︷︸
2

101︸︷︷︸
5

= 1258

Similarly,

12910 = 100000012 = 010︸︷︷︸
2

000︸︷︷︸
0

001︸︷︷︸
1

= 2018

1.5. Hexadecimal numeration

The hexadecimal number system or a representation with a radix 16 consists of the

following symbols: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.

EXAMPLE 1.5.– Convert the decimal numbers 291 and 1000 to hexadecimal.

The number 291 is represented in radix 16 by:

29110 = (1× 162) + (2× 161) + (3× 160)
= 12316

For the number 1000, we obtain:

1 00010 = (3× 162) + (14× 161) + (8× 160)
= 3E816

In practice, a series of integer divisions makes it possible to convert a decimal

number to a hexadecimal number. The different remainders constitute the results of the

conversion, beginning with the last, which is the MSD, to the first, which represents

the LSD. We thus have:

291÷ 16 = 18 Remainder 3 (LSD) 1000÷ 16 = 62 Remainder 8 (LSD)

18÷ 16 = 1 Remainder 2 62÷ 16 = 3 Remainder 14

1÷ 16 = 0 Remainder 1 (MSD) 3÷ 16 = 0 Remainder 3 (MSD)

29110 = 12316 100010 = 3E816
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142

LSD
16

18

16
LSD

62
8

291
3

MSD 1
1

16

0

16

1000

3

16

3

0

16
MSD

Figure 1.4. Decimal-hexadecimal conversion using
the successive division method

We can also proceed as demonstrated in Figure 1.4, the result of each conversion

being made up of the successive remainders of the divisions.

Binary to hexadecimal conversion is done by grouping the bits representing the

binary four by four and beginning from the right, conversely, replacing each

hexadecimal digit by its four corresponding bits.

EXAMPLE 1.6.– Convert the decimal numbers 31 and 2, 988 into hexadecimal.

To obtain the equivalent hexadecimal from the binary representation, each group

of four bits is replaced by the corresponding hexadecimal digit. We therefore have:

3110 = 111112 = 0001︸︷︷︸
1

1111︸︷︷︸
15=F

= 1F16

Similarly,

2 98810 = 1011101011002 = 1011︸︷︷︸
11=B

1010︸︷︷︸
10=A

1100︸︷︷︸
12=C

= BAC16

It is generally more convenient to represent the value of an octet using two

hexadecimal digits as it is more compact.

1.6. Representation in a radix B

In general, in radix B representation, a decimal number N may be decomposed as

follows:

N10 = bn−1B
n−1 + · · ·+ b2B

2 + b1B
1 + b0B

0 [1.1]

=

n−1∑
i=0

biB
i [1.2]

where B ≥ 2. Thus, the decimal number N is represented in radix B with n digits,

bn−1 · · · b2b1b0.
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Using n digits in a radix B numeration, we can code the decimal numbers from 0
to Bn − 1.

For an integer represented by n digits with a radix B, the formulas for conversion

are as follows:

(bn−1bn−2 · · · b2b1b0)B =
n−1∑
i=0

biB
i

= bn−1B
n−1 + bn−2B

n−2 + · · ·+ b2B
2 + b1B

1 + b0B
0

= b0 +B(b1 +B(b2 +B(· · ·+B(bn−2 +Bbn−1) · · · )))
= N10 [1.3]

EXAMPLE 1.7.– Convert the binary number 1101012, the octal number 56718 and the

hexadecimal number 5CAD16 to decimal.

In decimal form, the number 1101012 is written as:

1101112 = 1× 25 + 1× 24 + 0× 23 + 1× 22 + 1× 21 + 1× 20

= 1+ 2(1+ 2(1+ 2(0+ 2(1+ 2× 1))))
= 5510

For the number 56718, we get:

56718 = 5× 83 + 6× 82 + 7× 81 + 1× 80

= 1+ 8(7+ 8(6+ 8× 5))
= 300110

The conversion of the number 5CAD16 to decimal is effected by:

5CAD16 = 5× 163 + 12× 162 + 10× 161 + 13× 160

= 13+ 16(10+ 16(12+ 16× 5))
= 2372510

1.7. Binary-coded decimal numbers

To represent a 8421-type binary-coded decimal (BCD) number, each digit must be

replaced by its equivalent 4-bit binary.

EXAMPLE 1.8.– Give the BCD representation for the decimal numbers 90 and 873.
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The BCD representation of the number 90 is written as follows:

9010 = 1001 0000BCD

For the number 873, we have:

87310 = 1000 0111 0011BCD

Table 1.1 gives the hexadecimal, octal, binary and BCD representations of

numbers from 0 to 15.

Decimal Representation

number Hexadecimal Octal Binary BCD

0 0 0 0000 0000

1 1 1 0001 0001

2 2 2 0010 0010

3 3 3 0011 0011

4 4 4 0100 0100

5 5 5 0101 0101

6 6 6 0110 0110

7 7 7 0111 0111

8 8 10 1000 1000

9 9 11 1001 1001

10 A 12 1010 0001 0000

11 B 13 1011 0001 0001

12 C 14 1100 0001 0010

13 D 15 1101 0001 0011

14 E 16 1110 0001 0100

15 F 17 1111 0001 0101

Table 1.1. Conversion tables for 0 numbers to 15

It must be noted that with n bits, we can represent the decimal numbers between 0
and 10n/4−1. In addition to the 8421 BCD code, there are other types of BCD codes.

1.8. Representations of signed integers

Several approaches may be adopted to represent signed integers in digital systems:

the sign-magnitude (SM) representation, two’s complement (2C) representation, and

excess-E (XSE) representation. Each of these approaches assumes the use of a format

(or number of bits) fixed beforehand.
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1.8.1. Sign-magnitude representation

The simplest approach allowing for the representation of a signed integer consists

of reserving the MSB for the number sign and the remaining bits for the number

magnitude. If the sign bit is set to 0, the number is positive, and if the sign bit is set to

1, the number is negative.

EXAMPLE 1.9.– Using 8 bits, determine the sign-magnitude representation for each

of the decimal numbers 55, −60, and 0.

We have:

5510 = 001101112 and 5510 = 00110111SM

6010 = 001111002 and − 6010 = 10111100SM

In the case of 0, two representations are possible:

+010 = 00000000SM and − 010 = 10000000SM

The value of a decimal number N having an sign-magnitude representation of the

form bn−1bn−2 · · · b0 is given by:

N10 = (−1)bn−1

n−2∑
i=0

bi2
i [1.4]

or

N10 = (1− 2bn−1)

n−2∑
i=0

bi2
i [1.5]

In this way, it is possible to represent the numbers in the range from −(2n−1 − 1)
to 2n−1 − 1, using n bits.

However, the sign-magnitude representation presents two problems. The first is

linked to the two representations, +0 and −0, of the number 0. The second problem

arises from the fact that this representation is not appropriate for addition operations,

especially when one of the numbers is negative. The two’s complement representation

allows us to remedy these two problems.
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1.8.2. Two’s complement representation

Two’s complement representation of a number with n bits actually corresponds to

the complement with respect to 2n and is defined as the difference between 2n and

this number in absolute value.

EXAMPLE 1.10.– Determine the 8-bit two’s complement representation of the

numbers 90 and −120.

As the number 90 is positive, the two’s complement representation is identical to

the natural binary representation:

9010 = 010110102 = 010110102C

The number −120 is negative and the two’s complement representation is obtained

as follows:

28 − 120 = 136 and 13610 = 100010002 from which − 12010 = 100010002C

Similarly, the two’s complement representation of a number may be obtained by

taking the one’s complement and then adding 1 (ignoring the overflow), because the

sum of a number and its one’s complement is equal to a number having all bits at 1

(or high logic level).

NOTE 1.1.– Assuming that the binary representation using n bits, of a positive number

N takes the form, bn−1bn−2 · · · b1b0, the two’s complement representation of −N
may be written as follows:

2n −N = (2n − 1)−N + 1

= 111 · · · 11︸ ︷︷ ︸
n bits

2 − bn−1bn−2 · · · b1b0 + 1 [1.6]

where

2n − 1 = 111 · · · 11︸ ︷︷ ︸
n bits

2

and the subtraction

111 · · · 11︸ ︷︷ ︸
n bits

2 − bn−1bn−2 · · · b1b0 [1.7]

allows for the inversion of each bit of N or for obtaining the one’s complement of N .
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EXAMPLE 1.11.– The application of the above-cited method to determine the two’s

complement of the decimal number −120 using 8 bits translates to:

01111000 Binary representation of the decimal number 120

10000111 One’s complement obtained by inverting each bit

+ 1 Addition of 1

10001000 Two’s complement

and

−12010 = 100010002C

The value of a decimal number N with two’s complement representation taking

the form, bn−1bn−2 · · · b0, is given by:

N10 = −bn−12
n−1 +

n−2∑
i=0

bi2
i [1.8]

Using n bits, we can represent the numbers in the range from −2n−1 to 2n−1 − 1.

In the case of 8-bit two’s complement representation, the highest positive value is:

28−1 − 1 = 12710 = 011111112C

and the smallest negative value is:

−28−1 = −12810 = 100000002C

NOTE 1.2.– To obtain two’s complement representation from the binary

representation of the corresponding positive number, we must:

– identify the first 1 bit beginning from the right;

– take the one’s complement for each bit located before the identified bit.

Let us determine the 8-bit two’s complement representation for each of the

numbers −1010 and −11910.

Applying the procedure given in the previous note, as illustrated in Figure 1.5,

two’s complement representations are given by:

−1010 = 111101102C and − 11910 = 011101112C
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(b)

0 0 0 0 1 0 1 0

one´s complement

1 1 1 1 0 1 1 0

0 1 1 1 0 1 1 1

one´s complement
Take the

1 0 0 0 1 0 0 1

Take the

Right−most 1

Right−most 1

Two´s complement representation :

Binary representation of 10 :

Two´s complement representation :

Binary representation of 119 :

(a)

Figure 1.5. Obtaining a two’s complement from the binary
representation: a) −1010 and b) −11910

1.8.3. Excess-E representation

Some systems use the excess-E representation in order to be able to represent

negative numbers.

In excess-E representations, a number with n bits, whose unsigned value is N ,

where 0 ≤ N ≤ Nmax = 2n − 1, represents the signed integer N − E, where E
is the offset of the code. We can, thus, represent signed numbers in the range from

−E to Nmax − E. The value of the offset is, most often, of the form E = 2n−1 or

E = 2n−1 − 1.

1.8.3.1. Case where E = 2n−1

Using an excess-2n−1 code, any number N in the range from −2n−1 to 2n−1 − 1
is represented by the n-bit binary number, N + 2n−1, which is always positive and

less than 2n.

EXAMPLE 1.12.– Assuming that E = 2n−1, where n = 4, determine the excess-E’

representation of the decimal numbers 3 and −6.

The excess-8 code for the number 3 is obtained by determining the binary code for

the result of the operation 3 + 8 = 11, that is: 112 = 10112. Thus:

310 = 1011XS8

For the number −6, we have −6 + 8 = 2 and 210 = 00102. As a result:

−610 = 0010XS8
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The excess-2n−1 code corresponds to a two’s complement representation where

the sign bit is complemented (1 is replaced by 0 and vice versa).

1.8.3.2. Case where E = 2n−1 − 1

With an excess-2n−1 − 1 code, we can represent the numbers N in the range from

−(2n−1 − 1) to 2n−1.

A code similar to the excess-2n−1 − 1 code is adopted in the standard IEEE-754

used for the representation of the exponents of floating-point numbers.

EXAMPLE 1.13.– Represent the decimal numbers 27 and −43 using the

excess-2n−1 − 1 code, where n = 8.

When n = 8, the value of the offset is E = 28−1 − 1 = 27 − 1 = 127.

The excess-127 code for the number 27 is obtained by adding 127 to 27, and then

converting the result to binary. That is:

27 + 127 = 154 15410 = 100110102 and 2710 = 10011010XS127

For the excess-127 of the number −43, we have:

−43 + 127 = 84 8410 = 010101002 and − 4310 = 01010100XS127

Table 1.2 gives the representations of unsigned and signed 3-bit integers. It must

be noted that in sign-magnitude representations, the decimal number 0 has two codes,

+010 = 000SM and −010 = 100SM . Using 3 bits, the two’s complement

representation allows for the coding of numbers from 3 to −4, while for the excess-3

representation, the numbers are in the range from 4 to −3.

1.9. Representation of the fractional part of a number

A number is usually made up of an integer part and a fractional part, whose value

is lower than 1. The fractional part of a number may be expressed as the sum of the

negative powers of the radix of the numeration system.

The number 0.59375 is written in decimal representation as follows:

0.5937510 = (5× 10−1) + (9× 10−2) + (3× 10−3) + (7× 10−4) + (5× 10−5)
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Decimal Representation

number Binary SM 2C XS3

7 111

6 110

5 101

4 100 111

3 011 011 011 110

2 010 010 010 101

1 001 001 001 100

000
0 000

100
000 011

−1 101 111 010

−2 110 110 001

−3 111 101 000

−4 100

Table 1.2. Representations of unsigned and signed 3-bit integers

It can be converted into binary, octal and hexadecimal, as given below:

0.5937510 = (1× 2−1) + (0× 2−2) + (0× 2−3) + (1× 2−4) + (1× 2−5)

= 0.100112

= 0. 100︸︷︷︸
4

110︸︷︷︸
6

= 0.468

= 0. 1001︸︷︷︸
9

1000︸︷︷︸
8

= 0.9816

The practical method to convert the fractional part of a number consists of carrying

out a series of multiplications while extracting the integer part each time.

The different operations needed to convert the decimal number 0.59375 are shown

in Figure 1.6:

– conversion to binary:

0.59375× 2 = 1.1875 Integer part 1 (MSB)

0.1875× 2 = 0.375 Integer part 0

0.375× 2 = 0.75 Integer part 0

0.75× 2 = 1.5 Integer part 1

0.5× 2 = 1.0 Integer part 1 (LSB)

0.5937510 = 0.100112
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– conversion to octal:

0.59375× 8 = 4.75 Integer part 4 (MSD)

0.75× 8 = 6.0 Integer part 6 (LSD)

0.5937510 = 0.468

– conversion to hexadecimal:

0.59375× 16 = 9.5 Integer part 9 (MSD)

0.50× 16 = 8.0 Integer part 8 (LSD)

0.5937510 = 0.9816

0.59375

x 2

x 2

0 + 0.375

x 2

0 + 0.75

MSB 1 + 0.1875

x 2

1 + 0.5

LSB

x 2

1 + 0.0

0.59375

x 8

x 8

6 +

MSD

0.0LSD

4 + 0.75

0.59375

x 16

9 + 0.5

x 16

MSD

LSD + 0.08

Figure 1.6. Conversion of the decimal number 0.59375 using the
successive multiplication method

NOTE 1.3.– Converting certain fractional numbers produces an infinite sequence of

bits.

Convert the decimal number 0.45 to binary. Successively multiplying by 2 and

retaining the integer part of the result each time, we obtain:

0.45× 2 = 0.9 Integer part 0 (MSB)

0.9× 2 = 1.8 Integer part 1

0.8× 2 = 1.6 Integer part 1

0.6× 2 = 1.2 Integer part 1

0.2× 2 = 0.4 Integer part 0

0.4× 2 = 0.8 Integer part 0
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0.8× 2 = 1.6 Integer part 1

0.6× 2 = 1.2 Integer part 1

0.2× 2 = 0.4 Integer part 0

0.4× 2 = 0.8 Integer part 0

· · · · · ·
0.4510 = 0.01 1100 1100 . . . 11002

When the binary representation corresponds to an infinite sequence, one criterion

to determine the number of bits needed may be the precision that must be equivalent

in both numeration systems. In the above example, if the absolute error (in decimal) is

±5 × 10−3, the expansion in powers of 2−n will then stop at the nth term for which

the following condition is verified to be true:

2−n ≤ 5× 10−3 [1.9]

Similarly, we have:

2n ≥ 200

n ≥ log(200)

log(2)
= 7.64 � 8

We can thus stop at the eighth row. Thus:

0.4510 = 0.011100112

1.10. Arithmetic operations on binary numbers

Arithmetic operations on binary numbers may be executed in the same way as for

decimal numbers.

The addition is the most executed arithmetic operation in digital systems. The

subtraction operation is essentially a variant of the addition operation, while

multiplication and division operations may be carried out by combining logical

functions (AND, OR, shift, etc.) and addition.

1.10.1. Addition

In binary representation, we begin by adding bits of lower weight, and the carry

that may be obtained when the sum of bits of the same weight exceeds the highest
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value that can be represented with one bit, that is 1, is transferred, each time, to the

next MSB.

In binary representation, addition is carried out according to the following rules:

0 + 0 = 0

0 + 1 = 1 + 0 = 1

1 + 1 = 0 Carry 1

1 + 1 + 1 = 1 Carry 1

EXAMPLE 1.14.– Add the numbers 1010 and 1011.

Carrying out the addition operation in binary and decimal, we have:

1011 11

+ 0011 + 3

1110 14

The sum is obtained by adding the numbers, each of which is called the addend.

In practice, more than two numbers can be added in a digital system by initially

determining the sum of the first two numbers, then adding this sum to the third number

and so on.

1.10.2. Subtraction

In binary representation, the execution of a subtraction operation takes place from

the LSBs to the MSBs with the assumption that the number to be subtracted (or the

subtrahend) is the smaller of the two operands. The difference is the result obtained

upon subtracting the subtrahend from the minuend.

Before subtracting a number (bit at the logic level 1) from another number of lower

value (bit at the logic level 0), we add the value of the radix (that is 2) to the latter and

a borrow of 1 is then carried over to the next highest bit to be subtracted. The rules

governing binary subtraction are:

0− 0 = 0

0− 1 = 1 Borrow 1

1− 0 = 1

1− 1 = 0

EXAMPLE 1.15.– Subtract the number 101 from the number 1010.
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The subtraction may be carried out in binary representation and in decimal

representation as follows:

1010 10 Minuend

− 0101 − 5 Subtrahend

0101 5 Difference

The difference is obtained by deducting the subtrahend from the minuend.

In practice, subtraction may be carried out like addition by using 2C representation,

which allows for the coding of positive and negative numbers.

1.10.3. Multiplication

Multiplication is carried out by forming a partial product for each bit of the

multiplier and then adding all the partial products to generate the result. It must be

noted that each partial product is shifted one position to the left with respect to the

preceding one and the product of two n-bit numbers may possess up to 2n bits.

The multiplication table in binary representation can be summarized as follows:

0× 0 = 0

0× 1 = 0

1× 0 = 0

1× 1 = 1

EXAMPLE 1.16.– Multiply the number 1101 by 1001.

Executing multiplication in binary representation translates to:

1101 Multiplicand

× 1001 Multiplier

1101 First partial product

0000 Second partial product

0000 Third partial product

+ 1101 Fourth partial product

1110101 Product

This operation is the equivalent of 13× 9 = 117 in decimal.
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By convention, the first factor in a multiplication operation is called the

multiplicand and the second is called the multiplier. This distinction is of absolutely

no consequence as the multiplication operation is commutative. The product is

defined as the result of a multiplication.

Multiplication may be carried out like a succession of addition and shift operations.

1.10.4. Division

Division of a binary number (the dividend) by another (the divisor) is carried out

by repeatedly deducting the divisor from the dividend until you obtain a difference that

is either equal to zero or inferior to the divisor and that represents the remainder. The

quotient corresponds to the number of times the divisor is contained in the dividend.

When the dividend is a 2n-bit number and the divisor is an n-bit number, the

quotient may be represented as an n-bit number. Division is executed by comparing

the n bits of the divisor with the n LSBs of the dividend. If the divisor is greater than

the dividend, no subtraction is performed, the corresponding quotient bit is set to 0,

and the divisor is then compared to the n + 1 LSBs of the dividend. If, on the other

hand, the divisor is less than or equal to the considered dividend bits, a subtraction

is carried out and the corresponding quotient bit is set to 1. The comparison process

of the divisor continues with the number obtained by lowering the next MSB of the

dividend to the right of the previously obtained difference.

EXAMPLE 1.17.– Divide the number 10000100 by 1101.

In binary representation, the division is carried out as follows:

Dividend 10000100 1101 Divisor

− 1101 1010 Quotient

0111

01110

− 1101

Remainder 010

In decimal, we similarly have 132÷ 13 = 10 and the remainder is 2.

An integer number is divisible by another when the quotient is an integer number

and the remainder is equal to zero.
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1.11. Representation of real numbers

Real numbers are useful in digital systems as they allow for a variety of

calculations. They may be represented with a fixed point or floating point.

Fixed-point representation allows for coding a fixed range of numbers and rapid

calculation, while coding numbers of very different orders of magnitude is easier

with floating-point representation.

1.11.1. Fixed-point representation

In fixed-point representation, a number may be expressed in the form:

bq−1bq−2 · · · b0, b−1b−2 · · · b−p [1.10]

The sign-bit bq−1 is either equal to 0, for a positive number, or 1, for a negative

number. The first q numbers represent the integer part while the last p numbers

constitute the fractional part.

According to the SM notation, the value of a decimal number represented in the

radix B is given by:

N10 = (−1)bq−1

q−2∑
i=−p

biB
i [1.11]

By setting p+ q = n, we have:

N10 = (−1)bq−1

p+q−2∑
i=0

bi−pB
i−p [1.12]

=

(
(−1)bn−p−1

n−2∑
i=0

bi−pB
i

)
B−p [1.13]

where n is the total number of bits. Fixed-point representation may thus be

considered as representing an integer whose bits are shifted according to a factor, the

scale of which depends on the radix. The maximum (minimum) value in a fixed-point

representation is obtained by multiplying by a scaling factor the greatest (smallest)

integer that can be represented with the same number of bits. Hence, the values that

can be represented are of the form:

−(Bn−1 − 1)B−p ≤ N10 ≤ (Bn−1 − 1)B−p [1.14]
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EXAMPLE 1.18.– In fixed-point representation, we may obtain the following

conversions:

124.3710 = (1× 102) + (2× 101) + (4× 100) + (3× 10−1) + (7× 10−2)

11.62510 = (1× 23) + (0× 22) + (1× 21) + (1× 20)+

(1× 2−1) + (0× 2−2) + (1× 2−3) = 1011.1012

20.7510 = (2× 81) + (4× 80) + (6× 8−1) = 24.68

30.510 = (1× 161) + (14× 160) + (8× 16−1) = 1E.816

In 2C representation, the decimal value of a number can be expressed as:

N10 =

(
−bn−p−1 · 2n−1 +

n−2∑
i=0

bi−p2
i

)
2−p [1.15]

Using n bits, the range of numbers that may be represented is given by:

−2n−12−p ≤ N ≤ (2n−1 − 1)2−p [1.16]

where the number of bits for the fractional part is equal to p.

EXAMPLE 1.19.– Give the 8-bit representation of the decimal numbers 6.25 and

−8.4375.

We have:

6.2510 = (0× 23) + (1× 22) + (1× 21) + (0× 20) + (0× 2−1) + (1× 2−2)

= 0110.01002 = 0110.01002C

−8.437510 = −(1× 23) + (0× 22) + (0× 21) + (0× 20)

+(0× 2−1) + (1× 2−2) + (1× 2−3) + (1× 2−4)

= 1000.01112C

The result obtained upon multiplying two n bit numbers must be stored in 2n
bits. The size of the data may continually increase following the execution of other

multiplication operations. As the product of the numbers in the range from −1 to 1
always stays in the same interval, the solution adopted in digital systems consists of

using a representation (q = 1 and n = p + 1) in which the numbers are normalized

and can only vary between −1 and 1.
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1.11.2. Floating-point representation

Floating-point representation may be considered as a scientific notation for digital

systems. A certain number of floating-point representations have been proposed in

order to satisfy the requirements of a variety of applications.

A decimal number N can be quantified and expressed in floating-point form as

follows:

N10 = (−1)SM ·BE [1.17]

where S is the sign-bit, M is the mantissa, B is the base or radix and E is the exponent.

The mantissa is generally normalized and corresponds to a number beginning with a

non-zero digit, as is the case with the following number representations:

−1234.5710 is written as −1.23457× 103;

0.000007153910 is written as +7.1539× 10−6;

1000101002 is written as 1.00010100× 28.

As a result of the normalization of the mantissa, M , the number 0 cannot be

represented directly from the expression [1.17]. To arrive at this, we must use a

particular symbol. Indefinite numbers, such as the result of a division by 0 or the

square root of a negative integer, are also represented using special characters.

1.11.2.1. IEEE-754 standard

Norms or standards have been proposed in order to make the different

representations of floating-point numbers uniform.

In the IEEE1-754 norm, the mantissa M and the exponent E must satisfy the

following inequalities:

1 ≤ M < 2 [1.18]

and

2− 2k−1 ≤ E ≤ 2k−1 − 1 [1.19]

1 IEEE: Institute of Electrical and Electronics Engineers.
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The binary equivalent of the mantissa M is thus normalized, and the exponent E
is written in biased form before being coded as a k-bit word. The values that can be

represented for a number N are such that:

Nmin = 22−2k−1 ≤ |N | ≤ Nmax = (2− 2−l)22
k−1−1 [1.20]

The parameter l is defined as being the number of bits of the mantissa. Figure 1.7

shows the range of numbers that can be represented in a floating-point format.

negative numbers

min Nmax0min−Nmax−N

positive numbers

RepresentableRepresentable

N

Figure 1.7. Range of numbers that can be represented
in floating-point format

NOTE 1.4.– As the first digit of the mantissa is always 1, it can be taken as implied.

This gives us an additional bit position that can be exploited to increase the range of

representable numbers.

The relative difference between two adjacent numbers is of the order 2l−l. It is,

therefore, necessary to round off some numbers before representing them.

Precision Normalized representation Denormalized representation

Single ±2−126 to (2− 2−23)× 2127 ±2−149 to (1− 2−23)× 2−126

Double ±2−1022 to (2− 2−52)× 21023 ±2−1074 to (1− 2−52)× 2−1022

Table 1.3. Range of numbers that can be represented
with the IEEE-754 standard

The majority of numbers in IEEE-754 floating-point representation are normalized

and have a mantissa of the form:

M = 1. f1f2 · · · fl︸ ︷︷ ︸
f

where the fractional part (or fraction) f is represented with l bits, and 1 ≤ M < 2.

As shown in Table 1.4, the IEEE-754 standard defines two formats for number

representation: single precision (or 32 bits, composed of 1 sign bit, 8 exponent bits
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and 23 mantissa bits) and double precision (or 64 bits, composed of 1 sign-bit, 11
exponent bits and 52 mantissa bits).

Sign Biased Mantissa

bit exponent fraction

32 bit single precision 1 bit 8 bits 23 bits

64 bits double precision 1 bit 11 bits 52 bits

Table 1.4. Number format based on the IEEE-754 standard

In addition to the single and double precisions, the IEEE-754 standard supports

quadruple-precision representation (or 128 bits, composed of 1 sign bit, 15 exponent

bits and 112 mantissa bits), which is chiefly used in some software.

When an arithmetic operation involving two numbers gives a result that has an

exponent that is too small to be accurately represented, an underflow is produced. The

IEEE-754 standard, through the use of denormalized representation, offers a means of

gradually taking into account underflows.

A denormalized number is characterized by a biased exponent equal to 0 and a

mantissa of the form:

M = 0. f1f2 · · · fl︸ ︷︷ ︸
f

The mantissa bits are shifted one position to the right to insert the first bit (implied

in normalized representation), which now has the value 0. To compensate for the shift

effect, the exponent is increased by 1.

Table 1.3 gives the range of numbers that can be represented using the IEEE-754

standard.

The exponent E is a signed k-bit integer such that Emin ≤ E ≤ Emax. Its

representation corresponds to the representation of the biased value E + b, where b is

the bias of the form 2k−1 − 1. Furthermore, Emin = −b + 1 and Emax = b. The

exponents Emin − 1 and Emax + 1 (0 and 2k − 1, respectively, in the biased

representation) are reserved for zero, denormalized numbers and special values.
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To facilitate the coding of positive and negative values of the exponent, a bias, b,
is added to the real value of the exponent, E, as follows:

Eb =

{
E + b, if the number is normalized

E + b− 1, if the number is denormalized
[1.21]

Thus, in the IEEE-754 standard, the exponent corresponds to the binary

representation of Eb.

EXAMPLE 1.20.– Represent the decimal numbers 79.625 and −1000.2 in IEEE-754

single precision.

In the IEEE-754 standard, a number is represented by a sign bit, a mantissa and an

exponent. The normalized form of the binary equivalent of the number to be converted

allows for the identification of the mantissa and the exponent.

The decimal number 79.625 can also be written as follows:

79.62510 = 1001111.1012 = 1.0011111012 × 26

– sign bit: S = 0;

– biased exponent (8 bits): Eb = 610 + 12710 = 13310 = 100001012;

– fractional part of the mantissa (23 bits):

f = 001111101000000000000002

from which:

79.62510 = 0 10000101 00111110100000000000000IEE754

The decimal number −1000.2 is represented in binary in the form:

1000.210 = 1111101000.00110011001100112

The fractional part corresponds to a continually repeating binary sequence. The

closest number to 1000.2 that may be represented is:

1000.2000122070312510 = 1111101000.001100110011012

= 1.111101000001100110011012 × 29

– sign bit: S = 1;
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– biased exponent (8 bits): Eb = 910 + 12710 = 13610 = 100010002;

– fractional part of the mantissa (23 bits):

f = 111101000001100110011012

and finally:

−1000.210 = 1 10001000 11110100000110011001101IEE754

In the above-cited single-precision IEEE-754 representations, the first bit indicates

the sign, the next eight bits allow for the coding of the exponent and the last 23 bits

correspond to the fractional part of the mantissa.

The different values taken by the numbers in IEEE-754 representations are

recorded in Table 1.5. The IEEE-754 standard uses special symbols (NaN, infinity) to

indicate numbers that have an exponent composed entirely of bits set to 0 or 1. The

NaN or not a number value is used to represent a value that does not correspond to a

real number.

Exponent Fraction Value

Normalized Emin ≤ E ≤ Emax f ≥ 0 ±(1.f)× 2E

Denormalized E = Emin − 1 f > 0 ±(0.f)× 2Emin

Zero E = Emin − 1 f = 0 ±0

Infinite E = Emax + 1 f = 0 ±∞
Not a Number E = Emax + 1 f > 0 NaN

Table 1.5. Values of numbers in IEEE-754 representations

EXAMPLE 1.21.– Find the decimal number corresponding to the following single-

precision IEEE-754 representation:

1 10000111 11000000000000000100001IEE754

We have:

– sign bit: S = 1;

– biased exponent (8 bits): Eb = 100001112 = 13510;

– fractional part of the mantissa (23 bits):

f = 110000000000000001000012
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Applying the formula to the expression of real numbers by starting from the IEEE-

754 representation, that is:

N10 = (−1)S(1.f)× 2(Eb−127)

we find:

N10 = (−1)1(1.110000000000000001000012)× 2(135−127)

= (−1)(111000000.0000000001000012)

= (−1)(28 + 27 + 26 + 2−10 + 2−15)

= −448.0010070810

from which:

1 10000111 11000000000000000000001IEE754 = −448.00110

1.11.2.2. Arithmetic operations on floating-point numbers

Let x = Mx ·BEx and y = My ·BEy be two positive numbers (sign-bit S = 0).

Supposing that Ex ≥ Ey , y = MY ·BEx and MY = MyB
(Ex−Ey), we have:

x+ y = (Mx +MY ) ·BEx [1.22]

and

x− y = (Mx −MY ) ·BEx [1.23]

In a floating-point representation, the numbers to be added or subtracted must,

thus, have the same exponent, such as:

145.50010 = 10010001.1002 = 0.10010001100× 28

27.62510 = 00011000.1012 = 0.00011011101× 28

In the case of multiplication and division, the results are obtained as follows:

x× y = (Mx ×My) ·B(Ex+Ey) [1.24]

and

x/y = (Mx/My) ·B(Ex−Ey) [1.25]
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It must be noted that because of the overflow effect or round-off errors, the

arithmetic operations in a floating-point representation do not have exactly the same

properties (associativity, distributivity) as with real numbers.

1.12. Data representation

As the arithmetic unit of a digital system recognizes only the binary states 0 and

1, a code is necessary to manipulate and transfer alphanumeric data (numbers, letters,

special characters) between a digital system and its peripheral devices.

1.12.1. Gray code

Gray code (or reflected binary code) is a non-weighted code, as it does not ascribe

a specific weight to each bit position. It is not used for arithmetic calculations.

An interesting feature presented by Gray code representation is related to the fact

that only a single bit changes value during the transition from one code to the next.

Table 1.6 gives the binary and Gray code representation of decimal numbers from 0 to

15.

The conversion of a binary number to Gray code is carried out by making use of

the following observations:

– the most significant Gray code bit, situated to the extreme left, is the same as the

corresponding MSB for the binary number;

– starting from the left, add, without taking into account the carry-out bit, each

pair of adjacent bits to obtain the next bit in Gray code.

EXAMPLE 1.22.– Convert the binary number 110012 to Gray code.

Gray code 1

+ 1

0

+ 0

1

1 +

1

+ 0

0

1Binary number

For the binary number 110012, the corresponding Gray code is 10101.

To convert Gray code to a binary number:

– the MSB of the binary number, located at the extreme left, is identical to the

corresponding Gray code bit;

– starting from the left, add each new bit of the binary code to the next bit of the

Gray code, without taking into account any carry-out bit, to obtain the next bit of the

binary code.
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Decimal Binary Gray Decimal Binary Gray

number number code number number code

0 0000 0000 8 1000 1100

1 0001 0001 9 1001 1101

2 0010 0011 10 1010 1111

3 0011 0010 11 1011 1110

4 0100 0110 12 1100 1010

5 0101 0111 13 1101 1011

6 0110 0101 14 1110 1001

7 0111 0100 15 1111 1000

Table 1.6. Binary and Gray code representation of
decimal numbers from 0 to 15

EXAMPLE 1.23.– Convert the Gray code 10111 to a binary number.

1
+ + + +

1

1

0

1

1

0Gray code

Binary number 0

1

1

The binary number corresponding to Gray code 10111 is 110102.

Gray code is used in Karnaugh maps and in the design of logic circuits. They also

find application in rotary encoders, where the predisposition to errors increases with

the number of bits that change logical states between two consecutive positions.

1.12.2. p-out-of-n code

A p-out-of-n code is an n-bit representation that allows only combinations made up

of p bits at 1 and (n− p) bits at 0. The number of valid combinations for a p-out-of-n
code is n!/[(n− p)!p!].

The p-out-of-n code allows for the detection of errors based on the verification of

the number of 1s and 0s at the time of reading of each code combination.

Some barcodes use p-out-of-n encoding, such as 2-out-of-5 encoding. Table 1.7

offers some examples of 2-out-of-5 code. These two codes are weighted only for

numbers different from zero and the list of weights appears in each of the

denominations.

The 2-out-of-5 code allows for the detection of all errors relating to a single bit,

but does not allow for the correction of these errors. As the smallest Hamming
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distance (or the minimum number of bits that change logic states between two

consecutive combinations) is 2, it does not allow for the detection of errors caused by

the modification of 2 bits.

2-out-of-5 code 2-out-of-5 code

0 1 2 3 6 7 4 2 1 0

0 0 1 1 0 0 1 1 0 0 0

1 1 1 0 0 0 0 0 0 1 1

2 1 0 1 0 0 0 0 1 0 1

3 1 0 0 1 0 0 0 1 1 0

4 0 1 0 1 0 0 1 0 0 1

5 0 0 1 1 0 0 1 0 1 0

6 1 0 0 0 1 0 1 1 0 0

7 0 1 0 0 1 1 0 0 0 1

8 0 0 1 0 1 1 0 0 1 0

9 0 0 0 1 1 1 0 1 0 0

Table 1.7. Examples of 2 -out-of-5 code

Barcodes used to sort out letters are represented as shown in Figure 1.8(a), by a

series of parallel lines of variable size. The 0 bit corresponds to a small line and the

1 bit to a large line. Figure 1.8(b) shows another barcode that is used to identify parts

and that is composed of parallel lines of variable thickness. The 0 bit is represented by

a fine line and the 1 bit by a thick line.

(b)(a)

Figure 1.8. Barcodes corresponding to the binary representation 01100

A more compact form of the barcode is obtained by using interleaved 2-out-of-5
encoding. The first code is represented by the black lines (three fine lines and two thick

lines) of variable thickness, and the second code by the spacing between the black

lines (three narrow spaces and two wide spaces). The code shown in Figure 1.9(a) is

a representation of the combination 01100 (black lines) followed by 11000 (spaces

between the back lines). In general, the odd combinations are represented by black

lines and the even combinations are represented by spaces between the black lines.

Figure 1.9(b) shows the barcode corresponding to the sequence 01100, 11000, 10001
and 00110.

An appropriate optical reader is necessary to read each kind of barcode.
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(b)(a)

Figure 1.9. Barcodes based on an interleaved 2-out-of-5 encoding

1.12.3. ASCII code

ASCII code (or American standard code for information interchange) has seven

bits allowing for the representation of 27 = 128 symbols.

Table 1.8 gives the correspondence between certain characters and the decimal and

hexadecimal numbers of the ASCII code. The letter N, for example, is represented in

ASCII code by the number 78 in decimal and by 4E in hexadecimal. The ASCII code

contains 34 characters used to define the format of information and the space between

data and to control the transmission and reception of symbols.

1.12.4. Other codes

Given the ever-increasing number of characters, other systems of data

representation were developed based on the ASCII code:

– EBCDIC (or extended binary coded decimal interchange code) is an eight bit

code;

– ANSI (or American national standard institute) allows for the representation of

alphabetical letters from many languages;

– using eight bit words (for UTF-8), 16 bit words (for UTF-16) and 32 bit words

(for UTF-32), the universal code, named Unicode (or Universal code) represents each

character in a unique way by a number. It covers symbols used in most languages.

1.13. Codes to protect against errors

There are different types of codes used to detect and correct errors that come up in

digital information during transmission or during storage.

1.13.1. Parity bit

To facilitate the detection of errors, a supplementary bit or parity bit is often added

at the end of a binary word with a fixed number of bits. It allows for the allocation of

an odd or even parity depending on whether the total number of 1 bits in the code is

odd or even.
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Dec Hex Char Dec Hex Char Dec Hex Char Dec Hex Char

0 0 NUL 32 20 SP 64 40 @ 96 60 ‘

1 1 SOH 33 21 ! 65 41 A 97 61 a

2 2 STX 34 22 " 66 42 B 98 62 b

3 3 ETX 35 23 # 67 43 C 99 63 c

4 4 EOT 36 24 $ 68 44 D 100 64 d

5 5 ENQ 37 25 % 69 45 E 101 65 e

6 6 ACK 38 26 & 70 46 F 102 66 f

7 7 BEL 39 27 ’ 71 47 G 103 67 g

8 8 BS 40 28 ( 72 48 H 104 68 h

9 9 TAB 41 29 ) 73 49 I 105 69 i

10 A LF 42 2A * 74 4A J 106 6A j

11 B VT 43 2B + 75 4B K 107 6B k

12 C NP 44 2C , 76 4C L 108 6C l

13 D CR 45 2D - 77 4D M 109 6D m

14 E SO 46 2E . 78 4E N 110 6E n

15 F SI 47 2F / 79 4F O 111 6F o

16 10 DLE 48 30 0 80 50 P 112 70 p

17 11 DC1 49 31 1 81 51 Q 113 71 q

18 12 DC2 50 32 2 82 52 R 114 72 r

19 13 DC3 51 33 3 83 53 S 115 73 s

20 14 DC4 52 34 4 84 54 T 116 74 t

21 15 NAK 53 35 5 85 55 U 117 75 u

22 16 SYN 54 36 6 86 56 V 118 76 v

23 17 ETB 55 37 7 87 57 W 119 77 w

24 18 CAN 56 38 8 88 58 X 120 78 x

25 19 EM 57 39 9 89 59 Y 121 79 y

26 1A SUB 58 3A : 90 5A Z 122 7A z

27 1B ESC 59 3B ; 91 5B [ 123 7B {

28 1C FS 60 3C < 92 5C \ 124 7C |

29 1D GS 61 3D = 93 5D ] 125 7D }

30 1E RS 62 3E > 94 5E ^ 126 7E ~

31 1F US 63 3F ? 95 5F _ 127 7F DEL

NUL Null DLE Data link escape

SOH Start of heading DC1 Device control 1

STX Start of text DC2 Device control 2

ETX End of text DC3 Device control 3

EOT End of transmission DC4 Device control 4

ENQ Enquiry NAK Negative acknowledge

ACK Acknowledge SYN Synchronous idle

BEL Bell ETB End of transmission block

BS Backspace CAN Cancel

HT Horizontal tab EM End of medium

LF Line feed SUB Substitute

VT Vertical tab ESC Escape

FF Form feed FS File separator

CR Carriage return GS Group separator

SO Shift out RS Record separator

SI Shift in US Unit separator

SP Space DEL Delete

Table 1.8. ASCII codes table
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EXAMPLE 1.24.– For the word 0101101, the parity bit is 0 (even parity: 4 bits at 1).

For the word 1010001, the parity bit is 1 (odd parity: 3 bits at 1).

Using a single parity bit allows for the detection of all errors that affect only one

bit. However, it does not allow for the correction of these errors.

1.13.2. Error correcting codes

The reliability of data transmission is generally ensured by using more elaborate

codes.

1.13.2.1. Block codes

In the block code approach, a certain number of control bits are appended to the

message that is structured in blocks of fixed size. In this way, horizontal and vertical

parity of data can be verified.

Hamming distance corresponds to the number of bits that vary between two

successive words.

EXAMPLE 1.25.– There is a Hamming distance of 3 between the words 111011 and

101010. At least three errors are necessary to make these two words identical.

A possible way of increasing the Hamming distance of a code consists of using

several control bits. In this case, a message comprises m bits of data and k control

bits.

EXAMPLE 1.26.– Represent OUI in ASCII code with odd (horizontal and vertical)

parity bits and a crossed parity bit allowing for the indication of the integrity of the

(horizontal and vertical) parity bits.

The ASCII codes for the characters of the word OUI are as below:

7910 = 4F16 = 10011112 for O

8510 = 5516 = 10101012 for U

7310 = 4916 = 10010012 for I

The choice of a two-dimension representation (or a block of bits), as shown in

Figure 1.10, allows for the definition of parity bits following the horizontal and vertical

direction.

Changing one single bit of the data may bring about a modification of the vertical

parity bit, the horizontal parity bit and the crossed parity bit, that is four bits in total.

The Hamming distance is, thus, equal to 4.
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0

0 1 0

1 0 1

1 1 0

1 0 0

1 1 1

0 0 0

1 1 1

OUI

1
0
1
0
0
1
1

1 0 1

Vertical parity

Control bit

Horizontal parity

Figure 1.10. Example of block codes

Such a block code allows for the detection and correction of all errors affecting one

single bit. It allows for the detection of all errors affecting 2 and 3 bits, but it presents

the inconvenience of requiring the verification of a large number of bits.

1.13.2.2. Cyclic codes

Cyclic codes are based on the transcription of binary numbers in polynomial form

and the division of polynomials.

EXAMPLE 1.27.– The binary code bn−1bn−2 . . . b1b0 corresponds to the polynomial:

bn−1x
n−1 + bn−2x

n−2 + · · ·+ b1x
1 + b0x

0

Let I(x) be the polynomial associated with a message. Supposing that G(x) is

an r generator polynomial, the message may be coded by carrying out the following

operations:

– multiply I(x) by xr (or add r zeros at the end of I(x));

– decompose I(x)xr into the form:

I(x)xr

G(x)
= Q(x) +R(x) [1.26]

– determine the cyclic polynomial T (x):

T (x) = I(x)xr −R(x) [1.27]
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The polynomial T (x) is a multiple of G(x). It corresponds to a representation of

data to which redundant bits have been appended.

Errors are detected by verifying the divisibility of T (x) by G(x).

NOTE 1.5.– Expressions used for the generator polynomials vary by application areas:

– CRC2-3-GSM: G(x) = x3 + x+ 1;

– CRC-4-ITU: G(x) = x4 + x+ 1;

– CRC-8-CCITT: G(x) = x8 + x2 + x+ 1;

– CRC-16-CCITT: G(x) = x16 + x12 + x5 + 1;

– CRC-32-IEEE: G(x) = x32+x26+x23+x22+x16+x12+x11+x10+x8+
x7 + x5 + x4 + x2 + x+ 1;

– CRC-64-ISO: G(x) = x64 + x4 + x3 + x+ 1.

EXAMPLE 1.28.– Let us consider the initial information 101101, with which the

polynomial I(x) = x5+x3+x2+1 can be associated. Using the polynomial generator

of the form G(x) = x3+x+1 (r = 3), the form of the word to be transmitted, or the

polynomial T (x), is determined by proceeding as per the steps:

– multiplication of I(x) by xr gives the product I(x)xr = 101101000;

– the division of I(x)xr by G(x) yields the quotient Q(x) = 100001 and the

remainder R(x) = 011;

– the polynomial T (x) is finally obtained by appending the r bits of R(x) to the

end of I(x), that is: T (x) = 101101011.

In the form T (x) + E(x), the information is assumed to be affected by the error

E. With a code based on a polynomial generator G(x), we can detect:

– all the single errors (E = 10 . . . 0);

– all the double errors (E = 10 . . . 010 . . . 0) if G(x) has a factor with at least

three terms;

– all the errors relating to an odd number of bits (E has an odd number of bits at

1) if x+ 1 divides G(x);

– all the series of errors (E = 0 . . . 01 . . . 10 . . . 0) of length smaller than the degree

of R(x);

– most of the long series of errors.

2 CRC: cyclic redundancy check.
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1.14. Exercises

EXERCISE 1.1.– Conversions

1) Convert the following numbers to binary:

a) 3710 b) 1510 c) 18710 d) 2 01410 e) 2 01610 f) 2.7510
g) 25.2510 h) 243.312510 i) 0.062510 j) 628 k) 2778 l) 12.68
m) 476.358 n) 9216 o) 37FD16 p) 7FF16 q) 1A616 r) 2C016
s) 1F.C16 t) 9.F16 u) A7.EC16

2) Convert the following numbers to decimal:

a) 101102 b) 100012 c) 100011012 d) 1001000010012 e) 11110101112
f) 1011.1012 g) 10011011001.101102 h) 308 i) 1158 j) 55.48
k) 270.548 l) 35616 m) 2AF16 n) 2C116 o) 10FF16

p) 1FCFA16 q) DADA.C16 r) F.416 s) EBA.C16

3) Convert the following numbers to hexadecimal:

a) 32010 b) 6 86110 c) 65 53510 d) 1008 e) 62.48 f) 500.258
g) 100011012 h) 10010001101000111102 i) 10000.12
j) 1000000.00001112 k) 1000111001.012

4) Convert the following BCD numbers to decimal:

a) 0001 1000 0100BCD b) 0100 1001 0010BCD

c) 1001 0111 0101 0010BCD d) 0111 0111 0111 0101BCD

5) How many bits are required for the binary representation of the decimal

numbers from 0 to 511?

6) What is the largest number that can be represented in 16-bit binary numeration

system?

7) a) Determine the binary representation of the decimal number 10.05 with an

absolute error equal to 0.005.

b) Represent the decimal number 0.452 in binary numeration system with a

relative error of 0.1%.

EXERCISE 1.2.– Representation of numbers and data

1) Let X be an unsigned n-bit integer. Verify that 2n − X represents the two’s

complement of −X .

2) Determine the 8-bit two’s complement of the following numbers: −110, −1710,

−12810.

Convert the following numbers to decimal:

011111112C , 110011102C , 100010002C .
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3) Determine the two’s complement representations of the numbers −63A16 and

−8AC16.

4) Convert the following numbers to ASCII codes:

a) 110, b) 10710, c) 10000102.

5) Use ASCII code to translate the following expressions:

X = cos(.7)
Y = 256 ∗X
PRINT "X=", X; "Y=", Y

6) a) Represent the following numbers in single-precision IEEE-754 standard:

2.7510, −417 68010.

b) Find the decimal number corresponding to each of the following single-

precision IEEE-754 representations:

0 10001010 01110111000110000000000IEE754

00000000 00000000000000000000001IEEE754

EXERCISE 1.3.– Gray code/binary number conversion

1) Convert the following binary numbers to Gray code:

a) 110112 b) 1011012 c) 110001102

2) Convert each of the following Gray code to binary number:

a) 1010Gray b) 00010Gray c) 11000010001Gray

EXERCISE 1.4.– Correction code

1) Data are to be transmitted, coded by the CRC method, whose polynomial

generator is:

G(x) = x3 + x+ 1

Determine the bits of the message to be transmitted if the initial message is 101101.

What can we say of the transmission if the received message is 100101 011?

2) Using the CRC coding method, represent the message to be transmitted in the

case where the initial information is 1011001 and the polynomial generator is of the

form:

G(x) = x4 + x+ 1
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1.15. Solutions

SOLUTION 1.1.– Conversions

1) Conversions to binary representation

a) 3710 = 1001012

b) 1510 = 11112

c) 18710 = 101110112

d) 2 01410 = 111110111102

e) 2 01610 = 211 − 25 = 111111000002

f) 2.7510 = 10.112

g) 25.2510 = 11001.01

h) 243.312510 = 11110011.01012

i) 0.062510 = 0.00012

j) 628 = 1100102

k) 2778 = 101111112

l) 12.68 = 1010.112

m) 476.358 = 100111110.0111012

n) 9216 = 100100102

o) 37FD16 = 110111111111012

p) 7FF16 = 111111111112

q) 1A616 = 1101001102

r) 2C016 = 11110000002

s) 1F.C16 = 11111.112

t) 9.F16 = 1001.11112

u) A7, EC16 = 10100111.1110112

2) Conversion to decimal representation

a) 101102 = 2210

b) 100012 = 1710

c) 100011012 = 14110

d) 1001000010012 = 231310
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e) 11110101112 = 98310

f) 1011.1012 = 11.62510

g) 10011011001.101102 = 1241.687510

h) 308 = 3610

i) 1158 = 7710

j) 55.48 = 45.510

k) 270.548 = 184.687510

l) 35616 = 85410

m) 2AF16 = 68710

n) 2C116 = 70510

o) 10FF16 = 435110

p) 1FCFA16 = 13029810

q) DADA.C16 = 56026.7510

r) F.416 = 15.2510

s) EBA.C16 = 3770.7510

3) Conversion to hexadecimal representation

a) 32010 = 14016

b) 6 86110 = 1ACD16

c) 65 53510 = 164 − 1 = FFFF16

d) 1008 = 4016

e) 62.48 = 32.816

f) 500.258 = 140.5416

g) 100011012 = 8D16

h) 10010001101000111102 = 48D1E16

i) 10000.12 = 10.816

j) 1000000.00001112 = 40.0E16

k) 1000111001.012 = 239.416
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4) BCD – Decimal conversion

a) 0001 1000 0100BCD = 18410

b) 0100 1001 0010BCD = 49210

c) 1001 0111 0101 0010BCD = 9 75210

d) 0111 0111 0111 0101BCD = 7 77510

5) How many bits are required for the binary representations of the decimal

numbers from 0 to 511?

With k bits, only the decimal numbers from 0 to 2k − 1 can be represented. Thus:

2k − 1 = 511 and k = log(512)/ log(2) = 9

6) What is the largest number that can be represented in 16 bit binary numeration?

The largest number that can be represented in 16 bits binary numeration system is

216 − 1 = 65.535.

7) a) Determine the binary representation of the decimal number 10.05 with an

absolute error equal to 0.005.

To ensure that the difference between the represented value and the decimal

number 10.05 remains less than or equal to 0.005, the required number of bits, n,

must be determined based on the following relationship:

2−n ≤ 0.005

that is:

n ≥ log(1/0.005)/ log(2) = 7.64 � 8

and finally we have:

10.0510 = 1010.000011002

b) Represent the decimal number 0.452 in binary with a relative error of 0.1%.

The desired value of the absolute error is 0.001× 0.452 = 0.000452.

The binary representation must possess a number of bits, n, that satisfies the

following equation:

2−n < 0.000452
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that is:

n > log(1/0.000452)/ log(2) = 11.11 � 12

Thus:

0.4522 = 0.01110011101101102

SOLUTION 1.2.– Representation of numbers and data

1) Let X be an unsigned n-bit integer. Verify that 2n − X represents the 2C of

−X .

Let X = Xn−1Xn−2 · · ·X1X0 be the n-bit binary representation of a positive

number. We can write:

2n −X = (2n − 1)−X + 1

where:

2n − 1 = 111 · · · 11︸ ︷︷ ︸
n bits

2

The following subtraction operation:

111 · · · 11︸ ︷︷ ︸
n bits

2 −Xn−1Xn−2 · · ·X1X0

is equal to the inversion of the logical level of the bits of X . Thus:

2n −X = (2n − 1)−X + 1 = X + 1

is the 2C representation of −X .

2) Determine the 8-bit 2C of the following numbers: −110, −1710, −12810.

For each of the numbers, we can obtain:

110 = 000000012

111111101C + 1 = 111111112C = −110

1710 = 000100012

111011101C + 1 = 111011112C = −1710
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12810 = 100000002

011111111C + 1 = 100000002C = −12810

3) Convert the following numbers to decimal representation: 011111112C ,

110011102C and

100010002C .

The conversions are carried out as follows:

011111112C = 26 + 25 + 24 + 23 + 22 + 21 + 20 = 12710

110011102C = −27 + 26 + 23 + 22 + 21 = −5010

100010002C = −27 + 23 = −12010

4) Determine the 2C of the numbers −63A16 and −8AC16.

We can proceed as follows:

63A16 = 0110001110102

1001110001011C

+ 1

= 1001110001102C = −63A16 = 9C616

8AC16 = 00001000101011002

11110111010100111C

+ 1

= 11110111010101002C = −8AC16 = F75416

5) Convert the following numbers to ASCII code:

a) 110 b) 10710 c) 10000102

The corresponding ASCII codes are as follows:

a) 110 : SOH (start of heading) b) 10710 : k

c) 10000102 = 6610 : B

6) Use ASCII code to translate the following expressions:

X = cos(.7)

Y = 256 ∗X
PRINT "X=", X; "Y=", Y
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ASCII code

Symbol Dec. Hex.

X 88 58

= 61 3D

c 99 63

o 111 6F

s 115 73

( 40 28

. 46 2E

7 55 37

) 41 29

Y 89 59

= 61 3D

2 50 32

5 53 35

6 54 36

* 42 2A

X 88 58

ASCII code

Symbol Dec. Hex.

P 80 50

R 82 52

I 73 49

N 78 4E

T 84 54

Espace 32 20

" 34 22

X 88 58

= 61 3D

" 34 22

, 44 2C

X 88 58

" 34 22

Y 89 59

= 61 3D

" 34 22

, 44 2C

Y 89 59

7) a) Represent the following numbers in single-precision IEEE-754 standard:

2.7510 and −417 68010.

The binary conversion of 2.7510 yields:

2.7510 = 10.112

The normalized form is written as:

10.112 = 1.0112 × 21

We thus have:

– the mantissa M = 1.f (f represents the 23 bit fractional part):

f = 01100000000000000000000

– the exponent of 8 bits:

Eb = E + b = 110 + 12710 = 12810 = 100000002

– the sign bit:

S = 0 (in the case of a positive number)
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From which:

2.7510 = 0 10000000 01100000000000000000000

For the decimal number −417 680, we obtain a binary representation of the

following form:

417 68010 = 11001011111100100002

The corresponding normalized form can be expressed as:

11001011111100100002 = 1.1001011111100100002 × 218

We thus have:

– the mantissa M = 1.f (f representing the 23 bit fractional part):

f = 10010111111001000000000

– the exponent of 8 bits:

Eb = E + b = 1810 + 12710 = 14510 = 100100012

– the sign bit:

S = 1 (in the case of a negative number)

And finally:

−417 68010 = 1 10010001 10010111111001000000000IEEE754

b) Find the decimal number corresponding to each of the following single-

precision IEEE-754 representations:

0 10001010 01110111000110000000000IEE754

1 00000000 00000000000000000000001IEEE754

For N10 = 0 10001010 01110111000110000000000IEE754, we have:

– the sign bit:

S = 0 (in the case of a positive number)

– the exponent of 8 bits:

Eb = 100010102 = 13810 (normalized number)
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and:

E = Eb − b = 138− 127 = 1110

– the mantissa M of 23 bits:

M = 1.f

= 1.011101110001100000000002

= 20 + 2−2 + 2−3 + 2−4 + 2−6 + 2−7 + 2−8 + 2−12 + 2−13

= 1.465209960937510

Hence:

N10 = (−1)SM × 2E = 1.4652099609375× 211 = 3000.7510

In the case of N10 = 1 00000000 00000000000000000000001IEEE754, we

obtain:

the sign bit:

S = 1 (for a negative number)

the exponent of 8 bits:

Eb = 000000002 = 010 (denormalized number)

and:

E = Eb − b+ 1 = 0− 127 + 1 = −12610

the mantissa M of 23 bits:

M = 0.f

= 0.0000000000000000001

= 2−23

and finally:

N10 = (−1)SM × 2E = −2−23 × 2−126 = −2−149 = −1.4× 10−45

SOLUTION 1.3.– Gray code/binary number conversion

1) Binary–Gray code conversion:

a) 110112 = 10110Gray b) 1011012 = 111011Gray
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c) 110001102 = 10100101Gray

2) Gray code–binary number conversion:

a) 1010Gray = 11002 b) 00010Gray = 000112
c) 11000010001Gray = 100000111102

SOLUTION 1.4.– Correction code

1) The principle of the CRC method consists of processing words and codes as

binary polynomials.

– Coding

In this case, the polynomial generator is of the degree 3 (r = 3) and is written as:

G(x) = x3 + x+ 1

The correspondence between the initial message and a polynomial form is

established as follows:

101101 ↔ I(x) = 1 · x5 + 0 · x4 + 1 · x3 + 1 · x2 + 0 · x1 + 1

The polynomial associated with the initial message is reduced to:

I(x) = x5 + x3 + x2 + 1

We have:

I(x)x3 = (x5 + x3 + x2 + 1)x3 = x8 + x6 + x5 + x3

The division of the polynomial I(x)x3 by G(x) is performed as follows:

x8 + x6 + x5 + x3 x3 + x+ 1

x8 + x6 + x5 x5 + 1 ← Quotient

x3

x3 + x+ 1

x+ 1 ← Remainder

The message to be transmitted, T (x), is obtained by concatenating the bits of the

initial message, I(x), and the r bits of the division remainder. That is:

101101 011
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It must be noted that the division is carried out using the addition modulo 2 for the

coefficients of the polynomials (0 + 0 = 0, 1 + 0 = 1, 1 + 1 = 0).

– Verification

For an error-free transmission, the remainder of the division of the received

message, T (x), by the polynomial generator, G(x), must be equal to 0.

The polynomial associated with the received message is of the form:

101101 011 ↔ x8 + x6 + x5 + x3 + x+ 1

The division is executed as follows:

x8 + x6 + x5 + x3 + x+ 1 x3 + x+ 1

x8 + x6 + x5 x5 + 1 ← Quotient

x3 + x+ 1

x3 + x+ 1

0 ← Remainder

The remainder being 0, this is an error-free transmission.

Considering the other message that is received, we can obtain the following

polynomial:

100101 011 ↔ x8 + x5 + x3 + x+ 1

The division is carried out as follows:

x8 + x5 + x3 + x+ 1 x3 + x+ 1

x8 + x6 + x5 x5 + x3 + x ← Quotient

x6 + x3 + x+ 1

x6 + x4 + x3

x4 + x+ 1

x4 + x2 + x

x2 + 1 ← Remainder

The remainder of the division is not equal to 0, which is the feature of a received

message with errors.

2) Coding of the message to be transmitted when the polynomial generator is

G(x) = x4 + x+ 1 and the initial message is 1011001.
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The initial message can be associated with the polynomial, I(x), given by:

I(x) = x6 + x4 + x3 + 1

The multiplication of I(x) by x4 results in:

I(x)x4 = (x6 + x4 + x3 + 1)x4 = x10 + x8 + x7 + x4

The division is performed as follows:

x10 + x8 + x7 + x4 x4 + x+ 1

x10 + x7 + x6 x6 + x4 + x2 + x ← Quotient

x8 + x6 + x4

x8 + x5 + x4

x6 + x5

x6 + x3 + x2

x5 + x3 + x2

x5 + x2 + x

x3 + x ← Remainder

Concatenating the bits of the initial message, I(x), and the four bits of the

remainder of the division, the message to be transmitted, T (x), takes the following

form:

1011001 1010
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Logic Gates

2.1. Introduction

Logic functions provide ways to combine different digital signals – or signals that

can only take one of two possible levels: low level (0) and high level (1) – based on

the laws of Boolean algebra. These laws are applied using logic gates, which can be

classified according to the number of available inputs.

Each logic gate has an equivalent electric circuit. However, an electronic logic gate

is very different from its electrical equivalent. It is much faster, smaller, and consumes

less electric energy.

Figure 2.1 shows the electric circuit that corresponds to the NOT gate. The light-

emitting diode comes on when the switch S1 is opened and goes off when the switch

S1 is closed.

S1S1

R R

−

+

−

+

Figure 2.1. Electric circuit that is the equivalent of the NOT gate

The electric circuit shown in Figure 2.2 operates as an AND gate. The diode lights

up if and only if both switches S1 and S2 are closed.

Figure 2.3 shows the electric circuit for the OR gate. The diode comes on if at least

one of the switches (S1 or S2) is closed.

Digital Electronics 1: Combinational Logic Circuits, First Edition. Tertulien Ndjountche.
© ISTE Ltd 2016. Published by ISTE Ltd and John Wiley & Sons, Inc.
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S2S1S2S1

−

+

−

+

Figure 2.2. Electric circuit corresponding to the AND gate

S2

S1

S2

S1

+

−−

+

Figure 2.3. Electric circuit corresponding to the OR gate

The electric circuit corresponding to the XOR gate is illustrated in Figure 2.4. The

diode emits visible light when either the switch S1 or the switch S2 is closed.

2S1S

01

10

01

10

2S1S

2S1S

−

+ +

−

Figure 2.4. Electric circuit corresponding to the XOR gate, where
pressure on either push button S1 or push button S2 turns on the diode,
but pressure on push button S1 and push button S2 turns off the diode

2.2. Logic gates

Logic gates can be used to combine digital signals based on basic Boolean

functions.
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2.2.1. NOT gate

The NOT function provides the complementary state to a given variable. The

function is represented by a bar placed above the input variable and implemented by

a NOT gate (or logic inverter).

BA

Figure 2.5. NOT gate. B = A

A B

0 1

1 0

Table 2.1. Truth table. Input: A; Output: B

Figure 2.6 depicts the symbol for a NOT gate. The logic level of the output variable

is obtained by taking the complement of the input variable, as shown in the truth table

given in Table 2.1. Thus, if an input is at logic level 0, the output will be at logic level

1, and vice versa.

2.2.2. AND gate

The AND function, which is also called logic product, is represented by a dot (·).

A

B
C

Figure 2.6. AND gate
C = A ·B

The AND gate can have two inputs, as illustrated in Figure 2.6, the output variable

takes the high logic level (or the value 1) if and only if the input variables are both at

the high logic level (or the value 1). In all other cases, the output is set to the low logic

level (or the value 0). Table 2.2 shows the truth table for the AND gate.
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A B C

0 0 0

0 1 0

1 0 0

1 1 1

Table 2.2. Truth table.

Inputs: A, B; Output: C

2.2.3. OR gate

The OR function, which is also called logic addition, is represented by a plus (+).

A
C

B

Figure 2.7. OR gate
C = A+B

A B C

0 0 0

0 1 1

1 0 1

1 1 1

Table 2.3. Truth table.
Inputs: A, B; output: C

Figure 2.7 depicts the OR gate, which has two gates. As illustrated by the truth

table in Table 2.3, the output takes the logic level 1 if at least one of the two inputs is

at the logic level 1, it takes logic level 0 if both the inputs are at the logic level 0.

2.2.4. XOR gate

The XOR (exclusive OR) function is represented by a plus within a circle (⊕).

Figure 2.8 depicts the symbolic representation of an XOR gate having two inputs.

According to the truth table shown in Table 2.4, the output takes either logic level 1,

when only one of the inputs is at logic level 1, or logic level 0, when both inputs are

either at logic level 0 or at logic level 1.
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B

A

C
B

A
C

Figure 2.8. XOR gate (exclusive OR)
C = A⊕B = A ·B +A ·B

A B C

0 0 0

0 1 1

1 0 1

1 1 0

Table 2.4. Truth table.

Inputs: A, B; Output: C

2.2.5. Complementary logic gates

The NAND (NOT AND), NOR (NOT OR), and XNOR (NOT exclusive OR or

inclusive AND) gates are said to be complementary and correspond, respectively, to

the AND, OR and XOR gates when followed by a NOT gate. They are characterized

by the following logic equations:

– NAND gate: C = A ·B;

– NOR gate: C = A+B;

– XNOR gate: C = A⊕B = A ·B +A ·B = A	B.

A

B

(a)

A

B

(b)

C
B

A
C

(c)

C

Figure 2.9. NAND (NOT AND) (a), NOR (NOT OR) (b) and XNOR
(NOT exclusive OR) (c) gates

The NAND and NOR gates are considered to be universal gates. This means that

any logic function can be implemented using just NAND or NOR gates. It must be

noted that neither the XOR gate nor the XNOR gate is universal.
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2.3. Three-state buffer

A three-state buffer works as a signal-controlled switch. An enable signal is used

to control whether the input signal is transferred toward the output or isolated from

the output, which is then held in a high-impedance state.

The output from the circuit shown in Figure 2.10 can take any of the following

three states: high (1), low (0) and high impedance (z).

X

E

Y

Figure 2.10. Three-state buffer

When E = 0, the output is held in the high impedance state.

When E = 1, the output is at the same state as the input (0 or 1).

Table 2.5 shows the truth table for the three-state buffer.

E X Y

0 x z

1 0 0

1 1 1

Table 2.5. Truth table

Using the three-state buffer makes it possible to link the outputs of logic gates set

up in parallel through a common line.

2.4. Logic function

A logic function is completely defined when, for all combinations of input

variables, the function value is defined. The number of these combinations is 2n for n
variables.

A function is incompletely defined when there is at least one combination of input

variables for which the logic level is unknown.
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When a logic system is implemented, two cases may occur:

– one of the possible combinations will never exist in the normal functioning of

the system. This is called a forbidden condition and is denoted by - (hyphen);

– one of the combinations exists but can take either the state 0 or 1. This is called

the do not care condition and is represented by the symbol x or φ.

In general, a logic function can thus take four states: 0, 1, x and -.

A function with n variables may be represented by a truth table having n + 1
columns and a maximum of 2n lines.

2.5. The correspondence between a truth table and a logic function

Let X(A,B,C) be a logic function with three variables, which is defined by a

truth table.

DEFINITION 2.1.– Based on the truth table in Table 2.6, the function X may be written
as the following sum of products:

X(A,B,C) = A ·B · C +A ·B · C +A ·B · C +A ·B · C +A ·B · C
=

∑
m(0, 3, 4, 6, 7) [2.1]

A B C X

0 0 0 0 1 ↔ A ·B · C
1 0 0 1 0

2 0 1 0 0

3 0 1 1 1 ↔ A ·B · C
4 1 0 0 1 ↔ A ·B · C
5 1 0 1 0

6 1 1 0 1 ↔ A ·B · C
7 1 1 1 1 ↔ A ·B · C

Table 2.6. Truth table (sum of products)

With three variables, A · B · C corresponds to a minterm, while A · B is not a
minterm. A minterm must contain all function variables.

On referring to the truth table in Table 2.7, the product-of-sums form of the

function X can be obtained as follows:

X(A,B,C) = (A+B + C) · (A+B + C) · (A+B + C)

=
∏

M(1, 2, 5) [2.2]
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A B C X

0 0 0 0 1

1 0 0 1 0 ↔ A+B + C

2 0 1 0 0 ↔ A+B + C

3 0 1 1 1

4 1 0 0 1

5 1 0 1 0 ↔ A+B + C

6 1 1 0 1

7 1 1 1 1

Table 2.7. Truth table (product of sums)

With three variables, A + B + C represents a maxterm, while B + C is not a

maxterm.

The canonical form corresponds to the Boolean expression of a logic function

using only minterms or maxterms. It is unique for each logic function.

The complement of the function X is given by:

X(A,B,C) =
∏

M(0, 3, 4, 6, 7) =
∑

m(1, 2, 5) [2.3]

In the case of four variables, the logic function X is considered to be defined by

the truth table in Table 2.8.

The function X can be written as the following sum of products:

X(A,B,C,D) = A ·B · C ·D +A ·B · C ·D +A ·B · C ·D +A ·B · C ·D
=

∑
m(1, 5, 7, 15) [2.4]

Generally, the following relationships exist between the minterms, mi, and the

maxterm, Mi, of a logic function of n variables:

mi = M2n−1−i or Mi = m2n−1−i (0 ≤ i ≤ 2n − 1) [2.5]

Let n be the number of variables of a logic function:

– the sum of all the 2n minterms of a function is equal to 1;

– the product of all the 2n maxterms of a function is equal to 0.
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A B C D X

0 0 0 0 0 0

1 0 0 0 1 1 ↔ A ·B · C ·D
2 0 0 1 0 0

3 0 0 1 1 0

4 0 1 0 0 0

5 0 1 0 1 1 ↔ A ·B · C ·D
6 0 1 1 0 0

7 0 1 1 1 1 ↔ A ·B · C ·D
8 1 0 0 0 0

9 1 0 0 1 0

10 1 0 1 0 0

11 1 0 1 1 0

12 1 1 0 0 0

13 1 1 0 1 0

14 1 1 1 0 0

15 1 1 1 1 1 ↔ A ·B · C ·D
Table 2.8. Truth table (sum of products)

The product of two different minterms is equal to 0, while the sum of two different

maxterms is equal to 1.

2.6. Boolean algebra

Boolean algebra is applied to operations and functions on logic variables.

Let X and Y be logic (or Boolean) functions, whose values can only be 0 or 1.

The following properties are verified:

1) commutativity: X + Y = Y +X and X · Y = Y ·X;

2) associativity: X + (Y + Z) = (X + Y ) + Z and X · (Y · Z) = (X · Y ) · Z;

3) distributivity: X ·(Y +Z) = X ·Y +X ·Z and (X+Y )(X+Z) = X+Y ·Z;

4) X + Y = X · Y (DeMorgan’s theorem – NOR);

5) X · Y = X + Y (DeMorgan’s theorem – NAND).

EXAMPLE 2.1.– Implement an XOR gate from NAND logic gates and an XNOR gate

from NOR logic gates.
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The logic equation for the XOR gate is given by:

C = A⊕B = A ·B +A ·B [2.6]

and

C = C = A ·B ·A ·B [2.7]

Because A ·B = A ·A ·B and A ·B = A ·B ·B, equation [2.7] takes the form:

C = A ·A ·B ·A ·B ·B [2.8]

Equation [2.8] can then be implemented as illustrated in Figure 2.11.

(a)

B

A

A

B

(b)

CC

Figure 2.11. XOR gate: a) symbol; b) construction using NAND gates

For the XNOR gate, we have:

C = A⊕B = A ·B +A ·B [2.9]

Because

A ·B = A ·B = A(A+B) = A+A+B [2.10]

and

A ·B = A ·B = (A+B)B = A+B +B [2.11]
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equation [2.9] becomes:

C = A+A+B +A+B +B [2.12]

Figure 2.12 depicts the logic circuit corresponding to equation [2.12].

C

A

B

(b)(a)

B

A
C

Figure 2.12. XNOR gate: a) symbol; b) construction using NOR gates

2.6.1. Boolean algebra theorems

Boolean algebra is governed by a certain number of theorems (or properties). The

algebraic method of simplification uses properties of Boolean algebra to make it

possible to minimize Boolean expressions (or logic functions), thus reducing the

material cost for practical implementation.

2.6.1.1. NOT, AND and OR functions

Table 2.9 gives the basic properties for the NOT, AND and OR operations.

NOT AND OR

0 = 1 0 ·X = 0 0 +X = X

1 = 0 1 ·X = X 1 +X = 1

X = X X ·X = X X +X = X

X ·X = 0 X +X = 1

Table 2.9. Basic properties for the NOT, AND and OR operations

In general, for the Boolean functions X , Y and Z, it is possible to establish the

following theorems:
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– simplification theorem:

X +X · Y = X

X(X + Y ) = X

X · Y +X · Y = X

(X + Y )(X + Y ) = X

– absorption theorem:

X +X · Y = X + Y

X(X + Y ) = X · Y

– factorization and multiplication theorem:

(X + Y )(X + Z) = X · Z +X · Y
X · Y +X · Z = (X + Z)(X + Y )

– consensus theorem:

X · Y +X · Z + Y · Z = X · Y +X · Z
(X + Y )(X + Z)(Y + Z) = (X + Y )(X + Z)

SHANNON’S EXPANSION THEOREM.– Let F (x0, x1, . . . , xi, . . . , xn−1) be a Boolean

logic function of n variables. Shannon’s expansion theorem can be written as follows:

F (x0, x1, . . . , xi, . . . , xn−1) = xi · F (x0, x1, . . . , 0, . . . , xn−1)+

xi · F (x0, x1, . . . , 1, . . . , xn−1) [2.13]

In practice, applying Shannon’s expansion theorem makes it possible to

decompose a function of five variables, for example, to give rise to two functions of

four variables. Thus:

F (A,B,C,D,E) = E · F (A,B,C,D, 0) + E · F (A,B,C,D, 1) [2.14]

where in fact F (A,B,C,D, 0) and F (A,B,C,D, 1) represent functions of four

variables.

By iteratively applying Shannon’s expansion theorem, a Boolean function can be

expressed from the different values obtained for the different combinations of input

variables as given in the truth table.
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A B F(A,B)

0 0 1

0 1 0

1 0 0

1 1 1

Table 2.10. Truth table

For the two-variable function, F (A,B), with the truth table in Table 2.10, we have:

F (A,B) = A · F (0, B) +A · F (1, B) [2.15]

= A[B · F (0, 0) +B · F (0, 1)] +A[B · F (1, 0) +B · F (1, 1)]

= A ·B · F (0, 0) +A ·B · F (0, 1) +A ·B · F (1, 0) +A ·B · F (1, 1)

where F (0, 0) = 1, F (0, 1) = 0, F (1, 0) = 0 and F (1, 1) = 1.

2.6.1.2. XOR (exclusive OR) and XNOR (inclusive AND) functions

The XOR (OR exclusive) function of two variables is defined by:

X ⊕ Y = XY +X · Y [2.16]

Furthermore, we can write:

X ⊕ Y = X ⊕ Y [2.17]

The definition of the XNOR (AND inclusive) function with two variables is given by:

X 	 Y = X · Y +X · Y [2.18]

It must be noted that:

X 	 Y = X 	 Y = X ⊕ Y = X ⊕ Y = X ⊕ Y [2.19]

Let us consider the Boolean functions, X , Y , and Z. Table 2.11 shows the truth

table for the function X ⊕ (Y · Z) and (X ⊕ Y )(X ⊕ Z). We can thus observe that

X ⊕ (Y · Z) is different from (X ⊕ Y )(X ⊕ Z).
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X Y Z Y · Z X ⊕ Y X ⊕ Z X ⊕ (Y · Z) (X ⊕ Y )(X ⊕ Z)

0 0 0 0 0 0 0 0

0 0 1 0 0 1 0 0

0 1 0 0 1 0 0 0

0 1 1 1 1 1 1 1

1 0 0 0 1 1 1 1

1 0 1 0 1 0 1 0

1 1 0 0 0 1 1 0

1 1 1 1 0 0 0 0

Table 2.11. Truth table for X ⊕ (Y · Z) and (X ⊕ Y )(X ⊕ Z)

For the functions X ⊕ Y ⊕ (X + Y ) and X ⊕ Y ⊕ X + X ⊕ Y ⊕ Y , the truth

table is represented in Table 2.12. Expressing all combinations of the variables X and

Y where each function takes the logic level 1, we have:

X ⊕ Y ⊕ (X + Y ) = X · Y [2.20]

and

X ⊕ Y ⊕X +X ⊕ Y ⊕ Y = X · Y +X · Y +X · Y
= X(Y + Y ) +X · Y
= X +X · Y
= X + Y [2.21]

X Y X + Y X ⊕ Y X ⊕ Y ⊕ (X + Y ) X ⊕ Y ⊕X +X ⊕ Y ⊕ Y

0 0 0 0 0 0

0 1 1 1 0 1

1 0 1 1 0 1

1 1 1 0 1 1

Table 2.12. Truth table for X ⊕ Y ⊕ (X + Y ) and
X ⊕ Y ⊕X +X ⊕ Y ⊕ Y

Therefore, functions X ⊕ Y ⊕ (X + Y ) and X ⊕ Y ⊕X +X ⊕ Y ⊕ Y are not

equal.

The basic properties for the XOR and XNOR operations are given in Table 2.13.
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XOR XNOR

0⊕X = X 0�X = X

1⊕X = X 1�X = X

X ⊕X = 0 X �X = 1

X ⊕X = 1 X �X = 0

Table 2.13. Basic properties for the XOR and XNOR operations

The following theorems are verified for the Boolean functions X , Y and Z:

– commutativity:

X ⊕ Y = Y ⊕X

X 	 Y = Y 	X

– associativity:

X ⊕ (Y ⊕ Z) = (X ⊕ Y )⊕ Z = X ⊕ Y ⊕ Z

X 	 (Y 	 Z) = (X 	 Y )	 Z = X 	 Y 	 Z

– factorization and distributivity:

(X · Y )⊕ (X · Z) = X · (Y ⊕ Z)

(X + Y )	 (X + Z) = X + (Y 	 Z)

– absorption:

X · (X ⊕ Y ) = X · Y
X + (X 	 Y ) = X + Y

– consensus:

(X · Y )⊕ (X · Z) + Y · Z = (X · Y )⊕ (X · Z)

(X + Y )	 (X + Z) · (Y + Z) = (X + Y )	 (X + Z)

For two logic functions, X and Y , it may be established that:

− if X · Y = 0, then X + Y = X ⊕ Y ;

− if X + Y = 1, then X · Y = X 	 Y .
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NOTE 2.1.– Boolean algebra theorems (or properties) possess two forms, one deduced

from the other by replacing:

– all plus signs (+) with a point (·), and vice versa;

– all circled plus signs (⊕) with a circled point (	), and vice versa;

– any logic level 1 by logic level 0, and vice versa.

EXAMPLE 2.2.– Show that:

(X · Y )⊕ (X + Y ) = X ⊕ Y

X 	 Y 	 (X · Y ) = X + Y

(X + Y )	 (X ⊕ Y ) = X · Y
X · Y + Y · Z +X · Z = X · Y ⊕ Y · Z ⊕X · Z

Using Boolean algebra theorems (or properties), we can write:

(X · Y )⊕ (X + Y ) = X · Y (X + Y ) +X · Y (X + Y )

= X · Y (X + Y ) +X · Y (X + Y )

= X · Y (X · Y ) + (X + Y )(X + Y )

= X · Y +X · Y
= X ⊕ Y [2.22]

X 	 Y 	 (X · Y ) = (X 	 Y )(X · Y ) + (X 	 Y )(X · Y )

= (X · Y +X · Y )(X · Y ) + (X ⊕ Y )(X + Y )

= X · Y + (X · Y +X · Y )(X + Y )

= X · Y +X · Y +X · Y
= X(Y + Y ) +X · Y
= X +X · Y
= X + Y [2.23]

(X + Y )	 (X ⊕ Y ) = (X + Y )	 (X · Y +X · Y )

= (X + Y ) · (X · Y +X · Y )

because (X + Y ) + (X · Y +X · Y ) = 1

= X · Y [2.24]
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X · Y + Y · Z +X · Z = X · Y (Z + Z) + (X +X)Y · Z +X · (Y + Y )Z

= X · Y · Z +X · Y · Z +X · Y · Z +X · Y · Z
= X · Y · Z +X · Y · Z ⊕ (X · Y · Z +X · Y · Z)

because (X · Y · Z)(X · Y · Z +X · Y · Z) = 0

= X · Y (Z + Z)⊕ (Y ⊕X)Z

= X · Y ⊕ Y · Z ⊕X · Z [2.25]

2.6.2. Karnaugh maps

A semi-graphical method, which is based on the use of Karnaugh maps, is more

appropriate for the simplification of more complex Boolean expressions.

A Karnaugh map, like a truth table, provides a representation of logic functions. It

is composed of a certain number of squares or cells, each of which is reserved for a

term (minterm or maxterm) of a logic function. Figure 2.13 shows Karnaugh maps for

a three-variable function and Figure 2.14 presents Karnaugh maps for a four-variable

function. The variables can be represented in two ways. On each map, the combination

of the variables are placed in accordance with the order of Gray’s encoding such that

adjacent terms are in the neighboring cells or in the cells at map ends.

A

AB

C 00 01 11 10

A

0 2 6
0

4

51 3 7

(a)
B

1C

BC

A 00 01 11 10

B

0 1 3
0

2

64 5 7

(b)
C

1

Figure 2.13. Three-variable Karnaugh map

Though Karnaugh maps can be used to reduce any logic function, they become

difficult to manipulate when the number of variables exceeds six.
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Figure 2.14. Four-variable Karnaugh map
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Figure 2.15. Duad:

X = A ·B · C +A ·B · C = B · C

0

AB

C 00 01 11 10

A

0

B

1C

1 0 00

0 1 0

Figure 2.16. Duad:

X = A ·B · C +A ·B · C = A ·B
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C
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Figure 2.17. Duad:

X = A ·B · C +A ·B · C = B · C

C
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1 0 0 1

AB

C 00 01 11 10

A
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Figure 2.18. Quad:

X = A ·B · C +A ·B · C+ A ·B · C +A ·B · C = B

C
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1 1 1 1

AB

C 00 01 11 10

A

0

B

1

Figure 2.19. Quad:

X = A ·B · C +A ·B · C +A ·B · C +A ·B · C = C

Using a Karnaugh map, the simplification of a logic function is carried out by

grouping the adjacent cells that contain 1s. The number of cells in a group must be a

power of 2, or of the form 2n (n = 1, 2, 3, . . .):



68 Digital Electronics 1
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Figure 2.20. Quad:

X = A ·B · C +A ·B · C +A ·B · C +A ·B · C = A

001
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CD
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B

A
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1 00 1

0 1 1 0

0 1 1 0

0 1 1

00

Figure 2.21. Octad:

X = B

– duad of adjacent 1s: the variable that is both complemented and non-

complemented can be eliminated (see Figures 2.15–2.17);

– quad of adjacent 1s: two variables that are both complemented and non-

complemented can be eliminated (see Figures 2.18–2.20);

– octad of adjacent 1s: three variables that are both complemented and non-

complemented can be eliminated (see Figures 2.21–2.24).

Only those variables that hold the same logic state in all the cells of a group appear

in the simplified expression.

NOTE 2.2.– In the case of several possibilities for grouping the cells of a Karnaugh

map, the minimization procedure can yield more than one logic expression.
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Figure 2.22. Octad:

X = C
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Figure 2.23. Octad:

X = B

The minterms that are not necessary for the desired application may be used to

improve the simplification of the logic circuit. They are considered as don’t care terms.

EXAMPLE 2.3.– Simplify the following expressions:

1) X(A,B,C) = A ·B · C +B · C +A ·B.

2) X(A,B,C) = A ·B ·C +A ·B ·C +A ·B ·C +A ·B ·C. We shall suppose

that the input condition A ·B ·C does not affect the logic level of the function X (do
not care condition).
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3) X(A,B,C,D) = A ·B ·C ·D+A ·B ·C ·D+A ·B ·C ·D+A ·B ·C ·D
+A ·B ·C ·D+A ·B ·C ·D+A ·B ·C ·D+A ·B ·C ·D.

4) X(A,B,C,D) = A ·B ·C ·D+A ·B ·C ·D+A ·B ·C ·D+A ·B ·C ·D
+A ·B ·C ·D+A ·B ·C ·D+A ·B ·C ·D

5) X(A,B,C,D) = A ·B ·C ·D+A ·B ·C ·D+A ·B ·C ·D+A ·B ·C ·D
+A ·B ·C ·D+A ·B ·C ·D+A ·B ·C ·D+A ·B ·C ·D
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1 11 1
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1 1 1 1

0 0 0 0
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B
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00

Figure 2.24. Octad:

X = D

Using Karnaugh maps represented in Figures 2.25–2.30, different solutions can be

obtained.

C
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1 1 0 1

AB

C 00 01 11 10

A

0

B

1

Figure 2.25. Example 2.1(1):

X = A+B · C
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Figure 2.26. Example 2.1(2):

X = B +A · C
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Figure 2.27. Example 2.1(3) (case 1):

X = A · C ·D +A ·B · C+ A ·B · C +A · C ·D
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Figure 2.28. Example 2.1(3) (case 2):

X = A ·B ·D +B · C ·D+ B · C ·D +A ·B ·D
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Figure 2.29. Example 2.1(4):

X = A ·B +B · C +A · C ·D
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Figure 2.30. Example 2.1(5):

X = A ·B · C +A · C ·D +A ·B · C +A · C ·D

It should be noted that some logic functions can have many minimal expressions.

EXAMPLE 2.4.– Simplify the logic function F in the two following cases:

a) F (A,B,C) =
∑

m(1, 3, 4, 7);

b) F (A,B,C) =
∑

m(1, 3, 4, 7) + x(2, 5), where the don’t care terms are

represented by x.
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The minimal expressions of the function F may be obtained from the Karnaugh

maps represented in Figures 2.31 and 2.32.

C

0 0 10

1 1 1 0

AB

C 00 01 11 10

A

0

B

1

Figure 2.31. Example 2.2(a):
F = A ·B · C +A · C +B · C

C

x 0 10

1 1 1 x

AB

C 00 01 11 10

A

0

B

1

Figure 2.32. Example 2.2(b):
F = A ·B + C

It should be noted that a don’t care term is taken into account only if it can

contribute to the simplification of the logic function.

2.6.3. Simplification of logic functions with multiple outputs

The simplification of logic functions with multiple outputs can be carried out in

four steps:

1) Write the functions to be simplified in the sum of products;
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2) The minterms being represented by m and the don’t care terms by x, form the

products of sums in a systematic manner in accordance with the following rules of the

AND operation:

mi ·mi = mi

mi ·mj = 0 (i 
= j)

mi · xi = mi

xi · xi = xi

mi · xj = xi · xj = 0 (i 
= j);

3) Draw up a table containing the terms common to different functions;

4) Based on the Karnaugh map for each function, group the common terms and

then simplify the remaining terms.

However, when a group of common terms is part of a larger group of 2n (n =
1, 2, 3) terms, this group is only selected if it yields the simplest logic expression.

EXAMPLE 2.5.– Propose a circuit that implements the following circuit:

F (A,B,C,D) =
∑

m(0, 2, 3, 4, 6, 7, 10, 11)

G(A,B,C,D) =
∑

m(0, 4, 8, 9, 10, 11, 12, 13)

Taking into account the common terms (see the Karnaugh maps shown in

Figures 2.33 and 2.34), we can obtain the circuit in Figure 2.35 that consists of six

logic gates with a total of 16 inputs.

By independently simplifying the two functions, we arrive at:

F (A,B,C,D) = A · C +A ·D +B · C
G(A,B,C,D) = A · C + C ·D +A ·B

In this case, eight logic gates with a total of 18 inputs are needed for the

implementation of the functions F and G.

2.6.4. Factorization of logic functions

To reduce hardware implementation costs, it is often necessary to find terms

common to several functions.
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Figure 2.33. Function F
F = A · C +A ·B · C +A · C ·D
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Figure 2.34. Function G
G = A · C +A ·B · C +A · C ·D

Factorize (or decompose) the following Boolean expressions to yield the term C+
D:

F (A,B,C,D) = A · C +A ·D +B · C ·D
G(A,B,C,D) = A ·B · C +A ·B ·D +A · C ·D +B · C ·D
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C
B

A

D G

F

Figure 2.35. Logic circuits for the implementation of F and G

The factorization (or the decomposition) of functions F and G can be carried out

as follows:

F = A · C +A ·D +B · C ·D [2.26]

= A(C +D) +B · C ·D
= A(C +D) +B(C +D) [2.27]

and

G = A ·B · C +A ·B ·D +A · C ·D +B · C ·D [2.28]

= A ·B(C +D) +A(C +D) +B(C +D)

= A ·B(C +D) +AB(C +D) [2.29]

2.7. Multi-level logic circuit implementation

Combinational logic circuits are generally designed using two-level logic

networks. They arise directly from the sum-of-product expressions and are

characterized by a high speed of operation (or fast response time) if the number of

inputs is such that the load limit for each logic gate is not exceeded (or if the input

fan-in specification is satisfied).

The design of multi-level circuits is based on the factorization and decomposition

of logic functions which are taken in their minimal form. In practice, the use of

supplementary levels in a circuit helps to reduce the maximum number of inputs for

logic gates to the value permitted by the manufacturing technology.

Conventionally, input inverters are not considered when determining the number

of circuit levels as they may be affected by the type of logic circuit (active high or

active low) to be chosen.
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2.7.1. Examples

The five-variable function, F (A,B,C,D,E), is to be implemented. It is expressed

in the sum-of-product form as:

F (A,B,C,D,E) = A · C +A ·D +B · C +B ·D +E [2.30]

This function can be implemented using four 2-input AND gates or one 5-input

OR gate as shown in Figure 2.36(a).

F

A

B

A

D

C

B

E

F

(b)(a)

C

D

E

Figure 2.36. Logic circuit for the implementation of F

Upon factorizing, we can also arrive at:

F (A,B,C,D,E) = (A+B)(C +D) + E [2.31]

As a result, the function F (A,B,C,D,E) can be implemented using three 2-input

OR gates and one 2-input AND gate, as illustrated in Figure 2.36(b). This approach,

in addition to reducing the number of logic gates, makes it possible to improve the

fan-in of logic gates.

In the case of a logic function of four variables, G(A,B,C,D), given in the sum-

of-products form by:

G(A,B,C,D) = A · C +A ·D +B · C +B ·D +A ·B · C ·D [2.32]

the implementation, as illustrated in Figure 2.37(a), requires four 2-input AND gates,

one 4-input AND gate and one 5-input OR gate.
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Figure 2.37. Logic circuit for the implementation of G

The implementation as shown in Figure 2.37(b) is based on the factorization of the

function G(A,B,C,D) as follows:

G(A,B,C,D) = (A+B)(C +D) + (A+B)(C +D)

= (A ·B)(C +D) + (A ·B)(C +D) [2.33]

It has three levels and uses only 2-input logic gates (three OR gates and two AND

gates).

We observe that the function G(A,B,C,D) can also be written in the following

manner:

G(A,B,C,D) = A ·B ⊕ (C +D) [2.34]

which yields another logic circuit, as shown in Figure 2.37(c), and which is composed

of one OR gate, one AND gate and one XOR gate.

2.7.2. NAND gate logic circuit

Based on DeMorgan’s theorems, a logic circuit consisting of AND and OR gates

can be transformed to a circuit made up solely of NAND gates (1) by replacing the

AND gates with NAND gates, adding inverters at the OR gate inputs and by inserting

inverters wherever necessary to correct for the effect of non-compensated inversions,
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and, lastly, (2) by replacing all OR gates with input inverters to NAND gates (see

Figure 2.38).

X
B

X
B

AA

Figure 2.38. Equivalent circuits for the NAND gate

Consider the following logic function of four variables A, B, C and D:

F (A,B,C,D) = (A+B)(C ·D + C ·D) [2.35]

This function may be implemented by using AND and OR gates, as illustrated in

Figure 2.39(a). By applying the transformations (1) and (2), we can obtain the circuit

shown in Figure 2.39(b) and the NAND gate based circuit shown in Figure 2.39(c),

respectively.
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Figure 2.39. Implementation of the function F: a) circuit using AND and
OR gates; b) equivalent circuit; c) circuit based on NAND gates
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Let us consider another function G of four variables A, B, C and D, defined by:

G = A ·B · C +A ·D +B ·D + C ·D [2.36]

To implement this function using only 2-input NAND gates, we first observe that:

G = (A+B · C)(B · C +D) [2.37]

and subsequently derive the circuit built up of AND and OR gates, as illustrated in

Figure 2.40(a). Using transformations based on DeMorgan’s theorems, we can obtain

the equivalent circuit in Figure 2.40(b), and then the NAND gate based circuit

represented in Figure 2.40(c).

(a)

C
G

A

(b)

B

D

C

A

G

C

D

G

(c)

B

D

A

B

Figure 2.40. Implementation of the function G: a) circuit using AND
and OR gates; b) equivalent circuit; c) NAND gate based circuit

NOTE 2.3.– Each sum-of-products logic expression corresponds to a circuit using

AND and OR gates, or a NAND gate based circuit.

2.7.3. NOR gate based logic circuit

A logic circuit built up of AND and OR logic gates can be transformed in

accordance with DeMorgan’s theorems to a circuit consisting solely of NOR gates:

(1) by replacing the OR gates by NOR gates; by adding input inverters to the AND

gates and by inserting inverters wherever necessary to correct for the effect of

non-compensated inversions; (2) by replacing all AND gates that have input inverters

with NOR gates (see Figure 2.41).
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Figure 2.41. Equivalent circuits for the NOR gate

Consider the following logic function with four variables:

F (A,B,C,D) = (A+B)(C ·D + C ·D) [2.38]

The implementation of this function using AND and OR gates is illustrated in

Figure 2.42(a). For the NOR gate based implementation, the first step of the required

transformation results in the circuit shown in Figure 2.42(b) that is then converted to

the NOR gate based circuit as shown in Figure 2.42(c).
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Figure 2.42. Implementation of the function F: a) circuit using AND and
OR gates; b) equivalent circuit; c) NOR gate based circuit
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Use only two-input NOR gates to implement the following function of four

variables:

G = A ·B · C +A ·D +B ·D + C ·D [2.39]

Because:

G = (A+B · C)(B · C +D) [2.40]

we can derive the circuit shown in Figure 2.43(a) or the equivalent circuit shown in

Figure 2.43(b). The NOR-gate based circuit corresponding to the function G is

illustrated in Figure 2.43(c).
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D
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G

(a)
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C

G
C

A

A

Figure 2.43. Implementation of the function G: a) circuit using AND and
OR gates; b) equivalent circuits; c) NOR gate based circuit

NOTE 2.4.– Each product-of-sums logic expression corresponds to a circuit consisting

of OR and AND gates or to a NOR gate based circuit.

2.7.4. Representation based on XOR and AND operators

The logic circuit for certain functions may be difficult to optimize when they are

represented in the sum-of-products form. Using a representation based on XOR (or

XNOR) gates often offers the advantage of making it possible to reduce the number

of logic gates and the complexity of interconnection lines.

In addition to being a simplification method for logic functions, Karnaugh maps

are also useful in identifying terms that can be more easily implemented using XOR
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logic gates. In a Karnaugh map, groups of terms, that are symmetrical, or mirror

images or duplicates of each other may be represented in XOR (or Reed–Muller)

form. The following figures give some examples.

For the three-variable functions whose Karnaugh maps are represented in

Figures 2.44 and 2.45, we have, respectively:

Fa = A ·B · C +A ·B · C +A ·B · C +A ·B · C [2.41]

= A(B ⊕ C) +A(B ⊕ C)

= A⊕B ⊕ C [2.42]

and

Fb = A ·B · C +A ·B · C +A ·B · C +A ·B · C [2.43]

= A(B ⊕ C) +A(B ⊕ C)

= A⊕B ⊕ C [2.44]
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Figure 2.44. Representation of Fa = A⊕B ⊕ C
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Figure 2.45. Representation of Fb = A⊕B ⊕ C
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In the case of the four-variable functions, defined by the Karnaugh maps shown in

Figures 2.46–2.49, we have, respectively:

Fc = A · C +A · C = A⊕ C [2.45]

Fd = A ·B +A ·B = A⊕B [2.46]

Fe = B ·D +B ·D = B ⊕D [2.47]

and

Ff = B · C +B · C = B ⊕ C [2.48]
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Figure 2.46. Representation of Fc = A⊕ C

Considering the Karnaugh map depicted in Figure 2.50, the equation for the logic

function is written as follows:

Fg = A · C + C ·D +A · C ·D [2.49]

= C(A ·D) + C(A ·D)

= C ⊕A ·D [2.50]
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Figure 2.47. Representation of Fd = A⊕B
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Figure 2.48. Representation of Fe = B ⊕D

We can determine the equation for the following logic function based on the

Karnaugh map in Figure 2.51:

Fh = A ·B · C ·D +A ·B · C ·D +A ·B · C ·D +A ·B · C ·D [2.51]

= A[(B · C +B · C)D + (B · C +B · C)D]

= A[(B ⊕ C)D + (B ⊕ C)D]

= A(B ⊕ C ⊕D) [2.52]
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Figure 2.49. Representation of Ff = B ⊕ C
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Figure 2.50. Representation of Fg = C ⊕A ·D

For the Karnaugh map shown in Figure 2.52, the equation of the logic function can

be obtained as follows:

Fi = A ·B · C ·D +A ·B · C ·D +A ·B · C ·D +A ·B · C ·D [2.53]

= (A · C +A · C)(B ·D +B ·D)

= (A⊕ C)(B ⊕D) [2.54]



Logic Gates 87

1

AB

CD

C

00 01 11 10

B

A

D

00

01

11

10 1

1

1

Figure 2.51. Representation of Fh = A(B ⊕ C ⊕D)

1

AB

CD

C

00 01 11 10

B

A

D

00

01

11

10 1

1

1

Figure 2.52. Representation of Fi = (A⊕ C)(B ⊕D)

The equation for the logic function represented by the Karnaugh map shown in

Figure 2.53 is given by:

Fj = A ·B · C ·D +A ·B · C ·D +A ·B · C ·D +A ·B · C ·D [2.55]

= (A ·D +A ·D)(B · C +B · C)

= (A⊕D)(B ⊕ C) [2.56]
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Figure 2.53. Representation of Fj = (A⊕D)(B ⊕ C)
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Figure 2.54. Representation of Fk = A⊕B ⊕ C

The Karnaugh map shown in Figure 2.54 corresponds to the logic function whose

equation is written as follows:

Fk = A ·B · C +A ·B · C +A ·B · C +A ·B · C [2.57]

= A(B · C +B · C) +A(B · C +B · C)

= A(B ⊕ C) +A(B ⊕ C)

= A⊕B ⊕ C [2.58]
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Figure 2.55. Representation of Fl = A⊕B ⊕ C ⊕D

Based on the Karnaugh map in Figure 2.54, we have:

Fl = A ·B · C ·D +A ·B · C ·D +A ·B · C ·D +A ·B · C ·D
+A ·B · C ·D +A ·B · C ·D +A ·B · C ·D +A ·B · C ·D

[2.59]

= (A ·B +A ·B)(C ·D + C ·D) + (A ·B +A ·B)(C ·D + C ·D)

= (A⊕B)(C ⊕D) + (A⊕B)(C ⊕D)

= A⊕B ⊕ C ⊕D [2.60]

2.8. Practical considerations

In practice, the operation of a logic circuit depends on the electric characteristics

of the logic gates.

In an ideal case, the logic levels 0 and 1 are represented by fixed voltages (for

example ground and supply voltage) for both the input and the output. In reality, they

correspond to voltages that can vary within a certain range of values.

When logic gates are combined in order to construct a logic circuit, we can connect

two inputs together or one input to one output. But in no case can we connect two

different outputs as they can produce different logic states.

A timing diagram is a graphical representation of how variables in a system evolve

over time. In the case of logic circuits, time is represented on the horizontal axis and

the logic levels (low or high) of the variables are represented on the vertical axis. In

addition to some electric characteristics, the timing diagram provides information that
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is useful in constructing a truth table. It also shows the rise time and the fall time for

signals, and the propagation delay, that is the time that passes between a change in

level of the input and the corresponding change in the output.

2.8.1. Timing diagram for a logic circuit

A timing diagram is a graphical representation of the temporal evolution of a logic

signal.

Let us consider the logic circuit in Figure 2.56(a). The logic equation for the output

signal is of the following form:

F = A · C +B · C [2.61]

The timing diagram in an ideal case is illustrated in Figure 2.56(b). However, it

may be affected by propagation delays that depend on the response times of the

different logic gates.

F

(a)

A

C

B

C

C

BC

AC

F

(c)

B

A

C

C

BC

AC

F

B

A

(b)

τ

τ

2τ

Figure 2.56. a) Logic circuit; b) timing diagram in an ideal case; c)
timing diagram illustrating the effect of a static hazard

In general, a circuit that is sensitive to parasitic phenomena due to signal

propagation along several paths may be affected by a hazard. There is a distinction

made between static and dynamic hazards.

2.8.2. Static hazard

A static hazard is produced when a change in the level of an input variable, which

should normally not bring about a modification of the output, translates into the

generation of a transient signal with an erroneous logic level.
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The logic circuit shown in Figure 2.56(a) contains two concurrent paths with

different propagation delays. Thus, when the input signal C changes its logic level,

the inputs C and B of one of the AND gates do not change simultaneously. This

translates into a static hazard that can be seen in the timing diagram shown in

Figure 2.56(c).

To suppress the effect of the static hazard on the operation of the two-level circuit

represented in Figure 2.57(a), a product of terms must be introduced between the states

A B C = 1 1 1 and A B C = 1 1 0 (see Figure 2.57(b)). This helps to prevent the

transition of the input F toward 0, as shown in Figure 2.57(c).

(b)(a)
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B
F

A

C

B

F

C

C

BC

AC

B

A

τ

τ

2τ

F

AB

(c)

Figure 2.57. a) Circuit with static hazard; b) logic circuit functioning
without static hazard; c) timing diagram

The minimal form of the logic equation for the output F is represented by the

Karnaugh map in Figure 2.58, and the redundant term that must be added to eliminate

the static hazard appears on the Karnaugh map in Figure 2.59.

C

0 1 10

0 1 1 0

AB

C 00 01 11 10

A

0

B

1

Figure 2.58. Circuit with hazard

F = A · C +B · C
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C
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AB

C 00 01 11 10

A

0

B

1

Figure 2.59. Circuit without hazard

F = A · C +B · C +A ·B

In practice, the method used to eliminate static hazards that can affect the operation

of a two-level logic circuit consists of identifying the terms corresponding to adjacent

loops in the Karnaugh map and adding the appropriate redundant terms to the minimal

representation of the output function.

2.8.3. Dynamic hazard

A multi-level logic circuit exhibits dynamic hazards if the transition of an input

signal, which is supposed to produce a single change in the logic level of the output,

changes the logic level of the output as desired only after a transient regime with at

least two changes in logic level.

The logic circuit shown in Figure 2.60(a) is supposed to have two concurrent paths

with asymmetrical propagation delays. The circuit operation may be affected by a

dynamic hazard, as shown in Figure 2.60(b) for the output G. It must be noted that

this circuit also presents a static hazard (output F ). In this case, adding the logic gate

that implements the redundant term A · B in order to eliminate the static hazard, as

shown in Figure 2.61(a), also contributes in removing the effect of the dynamic hazard,

as shown in Figure 2.61(b).

In general, a multi-level logic circuit cannot present static hazards but it may be

affected by dynamic hazards. Therefore, for the circuit to operate without hazards, it

is preferable to implement logic functions as two-level circuits and then to detect and

eliminate static hazards by adding the appropriate redundant terms.
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Figure 2.60. a) Logic circuit and b) timing diagram
illustrating the effect of a dynamic hazard

2.9. Demonstration of some Boolean algebra identities

DEMONSTRATION 2.1.– Show that X+X ·Y = X . Using Boolean algebra theorems,

we can write:

X +X · Y = X · 1 +X · Y
= X(1 + Y )

= X(1)

= X [2.62]

DEMONSTRATION 2.2.– Show that X(X + Y ) = X . In this case, we have:

X(X + Y ) = X ·X +X · Y
= X +X · Y
= X(1 + Y )

= X [2.63]
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Figure 2.61. a) Logic circuit operating without
hazard and b) timing diagram

DEMONSTRATION 2.3.– Show that X · Y +X · Y = X . We have:

X · Y +X · Y = X(Y + Y )

= X [2.64]

DEMONSTRATION 2.4.– Show that (X + Y )(X + Y ) = X . We have:

(X + Y )(X + Y ) = X ·X +X · Y +X · Y + Y · Y
= X +X · Y +X · Y
= X(1 + Y + Y )

= X [2.65]
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DEMONSTRATION 2.5.– Show that X +X · Y = X + Y . We have:

X +X · Y = (X +X · Y )1 +X · Y
= X +X · Y +X · Y
= X + Y (X +X)

= X + Y (1)

= X + Y [2.66]

DEMONSTRATION 2.6.– Show that X(X + Y ) = X · Y . We have:

X(X + Y ) = X ·X +X · Y
= 0 +X · Y
= X · Y [2.67]

DEMONSTRATION 2.7.– Show that X · Y +X · Z = (X + Z)(X + Y ). We have:

X · Y +X · Z = X · Y (1 + Z) +X · Z(1 + Y ) +X ·X
= X · Y + Y · Z(X +X) +X · Z +X ·X
= (X + Z)Y + (X + Z)X

= (X + Z)(X + Y ) [2.68]

DEMONSTRATION 2.8.– Show that (X + Y )(X + Z) = X · Z +X · Y . We have:

(X + Y )(X + Z) = X ·X +X · Z +X · Y + Y · Z
= X · Z +X · Y + Y · Z
= X · Z +X · Y + (X +X)Y · Z
= X · Z(1 + Y ) +X · Y (1 + Z)

= X · Z +X · Y [2.69]

DEMONSTRATION 2.9.– Show that X · Y + X · Z + Y · Z = X · Y + X · Z. We

have:

X · Y +X · Z + Y · Z = X · Y +X · Z + Y · Z(X +X)

= X · Y +X · Z +X · Y · Z +X · Y · Z
= X · Y (1 + Z) +X · Z(1 + Y )

= X · Y (1) +X · Z(1)

= X · Y +X · Z [2.70]
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DEMONSTRATION 2.10.– Show that (X+Y )(X+Z)(Y +Z) = (X+Y )(X+Z).
We have:

(X + Y )(X + Z)(Y + Z) = (X · Z +X · Y )(Y + Z) according to [8]

= X · Y · Z +X · Y +X · Z +X · Y · Z
= X · Z(1 + Y ) +X · Y (1 + Z)

= X · Z +X · Y
= (X + Y )(X + Z) according to [7]

[2.71]

DEMONSTRATION 2.11.– Show that (X · Y )⊕ (X · Z) = X(Y ⊕ Z). We have:

(X · Y )⊕ (X · Z) = (X · Y )(X · Z) + (X · Y )(X · Z)

= (X · Y )(X + Z) + (X + Y )(X · Z)

= X · Y · Z +X · Y · Z
= X(Y · Z + Y · Z)

= X(Y ⊕ Z) [2.72]

DEMONSTRATION 2.12.– Show that X(X ⊕ Y ) = X · Y . We have:

X(X ⊕ Y ) = X(X · Y +X · Y )

= X · Y [2.73]

DEMONSTRATION 2.13.– Show that (X ·Y )⊕ (X ·Z)+Y ·Z = (X ·Y )⊕ (X ·Z).
We have:

(X · Y )⊕ (X · Z) + Y · Z = (X · Y )(X · Z) + (X · Y )(X · Z) + Y · Z
= X · Y (X + Z) + (X + Y )X · Z + Y · Z
= X · Y · Z +X · Z(1 + Z) + Y · Z
= X · Y · Z +X · Z + (X +X)Y · Z
= X · Y (Z + Z) +X · Z(1 + Y )

= X · Y +X · Z
= X · Y (1 + Z) +X · Z(1 + Y )

= X · Y +X · Y · Z +X · Z +X · Y · Z
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= X ·X · Y +X · Y · Z +X ·X · Z +X · Y · Z
= X · Y (X + Z) + (X + Y )X · Z
= X · Y (X · Z) + (X · Y )X · Z
= (X · Y )⊕ (X · Z) [2.74]

2.10. Exercises

EXERCISE 2.1.– Function of n variables.

How many different logic functions can we implement using n input variables?

EXERCISE 2.2.– Analysis of a logic circuit.

Construct the truth table for the circuit shown in Figure 2.62. Using a minimum

number of NAND gates, propose a circuit to implement F.

Y

X

F

Z

Figure 2.62. Logic circuit

EXERCISE 2.3.– Simplification of logic functions.

Simplify the following logic expressions:

a) X + Y +X · Y + (X + Y ) ·X · Y
b) X · Y · Z +X · Y · Z +X · Y · Z +X · Y · Z
c) X · Y ·X · Z
d) (X + Y )(X + Z)(Y + Z)

e) (W +X + Y · Z)(W +X)(X + Y )

f) W ·X · Z +X · Y · Z +W ·X · Y +X · Y · Z +W · Y · Z
g) W ·X · Z +W · Z +X · Y · Z +W ·X · Y
h) (X + Y + Z)(X + Y + Z)(X + Y + Z)
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EXERCISE 2.4.– Equivalent logic functions.

Verify the following equalities:

a) A ·B · C +A · C +B · C = C ⊕ (A ·B)

b) A⊕B ⊕ (A+B) +A ·B = A	B

c) (A+B)	 (A+ C) +A = A+B

d) (A	B)⊕ (A ·B) +A ·B = A+B

e) A ·B ·C +A ·C ·D+A ·B ·C ·D+A ·B ·C ·D+A ·C ·D+A ·B ·C =
A · C ⊕A · C ⊕B ·D

f) A ·B ·D +B · C ·D +A ·B · C +B · C ·D +A · C ·D = A ·B + C ·D
EXERCISE 2.5.– Simplification of the functions using the Karnaugh map method.

Using the Karnaugh map method, simplify each of the following logic functions:

E(A,B,C,D) =
∑

mm(0, 2, 3, 4, 5, 8, 11, 12, 13, 14, 15) [2.75]

F (A,B,C,D) =
∑

m(0, 1, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14, 15) [2.76]

G(A,B,C,D) =
∑

m(0, 2, 4, 5, 10, 12, 15) +
∑

x(8, 14) [2.77]

H(A,B,C,D) =
∑

mm(1, 3, 6, 8, 11, 14) +
∑

x(2, 5, 12, 13, 15) [2.78]

EXERCISE 2.6.– Analysis of the circuit with NAND/NOR gates.

B

(b)

GF

(a)

A

C

A

A

C

B

A

A

A

A

A

Figure 2.63. a) Circuit with NAND gates and b) circuit with NOR gates

Determine the logic function F implemented by the circuit shown in

Figure 2.63(a). Determine the logic function G implemented by the circuit shown in

Figure 2.63(b). Verify that F = G.
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EXERCISE 2.7.– Canonical forms of a logic function.

Let us consider the logic functions represented in Figure 2.64.

D

A

B

C

D

A

B

C
GF

(a) (b)

Figure 2.64. a) Circuit with NOR gates and b) circuit with NAND gates

Determine the logic expressions for the outputs F and G.

Express the logic function F as a sum of products.

Give the product-of-sums form of G.

EXERCISE 2.8.– Simplification of logic circuits.

Simplify each of the logic circuits shown in Figure 2.65.

EXERCISE 2.9.– Implementation of the function H.

Let us consider the three-variable logic function defined as follows:

H(A,B,C) = A ·B +A ·B +B · C [2.79]

Assuming the input variables are A, B and C, propose a logic circuit using only

2-input NAND gates to implement the function H .

EXERCISE 2.10.– Implementation of the logic function Y .

Using the minimum number of logic gates (NOT, AND, OR) to realize the

following logic function:

Y = (A ·B)⊕ (B · C) [2.80]
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Figure 2.65. Logic circuits

EXERCISE 2.11.– Implementation of circuits with NAND/NOR gates.

Let us consider the following logic functions:

P (A,B,C,D) = A ·B +A · C ·D [2.81]

andQ(A,B,C,D) = (A+B + C)(A+D) [2.82]

Assuming that the input variables A, B, C, and D, as well as their complements,

are available, propose a logic circuit based on 2-input NAND gates and a logic circuit

based on 2-input NOR gates for each of these functions.
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EXERCISE 2.12.– Control circuit for a switcher.

We wish to switch in four directions packages identified by an eight-bit binary

code I7 I6 I5 I4 I3 I2 I1 I0, where I7 is the most significant bit. The signal D0 is set

at 1 if no direction is chosen and the switching, based on the code of each packet, is

carried out as follows:

D1 = 1 if 32 ≤ N ≤ 63,

D2 = 1 if 64 ≤ N ≤ 127,

D3 = 1 if 128 ≤ N ≤ 159,

D4 = 1 if 192 ≤ N ≤ 255,

The number N being the decimal number corresponding to the code

I7 I6 I5 I4 I3 I2 I1 I0.

a) − Determine the Boolean expression for the logic function of selection (D1,

D2, D3 and D4) for each direction.

− Deduce the Boolean expression for the function D0.

b) Implement these functions using only inverters and NAND gates with at most

three inputs.

2.11. Solutions

SOLUTION 2.1.– Function with n variables.

With n variables, the truth table has 2n columns and we can choose any number

of 2n bits for each column. There are, thus, 22
n

different functions with n variables.

n 1 2 3 4

Number of functions 4 16 256 65, 536

SOLUTION 2.2.– Analysis of a logic circuit.

By analyzing the logic circuit, the equation for the output F can be obtained as

follows:

F = X ·X · Y ·X · Y · Y · Z ·X · Y · Y · Z
= (Y + Y ·X)Z(1 +X +X · Y ) = (X + Y )Z = X · Z + Y · Z
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X Y Z F

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

Table 2.14. Truth table

Y

Z

X
X

Y

Z
F

F

Figure 2.66. Simplified circuits

Table 2.14 shows the truth table constructed based on the logic equation for the

output F .

The circuits obtained upon simplification are represented in Figure 2.66.

SOLUTION 2.3.– Simplification of logic expressions.

The simplifications are carried out by using Boolean algebra theorems.

a) X + Y +X · Y + (X + Y ) ·X · Y = X + Y + Y = 1

b) X · Y · Z +X · Y · Z +X · Y · Z +X · Y · Z = X · Y +X · Z
c) X · Y ·X · Z = X · Y +X · Z
d) (X + Y )(X + Z)(Y + Z) = X · Y · Z +X · Y · Z
e) (W +X + Y · Z)(W +X)(X + Y ) = X · Y +W · Y · Z
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f)

W ·X · Z +X · Y · Z +W ·X · Y +X · Y · Z
+W · Y · Z = W ·X(Y + Z) + Y · Z
= W ·X(Y + Z) + Y + Z

= W ·X + Y · Z

g) W ·X · Z +W · Z +X · Y · Z +W ·X · Y = X · Y +X · Z +W · Z
h)

(X + Y + Z)(X + Y + Z)(X + Y + Z) = (Y + Z)(X + Y + Z)

because (A+B)(A+B) = A

= Z(X + Y ) + Y · Z
because (A+B)(A+ C) = A · C +A · C

= X · Z + Y

SOLUTION 2.4.– Equivalent logic functions.

Verification of the following equalities:

a) A ·B · C +A · C +B · C = A ·B · C + (A ·B)C

= C ⊕ (A ·B)

b) A⊕B ⊕ (A+B) +A ·B = A⊕ [B ⊕ (A ·B)] +A ·B
= A⊕ [B(1⊕A)] +A ·B
= A⊕ (A ·B) +A ·B
= A ·B +A ·B
= A	B
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c) (A+B)	 (A+ C) +A = (A+B)(A+ C) + (A ·B)(A · C) +A

= A ·B +A · C +B · C +A

= A(1 + C) +B(1 + C)

because A+A ·B = A+B

= A+B

d) (A	B)⊕ (A ·B) +A ·B = (A	B)(A ·B) + (A⊕B)(A ·B) +A ·B
= (A	B)(A ·B) +A ·B +A ·B
= A	B +A ·B +A ·B

because (A	B)(A ·B) +A ·B = A	B +A ·B
= A ·B +A ·B +A(B +B)

= A ·B +A ·B +A

= A ·B +A+B

= A+B

e) A ·B · C +A · C ·D +A ·B · C ·D +A ·B · C ·D +A · C ·D
+A ·B · C

= A · C(B +D) + (A · C +A · C)B ·D +A · C(B +D)

= (A · C +A · C)B ·D + (A · C +A · C)(B +D)

= (A · C ⊕A · C)B ·D + (A · C ⊕A · C)(B ·D)

because (A · C)(A · C) = 0 and (A · C)(A · C) = 0

= (A · C ⊕A · C)B ·D + (A · C ⊕A · C)(B ·D)

= A · C ⊕A · C ⊕B ·D
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f) A ·B ·D +B · C ·D +A ·B · C +B · C ·D +A · C ·D
= A ·B ·D + C ·D(B +B +A) +A ·B · C
= A ·B ·D + C ·D +A ·B · C
= A ·B(C +D) + C ·D
= A ·B(C +D) + C +D

= A ·B + C ·D
because X +X · Y = X + Y

SOLUTION 2.5.– Simplification of functions using the Karnaugh map method.

– Function E:

The function E(A,B,C,D) has three minimized forms that can be obtained from

the Karnaugh maps, as shown in Figure 2.67, as follows:

E(A,B,C,D) = A ·B +B · C + C ·D +A ·B · C +A · C ·D (a)

= A ·B +B · C + C ·D +A ·B · C +B · C ·D (b)

= A ·B +B · C + C ·D +A ·B ·D +B · C ·D (c)
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CD

C

00 01 11 10

B

A

00

Figure 2.67. Karnaugh maps (function E)
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– Function F :

In the case of the function F (A,B,C,D), there are six possible solutions.

Figure 2.68 shows the Karnaugh maps corresponding to the different solutions. Thus:

F (A,B,C,D) = C ·D +B ·D +B · C +A ·B (a)

= C ·D +B ·D +B · C +A · C (b)

= C ·D +B ·D +B · C +A ·D (c)

= B · C +B ·D + C ·D +A ·B (d)

= B · C +B ·D + C ·D +A · C (e)

= B · C +B ·D + C ·D +A ·D (f)
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Figure 2.68. Karnaugh maps (function F )
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– Function G:

The function G has two minimum forms corresponding to the Karnaugh maps, as

shown in Figure 2.69. We can, thus, write:

G(A,B,C,D) = A ·B · C +A ·B · C +B ·D + C ·D (a)

= A ·B · C +A ·B · C +B ·D +A ·D (b)

D

01

11

10

11 1

0

0

1

0

1

0

00 01 11 1000 01

00

01

11

10

11

(b)

1

0 1

0 x

1 0

AB

CD

C

B

A

D

(a)

11

0 0 1 0

1 0 x 1

0 1 0 0
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00

Figure 2.69. Karnaugh maps (function G)

– Function H:

As each Karnaugh map in Figure 2.70 corresponds to a minimal form, we obtain

the following three logic expressions:

H(A,B,C,D) = A · C ·D +B · C ·D +A ·B ·D +B · C ·D (a)

= A · C ·D +B · C ·D +A · C ·D +B · C ·D (b)

= A · C ·D +B · C ·D +A ·B ·D +A · C ·D (c)
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Figure 2.70. Karnaugh maps (function H)



108 Digital Electronics 1

SOLUTION 2.6.– Analysis of circuits with NAND/NOR gates.

For the circuit shown in Figure 2.63(a), we have:

F = A+A+B +A+A+ C [2.83]

= (A+A+B)(A+A+ C)

= (A+A ·B)(A+A · C)

= (A+B)(A+ C) [2.84]

= A(1 +B + C) +B · C
= A+B · C [2.85]

For the circuit represented in Figure 2.63(b), we have:

G = A ·A ·B ·A ·A · C [2.86]

= A ·A ·B +A ·A · C
= A(A+B) +A(A+ C)

= A(B + C) [2.87]

It can then be verified that:

G = A(B + C)

= A+B · C
= F [2.88]

SOLUTION 2.7.– Canonical forms of a logic function.

By analyzing each logic circuit, we can write:

F = A+ C +B +A+B + C +B + C +D + C +B +D [2.89]

= (A+ C +B)(A+B + C)(B + C +D)(C +B +D)

= (A · C +B)(A+B · C)(B · C +D)(C +B ·D)

= (A ·B +A ·B · C)(C ·D +B · C ·D)

= A ·B · C ·D +A ·B · C ·D [2.90]

=
∑

m(0, 15) [2.91]
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and

G = A · C ·B ·A ·B · C ·B · C ·D · C ·B ·D [2.92]

= (A · C +B)(A+B · C)(B · C +D)(C +B ·D)

= (A ·B +A ·B · C)(C ·D +B · C ·D)

= A ·B · C ·D +A ·B · C ·D
= (A+B + C +D)(A+B + C +D) [2.93]

=
∏

m(0, 15) [2.94]

It must be noted that G = F .

SOLUTION 2.8.– Simplification of logic circuits.

Figure 2.71 depicts circuits obtained upon simplification.

Q
A
B
C

L

(d)

(a)

A

B

(c)
C

(f)

B
P

C

B
H

C

C
B
A

(b)

G K

(e)

C

A

Figure 2.71. Logic circuits

– circuit (a):

G = A · C +A · C(A+B + C) [2.95]

= A · C +A+B + C

= A(C + 1) +B + C

= A+B + C [2.96]
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– circuit (b):

H = (A⊕B)⊕ (A⊕ C) [2.97]

= (A⊕A)⊕ (B ⊕ C)

= 0⊕ (B ⊕ C)

= B ⊕ C = B ⊕ C [2.98]

– circuit (c):

K = A ·B ·B · C(C +D) [2.99]

= (A+B)B · C(C +D)

= A ·B · C(C +D)

= A ·B · C(1 +D)

= A ·B · C [2.100]

– circuit (d):

L = A ·B + C +A⊕B +A+ C [2.101]

= A ·B + C +A · C +A⊕B

= A ·B +A+ C +A⊕B

= A+B + C +A⊕B

= A(1 +B) +B(1 +A) + C

= A ·B · C [2.102]

– circuit (e):

P = A ·B ·B · C +A ·D ·B + C +B + C [2.103]

= A ·B(B + C) +A ·D ·B · C +B · C
= (A+A ·D + 1)B · C
= B · C [2.104]
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– circuit (f):

Q = (A⊕B)B ⊕ C +A⊕B(B ⊕ C) [2.105]

= (A⊕B)⊕ (B ⊕ C)

= (A⊕ C)⊕ (B ⊕B)

= (A⊕ C)⊕ 0

= A⊕ C [2.106]

SOLUTION 2.9.– Implementation of the function H.

The function H can be written as follows:

H = A ·B +A ·B +B · C [2.107]

= A ·B + (A+ C)B

= A(A+B) + (A+ C)B

= A ·A ·B +A · C ·B

= A ·A ·B ·A · C ·B [2.108]

Using equation [2.108], the logic circuit based on NAND gates shown in

Figure 2.72 can be obtained.

A

H

B

A

C

B

A

Figure 2.72. Implementation of H: logic circuit based on NAND gates

SOLUTION 2.10.– Implementation of the logic function Y .

Observing that:

Y = (A ·B)⊕ (B · C) = A ·B +B · C = A ·B +B + C [2.109]

because A ·B ·B ·C = 0, the function Y can be implemented as shown in Figure 2.73.
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YB

A

C

Figure 2.73. Implementation of the function Y

SOLUTION 2.11.– Implementation of NAND/NOR gates.

Figures 2.74 and 2.75 depict the circuits corresponding to the logic functions P
and Q, respectively.

B

B
A

D

C
A

D

C
A

P

(c)

C
A

D

P

(a)

P

(b)

A

B

A

Figure 2.74. Implementation of P : a) logic circuit using AND and OR
gates; b) logic circuit based on NAND gates; c) logic circuit based on

NOR gates

SOLUTION 2.12.– Control circuit for a switcher.

The following decimal-to-binary conversion makes it possible to determine the bits

I7, I6, I5, I4, I3, I2, I1 and I0:

3210 = 001000002 12810 = 100000002

6310 = 001111112 15910 = 100111112

6410 = 010000002 19210 = 110000002

12710 = 011111112 25510 = 111111112

The truth table for the control circuit may be constructed as shown in Table 2.15.
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Figure 2.75. Implementation of Q: a) logic circuit using OR and AND
gates; b) logic circuit based on NAND gates; c) logic circuit based on

NOR gates
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Table 2.15. Truth table

For each selection range, the output function depends solely on the bits that do not

change logic state. We thus have:

D1 = I7 · I6 · I5 D2 = I7 · I6 D3 = I7 · I6 · I5 D4 = I7 · I6

and

D0 = D4 +D3 +D2 +D1
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The output function, D0, can also be written as follows:

D0 = D4 +D3 +D2 +D1 [2.110]

= I7 · I6 + I7 · I6 · I5 + I7 · I6 + I7 · I6 · I5
= I7(I6 + I6 · I5) + I7(I6 + I6 · I5)
= I7(I6 + I5) + I7(I6 + I5)

= I7I5 + I7I5 + I6(I7 + I7)

= I7 ⊕ I5 + I6

= (I7 	 I5)I6

= I7 · I6 · I5 + I7 · I6 · I5 [2.111]

The implementation of the control circuit is represented in Figure 2.76.

 4

 7 I 6 I 5 I 7 I 6 I 5
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Figure 2.76. Logic circuits



3

Function Blocks of Combinational Logic

3.1. Introduction

Circuits are used in combinatorial logic to carry out operations such as data

manipulation and selection, coding, decoding and error detection. Among the basic

components listed as being necessary to implement them, there are multiplexers,

demultiplexers, encoders, decoders and shifters.

3.2. Multiplexer

A multiplexer (MUX) is a logic circuit that allows for switching the data present

at any one of its inputs toward its single output. Thus, it generally has 2n data inputs,

n select lines and one output.

A 2-to-1 multiplexer (or 2:1 multiplexer) can be implemented as shown in

Figure 3.1(a). It can be represented by one of the symbols given in Figures 3.1(b)

and 3.1(c). The logic equation of the 2:1 multiplexer is given by:

Y = S ·D0 + S ·D1 [3.1]

– if S = 0, we have Y = D0;

– if S = 1, we have Y = D1.

A 2-to-1 multiplexer thus operates as a commutator. Its working principle is

illustrated in the schematic diagram shown in Figure 3.2. By expressing the output as

a function of the inputs D0 and D1, the size of the truth table for the 2-to-1

multiplexer can be reduced, as illustrated in Table 3.1.

Digital Electronics 1: Combinational Logic Circuits, First Edition. Tertulien Ndjountche.
© ISTE Ltd 2016. Published by ISTE Ltd and John Wiley & Sons, Inc.
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(a)

0

D1

D0

D1

0

1
M
U
X Y

S

S

Y

0

1

S

Y

(b) (c)

D

Figure 3.1. 2-to-1 multiplexer: a) logic circuit and b) and c) symbols

Y

1

D0

S

D

Figure 3.2. Schematic diagram of the 2-to-1 multiplexer

S Y

0 D0

1 D1

Table 3.1. Truth table of the 2-to-1 multiplexer

Multiplexers offered by integrated circuit manufacturers most often have an active-

low enable input. Figures 3.3(a) and 3.3(b) show, respectively, the circuit and symbol

for a 2-to-1 multiplexer with an active-low enable input. The logic equation for the

output is given by:

Y = EN(S ·D0 + S ·D1) [3.2]

Equation [3.2] may be translated to a truth table with entered input variables, as

shown in Table 3.2.

The output of a three-state buffer reflects the input logic level or is isolated from the

input depending on the logic level of the selection signal. A 2-to-1 multiplexer can thus

be implemented by connecting the outputs of two three-state buffers whose selection



Function Blocks of Combinational Logic 117

signals are complementary, as shown in Figure 3.4. In the ideal case, the multiplexer

operation is governed by the truth table represented in Table 3.3. However, if the

selection signals overlap, due to propagation delays for instance, one of the outputs

Y0 and Y1 may be set at 0 while the other is at 1, thus forcing the output Y to assume

an indeterminate state.

(b)
1

D0

Y

S(a)

EN

0

1
Y

M
U
X

S

EN

D

Figure 3.3. 2-to-1 multiplexer with an active-low enable input

EN S Y

1 x 0

0 0 D0

0 1 D1

Table 3.2. Truth table of a 2:1 multiplexer

S

1

D0 Y0

Y1

Y

D

Figure 3.4. 2-to-1 multiplexer based on three-state buffers

A 4-to-1 multiplexer can be implemented using logic gates as shown in

Figure 3.5(a) or using 2-to-1 multiplexers configured as shown in Figure 3.5(b). Its
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symbol is shown in Figure 3.5(c). Analyzing the circuit for the 4-to-1 multiplexer, we

have:

Y = S1 · S0 ·D0 + S1 · S0 ·D1 + S1 · S0 ·D2 + S1 · S0 ·D3 [3.3]

where D0, D1, D2 and D3 represent the data input and S0 and S1 are the selection

lines.

S Y0 Y1 Y

0 D0 z D0

1 z D1 D1

Table 3.3. Truth table of a 2-to-1 multiplexer

(c)

 0

D0

D1

D2

D3
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D3

S 0

S 1

S 0S 1
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Y

S 1(a)
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1
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(b)

0

1
Y

00

01

10

11

Y

S

Figure 3.5. 4-to-1 multiplexers implemented using a) logic gates and
b) 2-to-1 multiplexers; c) symbol

Figure 3.6(a) depicts the logic circuit for a 4-to-1 multiplexer whose output is set

to zero when EN = 1. Figure 3.6(b) depicts the logic circuit for a 4-to-1 multiplexer

whose output is set to high impedance state when EN = 1. Figure 3.6(c) shows the

symbol for a 4-to-1 multiplexer with enable signal. The output variable for a 4-to-1

multiplexer with an active-low enable input can take the following form:

Y = EN(S1 · S0 ·D0 + S1 · S0 ·D1 + S1 · S0 ·D2 + S1 · S0 ·D3) [3.4]
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Y
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0

1

2

3

EN

Y

S

Figure 3.6. 4-to-1 multiplexer with an enable input:
a) output set to zero when EN = 1; b) output set to high

impedance state when EN = 1; c) symbol

Equation [3.4] can equivalently be represented either by the truth table for the

multiplexer of Figure 3.6(a) shown in Table 3.4, or by the truth table for the

multiplexer of Figure 3.6(b) presented in Table 3.5.

EN S1 S0 Y

1 x x 0

0 0 0 D0

0 0 1 D1

0 1 0 D2

0 1 1 D3

Table 3.4. Truth table for the multiplexer shown in Figure 3.6(a)

EN S1 S0 Y

1 x x z

0 0 0 D0

0 0 1 D1

0 1 0 D2

0 1 1 D3

Table 3.5. Truth table for the multiplexer shown in Figure 3.6(b)
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An 8-to-1 multiplexer can be implemented either by using logic gates, as shown in

Figure 3.7(a), or by connecting the 4-to-1 multiplexers, as illustrated in Figure 3.7(b).

Its output is characterized by a logic equation that takes the following form:

Y = EN(S2 · S1 · S0 ·D0 + S2 · S1 · S0 ·D1+

S2 · S1 · S0 ·D2 + S2 · S1 · S0 ·D3 + S2 · S1 · S0 ·D4+

S2 · S1 · S0 ·D5 + S2 · S1 · S0 ·D6 + S2 · S1 · S0 ·D7)

[3.5]
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Figure 3.7. 8-to-1 multiplexer implemented using a) logic ports or
b) 4-to-1 multiplexers

Table 3.6 shows the truth table of the 8-to-1 multiplexer with an active-low enable

input.

In general, a multiplexer with 2n data inputs has n selection lines and a single

output. The output takes the level of the data input whose number can be equal to the

equivalent decimal value of the binary code applied at the selection inputs.
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EN S0 S1 S0 Y

1 x x x 0

0 0 0 0 D0

0 0 0 1 D1

0 0 1 0 D2

0 0 1 1 D3

0 1 0 0 D4

0 1 0 1 D5

0 1 1 0 D6

0 1 1 1 D7

Table 3.6. Truth table for an 8-to-1 multiplexer

3.3. Demultiplexer and decoder

A decoder (DEC) is a logic circuit that activates only one of the outputs for each

possible combination of input variables. It can thus be used to detect a binary code.

A demultiplexer (DMUX) is a logic circuit that switches a data input toward one

of the outputs depending on the selection code.

The logic circuit and the symbol for the 1-out-of-2 decoder are illustrated in

Figures 3.8(a) and 3.8(b), respectively. The logic equations for the output variables

are given by:

Y0 = EN ·D [3.6]

and

Y1 = EN ·D [3.7]

where D is the variable associated with the data input and EN represents the enable

signal. Table 3.7 gives the truth table for the 1-out-of-2 decoder with an active-high

input.

Decoders are most often designed with an active-low enable input, as can be seen

in the logic circuit and the symbol given in Figures 3.9(a) and 3.9(b) for a 1-out-of-2

decoder. The logic equations for the output can be written as follows:

Y0 = EN ·D [3.8]
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and

Y1 = EN ·D [3.9]

D
E
C

0

Y1

Y0

Y1
G 1

0S

EN

D

(b)D

EN

(a)

Y

Figure 3.8. 1-out-of-2 decoder with an active-high enable input

EN D Y1 Y0

0 x 0 0

1 0 0 1

1 1 1 0

Table 3.7. Truth table for the decoder

D
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1

Y0
Y0

Y1

D(a)

G 1

0SD

(b)

EN

EN
Y

Figure 3.9. 1-out-of-2 decoder with an active-low enable input

This makes it possible to construct the truth table given in Table 3.8.

Figure 3.10(a) represents the logic circuit of a 1-to-2 demultiplexer (or 1 : 2
demultiplexer). Figures 3.10(b) and 3.10(c) depict the symbols that are generally

used to represent a 1-to-2 demultiplexer.
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EN D Y1 Y0

1 x 0 0

0 0 0 1

0 1 1 0

Table 3.8. Truth table for the decoder
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Figure 3.10. 1-to-2 demultiplexer: a) logic circuit, b) schematic diagram
illustrating the working principle and c) symbols

The 1 : 2 demultiplexer is characterized by the following equations:

Y0 = S ·D [3.10]

Y1 = S ·D [3.11]

The operation of the 1-to-2 demultiplexer is explained in the schematic diagram

shown in Figure 3.11 and its truth table is represented by Table 3.9. The output Y0 is

selected when S = 0, and Y1 when S = 1.

D
0

Y1

S

Y

Figure 3.11. Schematic diagram of a 1-to-2 demultiplexer

It must be noted that to transform a decoder to a demultiplexer, it is enough to

connect the data signal to the enable input G. Additionally, the input G is useful in

establishing the connections required to associate several decoders in order to increase

the length of the binary words that can be processed.
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S Y0 Y1

0 D 0

1 0 D

Table 3.9. Truth table of a 1-to-2 demultiplexer

The 1-to-2 demultiplexer shown in Figure 3.12 makes use of the fact that a

three-state buffer is equivalent to an open or closed switched depending on the logic

level applied to the selection input. The corresponding truth table is represented in

Figure 3.10.

D

0

Y1

S

Y

Figure 3.12. Three-state buffer based 1-to-2 demultiplexer

S Y1 Y0

0 z D0

1 D1 z

Table 3.10. Truth table of the 1-to-2 demultiplexer

Figure 3.13(a) depicts the logic circuit for a 2-out-of-4 decoder that is

implemented using logic gates. A 2-out-of-4 decoder can also be implemented by

connecting two 1-out-of-2 decoders as illustrated in Figure 3.13(b). The symbolic

representation of a 2-out-of-4 decoder is given in Figure 3.13(c). The logic circuit of

the 1-to-4 demultiplexer represented in Figure 3.14(a) uses logic gates, while the

circuit shown in Figure 3.14(b) uses two 1-to-2 demultiplexers. Figure 3.14(c)

depicts the symbol of a 1-to-4 demultiplexer. The logic equations obtained in each

case are as follows:

– 2-out-of-4 decoder:

Y0 = S1 · S0, Y1 = S1 · S0, Y2 = S1 · S0, and Y3 = S1 · S0 [3.12]
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– 1-to-4 demultiplexer:

Y0 = S1 ·S0 ·D, Y1 = S1 ·S0 ·D, Y2 = S1 ·S0 ·D, and Y3 = S1 ·S0 ·D [3.13]
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Figure 3.13. 2-out-of-4 decoder: implemented using a) logic gates or
b) 1-out-2 decoders; c) symbol
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Figure 3.14. 1-to-4 demultiplexers: implemented using a) logic gates or
b) 1-to-2 demultiplexers; c) symbol

Truth tables of the 2-out-of-4 decoder and 1-to-4 demultiplexer are represented by

Tables 3.11 and 3.12.
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A 1-to-8 demultiplexer can be implemented using logic gates as shown in

Figure 3.15(a) or using 1-to-4 multiplexers as illustrated in Figure 3.15(b). It can be

represented by the symbol given in Figure 3.15(c). The output logic equations can be

written as:

Y0 = S2 · S1 · S0 ·D Y1 = S2 · S1 · S0 ·D Y2 = S2 · S1 · S0 ·D
Y3 = S2 · S1 · S0 ·D Y4 = S2 · S1 · S0 ·D Y5 = S2 · S1 · S0 ·D
Y6 = S2 · S1 · S0 ·D Y7 = S2 · S1 · S0 ·D

[3.14]

S1 S0 Y3 Y2 Y1 Y0

0 0 0 0 0 1

0 1 0 0 1 0

1 0 0 1 0 0

1 1 1 0 0 0

Table 3.11. Truth table of a 2-out-of-4 decoder

S1 S0 Y3 Y2 Y1 Y0

0 0 0 0 0 D

0 1 0 0 D 0

1 0 0 D 0 0

1 1 D 0 0 0

Table 3.12. Truth table of a 1-to-4 demultiplexer

Table 3.13 gives the truth table of the 1-to-8 demultiplexer. The output, to which

the input data are transferred, is identified by a decimal number corresponding to the

binary code applied to the selection inputs.

In general, a decoder is a logic circuit with n inputs and 2n outputs, of which only

one is active at any time. A demultiplexer has one data input, n select inputs, and 2n

outputs. Integrated decoders most often have one enable input. As the latter can also

serve as a data input, it is possible to transform a decoder with an enable input to a

demultiplexer.

Figure 3.16 shows a matrix-type structure that makes it possible to implement a

4-out-of-16 decoder using two 2-out-of-4 decoders and 16 AND gates. It offers the

advantage of reducing the maximum number of inputs per logic gate and is used most

often to construct memory networks. In general, to implement an n-out-of-2n decoder,

two decoders of the types, p-out-of-2p and q-out-of-2q , where p + q = n, and 2n

2-input AND gates are required.



Function Blocks of Combinational Logic 127

D

2

S1

S0

S 1

Y3

Y2

Y1

Y0

S 1

7Y

Y6

Y5

Y4

Y1

Y2

Y3

Y4

Y5

Y6

7Y

Y0

S0S1S2

2

S0

S1

S2

3

1 Y1

Y2

Y3

Y4

Y5

Y6

7Y

Y0
S0

S1

S2

D

(b)(a)

G

S 0
0

1

2

3

D
M
U
X

G

S 0
0

1

2

3

D
M
U
X

D (c)

0

4

6

7
G

5

D
M
U
X

S

Figure 3.15. 1-to-8 demultiplexer implemented using a) logic gates or
b) 1-to-4 demultiplexers; c) symbol

S2 S1 S0 Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0

0 0 0 0 0 0 0 0 0 0 D

0 0 1 0 0 0 0 0 0 D 0

0 1 0 0 0 0 0 0 D 0 0

0 1 1 0 0 0 0 D 0 0 0

1 0 0 0 0 0 D 0 0 0 0

1 0 1 0 0 D 0 0 0 0 0

1 1 0 0 D 0 0 0 0 0 0

1 1 1 D 0 0 0 0 0 0 0

Table 3.13. Truth table for an 1-to-8 demultiplexer

3.4. Implementation of logic functions using multiplexers or decoders

A logic function can also be implemented using multiplexers or decoders.

3.4.1. Multiplexer

In general, a 2n−1-to-1 multiplexer is required for the implementation of an

n-variable logic function. A commonly adopted approach consists of linking n − 1
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variables to the selection inputs of the multiplexer and connecting the data inputs of

the multiplexer to either the logic level 1 or 0, or to the remaining variable or its

complement.
2:

4 
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od
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Figure 3.16. 2-out-of-16 decoder based on a matrix-type structure

Implement the following 4-variable logic function using an 8-to-1 multiplexer:

Y (A,B,C,D) =
∑

m(1, 2, 3, 4, 8, 12, 13, 15) [3.15]

Table 3.14 gives the truth table for the function Y . Considering the variables A,

B and C, as the selection inputs to the multiplexer, it becomes possible to regroup

the rows of the truth table in pairs, with each pair being characterized by the same

combination of selection inputs. This translates to the factorization of 1, 0, D or D, as

illustrated in the truth table or the Karnaugh maps shown in Figure 3.17(a). The logic

circuit of the 8-to-1 multiplexer configured to implement the function Y is given in

Figure 3.17(b).

Using a multiplexer makes it possible to easily modify (or reconfigure) a logic

function.
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A B C D Y

0 0 0 0 0

0 0 0 1 1
D

0 0 1 0 1

0 0 1 1 1
1

0 1 0 0 1

0 1 0 1 0
D

0 1 1 0 0

0 1 1 1 0
0

1 0 0 0 1

1 0 0 1 0
D

1 0 1 0 0

1 0 1 1 0
0

1 1 0 0 1

1 1 0 1 1
1

1 1 1 0 0

1 1 1 1 1
D

Table 3.14. Truth table for the logic function Y

3.4.2. Decoder

Even though a decoder is not considered as a universal component, it can still be

used to implement logic functions. Any function with n variables may be implemented

by an n-out-of-2n decoder associated with an OR (or NAND) logic gate.

Use a 3-out-of-8 decoder and OR logic gates to implement the following logic

functions:

P (A,B,C) =
∑

m(0, 1, 3, 7) [3.16]

and

Q(A,B,C) =
∑

m(4, 6, 7) [3.17]

As each of the functions is given in the canonical form, it is only necessary to

generate the corresponding sum-of-products form, as illustrated in Figure 3.18.

The approach based on using a decoder and OR gates offers the advantage of

allowing the implementation of several logic functions at the same time.
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Figure 3.17. a) Karnaugh map; b) logic circuit
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Figure 3.18. Implementation of the functions
P and Q using a 3-out-of-8 decoder

3.5. Encoders

An encoder, in general, is a logic circuit that allows for the conversion of input

information in a given code. It generally has more input variables than output

variables.
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3.5.1. 4:2 encoder

A 4 : 2 encoder, in its simplest form, is supposed to function with a single active

input among four inputs and to generate a binary code through the two outputs.

Consequently, there are only five permitted combinations of the input variables out of

the possible 16. We can, thus, establish the truth tables shown in Tables 3.15

and 3.16.

D3 D2 D1 D0 Y1 Y0

0 0 0 0 0 0

0 0 0 1 0 0

0 0 1 0 0 1

0 1 0 0 1 0

1 0 0 0 1 1

· · · · · · · · · · · · x x

...
...

...
...

...
...

· · · · · · · · · · · · x x

Table 3.15. Truth table (case 1)

D3 D2 D1 D0 Y1 Y0

0 0 0 0 0 0

0 0 0 1 0 0

0 0 1 0 0 1

0 1 0 0 1 0

1 0 0 0 1 1

· · · · · · · · · · · · 0 0

...
...

...
...

...
...

· · · · · · · · · · · · 0 0

Table 3.16. Truth table (case 2)

– Case 1

In this case, the outputs Y1 and Y0 are considered to be don’t care states for the

11 combinations of input variables, which are not explicitly defined in the truth table.

The Karnaugh maps represented in Figures 3.19 and 3.20 allow the determination of

the logic equations for Y1 and Y0, respectively. Figure 3.21 shows the logic circuit for

the resulting 4 : 2 encoder.
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Figure 3.19. Y1 = D3 +D2
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Figure 3.21. 4 : 2 encoder (case 1)
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– Case 2

In this case, the outputs Y1 and Y0 are assumed to take the logic level 0 for the 11

combinations of the input variables that are not explicitly defined in the truth table.

The logic equations for Y1 and Y0 can be written as follows:

Y1 = D3 ·D2 ·D1 ·D0 +D3 ·D2 ·D1 ·D0

= D1 ·D0(D3 ⊕D2) [3.18]

and

Y0 = D3 ·D2 ·D1 ·D0 +D3 ·D2 ·D1 ·D)

= D2 ·D0(D3 ⊕D1) [3.19]

The logic circuit for the resulting 4 : 2 encoder is illustrated in Figure 3.22.

1Y

0Y

2D

3D

1D

0D

Figure 3.22. 4 : 2 encoder (case 2)

NOTE 3.1.– The encoder generates the output Y1Y0 = 00 if the input D0 is set at

either 1 or 0. The addition of a validation output V makes it possible to distinguish

between these two cases.

Table 3.17 shows the truth table of a 4 : 2 encoder with a validation output. The

logic equation for the validation output is given by:

V = D3 +D2 +D1 +D0 [3.20]

The logic circuit obtained for the 4 : 2 encoder with a validation output is

represented in Figure 3.23.
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D3 D2 D1 D0 Y1 Y0 V

0 0 0 0 0 0 0

0 0 0 1 0 0 1

0 0 1 0 0 1 1

0 1 0 0 1 0 1

1 0 0 0 1 1 1

· · · · · · · · · · · · x x x

...
...

...
...

...
...

...

· · · · · · · · · · · · x x x

Table 3.17. Truth table of the 4 : 2 encoder with a validation output

V

D
2D

1D

0D

0Y

1Y
3

Figure 3.23. 4 : 2 encoder with a validation output

3.5.2. 8:3 encoder

An 8 : 3 encoder with a validation output generates a unique 4-bit sequence as the

output for each combination of input variables with a single input set at 1. Among the

256 possible input combinations, there are only nine permitted combinations. We can

construct the truth table as shown in Table 3.18.

As don’t care states can be used to minimize the logic equation for each output,

analyzing the truth table can help us deduce that the simplest expression corresponds

to an OR function for input variables taking the logic level 1 at the same time as the

output of interest. In this way, we obtain the following logic equations:

Y2 = D7 +D6 +D5 +D4 [3.21]

Y1 = D7 +D6 +D3 +D2 [3.22]

Y0 = D7 +D5 +D3 +D1 [3.23]
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and

V = D7 +D6 +D5 +D4 +D3 +D2 +D1 +D0 [3.24]

D7 D6 D5 D4 D3 D2 D1 D0 Y2 Y1 Y0 V

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 1

0 0 0 0 0 0 1 0 0 0 1 1

0 0 0 0 0 1 0 0 0 1 0 1

0 0 0 0 1 0 0 0 0 1 1 1

0 0 0 1 0 0 0 0 1 0 0 1

0 0 1 0 0 0 0 0 1 0 1 1

0 1 0 0 0 0 0 0 1 1 0 1

1 0 0 0 0 0 0 0 1 1 1 1

· · · · · · · · · · · · · · · · · · · · · · · · x x x x

...
...

...
...

...
...

...
...

...
...

...
...

· · · · · · · · · · · · · · · · · · · · · · · · x x x x

Table 3.18. Truth table for an 8 : 3 encoder

Figure 3.24 shows the logic circuit for an 8 : 3 encoder with a validation output.

The change in the logic level of the input D0 is only detected through the validation

output.

4
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D
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3

Figure 3.24. 8 : 3 encoder with a validation output
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3.5.3. Priority encoder

A 2n : n encoder only operates correctly if none of the inputs or one single input

is at logic level 1. When more than one input simultaneously takes logical level 1, the

coding is wrong. One solution, in this case, consists of using a priority encoder.

A priority encoder generates a binary code corresponding to the number of the

active input with highest priority (or, most often, the highest number). It can be used

in the following applications:

– keyboard encoder: when several keys are pressed simultaneously, only the key

with the highest number is taken into consideration;

– unit processing interrupt requests in a microprocessor: in case of simultaneous

interrupt requests, only the request with the highest priority is accepted.

3.5.3.1. 4:2 priority encoder

The truth table for a 4 : 2 priority encoder is given in Table 3.19, where x represents

a don’t care state. For an input word, the active bit with the highest weight has priority.

D3 D2 D1 D0 Y1 Y0 V

0 0 0 0 0 0 0

0 0 0 1 0 0 1

0 0 1 x 0 1 1

0 1 x x 1 0 1

1 x x x 1 1 1

Table 3.19. Truth table for a 4:2 priority encoder

The Karnaugh maps shown in Figures 3.25–3.27 are constructed assuming that

each indifferent state can take the logic level 0 or logic level 1. The resulting logic

equations can be written as follows:

Y1 = D3 +D2 [3.25]

Y0 = D3 +D2 ·D1 [3.26]

and

V = D3 +D2 +D1 +D0 [3.27]

The logic circuit of the 4 : 2 priority encoder can then be realized as illustrated in

Figure 3.28.
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3.5.3.2. 4:2 priority encoders with cascading capability

The priority encoders offered by manufacturers of integrated circuits have

additional inputs and outputs (enable-in input, EI, enable-out output, E0, group
signal output, GS or V) that can be required for cascade connections.
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0 1 1 1
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Figure 3.25. Representation of Y1 = D3 +D2
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Figure 3.26. Representation of Y0 = D3 +D2D1

To design a 4 : 2 priority encoder with cascading capability, we begin by

constructing the truth table as illustrated in Table 3.20. As the encoder is based on

active low logic, the output V indicates when EI takes the logic level 0 and a single

entry among Dk (k = 0, 1, 2, 3) takes logic level 1. Karnaugh maps shown in
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Figures 3.29–3.32 are constructed and then used to determine the logic equations of

the outputs as follows:

Y1 = (D3 +D2)EI [3.28]

Y0 = (D3 +D2 ·D1)EI [3.29]

V = (D3 +D2 +D1 +D0)EI = E0 · EI [3.30]

and

E0 = D3 ·D2 ·D1 ·D0 · EI [3.31]
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Figure 3.27. Representation of V = D3 +D2 +D1 +D0
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0Y
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Figure 3.28. 4 : 2 priority encoder with a validation output

The transcription of these equations using logic gates results in the circuit shown

in Figure 3.33(a). Figure 3.33(b) depicts the symbol for a 4 : 2 priority encoder with

cascading capability. The 8 : 3 priority encoder shown in Figure 3.33(c) is
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implemented by cascading two 4 : 2 priority encoders. This brings into play the

following logic expressions:

E0 = E01 [3.32]

and

EI1 = E02 = D7 ·D6 ·D5 ·D4 · EI [3.33]

where EI = EI2. Table 3.21 shows the truth table for the 8 : 3 priority encoder.

EI D3 D2 D1 D0 Y1 Y0 V E0

0 0 0 0 0 0 0 0 1

0 0 0 0 1 0 0 1 0

0 0 0 1 x 0 1 1 0

0 0 1 x x 1 0 1 0

0 1 x x x 1 1 1 0

1 x x x x 0 0 0 0

Table 3.20. Truth table for 4 : 2 priority encoder
with cascading capability

10

01

11

10

D1D0

3D 2D

D1

3D

2D

D0

EI

EI EI

EI

EIEI

EIEI

EI

EI EI EI0

0

0

0

00 01 11

00

Figure 3.29. Representation of Y1 = (D3 +D2)EI

Devices such as 8 : 3 priority encoders with cascading capability and 10 : 4
priority encoders are available as commercial integrated circuits. They are especially

useful for applications that use binary coded decimal (BCD) representation, coding of

keyboard keys and selection of a numerical range.

3.5.3.3. 10:4 priority encoder

A 10 : 4 priority encoder or decimal binary priority encoder carries out coding of

input logic levels such that only a change in the logic level of the highest ranked input

is taken into consideration.
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Figure 3.30. Representation of Y0 = (D3 +D2 ·D1)EI
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Figure 3.31. Representation of E0 = D3 ·D2 ·D1 ·D0 · EI

As the decimal zero or D0 corresponds to the case where all the inputs are at the

low logic level, the input D0 is omitted. The input Di, with i being a number between

1 and 9, can only activate the output Yj (j = 0, 1, 2, 3) if no input with a higher

priority and other than those that also activate Yj takes the high logic level.

Based on the conversion table shown in Table 3.22, it is possible to formulate a

logic proposition for each output. Thus, the output Y0 takes the high logic level when

one of the following is true:

– D1 is at high logic level, and D2, D4, D6 and D8 are at low logic level;

– D3 is at high logic level, and D4, D6 and D8 are at low logic level;

– D5 is at high logic level, and D6 and D8 are at low logic level;
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EI D7 D6 D5 D4 D3 D2 D1 D0 Y2 Y1 Y0 V E0

0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 1 0 0 0 1 0

0 0 0 0 0 0 0 1 x 0 0 1 1 0

0 0 0 0 0 0 1 x x 0 1 0 1 0

0 0 0 0 0 1 x x x 0 1 1 1 0

0 0 0 0 1 x x x x 1 0 0 1 0

0 0 0 1 x x x x x 1 0 1 1 0

0 0 1 x x x x x x 1 1 0 1 0

0 1 x x x x x x x 1 1 1 1 0

1 x x x x x x x x 0 0 0 0 0

Table 3.21. Truth table for the 8 : 3 priority encoder

– D7 is at high logic level, and D8 is at low logic level;

– D7 is at high logic level.
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Figure 3.32. Representation of V = (D3 +D2 +D1 +D0)EI

This translates to:

Y0 = D1 ·D2 ·D4 ·D6 ·D8 +D3 ·D4 ·D6 ·D8 +D5 ·D6 ·D8

+D7 ·D8 +D9 [3.34]
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Figure 3.33. Circuit a) and symbol b) for a 4 : 2 priority encoder with
cascading capability; c) 8 : 3 priority encoder

Y3 Y2 Y1 Y0

0 0 0 0 0

1 0 0 0 1

2 0 0 1 0

3 0 0 1 1

4 0 1 0 0

5 0 1 0 1

6 0 1 1 0

7 0 1 1 1

8 1 0 0 0

9 1 0 0 1

Table 3.22. Conversion of decimal numbers from
0 to 9 into binary representation

Similarly, the output Y1 takes high logic level in one of the following cases:

– D2 is at high logic level, and D4, D5, D8 and D9 are at low logic level;

– D3 is at high logic level, and D4, D5, D8 and D9 are at low logic level;

– D6 is at high logic level, and D8 and D9 are at low logic level;

– D7 is at high logic level, and D8 and D9 are at low logic level.
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This results in the following logic equation:

Y1 = D2 ·D4 ·D5 ·D8 ·D9 +D3 ·D4 ·D5 ·D8 ·D9 +D6 ·D8 ·D9

+D7 ·D8 ·D9 [3.35]

The output Y2 takes high logic level in one of the following cases:

– D4 is at high logic level, and D8 and D9 are at low logic level;

– D5 is at high logic level, and D8 and D9 are at low logic level;

– D6 is at high logic level, and D8 and D9 are at low logic level;

– D7 is at high logic level, and D8 and D9 are at low logic level.

This leads to the following equation:

Y2 = D4 ·D8 ·D9 +D5 ·D8 ·D9 +D6 ·D8 ·D9 +D7 ·D8 ·D9 [3.36]

Finally, the output Y3 is at high logic level if D8 is at high level or if D9 is at high

level. The resulting logic equation is, thus, given by:

Y3 = D8 +D9 [3.37]

Figure 3.34 depicts the logic circuit for the priority encoder 74LS147. For this kind

of circuit, the inputs and outputs are active at the low logic level. The truth table of

Table 3.23 shows that the priority of each input is determined by its rank in decimal.

Each active input is only taken into consideration if, and only if, all entries of a higher

rank are inactive.

3.6. Transcoders

In addition to the encoder and the decoder, we can also distinguish the transcoder

that allows for the conversion of a given code to a different code.

3.6.1. Binary code and Gray code

Gray code (or reflected binary code) is used in angle or positional sensors and also

in applications where the likelihood of commutation errors is to be reduced.

Gray code is a code constructed such that the representation of two consecutive

numbers only differs by a single bit.

Table 3.24 shows the 4-bit binary Gray code conversion (or for the numbers from

0 to 15).
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Figure 3.34. 10:4 priority encoder (integrated circuit 74LS147)

3.6.1.1. Binary to Gray code converter

Logic equations associated with the Gray code bits can be determined by

observing that the bits G3 and B3 are identical and using Karnaugh maps represented

in Figures 3.35–3.37 in the case of G2, G1 and G0 bits, respectively.

Thus, the binary to Gray code converter is characterized by:

G3 = B3 [3.38]

G2 = B3 ⊕B2 [3.39]

G1 = B2 ⊕B1 [3.40]

G0 = B1 ⊕B0 [3.41]
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where ⊕ represents the exclusive OR function. The corresponding logic circuit is

illustrated in Figure 3.38.

D1 D2 D3 D4 D5 D6 D7 D8 D9 Y3 Y2 Y1 Y0

1 1 1 1 1 1 1 1 1 1 1 1 1

x x x x x x x x 0 0 1 1 0

x x x x x x x 0 1 0 1 1 1

x x x x x x 0 1 1 1 0 0 0

x x x x x 0 1 1 1 1 0 0 1

x x x x 0 1 1 1 1 1 0 1 0

x x x 0 1 1 1 1 1 1 0 1 1

x x 0 1 1 1 1 1 1 1 1 0 0

x 0 1 1 1 1 1 1 1 1 1 0 1

0 1 1 1 1 1 1 1 1 1 1 1 0

Table 3.23. Truth table for the priority encoder 74LS147

Decimal Binary code Gray code

Number B3 B2 B1 B0 G3 G2 G1 G0

0 0 0 0 0 0 0 0 0

1 0 0 0 1 0 0 0 1

2 0 0 1 0 0 0 1 1

3 0 0 1 1 0 0 1 0

4 0 1 0 0 0 1 1 0

5 0 1 0 1 0 1 1 1

6 0 1 1 0 0 1 0 1

7 0 1 1 1 0 1 0 0

8 1 0 0 0 1 1 0 0

9 1 0 0 1 1 1 0 1

10 1 0 1 0 1 1 1 1

11 1 0 1 1 1 1 1 0

12 1 1 0 0 1 0 1 0

13 1 1 0 1 1 0 1 1

14 1 1 1 0 1 0 0 1

15 1 1 1 1 1 0 0 0

Table 3.24. Binary and Gray code for numbers from 0 to 15
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Figure 3.35. Representation of G2 = B3 · B2 + B3 · B2 = B3 ⊕ B2
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Figure 3.36. Representation of G1 = B2 · B1 + B2 · B1 = B2 ⊕ B1
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Figure 3.37. Representation of G0 = B1 · B0 + B1 · B0 = B1 ⊕ B0
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Figure 3.38. Binary to Gray code converter

3.6.1.2. Gray code to binary converter

Logic equations for the Gray code to binary code converter can be deduced from

the conversion table given in Table 3.24. As the B3 and G3 bits are identical, the

construction of Karnaugh maps is only required for each of the following bits: B2,

B1 and B0 (see Figures 3.39–3.41). For the maps shown in Figures 3.40 and 3.41, we

have:

B1 = G3 ·G2 ·G1 +G3 ·G2 ·G1 +G3 ·G2 ·G1 +G3 ·G2 ·G1

= G3(G2 ⊕G1) +G3(G2 ⊕G1)

= G3 ⊕G2 ⊕G1 [3.42]

and

B0 = G3 ·G2 ·G1 ·G0 +G3 ·G2 ·G1 ·G0+

G3 ·G2 ·G1 ·G0 +G3 ·G2 ·G1 ·G0 +G3 ·G2 ·G1 ·G0+

G3 ·G2 ·G1 ·G0 +G3 ·G2 ·G1 ·G0 +G3 ·G2 ·G1 ·G0

= (G3 ⊕G2)G1 ·G0+

(G3 ⊕G2)G1 ·G0 + (G3 ⊕G2)G1 ·G0 + (G3 ⊕G2)G1 ·G0

= (G3 ⊕G2)(G1 ⊕G0) + (G3 ⊕G2)(G1 ⊕G0)

= G3 ⊕G2 ⊕G1 ⊕G0 [3.43]
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Figure 3.39. Representation of B2 = G3 ·G2 +G3 ·G2 = G3 ⊕G2
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Figure 3.40. Representation of B1 = G3 ⊕G2 ⊕G1

The logic equations for the Gray code to binary code convertor are thus of the

form:

B3 = G3 [3.44]

B2 = G3 ⊕G2 [3.45]

B1 = G3 ⊕G2 ⊕G1 [3.46]

B0 = G3 ⊕G2 ⊕G1 ⊕G0 [3.47]

Using exclusive OR gates, the logic function illustrated in Figure 3.42 can be

implemented.
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Figure 3.41. Representation of B0 = G3 ⊕G2 ⊕G1 ⊕G0
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Figure 3.42. Gray code to binary code converter

3.6.2. BCD and excess-3 code

BCD corresponds to the representation in natural binary (here, with four bits of

weights 8, 4, 2 and 1) of each digit of a decimal number. It is used, for example, to

allow the content of a counter to be displayed.

The Excess-3 code (XS-3) is obtained by adding 3 to the decimal number to be

converted before representing it in BCD form. It is considered to be a complementary

BCD code as it also allows for the representation of both positive and negative

numbers.

3.6.2.1. BCD to XS-3 converter

Table 3.25 gives the conversion table for converting BCD to XS-3. As the

conversion only involves numbers from 0 to 9, the binary combinations associated
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with the numbers from 10 to 15 can be considered to be don’t care terms. Based on

the conversion tables, Karnaugh maps of Figures 3.43–3.46 can be constructed to

determine the logic equations for the outputs X3, X2, X1, and X0, respectively.

Decimal BCD code XS-3 code

number B3 B2 B1 B0 X3 X2 X1 X0

0 0 0 0 0 0 0 1 1

1 0 0 0 1 0 1 0 0

2 0 0 1 0 0 1 0 1

3 0 0 1 1 0 1 1 0

4 0 1 0 0 0 1 1 1

5 0 1 0 1 1 0 0 0

6 0 1 1 0 1 0 0 1

7 0 1 1 1 1 0 1 0

8 1 0 0 0 1 0 1 1

9 1 0 0 1 1 1 0 0

1 0 1 0 x x x x

1 0 1 1 x x x x

1 1 0 0 x x x x

1 1 0 1 x x x x

1 1 1 0 x x x x

1 1 1 1 x x x x

Table 3.25. BCD to XS-3 conversion table
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Figure 3.43. Representation of X3 = B3 + B2 · B1 + B2 · B0
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Figure 3.44. Representation of X2 = B2 · B1 + B2 · B0 + B2 · B1 · B0
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Figure 3.45. Representation of X1 = B1 · B0 + B1 · B0

We thus obtain:

X3 = B3 +B2 ·B1 +B2 ·B0

= B3 +B2(B1 +B0) [3.48]

X2 = B2 ·B1 +B2 ·B0 +B2 ·B1 ·B0

= B2 ⊕ (B1 +B0) [3.49]

X1 = B1 ·B0 +B1 ·B0

= B1 ⊕B0 [3.50]
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and:

X0 = B0 [3.51]

The logic circuit for a BCD to XS-3 converter can then be realized as illustrated in

Figure 3.47.
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Figure 3.46. Representation of X0 = B0
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Figure 3.47. BCD to XS-3 converter

3.6.2.2. XS-3 to BCD converter

The XS-3 to BCD conversion table is given in Table 3.26. Among the 16 binary

combinations that can be applied to the inputs (X3, X2, X1, and X0), only those

associated with the numbers 0 to 9 are used and the others are considered as don’t
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care terms. The logic equations for the outputs (B3, B2, B1, and B0) are obtained by

covering groups of adjacent cells in Karnaugh maps of Figures 3.48–3.51. We thus

have:

B3 = X3 ·X2 +X3 ·X1 ·X0

= X3(X2 +X1 ·X0) [3.52]

B2 = X2 ·X0 +X2 ·X1 +X2 ·X1 ·X0

= X2 ⊕ (X1 ·X0) = X2 ⊕ (X1 ·X0) [3.53]

B1 = X1 ·X0 +X1 ·X0

= X1 ⊕X0 [3.54]

and

B0 = X0 [3.55]

Decimal XS-3 code BCD code

number X3 X2 X1 X0 B3 B2 B1 B0

0 0 0 1 1 0 0 0 0

1 0 1 0 0 0 0 0 1

2 0 1 0 1 0 0 1 0

3 0 1 1 0 0 0 1 1

4 0 1 1 1 0 1 0 0

5 1 0 0 0 0 1 0 1

6 1 0 0 1 0 1 1 0

7 1 0 1 0 0 1 1 1

8 1 0 1 1 1 0 0 0

9 1 1 0 0 1 0 0 1

1 1 0 1 x x x x

1 1 1 0 x x x x

1 1 1 1 x x x x

0 0 0 0 x x x x

0 0 0 1 x x x x

0 0 1 0 x x x x

Table 3.26. BCD to XS-3 conversion table

Using logic gates, the logic circuit of the XS-3 to BCD converter is realized as

shown in Figure 3.52.
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Figure 3.48. Representation of B3 = X3 · X2 + X3 ·X1 · X0
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Figure 3.49. Representation of B2 = X2 · X0 +X2 ·X1 + X2 · X1 ·X0
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Figure 3.50. Representation of B1 = X1 · X0 +X1 · X0



Function Blocks of Combinational Logic 155

x01

11

10

3X 2X

X1

3X

2X

X1

X0

x

x

00 01 11 10X0

x 11

1 1

x

x

100

Figure 3.51. Representation of B0 = X0
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Figure 3.52. XS-3 to BCD converter

3.7. Parity check generator

Parity bits are bits that are added to data to be transmitted for error verification

purposes. There are two types of parity: even and odd. The output of an even (odd)

parity generator is set either to 1 (0) if the number of bits set at the high logic level or

1 in the input word is odd, or to 0 (1) if this number is even.

EXAMPLE 3.1.– The concatenation of a parity bit with a given piece of data results in

a word that can have an odd number of bits at logic level 1 (or an even parity) or an

even number of bits at logic level 1 (or an odd parity). Hence, to generate the parity,

the number of bits at logic level 1 takes into account the parity bit, while for checking

the parity, the parity bit is excluded from the total number of bits at logic level 1 and

is only used to identify the type of parity. Table 3.27 presents three 8-bit words with

the corresponding parity bits.
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Word with Parity

8 bits Even Odd

00000000 0 1

00101000 0 1

01001100 1 0

Table 3.27. Example of three 8-bit words with parity bits

Parity is used in series communication systems and memories to detect

transmission errors due to noise. After errors resulting in the modification of the logic

level of the parity bit are detected by a checker, it is possible to envisage a correction

by the retransmission of the data.

Table 3.28 gives the truth table of a parity generator for 4-bit words. The input

data are of the form D3D2D1D0, and the output variable is either PE (even parity)

or PO (odd parity). The Karnaugh map constructed based on the truth table, as shown

in Figure 3.53, allows for the determination of the logic expression for PE . We thus

have:

PE = D3 ·D2 ·D1 ·D0 +D3 ·D2 ·D1 ·D0

+D3 ·D2 ·D1 ·D0 +D3 ·D2 ·D1 ·D0 +D3 ·D2 ·D1 ·D0+

+D3 ·D2 ·D1 ·D0 +D3 ·D2 ·D1 ·D0 +D3 ·D2 ·D1 ·D0

[3.56]

or equivalently:

PE = (D3 ·D2 +D3 ·D2)D1 ·D0 + (D3 ·D2 +D3 ·D2)D1 ·D0

+ (D3 ·D2 +D3 ·D2)D1 ·D0 + (D3 ·D2 +D3 ·D2)D1 ·D0

= (D3 ⊕D2)(D1 ⊕D0) + (D3 ⊕D2)(D1 ⊕D0)

= D3 ⊕D2 ⊕D1 ⊕D0 [3.57]

As the two outputs PE and PO are complementary, it follows that:

PO = PE [3.58]

Using XOR logic gates and an inverter, the logic circuit of a parity generator for

4-bit words is implemented as shown in Figure 3.54(a). Another version of the parity

generator is given in Figure 3.54(b). The XOR output gate is configured as an inverter

that can be programmed by the selection signal E/O; this is useful to verify either the

even parity, when E/O is set to 0, or the odd parity when E/O takes the logic level 1.
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D3 D2 D1 D0 PE PO

0 0 0 0 0 1

0 0 0 1 1 0

0 0 1 0 1 0

0 0 1 1 0 1

0 1 0 0 1 0

0 1 0 1 0 1

0 1 1 0 0 1

0 1 1 1 1 0

1 0 0 0 1 0

1 0 0 1 0 1

1 0 1 0 0 1

1 0 1 1 1 0

1 1 0 0 0 1

1 1 0 1 1 0

1 1 1 0 1 0

1 1 1 1 0 1

Table 3.28. Truth table for a parity generator for 4-bit words
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Figure 3.53. Representation of PE = D3 ⊕D2 ⊕D1 ⊕D0
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Figure 3.54. Parity generator a) with or b) without selection signal

The logic circuit shown in Figure 3.55 is a parity generator or checker that has

select inputs to choose the desired parity type. Signal P takes logic level 1 if the input

word contains an even number of bits set at 1. An analysis of the function table given

in Table 3.29, where x denotes the don’t care term, shows that each output signal (ΣE

or ΣO) can be active high or low depending on the combination of logic levels at the

select inputs.
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Figure 3.55. Parity generator/checker SN74180
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Inputs Outputs

Number of bits,

D0 −D7, set to 1 SE SO ΣE ΣO

Even 1 0 1 0

Odd 1 0 0 1

Even 0 1 0 1

Odd 0 1 1 0

x 1 1 0 0

x 0 0 1 1

Table 3.29. Table illustrating the operation of the
parity generator/controller

The configuration shown in Figure 3.56(a), where the input SE is set to the logic

level 1 and connected by an inverter to the input SO, allows for the generation of

an even parity bit. The 9-bit words are formed by concatenating the parity bit and the

input word. The checker of even parity for 9-bit words is represented in Figure 3.56(b),

where the parity bit and the complement of the parity bit are connected to inputs SE

and SO, respectively. If an even parity exists, the output ΣE takes the logic level 1

while the output ΣO is set to 0.
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Figure 3.56. a) Parity generator; b) parity checker for 9-bit words
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3.8. Barrel shifter

A barrel shifter is a logic circuit that is used to shift data bits by a certain number

of positions to the left or right. There are logical shifts to the left or right, arithmetic

shift to the right and rotation (or circular shift) to the right or left.

For logical shift, movement toward either end of a binary word is carried out by

inserting 0-level bits at the other end, while for arithmetic shift, the sign bit or the

MSB is duplicated and inserted each time at the left end. This translates to a loss of

the bits originally at the ends of the binary words and whose number is equal to that

of positions to be shifted.

Carrying out the following operations on a 4-bit code of the form D3D2D1D0, we

obtain the following results:

– logic shift to the right by one position 0D3D2D1

– logic shift to the left by one position D2D1D0 0

– arithmetic shift to the right by one position D3D3D2D1

– rotation to the right by one position D0D3D2D1

– rotation to the left by one position D2D1D0D3

The barrel shifter is associated with the arithmetic and logic unit of some

microprocessors to ensure a fast execution of shift and rotation operations.

A barrel shifter can be implemented by combining a certain number of multiplexer

stages. Figure 3.57 shows the logic circuit of a barrel shift for 4-bit binary words. The

input stage first reverses the order of data bits when L = 1. The intermediary stages

then implement the shift or rotation to the right operation. Finally, the output stage

carries out another inversion when L = 1 to yield the result. A 3-bit code (L, ROT

and SRA) allows for the selection of shift and rotation operations as illustrated by

Table 3.30, where x represents a don’t care term.

Selection code

L ROT SRA
Operation

0 0 0 Logic shift to the right

0 0 1 Logic shift to the right

0 1 x Rotation to the right

1 0 0

1 0 1
Logic shift to the left

1 1 x Rotation to the left

Table 3.30. Operations realized by the barrel shifter
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Figure 3.57. Barrel shifter for 4-bit binary words

The number of positions to be shifted is determined by a 2-bit code (S1 and S0).

The logic equations for the outputs can be written as follows:

Y0 = Q0 · L+Q3 · L [3.59]

Y1 = Q1 · L+Q2 · L [3.60]

Y2 = Q2 · L+Q1 · L [3.61]

and

Y3 = Q3 · L+Q0 · L [3.62]
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where:

Q0 = (P0 · S1 + P2 · S1)S0 + (P1 · S1 + P3 · S1)S0 [3.63]

Q1 = (P1 · S1 + P3 · S1)S0+

[P2 · S1 + (D3 · SRA ·ROT + P0 ·ROT )S1]S0 [3.64]

Q2 = [P2 · S1 + (D3 · SRA ·ROT + P0 ·ROT )S1]S0+

[P3 · S1 + (D3 · SRA ·ROT + P1 ·ROT )S1]S0 [3.65]

Q3 = [P3 · S1 + (D3 · SRA ·ROT + P1 ·ROT )S1]S0+

[D3 · SRA ·ROT + (P0 · S1 + P2 · S1) ·ROT ]S0 [3.66]

and we have:

P0 = D0 · L+D3 · L [3.67]

P1 = D1 · L+D2 · L [3.68]

P2 = D2 · L+D1 · L [3.69]

P3 = D3 · L+D0 · L [3.70]

Finally, we arrive at:

Y0 = D0 · S1 · S0 + (D1 · L+D3 · L ·ROT )S1 · S0+

[D2(L+ROT ) +D3 · L · SRA ·ROT ]S1 · S0+

(D1 · L ·ROT +D3 · L)S1 · S0 [3.71]

Y1 = D0 · S1 · S0 + (D2 · L+D0 · L)S1 · S0+

D3(L+ROT + SRA)S1 · S0+

[(D0 · L+D2 · L)ROT +D3 · SRA ·ROT ]S1 · S0

[3.72]

Y2 = D2 · S1 · S0 + (D3 · L+D1 · L)S1 · S0+

[D0(L+ROT ) +D3 · L · SRA ·ROT ]S1 · S0+

[(D1 · L+D3 · L)ROT +D3 · SRA ·ROT ]S1 · S0

[3.73]

and

Y3 = D3 · S1 · S0 + [D1(L+ROT ) +D3 · L · SRA ·ROT ]S1 · S0+

D3 · L · SRA ·ROT · S0 + (D0 · L ·ROT +D2 · L)S1 · S0+

(D2 · L ·ROT +D0 · L)S1 · S0 [3.74]
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Considering the input word, D3D2D1D0, and L as entered variables, we obtain

the truth table shown in Table 3.31.

Control inputs Output bits

ROT SRA S1 S0 Y3 Y2 Y1 Y0

x x 0 0 D3 D2 D1 D0

0 0 0 1 D2 · L D3 · L+D1 · L D2 · L+D0 · L D1 · L
0 0 1 0 D1 · L D0 · L D3 · L D2 · L
0 0 1 1 D0 · L 0 0 D3 · L
0 1 0 1 D3 · L+D2 · L D3 · L+D1 · L D2 · L+D0 · L D1 · L
0 1 1 0 D3 · L+D1 · L D3 · L+D0 · L D3 D2 · L+D3 · L
0 1 1 1 D3 · L+D0 · L D3 D3 D3 · L
1 x 0 1 D0 · L+D2 · L D3 · L+D1 · L D2 · L+D0 · L D1 · L+D3 · L
1 x 1 0 D1 D0 D3 D2

1 x 1 1 D2 · L+D0 · L D1 · L+D3 · L D0 · L+D2 · L D3 · L+D1 · L

Table 3.31. Truth table of the barrel shifter

A barrel shifter can also be implemented using the 4 : 1, 8 : 1, or 16 : 1
multiplexers. In general, increasing the size of the multiplexer makes it possible to

add control signals, and hence more features.

EXAMPLE 3.2.– Four-bit barrel shifter

Implement a 4-bit barrel shifter that can shift or rotate the input data bits to the

left. The barrel shifter is described by the following specifications:

– input data: X3 X2 X1 X0;

– control data:

R ∈ {0, 1}: shift or rotate to the left;

A1 A0: number of positions to be shifted;

F ∈ {0, 1}: bit to be inserted following shifting to the left.

– outputs: Y3 Y2 Y1 Y0.

Table 3.32 depicts the truth table of the 4-bit barrel shifter. The logic function for

each of the outputs Y3, Y2, Y1 and Y0 is characterized by each of the Karnaugh maps

shown in Figure 3.58. The logic circuit of the 4-bit barrel shifter is represented in

Figure 3.59, where an 8 : 1 multiplexer is required to implement the logic function for

each output.
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R A1 A0 Y3 Y2 Y1 Y0

0 0 0 X3 X2 X1 X0 Transfer

0 0 1 X2 X1 X0 F sl1

0 1 0 X1 X0 F F sl2

0 1 1 X0 F F F sl3

1 0 0 X3 X2 X1 X0 Transfer

1 0 1 X2 X1 X0 X3 rl1

1 1 0 X1 X0 X3 X2 rl2

1 1 1 X0 X3 X2 X1 rl3

Table 3.32. Truth table of the 4-bit barrel shifter
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Figure 3.58. Karnaugh maps: a) Y3 ; b) Y2 ; c) Y1 and d) Y0
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Figure 3.59. Four-bit barrel shifter



Function Blocks of Combinational Logic 165

3.9. Exercises

EXERCISE 3.1.– Implementation of logic gates using 2 : 1 multiplexer.

Show that the circuits in Figure 3.60(a)–3.60(d) are equivalent to the AND, OR,

XOR and NAND logic gates, respectively.

B

(a)

0

1

0

A
C

B

(b)

0

1

A

1
C

B

(d)

0

1
C

1

A

B

(c)

0

1
CA

Figure 3.60. Logic circuits with multiplexers

EXERCISE 3.2.– Implementation of 2-out-of-4 decoder using 1-to-2 multiplexers.

(a)

1

Y0

Y0

Y1

S

D
1

0

Y2

Y3

Y0

Y1

D1

D0

S

D

(b)

1

0

1

0

1

0

(c)

EN

Y

Figure 3.61. 2 : 4 decoder based on 1-to-2 multiplexers

1) Verify that the logic circuit shown in Figure 3.61(a) implements a 1-to-2

demultiplexer, whose symbol is given in Figure 3.61(b).

2) To determine the function of the logic circuit illustrated in Figure 3.61(c), find

the logic equations for the outputs and draw up the truth table.

EXERCISE 3.3.– Realization of 2-to-4 decoder using NAND gates.

To determine the role of the logic circuit shown in Figure 3.62, find the logic

equations for the outputs and draw up the corresponding truth table.
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0
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D

D1

Y1

Y2

Y3

Figure 3.62. 2-out-of-4 encoder with NAND gates

EXERCISE 3.4.– 8 : 3 priority encoder.

To determine the role of the logic circuit shown in Figure 3.63, find the logic

equations for the outputs and draw up the corresponding truth table.

D
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1
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0

1

D0
D1

D2
D3
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Y1

Y2

0

1

0

1

V

B

C

A

Figure 3.63. 8:3 priority encoder

EXERCISE 3.5.– Implementation of the function F (A,B,C).

Implement the logic function F (A,B,C), which is characterized by the truth table

shown in Table 3.33 using a 2 : 1 multiplexer and logic gates to be determined.

EXERCISE 3.6.– 4-to-1 multiplexer.

Determine the logic equation for the output and construct the truth table for the

multiplexer shown in Figure 3.64.
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A B C F

0 0 0 1

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

Table 3.33. Truth table of the function F (A,B ,C )
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Y

D

Figure 3.64. a) 4-to-1 multiplexer with enable signal; b) symbol

Use a 4-to-1 multiplexer and logic gates to implement the function:

F (A,B,C,D) =
∑

m(3, 4, 5, 6, 7, 9, 10, 12, 14, 15) [3.75]

EXERCISE 3.7.– Demultiplexer/decoder.

Draw up the truth table for the decoder in Figure 3.65(a).

What is the difference between a decoder and demultiplexer?

Analyze the logic circuit shown in Figure 3.65(b) and determine the logic

equations for the outputs Zi(A,B,C,D) with i = 0, 1, 2, 3.
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Figure 3.65. a) 2 : 4 decoder with an enable input; b) logic circuit

EXERCISE 3.8.– Implementation of the function F (A,B,C,D).

Implement the function, F (A,B,C,D), whose logic expression is written as:

F (A,B,C,D) = A⊕B ⊕ C ⊕D [3.76]

using a 4 : 1 multiplexer and logic gates to be determined.

EXERCISE 3.9.– Majority function of three variables.

The majority function, F , of three variables takes either the logic level 1, if the

majority (two or three) of the variables is at logic level 1, or the logic level 0 in all

other cases:

– construct the truth table of the function F ;

– determine and simplify the logic equation for the function F ;

– implement the function F using a 4 : 1 multiplexer.

EXERCISE 3.10.– 8-to-1 multiplexer.

Verify by determining the logic equation for the output and by constructing the

truth table when each of the logic circuits shown in Figure 3.66 works as an 8-to-1

multiplexer.
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Use an 8-to-1 multiplexer and and logic gates to implement the following function:

F (A,B,C,D,E) =
∑

m(0, 1, 2, 4, 5, 6, 7, 13, 14, 20, 21, 22, 28, 29, 30, 31) [3.77]
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D

Figure 3.66. Implementation of an 8-to-1 multiplexer based on a) four
2-to-1 multiplexers or b) two 4-to-1 multiplexers

EXERCISE 3.11.– Implementation of a logic function based on a decoder

Implement the logic function:

F (A,B,C,D) =
∑

m(1, 3, 7, 9, 15) [3.78]

using a 3 : 8 decoder with enable input EN , a 5-input NAND gate and 2-input

NAND gates. The decoder has active-low outputs.

EXERCISE 3.12.– Analysis of a logic circuit.

Determine the logic equation for each of the outputs Yi (i = 0, 1, 2, · · · , 7) of the

logic circuit shown in Figure 3.67.

Draw up the truth table for this circuit.
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Figure 3.67. Logic circuit

What is the role of this circuit?

EXERCISE 3.13.– Design of a multiplier for 2-bit binary words.

We wish to implement a multiplier according to the following specifications:

− inputs: X = X1X0 and Y = Y1Y0;

− output: Z = X · Y where Z = Z3Z2Z1Z0.

Construct the truth table for this multiplier.

Determine the Boolean expressions for each of the outputs Zi (i = 0, 1, 2, 3).

Implement this multiplier using logic gates.

EXERCISE 3.14.– Comparator for 2-bit binary numbers.

Implement a comparator for 2-bit numbers: P = AB and Q = CD (see

Figure 3.68).

Draw up the truth table for this comparator.
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P X (P>Q)

Y (P<Q)

Z (P=Q)

Comparator
Q

Figure 3.68. Comparator

Deduce and simplify the logic expressions for X, Y and Z.

Propose a logic circuit for the implementation of this comparator.

EXERCISE 3.15.– BCD-to-7-segment decoder.

A 4-bit number, A, B, C, D (D is the LSB), is applied to the inputs of the decoder

supplying the signals a, b, c, d, e, f and g that are used to drive a 7-segment display

(see Figure 3.69) generating numbers from 0 to 9.

Draw up the truth table for this decoder.

Deduce and simplify the logic expressions for a, b, c, d, e, f and g.

Propose a logic circuit that can be used to realize the decoder.

We will assume that the diodes of the display are controlled by low-level signals.
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Figure 3.69. a) BCD-to-7-segment decoder;
b) display of numbers from 0 to 9

EXERCISE 3.16.– HEX-to-7-segment decoder.

A number consisting of 4 bits, A, B, C and D (D is the LSB), is applied to the

inputs of the decoder supplying the signals a, b, c, d, e, f and g that are used to drive a

7-segment display (see Figure 3.70) generating the numbers from 0 to 9 and the letters

A–F corresponding to the hexadecimal representation of the numbers 10–15.
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Draw up the truth table for the decoder, assuming that the diodes of the display are

controlled by low-level signals.

Deduce and simplify the logic expressions for a, b, c, d, e, f and g.

Propose a logic circuit that can be used to implement the decoder, using logic gates

with no more than four inputs.
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Figure 3.70. a) HEX-to-7-segment decoder; b) display of
numbers from 0 to 9 and letters A–F

EXERCISE 3.17.– Analysis of logic circuits:

– analyze the logic circuit shown in Figure 3.71 and determine its function. The

inputs are represented by X4, X3, X2, X1, X0 and X−1; the outputs by Y3, Y2, Y1

and Y0; and the control signals by D, S and E;

– same question for the logic circuit based on 2 : 1 multiplexers and which is

represented in Figure 3.72, where the data inputs are denoted by D7, D6, D5, D4, D3,

D2, D1 and D0; the outputs by Y7, Y6, Y5, Y4, Y3, Y2, Y1 and Y0; and the control

signals by S2, S1 and S0.

2Y 0Y

E

D

S

Y

4X 3X 2X 1X 0X −1X

3Y 1

Figure 3.71. Logic circuit 1
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Figure 3.72. Logic circuit 2

3.10. Solutions

SOLUTION 3.1.– Implementation of a logic gate using 2 : 1 multiplexer.

A 2 : 1 multiplexer is characterized by a logic equation of the form:

Y = S ·D0 + S ·D1 [3.79]

where the data input is represented by D0 and D1, and the selection input by S.

– AND gate: D0 = 0, D1 = A, S = B and Y = A ·B;

– OR gate: D0 = A, D1 = 1, S = B and Y = A ·B +B = A+B;

– XOR gate: D0 = A, D1 = A, S = B and Y = A ·B +A ·B = A⊕B;

– NAND gate: D0 = 1, D1 = B, S = A and Y = A+A ·B = A+B = A ·B.

SOLUTION 3.2.– Implementation of a 2-out-of 4 decoder using 1-to-2 demultiplexers

1) 1-to-2 demultiplexers

The logic equations for the output are given by:

Y0 = D · S and Y1 = D · S [3.80]
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2) 2-out-of-4 Decoder

The logic equations fo the outputs are written as:

Y0 = D1 ·D0 · EN, Y1 = D1 ·D0 · EN,

Y2 = D1 ·D0 · EN, and Y3 = D1 ·D0 · EN [3.81]

Table 3.34 gives the truth table of the 2-out-of-4 decoder.

S1 S0 Y3 Y2 Y1 Y0

0 0 0 0 0 EN

0 1 0 0 EN 0

1 0 0 EN 0 0

1 1 EN 0 0 0

Table 3.34. Truth table of the 2-out-of-4 decoder

SOLUTION 3.3.– Realization of 2-out-of-4 decoder using NAND gates.

The logic equations for the outputs can be written as:

Y0 = D1 ·D0 ·D1 ·D0 ·D1 ·D0

= D1 ·D0 +D1 ·D0 +D1 ·D0 = D1 +D0 = D1 ·D0 [3.82]

Y1 = D1 ·D0 ·D0 = D1 ·D0 +D0 = D1 +D0 = D1 ·D0 [3.83]

Y2 = D1 ·D1 ·D0 = D1 +D1 ·D0 = D1 +D0 = D1 ·D0 [3.84]

and Y3 = D1 ·D0 [3.85]

The truth table of the 2-out-of-4 decoder, as represented in Table 3.35,

corresponds to the case where outputs are active low.

D1 D0 Y3 Y2 Y1 Y0

0 0 1 1 1 0

0 1 1 1 0 1

1 0 1 0 1 1

1 1 0 1 1 1

Table 3.35. Truth table of the 2-out-of-2 decoder
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SOLUTION 3.4.– 8 : 3 priority encoder.

The logic equations for the outputs are given by:

V = D0 +D1 +D2 +D3 +D4 +D5 +D6 +D7 [3.86]

Y0 = A · Y2 + C · Y2

= [D1(D2 +D3) +D3(D2 +D3)](D4 +D5 +D6 +D7)

+ [D5(D6 +D7) +D7(D6 +D7)](D4 +D5 +D6 +D7)

= (D1 ·D2 ·D3 +D3 ·D2 +D3)(D4 ·D5 ·D6 ·D7)

+ (D5 ·D6 ·D7 +D6 ·D7 +D7)(D4 +D5 +D6 +D7)

= D1 ·D2 ·D4 ·D6 +D3 ·D4 ·D6 +D5 ·D6 +D7 [3.87]

Y1 = B · Y2 +D · Y2

= (D2 +D3)(D4 +D5 +D6 +D7)

+ (D6 +D7)(D4 +D5 +D6 +D7)

= D2 ·D4 ·D5 +D3 ·D4 ·D5 +D6 +D7 [3.88]

and

Y2 = D4 +D5 +D6 +D7 [3.89]

Table 3.36 shows the truth table obtained from the logic equations of the 8 : 3
priority encoder. The highest priority is assigned to the input corresponding to the

highest decimal number. The validation output V is used to differentiate between the

case where the input code corresponds to 0 and the case where no input is active.

D7 D6 D5 D4 D3 D2 D1 D0 Y2 Y1 Y0 V

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 1

0 0 0 0 0 0 1 x 0 0 1 1

0 0 0 0 0 1 x x 0 1 0 1

0 0 0 0 1 x x x 0 1 1 1

0 0 0 1 x x x x 1 0 0 1

0 0 1 x x x x x 1 0 1 1

0 1 x x x x x x 1 1 0 1

1 x x x x x x x 1 1 1 1

x x x x x x x x 0 0 0 0

Table 3.36. Truth table of the 8 : 3 priority encoder
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SOLUTION 3.5.– Implementation of the function F (A,B,C).

Analyzing the truth table shown in Table 3.37, we can deduce that the function F
can take the following form:

F (A,B,C) =

{
B if A = 0

B + C if A = 1
[3.90]

A B C F

0 0 0 1

0 0 1 1

0 1 0 0
B

0 1 1 0

1 0 0 0

1 0 1 1

1 1 0 1
B + C

1 1 1 1

Table 3.37. Truth table of the logic function F

Similarly, using Shannon’s theorem, we can write:

F (A,B,C) = A · F (0, B, C) +A · F (1, B, C) [3.91]

where F (0, B, C) = B and F (1, B, C) = B + C.

The logic function F can, thus, be implemented as shown in Figure 3.73 using a

2 : 1 multiplexer, an OR gate and an inverter.

F

1
B

A

C

0

Figure 3.73. Implementation of the logic function F
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SOLUTION 3.6.– 4-to-1 multiplexer.

The logic equation for the output of the multiplexer with enable signal is given by:

Y = S1 · S0 ·D0 · E + S1 · S0 ·D1 · E + S1 · S0 ·D2 · E + S1 · S0 ·D3 · E [3.92]
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Figure 3.74. 4-to-1 multiplexer: a) logic circuit, b) truth table and
c) Karnaugh maps for the output Y

Implementation of the function F (A,B,C,D)

The logic function F (A,B,C,D) can be written as follows:

F (A,B,C,D) =
∑

m(3, 4, 5, 6, 7, 9, 10, 12, 14, 15) [3.93]

= A ·B · C ·D +A ·B · C ·D +A ·B · C ·D
+A ·B · C ·D +A ·B · C ·D +A ·B · C ·D
+A ·B · C ·D +A ·B · C ·D +A ·B · C ·D
+A ·B · C ·D [3.94]

= A ·B · C ·D +A ·B(C ·D + C ·D + C ·D + C ·D)+

A ·B(C ·D + C ·D) +A ·B(C ·D + C ·D + C ·D)
[3.95]

= A ·B · C ·D +A ·B +A ·B(C ⊕D) +A ·B(C +D)
[3.96]
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Figure 3.75. a) Karnaugh maps for F ; b) logic circuit implementing F

SOLUTION 3.7.– Demultiplexer/decoder.

The following aspects make it possible to differentiate between a decoder and a

demultiplexer:

– n-out-of-2n decoder: n input data and 2n outputs;

– 1-to-2n demultiplexer: 1 data input, n select inputs and 2n outputs.

A decoder with enable input E operates like a demultiplexer if E is used as a data

input.

The logic equations for the outputs of the 2-out-of-4 decoders shown in Figure 3.76

are given by:

Z0 = S1 · S0 · E [3.97]

Z1 = S1 · S0 · E [3.98]

Z2 = S1 · S0 · E [3.99]

Z3 = S1 · S0 · E [3.100]

Table 3.38 gives the truth table of the 2-out-of-4 decoder.

Applying the data sequence D to input E, we can implement a 1-to-4

demultiplexer as shown in Figure 3.77. Table 3.39 gives the truth table of the 1-to-4

demultiplexer.
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Z 0

Z 1
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3Z

Figure 3.76. 2-out-of-4 decoder

E S1 S0 Z3 Z2 Z1 Z0

0 x x 0 0 0 0

1 0 0 0 0 0 1

1 0 1 0 0 1 0

1 1 0 0 1 0 0

1 1 1 1 0 0 0

Table 3.38. Truth table of the 2-out-of-4 decoder

Analyzing the logic circuit made up of a 2-out-of-4 decoder, a 1-to-4 multiplexer

and logic gates makes it possible to obtain the logic equation of the multiplexer output:

Y = [S1 · S0(C +D) + S1 · S0(0) + S1 · S0 · C + S1 · S0 · C ·D ]E [3.101]

where E = 1, S0 = A and S1 = B, and the logic equations of the decoder outputs:

Z0 = S1 · S0 · E [3.102]

Z1 = S1 · S0 · E [3.103]

Z2 = S1 · S0 · E [3.104]

Z3 = S1 · S0 · E [3.105]
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where E = Y , S0 = A⊕B and S1 = A. Combining the above-mentioned equations,

we arrive at:

Z0 = A ·B · C +A ·B ·D [3.106]

Z1 = A ·B · C [3.107]

Z2 = A ·B · C ·D [3.108]

Z3 = 0 [3.109]

D

Z 0

Z 1

3Z

Z 2

S 0S 1

Figure 3.77. 1-to-4 demultiplexer

S1 S0 Z3 Z2 Z1 Z0

0 0 0 0 0 D

0 1 0 0 D 0

1 0 0 D 0 0

1 1 D 0 0 0

Table 3.39. Truth table of the 1-to-4 demultiplexer

SOLUTION 3.8.– Implementation of the function F (A,B,C,D).

Using Shannon’s theorem, the logic function F may be decomposed as follows:

F (A,B,C,D) = A⊕B ⊕ C ⊕D [3.110]

= (A⊕B ⊕ 1⊕ 1)C ·D + (A⊕B ⊕ 1⊕ 0)C ·D+

(A⊕B ⊕ 0⊕ 1)C ·D + (A⊕B ⊕ 0⊕ 0)C ·D [3.111]
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= (A⊕B)C ·D + (A⊕B)C ·D+

(A⊕B)C ·D + (A⊕B)C ·D [3.112]

Figure 3.78 shows the logic circuit for the implementation of the function F using

a 4 : 1 multiplexer, an XOR gate and an inverter.

B

C D

10

01

00

11

F
A

Figure 3.78. Logic circuit for the function F

SOLUTION 3.9.– Majority function of three variables.

The truth table for the majority function of three variables is represented in

Table 3.40. Hence, we have:

F = A ·B · C +A ·B · C +A ·B · C +A ·B · C [3.113]

= (A+A)B · C +A ·B · C +A ·B · C
= (B +B ·A)C +A ·B · C
= B · C +A(C + C ·B)

= B · C +A · C +A ·B [3.114]

The truth table for the majority function of three variables is represented in

Table 3.40. Thus:

F = A ·B · C +A ·B · C +A ·B · C +A ·B · C [3.115]

= (A+A)B · C +A ·B · C +A ·B · C
= (B +B ·A)C +A ·B · C
= B · C +A(C + C ·B)

= B · C +A · C +A ·B [3.116]
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A B C F

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

Table 3.40. Truth table

Inserting different combinations of the variables A and B in the logic equation

for the function F makes it possible to construct the reduced truth table shown in

Table 3.41.

A B F

0 0 0

0 1 C

1 0 C

1 1 1

Table 3.41. Truth table

Figure 3.79 depicts the logic circuit that can be used to implement the majority

function of three variables.

F
10

11

01

00

A B

C

1

0

Figure 3.79. Logic circuit
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SOLUTION 3.10.– 8-to-1 multiplexer

For the first circuit, we have:

Y = S2 · S1(D0 · S0 +D1 · S0) + S2 · S1(D2 · S0 +D3 · S0)

+S2 · S1(D4 · S0 +D5 · S0) + S2 · S1(D6 · S0 +D7 · S0)
[3.117]

and for the second, we have:

Y = S2(S1 · S0 ·D0 + S1 · S0 ·D1 + S1 · S0 ·D2 + S1 · S0 ·D3)

+S2(S1 · S0 ·D4 + S1 · S0 ·D5 + S1 · S0 ·D6 + S1 · S0 ·D7)
[3.118]

In both cases, the logic equation for the output can be put into the following form:

Y = S2 · S1 · S0 ·D0 + S2 · S1 · S0 ·D1+

S2 · S1 · S0 ·D2 + S2 · S1 · S0 ·D3 + S2 · S1 · S0 ·D4+

S2 · S1 · S0 ·D5 + S2 · S1 · S0 ·D6 + S2 · S1 · S0 ·D7

[3.119]

Table 3.42 gives the truth table of the 8-to-1 multiplexer.

S0 S1 S0 Y

0 0 0 D0

0 0 1 D1

0 1 0 D2

0 1 1 D3

1 0 0 D4

1 0 1 D5

1 1 0 D6

1 1 1 D7

Table 3.42. Truth table of the 8-to-1 multiplexer

F (A,B,C,D,E) =
∑

m(0, 1, 2, 4, 5, 6, 7, 13, 14, 20, 21, 22, 28, 29, 30, 31)

[3.120]

= A ·B · C ·D · E +A ·B · C ·D · E +A ·B · C ·D · E+

A ·B · C ·D · E +A ·B · C ·D · E +A ·B · C ·D · E+

A ·B · C ·D · E +A ·B · C ·D · E +A ·B · C ·D · E+
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A ·B · C ·D · E +A ·B · C ·D · E +A ·B · C ·D · E+

A ·B · C ·D · E +A ·B · C ·D · E +A ·B · C ·D ·E+

A ·B · C ·D · E [3.121]

= (A ·B · C +A ·B · C)(D · E +D · E +D · E)+

(A ·B · C +A ·B · C)(D · E +D · E +D · E +D · E)+

A ·B · C(D · E +D · E) [3.122]

and:

F (A,B,C,D,E) = (A ·B · C +A ·B · C)(D · E)+

(A ·B · C +A ·B · C)(1) +A ·B · C(D ⊕ E) [3.123]

Choosing A, B and C, as selection inputs, we can obtain the Karnaugh map shown

in Figure 3.80(a) that can be used to determine the combination of variables to be

applied to the data inputs of the multiplexer. Figure 3.80(b) depicts the logic circuit

that can be used to implement the function F.
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0

00

B
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Figure 3.80. Implementation of F : a) Karnaugh map; b) logic circuit
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SOLUTION 3.11.– Implementation of a logic function using a decoder.

The logic function F can be expressed in the following form:

F (A,B,C,D) =
∑

m(1, 3, 7, 9, 15) [3.124]

= A ·B · C ·D +A ·B · C ·D+

A ·B · C ·D +A ·B · C ·D +A ·B · C ·D [3.125]

To implement the function F using NAND logic gates and a 3 : 8 decoder whose

logic equations can be written as follows:

Y0 = X2 ·X1 ·X0 · EN Y1 = X2 ·X1 ·X0 · EN Y2 = X2 ·X1 ·X0 · EN

Y3 = X2 ·X1 ·X0 · EN Y4 = X2 ·X1 ·X0 · EN Y5 = X2 ·X1 ·X0 · EN

Y6 = X2 ·X1 ·X0 · EN Y7 = X2 ·X1 ·X0 · EN [3.126]

we observe that:

F = Y0 + Y1 + Y3 + Y4 + Y7 [3.127]

= Y0 · Y1 · Y3 · Y4 · Y7 [3.128]

where:

Y0 = A ·B · C ·D Y1 = A ·B · C ·D Y3 = A ·B · C ·D
Y4 = A ·B · C ·D Y7 = A ·B · C ·D

[3.129]

Figure 3.81 gives the logic circuit that can be used to realize the function F .

D
E
C

Y7
Y6
Y5
Y4
Y3
Y2
Y1
Y0

F

EN

X2

X1

X0

D

C

B

A

Figure 3.81. Implementation of the logic function F
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SOLUTION 3.12.– Analysis of a logic circuit.

The output equations obtained by analyzing the proposed logic circuit are given

by:

Y7 = D7 [3.130]

Y6 = D7 ·D6 [3.131]

Y5 = D7 ·D6 ·D5 [3.132]

Y4 = D7 ·D6 ·D5 ·D4 [3.133]

Y3 = D7 ·D6 ·D5 ·D4 ·D3 [3.134]

Y2 = D7 ·D6 ·D5 ·D4 ·D3 ·D2 [3.135]

Y1 = D7 ·D6 ·D5 ·D4 ·D3 ·D2 ·D1 [3.136]

and:

Y0 = D7 ·D6 ·D5 ·D4 ·D3 ·D2 ·D1 ·D0 [3.137]

The truth table based on the logic equations for the outputs is given in Table 3.43.

D7 D6 D5 D4 D3 D2 D1 D0 Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 x 0 0 0 0 0 0 1 0

0 0 0 0 0 1 x x 0 0 0 0 0 1 0 0

0 0 0 0 1 x x x 0 0 0 0 1 0 0 0

0 0 0 1 x x x x 0 0 0 1 0 0 0 0

0 0 1 x x x x x 0 0 1 0 0 0 0 0

0 1 x x x x x x 0 1 0 0 0 0 0 0

1 x x x x x x x 1 0 0 0 0 0 0 0

Table 3.43. Truth table

This is a priority selector that can be connected to an 8 : 3 encoder in order to

realize an 8 : 3 priority encoder.
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SOLUTION 3.13.– Design of a multiplier for 2-bit words.

Referring to the truth table shown in Table 3.44, we can obtain the following logic

equations:

Z0 = X1 ·X0 · Y1 · Y0 +X1 ·X0 · Y1 · Y0 +X1 ·X0 · Y1 · Y0

+X1 ·X0 · Y1 · Y0

= X0 · Y0 [3.138]

Z1 = X1 ·X0 · Y1 · Y0 +X1 ·X0 · Y1 · Y0 +X1 ·X0 · Y1 · Y0

+X1 ·X0 · Y1 · Y0 +X1 ·X0 · Y1 · Y0 +X1 ·X0 · Y1 · Y0

= X1 ·X0 · Y1 +X0 · Y1 · Y0 +X1 ·X0 · Y0 +X1 · Y1 · Y0 [3.139]

Z2 = X1 ·X0 · Y1 · Y0 +X1 ·X0 · Y1 · Y0 +X1 ·X0 · Y1 · Y0

= X1 ·X0 · Y1 +X1 · Y1 · Y0 [3.140]

and

Z3 = X1 ·X0 · Y1 · Y0 [3.141]

X · Y = Z X Y Z

X1 X0 Y1 Y0 Z3 Z2 Z1 Z0

0 · 0 = 0 0 0 0 0 0 0 0 0

0 · 1 = 0 0 0 0 1 0 0 0 0

0 · 2 = 0 0 0 1 0 0 0 0 0

0 · 3 = 0 0 0 1 1 0 0 0 0

1 · 0 = 0 0 1 0 0 0 0 0 0

1 · 1 = 1 0 1 0 1 0 0 0 1

1 · 2 = 2 0 1 1 0 0 0 1 0

1 · 3 = 3 0 1 1 1 0 0 1 1

2 · 0 = 0 1 0 0 0 0 0 0 0

2 · 1 = 2 1 0 0 1 0 0 1 0

2 · 2 = 4 1 0 1 0 0 1 0 0

2 · 3 = 6 1 0 1 1 0 1 1 0

3 · 0 = 0 1 1 0 0 0 0 0 0

3 · 1 = 3 1 1 0 1 0 0 1 1

3 · 2 = 6 1 1 1 0 0 1 1 0

3 · 3 = 9 1 1 1 1 1 0 0 1

Table 3.44. Truth table of a multiplier for 2-bit words

These equations can then be used to construct the logic circuit of a multiplier for

2-bit words as shown in Figure 3.82.
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Z0

Z1

Z2

Z3

YYX0 1 0X1

Figure 3.82. Multiplier for 2-bit words

SOLUTION 3.14.– Comparator for 2-bit numbers.

For the outputs of the comparator, the logic equations obtained from the truth table

shown in Table 3.45 are given by:

X = A ·B · C ·D +A ·B · C ·D +A ·B · C ·D
+A ·B · C ·D +A ·B · C ·D +A ·B · C ·D

= A ·B · C ·D +A · C(B ·D +B ·D +B ·D +B ·D) +A ·B · C ·D
= A · C +A ·B ·D +B · C ·D [3.142]

Y = A ·B · C ·D +A ·B · C ·D +A ·B · C ·D
+A ·B · C ·D +A ·B · C ·D +A ·B · C ·D

= A ·B · C ·D +A · C(B ·D +B ·D +B ·D +B ·D) +A ·B · C ·D
= A · C +A ·B ·D +B · C ·D [3.143]

and

Z = A ·B · C ·D +A ·B · C ·D +A ·B · C ·D +A ·B · C ·D [3.144]



Function Blocks of Combinational Logic 189

A B C D X Y Z

0 0 0 0 0 0 1

0 0 0 1 0 1 0

0 0 1 0 0 1 0

0 0 1 1 0 1 0

0 1 0 0 1 0 0

0 1 0 1 0 0 1

0 1 1 0 0 1 0

0 1 1 1 0 1 0

1 0 0 0 1 0 0

1 0 0 1 1 0 0

1 0 1 0 0 0 1

1 0 1 1 0 1 0

1 1 0 0 1 0 0

1 1 0 1 1 0 0

1 1 1 0 1 0 0

1 1 1 1 0 0 1

Table 3.45. Truth table of a comparator for 2-bit numbers

It should be noted that:

B ·D +B ·D +B ·D +B ·D = 1

Figure 3.83 depicts the logic circuit of the comparator for 2-bit numbers.

SOLUTION 3.15.– BCD-to-7-segment decoder.

Table 3.46 presents the truth table of the BCD-to-7-segment decoder that can be

used to determine the output logic equations.

Thus, for each of the outputs we have:

a =
∑

m(0, 2, 3, 5, 6, 7, 8, 9) [3.145]

b =
∑

m(0, 1, 2, 3, 4, 7, 8, 9) [3.146]

c =
∑

m(0, 1, 3, 4, 5, 6, 7, 8, 9) [3.147]

d =
∑

m(0, 2, 3, 5, 6, 8, 9) [3.148]

e =
∑

m(0, 2, 6, 8) [3.149]

f =
∑

m(0, 4, 5, 6, 8, 9) [3.150]

and

g =
∑

m(2, 3, 4, 5, 6, 8, 9) [3.151]
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X

Y

Z

BA C D

Figure 3.83. Logic circuit of a comparator for 2-bit numbers

Because the LEDs are driven by low-level signals, the minimal form in the sum of

products is obtained by constructing the corresponding Karnaugh maps in the

complemented forms for each of output variables (see Figures 3.84–3.90).

The logic circuit for the BCD-to-7-segment decoder is represented in Figure 3.91.

SOLUTION 3.16.– HEX-to-7-segment decoder.

The number of hexadecimal digits to be represented, that is 16, is equal to

number of possible combinations with four bits. The truth table of the

HEX-to-7-segment decoder can be constructed as shown in Table 3.47. We can then

obtain the following logic equations:

a =
∑

m(1, 4, 11, 13) [3.152]

b =
∑

m(5, 6, 11, 12, 15) [3.153]
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c =
∑

m(2, 12, 14, 15) [3.154]

d =
∑

m(1, 4, 7, 10, 15) [3.155]

e =
∑

m(1, 3, 4, 5, 7, 9) [3.156]

f =
∑

m(1, 2, 3, 7, 13) [3.157]

and

g =
∑

m(0, 1, 7, 12) [3.158]

Symbole A B C D a b c d e f g

0 0 0 0 0 1 1 1 1 1 1 0

1 0 0 0 1 0 1 1 0 0 0 0

2 0 0 1 0 1 1 0 1 1 0 1

3 0 0 1 1 1 1 1 1 0 0 1

4 0 1 0 0 0 1 1 0 0 1 1

5 0 1 0 1 1 0 1 1 0 1 1

6 0 1 1 0 1 0 1 1 1 1 1

7 0 1 1 1 1 1 1 0 0 0 0

8 1 0 0 0 1 1 1 1 1 1 1

9 1 0 0 1 1 1 1 1 0 1 1

− 1 0 1 0 x x x x x x x

− 1 0 1 1 x x x x x x x

− 1 1 0 0 x x x x x x x

− 1 1 0 1 x x x x x x x

− 1 1 1 0 x x x x x x x

− 1 1 1 1 x x x x x x x

Table 3.46. Truth table of the BCD-to-7-segment decoder

D

01

11

10

0 11 x

1 1 x x

1 1 x x

0 x 11

AB

CD

C

00 01 11 10

B

A

00

Figure 3.84. Signal a:
a = A+ C +B ·D +B ·D
a = B · C ·D +A ·B · C ·D
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D

01

11

10

1 11 x

1 1 x x

1 0 x x

1 x 10

AB

CD

C

00 01 11 10

B

A

00

Figure 3.85. Signal b:
b = B + C ·D + C ·D

b = B · C ·D +B · C ·D

D

01

11

10

1 11 x

1 1 x x

0 1 x x

1 x 11

AB

CD

C

00 01 11 10

B

A

00

Figure 3.86. Signal c:
c = B + C +D
c = B · C ·D

D
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11
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0 11 x

1 0 x x

1 1 x x

0 x 11

AB

CD

C

00 01 11 10

B

A

00

Figure 3.87. Signal d:
d = A+B · C +B ·D + C ·D +B · C ·D
d = B · C ·D +B · C ·D +A ·B · C ·D
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D

01

11

10

0 11 x

0 0 x x

1 1 x x

0 x 00

AB

CD

C

00 01 11 10

B

A

00

Figure 3.88. Signal e:
e = B ·D + C ·D
e = D +B · C

D
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0 0 x x

0 1 x x

0 x 11

AB

CD

C

00 01 11 10

B

A

00

Figure 3.89. Signal f:
f = A+B · C +B ·D + C ·D
f = B · C + C ·D +A ·B ·D

D
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11

10

1 10 x

1 0 x x

1 1 x x

0 x 11

AB

CD

C

00 01 11 10

B

A

00

Figure 3.90. Signal g:
g = A+B · C +B · C + C ·D

g = A ·B · C +B · C ·D
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Figure 3.91. BCD-to-7-segment decoder



Function Blocks of Combinational Logic 195

Symbol A B C D a b c d e f g

0 0 0 0 0 0 0 0 0 0 0 1

1 0 0 0 1 1 0 0 1 1 1 1

2 0 0 1 0 0 0 1 0 0 1 0

3 0 0 1 1 0 0 0 0 1 1 0

4 0 1 0 0 1 0 0 1 1 0 0

5 0 1 0 1 0 1 0 0 1 0 0

6 0 1 1 0 0 1 0 0 0 0 0

7 0 1 1 1 0 0 0 1 1 1 1

8 1 0 0 0 0 0 0 0 0 0 0

9 1 0 0 1 0 0 0 0 1 0 0

A 1 0 1 0 0 0 0 1 0 0 0

b 1 0 1 1 1 1 0 0 0 0 0

C 1 1 0 0 0 1 1 0 0 0 1

d 1 1 0 1 1 0 0 0 0 1 0

e 1 1 1 0 0 0 1 0 0 0 0

F 1 1 1 1 0 1 1 1 0 0 0

Table 3.47. Truth table of the HEX-to-7-segment decoder

The Karnaugh maps shown in Figures 3.92–3.98 allow for the simplification of the

logic equations for the decoder outputs.

D

01

11

10

1 00 0

0 0 0 1

0 0 0 0

1 1 00

AB

CD

C

00 01 11 10

B

A

00

Figure 3.92. Signal a:
a = A ·B · C ·D +A ·B · C ·D+ A ·B · C ·D +A ·B · C ·D
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D

01

11

10

0 00 1

0 0 1 1

0 1 1 0

0 0 01

AB

CD

C

00 01 11 10

B

A

00

Figure 3.93. Signal b: b = A ·C ·D+A ·B ·D+ B ·C ·D+A ·B ·C ·D

D
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11
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0 00 1

0 0 1 0

1 0 1 0

0 0 00
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C

00 01 11 10

B

A
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Figure 3.94. Signal c: c = A ·B · C +A ·B ·D+
A ·B · C ·D
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1 00 0

0 1 1 0

0 0 0 1

1 0 00

AB

CD

C

00 01 11 10

B

A

00

Figure 3.95. Signal d :
d = B · C ·D +A ·B · C ·D+ A ·B · C ·D +A ·B · C ·D
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D

01

11

10

1 00 0

1 1 0 0

0 0 0 0

1 0 11

AB

CD

C

00 01 11 10

B

A

00

Figure 3.96. Signal e:
e = A ·D +A ·B · C+ B · C ·D
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0 00 0

1 1 0 0

1 0 0 0

1 1 00

AB

CD

C

00 01 11 10

B

A

00

Figure 3.97. Signal f : f = A ·C ·D+A ·B ·D+ A ·B ·C +A ·B ·C ·D
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0 01 1

0 1 0 0

0 0 0 0
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CD

C

00 01 11 10

B

A

00

Figure 3.98. Signal g :
g = A ·B · C +A ·B · C ·D+ A ·B · C ·D
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To reduce the number of logic gates, the logic equations of some outputs can be

rewritten to bring out the common terms. The logic equation for the output b can be

put into the form:

b = A · C ·D +A ·B ·D +B · C ·D +A ·B · C ·D [3.159]

= A · C ·D +A ·B · (C + C) ·D +B · C ·D +A ·B · C ·D
= A · C ·D +A ·B · C ·D + (1 +A) ·B · C ·D +A ·B · C ·D
= A · C ·D +A ·B · C ·D +B · C ·D +A ·B · C ·D [3.160]

For the output c, we have:

c = A ·B · C +A ·B ·D +A ·B · C ·D [3.161]

= A ·B · C +A ·B · (C + C) ·D +A ·B · C ·D
= A ·B · C · (1 +D) +A ·B · C ·D +A ·B · C ·D
= A ·B · C +A ·B · C ·D +A ·B · C ·D [3.162]

Another form of the logic equation for the output e can be obtained based on the

Karnaugh map represented in Figure 3.99. This reveals the common term A · C · D,

instead of the term A ·D, and is written as follows:

e = A · C ·D +A ·B · C · (D +D) +B · C ·D [3.163]

= A · C ·D +A ·B · C ·D +A ·B · C ·D +B · C ·D [3.164]
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1 00 0

1 1 0 0

0 0 0 0

1 0 11

AB

CD

C

00 01 11 10

B

A

00

Figure 3.99. Signal e:
e = A · C ·D +A ·B · C+ B · C ·D
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The logic equation for the output f can be rewritten as:

f = A · C ·D +A ·B ·D +A ·B · C +A ·B · C ·D [3.165]

= A · C ·D +A ·B · (C + C) ·D +A ·B · C +A ·B · C ·D
= A · C ·D +A ·B · C ·D +A ·B · C · (1 +D) +A ·B · C ·D
= A · C ·D +A ·B · C ·D +A ·B · C +A ·B · C ·D [3.166]

Figure 3.100 depicts the logic circuit for the HEX-to-7-segment decoder.

SOLUTION 3.17.– Analysis of logic circuits.

1) For the 1-bit barrel shifter, we have:

– inputs: X4, X3, X2, X1, X0, X−1;

– outputs: Y3, Y2, Y1, Y0;

– enable signal E;

– signal D:

D =

{
1 for a shift to left

0 for a shift to right

– signal S to indicate the number of positions to be shifted.

The truth table of the 1-bit barrel shifter is represented in Table 3.48, where:

X−1 =

⎧⎪⎨
⎪⎩
0 for a shift to the left with insertion of 0

1 for a shift to the left with insertion of 1

X3 for a rotation to the left

and

X4 =

⎧⎪⎨
⎪⎩
0 for a shift to the right with insertion of 0

1 for a shift to the right with insertion of 1

X0 for a rotation to the right

E S D Y3 Y2 Y1 Y0

0 x x 0 0 0 0

1 0 x X3 X2 X1 X0

1 1 0 X4 X3 X2 X1

1 1 1 X3 X2 X1 X−1

Table 3.48. Truth table of the barrel shifter
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a

c

e

g

b

d

f

DCBA

Figure 3.100. HEX-to-7-segment decoder

2) The barrel shifter for right-shift operations can be characterized by:

– inputs: D7, D6, D5, D4, D3, D2, D1, D0;

– outputs: Y7, Y6, Y5, Y4, Y3, Y2, Y1, Y0;

– the number of positions to be shifted: S2, S1, S0.
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Based on the analysis of the logic circuit, the truth table of the barrel shifter can be

constructed as shown in Table 3.49.

S2 S1 S0 Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0

0 0 0 D7 D6 D5 D4 D3 D2 D1 D0

0 0 1 0 D7 D6 D5 D4 D3 D2 D1

0 1 0 0 0 D7 D6 D5 D4 D3 D2

0 1 1 0 0 0 D7 D6 D5 D4 D3

1 0 0 0 0 0 0 D7 D6 D5 D4

1 0 1 0 0 0 0 0 D7 D6 D5

1 1 0 0 0 0 0 0 0 D7 D6

1 1 1 0 0 0 0 0 0 0 D7

Table 3.49. Truth table of the barrel shifter for right-shift operations





4

Systematic Methods for the
Simplification of Logic Functions

4.1. Introduction

Manipulating Karnaugh maps can prove a difficult task for logic functions of

more than six variables. Most often, systematic methods of simplification such as the

Quine–McCluskey method or the iterated consensus method are used to find

minimized forms for functions with a large number of variables. These methods are

especially useful because they can be converted into algorithms or computer-aided

design software. A logic function of n variables can have up to 2n minterms and

3n/n prime implicants. The implementation of methods that require the enumeration

of all the minterms and the determination of the prime implicants seems to be limited

by the calculation and storage capacity that is excessively high when the number of

variables increases. For this reason, functions with a large number of variables are

minimized using iterative heuristic methods such as the Espresso algorithm.

4.2. Definitions and reminders

Consider the following logic function:

F (A,B,C,D) =
∑

m(2, 3, 4, 5, 6, 7, 9, 11, 12, 13) [4.1]

The minimized form of the function F can be obtained using the Karnaugh map

shown in Figure 4.1(a). That is:

F (A,B,C,D) = A · C +B · C +A ·B ·D [4.2]

Digital Electronics 1: Combinational Logic Circuits, First Edition. Tertulien Ndjountche.
© ISTE Ltd 2016. Published by ISTE Ltd and John Wiley & Sons, Inc.
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1 1 0 0

0 1 1 1

1 00 1

1 1 0 1

1 1 0 0

0 1 1 1

(a) (b)

AB

CD

C

00 01 11 10

B

A

00

Figure 4.1. Karnaugh map for F (A,B,C,D)

4.2.1. Definitions

Any single logic state 1 or group of 1s that can be combined on a Karnaugh map for

a logic function represents a term (or product of variables) that is called an implicant.

In general, for a logic function F of n variables, a minterm mi is an implicant if,

for all combination of logic levels of the n variables for which mi takes the logic state

1, F is also at logic state 1.

A prime implicant for a logic function is a term that cannot be combined with

another term to eliminate a variable.

A prime implicant is said to be essential if it is the only one to cover (or include)

one or more minterms.

4.2.2. Minimization principle of a logic function

The objective of minimizing a logic function is to determine the smallest number

of prime implicants that, together, cover all the minterms for this function. The

minimized form of a logic function contains all the essential prime implicants.

The prime implicants and the essential prime implicants for a logic function can

be determined from a Karnaugh map. A single 1 represents a prime implicant if there

is no other 1 neighboring it. Two neighboring 1s represent a prime implicant if they

cannot be contained in a group of four 1s, four neighboring 1s form a prime implicant

if they cannot be included in a group of eight 1s and so on.

In the specific case of the function that is defined by equation [4.1], the Karnaugh

map shown in Figure 4.1(b) can be used to obtain the following prime implicants:

A · C, B · C, A ·B ·D, A ·B, A · C ·D and B · C ·D.
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The essential prime implicants are A · C and B · C.

In general, as each minterm is covered by at least one of the prime implicants, a

logic function is equal to the sum of its prime implicants. Thus, the function F can be

expressed in the form:

F (A,B,C,D) = A ·B +A · C +B · C +A ·B ·D +A · C ·D +B · C ·D [4.3]

Equation [4.3] does not have a minimal number of terms and it is, consequently,

not the minimized sum-of-products form. However, each of its terms has a minimum

number of variables.

4.3. Karnaugh maps

The use of a Karnaugh map can be extended to logic functions of more than four

variables. However, in practice, the manipulation of a Karnaugh map only proves to

be easy for up to six variables.

To determine the minimized sum-of-products or product-of-sums form for a given

logic function using a Karnaugh map, it is necessary to:

1) express the function in the form of the sum of its minterms or maxterms;

2) place a 1 (or 0) in the appropriate cell for each minterm (or maxterm);

3) cover all the 1s (or 0s) using a minimum number of the largest possible loops

that encompass 2p cells, p being an integer, while also ensuring that each 1 (or 0) is

part of at least one loop. It is preferable to identify the possible loops by beginning

with the cells that can be grouped in only one way;

4) form the simplified expression for the logic function by summing (or

multiplying) the terms obtained for the different loops. It must be noted that the term

associated with a loop enclosing 2p cells is obtained by eliminating the p variables

that change logic state.

4.3.1. Function of five variables

In the case of a logic function of five variables, the Karnaugh map consists of 32
(or 25) cells bearing the numbers from 0 to 31.

The direct approach to constructing a Karnaugh map consists of dividing the

variables into two groups of terms that are ordered horizontally and vertically

according to reflected binary code (or Gray code) to mark each cell. The five-variable

Karnaugh map obtained in this manner has two symmetrical axes, as shown in
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Figure 4.2. The first column and the eighth column are adjacent as are the second and

seventh columns, the third and sixth columns, and the fourth and fifth columns.
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Figure 4.2. Five-variable Karnaugh map: symmetrical presentation

A five-variable Karnaugh map can also be constructed based on a layered

three-dimensional representation of two diagrams of four variables as given in

Figure 4.3(a), or based on a bidimensional and asymmetrical representation as

illustrated in Figure 4.3(b). In each case, we have one map for A (A = 0) and

another for A (A = 1). In general, two cells are adjacent when they correspond to

minterms that only differ by one variable. Thus, each cell in one of the maps is

adjacent to a corresponding cell on the other map.
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Figure 4.3. Five-variable Karnaugh map:
a) three-dimensional representation and b) bidimensional and

non-symmetrical representation

Figures 4.4 and 4.5 give some examples of loops, representing the following terms:

– loop 1: B · C ·D · E;
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– loop 2: B · C · E;

– loop 3: C · E.

  Loop 1
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  Loop 2
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Figure 4.4. Example of loops in the case of a symmetrical map

  Loop 1
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  Loop 2

 Loop 3

00

Figure 4.5. Example of loops in the case of an asymmetrical map

It should be noted that only the loops that encircle 2p cells, p being an integer, are

valid and each loop must be symmetrical with respect to any axis that divides it.

4.3.2. Function of six variables

A six-variable Karnaugh map has 64 (or 26) cells, numbered from 0 to 63. It can

be constructed either using Gray code to identify the cells, as shown in Figure 4.6,

or based on a stacked three-dimensional structure of four maps of four variables (see

Figure 4.7). In the latter case, in addition to the possibility of locating adjacent cells
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on a horizontal or vertical plane, or at the ends of the same plane, cells on upper and

lower planes can be considered adjacent.
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Figure 4.6. Six-variable Karnaugh map: symmetrical structure

4.3.3. Karnaugh map with entered variable

A Karnaugh map with an entered variable makes it possible to manipulate a logic

function that has more variables than in the map. It is constructed by entering, in

addition to 1 and 0, the variables in cells of a Karnaugh map. It is most useful in cases

where some variables appear less frequently in a given logic function.

By also entering variables in an n-variable Karnaugh map to represent a function of

N variables, each cell becomes the equivalent of a submap that can cover, for N > n,

2N−n possible minterms or maxterms.

The minimized sum-of-products (or product-of-sum forms) form of a logic

function can, thus, be determined as follows:

1) form the loops by grouping the entered variables of the same type or those

whose logic adjacencies can permit minimum cover and adjacent cells containing the

logic state 1 (or 0), or representations of don’t care states. Obtain the simplified term

for each loop, considering the 1s (or 0s) as indifferent states;
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2) form loops that encircle only adjacent cells containing the 1s (or 0s) that are

not covered or not completely covered and those representing don’t care states, if

any. Obtain the simplified term for each loop, by eliminating each variable that is

simultaneously complemented and non-complemented;

3) write the simplified equation for the logic function by summing (or by

multiplying) the terms obtained for all the loops.
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Figure 4.7. Six-variable Karnaugh map: stacked structure

EXAMPLE 4.1.– Let Z be a logic function of five variables characterized by the truth

table shown in Table 4.1, where x represents a don’t care state:

– express the function Z in the canonical sum-of-products form;

– determine the minimized form of the function Z.

According to the truth table, the logic function Z can be written as:

Z(A,B,C,D,E) = A ·B · C ·D · E +A ·B · C ·D(x+ E)

+A ·B · C ·D · E +A ·B · C(x+D + E) +A ·B · C
+A ·B · C · E [4.4]



210 Digital Electronics 1

A B C Z

0 0 0 D · E
0 0 1 D(x+ E)

0 1 0 D · E
0 1 1 0

1 0 0 x+D + E

1 0 1 1

1 1 0 E

1 1 1 0

Table 4.1. Truth table

Transforming this last expression so that only minterms can appear, we get:

Z(A,B,C,D,E) = A ·B · C ·D · E +A ·B · C ·D · E · x+
A ·B · C ·D · E(1 + x) +A ·B · C ·D · E+

A ·B · C ·D · E · x+A ·B · C ·D · E(1 + x)+

A ·B · C ·D · E(1 + x) +A ·B · C ·D · E(1 + x)+

A ·B · C ·D · E +A ·B · C ·D · E +A ·B · C ·D · E+

A ·B · C ·D · E +A ·B · C ·D · E +A ·B · C ·D · E

[4.5]

Finally, the function Z can be expressed in the following canonical form:

Z(A,B,C,D,E) =
∑

m(3, 5, 11, 17, 18, 19, 20, 21, 22, 23, 25, 27)

+
∑

x(4, 16) [4.6]

Figure 4.8(a) depicts the Karnaugh map constructed from the truth table of

function Z. Choosing x = 1 makes it possible to reduce the complexity of the terms

entered in the Karnaugh map as shown in Figure 4.8(b). Because

1 = D +D [4.7]

= (D +D)(E + E) = D · E +D · E +D · E +D · E [4.8]

and

E = (D +D)E = D · E +D · E [4.9]
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Figure 4.8. a) Karnaugh map with two entered variables (x being a
don’t care state); b) Karnaugh map when x =1

Loop 2 is assumed to encircle the term E, loop 3 encircles the term D and loop

4 the term D · E. It is, thus, necessary to cover the remaining terms by forming loop

1 that encircles the two adjacent 1s. The reduced term corresponding to each of the

loops is obtained as follows:

Loop 1 → A ·B
Loop 2 → A · C · E
Loop 3 → B · C ·D
Loop 4 → C ·D · E

In the minimized sum-of-products form, the function Z can then be written as:

Z(A,B,C,D,E) = A ·B +A · C · E +B · C ·D + C ·D · E [4.10]

Figure 4.9 depicts the Karnaugh map (x = 1) to determine the minimized product-

of-sums form. The terms obtained for the different loops are as follows:

Loop 1 → B + C

Loop 2 → B + E

Loop 3 → A+ C +D

Loop 4 → A+ C +D

Loop 5 → A+ C + E

Thus, the minimized product-of-sums form is given by:

Z(A,B,C,D,E) = (B+C)(B+E)(A+C +D)(A+C +D)(A+C +E)[4.11]
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Figure 4.9. Karnaugh map (x= 1) to determine the
minimized product-of-sums form

NOTE 4.1.– To simplify an incompletely defined function using a Karnaugh map with

entered variables, the don’t care state must be considered as an entered variable.

EXAMPLE 4.2.– Let us consider the following logic function Z of six variables:

Z(A,B,C,D,E, F ) =
∑

m(4, 6, 8, 9, 10, 11, 12, 13, 14, 15, 20, 22, 26, 27,

30, 31, 32, 33, 34, 35, 36, 38, 39, 52, 54, 56, 57, 60, 61)
[4.12]

Determine the minimized form for the function Z.

The first step consists of entering, in addition to the 1s, two variables (E and F)

in a Kanraugh map for four variables. We proceed by associating the combination of

minterms with the cells of the Karnaugh map as follows:

cell 1: m4 +m6 = A ·B · C ·D · F
cell 2: m8 +m9 +m10 +m11 = A ·B · C ·D
cell 3: m12 +m13 +m14 +m15 = A ·B · C ·D
cell 5: m20 +m22 = A ·B · C ·D · F
cell 6: m26 +m27 = A ·B · C ·D · E
cell 7: m30 +m31 = A ·B · C ·D · E
cell 8: m32 +m33 +m34 +m35 = A ·B · C ·D
cell 9: m36 +m38 +m39 = A ·B · C ·D(E + F )
cell 13: m52 +m54 = A ·B · C ·D · F
cell 14: m56 +m57 = A ·B · C ·D · E
cell 15: m60 +m61 = A ·B · C ·D · E
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We next encircle the adjacent cells containing 1s or the same variable to form loops

as illustrated in Figure 4.10. In this way, we can obtain a term of the following form

for each loop:

Loop 1 → A ·B · C
Loop 2 → A · C · E
Loop 3 → C ·D · F
Loop 4 → A ·B · C ·D
Loop 5 → A ·B · C · E
Loop 6 → A ·B · C · E
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Figure 4.10. Karnaugh map with two entered variables to
determine the minimized sum-of-products form

The function Z is thus expressed in the following minimized sum-of-products

form:

Z(A,B,C,D,E, F ) = A ·B · C +A · C · E + C ·D · F+

A ·B · C ·D +A ·B · C ·E +A ·B · C · E
[4.13]
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Figure 4.11. Karnaugh map with two entered variables to determine
the minimized product-of-sums forms

The minimized product-of-sums form can be determined based on the Karnaugh

map shown in Figure 4.11. Forming loops that can encircle the entered variables or

the 0s, we can obtain:

Loop 1 → A+B + C

Loop 2 → A+ C +D

Loop 3 → A+ C + E

Loop 4 → A+ C + F

Loop 5 → B + C +D

Loop 6 → B + C + F

Loop 7 → A+B + C + E

Loop 8 → C +D + E + F

Finally, the minimized product-of-sums form can be written as follows:

Z(A,B,C,D,E, F ) = (A+B + C)(A+ C +D)(A+ C + E)(A+ C + F )

(B + C +D)(B + C + F )(A+B + C + E)

(C +D + E + F )

[4.14]
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4.3.4. Applications

EXAMPLE 4.3.– Let us consider the following logic function of five variables:

Z(A,B,C,D,E) =
∑

m(0, 1, 4, 5, 6, 12, 14, 16, 20, 22, 25, 28, 30, 31) [4.15]

Determine the minimized sum-of-products form for the function Z.

Figure 4.12 depicts the Karnaugh map for the function Z. The loop encircling the

minterms 4, 6, 12, 14, 20, 22, 28 and 30 yields the term C ·E; the loop encircling the

minterms 0, 1, 4, and 5 yields A ·B ·D; the loop encircling the minterms 0, 4, 16 and

20 yields B ·D · E; the loop encircling the minterms 30 and 31 yields A ·B · C ·D;

and the loop encircling 25 yields A ·B · C ·D · E. Thus:

Z(A,B,C,D,E) = C ·E+A ·B ·D+B ·D ·E+A ·B ·C ·D+A ·B ·C ·D ·E[4.16]
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Figure 4.12. Karnaugh map

EXAMPLE 4.4.– A function of five variables is defined by:

Z(A,B,C,D,E) =
∑

m(3, 7, 11, 12, 13, 14, 15, 16, 18)

+
∑

x(24, 25, 26, 27, 28, 29, 30, 31) [4.17]

Determine the minimized sum-of-products for Z using a five-variable Karnaugh

map and choosing to enter a variable in a four-variable Karnaugh map.
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– grouping the adjacent cells of the five-variable Karnaugh map shown in

Figure 4.13(a), we can obtain the following different terms for the simplified

expression of Z:

Loop encircling cells 12, 13, 14, 15,

28, 29, 30, and 31
→ B · C

Loop encircling cells 16, 18, 24 and 26 → A · C · E
Loop encircling cells 3, 7, 11 and 15 → A ·D · E
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Figure 4.13. a) Five-variable Karnaugh map and
b) Karnaugh map with an entered variable

The minimal sum-of-products can then be written as:

Z(A,B,C,D,E) = B · C +A · C · E +A ·D · E [4.18]

– the function Z can be simplified by entering one of the variables in the four-

variable Karnaugh map. To fill up the Karnaugh map, the terms of the logic function

are associated with the cells in the following manner:

cell 1: m3 = A ·B · C ·D · E cell 3: m7 = A ·B · C ·D · E
cell 5: m3 = A ·B · C ·D · E cell 6: m12 +m13 = A ·B · C ·D
cell 7: m14 +m15 = A ·B · C ·D cell 8: m16 = A ·B · C ·D · E
cell 9: m18 = A ·B · C ·D · E
cell 12: d24 + d25 = A ·B · C ·D cell 13: d26 + d27 = A ·B · C ·D
cell 14: d28 + d29 = A ·B · C ·D cell 15: d30 + d31 = A ·B · C ·D
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The different loops obtained by grouping the cells in the map shown in

Figure 4.13(b) yield the following products:

Loop encircling cells 7, 6, 14 and 15 → B · C
Loop encircling cells 8, 9, 12 and 13 → A · C · E
Loop encircling cells 1, 3, 5 and 7 → A ·D · E

We can obtain the same expression as above for the function Z, that is:

Z(A,B,C,D,E) = B · C +A · C · E +A ·D · E [4.19]

EXAMPLE 4.5.– Using a six-variable Karnaugh map first and then entering two

variables in a four-variable Karnaugh map, simplify the following logic function:

Z(A,B,C,D,E, F ) =
∑

m(0, 2, 4, 6, 8, 10, 12, 14, 16, 20, 23, 32, 34, 36, 38,

40, 42, 44, 45, 46, 49, 51, 53, 54, 55, 57, 59, 60, 61, 62, 63)

[4.20]

– The Karnaugh map is filled in by inserting a 1 in each cell that corresponds to a

minterm of the logic function. The six-variable Karnaugh map for the logic function Z
is given in Figure 4.14. The cells in the map can be grouped in the following manner:

Loop encircling cells 0, 2, 4, 6, 8, 10, 12,

14, 32, 34, 36, 38, 40, 42, 44 and 46
→ B · F

Loop encircling cells 49, 51, 53, 55, 57,

59, 61 and 63
→ A ·B · F

Loop encircling cells 0, 4, 16 and 20 → A · C · E · F
Loop encircling cells 23 and 55 → B · C ·D · E · F
Loop encircling cells 38, 46, 54 and 62 → A ·D · E · F
Loop encircling cells 44, 45, 60 and 61 → A · C ·D · E

The simplified expression of Z is then given by:

Z(A,B,C,D,E, F ) = B · F +A ·B · F +A · C ·D ·E+

A ·D · E · F +A · C · E · F +B · C ·D · E · F
[4.21]
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– Minterms of the function Z are assigned to cells in the four-variable Karnaugh

map as follows:

cell 0: m0 +m2 = A ·B · C ·D · F
cell 1: m4 +m6 = A ·B · C ·D · F
cell 2: m8 +m10 = A ·B · C ·D · F
cell 3: m12 +m14 = A ·B · C ·D · F
cell 4: m16 = A ·B · C ·D · E · F
cell 5: m20 +m23 = A ·B · C ·D(E · F + E · F )
cell 8: m32 +m34 = A ·B · C ·D · F
cell 9: m36 +m38 = A ·B · C ·D · F
cell 10: m40 +m42 = A ·B · C ·D · F
cell 11: m44 +m45 +m46 = A ·B · C ·D(E + F )
cell 12: m49 +m51 = A ·B · C ·D · F
cell 13: m53 +m54 +m55 = A ·B · C ·D(E + F )
cell 14: m57 +m59 = A ·B · C ·D · F
cell 15: m60 +m61 +m62 +m63 = A ·B · C ·D
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Figure 4.14. Six-variable Karnaugh map
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The products obtained from the grouping carried out in the Karnaugh map shown

in Figure 4.15 are written as follows:

Loop 1 → B · F
Loop 2 → A ·B · F
Loop 3 → A · C · E · F
Loop 4 → B · C ·D · E · F
Loop 5 → A ·D · E · F
Loop 6 → A · C ·D · E
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Figure 4.15. Karnaugh map with entered variables

The elimination of the variables permitted by loops 3, 4 and 5 are explained by the

fact that:

F = (E + E)F = E · F + E · F [4.22]

and

E + F = (E + F )(F + F ) = F + E · F + E · F [4.23]

As before, we obtain the simplified equation for the function Z that is equal to:

Z(A,B,C,D,E, F ) = B · F +A ·B · F +A · C ·D ·E+

A ·D · E · F +A · C · E · F +B · C ·D · E · F
[4.24]
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4.3.5. Representation based on the XOR and AND operators

For some logic functions, it may be necessary to use representation based on the

XOR and AND gates instead of using sum-of-products representations. This is

especially the case if the objective is to minimize the total number of logic gates and

the interconnect complexity.

The Karnaugh map depicted in Figure 4.16 gives a representation for each of the

three logic functions used as examples. Three types of loops can be identified on the

map, including minterms that are diagonal, one position apart from each other, or

adjacent. The logic expressions that can be associated with the different loops can be

written as follows:

– loop 1: F1 = A ·B · C ·D ·X +A ·B · C ·D ·X = A ·D ·X(B ⊕ C);

– loop 2: F2 = A ·B · C ·D · Y +A ·B · C ·D · Y = (A⊕B)C ·D · Y ;

– loop 3: F3 = A ·B · C ·D · Z +A ·B · C ·D · Z = A ·B ·D(C ⊕ Z).

Group 1

XY YZ

Z X

AB

CD

C

00 01 11 10

B

A

D

00

01

11

10

Group 2

Group 3

Figure 4.16. Karnaugh map with entered variables

We can see that each expression is made more compact using the XOR logic

function.

4.4. Systematic methods for simplification

The Karnaugh method is appropriate for the simplification of logic functions with

a small number of variables. As the number of variables increases, systematic
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procedures or algorithms are used for simplification. The implementation of these

algorithms takes place in two steps. The first step is the determination of the prime

implicants. The second step consists of constituting the set of terms that make up

each minimized logic expression.

4.4.1. Determination of prime implicants

Among the methods that are commonly employed to determine the prime

implicants of a logic function are the Quine–McCluskey method and the iterated

consensus method.

4.4.1.1. Quine–McCluskey method

In order to determine all the prime implicants of a logic function, all the minterms

must be compared and combined two by two so as to eliminate those that are not

necessary to cover the function.

To reduce the number of comparisons, the minterms of the canonical

decomposition are classified based on the number of 1s that appear in the

representation, before they are inscribed in the first column of a table.

Each minterm of the group k is logically combined with each minterm of group

k + 1 using the logic identity X · Y + X · Y = Y . When a single variable can be

eliminated, the result is consigned to the second-column group whose number is equal

to the number of 1s it possesses.

With the help of the � symbol the two terms in question can be identified to show

that they can no longer be included in the sum-of-products expression.

If a term has already been obtained, it is no longer reinscribed in the table. On the

contrary, using the � symbol identifies the two terms that have been combined.

In the representation of a term, the - symbol replaces the eliminated variable.

As before, we then proceed with the combination of the terms in groups k and

k + 1 in the second column. However, only those terms that have the - symbol in the

same position can be combined.

If necessary, the operation of combining the terms of the groups k and k + 1 can

be repeated for the next column until it is no longer possible to combine terms.

The terms that can no longer be combined and that are represented using the �
symbols are the prime implicants.
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NOTE 4.2.– Only those terms that belong to two contiguous groups or that are

differentiated by a single and identical variable can be combined.

It is not necessary to combine terms that belong to two non-contiguous groups as

these are differentiated by at least two variables. For the same reason, we do not try to

combine terms in the same group.

In the example of the logic function:

F (A,B,C,D) =
∑

m(2, 3, 4, 5, 6, 7, 9, 11, 12, 13) [4.25]

the steps to determine the essential prime implicants are given in Table 4.2. The

addition operations required to obtain the different terms are as follows:

t1 = m2 +m3 t2 = m2 +m6 t3 = m4 +m5 t4 = m4 +m6

t5 = m4 +m12 t6 = m3 +m7 t7 = m3 +m11 t8 = m5 +m7

t9 = m5 +m13 t10 = m6 +m7 t11 = m9 +m11 t12 = m9 +m13

t13 = m12 +m13 t14 = t1 + t10 = t2 + t6

t15 = t3 + t10 = t4 + t8 t16 = t3 + t13 = t5 + t9

Column 1 Column 2 Column 3

Group 1 m2 : 0010 � t1 : 001- �
m4 : 0100 � t2 : 0-10 �

t3 : 010- �
t4 : 01-0 �
t5 : -100 �

Group 2 m3 : 0011 � t6 : 0-11 � t14 : 0-1- �

m5 : 0101 � t7 : -011 � t15 : 01- - �

m6 : 0110 � t8 : 01-1 � t16 : -10- �

m9 : 1001 � t9 : -101 �
m12 : 1100 � t10 : 011- �

t11 : 10-1 �

t12 : 1-01 �

t13 : 110- �

Group 3 m7 : 0111 �
m11 : 1011 �
m13 : 1101 �

Table 4.2. Table to determine prime implicants
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4.4.1.2. Iterated consensus method

The iterated consensus method is another technique that can be used to determine

the prime implicants of a logic function. It makes use of the consensus of terms, which

translates into the logic expressions: X · Y +X ·Z + Y ·Z = X · Y +X ·Z and the

absorption law, X +XY = X , to suppress the redundant terms.

For two logic expressions, we can have a consensus term, null consensus or no

consensus.

EXAMPLE 4.6.– Determine the nature of consensus for the following expressions:

– A · C and B ·D have no consensus;

– A ·B · C and A · C ·D have null consensus;

– A ·B · C and A ·D have B · C ·D exhibit a consensus term.

The consensus theorem can be applied to any sum-of-products form (canonical or

reduced) of a logic function.

To determine the prime implicants of a logic function, a list of its terms is first

established. The possible consensus are then singled out by considering the terms two

by two.

There is a consensus between two terms, tp and tq , with respect to one of the

variables if this variable appears in one of the terms while its complement appears

in the other term. The consensus term, C(tq, tp), is then equal to the product of the

factors of tp and tq other than this variable and its complement.

A consensus term is added to the list of terms if it is not identical to any term that

already appears on the list or it is not included in a term that is already on the list.

With the addition of each consensus term we try to reduce the number of terms in

the list by eliminating all terms that are included in other terms.

This process is repeated till no new consensus can be obtained. The terms that

remain on the list are the prime implicants.

Determine the prime implicants of the following logic function:

F (A,B,C,D) =
∑

m(2, 3, 4, 5, 6, 7, 9, 11, 12, 13) [4.26]
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Using the property X · Y +X · Y = X to group the terms, we obtain:

F (A,B,C,D) = A ·B · C ·D +A ·B · C ·D +A ·B · C ·D
+A ·B · C ·D +A ·B · C ·D +A ·B · C ·D
+A ·B · C ·D +A ·B · C ·D +A ·B · C ·D
+A ·B · C ·D [4.27]

= A ·B · C +A ·B +A ·B ·D +A ·B · C [4.28]

We can, thus, choose to begin looking for prime implicants with the terms A·B ·C,

A ·B, A ·B ·D and A ·B · C. All the consensuses used are given in Table 4.3.

�����t1 : A ·B · C
t2 : A ·B C(t2, t1) (Add t5, suppress t1)

t3 : A ·B ·D C(t3, t2)�����t4 : A ·B · C C(t4, t2) (Add t6, suppress t4)

t5 : A · C C(t5, t2); C(t5, t3) (Add t7)

t6 : B · C C(t6, t2); C(t6, t3) (Add t8); C(t6, t5) = t2

t7 : B · C ·D C(t7, t2) ⊂ t5; C(t7, t3); C(t7, t5); C(t7, t6)

t8 : A · C ·D C(t8, t2) ⊂ t6; C(t8, t3); C(t8, t5); C(t8, t6); C(t8, t7) = t3

Table 4.3. Table to determine the prime implicants
using the consensus theorem

To simplify the iterated consensus method, we can adopt the digital form of

representing terms in the logic function to be simplified. A complemented variable is

represented by 0, a non-complemented variable is represented by 1 and a missing

variable is represented by a hyphen (-). Consensus can exist between two terms when

a variable is represented by 0 in one term and 1 in the other. In the consensus term, a

given variable is represented by 1 if it is represented by 1 in one of the terms and

either 1 or - in the other; it is represented by 0 if it is represented by 0 in one of the

terms and either 0 or - in the other; and it is represented by - if it is represented by 0
in one term and 1 in the other or if it is represented by - in both terms.

4.4.2. Finding the constitutive terms of a minimal expression

Finding the minimum number of prime implicants that represents a logic function

is often formulated as a minimal cover problem. For a single output logic function,

this can lead to a two-input table. The prime implicants are entered in the rows and the

minterms for the logic function to be simplified are entered in the columns. A cross is

placed at the intersection of a row and a column to indicate that a minterm is covered

by a prime implicant.
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The objective is to cover all the minterms of the logic function by using a minimum

set of prime implicants. To achieve this, first a single cross serves as the identifying

mark of the essential prime implicants, which must necessarily be a part of the minimal

expression and which are associated with each column. Each essential prime implicant

represents a single choice for covering a given minterm. Once the essential prime

implicants are determined, it only remains to choose, from the other prime implicants,

those that allow for the implementation of a minimal cover of the remaining minterms.

4.4.2.1. Graphical method for the reduction of a prime implicant chart

The dominance relation between prime implicants and the dominance relations

between minterms can be used to reduce the prime implicant chart.

It is necessary to introduce some definitions before implementing the graphical

methods for the reduction of a prime implicant chart:

– two identical rows (columns) are said to be interchangeable;

– let i and j be two rows in a prime implicant chart. The row i can be said

to dominate j if the essential prime implicant associated with i covers at least one

minterm more than the minterms covered by the essential prime implicants associated

with j.

When the row i dominates j, there exists a minimized sum-of-products form that

does not include the essential prime implicant associated with j. The dominated line

can, thus, be suppressed;

– let k and l be two columns in a prime implicant chart. The column k is said to

dominate l if the minterm associated with k is covered by at least one essential prime

implicant more than the essential prime implicants covering the minterm associated

with l.

When the column k dominates l, an essential implicant covering the minterm

associated with l also covers the minterm associated with k. We can, thus, suppress

the dominant column.

The implementation of the graphical method for the reduction of a prime implicant

chart is carried out as follows:

1) find the essential prime implicants and eliminate them;

2) identify the dominance relations between the prime implicants (rows) and

eliminate the dominated rows;

3) identify the dominance relations between the minterms (columns) and eliminate

the dominant columns.
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Repeat steps 1, 2 and 3, until there are no more possibilities for elimination: if

there are no more rows and columns, a minimal solution has been found; if not, the

prime implicant chart is said to be cyclic.

NOTE 4.3.– The reduction of the prime implicant chart following the rules given

above is nothing but the graphical translation of the absorption theorems. The

solution obtained depends on the choice of the dominance relations. The graphical

method for the reduction of a prime implicant chart can only be easily applied to

cases where the possible choices for the dominance relations are limited.

EXAMPLE 4.7.– Minimize the following logic function:

F (A,B,C,D) =
∑

m(2, 3, 4, 5, 6, 7, 9, 11, 12, 13) [4.29]

The prime implicant chart in Table 4.4 can be constructed by applying the

graphical method to the minimization of the function F . Here, a cross within a circle

is placed at the intersection of a row and a column associated with a single prime

implicant. We have two essential prime implicants that cover all the minterms except

for A · B · C ·D and A · B · C ·D. To cover these minterms, we choose A · B ·D,

instead of the prime implicants A · C · D and B · C · D. As a result, the single

minimized form of F can be obtained as follows:

F (A,B,C,D) = A · C +B · C +A ·B ·D [4.30]

B C D

2 3 4 5 6 7 9 11 12 13

A B C D A B C D A B C D A B C D A B C D A B C D A B C D A B C DA B C DA B C D

A B

A C

B C

A B D

A C D

Table 4.4. Prime implicant chart for F

When a logic function has more than one minimized form, the choice of the

non-essential prime implicants may not be evident.

NOTE 4.4.– There are logic functions that do not have essential prime implicants.

Each column of the prime implicant chart for such a function contains at least two

crosses. The prime implicant chart is then said to be cyclic.
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In the case of the logic functions [4.31] and [4.34], using the Karnaugh maps

shown in Figures 4.17 and 4.18 we obtain two minimized sum-of-products forms as

follows:

F (A,B,C,D) =
∑

m(0, 4, 6, 8, 10, 14) [4.31]

= A ·B ·D +A · C ·D +B · C ·D [4.32]

= A ·B ·D +A · C ·D +B · C ·D [4.33]

and:

F (A,B,C,D) =
∑

m(0, 1, 4, 5, 6, 7, 8, 9, 10, 11, 14, 15) [4.34]

= A ·B +A · C +B · C [4.35]

= A ·B +A · C +B · C [4.36]

We have six prime implicants for each of these functions but no essential prime

implicant.

In general, it is always possible to find a function of n variables, whose Karnaugh

map includes the cells encompassing 2n−1 minterms and which has a cyclic prime

implicant chart.

4.4.2.2. Petrick’s method

Petrick’s method is a technique that can be used to determine, in a systematic

manner, all the minimal sum-of-products form from the prime implicant chart of a

logic function. It is especially useful when there are several solutions to be determined

and the number of prime implicants is high.
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Figure 4.17. Karnaugh map for the logic function
F (A,B,C,D) =

∑
m(0, 4, 6, 8, 10, 14)
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Figure 4.18. Karnaugh map for the logic function
F (A,B,C,D) =

∑
m(0, 1, 4, 5, 6, 7, 8, 9, 10, 11, 14, 15)

The implementation of Petrick’s method uses the following steps:

1) reduce the prime implicant chart by eliminating the rows and columns

associated with essential prime implicants;

2) attribute the denominations P1, P2, P3, · · · , to different rows in the reduced

prime implicant chart;

3) form a logic function P that is true when all the columns are covered. The

function P is equal to a product of sums, where each sum is in the form (Pi0 + Pi1 +
· · · ), with Pi0, Pi1 being related to the rows that cover the column i;

4) express P as a minimum sum of products by expanding and reducing the terms

of the multiplication using the logic identity X +XY = X;

5) each term of the result represents a solution, that is, a set of rows that covers

all the minterms of the chart. To determine the solutions with lowest hardware

implementation costs, it is necessary to find terms that contain a minimum number

of variables. Each of these terms represents a solution having a minimum number of

prime implicants;

6) for each of the terms obtained in the previous step, count the number of

variables that form each prime implicant and determine the total number of variables.

Choose the term or terms that have the minimum total number of variables and write

the corresponding sum of prime implicants.

EXAMPLE 4.8.– Determine all the minimized sum-of-products forms for the

following logic function:

F (A,B,C,D) =
∑

m(0, 2, 6, 7, 8, 9, 10, 13, 15) [4.37]
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Table 4.5 gives the following seven prime implicants:

B ·D, A ·B ·D, B · C ·D, A · C ·D, A ·B · C, A ·B · C and A · C ·D.

Column 1 Column 2 Column 3

Group 0 m0 : 0000 � t1 : 00-0 � t11 : -0-0 �

t2 : -000 �

Group 1 m2 : 0010 � t3 : 0-10 �

m8 : 1000 � t4 : -010 �
t5 : 100- �

t6 : 10-0 �

Group 2 m6 : 0110 � t7 : 011- �

m9 : 1001 � t8 : 1-01 �

m10 : 1010 �

Group 3 m7 : 0111 � t9 : -111 �

m13 : 1101 � t10 : 11-1 �

Group 4 m15 : 1111 �

Table 4.5. Table for the determination of prime implicants

Table 4.6 gives the complete and reduced form of the prime implicant chart for

the logic function F . As can be observed in the complete Table 4.6(a), B · D is the

only essential prime implicant. The reduced form of the prime implicant chart shown

in Table 4.6(b) is useful for the implementation of Petrick’s method. To cover all the

minterms of F , the following logic function must be true:

P = (P1 + P3)(P3 + P5)(P2 + P4)(P4 + P6)(P5 + P6) [4.38]

Using the logic identity (X + Y )(X + Z) = X + Y · Z, we can write:

P = (P3 + P1 · P5)(P4 + P2 · P6)(P5 + P6) [4.39]

Elaborating the function P , we obtain:

P = P1 · P4 · P5 + P2 · P3 · P6 + P3 · P4 · P5 + P3 · P4 · P6+

P1 · P2 · P5 · P6 + P1 · P4 · P5 · P6 + P2 · P3 · P5 · P6

[4.40]
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Table 4.6. Prime implicant chart for F:
a) complete form and b) reduced form

Because X +X · Y = X , we have:

P = P1 · P4 · P5 + P2 · P3 · P6 + P3 · P4 · P5 + P3 · P4 · P6

+P1 · P2 · P5 · P6 [4.41]

For the function P to be true, it is sufficient that one of its terms be true. There

are, thus, five possible solutions but we can only retain those that exhibit a minimum

number of rows, namely, P1 and P4 and P5, or P2 and P3 and P6, or P3 and P4 and

P5, or P3 and P4 and P6. To express the minimal forms of F , we must combine these

solutions with the only essential prime implicant.

The function F , therefore, has four minimal forms, which are:

F (A,B,C,D) = B ·D +A · C ·D +B · C ·D +A · C ·D [4.42]

= B ·D +A ·B · C +B · C ·D +A · C ·D [4.43]

= B ·D +A ·B · C +A ·B ·D +A · C ·D [4.44]

= B ·D +A ·B · C +A ·B ·D +A ·B · C [4.45]

EXAMPLE 4.9.– Find all the minimized sum-of-products forms of the following logic

function:

F (A,B,C,D) =
∑

m(0, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13) [4.46]

The list of prime implicants can be deduced from Table 4.7 as follows:

A ·D, B ·D, C ·D, A · C, B · C, A ·B, B · C, A ·B and A · C.
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Column 1 Column 2 Column 3

Group 0 m0 : 0000 � t1 : 00-0 � t22 : 0- -0 �

t2 : 0-00 � t23 : -0-0 �

t3 : -000 � t24 : - -00 �

Group 1 m2 : 0010 � t4 : 001- � t25 : 0-1- �

m4 : 0100 � t5 : 0-10 � t26 : -01- �

m8 : 1000 � t6 : -010 � t27 : 01- - �

t7 : 010- � t28 : -10- �

t8 : 01-0 � t29 : 10- - �

t9 : -100 � t30 : 1-0- �

t10 : 100- �
t11 : 10-0 �
t12 : 1-00 �

Group 2 m3 : 0011 � t13 : 0-11 �
m5 : 0101 � t14 : -011 �
m6 : 0110 � t15 : 01-1 �
m9 : 1001 � t16 : -101 �
m10 : 1010 � t17 : 011- �
m12 : 1100 � t18 : 10-1 �

t19 : 1-01 �
t20 : 101- �
t21 : 110- �

Group 3 m7 : 0111 �
m11 : 1011 �
m13 : 1101 �

Table 4.7. Table for the determination of prime implicants

The list of prime implicants can be deduced from Table 4.7 as follows:

A ·D, B ·D, C ·D, A · C, B · C, A ·B, B · C, A ·B and A · C.

Table 4.8 gives the prime implicant chart for the function F . We can observe that

each minterm is covered by at least two terms and, consequently, there is no essential

prime implicant.

As dominance relations can be established between the essential implicants or

between the minterms, the following step consists of suppressing the rows associated

with dominated essential implicants and columns corresponding to dominant

minterms. Thus, column 2 dominates 3, 4 dominates 5, 6 dominates 7, 8 dominates 9,

10 dominates 11 and 12 dominates 13. As a result, columns 2, 4, 6, 8, 10 and 12 can

be eliminated as illustrated in Table 4.9(a). Essential implicants, 0- -0, -0-0 and - -00,
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are interchangeable. We can, thus, eliminate two of them. Choosing to retain the term

0- -0, the prime implicant chart reduces to that in Table 4.9(b) and the term 0- -0

becomes a secondary essential prime implicant, the elimination of which leads to the

construction in Table 4.9(c).
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Table 4.8. Prime implicant chart for F
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Table 4.9. Reduced forms of the prime implicant charts for F
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Using Petrick’s methods, the overlap equation can be put into the following form:

P = (P1 + P2)(P3 + P4)(P1 + P3)(P5 + P6)(P2 + P5)(P4 + P6) [4.47]

Expanding P , taking into account the logic identity:

(X + Y )(X + Z) = X + Y · Z

we have:

P = P1P4P5 + P1P2P3P6 + P1P3P5P6 + P1P2P4P6+

P2P3P6 + P2P3P4P5 + P2P3P5P6 + P2P3P4P6 [4.48]

Each term in the sum is a possible solution and we thus have eight possible

solutions. However, only the two simplest terms, P1P4P5 and P2P3P6, can be

retained to implement the minimal forms of F . The term P1P4P5 is made up of

A ·C, B ·C and A ·B, while P2P3P6 consists of B ·C, A ·B and A ·C. Finally, we

can consider the following minimal forms:

F = A ·D +A · C +B · C +A ·B [4.49]

= A ·D +B · C +A ·B +A · C [4.50]

Choosing either -0-0 or - -00, instead of 0- -0, we obtain:

F = B ·D +A · C +B · C +A ·B [4.51]

= B ·D +B · C +A ·B +A · C [4.52]

or:

F = C ·D +A · C +B · C +A ·B [4.53]

= C ·D +B · C +A ·B +A · C [4.54]

There are, thus, six minimal forms for the logic function F .

EXAMPLE 4.10.– Determine all the minimized sum-of-products forms for the

following logic function:

F (A,B,C,D,E) =
∑

m(5, 7, 8, 9, 10, 11, 13, 15, 21, 23, 26, 28, 29, 30, 31) [4.55]

The prime implicants of the logic function F are:

-1010, 11-10, 010- -, 01- -1, 111- - and - -1-1
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or:

B · C ·D · E, A ·B ·D · E, A ·B · C, A ·B · E, A ·B · C and C · E.

Column 1 Column 2 Column 3 Column 4

Group 1 m8 : 01000 � t1 : 0100- � t24 : 010- - �

t2 : 010-0 �

Group 2 m5 : 00101 � t3 : 001-1 � t25 : 0-1-1 � t33 : - -1-1 �

m9 : 01001 � t4 : 0-101 � t26 : -01-1 �
m10 : 01010 � t5 : -0101 � t27 : - -101 �

t6 : 010-1 � t28 : 01- -1 �

t7 : 01-01 �
t8 : 0101- �
t9 : -1010 �

Group 3 m7 : 00111 � t10 : 0-111 � t29 : - -111 �
m11 : 01011 � t11 : -0111 � t30 : -11-1 �
m13 : 01101 � t12 : 01-11 � t31 : 1-1-1 �
m21 : 10101 � t13 : 011-1 � t32 : 111- - �

m26 : 11010 � t14 : -1101 �
m28 : 11100 � t15 : 101-1 �

t16 : 1-101 �
t17 : 11-10 �

t18 : 1110- �
t19 : 111-0 �

Group 4 m15 : 01111 � t20 : -1111 �
m23 : 10111 � t21 : 1-111 �
m29 : 11101 � t22 : 111-1 �
m30 : 11110 � t23 : 1111- �

Group 5 m31 : 11111 �

Table 4.10. Table for the determination of prime implicants

(28,29,30,31)

5 7 8 9 10 11 13 15 21 23 26 30 3128 29

−1010

11−10

010− −

01− −1

111− −

− −1−1(5,7,13,15,21,23,29,31)

(9,11,13,15)

(26,30)

(10,26)

(8,9,10,11)

Table 4.11. Prime implicant chart for F
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The prime implicant chart for the logic function F (A,B,C,D,E) is represented

in Table 4.11. The minterm m8 is only covered by the term 010- -; the minterm m28

is only covered by 111- -; and the minterms m5, m7, m21, and m23 are covered only

by - -1-1. Thus, the terms 010- - (A · B · C), 111- - (A · B · C) and - -1-1 (C · E)
are the essential prime implicants. As the essential prime implicants are part of any

minimized form of a logic function, it only remains to cover the minterm m26. This

can be done by using either -1010 (B · C ·D · E) or 11-10 (A · B ·D · E). We thus

obtain the following two solutions:

F = A ·B · C + C · E +A ·B · C +B · C ·D · E [4.56]

= A ·B · C + C · E +A ·B · C +A ·B ·D ·E [4.57]

4.4.3. Quine–McCluskey technique: simplification of incompletely
defined functions

Consider the following incompletely defined logic function:

F (A,B,C,D) =
∑

m(1, 7, 9, 10, 11, 13) +
∑

d(5, 8, 15) [4.58]

To determine the prime implicants for such a function, we construct a table, where

the incompletely defined terms are treated in the same way as minterms.

Table 4.12 gives the following prime implicants: A ·B, A ·D, B ·D and C ·D.

In the prime implicants chart in Table 4.13, we insert only the minterms and not

the incompletely defined terms. It can be deduced from the chart that A · B, B · D
and C ·D are the essential prime implicants of the function F . As all the minterms for

the function F are covered by the essential prime implicants, the minimized sum-of-

products can be written as follows:

F (A,B,C,D) = A ·B +B ·D + C ·D [4.59]

In the case of the simplification of an incompletely defined function using the

Quine–McCluskey method, the incompletely defined terms are taken into account only

for the process of determining the prime implicants and are not inserted in the prime

implicants chart.

4.4.4. Simplification of functions with multiple outputs

In general, the simplification of logic functions with multiple outputs consists of

minimizing several functions simultaneously. The hardware implementation cost
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function to be minimized has a bearing on several logic functions at the same time

and it is thus necessary to take into account the interdependence between the

different logic functions.

Column 1 Column 2 Column 3

Group 1 m1 : 0001 � t1 : 0-01 � t13 : - -01 �

m8 : 1000 � t2 : -001 � t14 : 10- - �

t3 : 100- �
t4 : 10-0 �

Group 2 m5 : 0101 � t5 : 01-1 � t15 : -1-1 �

m9 : 1001 � t6 : -101 � t16 : 1- -1 �

m10 : 1010 � t7 : 10-1 �
t8 : 1-01 �
t9 : 101- �

Group 3 m7 : 0111 � t10 : -111 �
m11 : 1011 � t11 : 1-11 �
m13 : 1101 � t12 : 11-1 �

Group 4 m15 : 1111 �

Table 4.12. Table for the determination of prime implicants

(9,11,13)

1 7 9 10 11 13

− −01

10− −

−1−1

1− −1

(1,9,11,13)

(9,10,11)

(7,13)

Table 4.13. Prime implicants chart for F

To establish the list of prime implicants in the case of functions with multiple

outputs, it is necessary to modify the Quine–McCluskey method or the iterated

consensus method to take into account the tag associated with each term. The number

of tag bits correspond to the number of functions. The logic state 1 (or 0) of a bit can

be used to identify whether a term belongs (or does not belong) to a given function.

The tag associated with the term resulting from the logic combination of two other

terms is obtained by multiplying their tags, bit by bit.
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Let us consider the following incompletely defined functions:

F (A,B,C,D) =
∑

m(1, 3, 4, 10, 11, 12, 14) +
∑

d(6, 7, 8, 9) [4.60]

G(A,B,C,D) =
∑

m(1, 2, 4, 10, 14) +
∑

d(5, 6, 9, 13) [4.61]

Assuming that these two logic functions characterize a 4-input and 2-output

system, determine their minimized sum-of-products equations.

The two methods used most often to determine the prime implicants of a logic

function are the following: the Quine–McCluskey method and the iterated consensus

algorithm.

4.4.4.1. Prime implicant determination using the Quine–McCluskey method

We construct a table in which we insert the minterms and the incompletely

defined terms grouped according to the number of 1s in their representation and a tag

indicating the function for which a term can be used.

Going through Table 4.14, we note that there are four prime implicants common

to both functions F and G, seven prime implicants associated only with F and three

prime implicants associated only with G.

4.4.4.2. Prime implicant determination using the iterated consensus method

To apply the consensus method, it is necessary to draw up a list of minterms for

each function as well as all the possible products of functions. A tag is then associated

with each minterm. The determination of the consensus term for each pair of minterms

makes it possible to either add a new term or suppress the terms that are included in

other terms. In the specific case of functions with multiple outputs, we also suppress

any new term whose tag is formed only of bits set to 0. The prime implicants are those

terms that remain in the table at the end of the process.

In Table 4.15, we have four prime implicants common to both functions F and G,

seven prime implicants associated only with F and three prime implicants associated

only with G.

4.4.4.3. Prime implicant chart

In general, in the case of simplification of functions with multiple outputs, the

prime implicant chart includes a section with prime implicants common to all

functions and a section for each group of prime implicants that only belong to a

single function.

Table 4.16 gives the prime implicants chart for the functions F , G and F · G. It

should be noted that the row associated with the term 011- is not selected for any
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function. This is explained by the fact that the essential prime implicant 011- belongs

uniquely to the incompletely defined terms. The function F has an essential prime

implicant, -0-1 (B ·D), exactly like the function G, whose essential prime implicant

is –10 (C ·D). Eliminating the rows associated with these essential prime implicants,

as well as the columns covered by them, we obtain the reduced form of the prime

implicants chart represented in Table 4.17. To complete the overlap of the logic

functions, we choose the prime implicant 1- -0 (A ·D), which covers three minterms

(10,12,14) of F , the prime implicant 01-0 (A · B ·D), which covers the minterm (4)

of F and G, and the prime implicant - -01 (C · D), which covers the minterm (1) of

G. The minimal forms of F and G are, thus, written as:

F (A,B,C,D) = A ·D +B ·D +A ·B ·D [4.62]

Column 1 F G Column 2 F G Column 3 F G

Group 1 m1 : 0001 1 1 � t1 : 00-1 1 0 � t21 : -0-1 1 0 �

m2 : 0010 0 1 � t2 : 0-01 0 1 � t22: - -01 0 1 �

m4 : 0100 1 1 � t3 : -001 1 1 � t23 :-0-1 1 0 �

m8 : 1000 1 0 � t4 : 0-10 0 1 � t24 :- -10 0 1 �

t5 : -010 0 1 � t25 :-1-0 1 0 �

t6 : 010- 0 1 � t26 :10- - 1 0 �

t7 : 01-0 1 1 � t27 :1- -0 1 0 �

t8 : -100 1 0 �
t9 : 100- 1 0 �
t10 : 10-0 1 0 �
t11 : 1-00 1 0 �

Group 2 m3 : 0011 1 0 � t12 : 0-11 1 0 �

m5 : 0101 0 1 � t13 : -011 1 0 �
m6 : 0110 1 1 � t14 : -101 0 1 �
m9 : 1001 1 1 � t15 : 011- 1 0 �

m10 : 1010 1 1 � t16 : -110 1 1 �

m12 : 1100 1 0 � t17 : 10-1 1 0 �
t18 : 1-01 0 1 �
t19 : 101- 10 �
t20 : 1-10 11 �

t21 : 11-0 10 �

Group 3 m7 : 0111 1 0 �
m11 : 1011 1 0 �
m13 : 1101 0 1 �
m14 : 1110 1 1 �

Table 4.14. Table for the determination of prime implicants
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F G
����m1 : 0001 1 1
����m2 : 0010 0 1
����m3 : 0011 1 0 C(m3,m1) (Add t1, Suppress m3)
����m4 : 0100 1 1 C(m5,m1) (Add t2, Suppress m5)
����m5 : 0101 0 1 C(m9,m1) (Add t3, Suppress m9 and m1)
����m6 : 0110 1 1 C(m6,m2) (Add t4, Suppress m2)
����m7 : 0111 1 0 C(m6,m4) (Add t5, Suppress m6 and m4)
����m8 : 1000 1 0 C(m10,m8) (Add t6, Suppress m8)
����m9 : 1001 1 1 C(m11,m10) (Add t7, Suppress m11)
����m10 : 1010 1 1 C(m14,m10) (Add t8, Suppress m14 and m10)
����m11 : 1011 1 0 C(t1,m7) (Add t9, Suppress m7)
����m12 : 1100 1 0 C(t5,m12) (Add t10, Suppress m12)
����m13 : 1101 0 1 C(t2,m13) (Add t11, Suppress m13)
����m14 : 1110 1 1 C(t7, t1) (Add t12)

���t1 : 00-1 1 0 C(t5, t2) (Add t13)
���t2 : 0-01 0 1 C(t6, t3) (Add t14)

t3 : -001 1 1 C(t7, t3) (Add t15)
���t4 : 0-10 0 1 C(t9, t3) (Add t16)

t5 : 01-0 1 1 C(t11, t3) (Add t17, Suppress t11, t2)
���t6 : 10-0 1 0 C(t12, t3) (Add t18, Suppress t16, t12, t1)

C(t13, t3) ⊂ t17���t7 : 101- 1 0 C(t8, t4) (Add t19, Suppress t4)

t8 : 1-10 1 1 C(t8, t5) (Add t20)

t9 : 0-11 1 0 C(t9, t5) (Add t21)

C(t17, t5) = t13����t10 : -100 1 0 C(t10, t6) (Add t22)
����t11 : -101 0 1 C(t15, t6) (Add t23, Suppress t15, t14, t7, t6)

C(t9, t7) ⊂ t18; C(t14, t7) = t23; C(t16, t7) ⊂ t18
C(t22, t7) = C(t14, t8) = C(t15, t8) = C(t18, t8) ⊂ t23����t12 : -011 1 0 C(t22, t8) (Add t24, Suppress t22)

C(t15, t9) = C(t23, t9) ⊂ t18; C(t14, t10) ⊂ t24; C(t21, t10) ⊂ t5
C(t23, t10) ⊂ t24; C(t19, t13) ⊂ t5; C(t16, t14) ⊂ C(t16, t15) ⊂ t3
C(t24, t15) = t23; C(t21, t16) = t9; C(t23, t16) = t18
C(t21, t18) = t9; C(t24, t18) = t23

t13 : 010- 0 1 C(t24, t21) (Add t25)
����t14 : 100- 1 0 C(t24, t5) (Add t26, Suppress t10, t25)
����t15 : 10-1 1 0
����t16 : 00-1 1 0

t17 : - -01 0 1

t18 : -0-1 1 0

t19 : - -10 0 1

t20 : -110 1 1

t21 : 011- 1 0
����t22 : 1-00 1 0

t23 : 10- - 1 0

t24 : 1- -0 1 0
����t25 : -110 1 0

t26 : -1-0 1 0

Table 4.15. Table for the determination of prime
implicants using the consensus method
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and

G(A,B,C,D) = C ·D + C ·D +A ·B ·D [4.63]

011−

11 12 14

F

1 3 1 2 10 14

G

4 10 4

F

F G

G

0−11(3)

−001

01−0

−110

1−10

(1)

(4)

(14)

(10)

1− −0

10− −(10)

(10,12,14)

010−(4)

−1−0(12,14)

−0−1(1,3,11)

− −10(2,10,14)

− −01(1)

Table 4.16. Prime implicant chart for the functions F , G and F ·G

(12,14)

12 14 1

GF

4 10 4

F G

G

F

− −01(1)

−001

01−0

−110

1−10

(1)

(4)

(14)

(10)

1− −0

10− −(10)

(10,12,14)

010−(4)

−1−0

Table 4.17. Reduced form of the prime implicant
chart for the functions F , G and F ·G
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4.5. Exercises

EXERCISE 4.1.– Karnaugh map with entered variables.

Determine the canonical and minimized sum-of-products forms for each of the

logic functions whose Karnaugh map is represented in Figure 4.19.
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Figure 4.19. Karnaugh maps

EXERCISE 4.2.– Karnaugh map with entered variables and incompletely defined logic

functions.

Determine the canonical and minimized sum-of-products forms for each of the

incompletely defined logic functions whose Karnaugh map is represented in

Figure 4.20.
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Figure 4.20. Karnaugh maps

EXERCISE 4.3.– Karnaugh maps with entered variables and logic functions in the

canonical form.
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Determine the minimized sum-of-products form for each of the following logic

functions:

a)

P (A,B,C,D,E) =
∑

m(1, 6, 7, 9, 13, 15, 16, 17, 18, 22, 23, 24, 25, 28, 29)

[4.64]

b)

Q(A,B,C,D,E) =
∑

m(2, 3, 6, 9, 10, 12, 13, 16, 17, 22, 24, 25, 26, 27, 29, 31)

[4.65]

c)

R(A,B,C,D,E, F ) =
∑

m(12, 13, 14, 15, 16, 17, 20, 21, 24, 25, 28,

29, 30, 31, 33, 35, 37, 39, 49, 50, 52, 53, 54, 55) [4.66]

d)

S(A,B,C,D,E, F ) =
∑

m(2, 3, 4, 5, 7, 12, 13, 14, 15,

25, 29, 30, 34, 35, 56, 57, 58, 60, 61, 63) [4.67]

EXERCISE 4.4.– Quine–McCluskey method.

Determine the minimized sum-of-products form for each of the following logic

functions using the Quine–McCluskey method:

a)

Z1(A,B,C,D,E) =
∑

m(0, 2, 3, 8, 10, 16, 17, 18, 19, 21, 24, 26) [4.68]

b)

Z2(A,B,C,D,E) =
∑

m(1, 14, 16, 18, 19, 22, 23, 24, 30)+∑
x(2, 3, 5, 6, 7, 17, 25, 26) [4.69]
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c)

Z3(A,B,C,D,E, F ) =
∑

m(10, 18, 26, 40, 41, 42, 48, 49, 50,

52, 53, 56, 57, 60, 61) [4.70]

d)

Z4(A,B,C,D,E, F ) =
∑

m(0, 1, 2, 3, 16, 17, 18, 19, 29, 44, 53, 60)+∑
x(12, 21, 28)

[4.71]

4.6. Solutions

SOLUTION 4.1.– Karnaugh map with inscribed variables.

a) Based on the Karnaugh map, the logic function Z can be obtained as follows:

Z(A,B,C,D,E) = A ·B · C ·D · E +A ·B · C ·D · E +A ·B · C ·D+

A ·B · C ·D +A ·B · C ·D +A ·B · C ·D+

A ·B · C ·D +A ·B · C ·D · E +A ·B · C ·D · E
[4.72]

Using the complement law to bring out only the minterms in the expression of Z,

we obtain:

Z(A,B,C,D,E) = A ·B · C ·D · E +A ·B · C ·D · E+

A ·B · C ·D · E +A ·B · C ·D · E +A ·B · C ·D · E+

A ·B · C ·D · E +A ·B · C ·D · E +A ·B · C ·D · E+

A ·B · C ·D · E +A ·B · C ·D · E +A ·B · C ·D · E+

A ·B · C ·D · E +A ·B · C ·D · E +A ·B · C ·D · E
[4.73]

Replacing each minterm with the decimal value corresponding to the binary

combination of its variables, we have:

Z(A,B,C,D,E) =
∑

m(1, 3, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 24) [4.74]

The Karnaugh map shown in Figure 4.21(a) can be used to arrive at the following

minimized sum-of-products expression:

Z(A,B,C,D,E) = A ·B +B · C · E +A · C ·D · E [4.75]
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Figure 4.21. Karnaugh map

b) Based on the Karnaugh map, the function Z can be written as follows:

Z(A,B,C,D,E) = A ·B · C ·D +A ·B · C ·D +A ·B · C ·D+

A ·B · C ·D +A ·B · C ·D(E + F ) +A ·B · C ·D · E · F+

A ·B · C ·D · F +A ·B · C ·D · F +A ·B · C ·D · F
[4.76]

The logic function Z can then be expressed in the following form:

Z(A,B,C,D,E, F ) = A ·B · C ·D · E · F +A ·B · C ·D · E · F+

A ·B · C ·D · E · F +A ·B · C ·D · E · F +A ·B · C ·D · E · F+

A ·B · C ·D · E · F +A ·B · C ·D · E · F +A ·B · C ·D · E · F+

A ·B · C ·D · E · F +A ·B · C ·D · E · F +A ·B · C ·D · E · F+

A ·B · C ·D · E · F +A ·B · C ·D · E · F +A ·B · C ·D · E · F+

A ·B · C ·D · E · F +A ·B · C ·D · E · F +A ·B · C ·D · E · F+

A ·B · C ·D · E · F +A ·B · C ·D · E · F +A ·B · C ·D · E · F+

A ·B · C ·D · E · F +A ·B · C ·D · E · F +A ·B · C ·D · E · F+

A ·B · C ·D · E · F +A ·B · C ·D · E · F

[4.77]

In decimal form, the canonical equation is given by:

Z(A,B,C,D,E) =
∑

m(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,

13, 14, 15, 25, 28, 29, 31, 32, 34, 36, 38, 63)
[4.78]
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The simplification of Z using the Karnaugh map, as shown in Figure 4.21(b),

yields:

Z(A,B,C,D,E) = A ·B +B · C · F +A · C ·D · E +A · C · E · F
+B · C ·D · E · F [4.79]

SOLUTION 4.2.– Karnaugh map with entered variables and incompletely defined

logic functions.

a) The expression of the function Z obtained from the Karnaugh map is given by:

Z(A,B,C,D,E) = A ·B · C ·D(x + E) +A ·B · C ·D(x + E)+

A ·B · C ·D +A ·B · C ·D · x +A ·B · C ·D · E+

A ·B · C ·D · x +A ·B · C ·D · E +A ·B · C ·D · E · x

[4.80]

The function Z can be rewritten as follows:

Z(A,B,C,D,E) = A ·B · C ·D · E(1 + x) +A ·B · C ·D · E · x+

A ·B · C ·D · E(1 + x) +A ·B · C ·D · E · x+

A ·B · C ·D · E +A ·B · C ·D · E+

A ·B · C ·D · E · x +A ·B · C ·D · E · x+

A ·B · C ·D · E +A ·B · C ·D · E · x+

A ·B · C ·D · E · x +A ·B · C ·D · E +A ·B · C ·D · E · x

[4.81]

In the decimal form, the canonical expression of the function Z is given by:

Z(A,B,C,D,E) =
∑

m(0, 4, 10, 11, 18, 25)

+
∑

x(1, 5, 16, 17, 20, 21, 27) [4.82]

As it is possible to encircle the term E with either x · E or with x, the Karnaugh

map shown in Figure 4.22(a), where the don’t care state is assumed to be set at 1,

allows us to write:

Z(A,B,C,D,E) = B ·D +A ·B · C ·D +A ·B · C · E +A ·B · C · E [4.83]

or

Z(A,B,C,D,E) = B ·D +A ·B · C ·D +A ·B · C · E +A · C ·D · E [4.84]
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b) Based on the Karnaugh map, we have:

Z(A,B,C,D,E) = A ·B · C ·D · E(x + E) +A ·B · C ·D+

A ·B · C ·D +A ·B · C ·D(x + E)+

A ·B · C ·D · E · x +A ·B · C ·D · x+

A ·B · C ·D · E · x +A ·B · C ·D · E +A ·B · C ·D(x · E + E)

[4.85]
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Figure 4.22. Karnaugh maps

The expansion of the function Z, taking into account the complement law,

translates to:

Z(A,B,C,D,E) = A ·B · C ·D · E · x +A ·B · C ·D · E+

A ·B · C ·D · E +A ·B · C ·D · E +A ·B · C ·D · E+

A ·B · C ·D · E(1 + x) +A ·B · C ·D · E · x +A ·B · C ·D · E · x+

A ·B · C ·D · E · x +A ·B · C ·D · E · x +A ·B · C ·D · E · x+

A ·B · C ·D · E +A ·B · C ·D · E · x +A ·B · C ·D · E

[4.86]

The function Z can equivalently be defined by:

Z(A,B,C,D,E) =
∑

m(4, 5, 8, 9, 11, 25, 26) +
∑

x(3, 10, 16, 18, 19, 20, 27)

[4.87]

Using the Karnaugh map shown in Figure 4.22(b), where x3 = x16 = x18 =
x19 = x20 = 0 and x10 = x27 = 1, we obtain:

Z(A,B,C,D,E) = B · C · E +A ·B · C +B · C ·D +A ·B · C ·D [4.88]
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SOLUTION 4.3.– Karnaugh maps with entered variables and logic functions in the

canonical form.

a) Based on the Karnaugh map shown in Figure 4.23(a), the minimized sum-of-

products form for the logic function P can be written as:

P (A,B,C,D,E) = A ·B ·D +B · C ·D + C ·D · E +A ·B · C · E
+A ·B · C · E [4.89]

b) With reference to the Karnaugh map shown in Figure 4.23(b), the following

minimized expression can be obtained:

Q(A,B,C,D,E) = A ·B · E +A · C ·D +B ·D · E +A ·B · C ·D+

A ·B · C ·D +B · C ·D · E +B · C ·D · E [4.90]
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Figure 4.23. Karnaugh maps

c) Figure 4.24(a) depicts the Karnaugh map for the function R. As the term E · F
can be covered by either F or by E, we have the following two solutions:

R(A,B,C,D,E, F ) = A · C ·D +A ·B · E +A ·B · C ·D+

A ·B · C · F +A ·B · C · E · F +A · C · E · F [4.91]

or

R(A,B,C,D,E, F ) = A · C ·D +A ·B · E +A ·B · C ·D+

A ·B · C · F +A ·B · C · E · F +B · C · E · F [4.92]
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d) Because E + F = E · F , based on the Karnaugh map shown in Figure 4.24(b)

we have:

S(A,B,C,D,E, F ) = A ·B · C · E +A ·B ·D · E +A ·B ·D · F+

B · C ·E · F +B · C ·D · E +A ·B · C ·D · F+

A ·B · C ·D · F +A · C ·D · E · F
[4.93]
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SOLUTION 4.4.– The Quine–McCluskey method

a)

Z1(A,B,C,D,E) =
∑

m(0, 2, 3, 8, 10, 16, 17, 18, 19, 21, 24, 26) [4.94]

Table 4.18 gives the following prime implicants:

A ·B ·D · E, B · C ·D, A ·B · C and C · E

Table 4.19 gives the prime implicant chart for the function Z1. As all the terms of

Z1 are covered by the essential prime implicants, that is - -00 (C ·E), -001- (B ·C ·D)
and 10-01 (A ·B ·D ·E), the minimized sum-of-products forms for Z1 can be written

as:

Z1(A,B,C,D,E) = C · E +B · C ·D +A ·B ·D · E [4.95]
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b)

Z2(A,B,C,D,E) =
∑

m(1, 14, 16, 18, 19, 22, 23, 24, 30)+∑
x(2, 3, 5, 6, 7, 17, 25, 26)

[4.96]

Column 1 Column 2 Column 3 Column 4

Group 0 m0 : 00000 � t1 : 000-0 � t19 : 0-0-0 � t27 : - -0-0 �

t2 : 0-000 � t20 : -00-0 �
t3 : -0000 � t21 : - -000 �

Group 1 m2 : 00010 � t4 : 0001- � t22 : -001- �

m8 : 01000 � t5 : 0-010 � t23 : 100- - �

m16 : 10000 � t6 : 010-0 � t24 : - -010 �
t7 : 1000- � t25 : -10-0 �
t8 : -0010 � t26 : 1-0-0 �
t9 : 100-0 �
t10 : -1000 �
t11 : 1-000 �

Group 2 m3 : 00011 � t12 : -0011 �
m10 : 01010 � t13 : 100-1 �
m17 : 10001 � t14 : 1001- �
m18 : 10010 � t15 : 10-01 �

m24 : 11000 � t16 : -1010 �
t17 : 1-010 �
t18 : 110-0 �

Group 3 m19 : 10011 �
m21 : 10101 �
m26 : 11010 �

Table 4.18. Table for the determination of the prime implicants of Z1

19

(0,2,8,10,16,18,24,26)

(16,17,18,19)

(2,3,18,19)

(17,21)

− −0−0

100− −

−001−

10−01

0 2 3 8 10 21 24 2616 17 18

Table 4.19. Prime implicant chart for Z1
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Column 1 Column 2 Column 3 Column 4

Group 1 m1 : 00001 � t1 : 000-1 � t29 : 00- -1 � t43 : -0-1- �

m2 : 00010 � t2 : 0001- � t30 : 00-1- �
m16 : 10000 � t3 : 00-01 � t31 : -00-1 �

t4 : 00-10 � t32 : -001- �
t5 : -0001 � t33 : 100- - �

t6 : 1000- � t34 : -0-10 �
t7 : -0010 � t35 : 1-00- �

t8 : 100-0 � t36 : 1-0-0 �

t9 : 1-000 �

Group 2 m3 : 00011 � t10 : 00-11 � t37 : -0-11 �
m5 : 00101 � t11 : 001-1 � t38 : -011- �
m6 : 00110 � t12 : 0011- � t39 : -0-11 �
m17 : 10001 � t13 : 0-110 � t40 : 10-1- �
m18 : 10010 � t14 : -0011 � t41 : - -110 �

m24 : 11000 � t15 : 100-1 � t42 : 1- -10 �

t16 : 1001- �
t17 : -0110 �
t18 : 10-10 �
t19 : 1-001 �

t20 : 1100- �

t21 : 1-010 �
t22 : 110-0 �

Group 3 m7 : 00111 � t23 : -0111 �
m14 : 01110 � t24 : 10-11 �
m19 : 10011 � t25 : 1011- �
m22 : 10110 � t26 : -1110 �
m25 : 11001 � t27 : 1-110 �
m26 : 11010 � t28 : 11-10 �

Group 4 m23 : 10111 �
m30 : 11110 �

Table 4.20. Table for the determination of the prime implicants of Z2

According to Table 4.20, the logic function Z2 has 13 prime implicants. As shown

in the prime implicant chart in Table 4.21(a), the essential prime implicants are -0-1-

(B ·D) and - -110 (C ·D ·E). The two implicants 1-001 and 001-1 cover no minterm

of Z2 as they have been obtained by combining only the minterms (25 and 17, and 7

and 5) corresponding to don’t care states.
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(24)

1 16 24

1−00−

1100−

110−0

100− −

−00−1

00− −1

1−0−0

P2

P3

P4

P5

P1 (16,24)

(16)

(16,24)

(1)

(1)

(24)

(24)P7

P6

(b)

(a)

1 14 16 18 19 22 23 24 30

1−00−

001−1

1100−

1−001

100−1

110−0

100− −

−00−1

00− −1

−0−1−

1− −10

− −110

1−0−0

(18,19,22,23)

(18,22,30)

(14,22,30)

(16,18,24)

(16,18,19)

(16,24)

(1,19)

(1)

(24)

(19)

Table 4.21. Prime implicant chart for Z2

Table 4.21(b) gives the reduced form of the prime implicant chart. Using Petrick’s

method to complete the choice of prime implicants, we have:

P = (P4 + P5)(P1 + P2 + P3)(P1 + P2 + P6 + P7) [4.97]

The expansion of P , taking into account the logic identity 1 +X = 1, yields:

P = P1P4 + P1P5 + P2P4 + P2P5 + P3P6(P4 + P5) + P3P7(P4 + P5) [4.98]

Retaining only the products with the minimum terms, that is P1P4, P1P5, P2P4

and P2P5, where P1, P2, P4 and P5 represent, respectively, the terms 1-0-0 (A·C ·E),
1-00- (A · C ·D), -00-1 (B · C · E) and 00- -1 (A · B · E), we obtain four possible

solutions. Thus:

Z2(A,B,C,D,E) = B ·D + C ·D · E +A · C · E +B · C · E [4.99]

Z2(A,B,C,D,E) = B ·D + C ·D · E +A · C · E +A ·B · E [4.100]

Z2(A,B,C,D,E) = B ·D + C ·D · E +A · C ·D +B · C · E [4.101]

and

Z2(A,B,C,D,E) = B ·D + C ·D · E +A · C ·D +A ·B · E [4.102]
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c)

Z3(A,B,C,D,E, F ) =
∑

m(10, 18, 26, 40, 41, 42, 48, 49, 50, 52, 53,

56, 57, 60, 61) [4.103]

Referring to Table 4.22, the function Z3 has nine prime implicants. Table 4.23

corresponds to the prime implicant chart for Z3, where only a single essential prime

implicant can be identified, that is 11- -0- (A · B · E). Table 4.24 gives the reduced

form of the prime implicant chart obtained by considering only the non-essential prime

implicants. Using Petrick’s methods to complete the choice of prime implicants leads

to a logic equation that can be written as follows:

P = (P6 + P8)(P4 + P7)(P7 + P8)(P1 + P5)(P1 + P2)

×(P5 + P6)(P3 + P4) [4.104]

Column 1 Column 2 Column 3 Column 4

Group 2 m10 : 001010 � t1 : 0-1010 � t22 : 110-0- � t29 : 11- -0- �

m18 : 010010 � t2 : 01-010 � t23 : 1-100- �

m40 : 101000 � t3 : 10100- � t24 : 11-00- �
m48 : 110000 � t4 : -01010 � t25 : 11- -00 �

t5 : 1010-0 �

t6 : 11000- �
t7 : -10010 �

t8 : 1100-0 �

t9 : 110-00 �
t10 : 1-1000 �
t11 : 11-000 �

Group 3 m26 : 011010 � t12 : 110-01 � t26 : 11- -01 �
m41 : 101001 � t13 : 11010- � t27 : 11-10- �
m42 : 101010 � t14 : 1-1001 � t28 : 111-0- �
m49 : 110001 � t15 : 11-001 �
m50 : 110010 � t16 : 11100- �
m52 : 110100 � t17 : 11-100 �
m56 : 111000 � t18 : 111-00 �

Group 4 m53 : 110101 � t19 : 11-101 �
m57 : 111001 � t20 : 111-01 �
m60 : 111100 � t21 : 11110- �

Group 5 m61 : 111101 �

Table 4.22. Table for the determination of the prime implicants of Z3
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1100−0

10 18 26 40 41 42 50 52 53 56 57 60 614948

(48,49,52,53,56,57,60,61)

(40,41,56,57)

(41,57)

(48,50)

(40,42)

(18,50)

(10,42)

(18,26)

(10,26)

−10010

0−1010

1010−0

−01010

01−010

11− −0−

1−100−

1−1001

Table 4.23. Prime implicant chart for Z3

6

10 18 26 40 41 42 50

−10010

0−1010

1010−0

−01010

01−010

1−100−

1−1001

1100−0

(40,41)

(41)

(50)

(40,42)

(18,50)

(10,42)

(18,26)

(10,26)

P2

P3

P4

P1

P7

P8

P5

P

Table 4.24. Reduced prime implicant chart for Z3

Expanding the expression for P and taking into account the logic identity 1+X =
1, we arrive at:

P = P1P4P5P8 + P1P4P6P8 + P1P4P6P7 + P1P3P6P7+

P2P4P5P8 + (P3P6P7 + P4P6P7)(P1P5 + P2P5)+

P3P7P8(P1P5 + P1P6 + P2P5)

[4.105]

As the term associated with P2 has one variable more than that corresponding to

P1, we select only the first four products, that is P1P4P5P8, P1P4P6P8, P1P4P6P7

and P1P3P6P7, where P1, P3, P4, P5, P6, P7 and P8 represent, respectively, the terms
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1-100- (A ·C ·D ·E), 1100-0 (A ·B ·C ·D ·F ), -10010 (B ·C ·D ·E ·F ), 1010-0
(A ·B ·C ·D ·F ), -01010 (B ·C ·D ·E ·F ), 01-010 (A ·B ·D ·E ·F ) and 0-1010
(A ·C ·D ·E ·F ). Finally, the four minimized sum-of-products forms for the function

Z3 are given by:

Z3 = A ·B · E +A · C ·D · E +B · C ·D · E · F +A ·B · C ·D · F
+A · C ·D · E · F [4.106]

Z3 = A ·B · E +A · C ·D · E +B · C ·D · E · F +B · C ·D · E · F
+A · C ·D · E · F [4.107]

Z3 = A ·B · E +A · C ·D · E +B · C ·D · E · F +B · C ·D · E · F
+A ·B ·D · E · F [4.108]

and

Z3 = A ·B · E +A · C ·D · E +A ·B · C ·D · F +B · C ·D · E · F
+A ·B ·D · E · F [4.109]

d)

Z4(A,B,C,D,E, F ) =
∑

m(0, 1, 2, 3, 16, 17, 18, 19, 29, 44, 53, 60)+∑
x(12, 21, 28)

[4.110]

According to Table 4.25, the logic function Z4 has six prime implicants. On going

through the prime implicant chart, as given in Table 4.26, we can observe that the three

essential prime implicants, 0-00- - (A · C ·D), - -1100 (C ·D ·E · F ) and -10101
(B ·C ·D ·E · F ), cover all the minterms except for the minterm 29. As the minterm

29 can be covered by either 01110- (A ·B ·C ·D ·E), or by 01-101 (A ·B ·D ·E ·F ),
the function Z4 has two minimized forms. Thus:

Z4 = B · C ·D + C ·D · E · F +B · C ·D · E · F +A ·B · C ·D · E [4.111]

and

Z4 = B · C ·D + C ·D · E · F +B · C ·D · E · F +A ·B ·D · E · F [4.112]
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Column 1 Column 2 Column 3 Column 4

Group 0 m0 : 000000 � t1 : 00000- � t21 : 0000- - � t28 : 0-00- - �

t2 : 0000-0 � t22 : 0-000- �
t3 : 0-0000 � t23 : 0-00-0 �

Group 1 m1 : 000001 � t4 : 0000-1 � t24 : 0-00-1 �
m2 : 000010 � t5 : 00001- � t25 : 0-001- �
m16 : 010000 � t6 : 0-0001 � t26 : 0100- - �

t7 : 01000- �
t8 : 0-0010 �
t9 : 0100-0 �

Group 2 m3 : 000011 � t10 : 0-0011 � t27 : - -1100 �

m12 : 001100 � t11 : 0100-1 �
m17 : 010001 � t12 : 01001- �
m18 : 010010 � t13 : 010-01 �

t14 : 0-1100 �
t15 : -01100 �

Group 3 m19 : 010011 � t16 : 01-101 �

m21 : 010101 � t17 : 01110- �

m28 : 011100 � t18 : -10101 �

m44 : 101100 � t19 : -11100 �
m44 : 101100 � t20 : 1-1100 �

Group 4 m29 : 011101 �
m53 : 110101 �
m60 : 111100 �

Table 4.25. Table for the determination of the prime implicants of Z4

(17)

0 1 2 3 16 17 18 19 29 53 6044

0−00− −

− −1100

−10101

01110−

01−101

010−01

(0,1,2,3,16,17,18,19)

(44,60)

(53)

(29)

(29)

Table 4.26. Prime implicant chart for Z4
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