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Preface

Perturbation theory is an approximate method that enables one to solve a wide variety of problems
in applied mathematics, and for this reason it has proved useful in theoretical physics and chemistry
since long ago. Most textbooks on classical mechanics, quantum mechanics, and quantum chemistry
exhibit a chapter, or at least a section, dedicated to that celebrated approach which is afterwards
applied to several models.

In addition to the general view of perturbation theory offered by those textbooks, there is a wide
variety of techniques that facilitate the application of the approach to particular problems in the
fields mentioned above. Such implementations of perturbation theory are spread over many papers
and specialized books. We believe that a single source collecting most of those methods may profit
students of theoretical physics and chemistry.

For simplicity, in this book we concentrate on problems that allow exact analytical solutions of
the perturbation equations and avoid those that require long and tedious numerical computation that
may divert the reader’s mind from the core of the problem. However, we also resort to numerical
results when they are necessary to illustrate and complement important features of the theory.

In order to compare different methods, we apply them to the same models so that the reader may
clearly understand why we prefer one or another. Sometimes, we also apply perturbation theory to
exactly solvable models in order to illustrate the most relevant features of the approximate method
and to disclose some of its limitations. This strategy is also suitable for clearly understanding the
improvements in the perturbation series.

In this introductory book we try to keep the mathematics as simple as possible. Consequently,
we avoid a thorough discussion of certain topics, such as the analytical properties of the eigenvalues
of simple nontrivial quantum-mechanical models. The reader who is interested in going beyond the
scope of this book will find the necessary references for that purpose.

Nowadays, there are many symbolic processors that greatly facilitate most analytical calculations,
and this book would not be complete if it did not show how to apply them to perturbation theory. Here
we choose Maple® because it is uncommonly powerful and simple at the same time. In addition,
Maple offers a remarkably friendly interface that enables the user to organize his or her work in the
form of useful worksheets which can be exported in several formats. For example, here we have
chosen IATEX® to produce some of the tables, thus avoiding unnecessary transcription of the results
that may lead to misprints.

Maple allows one to do a great deal of calculation interactively, which is commonly useful to
understand the main features of the problem, and when programming becomes necessary, Maple
language is straightforward and easy to learn. Both modes of calculation have proved most useful
for present work, and our programs reflect this fact in that they are not completely automatic or
foolproof. In the program section we show several examples of the Maple procedures used to obtain
the results discussed in this book, and we think that the hints given there are sufficient for their
successful application. However, the reader who finds any difficulty is encouraged to contact the
author via E-mail at: framfer@isis.unlp.edu.ar.
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Chapter 1

Perturbation Theory in Quantum Mechanics

1.1 Introduction

It is well known that one cannot solve the Schrédinger equation in quantum mechanics except
for some simple models. For that reason many authors have devoted considerable time and effort
to develop efficient approximate methods. Among them, perturbation theory has been helpful since
the earliest applications of quantum mechanics. One of the main advantages of this approach is that
it provides analytical approximate solutions for many nontrivial simple problems which are suitable
for subsequent discussion and interpretation of the physical phenomena. In fact, perturbation theory
is probably one of the approximate methods that most appeals to intuition.

The standard textbook formulas for the perturbation corrections are somewhat cumbersome for a
systematic calculation of sufficiently high order. In this book we show several alternative strategies
that are easily programmable for numerical or algebraic calculation. We are mainly concerned with
the derivation of exact perturbation corrections, and therefore concentrate on sufficiently simple
nontrivial models having physical application. However, some of the algorithms discussed in this
book are also suitable for numerical calculation.

Most of the methods discussed in this book lead to recurrence relations and other mathematical
algorithms that are straightforward for hand calculation, and most suitable for computer algebra.
The use of the latter is mandatory if one is interested in great perturbation orders. Among the many
computer algebra packages, we have chosen Maple because it is easy to use, extremely powerful
and reliable, and offers many facilities to write reports and convert the output into forms suitable for
word processing [1].

In this chapter we briefly review those formulas of perturbation theory in quantum mechanics that
we need in subsequent chapters. We assume that the reader is familiar with standard concepts and
notation used in most textbooks on quantum mechanics. We are mainly concerned with perturbation
theory for bound stationary states; however, in this chapter, we also outline time-dependent pertur-
bation theory, and later in Chapter 8 we show simple applications of perturbation theory to stationary
states in the continuum spectrum.

1.2 Bound States

_We first consider bound states that are square-integrable solutions of the eigenvalue equation
HWY = EW,where H isthe Hamiltonian operator of the system and E is the energy of the state ¥ [2].
If W is complex, then both its real W and imaginary W, parts satisfy the eigenvalue equation (because
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2 PERTURBATION THEORY IN QUANTUM MECHANICS

E is real) and are square integrable as follows from < W|¥ >=< Wx|¥p > + < ¥;|¥; >< 00.
Therefore, without loss of generality we only consider real solutions of the eigenvalue equation. In
principle, we apply perturbation theory to

HV, =E,V,,n=1,2, ... (1.1)
provided that we can write
H = Hy+ A\H', (1.2)

where Hy is a sufficiently close approximation to A so that A’ may be considered to be a small
perturbation, and A is a perturbation parameter. In Chapter 6 we will discuss the meaning of the
expression “small perturbation.” We also assume that the eigenvalue equation for Hy is exactly
solvable:

1:10\11,,,0 =E,o¥n0, n=12,.... (1.3)

The eigenvalues and eigenvectors of A given by equation (1.1) depend on the perturbation pa-
rameter A and can be formally expanded in Taylor series about A = O:

oo
1 0°E,
En == En,s}tsv En,s = - N s (14)
Z(:) st oA |,
oo
1 9%y,
\Ijn = \I'ln,s)\s’ \I’n,s = - - . (15)
Z(:) st A |, o

From straightforward substitution of these series into the eigenvalue equation (1.1) we derive a
system of equations for the perturbation coefficients:

s
I:I:IO - En,O] \I'In,s = I:Ei‘l,l - I:I/:I ‘I’n,s—l + Z En,jq/n,s—j . (16)
j=2

For example the equation of first order is
[ﬁo - En,O] W, 1= [En,l - 1:1’] 0. 1.7

We say that the unperturbed states are nondegenerate if EY #+ E® when n # m. In order to apply
the method below we assume that the eigenfunctions W,, o form a complete orthonormal set (a basis
set) so that we can expand the perturbation corrections as follows:

“I"n,s = Zcmn,s“pm,& Cmn,s = <qjm,0|\pn,s> . (18)

m

Notice that Cy,,,.0 = Sy For simplicity we write |m > instead of |W,, o > from now on.
On applying the bra vector < m| to equation (1.6) we obtain

K
[Em,O - En,O] Cmn,s = Z En,jcmn,s—j - Z H,%kckn,s—l s (19)
j=1 k

where H; , =< m|H'|k >. When m = n we obtain an expression for the energy

s—1

E,s= <n ‘I:I/‘ \Ifn,5_1> — Z E, iCuns—j - (1.10)
=1
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1.2. BOUND STATES 3

Some authors choose the intermediate normalization condition C,, s = 850 because it leads to a
simpler expression for the energy: E, s =< n|H'|¥, 1 > [3]. In that case one has to normalize
the resulting approximate eigenfunction W, to unity. Here we choose the standard normalization
condition < ¥, |¥,, >= 1 from which it follows that

N

Z ("I]n,j |\Dn,s—j> =0 . (111)
j=0

When m # n equation (1.9) gives us an expression for the expansion coefficients

s
-1
Cmn,s = [En,O - Em,O] Z Hy;kckn,s—l - Z En,ijn,s—j . (112)
k j=1

The remaining coefficient C,, s follows from equation (1.11):

1 s—1
Cunl = 0, Cnn,s = _z Z Z Cmn,jcmn,sij s>1. (1-13)

j:l m

Equations (1.10) and (1.12) are the standard textbook perturbation expressions. For example, when
s = 1 we obtain

E,1=H,, (1.14)

from equation (1.10), and

H/
Copp1=—""— 1.15
- En,O - Em,O ( )
from equation (1.12).
For the second order we obtain
n H/ 2

Enp = n‘H/‘\IJJ =y 1.16
nz = n) ;En,o_quo (1.16)

from equation (1.10) and so on. We repeat this process as many times as needed. Ateach perturbation
order we first calculate the energy and then the eigenfunction coefficients, both in terms of corrections
already obtained in previous steps.

The recursion relations given by equations (1.10) and (1.12) yield analytical expressions provided
that one is able to carry out the sums over intermediate states exactly. The simplest situation is that
each such sum has a finite number of terms, which already happens if H,,, = 0 forall |m —n| > J.
Lie algebraic methods greatly facilitate the calculation of analytical matrix elements H,,, in certain
cases [4].

Once we have the perturbation coefficients C,,, s We easily express matrix elements and between
perturbed states in terms of matrix elements and between unperturbed states as follows:

o0 p

Ay (W
0

s=0

<\pm A

llln>

A) npn,,,_s)
p:

i“fZqu,sc@,p-s (j (A‘k> . (1.17)
p=0 s=0 j k

© 2001 by CRC PressLLC



4 PERTURBATION THEORY IN QUANTUM MECHANICS

1.2.1 The2s+1Rule

The discussion above suggests that it is necessary to calculate the correction of order s to the
eigenfunction in order to obtain the correction of order s + 1 to the energy. However, this is not
the case; given all the corrections to the eigenfunction through order s we can obtain all the energy
coefficients through order 2s + 1. This calculation is based on more symmetric formulas that we
briefly discuss in what follows. Consider a matrix element < W, (|[E, 1 — I—AI/]|\IJ,1,, > with s < 7.
Using the general equation (1.6) we rewrite it as

<\Ijn,s [En,l - I:I/]‘ “Ijn,t> = <[En,l - I:I/] lI/n,s|\1"n,t>
s+1
= <[HO - En,O:I \Ijn,s+l|an,t> - Z En,j <\I'n,s+l—j |\Ijnt)
j=2
s+1
= <an,s+l H:HO - En,O:H \I]n,r) - Z En,j <“Ijn,s+l—j |\I]n,t>
j=2
s+1
= <\pn,x+l H:En,l - H/]‘ ‘-IJ,”,1> - Z En,j <\Ijn,s+lfj|\yn,t>
j=2
t
+2En,j (“I}n,s+1|‘l"n,t—j) . (118)

j=2

The net result of this process is a reduction in the greater subscript and an increment in the smaller
one making the matrix element more symmetric. We apply it to equation (1.10) as many times as
required in order to obtain the most symmetric expression for the energy that consequently contains
perturbation corrections of the smallest order to the eigenfunction. For example, the first energy
coefficients are

En,S = <‘Ijn,1 H:I:I/ - En,l:H “I"n,1> , (119)
En,4 = <\I"n,2 H:ﬁ/ - En,l]‘ \Ijn,l> - En,2 [(lljn,2|n) + ("Ijn,l|\yn,1>] ) (120)
Eos = (Wna|[A' = Ens]|Wn2) = Enz[(Wnal9na) + (Wn2lWnd] . @2D)

where we have used equation (1.11) to simplify the right-hand sides. Such symmetrized energy
formulas and their generalizations are well known and have been discussed by other authors in more
detail [4].

1.2.2 Degenerate States

When the unperturbed states are degenerate we cannot apply the perturbation equations given
above in a straightforward way. If there are g, linearly independent solutions to the unperturbed
equation with the same eigenvalue:

Ho®yq = Eno®na, a=1,2,..., 8, (1.22)

we say that those states are g,-fold degenerate. Any linear combination

8n
\pn,O = Z Ca,nq)n,a (123)
a=1
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1.3. EQUATIONS OF MOTION 5

is an eigenfunction of Hy with eigenvalue E, 0. Applying the bra < &, 4| from the left to the
equation of first order (1.7), we obtain an homogeneous system of g,, equations with g,, unknowns:

8n
> (Hjp— En18ap) Com =0, a=12... ¢g. (1.24)
b=1

As before we assume that < @, P, >= 8, and write H, , =< CDM|I§{/|<I>,Z,;, >. Nontrivial
solutions exist only if the secular determinant vanishes:

|H, p — Entdap| =0. (1.25)

The g, real roots E,, 15,0 =1,2, ..., g, are the corrections of first order for those states.

We may treat higher perturbation orders in the same way but the notation becomes increasingly
awkward as the perturbation order increases. For this reason we do not proceed along these lines and
will return to perturbation theory for degenerate states when we discuss a more systematic approach
in Chapter 3.

In Chapters 5 and 7 we will show that it is sometimes convenient to choose a nonlinear perturbation
parameter 1 in the Hamiltonian operator and expand H () in a Taylor series about A = 0 as follows:

AG)y=Y Hjal . (1.26)
j=0

If we can solve the eigenvalue equation for Hy = H (0), then we can apply perturbation theory in
the way outlined above. One easily proves that the perturbation equations for this case are

s
I:[:IO - En,O] "pn,s = Z [En,j - I:I]] \I"n,sfj , (1-27)
j=1

and that the systematic calculation of the corrections is similar to that in preceding subsections.

1.3 Equations of Motion

In quantum mechanics one obtains the state W(t) of the system at time ¢ from the state W(zp) at
time 79 by means of a time-evolution operator U (¢, tg) [5]:

W(t)=U (t,10) ¥ (o) . (1.28)
The time-evolution operator satisfies the differential equation
d .
ihEU (t,t0) = HU (¢, tp) (1.29)
with the initial condition
Uto.t0) =1, (1.30)

where 1 is the identity operator. It follows from the adjoint of equation (1.29)

d - . .
iU, o' =-Uw A (1.31)
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6 PERTURBATION THEORY IN QUANTUM MECHANICS

that U (¢, o) is unitary (UT = 01).
Other important properties of the time-evolution operator are

Ui, t0)f = U, 100 =0 (10, 1) (1.32)
Utro) = U(t,¢)U (1, 10) . (1.33)

It follows from equation (1.33) that we can restrict ourselves to the case 7o = 0 without loss
of generality because U(t, 1) = U(t,0)U(0.1) = U(t,0)U (10, 0)". Therefore, we consider
U =U@) = U, 0) from now on.

In the Schrddinger picture outlined above the states change with time; on the other hand, the
states are time independent in the Heisenberg picture [5]. Given an observable A in the Schrodinger
picture, we obtain its Heisenberg counterpart Ay as follows:

Ay =0%AU , (1.34)
which satisfies the equation of motion
d - At oA An At A n A Ar T A AT A A A
ih—-Ay = ~0"AAD + 0TARD = 0 [A, H] 0= [AH, HH] : (1.35)

A A A

derive equation (1.35) we have taken into account that UYABU = UTAUUT
If H is time independent then

where [A, B] = AB — BA is the commutator between two linear operators {i and B. In order to
B

Q)

Ut,10) =U (t — 1g) = exp [—i (t — tg) ﬁ/h] , (1.36)
and Ay = H.

1.3.1 Time-Dependent Perturbation Theory

Itis not possible to solve the Schrédinger equation (1.29) exactly, except for some simple models;
for this reason one resorts to approximate methods. In order to apply perturbation theory we write
the Hamiltonian operator as Hy + A H’, where, typically, Ho is time independent and A’ may be
time dependent. We further factorize the time-evolution operator as

U(t) = Uo(t)Uy (1) (1.37)

giving rise to the so-called interaction or intermediate picture [5]. The time-evolution operator in
the interaction picture U; is unitary and satisfies the differential equation

d - N a A ataa
ih Uy = H Uy, Hf = OiA' Oy . (1.38)

The usual initial conditions are Up(0) = 1and U, (0) = 1.
Expanding U, in a Taylor series about ». = 0

o0
_ Z Up 3/ (1.39)
j=0
we obtain a recurrence relation for the coefficients [6]

C ot
01.(t) = _;71 /0 A ()01 (F) dr', Uro) =1. (1.40)

© 2001 by CRC PressLLC



1.3. EQUATIONS OF MOTION 7

Notice that any partial sum of the series (1.39) satisfies the initial condition U; (0) = 1, but it is not
unitary.

In some cases we can choose Up in such a way that equations (1.39) and (1.40) provide an
approximate expression for U; that may be suitable for the calculation of matrix elements and
transition probabilities [6].

In order to illustrate the application of perturbation theory in the interaction picture we concentrate
on the approximate calculation of operators in the Heisenberg picture when the Hamiltonian operator
H = Hy + A»H’ is time independent.

If we expand a given Heisenberg operator A in a Taylor series about » = 0

° .
Ap =Y An (141)
j=0
then equation (1.35) with Hy = H gives us
lhEAH’j = [AH’j, Ho] + I:AH'j_l’ H ] ,j=12,.... (1.42)

We propose a solution to this operator differential equation of the form Ay ; = U] B; 0o and derive
a differential equation for the time-dependent operator é.,

91 Gy [dmyos 7] 0] (143
which we easily integrate
B =—1 00 () [Angor () 8] G0 () (L44)
Finally, we have
Ap () = —;; fot 05 (t—1) [AH,j_l (t), IQI’] Uo (t — 1) ar’ (1.45)

where j =1,2,...,and Ay o = OJ AD,.
If we define a dimensionless time variable s = wt in terms of a frequency w, and a dimensionless
Hamiltonian operator

~ H
H= (1.46)
ho
then we obtain a dimensionless Schrédinger equation
1/
i— =HU . (1.47)
ds

Notice that we can derive equation (1.47) formally by setting z = 1 in equation (1.29).
1.3.2 One-Particle Systems

Most of this book is devoted to one-particle models because they are convenient illustrative
examples. More precisely, we consider a particle of mass m under the effect of a conservative force
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8 PERTURBATION THEORY IN QUANTUM MECHANICS

F(r) = —VV(r), where V (r) is a potential-energy function and r denotes the particle position. The
Hamiltonian operator for this simple model reads

H=——+V({), (1.48)
m

where p and f are vector operators with components (p,, py, p;) and (x, 3, 2), respectively. They
satisfy the well-known commutation relations for coordinates and conjugate momenta

[12, Iav] = ihsuv» [ﬁv ﬁ] = O, [ﬁu’ ﬁv] = 0, Uu,v=x,y,2. (149)

The Hamiltonian operator (1.48) also applies to the relative motion of a pair of particles of masses
m1 and my. In this case m = mymy/(m1 + m2) is the reduced mass, = , — f1 is the relative
position and p = P — P1 is the relative momentum.

Because mathematical equations are dimensionless, we believe it is appropriate to remove the
dimensions from physical equations. The resulting equations are commonly simpler because they
are free from most physical constants and parameters. Moreover, dimensionless equations clearly
reveal the relevant parameters of the model. With that purpose in mind, we first define dimensionless
coordinate g = r/y and momentum p’ = yp/h, where y is a yet undefined unit of length. The
Hamiltonian operator reads

I’l’l)/2

H = 2

hZ 'N2VA
['p | Virg). (150)

m_y2 5 + U(q):| , v(g) =
and we choose y in such a way that the form of the dimensionless Hamiltonian operator A=
my?H /h? is as simple as possible.

In the case of the time-dependent Schrddinger equation one also defines a dimensionless time
s = wt, as discussed earlier, and obtains
d ~ A P/

i—U=H0, #= [T + v(q):| (1.51)

provided that

h
yi= . (1.52)
maw
We obtain the dimensionless equation by formally setting # = m = 1. For brevity we write p instead

of p’ when there is no room for confusion.

1.4 Examples

In what follows we illustrate the application of some of the general results derived above to simple
one-dimensional models.

1.4.1 Stationary States of the Anharmonic Oscillator

As a first illustrative example we consider the anharmonic oscillator

A2 242
g Pl me R e a6 (153)
2m 2
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1.4, EXAMPLES 9

which in dimensionless form reads

R ) M k/hM/Z—l
N
H= 2 (p +4q ) +AgT, A= mM2M2+1 * (1.54)

In particular we choose M= 4 and apply perturbation theory with Ho = (p’2+4%) /2, and H = g*.
The unperturbed problem Holn >= (n + 1/2)|n > is nondegenerate and we easily calculate the
matrix elements #/ by means of the recurrence relation [7]

mn

)= 2o

Notice that in this case equations (1.10) and (1.12) yield exact analytical results because < m|H |n >
= 0if |m — n| > 4; consequently C,,, s = 0 if |m — n| > 4s.

By means of the Maple procedures given in the program section we derived the results in Table 1.1.
Notice that the matrix elements < Wg|§|W3 > and < Wo|§2| W, > vanish when A = 0 because they
are exactly zero for the harmonic oscillator and arise from the perturbation.

n—2|—1<m

c}jil‘n — 1>+

C}H‘ n+ 1> : (1.55)

1.4.2 Harmonic Oscillator with a Time-Dependent Perturbation

In what follows we illustrate the application of time-dependent perturbation theory to a one-
dimensional harmonic oscillator with a simple time-dependent perturbation. In the case of perturbed
harmonic oscillators it is commonly convenient to express the dynamical variables in terms of the
creation ' and annihilation a operators that satisfy the commutation relation [a, a a11 = 1 (from now
on we simply write 1 instead of 1) The model Hamiltonian operator is H=Hy+ AH’ where

Ao = hao (a*& n 1/2) CH = f(ha+ fao*at (1.56)
f () is a complex-valued function of time, and f(¢)* its complex conjugate [8]. The dummy

perturbation parameter A is set equal to unity at the end of the calculation.
The dimensionless Schrédinger equation

hiwg hw

D _[itas b 100, L0505 asn

where s = wot, clearly reveals that the result will depend on the dimensionless function £ (¢)/(Awo).
In order to facilitate comparison with earlier results, in this case we prefer to work with the original
Schradinger equation.

Taking into account that

Uo(t)TaUo(1) = a exp (—iwgt) (1.58)
we obtain [8]
Hy =g(ha+gm*al, g(t) = f(t)exp(—iwot) . (1.59)

It is our purpose to write the perturbation corrections HI ;j innormal order (powers of a' to the left
of powers of @) because it facilitates the calculation of matrix elements.
According to equation (1.40) the perturbation correction of first order is

Uri(e) = pr(na’ + pa(a, (1.60)
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10 PERTURBATION THEORY IN QUANTUM MECHANICS

Table 1.1 Pertyzrbatiozn Corrections for the Dimensionless Anharmonic
Oscillator /f = - +9° Agh

Perturbation corrections to the energy of the nth excited state

En,1=%n2+%n+%

17 51 59 21
En,2=—7n3—§n2—§n—§
1041 177 .2 , 375 3 , 333 |, 375 4
Ens="n+ton +gn+3 +pn
_ 111697 , _ 80235 .2 _ 71305 3 _ 30885
Ena=—"ggn 64 64 128

_ 10689 5 53445

4
64 8 1
First terms of the perturbation series for the ground state

_ 1 3 21 42 333,43

30885 ;4 , 916731 ;5 _ 65518401 56 , 2723294673 o7
— g A+ o A~ T AT T A

1030495099053 4 8
— e A t...

Some matrix elements (W, |G%|W,,)

- _ /2 3J2i , 1894222 4527233 | 1093701+/2 2%
(Wolg|W1) = % 7 o t 7 10ma Tt

(Wolg|Wa) = Y32 — 39«4512 n 1404112%/@3 _ 7146%8/5,\4 L
(Wolg?|Wo) = 1 — 3} + 10%*2 - 333{\3 + 33917238“4 .

(Wo|G2 W) = 4 _ 1S§A + 12336f12 _ 681335«6513 + 169085&36“@*4 T
(Wolg2|Wy) = ¥Br _ 6BI2 | 6617/65° _ 2121256 4

where
i t
pat) =—pr0” == [ swdu (161
A straightforward calculation shows that the correction of second order is
. 2 2 2
0100 =~ \a'a + s + B (a') + P2a, (162)
2 2
where
! dBo(u)
pat) = [ pran 2 (163)
0 u
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1.4, EXAMPLES 11

In order to obtain equation (1.62) notice that 9%(83) = —|B1|2/2, where %(z) stands for the real part
of the complex number z.
It is not difficult to verify that the time-evolution operator for this simple model is exactly given

by (8]
01(1) = exp (Pra") exp (Bot) exp (Ba) - (L64)

Expanding the exponentials and keeping terms through second order in A’ we obtain the results
given above by perturbation theory.
On calculating the transition probabilities [8]

Pun = ‘(m ’00)‘ n>’2 = ’(m ’U,(I)’ n>‘2 (1.65)

by means of the approximate perturbation expression for U;, we conclude that at first order Py, = 0
if [m —n| > 1, at second order P,,,, = 0 if |m — n| > 2, and so on. The reader may easily obtain
the nonzero transition probabilities in terms of |B1]. If we keep only the perturbation correction
of first order, we derive the usual approximate selection rule for the harmonic oscillator: An =
m —n = 1 [9]. If, on the other hand, we use the exact expression for U;, we realize that all
the transition probabilities are nonzero [8]. However, at sufficiently short times, perturbation theory
gives a reasonable approximation to the dynamics of the problem because the correction of order P
is proportional to | 81|” and |1] — O ast — 0. In order to have a deeper insight into this point we
discuss a particular example below.
Consider the periodic interaction given by

f () = focos(wt) , (1.66)
where | fo| < hwg for a weak interaction. In the case of resonance w = wp we have
fo . .
Br(t) = ——— [1 — 2iwopt — exp (Riwot)] . (1.67)
dhag

As expected this result depends only on the dimensionless time variable s = wot and the ratio
fo/(hwo). The absolute values of the first and third terms in the right-hand side of this equation are
small for all values of 7, while the absolute value of the second term increases linearly with time.
Perturbation theory will give reasonable results provided that |81 is sufficiently small; that is to say,
when |t| « fi/fo < 1/wo. In other words, perturbation theory is expected to be valid in a time
interval sufficiently smaller than the period of the harmonic oscillator 27 /wg. Under such conditions
Poo = |B1]*/2 < Po1 = |B1]? and the harmonic-oscillator selection rule is approximately valid.

1.4.3 Heisenberg Operators for Anharmonic Oscillators

In what follows we derive approximate expressions for Heisenberg operators in the particular case
of anharmonic oscillators (1.53). It is not difficult to verify that the dimensionless time-evolution
equation becomes

U  ~x
i— =HU, (1.68)
ds
where 7 is given by equation (1.54).

From now on we simply write p instead of p’ and r instead of s to indicate the dimensionless
momentum and time; one must keep in mind that it is necessary to substitute x/y for g, y p/h for
p, and wt for ¢ everywhere in order to recover the original units.
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12 PERTURBATION THEORY IN QUANTUM MECHANICS

Notice that 7o = (p% + G2)/2, and ' = ™ play the role of Hy and H’, respectively, in the
perturbation equations developed earlier in thls chapter. It is our purpose to obtain gy for the cubic
(M = 3) and quartic (M = 4) oscillators. In order to apply equation (1.45) recursively one must
take into account the well-known canonical transformations

Ol (t—1)qUo(t—1) = cos(t—1)g+sin(t—1)p (1.69)
O (=) pUo(t =) = cos(t—1)p—sin(r—1)g. (1.70)

Table 1.2 shows results through second order for M = 3 and of first order for M = 4. The
calculation is straightforward but tedious. One carries out the commutators by hand and then uses
Maple to calculate the necessary integrals. We should be careful with the order of the coordinate and
momentum operators because they do not commute. It is convenient to choose an order for those
operators and we have arbitrarily decided to write powers of g to the left of powers of p following
therule pg = —i + ¢ p.

Table 1.2 Perturbation Corrections to the Heisenberg Operator gy for

. ﬁ2+é2
Dimensionless Anharmonic Oscillators H = > +agM
M=3
Gu,1=(—2q p+i) sin() + (¢ p— %) sin@1) + (2 p% + ¢?) cos(r)
S - 342 52
+ (—”7 + ‘17) cos(2r) — 22~ — 3¢
Ao (94 . 94°p _ 3p°
gu.2 = -7 + 5= — g ) sin@31)
65625 , 5p° |, 15Gp%r 15ipr , 1543t 65ig
S T i -l e + =2~ ) Sin®
+(ig—q*p+2p3) sin@r)
_|_(_15£; Ly 291g _ 55{}6;7 15q pr 55;p 41 )COS(t)

552

+(4c}ﬁ2—4iﬁ+c})cos(2t)+( gr +9+6’3+i;) cos(31) — 343
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Chapter 2

Perturbation Theory in the Coordinate
Representation

2.1 Introduction

In Chapter 1 we briefly showed how to solve the perturbation equations systematically in the
number representation that is suitable for the calculation of the matrix elements necessary for the
application of equations (1.10) and (1.12). Alternatively, if we write the Hamiltonian operator
in the coordinate representation (substituting —izV for p or —iV for p’), then the perturbation
equations (1.6) become differential equations. The unperturbed equation is a solvable eigenvalue
problem, and the perturbation corrections are solutions to inhomogeneous differential equations. In
this chapter we discuss some widely used strategies for the solution of such equations.

2.2 The Method of Dalgarno and Stewart

Some time ago, Dalgarno and Stewart [10] developed a simple and practical method for the
solution of perturbation equations, later adopted by many authors in the treatment of a variety of
problems. For simplicity we apply this method to a one-particle model Hamiltonian operator, which
in dimensionless form reads

. 1
H= —EVZ + V), (2.1)

where V2 is the Laplacian operator and V (r) is a dimensionless potential-energy function. Here r
stands for the dimensionless coordinate introduced in Chapter 1. We assume that we can solve the
eigenvalue equation for

. 1
Hy = _Evz + Vo(n) , (2.2)

where Vy(r) is a properly selected potential-energy function, and choose AVi(r) = V(r) — Vu(r)
to be the perturbation. We set the dummy perturbation parameter A equal to unity at the end of the
calculation.

For simplicity, in the following discussion we omit the label that indicates the selected stationary
state and simply write W; and E; for the perturbation corrections of order j to the eigenfunction and

13
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14 PERTURBATION THEORY IN THE COORDINATE REPRESENTATION

energy, respectively. That is to say, we expand a particular solution of HW¥ = EW as
\IJ(r):Z\IJj(r)M, E:ZEJ-)J. (2.3)
Jj=0 =0

The method of Dalgarno and Stewart [10] consists of writing the perturbation corrections to the
eigenfunction as

W;(r) = Fj(nNW¥o(r), j=0,1,... (2.4)

and solving the resulting equations for the functions F; (r):

1 1 4
—zszj — g Vo VEj+ ViFjo - Y EiFji=0. (2.5)
i=1

In this equation V is the gradient vector operator and the dot stands for the standard scalar prod-
uct. These equations are easier to solve than the original differential equations for the perturbation
corrections W;. In many cases the correction factors F; are simple polynomial functions of the
coordinates. Notice that Fy = 1 is a suitable solution to the equation of order zero, and that Eq does
not appear in the perturbation equations (2.5).

In the following subsections we illustrate the application of the method of Dalgarno and Stewart
to simple quantum-mechanical models.

2.2.1 The One-Dimensional Anharmonic Oscillator

As a first example we choose the widely discussed one-dimensional anharmonic oscillator

. 1d> 4
H=———+—+X 2.6
Jax2 T2 M (26)
that we split into a dimensionless harmonic oscillator and a quartic perturbation Ax*.
Upon substituting the unperturbed ground state normalized to unity
Wo(x) = 7 Y4 exp (—x2 /2) 2.7)
into equations (2.5) we have
1 J
—5F +xF; +x*Fj 1 - EFj_;=0. (2.8)
i=1
Straightforward inspection reveals that the solutions are polynomial functions of the form
2j
Fj= ZCJ,‘XZi . (2.9)
i=0

Substitution of equation (2.9) into equation (2.8) for j = 1 leads to the polynomial equation

(4c1r + 1) x* + (2c11 — 6c12) X2 —c11 — E1 =0 (2.10)
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2.2. THE METHOD OF DALGARNO AND STEWART 15

from which we obtain

1 3 3
o — - > E =2 211
€12 7 cu 1 1=y (2.11)
The eigenvalue equation does not determine the coefficient ¢y that we derive from the normalization
condition (cf. equation (1.11))

9
(Wo|W1) = c10 — 6= 0. (2.12)
Finally, we have
9 3?2 x*
Rx)=—-—F—-—. 2.1
10 =167 "2 (2.13)

It is worth noticing that we have obtained the energy coefficient E1 without having recourse to
equation (1.14). The reason is that we have tacitly forced the solution to satisfy the boundary
condition (that is to say, F1(x)Wo(x) to be square integrable) and this requirement completely
determines the energy.

By means of equations (1.16) and (1.19) we obtain the perturbation corrections of second and
third order, respectively:

(wolx1ws) = —%1 ,

Ey = (Wi — Eajwn) =

E; (2.14)

333
16 (2.15)
that agree with the results of Table 1.1.

Proceeding along these lines, one easily obtains perturbation corrections of greater order. However,
we prefer to illustrate such systematic calculation by means of more interesting, and slightly more
complicated, quantum-mechanical models. The simple anharmonic oscillator discussed above serves
just as an introductory example.

2.2.2 The Zeeman Effect in Hydrogen

Our second illustrative example is a spinless hydrogen atom in a uniform magnetic field. From a
physical point of view this model is certainly more motivating than the anharmonic oscillator and has
also been widely discussed in terms of perturbation theory [11, 12]. From a mathematical point of
view this problem is more demanding because it is not separable and leads to perturbation equations
in two variables. Arbitrarily choosing the z axis along the field the Hamiltonian operator reads

A 2 2 e? eB . e2 B2

e *? +y?), (2.16)
where m is the atomic reduced mass, e is the electron charge, c¢ is the speed of light, iz is the
z-component of the angular-momentum operator, and B is the magnitude of the magnetic induc-
tion [13].

If we define units of length y = 12/ (me?) and energy h?/(my?) = ¢%/y we obtain a dimension-
less Hamiltonian operator

.1, 1 A
A=-2V? ==+ V2L, + 2 (x2 + yz) , (2.17)
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16 PERTURBATION THEORY IN THE COORDINATE REPRESENTATION

where L is given in units of # and A = B24%/(8m*c2e%) is a perturbation parameter. We hope that
the use of the same symbols for the original and dimensionless quantities will not be confusing. In
order to recover the original units at the end of the calculation, one simply multiplies lengths, energy,
linear momenta, angular momenta, and wavefunctions, respectively, by y, 2/y, ii/y, i and y =3/2,

Taking into account that [H, L.] = 0 we omit the constant of the motion L in the perturbation
calculation and then add the eigenvalue of ~/21 L, to the resulting energy. In other words, from now
on, we consider H — +/21 L, instead of A and write

L. f oA 1 1 .
H = Hy + 1H', Hoz—zvz—;, H =x2+y?. (2.18)

We can solve the perturbation equations in several different coordinate systems. Here we choose a
kind of modified spherical coordinates in which u = cos(#) takes the place of 9:

x =rv1—u?cos(¢p), y=rv1—u?sin(@), z=ru. (2.19)

By straightforward application of the general method outlined in Appendix A, we obtain the form of
the laplacian V2 in terms of such coordinates, and the perturbation equations for the factor functions
F;(r, u, ¢) become
192F; 10F; u?-—10°F; u OF; 1 I%F;
— = - — + 7 + A —_——
2 9r? r or 2r2  Ju? r2 du 2r2(u2 — 1) 9¢2
1 [3%0dF; 1—u?dWy dF; 1 3V dF;
Yo | or or r2  du du r2(1 —u?) 9¢ 9¢

J
+r2 (1= u?) Fjoa = Y EiFj =0, (2.20)
i=1

Notice that 9 F;/d¢ = 0 because the perturbation is independent of ¢, and the state depends on ¢
only through Wq which is an eigenfunction of L ..

In what follows we call ground state the one that correlates with the state 1s of the hydrogen atom as
B — 0 despite the well-known fact that states with negative values of the magnetic quantum number
m may eventually have lower energy for sufficiently great values of B [14]. The dimensionless
ground state energy and eigenfunction are

Eo = —%, Wo(r) = 2exp(—r) . (2.21)

Because Wy is independent of u and ¢, the perturbation equations (2.20) take a simpler form:

18%F; 19F; u?>—193*F; u dF; OF;

2 or2 r or 2r2  qu? r2 Ju or
J
42 (1 - uz) Fjoi—Y EiFj;=0. (2.22)
i=1

Proceeding exactly as in the preceding example, at each step j = 1, 2, ... we substitute a poly-
nomial solution of the form

J 3j
Fi(r,u) = Z u?k Z cjikr’ (2.23)
k=0 i=0
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2.3. LOGARITHMIC PERTURBATION THEORY 17

into equations (2.22), and solve for the coefficients ¢;;x. The calculation of the first perturbation
corrections is straightforward and can be easily carried out by hand. However, as difficulty increases
noticeably with the perturbation order, the use of computer algebra is recommended. In the program
section we show a set of simple Maple procedures for the systematic calculation of the perturbation
corrections to the ground state. Table 2.1 shows some results.

Table 2.1 Perturbation Corrections to the Ground State of a Hydrogen Atom in a
Magnetic Field by Means of the Method of Dalgarno and Stewart

1
EO = —z
Ei=2
53
E2 = —?
5581
Es ="~
_ 21577397
Eq = 540
E- — 31283208283
5= T 8100
E. — _ 13867513160861
6 =~ = 2700
- — 5337333446078164463
7= 59535000
Fo — _ 995860667291504211123017
8 = 50009400000

Flz%—érz—%r3+<%r2+%r3) u?
F2= 1489+Iggr2+131 3+1ér4+17r5+1lr6

83 .2 83 3 _ 13 4 3.5 1.6),2 5 4 2.5 1.6\ 4
+< o —mr 1w —5r —§r)u +<Er +35r +EV)M

ool

2.3 Logarithmic Perturbation Theory

Logarithmic perturbation theory is an alternative way of solving the perturbation equations in
the coordinate representation. It was developed many years ago [15] and has lately been widely
discussed and applied to many problems in quantum mechanics. Here we mention just some illus-
trative examples [16]-[20]. For simplicity, in what follows we restrict ourselves to the one-particle
dimensionless Hamiltonian

. 1
H= _EVZ + Vo(r) + AVi(r) . (2.24)

Given the ground state & we define the logarithmic derivative

f(r) = —VW(r)/¥(r) (2.25)
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18 PERTURBATION THEORY IN THE COORDINATE REPRESENTATION

that satisfies the Riccati equation
V- f—f-f+2(W+1V1—E)=0. (2.26)

Expanding f in a Taylor series around A = 0
e .
f=>fn (2.27)
i=0
we obtain a linear differential equation for the perturbation correction of order j

J
V=Y ffj i +2Vdjo +2Visj1 — 2E; =0. (2.28)
i=0
Notice that perturbation theory enables us to transform the nonlinear Riccati equation (2.26) into a
set of linear differential equations (2.28).
It is sometimes convenient to write W (r) = exp[—G(r)], so that f = VG, and the new function
G () satisfies

V3G -VG-VG+2(V—-E)=0. (2.29)

The perturbation equations then read

J
V2G; =Y VG VG i +2Vosjo+2V18j1 — 2E; =0. (2.30)
i=0
The equations above are suitable for the nodeless ground state. In order to avoid singularities
in the function G(r), we commonly write excited states as W(r) = N(r) exp[—G(r)], where N(r)
accounts for the state nodes. In this case we have to solve perturbation equations for both N (r) and
G (r) [18]. For simplicity we only consider the ground state here.
The logarithmic perturbation theory is closely related to the method of Dalgarno and Stewart dis-
cussed earlier. To realize the connection between both approaches we simply expand the approximate
state given by logarithmic perturbation theory

exp (—Go —AG1 — )»2G2 — A3G3 — .. )

G? G3
= [1 —AG1+ 22 (71 - G2> + 23 (Gle —G3 — ?) +- } exp (—Go) (2.31)

and take into account that W o« exp(—Gyo). In order to obtain exactly the same results, order by
order, by means of both methods, one may have to add appropriate normalization constants c1, c», . ..
as follows:

(c1 — G1)?

Fir=c1—-G1, Fop=c—Gy+ > e

(2.32)

2.3.1 The One-Dimensional Anharmonic Oscillator

As a first simple illustrative example we choose the anharmonic oscillator (2.6). The logarithmic
derivative for this one-dimensional problem is a scalar. By inspection of the perturbation equations

J
I1=3"fifj—i +x%8j0+2x"8;1 —2E; =0 (2.33)
i=0
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2.3. LOGARITHMIC PERTURBATION THEORY 19

we conclude that
j .
f] = ZCjisz_l . (234)

i=0

For example, an appropriate solution to the unperturbed equation

fi— fé+x*—2E=0 (2.35)
is fo = x, Eg = 1/2. At first order
fl—2fofi+2x* —2E;1 =0 (2.36)
we try
f1 = crox + c11x® (2.37)
and obtain
N (238)
Notice that
c1—Gi(x) =c1 — / fix)dx =c1 — gxz - %x“ (2.39)

agrees with the function Fi(x), equation (2.13), given by the method of Dalgarno and Stewart if
c1 = 9/16.

We do not proceed with the discussion of higher perturbation corrections for this simple model
and turn our attention to the Zeeman effect in hydrogen.

2.3.2 The Zeeman Effect in Hydrogen

Here we consider the reduced dimensionless Hamiltonian operator (2.18) for a hydrogen atom in
a magnetic field. Using the same coordinates chosen earlier for the method of Dalgarno and Stewart
we derive the perturbation equations

32G; 293G, N 1-u?9°G; 2udG,
8r2 roor r2 8u2 2 du

Z 3G, aG, _ 1—u28Gi 3G
r2 Ju ou

26 i0 2
v (1—u)8j1—2Ej=0. (2.40)
By inspection we conclude that
jo2j+1 '
Gj(r,u) = Z Z cjk,'rku& (2.41)
i=0 k=0

for the ground state. For simplicity we arbitrarily choose the normalization constants ¢ ;g0 equal to
zero.
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20 PERTURBATION THEORY IN THE COORDINATE REPRESENTATION

The algorithm for the calculation of perturbation corrections is so similar to that for the method of
Dalgarno and Stewart that we do not think it is necessary to show the Maple program here. Suffice
to say that the program for logarithmic perturbation theory runs faster and requires less computer
memory, so that we could calculate more perturbation corrections. The first eight perturbation
corrections to the energy omitted in Table 2.2 agree with those in Table 2.1. Table 2.2 also shows the
normalization constants ¢; and ¢ that enable one to obtain F7 and F» from G1 and G, according to
equations (2.32).

2.4 The Method of Fernandez and Castro

The method of Dalgarno and Stewart discussed earlier in this chapter is powerful and straightfor-
ward. However, the explicit occurrence of the unperturbed eigenfunction Wy (r) in the perturbation
equations for the factor functions F; (r) is a disadvantage as it forces us to treat just one particular state
at a time. Consequently, it is not easy to obtain analytical expressions in terms of the unperturbed
quantum numbers for all the states simultaneously. One can certainly perform such a calculation for
separable problems by means of other methods. Logarithmic perturbation theory exhibits the same
limitation, and even the treatment of particular excited states by means of this approach is rather
awkward [18].

Fernandez and Castro developed an alternative approach that in principle overcomes the above-
mentioned limitation retaining the simplicity of the method of Dalgarno and Stewart and logarithmic
perturbation theory [21]- [23]. This implementation of perturbation theory is particularly suitable
for separable problems to which we restrict here.

We say that an eigenvalue equation is separable when it is possible to split it into a set of one-
dimensional differential equations in terms of an appropriate set of coordinates. Typical examples
are central-field problems in spherical coordinates, and the hydrogen atom in spherical and parabolic
coordinates [24], among others. After separation we are left with one-dimensional equations with
additional unknowns called separation constants that play the role of eigenvalues. Such equations
are typically of the form

P(x)®"(x) + Q(x)® ' (x) + R(x)®(x) =0, (2.42)

where we assume that P(x), Q(x), and R(x) are differentiable functions. If we cannot solve equa-
tion (2.42) exactly we resort to an approximate method.

In order to apply perturbation theory to equation (2.42), we need a closely related and exactly
solvable equation of the form

P(x)®5(x) + Q(x)Pp(x) + Ro(x)Po(x) =0, (2.43)

which we call the unperturbed or reference equation. We then write a solution to equation (2.42) in
terms of a solution to equation (2.43) as follows

®(x) = A(x)Po(x) + P(x)B(x)Py(x) , (2.44)

where A(x) and B(x) are two functions to be determined.
In order to obtain the master equation for A(x) and B(x), we first substitute equation (2.44) into
equation (2.42) and obtain

[PA”+ QA"+ RA]|®¢ + [2PA"+ P(PB)" + QA+ Q(PB) + PRB] ¥
+[PA+2P(PB) + PQB| @} + P?Boy =0. (2.45)
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Table 2.2  Logarithmic Perturbation Theory for the Ground State of Hydrogen in a
Magnetic Field (Continued)

Eo — 86629463423865975502742047423
9= 15752961000000

Eq1n = _ 6127873544613551793091647103033033
10 = 3308121810000000

E4, — 2860906791689054643886413587592711789049
1= 3820880690550000000

E1, — _ 6321227877045544041116164554305582082898406063
12 = 17652468790341000000000

Eqq = 64835922754141197801861813085958043042686022627637303
3= 323952223084074585000000000

E1a — _33967369850210532149380889524787472328231987496282476312654993
14 = 262663701998798514263850000000000

Fqc = 2264264109482307631060000641858301878713803408913224993147208305977287
5= 23663372913071758150030246500000000000

E16 = —891276111940023292896005053253585006698797584111331839938484\
0209366528899109141,/110855329818409003970283695173620000000000000
Eq17 = 1846826604847204664087127274868002680909705982968538931488046

002854928790263651235117089/
24254037610969705978658369667036319800000000000000

E18 = —419913308585042798041537996924734146513044350228875757255915\
00636329692816021516227600886758735263/

520041007112598073164925140546185888086116000000000000000

E19 = 1518092578288527437732059802137479306225379703305765542184136\
03949845758935566633621749551652251120733809553/

1592916807246314653988555601001400146361058474960000000000000000
E»p = —219336910702035766950803747959309042604555587884643200068180\
13697669126783211746126272935870916863837201434323044446772\

3 /17613911117730066596206728280324088923648860618042629\
13600000000000000000

E1 = 1837484722422899428119801480748793174932836600343205332902060\
22860047889070248598241514628043115087331845204569614075298\

40680730547 / 1025096865177210897975362641400260572550965\
70108933145642500704000000000000000000

Ep; = —410028655365006605342946219548517631006241419490856211629573\
74232580856759781138017331664741402268244231682149031060919\

92059752967013968849373 / 1448854892633507941497471166335\
2810489180305758890229976089282952191360000000000000000000

Go=r
G1=§r2+lr3+(—%r2—%r3>u2

_ 1253 .2 241 3 _ 271 ,4_ 1 5 (198 2 193 .3, 53 4 7 5\ 2
Ge=—Tgp """~ ~ 50" — 1" +(60r T T’ +45r>”

11 4 1.5 4
+<—ﬁr —Er>u
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Table 2.2 (Cont.) Logarithmic Perturbation Theory for the Ground State of
Hydrogen in a Magnetic Field

G 648977 2+ 4567 3+ 530879 4+ 29572 o 10757 7

_ 6
3= r 18900 T+ g

_ 90877 2 _ 90877 .3 _ 94727 .4 _ 41746 .5 _ 6347 .6 _ 289 7\ 2
900 1350 3150 4725 3780 1890
122 5 431 6 4 6_ 1 7\ 6
( +45’"+540r+10’)”+(_m”_5_4r)”
1
1 = 3
805
=g

By means of equation (2.43) and its first derivative we remove ®; and &g’ from equation (2.45) to
derive an expression only in terms of ®g and @g:

[PA" + QA"+ (R—Ro) A —2PRoB — (RoP' + RyP)B]| Do

+P[PB"+ 2P — Q)B'+ (P" — Q)B+ (R— Ro) B+2A"|®,=0. (2.46)
In order to solve this equation, it is sufficient to choose the arbitrary functions A(x) and B(x) to
satisfy the following set of coupled differential equations of second order

PA" + QA"+ (R — Ro) A —2PRoB' — (RoP' + RyP)B = 0
PB"+(2P' - Q)B' +(P"— Q)B4+ (R—Ro)B+2A" = 0. (2.47)
To facilitate the application of perturbation theory, we introduce a perturbation parameter A into

the function R in such a way that R (A, x) satisfies R(0, x) = Ro(x) and R(1, x) = R(x). Assuming
that we can expand the difference R — Rg in a Taylor series about A = 0

o0
RO, x) = Ro(x) = _rj(x)n (2.48)
we look for a solution to the set of coupled equations (2.47) in the form of A-power series

A x) =Y A2, B0 x) = Be(n)a®, (2.49)

k=0

where A(0, x) = Ag(x) =1 and B(0, x) = Bp(x) = 0.
The coefficients A (x) and By (x) satisfy

k
PA{+ QA —2PRoB; — (RoP' + RGP) Bi + » rjArj = O
j=1
k
PB/+ (2P = Q) By + (P" — Q') Bu + 2A} + Y rjBi_j = 0 (2.50)
j=1
and the perturbation corrections to the eigenfunction
o0
D(x) = Y Dp(x)Af (2.51)
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are given by
Pr(x) = Ap(x)Po(x) + Bi(x)Pp(x) . (2.52)

The perturbation equations (2.50) look more complicated than the ones in the method of Dalgarno
and Stewart and in the logarithmic perturbation theory discussed above. This is the price we have
to pay for the advantage that &g does not appear explicitly in them. If we are able to solve them,
then we obtain general perturbation corrections in terms of the quantum numbers of the unperturbed
model as we will shortly see.

2.4.1 The One-Dimensional Anharmonic Oscillator

The time-independent Schrdédinger equation for a dimensionless one-dimensional quantum-me-
chanical model

"(q) +2[E - V(@)1P(g) =0 (2.53)

is a particular case of (2.42) with P =1, Q = 0,and R = 2(E — V). Given aclosely related exactly
solvable problem of the form

@(q) + 2[Eo — Vo(g)]1Po(g) =0, (2.54)

the perturbation equations (2.50) become

k

Al +4(Vo—Eo) B +2VgBr +2(E1 — V) Ac1+2) EjAj = 0
Jj=2
k
Bl +2A} +2(E1— V1) Br1+2) EjB_; = 0. (255)
j=2
As a simple nontrivial example we choose the anharmonic oscillator
q2 4
Volg) = 5. Vil@) =4 (2.56)
for which equations (2.55) become
k
Al 42 (q2 - ZEO) Bj +2qBy +2 (El - q4) A1 +2Y EjA; = 0
j=2
k
Bl +2A) +2 (El - q4) Bioi+2) E;Bi.; = 0. (257)
j=2

We first note that ¢ and @ have definite parity (either even or odd) because both Vy(¢) and V (¢)
are parity-invariant (even). It therefore follows that A(q) is even and B(q) is odd in order that @
and @ have the same parity. By straightforward inspection of equations (2.57) we conclude that

ak Bk
Ar(q) = arig®. Bi(q) = bug® ™, (2.58)
i=0 i=0

where s = 81 =1, ap = Br—1+ 3,and By = a1 + Lforall k > 1.
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24 PERTURBATION THEORY IN THE COORDINATE REPRESENTATION

The perturbation equations (2.57) do not determine the coefficients axo which we obtain by nor-
malization. For simplicity we choose an intermediate normalization such that ayg = 0. If necessary
we normalize the eigenfunction afterwards. Table 2.3 shows some results in terms of Eg = n+1/2,
where n = 0,1, ... is the harmonic oscillator quantum number. We have obtained many more
perturbation corrections by means of the simple program shown in the program section.

Table 2.3 Method of Fernandez and Castro for the Anharmonic Oscillator

52 4 22
A=C00
2
E1=%E02+%
Ey=-3 Eo®* - S8 Eo

E3 = 375 E 4 07 1707 E + 1255369

__10689 5_89165 3 305141
Ey =g E 18 Eo 1022 £o
87549 587265 1 4 , 9317949 - 2 , 1456569
Es = 850 Eo® + 5028 Eo* + BDE E£o% 4+ 1505
_ 3132399 7 _ 124269873 - 5 _ 912774217 1 3 _ 1056412343
Ee = =555 Eo 1022~ £O 2006~ £0” — T 1g3ga Eo
238225077 - 8 , 3294251289 78698260599 1~ 4 , 104934994197 1. 2
E7 = 2500 Eo® + S280500290 Eo® + TORE™ Eo + 50" Eo
4 106611707169
504288
_ 18945961925 5 9 _ 349771437429 . 7 _ 1248432966881l 1 5
Eg = —g3gz Lo 16384 L0 3072 Lo
_ 3081830633217 p 3 114146479775437 p
262144 4194304
104904116847 1~ 10 , 4646230497315 - 8 , 233413756830177 1 6
E9 = “gzgs  Eo + = 1gass - E0 t = qmop - Eo
938878520637915 1~ 4 | 7968922195094439 1~ 2 , 110903991788745
+=2eo1as —— E0 + ~gioaz0a L0+ “{oag576
8240234242929 - 11 _ 988099602430105 1~ 9  16709415020420169 1 7
Ejo = —""gs535 L0 262144 L0 524288 Eo
_ 201401788392932181 , 5 _ 1579588053085388253 1 3
— 2097152 *~0 16777216 0
_ 1268701005225618653
67108864 0
3
Al =—3 q°
1
Bi=3Eoq+34°

>
S
I
15
!
<)
|
=

6E03)42+(%_3%E02)q + 35 qu +32q

w)|
N

Eo )q—%qu - 24"

>
w N
Il |
—~ /? — Blw
|©
Re=
|
|\l
NN

_189 _ I35 g2 +231E0)q2+( ¥ o+ £ Eo%) o
381 2 3467 6 _ 9 10
(7 £ 3072) 9° — 451 Eoq® — 35 4
_ (609 1731 2143 | 1507 9 4\ 3
B3—(2 E+128E0> +(STJrzseEO 6_4E0)‘1

+( 125 Eo +511E0)q +(135%76+1_§8E02>q + 32 Eoq® + g5z 4™

© 2001 by CRC PressLLC



2.4, THE METHOD OF FERNANDEZ AND CASTRO 25

In addition to giving general expressions for the eigenfunctions and eigenvalues in terms of the
guantum numbers of the unperturbed problem, the method of Ferndndez and Castro is faster and
requires less computer memory than the method of Dalgarno and Stewart and the logarithmic pertur-
bation theory. The reason is that the polynomial functions Ay (x) and By (x) are remarkably simple
because ®o(x) and @ (x) carry out most of the details of the perturbed eigenfunction @ (x) (such
as the oscillation in the classical region). The disadvantage of the method of Fernandez and Castro
is that its application to nonseparable models is not so obvious.

The method of Ferndndez and Castro has already been applied to several separable quantum-
mechanical models [21]-[23]. We will mention some of them later in this book.
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Chapter 3

Perturbation Theories without Wavefunction

3.1 Introduction

In the preceding chapters we solved the time-independent Schrodinger equation approximately by
calculation of perturbation corrections to both the eigenvalue and eigenfunction at each perturbation
order. Typically, the calculation of the perturbation corrections to the eigenfunction is more tedious,
lengthy, and time consuming. For this reason, if one is primarily interested in the energy, then it
will be desirable to bypass the explicit treatment of the eigenfunction. In what follows we discuss
some well-known strategies for this purpose. Two approaches simply substitute expectation values
and moments for the eigenfunction, whereas the third approach is a true perturbation theory without
wavefunction as it only takes the Hamiltonian operator into consideration.

3.2 Hypervirial and Hellmann—-Feynman Theorems
An hermitian operator A satisfies
<qJ|A|<1>> - <Aqf|q>> 3.1)
for any pair W, @ of vectors of the state space. In particular, the Hamiltonian operator satisfies

equation (3.1), and in the case that ¥ is an eigenfunction of H with eigenvalue E, HV = EV, we
have

<\If‘(ﬁ—E)‘d)>=<(ﬁ—E>\IJ|<D>:O. (3.2)

If W is an arbitrary linear operator such that ® = WW then (H—E)® = W(H—E)V+[H, WV,
and equation (3.2) leads to the hypervirial theorem [25]

<xp ‘[H W]‘ qz) —0. (3.3)
If W is normalized to unity < W|W¥ >= 1 we simply write
<[H W]> —0 (3.4)

where < ... > denotes the quantum-mechanical expectation value.

27
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28 PERTURBATION THEORIES WITHOUT WAVEFUNCTION

If the Hamiltonian operator depends on a parameter A, which may be a particle charge or mass,
a field strength, or simply a dummy parameter artificially introduced to apply perturbation theory,
then the eigenvalues and eigenfunctions of A will also depend on that parameter. If we differentiate
< W|(H — E)|¥ >= 0 with respect to A

<% (I:I—E>’\IJ>+<\II

and take into account equation (3.2), then we obtain the Hellmann—Feynman theorem [25]

3(H — E)

oA oA

\P>+<\P‘<ﬁ—E)‘%>=O (3.5)

OE BYzi
— < YU >=(V|— V), (3.6)
I E
or
oOE dH
— = (— (3.7)
F F

if W is normalized to unity.
In what follows we show that the general results just derived facilitate the application of pertur-
bation theory.

3.3 The Method of Swenson and Danforth

The first method that we discuss here was developed long ago [26], but it had to wait until its
main equations were rewritten in a simpler way [27] to become popular [28, 29]. The approach
is based on the combination of the hypervirial and Hellmann—-Feynman theorems with perturbation
theory, and for this reason we will also call it hypervirial-Hellmann—-Feynman method or hypervirial
perturbative method [28].

The first step is the derivation of a recurrence relation for the expectation values of properly chosen
functions of the coordinate by means of the hypervirial theorem. Such recurrence relations have only
been obtained for separable quantum-mechanical models as shown in the examples below.

3.3.1 One-Dimensional Models

We illustrate the main ideas behind the method of Swenson and Danforth by means of a one-
dimensional model

AP oo .
H=E+V,V=V(x), (3.8)

where [x, p] = ih. o
First, rewrite the commutator [ H, W] for the linear operator

W=W(Ep)=Ffp+8. (3.9)
where f = f(%), and g = g(%), in the following way:

] = L[] (5l

+—[p.[p. 8]+ F[V. 5] - (3.10)
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3.3. THE METHOD OF SWENSON AND DANFORTH 29

Second, choose the arbitrary functions f(x) and g(x) so that the coefficient of p in equation (3.10)
vanishes:

e=5[F]. @11)
and write 2 in terms of H and V. Equation (3.10) becomes
i) 2[5 (- 9) s [ ]

Finally, the hypervirial theorem (3.4) gives us an expression for expectation values of operators
that commute with the coordinate operator:

ot (5. & [0 [ 17 7))+ (L7 ) +2 5] 9) 0 09

Notice, for example, that [ p, 71 is a function only of the coordinate operator as it follows from the
Jacobi identity

g R A R N | R
Equation (3.13) reduces to the well-known virial theorem for the particular case f = x:
2E—2<\7>+%<f[‘7,f)]>=0. (3.15)

In the coordinate representation p = —ifd/dx, and equation (3.13) reduces to

2

2E(f/)+h—

- =V =2(f'v)=o0, (3.16)

where the prime denotes the derivative with respect to x. To simplify the notation we drop the caret
on functions of the coordinate operator reflecting the fact that xW(x) = xW(x). Although it is
simpler to derive equation (3.16) directly in the coordinate representation, we have followed a more
lengthy way with the purpose of obtaining the main equation (3.13) independent of any particular
representation.

Equation (3.16) enables one to obtain expectation values in terms of the energy of a stationary state
of a given exactly solvable model. As an example consider the dimensionless harmonic oscillator

N A L
H=-|—-— . 3.17
2 ( a2 ) (3.17)
Choosing f(x) = x%*1 j = 0,1, ..., equation (3.16) with 7 = m = 1 becomes a three-term

recurrence relation that we conveniently rewrite as

Xj1 [2(2j +DEX; + % (4/2-1) le] : (3.18)

1
T2 +1)

where

X; = <x2/) . (3.19)
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Notice that we do not consider the expectation values < x2/*1 > that vanish because the eigen-
functions are either even or odd. We obtain all the expectation values X ;, j = 1,2, ... by simply

setting j = 0, 1, ... in equation (3.18) and taking into account that Xo = 1. The expectation value
X j is a polynomial function of E of degree j, where E =n+1/2,andn =0, 1, ... is the quantum
number.

If the quantum-mechanical model is not exactly solvable we apply perturbation theory to the
recurrence relation for the expectation values. To illustrate this approach we consider the simple
anharmonic oscillator

.1/ d?
H== <_— +x2> + ax2K (3.20)
X

where K = 2,3, ... and X is a perturbation parameter. The recurrence relation for the expectation
values becomes

2Q2j + DEX; + % (4j2 - 1) X;1-2+DX;01—20Qj +K+1DX;,x =0. (3.21)
If we expand the expectation values and the energy in a Taylor series around A = 0
E=)EN, X;=) X, (3.22)
i=0 i=0

then equation (3.21) gives us a recurrence relation for the coefficients E; and X ; ;. Substituting j —1
for j it reads

1)i=1,. .2 . i
Xji = 2 {7[4(1 — 12— 1X; 2 +22j =) Y EnXj1i-m
m=0
—2Qj+K-DXjik-1i-1¢ (3.23)
where
Xo,i = doi (3.24)

as follows from the normalization condition Xg = 1.
The recurrence relation (3.23) gives us the perturbation corrections X ; ; in terms of the yet unknown
energy coefficients E;. The Hellmann—-Feynman theorem

0E

— =X 3.25
= X« (3:25)

provides an additional equation that enables us to solve the problem completely. Expanding equa-
tion (3.25) in a Taylor series about A = 0 we have

1
E; = lTXK,i—l (3.26)

forall i > 0. By straightforward inspection of the recurrence relation (3.23) one easily convinces
oneself that it is sufficient to calculate the coefficients X;;, foralli = 1,2,...,p—1and j =
1,2,...,(p—i)(K — 1)+ 1in order to obtain E,,.
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Table 3.1 Method of Swenson and Danforth for the Anharmonic Oscillator

fo_t? +£2+/\A4
= — + = X

2 dx?2 2
X1,0 = Ep

Xl)lz—%—?)Eoz

X12= 5% Eo+ ¥ Eo®

X1,3=—%— #Eoz— 3;—51504

X14= TP o+ S50+ M 6

Xi5=— 10}83383 _ 65252152643 Eo? — 411302855 Eo* — 61:2%# Eob

X16= 17gigg33831 Eo+ 155147019661689 Eod + 211%(5)32841 Eo® + 532;5%783 Eo
X17=— 53322?81;;845 _ 5246;113;0985 Eo? — 3934%822995 Eo

16471256445 - 6 1191129885 - 8
- 512 Eo” — 512 Lo

X1 8= 2625369034835051 Eg + 708823053563991 E03+ 287139582382653 EOS

4194304 262144 131072
8044743060867 1~ 7 , 435757124275 - 9
+ g3z Eo' + “1gga — Eo
X, o — _ 1441751803253685 _ 103505988547927707 2 _  12205420885292895 p 4
1.9= 524288 2097152 0 131072 0
3034378838792301 1~ 6 _ 60400996465095 1~ 8 2533753519011 - 10
— e Lo — Tgm o Eo — Tgigp — Eo

Note: The energy coefficients are identical to those in Table 2.3.

In the program section we show a set of simple Maple procedures that facilitates the systematic
calculation of the perturbation corrections for the anharmonic oscillator (3.20). Table 3.1 shows
perturbation corrections E; and X1 ; for K = 4. The former agree with our previous calculation in
Chapter 2. From the perturbation corrections to the energy and equation (3.26), one easily obtains
the coefficients X2 ;.

The method of Swenson and Danforth also applies to potentials that are not parity invariant.
Consider, for example, the cubic-quartic anharmonic oscillator

H_z(—m+x)+)»(ax +x). (3.27)
In this case we choose f(x) =x/, j =0,1,..., and define
X = (xf) . (3.28)

Repeating the algebraic steps in the discussion of the preceding example we obtain the recurrence
relation

1[G -G -2 -3 . "
Xji = —.|: / / 2 / Xj74,i+2(J_1)ZEij72,i7m
J m=0
—a@j+DXjp1i-1—2( + 1)Xj+2,i—l:| (3.29)
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from the hypervirial theorem, and
1
E; = 7 (05X3,i71 + X4,i71) (3.30)

from the Hellmann-Feynman theorem. The initial conditions are also given by equation (3.24).
In order to obtain E,, we need the perturbation coefficients X;; foralli = 0,1,..., p — 1, and
j=212,...,2(p—i+1).

Table 3.2 shows perturbation corrections to the energy and some moments. Notice that when
o = 0 the energy coefficients reduce to those in Table 2.3, and that all the X1 ; vanish because the
resulting potential-energy function is parity-invariant.

3.3.2 Central-Field Models

In Chapters 1 and 2 we briefly outlined the Hamiltonian operator for one- and two-particle systems.
In this chapter we specialize in central conservative forces that are given by the gradient of a potential-
energy function V (r), where r = |r| isthe distance between the particles. Itiswell known thatin such
a case the Schrodinger equation is separable in spherical coordinates r, 6, ¢ [30]. We can therefore
write the eigenfunctions of the Hamiltonian operator as W,,;,, (r, 60, ) = R (r)Y;, (0, ¢), where
n=12,...,1=0,1,...,andm = -1, -1 +1,...,1 are three quantum numbers that completely
specify the state, and Y}, are the spherical harmonics [30, 31]. From now on we consider the
dimensionless form of the Schrodinger equation derived in Chapter 1. It only remains to obtain
the radial factor R(r) of the eigenfunction. For convenience we consider ®(r) = r R(r) that is an
eigenfunction of the one-dimensional-like Hamiltonian operator [30]

. 1d?> 1(I+1
H=—-—>—+—5—- . 331
2dr? 2r2 V) (3:31)
The bound states satisfy the boundary conditions
®(0) =0, I_|)ngo ®(r)=0. (3.32)

If we naively follow the steps of the discussion above regarding the hypervirial theorem for actual
one-dimensional models, and choose the function f(r) = r/, we obtain

i\ L i =2 j-3
2]E<r >+(] 1)|: 4 I1+1) <r >
_ <r4/ v’) _2j <r«i—1v> —0. (3.33)
However, this equation is not valid for all values of j because of the boundary condition at » = 0.
Although the form of the hypervirial theorem under arbitrary boundary conditions is well known [32],

we briefly address this point here for completeness.
Consider the scalar product

o
< ®|x >=[ () x(r)dr , (3.34)
0
where ®©(0) = 0. The radial Hamiltonian (3.31) satisfies

<c1> )H( x) - <F1c1>|x>— %(b’(O)*X(O), (3.35)
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Table 3.2 Method of Swenson and Danforth for the Anharmonic Oscillator

. 42 32
H = %dz—i-?—i-)»(ax +x)

Ey = %4— %Eo2

Er, = (—EEOZ— %) al — %Eo— %Eo3
(zst n 459 )az_l_ 12553%9+ 1707E + 375E4
_ ( 105 3 — 1155 Eo) ot +( 40261 _ 62013 2 24945 E04) o2
_ 3(1)8%21 Eo— 8%25 Eod — 10689 EoS
Es = ( 131817 | 116325 pod | 231929885 Eo ) 4
+ ( % Eo® + 1597845 Eo® + 3909285 E ) a? + 142%%69 + 9311072%149 Eg?
L 587265 587265 Eo* + 87549 EoS
Eg = (_ % 111527855 Eo* — 203055 Eoz) of
+( ssggggs Eo 254:22586615 Eo3 — % E05) ot
+( 70919278745 Eo — 18213278765 Eob — 10122085513 _ 809260]2?8141 Eoz) o?
_ 10516é1824343 Eq— 91%47079%217 Eod — 12412062‘.?73 EoS — % Eo’
X10=0

X11=-3aEy

X12=(23+39E0 )
X13—(45E2 )a +(—4%E0—2€1ﬁ1503)a
(7545 Eo® + 14259 E ) o3+ ( 49495 | 72255 E2 + 4% g, )
Xi5= ( 19085 po% _ 31185 Eo) o +< 833475 prod _ 131183 _ 1800135 E02> o3

72618213 28507965 5770737
+( Eo o B’ — 2 EOS)“

1024
X2,0 = Ep
X21=— % — 3 Eg?
X22=(15E* + §) o? + 32 Eo+ B Eo®
X2,3=(—¥E03 3213E> _ %_ @Eoz_ 3;—5E04
Xp4= <%an i %E()) ot ( 124725 g4 | 201305, 310065 Eoz) o2
Xp 5= (_ 348975 o4 19955 g2 %) ot

+< 50820705, _ 20771985 3 4402125 Eo5> o2 — 10195083

_ 65225643 2 ALI0BS5 o4 612843 o6
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34 PERTURBATION THEORIES WITHOUT WAVEFUNCTION

as follows from integration by parts. For the particular case x = D®, D = d/dr, we have

([A.b])=10+D(2)-(v)= —% ') . (3.36)

Iin})rZV(r) =0, (3.37)

then the eigenfunctions of H behave as Cr'*! close to r = 0, where C is a nonzero constant. We
clearly see that the master equation (3.33) does not hold when j = 0 for those states with / = 0
because ®’(0) # 0. This apparent complication does not take place when > 0.

Another important point to notice is that the integrand in the expectation value

(1) = /oo 1B (r)2r dr (3.38)
0

behaves as |C|2r2/*7+2 close to origin. For this reason the expectation value (3.38) does not exist if
Jj < —21 — 2. Itis most important to take into account this fact in the case of perturbations that are
singular at origin.

In what follows we consider two exactly solvable models as illustrative examples. The master
equation (3.33) for the harmonic oscillator in three dimensions

2

V() = % (3.39)
becomes
2jER; 1+ (j -1 [](]4—_2) — 11+ 1)} Ri 3—(+DRj;1=0 (3.40)
forall j > 0, where
R; = (ﬂ) . (3.41)

According to equation (3.36), for j = 0 we have
1
10 +1DR5— Ry =3 EXOIEE (3.42)
and for j = 2 equation (3.40) reduces to

4ER, — Il +1)R_1 —3R3=0. (3.43)

It is clear that we cannot obtain the expectation values of odd powers (either positive or negative) of
the radial coordinate, unless we have additional information about the solutions of the Schrédinger
equation. On the other hand, equation (3.40) is sufficient for the calculation of Ry; forall j > 0 in
terms of the energy; for example:

3 I(l+1) 3E?

Ry=E, Ry=-— —_— ... 3.44
2 . Ra=g >t (3.44)
Substituting the energy eigenvalues [33]
3
E:2v+l+§,v:0,l,... (3.45)
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3.3. THE METHOD OF SWENSON AND DANFORTH 35

into the Hellmann—Feynman theorem

oE 1
— =(1+Z)R_ 3.46
al ( + 2) 2 (3.46)
we obtain
2
R oy=—-. 3.47
2T 011 (347)

Taking into account this expression and the master equation (3.40), we easily calculate the expectation
values Rp; forall - +1) < j <O0.

We are entitled to apply the Hellmann—Feynman theorem as in equation (3.46) because the ex-
pression (3.45) for the energy is also valid for noninteger values of / [33]. We substitute the actual
value of the angular momentum quantum number [ into the resulting expression.

It follows from the master equation (3.40) with j = —1 that

_ 8E
T @I+DAId+1) -3]

R_4 (3.48)

Since R; > 0 for all j we clearly see that this expression is not valid when I = 0 in agreement with
the discussion above. Analogously, it follows from equation (3.40) with j = —3 that

8[24v2 + 24v] + 36v + 412 + 161 + 15]

6= 3.49
® T @+ DA+ 1) - 3[4 + 1) — 15] (3.49)
provided that I > 2.
We now consider anharmonic oscillators with potential-energy functions
2
Vi) =5+ APk K =23, ... (3.50)

as illustrative examples. In order to apply the method of Swenson and Danforth, we take into account
the perturbation series for the expectation values

oo
Rj = <r2j> = Z Rj’i)\i (351)
i=0
and proceed as in the one-dimensional case obtaining the recurrence relation
1 ) 2j—1(2j—3)
Rii = = { (-1 [% — 10+ 1)] Rj-2.
Jj 4
i
+@j—-1 Z EnRj_1i-m—@2j+K— 1)Rj+K—1,i—l} - (3.52)
m=0

The normalization condition and the Hellmann-Feynman theorem give us R, ; = 8o; and

1
E; = lTRK,ifl , (3.53)

respectively. In order to obtain the perturbation correction to the energy E,, we need all the coeffi-
cients R;; withi =0,1,...,p—landj=1,2,...,(p—i)(K -1+ 1
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36 PERTURBATION THEORIES WITHOUT WAVEFUNCTION

Table 3.3 Method of Swenson and Danforth for the Anharmonic Oscillator
. VZ ;2
H = + — + a7t
2 2
Er=3- 310+ + 3E
Ep=—-%Eo+ SEol(+1) — Y E?
E3 = 1255369 + 1707 Eo 2 _ 129[(1+1) EO + 375 EO _ 2372€’>l(l+1)
+ A+ 1)2

E4= Zggg” Eol(+1D— B EPU+1D%+ 210 +1) E® - UL E,

_ 89165 Eo 3 _ 1066489 E05

128
945 | 1711(+1)  885Ep® _ 972 (z+1)2 631 (I+1) Eg® 165 Eg*
Rsi=-1+ 16 16 + 7 8

Re2=— Q1 Eol (1 +1) + 32 Eol? (z+1>2 1251 4 1) Bo + WL
4 29555 29555 E + 3129 E 5

R3’3 — 132223 i (l + 1) _ % E02 _ %12 (l + 1)2 246465l(l + 1) EO

_ 367605 _ 473285 E04 _ %]6.512 (I + 1)2 EOZ + 16315 I(I+1) EO

256
+ % 13 (l + 1)3 _ 3119683 EOG
Raa = — BTS00 gy g 4 1) 4 1429035 g2 ) 4 1) 39645256 ) () 4 1) 3
1230998721 965258733 1 3 , 118198899 5+ 5 46515 o ;3 3
+ o Eo+ oo Eo” + T B0’ — g EolP(+ D)
189S5 2 ) 4 1)2 g3 32185 ) 4 1) )5 22T g7

Table 3.3 shows perturbation corrections to the energy and R3. We do not give more results because
the length of the corrections rapidly increases with the perturbation order. One easily obtains many
more perturbation corrections by means of a simple Maple program which we do not show here
because it is similar to that discussed earlier for the one-dimensional model.

Another interesting exactly-solvable model is the nonrelativistic hydrogen atom. Upon solving the
dimensionless Schrodinger equation with the dimensionless Coulomb interaction between electron
and nucleus

V(r) = —% (3.54)

one obtains the dimensionless energy eigenvalues

1
wherev =0,1,...,n — 1 — 1. The master equation (3.33) reduces to
. . j(—2) .
2jER; 1+ (j -1 1 —Il+1D|Rj3+@2j—DRj—>=0. (3.56)

When j = 1 we obtain the well-known virial theorem
R_1=-2E. (3.57)
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The Hellmann—Feynman theorem (3.46) gives us

2
Ro=——-—-——. 3.58
2T 2+ Dnd (3.58)
From the master equation (3.56) with j = 0 we obtain
R_»
R3=—",1>0. 3.59
vy T (3:59)

In what follows we consider simple perturbations of the form ArX, K > 0. The method also
applies to singular perturbations (K < 0) with the reservations mentioned above regarding the
expectation values of negative powers of the radial coordinate. Substituting the potential-energy
function

Vr) = —% +ark (3.60)

into the master equation (3.33) we obtain the recurrence relation

(i_2
2jER; 1 + (j_l)l:J(le—)_l(l+l)i|Rj_3

+ (2j—DRj_2—(2j+KARj4xk-1=0. (3.61)

Expanding the energy and expectation values in Taylor series about A = 0 as in preceding examples,
equation (3.61) gives us the recurrence relation

Rj; = ;{j[l(l-i-l)— jz_l]R'—Z'—(Zj-i-l)R‘—l'
' 2(j + 1D Eg It I
i
—-2(j+1 Z EuRji—m+Q2j+ K+ 2)Rj+K,i—1] (3.62)
m=1

where we have substituted j 4+ 1 for j for convenience. It follows from the Hellmann—Feynman
theorem that equation (3.53) also applies to this example. The recurrence relation (3.62) is unsuitable
for the calculation of the perturbation corrections to R_; because the denominator vanishes. In order
to obtain them we resort to the virial theorem that follows from equation (3.61) with j = 1. Expanding
the resulting expression in a Taylor series we have

R1;=-2Ei+(K+2)Rg,i1. (3.63)

Table 3.4 shows sample results: one easily obtains more perturbation corrections by means of a
simple Maple program written according to equations (3.53), (3.62), (3.63), and the normalization
condition R ; = do.

3.3.3 More General Polynomial Perturbations

The method of Swenson and Danforth applies to more general polynomial perturbations than the
ones discussed above. For example, the reader may easily derive suitable perturbation equations
from the hypervirial and Hellmann—-Feynman theorems for the following cases:

xz > " .
Ve = S DAY ejixd (3.64)
=1 =1
Vi) = > + A ZCjiVZZ , (3.65)
j=1 i=1
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. ve o1
Table 3.4 Method of Swenson and Danforth for H = —5 3 + Ar
r
1 3 1
Fo— _ 3 PP0+)2 7 1 5 1
2= 716 " E 84 Ey3 32 Ep2
_ 5 Ba+n® | 7 Pa+D®2 33 1, 75 1
Es=—g5 7 T @ g3 512 £S5 T 256 &7
Es— 25 Ba+Dd 45 2a+)® 21 Ma+Dt 2075 1, 55 1
4= B2 T g i 128~ gy3 4096 £,5 256 Eo5
_ 99 PP(+1)? , 465 1
2048 T g5 8192 E,7
Ee— — 9L U+’ 2003 20+1)? | 38 @+t 55 B4l
5= T 1024 T g 4096 ~ go6 256 Eoo 128~ gy5
_ 9 Pe41® 1995 1, 4335 1 11409 1
512~ gyt 32768 E,9 2096 o8 8192 o7
4485 2a+1)?
8192 ~ Eo7
_3a+y 11 4, 5 1
R20= 7 — % 15 T8 gy
_ 15 Pa+1% 45 1, 63 1, 5 I(+D 7 I1(+D
Re1=%3 57 ~ i T 6 g3t 16 g 2 g3
_ 63 Ba+D® 45 2+1)? 91 1 649 1 99 (41
Re2= 135 —p5 — 18 gt T 256 L5 26 £ T 512 gy
_ 225 104D | 21 Parl? | 98 1
256 Eg4 32 Eg? 128 Eyt
Ryq— — 253 PU+D® 2893 2(+1)2 55 1(+1) 4 315 1a+D*
2,3 512~ goS 1024~ g5 64 " E,S 512~ gyt
4285 PQ+1)° | 24855 1 465 [(+1) _ 819 1_
256 Eot 4006 E,7 2048 g7 128 E,0
4485 ZA4D? | 2975 104D 3621 1
1024 Eq® 1024 E,b 8192 ﬁ
or
1 &L
Vi) ===4+> MY curt. (3.66)
r
j=1 =1

3.4 Moment Method

In what follows we call moments of a given vector W of the state space the inner products
< f|W¥ > between W and other vectors f. In particular, we choose W to be an eigenvector of the
Hamiltonian operator H. Itis known since long ago that the moments of an eigenvector of H prove
suitable for nonperturbative [34] and perturbative [35] treatments of the Schrédinger equation. The
application of the moment method to perturbation theory has since been considerably generalized
and extended [36]-[39] (and references therein).
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The main idea behind the moment method is that if (H — E)W is orthogonal to a complete set of
(not necessarily orthogonal) vectors { f;}, then W is eigenvector of W with eigenvalue E. In other
words,

(| = E[w) =((7 - E) sj1v) = 0 (367)

for all j is equivalent to the Schrodinger equation HW = EW.
Since the set of vectors { f;} is complete we have

o0
Hfj=) Hijfi. (3.68)
i=0
where H; ; are coefficients. It follows from equations (3.67) and (3.68) that
o0
(Hi,j — E(Sl’j) F, =0, (3.69)
i=0
where
Fj=(f;1¥) (3.70)

is a moment of .

Notice that if the set { f;} is orthonormal, then H; ; =< f,~|1f1|fj > is the usual matrix element
of the Hamiltonian operator and F; is a coefficient of the expansion of W in the orthonormal basis
set. In what follows we do not assume that the set of vectors { f;} is orthonormal.

3.4.1 Exactly Solvable Cases

When H; ; = Oforalli > j the eigenvalue equation (3.69) becomes an exactly solvable triangular
system of homogeneous linear equations

(Ho,o—E) Fpb = 0
Ho1Fo+ (Hii—E)F1 = 0
Ho jFo+Hi jFi+---+(H;;—E)F, = 0

(3.71)

We first consider the nondegenerate case H; ; # H; ; foralli # j. If E % H; ; forall j, then all
the moments F; vanish and W is the null vector because the set { f;} is complete. Consequently, E
has to be one of the diagonal coefficients in order for a nontrivial solution to exist. Suppose that
E = H, ,;then F; =0forall j <n, and

j-1
ZHi,jFi,j=n+l,n+2,.... (3.72)

i=n

1
Fj=—"——
Hyp — Hj,
All the nonzero moments are proportional to F,, which we may arbitrarily choose equal to unity as
an intermediate normalization condition.

As an illustrative example consider the dimensionless harmonic oscillator

1/ d?

H= 5 (‘W +x2) (3.73)
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and the set of functions

£; = 22 exp (—x2/2>  s=0,1. (3.74)
In this case we have
Af =—(2j+s)(22j+s_l)fj—1+ (2j+s+%> fi (3.75)
so that the only nonzero coefficients H; ; are
Hy, =2 +S)(22j oD oy <2j 5+ %) . (3.76)

The argument above leads to the well-known energy eigenvalues £ = (2j +s + 1/2), where s =0
and s = 1 apply to even and odd states, respectively. The recurrence relation for the moments is

Ri+9)Qj+s—1)

F;, = - Fi_1, j=n+1n+2,.... (3.77)
! 4(j —n) !
The fully degenerate case H;; = H; ; for all i, j is also interesting. Choosing E = Hj ;, the
eigenvalue equation (3.71) becomes
Ho1Fo = O
HooFo+ Hi2F1 = 0
Ho,jFO+H1,jF1+"'+Hj—1,ij—1 = 0. (378)

If all the coefficients H;_, ; are nonzero, then all the moments F; are zero, and W is the null vector.
We must therefore assume that H,_1 , = 0. The nonzero moments given by the recurrence relation

j—1

1 J

Fj=— Z HijFi, j=nn+1,... (3.79)
Hj’j+1 i=n—1

are proportional to F,,_1 which we may arbitrarily choose equal to unity.
A simple example of full degeneration is given by the radial Hamiltonian operator for the Coulomb
problem

142 10+1) 1

H=—Z—+4+—5>—2, 3.80
2 dr? + 2r2 r (3.80)
Choosing the functions
fi= rittlexp(—ar), j=0,1,... (3.81)
the only nonzero Hamiltonian coefficients are
i(j 421 + 1) , o?
Hj_z’j=—”f, Hisj=o(+1+1) -1 Hjj=-%. (382
Therefore, from E = H, , and H,_1, = 0 we obtain the well-known results
1 1
= E=-——1, 3.83
*=N 2N2 (383)

where N = n + [ + 1 is the principal quantum number of the hydrogen atom [40].
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3.4.2 Perturbation Theory by the Moment Method

If the moment equations (3.69) are not exactly solvable, then we apply perturbation theory. We
introduce a dummy perturbation parameter A as follows:

J 00
Hfj = Hpjfu+xr > Hujfn. (3.84)

m=0 m=j+1
so that the recurrence relation for the moments becomes
J 00
> (Hyj— ESpj)Fu+i Y HyjFy=0. (3.85)
m=0 m=j+1

Notice that we have split the recurrence relation (3.69) into a solvable part and a perturbation that
vanish when A = 0. We can therefore try approximate solutions in the form of Taylor series about
A=0:

o0 o0
E= Z EiM, Fj = Z Fiin, (3.86)
i=0 i=0

where commonly
Eo = Hy,., (3.87)

for a given value of n.

The normalization condition is arbitrary. Sometimes it suffices to choose F,, = 1, but in other
cases a more elaborate normalization condition appears to be more practical, as shown in what
follows. First, rewrite equation (3.85) as

J

AEF; =" (Hn.j— Hyndnj) Fn+ XY Hp jFn . (3.88)
m=0 m>j
where
AE=E—H,,. (3.89)
Second, look for a set of coefficients C;, j = 0,1, ..., n, such that

n—1 n

n J
> C Y (Huj— Hundwjp)Fn =Y | Y (Huj — Hyndnj) Cj | Fu =0. (3.90)
j=0 m=0

m=0 | j=m
It is convenient to choose the coefficients C; to be solutions to the homogeneous linear system of
equations

n
Z(Hm,,-—Hn,nsmj)c,:o, m=0,1,....,.n—1. (3.91)
j=m
If the problem is nondegenerate, then there is just one linearly independent set of coefficients C;;

otherwise, there will be more than one. We will illustrate both cases later by means of appropriate
examples.
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Once we have the coefficients C;, we rewrite the equation for the energy as follows

AEZCF _)\ZC > HypjF - (3.92)

m>j
The intermediate normalization condition
> CjFj=1 (3.93)
Jj=0

leads to a useful expression for the energy in terms of the moments

AE_AZC]ZHmJF (3.94)

m>]

3.4.3 Nondegenerate Case

Suppose that H; ; # H, , forall j # n. Upon expanding the energy and moments in equa-
tion (3.85) in Taylor series about A = 0 and solving for F; ; we obtain

Fj,i:H _H. ZHm/sz ZE](F]! K+ Z Hm/le 1 . (395)
. o m=0 m=j+1

Notice that this equation does not give us the perturbation corrections to the moment F,,, which we
obtain from the arbitrary intermediate normalization F,, = 1 that leads to

Fui=380. (3.96)

Substitution of this normalization condition into equation (3.88) for j = n yields an expression for
the energy

AE = Z HypnFin + A Z Hypon Fr (3.97)
m=n+1

and, consequently, for its perturbation corrections

n—1
E; —Hnn8tO+ZHmnle+ Z Hmnsz 1. (398)
m=0 m=n+1

Remember that F; o = 0 for all j < n as shown above for the chosen exactly solvable models.
We easily obtain exact expressions for the perturbation corrections when H; ; = 0 for all |i — j|
larger than some positive integer. As an example consider the dimensionless anharmonic oscillator

1 d?
H=:Z (—— + x2> + ax? (3.99)
X

and the set of functions (3.74). The recurrence relation for the moments is

2j+9@2j+s -1
2

Fj—142( —n)Fj — AEFj +2Fj+2 =0 (3.100)
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and the intermediate normalization condition F,, = 1 leads to

1 2 2 -1
E:2n+s+§_(n+S)(2n+s )

Fpa+ A0 (3-101)

Expanding the energy and moments in Taylor series about 1 = 0, we obtain

1 2j +9)2j+5s—1) d
F;; = Fi_1; E,Fii—ym—Fiioi_ 3.102
Ji 2(] ) |: 2 Jj—1,i +mX::l mt ji—m Jj+2,i—1 ( )
and
1 2n+s5)2n+s—1
E; = (271 +s5+ 5) 8io — (@n +5X 2n : )Fn—l,i + Fuy2,i-1 - (3.103)

These two equations and the normalization condition (3.96) give us all the perturbation corrections to
the energy and moments. By straightforward inspection of the equations above, one concludes that in
order to obtain E, one has to calculate the moment coefficients F; ; withn —2i < j <n+2(p —i)
wheni =0,1,..., p— 1 and those withn —2p < j <n —1wheni = p.

Table 3.5 shows results for the first four states of the anharmonic oscillator which we calculated
by means of a simple Maple program. We do not show it here because it runs more slowly and yields
less general results than the set of procedures given earlier for the method of Swenson and Danforth.
The only purpose of Table 3.5 is just to help the reader check his or her own calculations.

Table 3.5 Moment-Method Perturbation Theory for the Anharmonic Oscillator
d2 ~2

Ground State

_ 1,31 21A% | 333x3  30885Ai% |, 91673115
E=o+ 7 -+ g — "1+ 7t

1 3 75 1527 165741
Fi=3— 3A+ 2a2— B33 1904 4

First Excited State

E=3 4154 1807522 1098253513 + 10863836055 1%  43563085647015 A5
=2 4 256 4096 131072 16777216
+..
_ 3, 1317, _ 1399395 ,2 , 655649973 ;3 _ 1275828608445 , 4
Fi=5+ %4 2048 At Txre8 A 2007152 A e

Second Excited State
E — g + 93, _ 49761 ;2 + 12053211 53 _ 15240517155 5 4 + 22590881117433 5 5

k) 512 8192 524288 33554432
+..
4 3., 22239,2 , 14786310 ,3 _ 31401053397 ,4
Fo=1—-gi—- S5 A+ Tggp A" — “oomm A T

Third Excited State

E—=14579 _ 723285 22 + 138568419 1% 893001846771 A% + 214869089419155 A°
=27 716 1024 8192 2097152 16777216
+..
_ 53 85695 |2 24839823 ;3 , 263498107665 4 4
Fo=1-35++ T2 4 gz A T Tooorsz A te--
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Another interesting example is the radial Hamiltonian operator for a perturbed Coulomb problem

1d> 10+1) 1

H=->— = +ark 3.104
2 dr? 2r2 r A ( )
where K =1, 2, .... Choosing the set of functions (3.81) the recurrence relation for the moments
is
i(j+20+1) j—n
DT TR+ mﬂ_l — AEF; +AF4 =0, (3.105)

where we have substituted the value of « given by equation (3.83) and

AE =E + (3.106)

2 +1+1)2°

The choice n = 0 selects the states with angular and principal quantum numbers/ =0, 1, ..., and
N =1+ 1, respectively, commonly denoted 1s, 2p, 3d, ... that are free from radial nodes. When
j = 0 we obtain

AEFy = AFx , (3.107)
so that the intermediate normalization condition Fy = 1 leads to
AE = AFx . (3.108)
We obtain an expression for F_j from the general equation (3.105) with j = 1:

1

1
=— (—— —AEFR +AF . 3.109
[+1 <l+1 1+ K”) (3.109)

F_1

The expansion of the energy and moments in Taylor series about » = 0 leads to

1 (80 «
Fi., = —|——— E E,F1;_ F i— 3.110
1,i I+1 (l +1 m_l ml1li—m + K+1,i 1) ( )
Foi = dio (3.111)
I+1 | G+D(+20+2) :
Fj; = 1 [ 5 Fi1i+ mE:l EnFit1,i-m — Fjyr+1,i-1 | (3.112)

The last expression follows from substituting j + 1 for j in equation (3.105). The energy coefficients
are given by

Ei=Fki-1. (3.113)

In order to obtain E, one has to calculate all the moment coefficients F;; withi =1,2,..., p -1,
l=j=(p-D&K+1)-1

The choice n = 1 selects all the states with N = [ + 2: 2s, 3p, 4d, ..., and their treatment

illustrates the application of equations (3.92)-(3.94). The general equation (3.105) withn = 1
yields

Pt AEFo+iFck = 0 (3.114)
l+ 2 0 K - 9 .
—(+1VF_1— AEF| +AFg41 = O, (3.115)
F
—(21 4+ 3)F + z+_12 —AEF, +AFgip = 0, (3.116)
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for j = 0,1, and 2, respectively. It is difficult to explain how to develop a workable system of
equations for the general case. For this reason we show how to proceed in a particular example and
hope that the reader will imagine the strategy to be followed in other situations. Besides, we will
discuss more illustrative examples which may give the reader additional hints later in this book. Inthe
problem at hand we multiply equation (3.114) by (/ + 1)(I + 2) and subtract from equation (3.115),
thus removing F_1 and obtaining a preliminary expression for the energy:

AE[FL = (I + 1D +2)Fo] = A [Fg41— (1 + DU +2)Fk] . (3.117)

The intermediate normalization condition
FI—(+D)(+2F=1 (3.118)
leads to a simpler expression for the energy that is suitable for the application of perturbation theory:
AE =)[Fgs1— A+ DU +2)Fk] . (3.119)

From equations (3.116) and (3.118) we derive the following expression for Fp:

1 1
Fo=—(—— _AEF, +AF . 3.120
0 l+2<l+2 2+ ”2) (3.120)

Expanding the energy and moments in Taylor series about » = 0 we obtain all the necessary
recurrence relations for the perturbation coefficients

1 dio i
FR, = —|——— E, Fi_ F, i 3.121
0,i I+2 <l+2 mX:; mi2,i m + K+2,i 1) ( )
Fii = o+ U+ +2)F,, (3.122)
I+2[G+DG+20+2) :
Fii = F [ / ]2 Fi_1;+ Z EnFii1i-m— Fitk+1i-1, | (3.123)
m=1
Ei = Frxuia—U+DU+2DFki1. (3.124)

The calculation is analogous to the one above except that inthiscase2 < j < (p —i)(K +1) — 1.

Table 3.6 shows perturbation coefficients for the energy and arbitrarily selected moments when
K = 1. The energy coefficients agree with those in Table 3.4 provided that we substitute the
appropriate value of Eq in each case: Eg = —1/[2(I 4+ 1)2] and Eq = —1/[2( + 2)?] for the states
with zero and one radial node, respectively.

3.4.4 Degenerate Case

In order to illustrate the application of the moment method to a model with degenerate unperturbed
states, we choose a simple nontrivial anharmonic oscillator in two dimensions with dimensionless
Hamiltonian operator

.1 1
A=—oV2 4 V(). Viny) =502+ +2 (ax4 byt 20x2y2> , (3.125)

where A, a, b, and ¢ are real and positive.

The potential-energy function V (x, y) is a single infinite well with a minimum V = 0 at origin.
It is invariant under the transformation (x, y) <— (—x, —y), and in the particular case that a = b,
it is also invariant under the exchange (x, y) <— (y, x). The latter higher symmetry makes the
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Table 3.6 Moment-Method Perturbation Theory for the Perturbed Coulomb Model

States with No Radial Nodes
E1=3(+1)Q1+3)
Er=—30+D*QI+3)(+2)
Es= 30+1D7QI+3)(+2) (9+4D)
Es=— 2+ Q21 +3)(+2) (2251 + 4812 + 265)
Es= 4 (+1)¥21+3)(+2) (31281 + 2562 + 128112 + 176 /%)
Eg=— o7 (1 + 1) (21 +3) (I +2) (931411 + 59552 + 55031 /% + 1456113 + 1456 14)

Foo= 51 +D2(+2) B+2D)
Fo1=-30+1°G@+2)(+2)(9+40)
5 (+DB@+20)(1+2) (197 + 1681 + 3612)
Fo3=— 35 ( + DY@ +21) (I +2) (6375 + 78421 + 3236 /% + 448 °)
Foa= g5 (+D¥ @ +20) (1 +2) (4132981 + 246636 /% + 65912 1° + 6656 /4 + 261659)
Fas=— g+ DY @+2) (1 +2)
(241837561 + 18566064 12 4 7188320 /3 + 12707073 + 1403696 /* + 110592 /%)
F26 = gigs (L + 12 (3+21) (I +2) (15487212721 + 1434654808 /2 + 715587960 /3
+ 19845121° + 202719056 1* + 30925216 1° + 703100137)

o

States with One Radial Node
Ei= 3@+ Q2l+3)
Ep=—5Q1+3) (B+1112+261+22) (I +2)?
E3= §(21+3) (4154 751*+ 37113 + 89072 + 1088/ + 552) (I + 2)*

_ 1
Foo= 7ap
Foi= 3 (31+212+4) 21+3)

Foo=—g§(+2)? (81*+1813 42712+ 531 +54) (21 +3)

Fo3 = 35 (817 +18415 4 6881° + 1211/% + 209313 + 482612 + 70301 + 4060) (/ + 2)*

21+3)
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application of the moment method simpler as it allows the treatment of degenerate states as if they
were nondegenerate [41, 42]. Here we do not restrict to such a simplification keeping our results as
general as possible.

The set of functions

fij =x'y e~ (x+32) 2] i j=0.1,... (3.126)
enables us to construct the recurrence relation for the moments
Fij = (fij|¥) (3.127)

necessary for the application of perturbation theory. For clarity, two subscripts label the func-
tions (3.126) and moments (3.127) instead of only one as in the discussion of the general case in
preceding subsections. The moment recurrence relation reads

_@Fi—&j - j(jT_l)Fi,j—z +(0+j—N)F
—AEF;j+A(aFi4aj+bF; jia+2cFii2j12) = 0, (3.128)
where
AE—E—-N—-1, N=0.1,.... (3.129)

Notice that the unperturbed energy is Eo = N + 1. Because the subscripts of the moments in
equation (3.128) are displaced by even numbers, we have four different sets of solutions denoted
(e,e), (e,0), (0,e), and (0,0), where e = even and o = odd is the parity of the corresponding subscript.
They certainly match the symmetry classes of the eigenfunctions.

The coefficients of the perturbation series

o0
Fij=)Y Fijm\" (3.130)
m=0
satisfy
1 ii—1) jG =1 =
Fi,j,m = ; +J _N |: 2 Fi—Z,j,m + TFi,j—Z,m +;EkFi,j,m—k
—aFiy4 jm-1—bF j1am-1— 20Fi+2,j+2,ml:| , (3.131)

which together with an appropriate expression for the energy enables us to calculate the perturbation
corrections. In what follows we show how to apply the method to some of the lowest states of the
anharmonic oscillator.

For the ground state we choose N = 0. Setting i = j = 0 into equation (3.128) we obtain

AEFyo = A (aFs0+bFos+2cF22) . (3.132)
The intermediate normalization condition Fp o = 1 determines the coefficients

Fo,0,m = Som (3.133)
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that we cannot obtain from the general recurrence relation (3.131), and also gives us a simple
expression for the energy coefficients:

En=0aF40m-1+bFoam-1+2cF22m1. (3.134)

Notice that this state belongs to the class (e,e) mentioned above. In order to obtain E, we need the
moment coefficients F; ; ,, forallm =0,1,...,p—1,i,j=0,2,...,4(p —m).

When N = 1 we identify two unperturbed states with the same energy and different symmetry.
Settingi = 0, and j = 1 we have

AEFy1 =A(aFa1+bFos+2cF3) . (3.135)
The intermediate normalization condition Fp 1 = 1 leads to
Fo,1,m = Som (3.136)
and
En=aFs1m-1+bFosm_1+2cF23m—1 . (3.137)

In order to obtain E, we need F; ;, forallm =0,1,...,p—1,i =0,2,...,4(p — m), and
j=13,...,4(p — m) + 1. This state belongs to the class (e,0).

The remaining state for N = 1 belongs to the class (0,e). Arguing as in the preceding case we
obtain

Fl,O,m = (SOm (3138)
and
En=aFs50m-1+bF1am-1+2cF32m-1. (3.139)

In order to obtain E, we need F; ; ,, forallm =0,1,...,p—1,i =1,3,...,4(p —m) + 1, and
j=0,2,...,4(p —m).

Although the unperturbed states for N = 1 are degenerate we treat them as if they were nondegen-
erate because the perturbation does not couple them. The application of the moment method just out-
lined clearly discloses this independence that arises from the symmetry of the states. More precisely,
the eigenfunctions Wp 1(x,y) and Wig(x,y) of H for the states with N = 1
satisfy Wo 1(—x,y) = Wo,1(x,y), Yo,1(x, —y) = —Wo,1(x, y), ¥10(—x,y) = —W10(x, y), and
W1 o(x, —y) = W1 0(x, y) for all values of A. Therefore the moments with subscripts (0,e) vanish
when ¥ = Wy 1 and those with subscripts (e,0) vanish for the other state. Notice that no explicit
consideration of the eigenfunctions was necessary neither for the application of the moment method,
nor for the selection of the states because the symmetry is embedded in the chosen functions f; ;.

The states with N = 0and N = 1 just considered do not add anything new to the one-dimensional
problems discussed earlier, except for the occurrence of one more subscript in the moments. The
states with N = 2 offer a much richer example as we will shortly see. Before proceeding, notice that
the denominator in equation (3.131) vanishes when i + j = N giving room for N + 1 degenerate
unperturbed statesasi = 0,1, ..., N and j = N — i satisfy such condition. In the language of the
moment method, equation (3.131) will have N + 1 linearly independent solutions. We have already
seen that there is only one state when N = 0 and two states when N = 1, the latter belonging to
different classes: (e,0) and (0,e). In general, if N is even the degenerate states belong to either (e,e)
or (0,0); otherwise, they belong to either (0,e) or (e,0). When N = 2 there are three states; we first
consider the (0,0) case.

© 2001 by CRC PressLLC



3.4, MOMENT METHOD 49

Setting i = j = 1 in equation (3.128) we obtain
AEF11 =A(aFs1+bF15+2cF33) , (3.140)
which suggests the intermediate normalization condition F7 1 = 1 that leads to
F1.1.m = Som (3.141)
and
En=aFs1m_1+bF15m_1+2cF33m1. (3.142)

In order to obtain E, we need all F; ; ,, withm =0,1,..., p—1andi, j =1,3,...,4(p—m)+1.
The remaining two states belong to the class (e,e); consequently the perturbation couples them,
and have to be explicitly treated as degenerate. When (i, j) = (0, 0), (2, 0), and (0, 2) we have

—2Fo0 — AEFo0+ A (aFao+bFos+2cF2) = 0, (3.143)
—Foo—AEF0+ A (aFe,o +bFo4+ 2CF4’2) = 0, (3.144)
—Fo0— AEFo2 + A (aFs2+bFos+2cF2s) = 0, (3.145)

respectively. Subtracting twice equation (3.144) from equation (3.143) gives
AEQRF,0 — Foo) +A[a (Fao —2Fs0) + b (Fo4 — 2F24) + 2c (F22 — 2F42)] =0, (3.146)
and subtracting twice equation (3.145) from equation (3.143) yields
AEQFy2 — Foo) + A [a (Fa0 — 2F42) + b (Fo4 — 2Fo6) + 2c (F22 — 2F24)] = 0. (3.147)
We arbitrarily choose the intermediate normalization condition
2F2— Foo=1 (3.148)
that leads to
AE = )[a(2Fs2 — Fa0) + b (2Fo,6 — Fo.a) + 2c (2F2,4 — F2.2)] . (3.149)

Substituting equation (3.149) into equation (3.146) and dividing by A we derive another useful
equation

[a (2F4,2 — F4,0) +b (2F0,5 — F0,4) + 2¢ (2F2,4 — Fz,z)] (2F2’0 — FO,())
+a (F4’0 — 2F5,o) +b (Fo’4 — 2F2’4) + 2¢ (Fzﬁz — 2F4,2) = 0.(3.150)

We calculate the perturbation corrections to Fp o from equation (3.143):

1 m
Foom - (aF4,o,ml +bFoam-1+2cF22m1— Y EkFo,o,mk> (3.151)
k=1

and the perturbation corrections to Fp 2 from the intermediate normalization condition (3.148):

Sm0 1
Foo2m = % + EFO,O,m . (3.152)

The general recurrence relation (3.131) with N = 2 provides all the remaining moment coefficients
F; j.m except F 0, Which one obtains from equation (3.150). We expand all the moments in this
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equation in Taylor series about A = 0 and collect the coefficients of each power of . By means
of equations (3.131), (3.151), and (3.152), we express every moment coefficient F; ; ,, in terms of
previously calculated ones and in terms of the only unknown F> g ,, which we then determine. The
equation of order zero is quadratic

AcFf00+18(b — a)Fa00 — ¢ =0 (3.153)
and admits two real roots
9a—b)+ R
F00 = %, R = /81(b — a)? + 4c? (3.154)
C

that give rise to two sets of moment coefficients F; ; ,, which are the two independent solutions
mentioned above. The occurrence of multiple solutions was already anticipated in the discussion of
the general equation (3.91). The equations for perturbation orders greater than zero are linear in the
unknown moment coefficient F» o . We do not show them here because they are rather complicated
and do not add anything relevant to the present discussion.

We finally obtain the energy coefficients from

En = a(2Fs2m-1— Fa0m-1)+b(2Fo6m-1— Fo4m-1)
+2¢ (2F24m-1 — F22.m-1) - (3.155)

It is worth noticing that unlike the standard treatment of degenerate states in which the energy
coefficient is a root of a secular determinant (see Section 1.2.2), here it is one of the moments that
arises from a seemingly secular equation.

In the program section we show simple Maple procedures for the application of the moment
method according to the equations just discussed. Table 3.7 shows sample results for the states
considered above.

The moment method has recently been used to generate renormalized perturbation series for the
energies of two-dimensional anharmonic oscillators [39]. The main ideas underlining that approach
that yields highly accurate results may be easily understood by means of the theoretical development
above, and by the discussion of the renormalized series given in Chapter 6. The moment method
has also been applied to coupled Morse oscillators after expanding the potential-energy function
in a Taylor series about its minimum [43]. In this case the perturbation series appear to converge
for all the states considered. In Chapter 7 we will discuss the application of perturbation theory to
nonpolynomial potential-energy functions by means of a simple polynomial approach.

3.4.5 Relation to Other Methods: Modified Moment Method

The moment method is a quite general strategy that reduces to other procedures under particular
conditions. One such connection was already outlined above: if the complete set of vectors { f;}
is orthonormal, then the moment method gives rise to the standard textbook approach discussed
in Chapter 1. Moreover, it is not difficult to prove that the moment method yields the hypervirial
theorem. In fact, if we choose the vector f = WW, where W is a linear operator and W is an
eigenfunction of A, then, arguing as in Section 3.2:

<<H — E) f|\I/> - <[H vi/] \1/|w> - —<w ‘[H WT]‘ \11> —0. (3.156)
The perturbation theory by the moment method discussed above does not yield the perturbation

corrections to the energy as functions of the quantum number of the unperturbed model. For this
reason it is less appealing than the method of Swenson and Danforth for the treatment of separable
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Table 3.7 Moment Method for the Two-Dimensional Anharmonic Oscillator

R V2§24 42

> +)»(a

+ b3* + 2c£2$2) (Continued)

State N = 0 (e,e)

Ey= $a+ 3b+ 3c

Er, = — 281a2 gac—ébz—gbc—%cz

E3:333 3+ 105026‘+2&bc+ 11161a 2+%b3 105b2 11151b02
+%6‘3

Ep=— 315a2bc 333a36_ 3021a202 3é5ab2 _ 1953abc _ 3;36103
_3(1)325 4 _ 3§3b3c— %bzcz_ %b"’— :%abcs 9g43c4

Fz,o,0=%

F2,0,1=—Z(1— %C

F>02= 7ga + 16aC+ 196bC+ iécz

F03= —abc— 1g§7a3 1302503 80216126‘— 3429ac —4b%¢c —5bc?

FZ, 0.4 = 162557641 4+ 132%1 C4+ lgggg asz+ 5173ab02 11191 b3
4 43859 43859 b2 2+ 49039 26‘2—‘,- 9669ab26+ 4433b + 3gg?15ac
oo

State N = 1 (e,0)

Er=3a+ R+ 3c

Egz—%az— %ac— @bz— —5bc— %cz

E3:333a3+315a20+ abC+6]_261a2 3915b3+825b26‘+ 795bC
+21¢3

E4=—%75a2bc— %a%— %azcz 2475 ab?e— 15525 abc?
_32£§ila63_ 32325 4 _ 39215b3c— %bzcz_ 5210%1)4_ 3’%#19&
_ 10621 .4

64

Fos1=—%2b— 3c

Fo.32= %ac+ 585b2 165196-|- iécz

Foss=—12a2c — %acz_ 6255b2 _ %bcz 17655b3 727 3 %

F0,3,4 — 732(6)9 aZ C2+ 1445ac + 33573 (13C+ 39665ab 2 122758645ab2
+ 4ggg5 a2bc+ 1138875 b3 502154%95 b2 62+ %bc3+ %b4
+167067827 4

abc
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Table 3.7 (Cont.) Moment Method for the Two-Dimensional Anharmonic Oscillator
VZ )22 + )';2

1312_7+ R (ax* + b9* + 2c£%3$?) (Continued)

State N = 1 (0,e)
E1= %a—i— %b—i— %c
E2=—1i5a2 125ac 21b2—9b

E3 = 3915a3+ 825a2C+ 795ac + 5 (le—}- 333b3+ 315b2C+ 621bc

15 2
C_TC

4213
Eae— 24875 2he— 39215 Be— 3136225 a2 2 — 15875abzc_ 153525abc
3845 3 520485 4 _ 999 13 17913 ;2 2 30885 .4 _ 3261 ;. .3
Sgoact = g dt — S bvc— SR btet — Sog bt — Sgmbe
10621 4
— 76 €
15 3
F3,0,1=—Ta— ZC

F3.0,2= 58502+ llﬁg)ac—i- 16bc+ ?écz

Fsoa=—2Babc— Apc2_ USH,3_ 123 68252, 28,2 192,
Fyoa= 368 pc2 4 USBES 3, 48345 p2 .\ 2719005 4 | 160727 4

i 1227553(;15 az be+ 1359 b2 21 14453 4 335733, 4 50U ;2.2

+ 305

State N = 2 (0,0)
Er=YRa+ Bb+ 3o
E2=—L65a2— 4—25ac— @bz— ﬁbc— %cz
E3 = 3915 a3+ 24756120+ 3825ac 4 225abc+ 3915b3 24875b20

+3825bc + 44ﬂ63

Ey = 12375 2he— 11;45 Be— 16431%75 22— 12375 ab?e— 10242125 abc?
25845 3 520485 4 _ 11745 ;3 164175 ;2 2 520485 ;4
—~§ 4¢C — T138 =g bic— Z5=0b 8 b

25845 3 80205 .4
~8 bc® — 64 C

15 9
F311=—%Fa— zc¢

F3,1’2= 585a2+ 495ac+ 135bc+ 212656,2

17655 4341 18765 11805 375
F3,]_’3= 32 3 3 3 3 612 — TGCZ— TbZC—].GstZ
2025 abe

639225
F31.4= 3552 a’be+
389145 ;3 749635 ;2 2 , 2719395 4 | 422333 4 , 378075 12
+ 5 b ct g bt + Sasgoat + g ¢+ Spgoabc

687835 3
+ g ac

68725 abc? 4 34%2225 a3c+ 252%685 a2 c2 + 191805 bcd
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Table 3.7 (Cont.) Moment Method for the Two-Dimensional Anharmonic Oscillator
VZ xA2 + )';2

>+ + A (af? + b + 2¢2252)

State N = 2 (e,e)
Er=Za+Z2bp+ 3¢+ iR
E2=—1759a2—9c2— %gbz— 22—7bc— 277ac+<—26873ab2— —26873193— %ac2

—54b2c—12c3— Rbc? + BRa%p - 26%413+108abc—54a?c)/k

1R 1 9a-9b
Faoo=3 ¢+ 7 7%
1

3242 —270a%+4c2—54a b—342b c+354ac 1 2 3
35 > + 35 (3402 a b —2916b

+24ac? + 3186 b% c + 1944 a% b — 2430 a® + 8 ¢% + 3186 a? ¢ — 6372abc) /(c R)

F> 0,1

1
Fo,20= 3

_ 1 Ba+oR 1 27a*-27ab4+9ac—3bc4+2?
Fo2.1= 15 c 16 c
F _ 1 432a2b+243ab®*—48bc2—675a%+9a% c—144abc—16 3+39b% ¢
0,2,2= 33 c

+ 55 (170142 b? — 2187 a b® — 84a% c? +108b% 2 — 72a c® + 8la’c
—1215¢ b3 —24b 3 —6075a* — 1377a’bc — 216abc® — 32¢* +9963a3 b
+2511ab?c) /(c R)

R=.81(0b—a)?+4c?

models. However, the combination of the moment method with the method of Fernandez and Castro
discussed in Chapter 2 overcomes this limitation, as we illustrate in what follows by means of a
simple one-dimensional problem:

2

N N A 1d
H = Ho+ Vi(x), Hyo = —5—— + Vo(x) . (3.157)
2dx

Choosing a function of the form

F(x) = A(x)Wo(x) + B(x)¥)(x) , (3.158)

where A(x) and B(x) are two differentiable functions, and Wq(x) is an eigenfunction of Ho,

Wy (x) = 2[Vo(x) — Eo] Wo(x) , (3.159)
we easily obtain
A A//
(H—E)F - |:(V1—AE)A+2(E0— Vo) B - - VéB} Wo
B//
+ |:(V1 —AE)B—A' — 7] (7 (3.160)
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14

then the term containing W;, vanishes and

A//
<\IJO > +(AE—-V1)A+2(Vo— Eo) B’ +V'B q1> =0, (3.162)
which is the master equation of the modified moment method.
As a particular example consider the anharmonic oscillator
¥2
Vo) = =, Va(x) = K K =2,3,. (3.163)
If B(x) = x2N*t1 N =0,1,...,then
2N +1 5y A 2(N+K+1) AE vy
Alx) = ————— —_— - , 3.164
*x) 2 2(N+K+1)x 2(N+1)x ( )

and equation (3.162) becomes

N(@4N2 -1
2N + 1) Fys1 — T Fy 20N + DEoFy + A@N + K + D)k
(2N + K + 2)AAE AE?
—(2N 4+ 1)AEFy + F -—— _F
( ) N SN TN L K 3 1) VKL~ gy Fve
AZ
-~ F =0, 3.165
SN LKD) Nk ( )
where
Fy = <\1/0 ‘xZN‘ xp) : (3.166)

Substituting N — 1 for N and expanding in Taylor series about A = 0, we obtain

1 [(N—=1[4N —1)72%-1]
Fyi = == |: Fny—2;+2@2N —1D)EqFyn_1,;

2N 2

i
—@N+K —-1)Fyig-1i-1+2N Z EjFy_1ij

j=1
-1
AIN+K ©
2N(N+K)ZE FNkoii- lJrzzsz ZE FN.izjmm
1
m N+2Kl 2 . (3167)

In order to derive an expression for the energy we choose A = 1 and B = 0, which are consistent
with equation (3.161) and lead to

AEFy = AFg . (3.168)
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Therefore, the intermediate normalization condition Fy = 1 leads to
Fo,;i = Soi (3.169)
and
E;=Fkgi-1. (3.170)

In order to obtain E, we have to calculate Fy; fori =0,1,...,p -1, N=1,2,...,(p — K.

It is not difficult to obtain the first perturbation corrections by hand. However, as the perturbation
order increases, the calculation becomes tedious and the use of computer algebra is necessary. We
have written a simple Maple program that we do not show here because it is quite similar to the
one already given for the method of Swenson and Danforth. However, Table 3.8 shows results for
the quartic anharmonic oscillator (K = 2) that the reader may find useful for testing. Because the
perturbation corrections to the energy are exactly those displayed in Table 2.3 we only show some
moment coefficients.

Table 3.8 Modified Moment Method for the Quartic Anharmonic Oscillator

H= %d—22+£+/\”‘
dx 2
Fi1,0= Eo
Fl’lz—%— %EZ
Fro= 88 Eo+ %S — LES
Flgz—%—%Eoz—zggiSE + 57 Eo
PLa= 5855 Eo’ + *Biory” Eo® — ‘1‘%352 Eo’ — z5183 Eo® + iguns - Eo
Fr0= §+ %Eo2
Fp1=— 3§ Eo— 4 Eo®
Fpp= 1584 U0 g2y 315 gy
i = - S 5 - 9 5" - B g,
Fpq= BU%9 g2, SB1265 g4 SIS0 g6 | 1456560
F3,0=25%+@
Fag=—35_ 85p2_ 165
Pia= S ot B 507+ BB 4
Pa 3 = — S50 o — iRt Bo' — G Bo® — *figy- Eo° — Toere
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3.5 Perturbation Theory in Operator Form

The approaches discussed above share the name of perturbation theory without wavefunction
because they do not take the eigenfunctions explicitly into account. However, the eigenfunctions
already appear in some way or another through expectation values or moments. \We may even say
that those approaches are based on unusual representations in which a recurrence relation plays
the role of the Schrédinger equation, and a set of expectation values or moments is a substitute
for the eigenvector. On the other hand, the perturbation theory in operator form discussed in what
follows is a true perturbation theory without wavefunction because it only considers the Hamiltonian
operator [44]-[47].

Perturbation theory in operator form consists of an appropriate transformation of the Hamiltonian
operator

H = Hy + AH' (3.171)
by means of a unitary operator U (1):
K=UMWHUMW' (3.172)
in such a way that
[12, ﬁo] —0. (3.173)

Consequently, the operators K and Hy share a complete set of eigenvectors. If g is an eigenvector
of both Hp and K

I:IO\IIO = EqW¥yp, 12\110 = EVYgq, (3.174)
then & = U Ty is an eigenvector of H:
HY = AU = U'OA0 Wy = E0Twy = EW . (3.175)

Because we cannot obtain the transformation (3.172) exactly except for some simple models, we
apply perturbation theory to equations (3.172) and (3.173). To this end, we expand U and K in
Taylor series about A =0

o0 o0
U=)Upl, K=Y Kja, (3.176)
j=0 j=0
where
Uo=1, Ko=Hp. (3.177)

There is no unique expression for U; one can choose, for example, a single exponential operator or
an infinite product of exponential operators [47]. All particular representations of the operator U are
equivalent, though some of them may be more practical than others. Here we write

dU)

=W, (3.178)
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where W is a yet unknown linear operator. Differentiating UUT = 1withrespecttox, and taking into
account that dUT/dx = UTWT, one easily proves that W is antihermitian: W' = —W’; therefore

dUo)t

0ot
- o)W . (3.179)

It is our purpose to express the coefficients U ; in terms of the coefficients Wj of the expansion
o
=Y Wjr. (3.180)
j=0

It follows from equation (3.178) that both sets of coefficients are related by
Uj==Y Wil (3.181)

Sometimes, the use of superoperators [48] simplifies the notation and facilitates the discussion. In
order to introduce them into the present perturbation approach in a natural way, consider an arbitrary
operator A indegendeniof A. Taking into account that d(UAUT)/dA = [W, UAUT] we define the

superoperators U and W as follows:

OA =040, WA = [W, A] , (3.182)
so that
CoA=WoA (3.183)
—UA= . .

Superoperators are operators that apply to a vector space of linear operators [48]. By using them, we
do not obtain new results, but commonly the working equations become simpler. Since the operator

A is arbitrary, it follows from equation (3.183) that U () satisfies

% — WO, U©) =1, (3.184)

where 1 is the identity superoperator that we omit from now on. It is not difficult to verify that the
coefficients of the Taylor expansions

—~ 0 —~ o~ 0 o~
T =0, Woy=) Wi/ (3.185)

j=0

are related by

-~

10 =
A-:—ZW Uj—i-1, (3.186)
1 =0

where W; A = [W;, A] for any linear operator A.
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It follows from equation (3.186) and from straightforward expansion of the transformation of the
Hamiltonian operator U H = K in a Taylor series about A = 0 that

U U

HoWj = fi — G+ DKj1. fj=Y WU, iHo+ (i +DU;H (3.187)
i=0
where we have substituted j 4 1 for j and taken into account that W ; Hy = — H oW;. Assuming

that f, is known, it only remains to solve the operator equation (3.187) for I%Hl and Wj. We can
formally write the solution as follows:

-~

Wi =Ho™ /i = G+ DK (3.188)

provided that (j + 1)K; removes all the terms in f; that commute with Ho. In this way equa-
tion (3.188) completely determines Wj and kj.

Itis particularly easy to solve equation (3.188) when fl is a sum of eigenvectors of Hg. The reason
is that if A is an eigenvector of Ho with eigenvalue o # 0 Ho A = A, then Ho™*A = o724,
Moreover, taking into account that exp(r Ho) A = exp(at)A we write

1 -~
Wj=tll_r)n0 eXp(SHO)fde, (3.189)
and then
Rio= Jlr - (fi- HoW;) . (3.190)
J

These equations give the desired results if we calculate the integrals as follows:

, .
f exp(as)ds = { ff?g"’z)/g‘ fo#£0 (3.191)

Notice that in this way the terms that commute with Hp (¢ = O)Avanish ast —> 0. The use

of the exponential superoperator is practical if one plans to invert Hg by means of an appropriate
computer-algebra software.

It follows from equations (3.174) and (3.175) that the perturbation corrections to the eigenvalues
and eigenvectors of H are given by

K;W=E;Vp, (3.192)
and

v =0]w, (3.193)

respectively, where the operators 0} are recursively determined by the adjoint of equation (3.181).
For example, the first three are

t_s ot v oot Yl(we_w
g =1 0f =—wo. 0 = 2 (W - ) . (3.194)
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3.5.1 lustrative Example: The Anharmonic Oscillator

According to our philosophy of choosing simple examples to illustrate the application of the
perturbation approaches discussed in this book, in what follows we consider the dimensionless
anharmonic oscillator

N N N 1 R

A = Ho+ 252", Ho =3 (—D2 + )22) , (3.195)
where D = dix. The use of boson operators greatly facilitates the calculation because a and a' are
eigenvectors of Ho. Substituting

(a - a*) (3.196)

N

the unperturbed Hamiltonian reads

Hy=a'a+ (3.197)

N| -

Solving equation (3.188) for W, and K ;.1 is remarkably simple because ; is a polynomial function

Table 3.9 Perturbation Theory in Operator Form for the Anharmonic

Oscillator A = % (—% + £2) + Azt

=4 [@h -at|+3[@)a-a'a]+ 3@ -2

Ky = % (AT) a?+3ata + %

W= & [a° - @")°]+ §[ate - (@)a] + B [@"*a* - (@) @]
+R[at - @]+ $[ata - @h)’a] + B [a? - @)

Ky =-1(a"’a% - 18 (a")? a2 —18aTa — &

Wy = _ﬁalo + %&8 _ 433}13&5 + 9;225&4 + 22%?5’29&2 + Tlg (&7)10
~B N a+ RN a2 - B @) - @ e+ 82 @ a
— 2L (a)°at — 55 (ah)" a2 + 4R (a")° - TBR (a")°a
— 308 (%)% a + B (aT)" 0 — S8 (a")" a2 — e (aT)'
+28 (ah)a” + TR (ah)’a® — B (o)’ - 12 (a")° a8
+4588L (a")" a® + 9253%0 (") 4t — 24 (a)" + $2ata®
_1099&TA7 4 %&T&S + 69267&T&3

Ry = — 1889 (a)° a5 — 2725 (1) 44 — 208805 (57)° 4% — 1285088 (31)* 32

At A 30885
—3825a'a — 128
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of the boson operators and, consequently, a linear combination of eigenvectors of Hg. Taking into
account that

Hoa = —a, Hoa' =a', (3.198)

we easily prove that Ho(a")™a" = (m — n)@Hma", and Hot @Hma" = m — n)~@"hHma" i
m # n. Therefore, according to the discussion above, it is clear that we should choose I€j+1 to
remove all the diagonal terms (a")"a™ from f, In order to solve the equations of the operator
method, one has to be careful about the order of the noncommuting operators. For that reason,
keeping a given operator order facilitates the calculation. Here we adopt what is commonly called
normal order in which the powers of the creation operator 4" appear to the left of the powers of the
annihilation operator 4, as in the example above.

Table 3.9 shows the first few operators W; and K ;41 for the anharmonic oscillator with M = 2.
Notice that each operator Wj is antihermitian as expected from the fact that W is antihermitian.
Because one-dimensional models do not exhibit degeneracy, the eigenvectors |n > of Hy are also
eigenvectors of K. Taking into account that [49]

an>=van—1>, a'ln>=vn+1iln+1> , (3.199)

we easily calculate the perturbation corrections in terms of the harmonic oscillator quantum number
n according to equations (3.192) and (3.193). For example, the energy coefficients E, ; given by
Kjln >= E,_jln > agree with those in Table 1.1.

Perturbation theory in operator form may take many different, though equivalent, forms. For
example, it is instructive to compare the present approach with an earlier one based on a partic-
ular representation of the unitary operator U [47]. The reader may easily convince himself that
perturbation theory in operator form is far from being the most practical approach to treat sim-
ple quantum-mechanical models like the one-dimensional anharmonic oscillator (compare it, for
example, with the method of Swenson and Danforth discussed earlier in this chapter). However,
perturbation theory in operator form has certainly been the preferred approximate method for the
treatment of several problems of physical interest [50]-[52].
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Chapter 4

Simple Atomic and Molecular Systems

4.1 Introduction

In this chapter we apply some of the perturbation methods developed earlier in this book to simple
atomic and molecular systems. Such physically motivating models are worth a separate treatment and
amore detailed study. As illustrative examples we consider the Stark and Zeeman effects in hydrogen
and the hydrogen molecular ion in the Born—-Oppenheimer approximation [53]. The Schrédinger
equation for the Stark effect in hydrogen is separable in parabolic coordinates and is suitable for
illustrating the application of the method of Swenson and Danforth, discussed in Chapter 3, to a
problem with separation constants other than those arising from the use of spherical coordinates. We
also treat the Stark effect as a nonseparable problem in spherical coordinates so that the reader may
compare both approaches. Although the latter coordinate system is not the most convenient for the
Stark effect in hydrogen, the resulting equation is suitable for the application of the moment method.

No coordinate system has yet been found that renders the Schrédinger equation for the Zeeman
effect in hydrogen separable. In Chapter 2 we have already treated the ground state of this problem
by means of the method of Dalgarno and Stewart and logarithmic perturbation theory. Here we apply
the moment method also to excited states providing interesting additional examples of the treatment
of both nondegenerate and degenerate states.

The hydrogen molecular ion in the Born—-Oppenheimer approximation is separable in elliptical
(also called prolate spheroidal) coordinates [54]. However, we write the Schrédinger equation in
spherical coordinates and apply the moment method for nonseparable problems to obtain part of the
expansion of the electronic energies at large internuclear distances. This example differs from all
those discussed before in that the perturbation is not a polynomial function of the coordinates. For
this reason we have to expand it in a Taylor series in order to apply the moment method.

4.2 The Stark Effect in Hydrogen
4.2.1 Parabolic Coordinates

The Hamiltonian operator for the nonrelativistic isolated hydrogen atom in the coordinate repre-
sentation is

Hy=—-——V"——| (4.2)

61
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62 SIMPLE ATOMIC AND MOLECULAR SYSTEMS

where m is the reduced mass, r is the distance between the nucleus and the electron, and ¢ > 0 and
—e are, respectively, the nucleus and electron charges. Accordingly, the dipole moment of the atom
isd = —er. If the electric field is directed along the z axis F = Fk, then the interaction energy is
H' = —d.F = eFz. Choosing y = h?/(me?) and ¢?/y = me*/R? as units of length and energy,
respectively, and A = Fy2/e = my3Fe/h? as a dimensionless perturbation parameter, then the
dimensionless Hamiltonian operator H = Hy + H' reads

A=-tv2_ ;. (4.2)

2 r

As said before, the Schrédinger equation for this model is separable in parabolic coordinates & =
r—z>0,n=r+2z>0,0<¢ =tan(y/x) < 2x. The inverse transformation

. 1
x = VEncos(@). y = VEnsin@), z= 3¢ —n (4.3)

is suitable for straightforward application of the method in Appendix A that yields the Laplacian
operator

o_ 4 (B.8 0 8  E4nd
v _$+n<3$§35+8nn3n+ e a¢2> ‘ 44

Factorization of the solutions of the Schrddinger equation as W1 2, (&, 1, ¢) = Fy, (§)Gry()
exp(ime)/~2r,m =0,+1,+2,...,n1,n, =0,1,..., leads to

A
bbb+ B+ — — = — o — 1) Fuy (§)Gpy(m) =0. (4.5)

We split this equation into two one-dimensional parts

m2

K E, %, ~
<—£$£+E—E§+Z§ —A> Fny(6) =0, (4.6)

A
——n—+———n——n2—B> G, () =0, (4.7)

where the eigenvalues A and B are separation constants that satisfy A + B = 1. A pair of eigenval-
ues A(E, ny, m, ) and B(E, nz, m, ) completely determines the energy Ep, »,.m(A) as a root of
A(E,n1,m, M) + B(E, na,m, A) = 1. Notice that both equations (4.6) and (4.7) are of the form

d d m? E ok o
< duudu+4u 2u+ i C)F(u)—O, (4.8)
where o = 1 or o = —1, respectively.

We are aware of two earlier applications of the method of Swenson and Danforth to this prob-
lem [55, 56]. We have tried variants of both, finally selecting an approach that in our opinion keeps
the best features of each. We outline it in what follows.

First rewrite equation (4.8) in a way that resembles the radial equation for a hydrogen atom with
a polynomial perturbation discussed in Chapter 3:

d? m2—1 E o\ C\ 1
—_——t——— — 4+ —u— — 12F =0. 49
( du2+ 2 2+ 4u M)u (u) (4.9)
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In this way we can apply most of the well-known results for the central-field models. For example,
when A = 0 we compare present eigenvalue equations with the radial equation for the hydrogen
atom and easily obtain

A2 m|+1
EO:—Z—kOZ@AOZkl\/—ZEO, k1=n1+| |
1

(4.10)

for equation (4.6), and similar expressions for equation (4.7) with By, k2, and ny. It follows from
Ag + Bp = 1that

1 1
S 2(ki+ k)2 2(ny +np+ |ml+1)2°

Eo = (4.11)

which is the well-known energy of the isolated hydrogen atom. We can also proceed in a different
way taking into account that Eg has the same value in both equations mentioned above, and solving

_A} __A-A0?

Eg=—— =
°T T2 212

(4.12)

for Ag. Only one of the two roots gives the correct result Ag = k1/(k1 + k2), as the other one is
unacceptable on physical grounds.

Consider the perturbed equation (4.9). Straightforward application of the hypervirial theorems as
in Chapter 3 yields

(J+DE J{(. 1
LU 5 (2= m?) U+ (4 5 ) €U
3
_ o (j ; 5) U1 =0, (4.13)

where U; =< u/ >. When j = 0 this equation reduces to

301
E+CU_q— %Ul -0, (4.14)

where we have chosen the intermediate normalization condition Uy = 1. Allowing both E and C to
depend on A, the Hellmann—-Feynman theorem takes the form

oE aC o
—=-2—U_ =U;. 4.15
I an 1 + 51 ( )
Substitute the Taylor series
E=YEN, C=) Ci\, Uj=Y Uj) (4.16)
i=0 i=0 i=0
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into the equations given above to derive

2 J( 2 2 AT
Y = DR [z (=) Uiz = (i 43 ) L s
i+1& of. 3
- Y EUj,i+ 1 (J +5 ) Uistp-1| - (4.17)
i=1
Usp = dop, (4.18)
1 30 P
U_1p = C_O<_EP+TU1’p_1_ZCiU_1’p_i> , (4.19)
i=1
1{o b
E, = ;<EU1,,,_1—221'C[U_1,,,_,~>. (4.20)
i=1

The calculation of the energy coefficients is similar to that in Chapter 3 for the perturbed Coulomb
problem. It is not difficult to verify that E; is linear in C; and nonlinear in the coefficients C; with
i < j. Substitute

A2 k
Bo=—28. €= ) Ao= —3_ o =1, @21)
2k? k1 + k2
and
(1 — Ap)?
2

to obtain two sets of energy coefficients Ej’ and E]’.’, respectively. Solve E]’ = EJ’.’, j=12,...,
for A}, and then substitute the result back into either Ef or E}’. The calculation is straightforward

because each equation EZ — E/ = 0 for j > 0is linear in the only unknown A ;. In this way we
obtain both A; and E; in terms of the quantum numbers n1, np, and m. In the program section we
show a set of simple Maple procedures for the calculation just described.

Table 4.1 shows the first coefficients A ; and E; in terms of the quantum numbers. For comparison
purposes we express the results in terms of

n=ki+ky=ni1+ny+\|ml+1, qg=ki —ky=n1—no, (4.23)
which lead to simpler expressions. As far as we know, the most extensive calculation of analytical

perturbation corrections to the Stark effect in hydrogen has been carried out by a Maple program
running an algorithm based on algebraic methods [57].

4.2.2 Spherical Coordinates

Before discussing the particular case of the Stark effect in spherical coordinates, it is convenient to
consider the application of the moment method to a hydrogen atom with a more general perturbation
H':

~ 1 1 ~
H= —zvz — S AH(r6.9). (4.24)
"
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Table 4.1 Method of Swenson and Danforth for the Stark Effect in Hydrogen in Parabolic
Coordinates

% (m —1-3n? +3q)
Az =—i6 °q (—n?+q* —6+6m?)
= —5557° (—171n* — 6220 + 1861? g2 + 82m? n? + 30m? + 39042 + 150 m? g°
—55 4 25m* — 15 ¢4%)
Ag = —gzn g (419n* + 1035 m? n? + 1512 — 38012 g% — 39 ¢* + 300 m* + 285m? g2

+2400m? — 2700 — 1335 42)

As = — gogsn* (—27024 18 + 17135 m? n* + 26892 ¢ n* — 333515 n* — 425654 n?

4305550 12 g2 + 240 ¢* n? + 112800 m? n? + 3110 m* n? + 5970 m2 n? g% — 108 ¢°
—29663 + 3885 ¢* + 4320 m? g2 + 6690 m* g2 + 975 m? ¢* + 7467 m* + 21561 m?
+298734 g% + 635 m®)

As = —gigzn'’ q (223309 n® + 2746578 n* + 146382 m? n* — 223639 g% n* + 1270579 n?
+12420 m? n? g% + 63 ¢* n? + 25275 m* n? + 1847130 m? n? — 2904900 n? 42
—2344614 4 39774 m* + 2294490 m? + 23445 m* ¢° + 978 ¢* — 3190819 ¢°
+24390m? g2 + 10350 m® + 267 5 — 1458 m? ¢*)

Bi=2ng
4
=15 (-177%+3¢% — 194+ 9m?) n*
% (23n% +11m? +39—¢ ) gn’
Fa= 10124 (—5487 n* — 1806 n? g2 — 35182 n? + 3402 m? n? + 8622 m? — 16211 — 5754 ¢
+549m* + 1134 m? g? — 147 ¢*) n1°
Es = 10324 (10563 n* + 90708 n? + 772m? n? 4 98 n? g + 59293 — 21 ¢* + 220 m? ¢2
+830m? + 780 g% + 725m*) g n'3
Eg = 81192 (—547262n® — 685152 g% n* — 9630693 n* + 429903 m? n* — 22691096 n?

+25470 m? n? g2 + 4786200 m2 n? — 7787370 n? g2 — 390 ¢* n? + 16200 m* n?
—7335413 + 62100 m? g2 — 765 m? g* — 1185 ¢* — 7028718 ¢° + 37245
+16845 m* + 36450 m* g% + 6951 m® + 4591617 m?) n'®
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By means of the method developed in Appendix A we easily obtain the Laplacian in spherical
coordinates

v2_ 10 59 1 9 3 1 32

sin(9)

- -2 L S 4.25
2ar or ' rZsin(@) 06 30 1 rZsin0)2 942 (425)

In order to build an appropriate recurrence relation for the moments of the eigenfunctions of H
we choose the set of functions
fijkm = SIN(@) cos(8)/ r* exp(—ar + umg) , (4.26)

wherei, j,k=0,1,... andm = 0, &1, .... To avoid confusion ¢ denotes the imaginary number.
It is not difficult to verify that

G+pDE+j+1D —kk+1)
2

fijk—2.m
m? — 2

2
fii—2k—2.m — AEfi jkm +AH fijxm, (427)

(ﬁ - E) fijkm =

+[atk +1) = 11fi jk—1m +

G-
2

Ji-2,j.k=2,m

where AE = E+a?/2. Inorder to obtain this equation we have systematically rewritten expressions
of the form sin(9)'~2 cos(9)’ 2 as [sin(0):~2 — sin(6)!] cos(0)- .

The application of the moment method to this problem is straightforward if we can write A’ as a
polynomial function of » and trigonometric functions of 6 and ¢. For simplicity, here we assume that
H’ does not depend on ¢, so that L. is a constant of the motion and m is a good quantum number.
This fact is reflected in that the subscript m does not change in the recurrence relation (4.27) and can
therefore be omitted.

We choose

1
a=-—,n=12,... (4.28)
n
that makes the second term on the right-hand side of equation (4.27) vanish when k = n — 1
simplifying the problem. Therefore,

1
AE=E—Ey=E+ — (4.29)
2n?

is the energy shift with respect to the energy of the isolated hydrogen atom Eq = —1/(2n?).
The recurrence relation (4.27) for the Stark effect becomes

G+DE+j+1) —kk+1)

(H — E)fijem = > fijk—2,m
m? — 2
+latk+1) = 11fi je—1m + 5 fi—2,jk—2.m
i(j—1)
- %ﬁ,pz,/ﬁz,m — AEfi jkm + Mij+tk+im - (4.30)

Notice that the subscript i changes in only one term that vanishes when i = |m|, and in that case the
moments of the eigenfunction ¥

Fix = {fijkm¥), i =|m| (4.31)
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satisfy the recurrence relation

G+ )HNE+j+1) —k(k+1) k—n+1 i(j—1)
/ / 5 Fjr—2+ TFj,k—l - %Fj—Z,k—Z
— AEFj;+AFj+1541=0. (4.32)
Js Jj+1,

Present moment method does not allow the simultaneous treatment of all the Stark states because
the Schrédinger equation is not separable in spherical coordinates. However, we can treat classes
of states determined by the relation between |m| and n [58]. With this purpose in mind we define
k=|ml+1+¢tt=-1,0,1,... and

Gjr=Fji1 (4.33)

so that the recurrence relation (4.32) becomes

i+ ) +j+1) —kk+1 k — 1 i(j—1
(+)DE+j+D (+)G”4+> n+ G”_JU )Gi_ZI_1
2 v n v 2 T
- AEG]',H_]_ + )"Gj+1,t+2 =0. (434)

Expanding the energy and the new moments in Taylor series about A = 0
o0 0
E=Y"En\. Gji=Y Gjphr (4.35)
p=0 p=0

we obtain the master recurrence relation

n kk+1) -G+ )i+j+1) jG -1
Gjrp PR——] |: 2 Gji—1.p+ TGj—z,t—l,p
P
+ Y EgGrsip—g — Gjtriezp-t (4.36)
qg=1

valid for all the states discussed below.

We first consider states with [m| =n — 1 (k = n +¢). When j = 0and r = —1 equation (4.34)
reduces to —AEGo o + AG1,1 = 0; therefore, if we choose the arbitrary normalization condition
Go.0 = 1, then we obtain a suitable expression for the energy: AE = AG1,1. We easily calculate all
the perturbation corrections to the energy and moments by means of equation (4.36) supplemented
with

Go,0,g =809, Eq =G11,4-1 (4.37)

that come from the normalization condition and from the energy equation, respectively. The calcu-
lation of E, requires the moment coefficients G ; , withg =0,1,...,p—1,j=0,1,..., p—gq,
t=0,1,...,2(p—q) — L

We next consider the states with |m| = n—2. Setting j = 1andr = Oweobtain AEG11 = AG22
that suggests the intermediate normalization condition G1 1 = 1leading to the simple energy equation
AE = 1G22 When (j =0,t = —1)and (j = 0, ¢+ = 0) we obtain two equations

1
—Go-1+AEGoo—A=0, n—1)Gog -1+ AEGo1—A1G12=0 (4.38)
n
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which lead to
[n(n —1)Goo — GO,l] AE + [Gl,g —nn — 1)] A=0 (4.39)

after elimination of the moment Go _1 between them. Substitution of the expression for the energy
into equation (4.39) yields the secular equation

[n(n — 1)Goo — Go,1] G224+ G12 —n(n—1) =0. (4.40)

Another useful equation arises when j = 1and ¢ = 1:
1/1
Gio=—-—|—-—AEG12+1G3] . (4.41)
n n

The equations just derived enable the calculation of all the perturbation corrections to the energy
and moments for the states with [m| = n — 2. Expanding A E and the moments G ; ; in Taylor series
about A = 0 we obtain

Gl,l,q = 3(10 s Eq = G2,2,q71 s (442)

p
> [ = DGoog — Goag] G2.2.p—q + G12.p — n(n — 1)dg, =0, (4.43)
q=0

and the master equation (4.36) withi = |m| = n — 2. It is not difficult to verify that the perturbation
equations (4.36) and (4.42) leave undetermined only the moment coefficients Goo,,, p =0, 1, ....
We obtain them from equation (4.43) which is quadratic in Gg 0,0 when p = 0, and linear in Go o, ,
forall p > 0. For p = 0 we have

1
Gooo=%x—. (4.44)
n

Each sign corresponds to one of the two Stark states arising from degenerate unperturbed hydrogenic
states. Inordertoobtain E, we havetocalculate G ; , forallg =0,1,..., p—1,;=0,1,..., p—
g+landtr=1,2,...,2(p —q).

Table 4.2 shows energy coefficients for the two cases just discussed, where o = +1 selects each
of the two Stark states arising from degenerate unperturbed states with |m| = n — 2. We do not
show the simple Maple procedures used to obtain the results in Table 4.2, and it is left to the reader
to write them following the lines of other programs in the program section. The energy coefficients
in Table 4.2 agree with those obtained by means of an earlier application of the moment method [58]
Moreover, if we set (g = 0, |m| = n — 1), and (g = o, |m| = n — 2), the energy coefficients of
Table 4.1 reduce to those in Table 4.2.

It is well known that the projection of the angular momentum along the field direction is a constant
of the motion (that is to say L. commutes with A), and, consequently, m = 0, 1, +2, ... is a good
quantum number. The moment method gives us another quantum number ¢ = 41 to label some
pairs of Stark states. In parabolic coordinates we clearly have three quantum numbers: m, n1, and
ny, or, alternatively, m, n, and g. When comparing the results of Tables 4.1 and 4.2 we saw that
g = o in the second case studied by means of the moment method. In spherical coordinates it is
customary to label the Stark states by means of the quantum numbers of the isolated hydrogen atom:
n=112...,1=0,1,...,n—1,andm = 0, +1, £2, ..., =/ which may be suitable at low field
strengths. In the first case discussed above |m| = n — 1 = [ and the Stark states correspond to the
hydrogenic 1s, 2p+1, 3d+o, etc. In the second case |m| = n — 2, and the two possible values of the
angular momentum quantum number [ = n — 2, n — 1 show that the perturbation couples the pairs
of hydrogenic states (2s, 2pg), (3p+1, 3d+1), etc.
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Table 4.2 Moment Method for the Stark Effect in Hydrogen in Spherical Coordinates

States with |m| =n — 1
Ezj41=0

Ey=—gn*(n+1) (4n+5)
E4 = — 35110 (n + 1) (1921% + 93312 + 1550 1 + 880)
Eg = —1gn® (n +1)
(415522 n® + 109013 n* + 340000 + 821540 n + 814928 n? + 11776 1)
Eg = — g54gn?2 (n + 1) (1104000000 + 2933036518 n* + 1313502002 n*
+3189097200 n + 4047270620 n? + 4063232 n” + 363981946 n° + 57826285 %)
E10 = — 51 (n + 1) (8246600607 n® + 419168256 n° + 6314922783568 1
+3680066142092 n* + 4868385352960 n + 7167165224192 n?
474557383526 n" + 1474270752706 n° + 406670914358 n°® + 1502988800000)

States with |m| =n — 2

o?=1

E1 = %no

Ep=-}n*(n+5@n—1)

E3=3n" (41-22n+17n%) o

E4 = —g n'0 (3537 n + 2812 + 112513 + 96 n* — 1606)

Es = 535 n*® (—6850n + 28086 n? — 2222 1% + 3015n* + 18963) o

Eg = —z13n® (5888 n8 + 120789 n° + 182838 n* + 1331475 n° + 1353240 n + 210794 n?
—346528)

E7 = 555n®® (7828405 + 355761 n° + 293230 n° + 8203515 n* + 4806230 n®
+23997287 n? 4 5413380 1) o

Eg = — g5agzn?? (—20876640 + 3755981880 1 + 3505527310 n? + 61889517 n”
+6653206413 n° + 2396964444 n* + 1677325062 n° + 224958382 n°
+2031616 n8)

Eg = gsamsn®® o (24292851427 + 59251864516  + 126499280380 n? + 60021188217
+86572048058 n® + 74879641210 n* + 18968318968 n° + 9152464636 n°
+190178763 1)

E10 = — 37573128 (209584128 n'° + 8665768863 n° + 54208739210 n®
+1444091466972 n® + 4992252806403 n° + 8043191827530 n*
+12467418860376 n° + 477827155350 n” + 9247913436768 12
+5395565208960 n + 867032805376)
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4.3 The Zeeman Effect in Hydrogen

We have briefly discussed the Zeeman effect in hydrogen in Chapter 2 to illustrate the application of
the method of Dalgarno and Stewart and logarithmic perturbation theory to a nonseparable problem.
It was shown that the relevant part of the dimensionless Hamiltonian operator reads

. 1 1
H= —zvz — = 4 ar?sin?0 . (4.45)
r

Therefore, arguing as in the preceding section we obtain the recurrence relation

- G+ pHE+j+1) —kk+1)
(H - E) fijkm = / / 2 fijk—2.m
2_ ;2
+ ok +1) - 1]fi,j,k—1,m + Tfi—Z,j,k—Z,m
_JG-D

5 Jij-2k-2m = AEfijkm + Afiv2 jkt2m - (4.46)
where we notice that the subscript j does not change if j(j; — 1) = 0. We thus obtain two disjoint
sets of states, one for each value of j, j = 0 or j = 1, which plays the role of a quantum number.
With either choice the moments

Fik ={fijkmlV) (4.47)
satisfy the recurrence relation
G+ DE+j+1) —k(k+1) k—n+1 m? — i2
> Fik—2+ TFi,k—l + Fi_2 k-2
— AEF;k +AFi42442=0. (4.48)

In order to derive a moment recurrence relation that applies not only to individual states but also to
whole classes of them we definei = |m|+2s,k = |m|+j+1+¢t,s=0,1,...,t =-1,0,1,...,
and

Gsi=Fir1. (4.49)
Consequently, equation (4.48) becomes
G+ )DGE+j+1D) —k(k+1) k—n+1 m? —i?
/ / 2 Gs,t—l + TGS,I + Gs—l,t—l
— AEGXJJ,_]_ + )\'G‘H—l,t-‘r?y = O . (450)

Expanding the new moments and the energy in Taylor series about A = 0 we obtain a master equation

n k(k+1) =G+ )i +j+1) i? —m?
Gs,t,p k—n+ 1 |: 2 Gs,t—l,p + 2 Gs—l,t—l,p
p
+ Z Eq Gs,t+l,p—q - Gs+1,t+3,p—l (451)
q=1

that applies to all the cases studied here.
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We first consider states with j = 0. The simplest case is |m| = n — 1 because three terms
of equation (4.50) vanish when s = 0 and + = —1 giving a single expression for the energy
AEGo,0 = AG1 2 that suggests the intermediate normalization condition Gg o = 1. We thus obtain
two additional expressions,

GO,O,q = 5(10» Eq = G1,2,q—l , (452)

to supplement the master equation (4.51). In order to obtain E, we calculate all the moment
coefficients G, ;4 Withg =0,1,...,p—1,s=0,1,...,p—qg,andr =0,1,...,3(p —¢) — 1.

When |m| = n — 2 (j = 0) we cannot make three terms of the recurrence relation (4.50) vanish
simultaneously. Choosing (s, ¢) = (0, —1) and (s, t) = (0, 0) we obtain n_lGo,—l + AEGopo —
AG12=0and (n —1)Go,—1+ AEGo,1 —AG1,3 = 0, respectively. Removing Go,_1 from them we
obtain a useful expression for the energy: [n(n —1)Go o — Go1]AE —[n(n —1)G12— G131 = 0.
The normalization condition n(n — 1)Goo — Go.1 = 1 leads to a simpler formula AE = A[n
(n —1)G12 — G1,3]. Whens = 0 and r = 1 equation (4.50) becomes nGo o + n~l4+ AEGo2 —
AG1.4 = 0 from which we obtain Gg 0. Summarizing, we have

1( 1
Goo = L <__  AEGos+ mM) , (453)
n n
Go1 = n(n—1Goo—1, (4.54)
and
AE = x[n(n—1)G12 — G13] . (4.55)

Expanding the energy and moments in Taylor series about A = 0 we obtain

Goo,p = % —SnLO — Xp;EqGo,z,p—q +Grap-1] . (4.56)
-
Go1,p = nm—1Go0,p—38p0, (4.57)
and
E,=n(n—1G12,-1— G131 (4.58)

in addition to the master equation (4.51). In order to obtain the energy coefficient £, we need G, ; 4
withg =0,1,...,p—1,5s=0,1,...,p—q,andt=1,2,...,3(p — q).

The states just discussed can be treated as nondegenerate because the perturbation does not couple
them. A different situation takes place when |m| = n—3. From the general recurrence relation (4.50)
for the moments we obtain the following equations

2
—Go,—1+AEGgo—2G12 = 0 (4.59)
n
(2n —3)Goo+ AEGo2 —2G1a = 0 (4.60)
AEG12+ (2n —4)Goo —2G24 0 (4.61)
1
(n—2)Go -1+ ;G0,0 +AEGo1—2G13 = 0 (4.62)
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when (s, ) is respectively equal to (0, —1), (0, 1), (1, 1), and (0, 0). It is left to the reader to derive
the following working expressions

1
G = —AEG AG , 4.63
0,0 >3 ( 0.2 +1G1.4) (4.63)
2n—4
Gip = Goa—1, 4.64
1,2 5 3002 (4.64)
2 — 4
AE = 3222614 —Gas) . (4.65)
2n —3

and

1 Go.2 nin —2)
’ Goo— Go1|[@n—4)Gra — 2n—23)G
2n—3|:n(2n—3)+ > Goo 0,1][(n )G14 — (21 —3)G24]

nn—2) G G4
2 YT L2 —3)

+G13=0, (4.66)

where equation (4.64) is simply an arbitrary normalization condition. Expanding those equations in
Taylor series about A = 0 and using the master equation (4.51) with the appropriate values of |m|
and j we calculate all the energy and moment coefficients. In order to obtain E, we need G ; , with
gq=0,1,....,p—-1,5=0,1,....,p—qg+2Ll,andr =2,3,...,3(p — q) + 1. The coefficient of
order ¢ of the expansion of equation (4.66) is linear in the moment coefficient G 1,, when g > 0and
quadratic in Go 1,0 when ¢ = 0. The latter case yields the secular equation for the two degenerate
states coupled by the perturbation. The two roots are

_ (8 = 2n)[8n? — 24n + 13 + (2n — 3)/16n? — 48n + 41]

G
0.1.0 20n2(n — )(n — 2)

(4.67)

We next consider the states with j = 1. The simplest case is |m| = n — 2 (the reader may
verify that one cannot obtain suitable working equations when |m| = n — 1). Choosing the arbitrary
normalization condition Go o = 1 we obtain the energy expression AE = 1G1,2; consequently,

Go,0p=0p0, Ep =G12p-1- (4.68)

In order to obtain E, we have to calculate G ;,forg =0,1,...,p—1,s=0,1,..., p—¢q,and
t=0,1,...,3(p—¢q) — L

The case |m| = n — 3 exhibits no additional difficulty and is therefore left to the reader; however,
for the sake of completeness we show the main equations in what follows. We obtain all the energy
and moment coefficients from the master equation (4.51) and the additional expressions

1 8,0 P
Goop = - —% =Y EqGo2pg+Grap1] . (4.69)
qg=1
Go1p = nn-— 1)G0’0,p —Sop » (4.70)
and
E,=nn—-1G12,-1—G13p-1, (4.71)

where equation (4.70) is an arbitrary normalization condition. To obtain E, we have to calculate the
moment coefficients G, ; , withg =0,1,..., p—1,5s =0,1,..., p—g,andz =1,2,...,3(p—q).
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Table 4.3 Moment Method for the Zeeman Effect in Hydrogen (Continued)

States with j =0
lm|=n—-1

Er=n*(n+1)

Ey=—%n"(n+1) (12n2 4+ 27n + 14)

E3 = 15n* (n +1) (1089n% + 21n* + 2048 n2 + 528 + 1700 1)

E4 = —555n™° (n + 1) (926640 + 6072790 n® + 3225070 n* + 926235 n° + 112320 n®
+6524514 n” + 3789828 n)

Es = 555" (n + 1) (17625600 n® + 8634176720 n® + 6675896034 n* + 3380668050 n°
+1095766700 n® + 207771075n" + 7126778904 n? + 3419028000 n
+725587200)

E6 = — gmagah > (n + 1) (4902104138750 n® + 678352208625 n® -+ 43436736000 n'°
1214608912662148 n° + 203462151787266 n* + 135522396155608 1°
164417497299806 n° + 21613830539000 1" + 151582655926080 12
+64403176052160 1 4 12418815628800)

lm| =n —2

Er=n’(n+5 (-1

Ey; =—3n%(n—1) (61 +75n% — 191 + 168)

Ez=$n'%(n—1) (27n° +585n* + 26 n® 4 36492 — 1239 + 2772)

E4 = —ggn® (n — 1) (561607 + 1801575 n° + 1698625 n° + 24246755 n* — 718497 n®
+48450030 n? — 13165128 n + 18230400)

Es = g555n™8 (n — 1) (4406400 n° 4 191700675 n® + 437243425 n” + 4821233400 n®
43564450084 n° + 20437328903 n* + 2324786331 1> + 20035153782 n?
—3630669480 1 + 4191004800)

Ep = — 75r55911 22 (n — 1) (21718368000 n*! + 1211753064375 n10 + 4826789599625 n°
+52080472580500 n® + 94399639455562 n” + 424804836198743 n°

+372530794254741 n® + 921146642791662 n* + 272163391589592 53
+511320228053040 n? — 38324443075200 1 + 57774342528000)
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Table 4.3 (Cont.) Moment Method for the Zeeman Effect in Hydrogen (Continued)

lm|=n—3

E1 = Rn?+n? (n2—|—3n—7)

B, — _1 (160 n* 592 n3+1316 2 —2159n+1578) n® R
2=72 161248141

n® (64184432 n5—3388 n*+9823 n3—17665 n?+19583 n—9758)
16n2—48 n+41

E3 = % (79104 n® — 515968 n” + 2011136 n® — 6258120 n® + 14406296 n* — 22747119 n®
+24278234 12 — 16659692 1 + 5678856) n® R/ (1612 — 481 + 41)°
+£n10 (—36834072 + 129285956 1 + 18432 n0 — 176972205 n* + 236171613 n®
—38200632n° — 219094386 n? + 95404713 n° + 11659552 n" + 223488 n°
—248064018) / (1612 — 481 + 41)°

E4 = —555n** (596916429824 n® — 4600155967690 n° + 4256844241306 n?
+2849807540976 n® + 404761711680 — 6095473972271 13 + 6079342696994 n*
+41872783360 110 — 8039997440 n*! + 965099520 n'2 — 1870253070144 n
—180350726656 n° — 1470111015264 n7) R/ (16 n% — 481 + 41)°
— 52514 (13417446708816 n — 36823941120 n*2 + 222705301760 1!
—995770429696 n'0 + 2873733120 113 + 153354240 n'4
—62461978186622 n* + 55210737998015 n® — 36138167068989 n°
—34210809912178 n? + 53134403287234 n° + 20398070759667 n’
+3488722075408 n® — 9476088954080 n® — 2573851988160) / (16 n% — 481 + 41)°

R = +/16n2 — 48n + 41

-1
2

States with j = 1
lm|l=n—2

Et=n*(n—1)(n+1)

Ex=-n"n—-1)@2n+3)(n+1)

Ez=3n"(n—1)(n+1) (18n° +63n2 + 621 + 10)

Es=—g5n®(n —1) (n+1)
(18720 1° + 110565 n + 245390 n* + 247915 n2 + 114162 n + 26184)

Es = p35n™° (n — 1) (n + 1) (1468800 n” + 12700800 1% -+ 46304000 n° + 92453775 n*
+110837196 13 + 82846915 n? + 37353426 n + 7488360)

Ep = —ggiggn>> (n — 1) (n + 1) (7239456000 n° + 84514397625 n® + 442123228750 n”
+1370327540750 n® + 2804697695128 n° + 3986041260369 n*

3975789877658 n® + 2681185159704 n? + 1093513436880 1 + 203616662400)
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Table 4.3 (Cont.) Moment Method for the Zeeman Effect in Hydrogen

lm|=n—3

E1=n’>(n+5 (n-2)

Ey =—3n%(n—2) (4n® +47n? — 31n + 182)

Ez = $n® (n—2) (72n° + 1449 n* — 183513 + 1237212 — 12712 n + 20856)

Eq = —gggn (n — 2) (3744007 + 11134358 — 1269295 n° + 17598810 n*
—29044904 1% + 64577580 n? — 62479176 1 + 59883840)

Es = ggn™® (n — 2) (5875200 n° + 2371470758 — 12722052517 + 6124217100 n®
—10608481964 n® 4 38257425072 n* — 59035205096 1° 4 83364260448 n?
—71175114720 n + 48166185600)

Es = — 1zoan 22 (n — 2) (14478912000 n*! + 750746768625 n'° + 343872883375 n°
+29610399572250 n® — 40041106465976 n” + 276011011998456 1°
—475002238895108 1° + 1011743637657984 n* — 1384404310926576 1°
+1481297714534400 n? — 1112814105840000 n + 581205028320000)

Table 4.3 shows the first energy coefficients for all the states considered above in terms of the
principal quantum number n and R = 4+/16n2 — 48n + 41. Analytical expressions of greater order
are much longer and, most probably, of no use for the reader.

Having sufficient computer memory one easily calculates more analytic energy coefficients than
those shown in Table 4.3 by means of simple Maple procedures. In the program section we show
only the most difficult case (j = 0, |m| = n — 3); the reader may easily derive other cases by
straightforward modification of the main procedure given there. The calculation is considerably
faster and requires less computer memory if one sets the value of the principal quantum number
n=1,2,... foragiven particular state.

Many authors have already calculated energy coefficients for the Zeeman effect in hydrogen and
surprisingly their results exhibit a good deal of disagreement as noticed in an earlier application of
the moment method [59]. We believe that the energy coefficients displayed in Table 4.3, which agree
with those in reference [59], are correct.

With respect to the calculation of energy coefficients the moment method is much simpler and
easier to apply than the method of Dalgarno and Stewart and logarithmic perturbation theory dis-
cussed in Chapter 2. The advantage of the moment method is particularly noticeable in the treatment
of excited states. Another powerful approach, which exhibits the additional advantage of producing a
more useful representation of the eigenfunctions, is the expansion of the perturbed state in a basis set
of unperturbed states, aided by an algebraic approach to calculate the necessary matrix elements sys-
tematically [12]. The algebraic approach is preferable if one is interested in the calculation of system
properties other than the energy; otherwise, the moment method leads to simpler programs [12].

Finally, we discuss the classification and labelling of states within the moment method. Notice
that we have made no explicit use of the well-known properties of the Zeeman states during the
calculation. The model Hamiltonian is invariant under the substitutions 6 — —6 and 6 — 6 +
and the eigenfunctions are either even or odd with respect to them. The functions chosen to construct
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the moments satisfy

Fijhem@ =0, 0) =(=1) fi i km(r,0,0) = (=)™ f; i 4 m(r, 0, 0) (4.72)

and

Fijdem (0 +70,0) = (=1 fi i gom(r,0,0) = (D)™ fi 1k (.6, ) . 4.73)

The symmetry of the functions f; ; v (r, 6, ¢) (determined by the values of j and |m|) has to match
the symmetry of the chosen Zeeman state in order to obtain a nontrivial recurrence relation for the
moments.

The unperturbed eigenfunctions are radial factors times the spherical harmonics Y; ,, (9, ¢) that
satisfy ¥, (=6, ¢) = (=D)"Y;,,(0, ¢) and Y, ,, (0 + 7, ¢) = (=1)'Y;.,(6, ¢) [40]. Therefore,
when A = 0 we expectthat/ = [m| + j + 2u,u =0, 1, .... For the class of states with j = 0 and
|m| = n — 1 we have [ = |m| and; therefore, the Zeeman states arise from the hydrogenic ones 1s,
2p+1, 3dy2,.... When j = 0 and |m| = n — 2 we conclude that / = |m| and the Zeeman states
come from the hydrogenic ones 2s, 3p+1, 4d+2, .... The choice j = 0 and |m| = n — 3 gives room
for two possibilities, I = |m| and I = |m| + 2, and we have pairs of hydrogenic states (3s, 3dp),
(4p+1,4fi1), ... coupled by the perturbation. When j = 1 and |m| = n — 2 the unperturbed states
are 2po, 3d+1, 4 fi2, .... Finally, for j = 1 and |m| = n — 3 we have 3pg, 4d+1, 5f+2, .. ..

It is not difficult to apply the moment method to more general perturbations than those discussed
here. An example already studied is the hydrogen atom in parallel electric and magnetic fields [60].

4.4 The Hydrogen Molecular lon

The hydrogen molecular ion is the simplest diatomic molecule having only one electron. Here
we consider some electronic states under the Born—-Oppenheimer approximation that separates the
electronic and nuclear motions [53]. The dimensionless model Hamiltonian in this frozen-nuclei
approach reads

H=-v?_ - _— (4.74)

where r4 and rp are the distances between the electron and protons A and B, respectively [61].

The Schrodinger equation for this model is separable in elliptical coordinates [61]; however, here
we choose spherical coordinates and apply the moment method for nonseparable problems because
it is particularly simple and straightforward for the naive perturbation approach developed below.
To this end we place the molecule along the z axis with proton A at the coordinate origin and proton
B at a distance R in the positive direction. Therefore, if r denotes the position of the electron with
respect to the coordinate origin, thenry = r = |rland rp = \/RZ — 2R cos(8) + r2, where 0 is the
angle between r and the z axis. We rewrite 1/rg = C(8)/R, where

1

Cp) = : 4.75
» V1 —2Bcos(d) + B2 @79

B =r/R, and expand C(B8) as follows:
C(B) =) _Cj(cos®)p’ . (4.76)

j=0
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The functions C; (cos(9)) are the well-known Legendre polynomials [62]. Taking into account that
[1+ 8% — 2B cos(8)]C’(B) = [cos(9) — BIC (B) one easily verifies that the functions C; satisfy the
recurrence relation

1
Cjp1= T [2j +1)cos®)C;j — jCj1] @.77)

and are therefore polynomials of the form
j .
Cj =Y Cjicos®) . (4.78)
i=0
Moreover, the coefficients C; ; satisfy

1 . .
Cjq1i= i1 [2j+1DCji—1—jCj-1i] . (4.79)

where j =0,1,...,i =0,1,..., j, Copo = 1,and C;,; = 0 if a subscript is negative. In the end
we have

[ee) u
1

= = Y Cuycos(9)” (4.80)
v=0

r
B u=0

where A = 1/R is the perturbation parameter.
We apply the moment method as in the Stark effect discussed above. The recurrence relation for
the moments reads
i+)0+j+1) —kk+1 k—n+1 i(j—1
i+ DG+ . ) — k( )Fj,k—2+ ; FNH_J(J2 )

(.¢] u
—AEFj =Y 2 CuuFjviiu =0, (4.81)
u=0 v=0

Fi 2r-2

where i = |m]|. In order to treat all the states with |m| = n — 1 simultaneously we definek =n + ¢
and G;; = F; x—1. Arguing as in the case of the Stark effect we derive the master equation

n kk+1)—G+)HGE+j+121) jG =121
Gijp —— |: > Gji—tp+ =5 —Gj-21-1p
14 -1 u
+ Z Eq Gj,t-‘rl,p—q + Z Z Cu,ij+v,t+u+l,p—u—l 5 (4-82)
g=1 u=0 v=0
the normalization condition
Go,0,p = 0p (4.83)
and the energy expression
p—1 u
Ep==" CuvGoup-u-i- (4.84)
u=0v=0

© 2001 by CRC PressLLC



78 SIMPLE ATOMIC AND MOLECULAR SYSTEMS

Table 4.4 Moment Method for the Hydrogen Molecular lon
States with |m| =n — 1

E1=-1
E;=0

E3=3n’(n—1) (n+1)

Es=—in*(n+1) (@4n+5)

Es=—3n*(n =) (n—2)(n+2) (1 +1)

Eg=3n®(n+1) (4n°+14n% —5n — 28)

E7=&n®(m+1) (13n° —49n* — 269n° — 121n% + 180 n — 180)

Eg = —135n® (n +1) (384n° + 2181 n* 4 910 n% — 7930 — 13621 + 13572)

Eg = —g35n° (n +1) (323n7 — 1907 n® — 158951 — 14189 n* + 44232 n® + 44172 n?
—20160 7 + 20160)

E19 = gzn™® (n + 1) (704n" + 5668 n® + 4744 % — 45013 n* — 77061 n° + 52830 n?
438694 n — 150084)

n=1 n=2
Eq -1 -1
E> 0 0
E3 0 6
-9
Eq e —78
Ex 0 0
-1
Eg 75 2400
=21
E+ TB —33888
—7755
E _— 201552
8| 64
—-1773
Eq > 1835904
—84759
Eq 6 —28483200

To obtain E, weneed Gj;,forg =0,1,...,p—1,j=0,1,...,p—¢g—1andr=0,1,...,
p—q—1. Table 4.4 shows analytical energy coefficients in terms of n and particular results forn = 1
and n = 2 suitable for comparison with expressions available in the literature. One easily obtains
more perturbation corrections by means of the Maple procedures shown in the program section.

There is a vast literature on the asymptotic expansion of the electronic energies of the hydrogen
molecular ion at large internuclear distances. Here we select References [63] through [65] where the
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reader may find other relevant papers on the subject. Our results agree with those obtained earlier by
other authors after appropriate corrections. For example, the coefficient of order p of reference [65]
is (2/n)? times ours.

We could have chosen elliptical coordinates to separate the Schrddinger equation and apply, for
example, the method of Swenson and Danforth as in the Stark effect discussed above, thus obtaining
more general results valid for all states. However, we have preferred spherical coordinates and the
moment method because we think it is simpler to develop the working equations. The reader may
verify that the application of the method of Swenson and Danforth is straightforward although rather
more tedious.

According to the perturbation method just discussed, the asymptotic expansion for the electronic
energy of the ground state is

ER——+_1_ 8 1 (4.85)

However, a more careful analysis reveals the occurrence of exponential and logarithmic terms [64]—
[66] originated in the double-well nature of the problem [66]. Figure 4.1 (produced by Maple
plot3d command) clearly shows that the potential-energy function of the hydrogen molecular ion is
a double well. In order to plot the function in three dimensions we set y = 0. It is not surprising
that the exponential terms do not appear in the naive perturbation approach developed above because
functions of the form exp(—R/n) = exp[—1/(nA)] and all its derivatives vanish as A | 0.

FIGURE 4.1
Dimensionless potential-energy function for the hydrogen molecular ion in the Born—
Oppenheimer approximation (y = 0, R = 3).
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45 The Delta Molecular lon

A rigorous discussion of the perturbation expansion for the hydrogen molecular ion that accounts
for the exponential and logarithmic terms at large internuclear distances is beyond the scope of this
book. We do not even consider the perturbation treatment of simpler double wells in one dimension.
However, a pedagogical approach to the perturbation expansion of a one-dimensional, one-electron
molecule at large internuclear distances is possible for a simple, exactly solvable model. In the delta
molecular ion one simulates the Coulomb interaction by means of the much simpler delta interaction.
The dimensionless Schrédinger equation reads

W (x) = 2[V(x) — E]¥(x), V(x) = —8(x) —8(x — R) , (4.86)

where §(x) is the Kronecker delta function and R is the internuclear separation. The only properties
of this function that we need here are §(x) = 0 if x £ 0, and

€
/ W(x)8(x)dx =W (0), ¢ >0. (4.87)
—€
Notwithstanding the delta potential is a extremely short range interaction, it is commonly chosen as
a one-dimensional model for the Coulomb interaction [67].

Although the bound states of this model are well known, [67] in what follows we briefly show
how to obtain them for completeness. First of all notice that a square-integrable solution of the
Schrodinger equation (4.86) is of the form

A exp(kx) if x<0O
W(x) =1 Azexp(kx) + Bpexp(—kx) if O0<x<R , (4.88)
Az exp(—kx) if x>R

where k = /—2E and E < 0. We require that it be continuous at x = 0 and x = R:
v(O0)=w(0"), ¥(R)=V(RT). (4.89)

Because the potential-energy function is singular at x = 0 and x = R the first derivative ¥’ (x) is
not continuous at those points as follows from the property (4.87) of the Kronecker delta function:

"mo/e V' (x)dx =V (07) — W' (07) = —2w(0) . (4.90)

Analogously, at x = R we have
V' (RT) =W (R7) = -2¥(R). (4.91)

It is not difficult to obtain a suitable expression for the energy from equations (4.88)—(4.91) if
we proceed orderly. First, obtain A and By in terms of A; from the two equations that give the
boundary conditions at x = 0. Second, rewrite the two equations giving the boundary conditions at
x = R conveniently and divide one by the other in order to remove Az. Finally, substitute the values
of A, and By obtained previously, remove A1, and derive an equation solely in terms of k and R.
One easily rewrites the resulting equation as follows:

(k — 1)® = exp(—2kR) . (4.92)
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The two roots of this equation
ky =1+ exp(—kR) (4.93)
give us the only two bound-state energies of the delta molecular ion in terms of R:

ki
Ey=——. (4.94)
2
Notice that 0 < k_ <1 < ky leadsto E; < —1/2 < E_ < 0 and tells us that E is the ground-
state energy. Here we have not taken into account the parity of the eigenfunctions as in a previous
pedagogical treatment of this model [67]. Our simpler expression for the energy is suitable for the
application of perturbation theory to obtain an expansion at large internuclear distances.

When R — oo we obtain the approximation of order zero k1o = 1. We then write kL ~
k+o + k41, where k41 is a small first-order correction to kg, so that at first order we have 1 + k41 ~
1+exp[—(1 + k+1)R] =~ 1 £ exp(—R) from which it follows that k11 = *exp(—R). In order to
make this procedure more systematic we substitute the expansion

k(o)=Y kjo! (4.95)
i=0
into
k(o) =1+ oexp(—kR), (4.96)

and then solve for the coefficients k; term by term, and finally substitute the actual value of the
perturbation parameter o = +1. A straightforward calculation (greatly facilitated by Maple) yields

3R? 8RS
ki =1+ exp(—R) — Rexp(—2R) + > exp(—3R) — =5 exp(—4R) + - - -, (4.97)
from which it follows that
1 1 3R
EiL = 3 Fexp(—R) + (R — E) exp(—2R) £ R (1 — 7) exp(—3R)
R
+ R? (8? — 2) exp(—4R) + - - - . (4.98)

At large internuclear distances the energies of the two bound states are almost degenerate, their
difference being

AE=E_—E, =2exp(—R) +--- . (4.99)

This trivial model clearly shows that exponential terms take place in the expansion of the energies
of diatomic molecules at large internuclear distances. In this oversimplified example there is no
expansion in powers of A = 1/R, and if we tried it we would find that all the coefficients vanish. On
the other hand, the perturbation expansion for the hydrogen molecular ion exhibits a series in powers
of 1/R in addition to exponential and logarithmic terms, [64]-[66] and we were able to obtain the
former by means of the moment method in the preceding section. Exponentially small energy gaps
like that in equation (4.99) are typical of double well potential-energy functions [66].
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Chapter 5

The Schrodinger Equation on Bounded Domains

5.1 Introduction

In this chapter we focus our attention on the Schrédinger equation with boundary conditions for
finite values of the coordinates. In particular, we first consider a particle in a box with impenetrable
walls that give rise to Dirichlet boundary conditions. Models with such features appear in many
branches of physics and chemistry, among which we mention the rate of escape of stars from clusters,
[68] the theory of solids, [69, 70] molecular interactions, [71] electrons in crystals within electric
fields, [72, 73] quantum wells, [74] and magnetic properties of metals [75]. This is just a sample
of the vast literature on the subject [32, 76, 77]. Here we restrict ourselves to simple nontrivial
one-particle systems in one and three dimensions.

In this chapter we also consider periodic boundary conditions. It is impossible to enumerate all
the physical problems that require the solution of the Schrddinger equation with such boundary
conditions. We only mention well-known models for the study of molecular rotation spectra that are
based on a variety of perturbed rigid rotors [78, 79]. For concreteness we concentrate on a particular
model and apply perturbation theory in the cases of weak and strong interaction.

5.2 One-Dimensional Box Models

We first consider a particle of mass m in a box with impenetrable walls at x = L1 and x = Lo,
under the effect of a potential-energy function V(x) in L1 < x < Lj. The state vector ¥(x)
vanishes outside the box where the potential-energy function is infinite and continuity requires that
W(L1) = W(Ly) = 0. In the coordinate representation the Hamiltonian operator reads

K2 d?
2m dx?

forall L1 < x < L. By means of the change of variables

H=— + V(x) (5.1)

x=Lg+ L1, ®(q)=~LV(Lg+ L) , (5.2)

where L = Ly — L1 is the box length, we rewrite the Schrédinger equation for ®(g) as

1 d? A d(g) = ed 5.3
[_EWJF v(q)} (q) =€P(q), (5.3)

83
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where
mL? mL?E
r(g) = 7‘/ (Lg+L1), e= PEan (5.4)
The solution @ (g) satisfies the simpler boundary conditions ®(0) = ®(1) = 0.
In order to apply perturbation theory we choose
. 1d° .
Hy=—-—-—, H = 5.5
0= "%ug v(gq) (5.5)
and expand
0 . e .
(I):Zq)j)»j,ézzej)\], (5.6)
j=0 j=0
where we omit explicit reference to the quantum number n. The solutions to the unperturbed equation
1d?
———d =¢egd 5.7
2 dq? 0(q) = €0Po(q) (5.7)
are
n27'[2
Do(g) = ﬁsin(nnq), € = — n=12.... (5.8)

For simplicity we require that @ ;(0) = ®;(1) = 0 for all j to be sure that the approximate solution
®(g) satisfies the appropriate boundary conditions at any perturbation order.

5.2.1 Straightforward Integration

Inthe particular case of the particle in the box just considered, the perturbation equations developed
in Chapter 1 take the form

dZ
<W+n2n2>q>j=f,-, j=0,1,2, ..., (5.9)
where fo =0, and
j
fi=2v®;1-2) &Py, j>0. (5.10)
k=1

The method developed in Appendix B proves suitable for solving the set of inhomogeneous or-
dinary differential equations of second order with constant coefficients (5.9). A real solution of
equation (5.9) that satisfies the boundary condition at g = O is

. 1 9 .
®;(q) = Cjsin(nmq) + E/O sin [nn (q - q/)] fi (q/) dq’, (5.11)

where C; is an arbitrary integration constant. The boundary condition at the other end point
®; (1) = 0 determines the energy coefficient €;. The resulting equation is equivalent to the general
expression (1.10) for the energy coefficient of order j that in the present case takes the form

1 j—1 1
€j = /0 Do(q@)v(g)®j-1(q)dq — Zek/o Do(q)P;_k(g)dq . (5.12)
k=1
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To derive this equation from ®(1) = 0 simply rewrite sin[nz (1 — ¢’)] as — cos(nx) sin(nmq’).
Finally, an appropriate normalization condition determines the remaining integration constant C;
here we choose equation (1.11):

J 1
Z/o b ()®;-i(q) =3dj0. (5.13)
i—0

It is possible to derive exact analytical perturbation corrections from equation (5.11) for many
potential-energy functions v(q). Maple greatly facilitates the systematic calculation of the integrals
in equations (5.11) and (5.13), and we show a simple set of procedures for that purpose in the
program section. For example, a particularly simple class of perturbations is given by polynomial
potential-energy functions V (x) = Vo + Vax 4+ Vax2 + - - - + Varx™; we consider some illustrative
examples in what follows.

The simplest case is the linear interaction V (x) = Vi.x that has proved suitable for the investigation
of the effect of electric fields on electrons in crystals [72, 73] and quantum wells [74]. Without loss
of generality we choose L1 = 0 and set

ViL3
=" wg) =q. (5.14)

hZ

Notice that the dimensionless perturbation parameter A is given by the ratio of the maximum value
of the potential energy Vi L to a kind of characteristic kinetic energy 42/(mL?). Moreover, it can
also be writtenas A = (L/Lg)3, where Lo = [A?/(mV1)]*/? is a characteristic length for the particle
in the field.

Table 5.1 shows the first perturbation corrections to the energy and eigenfunction of the nth state in
terms of w = nr. One easily obtains many more by means of the Maple procedures in the program
section.

5.2.2 The Method of Swenson and Danforth

The application of the method of Swenson and Danforth to the particle in a box requires a careful
discussion. It is well known that all the zeros of a solution ®(¢) of the Schrédinger equation at finite
values of the coordinate are simple, because otherwise @ vanishes everywhere. This conclusion
follows from the fact that if both ®(g) and ®'(g) vanish at gg, then all the derivatives of ®(q)
vanish at that point. The method of Swenson and Danforth is based on the hypervirial theorem
< @ | [H,W] | ® >= 0 as discussed in Chapter 3. This expression is valid provided that W &
belongs to the state space, which in the present case is given by differentiable functions that vanish at
g = 0and g = 1. Because in the method of Swenson and Danforth we choose W= f(c})f) +2(@),
then f(q) has to vanishat g = 0 and g = 1. If f(g) does not satisfy those boundary conditions,
we can still apply the method of Swenson and Danforth provided that we modify the hypervirial
relations [32]. Here we choose f (¢) to satisfy the boundary conditions in order to keep the standard
form of the hypervirial theorem. All earlier applications of the approach were based on the modified
hypervirial theorem [32].

For polynomial potential-energy functions we choose f(q) = ¢/ — ¢, j = 2,3, ... so that the
hypervirial relations developed in Chapter 3 become

2jefa’™t) + w<qj_3>—k<qjv’>—2jk<qj_1v>

— 2e+Ar{gv)+2L<v>=0. (5.15)
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Table 5.1 Straightforward Integration of the Perturbation Equations for a Particle in a Box
with a Linear Interaction v(g) = ¢

w =nimw

1
&1 = 2
b — Y2Qq-Dsinwq) _ v2q(g-D cos(@q)

1= 4 w? 2w
2

w“—15

€ = 24 4

®p = —v/2 (0* = 20w? — 405 + 150 ¢ w? — 150 w? g2 + 30 w* ¢* — 60 ¢3 w* + 30 g% w?)

sin(q) _ 5v2(q=1) ¢ (2¢4=1) cos(wq)
240 b 24 w3

e3=0

— N2
(D3__W

(700* ¢* — 140 g% w* — 450 w? g2 + 70 g% w* + 450 g w? + 195 — 7502 + w*)
; 8, 2

(2q — 1) sin(wq) p° + 755

(100* ¢* — 20 ¢® w* + 10 g2 w* — 250 w? g2 + 250 g w? — 50 w2 + 195 + w*)

(g — 1) g cos(wq)/w’

—210 w? 4+ 1980 + w*
288 w10

468720 w* ¢* 4 1408050 g »? + 616770 ¢ w* — 937440 ¢° »*

&4 =

Oy = ———
4= 241020

4900900 w? — 13059900 — 1408050 w? g% + 630 w® ¢® — 2520 w® g7 + 3780 w® ¢®

—2520 g% ® — 47460 0 ¢® — 252 w8 ¢3 + 126 w® 42 — 153300 b ¢*

+69300 w® ¢° + 142380 ¢° w® + w® — 148050 g w* + 630 w® g — 11550 w® 42
V2

+7560° ¢* + 13020 0* — 130 %) sin(wg) /0'? + =

(18w* ¢* — 36 ¢® w* + 18¢% w* — 438 w? g2 + 438 q w? + 2235 — 89 w? + w*)
(g—-1q@2q—1) cos(wq)/e®

As an illustrative example we consider a second-order polynomial

v(q) = ag + Bq* (5.16)

that accounts for most of the applications of physical interest of such oversimplified models. Arguing
as in Chapter 3 we easily derive the following equations

QO,p = 50]) y (517)
L j(l_jz)Q 2<'+1>i 0
o €O
2( + Deo 4 j=2p =Y L 1
+(2j + 3)01Qj+1,p71 +2( + 2),3Qj+2,p71 + 2619 — 3 Ql‘pfl

Qjp =
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_4ﬂQ2,p—l} ’ ] = 1a 27 ety (518)

1
€ = ;(le,p-1+ﬂQz,p_1), (5.19)

where Q; ,, p = 0,1, ... are the perturbation corrections to the expectation value Q; =< q/ >,

equation (5.17) is the normalization condition, and equation (5.19) follows from the Hellmann-

Feynman theorem. In order to obtaine, weneed Q;,,s =0,1,...,p—1,j=1,2,...,2(p —s).
For the harmonic oscillator V (x) = kx?/2 we have

mkL* 1 L
A= Y v(g) = E(q —q0)°, qgo=——. (5.20)

L
Notice that in this case we can also write the dimensionless perturbation parameter A either as the ratio
of a potential kL2 to a kinetic 42/ (mL?) energy oras » = (L/Lo)*, where Lo = [i%/(mk)]*/* is the
characteristic length of the oscillator. The harmonic oscillator is symmetrical when L, = —L3 > 0,
in which case go = 1/2. Equations (5.17)—(5.19) apply to the general case provided that we add
qg /2 to the perturbation correction of first order.

The calculation of exact analytical perturbation corrections by means of equations (5.17)—(5.19) is
straightforward even by hand. However, if one is interested in relatively great perturbation orders, the
use of computer algebra becomes necessary. Table 5.2 shows some results in terms of w = nzr and gg
obtained by means of a simple Maple program similar to those discussed earlier in Chapter 3. They
are valid for both symmetrical and nonsymmetrical harmonic oscillators and also for the inverted
ones (k < 0= A <0).

In order to test the perturbation coefficients just obtained and estimate the rate of convergence of
the perturbation series, we compare the partial sums

N
Sn=) €rl (5.21)
j=0

with exact energies of excited states of the harmonic oscillator with the usual boundary conditions
®(+o00) = 0. For example, from its second excited state

®(q) = (2q2 - 1) exp (—q2/2) (5.22)

we obtain the dimensionless energy e = 5/2 of the ground state of a harmonic oscillator v(g) = ¢2/2
in a symmetrical box with wallsat L, = —L1 = 1/ﬁ. The third excited state

®(g) =q (24> - 3) exp (—¢%/2) (5.23)

gives us the energy ¢ = 7/2 of the ground state of a harmonic oscillator in a box with walls at
L1 =0and L, = /3/2 as well as of the first excited state of a harmonic oscillator in a box with
walls L, = —L1 = +/3/2. log(| € — Sy |) provides a reasonable measure of the rate of convergence
of the partial sums (5.21)). Figure 5.1 shows that the perturbation series for the first two cases just
mentioned converge rapidly. The numerical results for the third case exactly agree with those for
the second one, and do not add anything new to the present discussion. We appreciate that the rate
of convergence is slightly greater for the symmetric oscillator.
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Table 5.2 Method of Swenson and Danforth for the Dimensionless Bounded Harmonic

: A 1 a® — a0)?
Oscillator f = —+ 4~ 4 =40)°
2 dg? 2

q0 1 1 go?
2 4w2+6+ 2

1 1., 1 5 5, 5
oy — 24 10T o490 9o+8q° g T4 7T 1
a)z a)4 16 0)6
11 5 5 1 93 93 31
2240 go% 4+ —— — —— 2do— gt — = g2 — =g+ =
o I Toas 240”8 8™ "6, 167" "1 "1 121 1
a)4 a)G a)8 32 C()10
1,1 1 139 55
eo— 28877 144" " 2835 24192 24192 ™
w
623 16 35 , 35 , 441 ,
960771357247 “ 287 T 330 %
608
55 55 , 683 3149 , 2269 14573 14573 , 14573
L4 QT g 90 T g0 T 18 10 T T1pg 10 L 128 90~ T1p8 1% T T384
10 wl2
!
256 w14
1o 37 7 o, 1,
oq — 360 9"~ 518400 ©° " 56825 " 518400 °° T 720 1°
- 8
w
17291 , 15, 6401 223 15 ,
L 11507 "8 115207~ 2700 ~ 16 "
10
w
101783 1617 , 150203 1617 ; 34333
L 15120 " 32 % " 73840 *°” 716 7 T "3gap %
wlZ
135121 213601 , 1635 , 1635 , 115501
P R 7 R W L T /)
61)14
033027 938027 , 938921
L 768 256 1° ~ 56 10 1094647
w16 512 18
1oL
1,0 = 2
11 5.5
— g0t o —= 4= qo
011 = 120)2 24 , 8w44
1l 5.5 03 9
—osdot oo —ot o0 — g0t
01, 120" 20 "8 2% "5 s
w w w
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FIGURE 5.1

Rate of convergence of the perturbation series for the ground state of the symmetric (S) (L2 =
—L1 = 1/4/2) and asymmetric (A) (L1 = 0, L, = /3/2) harmonic oscillator in a one-
dimensional box.

5.3 Spherical-Box Models

A particle of mass m in a spherical box of radius R with an isotropic interaction potential proves
also to be an interesting model with physical applications. The stationary states are solutions to the
Schrodinger equation

2
[—h—vz + V(r):| W(r) = E¥(r) (5.24)
2m

with the Dirichlet boundary condition W (r) = 0 on the box surface » = |r| = R. The Schrédinger
equation (5.24) is separable in spherical coordinates because both the potential-energy function and
the box are spherically symmetric. One easily verifies that the radial factor of W (r) = x (r)Y;.,, (0, ¢)
satisfies the eigenvalue equation

r? (d* 2d\  RUI+1)
[_% (ﬁ + ;d_r> T o2 T V(r)] x(r)=Ex(r) (5.25)

with the boundary condition x (R) = 0. By means of the change of variables r = Rq, ¢(q) =
R3/2 (Rq) we derive the dimensionless equation

L/d?> 2d\ 10+1)
|:—§ (dTJZ‘FC—IE)‘FT‘F)\U(Q)} ¢(q) = €p(q) . (5.26)
where

mR? mR2E
)\.U(q) = FV(RL]), € = hz N

(5.27)
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and the boundary condition becomes ¢(1) = 0.
The particle in a spherical box provides an appropriate unperturbed model. In terms of the new
variable z = /2¢pq the eigenvalue equation (5.26) with » = 0 becomes a Bessel equation [80]

d? d
P +2—+2—11+1)|E@ =0, (5.28)
dz dz

where E(z) « ¢(z/+/2€0), and €g denotes the unperturbed dimensionless energy. Since E(z) «
Ji1(z) = /I /(22)1J1+1/2(2) [80] we conclude that the boundary condition ¢ (1) = 0 leads to

(5.29)

where j, , is the nth zero of J,(z),and v =1+ 1/2.
In what follows we apply perturbation theory by means of two approaches discussed in Chapters 2
and 3.

5.3.1 The Method of Ferndndez and Castro

The method of Fernandez and Castro developed in Chapter 2 is particularly simple when the
auxiliary functions A(g) and B(g) are polynomials. For this reason it is convenient to rewrite
equation (5.26) as

2
[d—z 20+ d 20v(q) + 26] ¥(q) =0, (5.30)
dq qg dq

where 9 (q) = ¢ '¢(g). We then write
9 (q) = A(@)P0(q) + B(q)94(q) . (5.31)
where 99 (g) is a solution to the unperturbed equation

> 2(0+1)d
— i+ d + 2€0 | P0(g) =0 (5.32)
dq qg dq

with the boundary condition (1) = 0. The auxiliary functions satisfy the equations

gA” +2(+ DA —4egqB’ + 2g(Ae —A)A = 0,
g*B" —2(1+1)gB' +2¢°A’ +2(l + 1)B + 2¢°(Ae —»v)B = 0, (5.33)

where Ae = € — ¢ is the energy shift caused by the perturbation. We then expand the auxiliary
functions and the dimensionless energy in Taylor series about A = 0

Alg) =Y Aj@r. B(@) =Y Bi@h, e=Y €rl, (5.34)
j=0 j=0 j=0

where Ag = 1 and By = 0. Straightforward substitution of the series (5.34) into equations (5.33)
leads to the perturbation equations for the coefficients A ;, B;, and ;

J
qA’J.’ +20+ 1)A.// - 460513} +2q ZGiAj_i —2qvAj_1 = 0,
i=1

J
q°B} —2(+ 1)qB} +2¢°A’; + 2+ 1)B; +2q* Y €iBj; —2q°vB;1 = 0.(5.35)
i=1
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As an illustrative example we consider the isotropic harmonic oscillator with potential-energy
function V () = kr2/2 that leads to

mkR* q°
By inspection of the perturbation equations with the harmonic potential we conclude that

Na,j np,j

Aj@) = ajxg®. Bi(g) = bjxg*™, (5.37)
k=1 k=0

whereng 1 =np1=1andng j =np j—1+2,np ; =ng j—1+1forall j > 1. The energy is given
either by the equations in Chapter 1 or by the boundary condition B(1) = 0 that leads to

n;,,.,-fl

bjnbj=— Y bjk, (5.38)
k=0

which enables one to be removed of the unknown coefficients. Both the calculation procedure and
the corresponding Maple program are similar to those already discussed in Chapter 2. Table 5.3
shows analytical expressions in terms of ¢y and /. After appropriate modification, present results
agree with those obtained earlier by straightforward application of this approach to the isotropic
harmonic oscillator in a spherical box in a space of D dimensions [81].

5.3.2 The Method of Swenson and Danforth

In order to simplify the application of the method of Swenson and Danforth it is convenient to
transform the eigenvalue equation (5.26) into

1d> 10+

2dq? 2g°
where the solution ®(g) = g¢(g) satisfies boundary conditions similar to those for the one-
dimensional box: ®(0) = ®(1) = 0. In this way we can apply all the perturbation equations

developed earlier by simply adding the centrifugal term /(I 4+ 1)/(24?) to the potential-energy func-
tion Av(g). Arguing as before we easily derive the hypervirial relation

2iele ) + GoplUTRIACED )
- 2j,\<qf—1v> —2e+A(qv) 420 <v>=0. (5.40)

+ Av(q)} ®(q) =€P(q), (5.39)

As an illustrative example we consider the isotropic harmonic oscillator with dimensionless
potential-energy function v(g) = ¢2/2. Expanding the expectation values Q; =< g% > and
the energy ¢ in Taylor series about A = 0 in the usual way, we derive the following working equa-
tions:

Qop = dop. (5.41)
1 JIHA+1) —4j2+1] . P
op T 1, —22j+1 0. .
Crr 2(2j + Deo { 2 Qj-1p—2@j + )261 Qj.p-i
2+ D Qj+1.p-1+2€p - 2Q1,p_1} L i=12,..., (5.42)
1
¢ = 2,9t (5.43)
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Table 5.3 Method of Fernandez and Castro for the Isotropic Harmonic Oscillator in a
Spherical Box

Ag=1

By=0
.2

80:.}\/_2n

1-21) g2
A1(g) = %

-1 1
Bi(q) = _4q(q 12) (g+1)

€0

(=3+4e0+41(+1))

€1 = 24 &g

A2(q) = (—40¢® eo? + (— 7620l + 8002 + 2012 g9 + 129 ¢9) ¢*
+ (—40e0? + 809l — 241% — 1212 + 2221 — 40 g — 105) ¢?) / (5760 £0°)

_ _q(@-1)@+) (48q2 £0—20 80 [+12124+121—105—22 &)
Ba(g) = 288003
ey — (32 £0%2+315—300 £9+(—112 £g—456) | (I+1)+481% (I+1)?)
2= 5760 £03

As(q) = ((—4984 &% + 560203 1) ¢8 + (—13922£02 1 + 75612 e0? + 11424 &¢®
+45207 e9? — 28013 £9?) ¢°® + (— 7896 0> + 1008 59 14 + 16800 g9 /
+96408 e | — 1680 £® 1 — 412813 g9 + 67212 £9> — 138537 &9 — 549612 &g
—56952 £0?) ¢* + ((— 2590507 — 20805 — 2016 12 £o? + 3140072 — 74592 &9
+607201° — 7392 £9° | 4 806412 g + 20328 £9° + 114345 + 1120 0% 1
+35280 0 + 1456 £0° + 403212 g9 — 31201%) ¢?) / (2903040 &0°)

B3(q) = —q (g — 1) (g +1) (— 28048 e0° + 7479 ¢* £0? + 560 ¢* £0° + 140 ¢* £9?
+140 g* £9? 12 — 2296 g2 £0° | + 3072 g2 eg | — 280 g2 g9 — 280 g2 12 £¢?
+3072 g2 e 1% — 5310 ¢2 e9? — 48384 g2 o + 1284 £92 + 1568 &2
+560 12 £9? 4 6348 91 — 348012 g9 + 126 59 — 303601 + 10404 — 2932072
4208073 — 100813 o + 114345) / (1451520 £¢°)

e3 = (768 £9® — 60480 £9? + 351540 9 — 343035 + (31776 &9 + 6912 £o?
+548460) 1 (I + 1) + 416073 (1 + 1)3+
(— 124560 — 11968 £0) 12 (I + 1)?) /(2903040 £¢°)
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In order to obtain e, weneed Q; ; foralls =0,1,...,p—1,j=1,2,...,p —s.

Table 5.4 shows sample analytical expressions of perturbation corrections in terms of the un-
perturbed energy ¢p. The Maple program that provided such results is similar to those for earlier
applications of the method of Swenson and Danforth. The dimensionless energy coefficients ¢; in
Tables 5.3 and 5.4 appear to be different simply because their terms are arranged differently.

The application of the method of Swenson and Danforth to a particle in a spherical box is straight-
forward when the potential-energy function is a polynomial with only even powers of the radial
coordinate. The reader may easily verify that problems arise when there are also odd powers. When
[ = 0 the spherical models are similar to those in one dimension, and we can therefore apply the
approach already described above. On the other hand, when / > 0 one cannot calculate all the per-
turbation coefficients which result to be functions of the unknown Q_1_, that remain undetermined.
In what follows we show how to overcome such difficulty in the case of the Coulomb interaction,
and consider a hydrogen-like atom in a spherical box of radius R as an illustrative example. More
precisely, the potential-energy function inside the box is V(r) = —Ze?/r, where —e < 0 and
Ze > 0 are the electronic and nuclear charges, respectively.

The perturbation parameter and dimensionless potential-energy function read

mRZe?

A= 2

1
s u(g) =——, (5.44)
q

respectively, where 1/Z is the radius of the box in units of #2/(me?). For concreteness, from now
on we choose Z = 1 (hydrogen atom) without loss of generality.

In this case the method of Swenson and Danforth does not apply, not even when / = 0, because the
hypervirial recurrence relations do not provide the perturbation coefficients Q1 ,. We can however
overcome this problem by means of a Liouville transformation [82] of the Schroédinger equation for
the hydrogen-like atom into the Schrédinger equation for a harmonic oscillator.

The change of independent and dependent variables according to s = g1/2 and F (s) = ®(s%)//5,
respectively, transforms equation (5.39) into

1d2 L(L+1) Bs?
_= AT P N Fs) = eF(s) . 5.45
[Mz+ - +2}<s>e<s> (5.45)
where
1
L=2+3, f=-86 =41, (5.46)

Since the boundary conditions are F(0) = F(1) = 0, the perturbation corrections to the energy in
Tables 5.3 and 5.4 give us the coefficients of the series

o o0

e(B)=) ejpl =) ej(~8e) =4n. (5.47)
=0 j=0

Given A we obtain the energy as a root of equation (5.47) after substituting a partial sum for the

series. We expect the perturbation series (5.47) to be more accurate the smaller the value of |¢]. In
particular, the box radii for which € = 0 are given by just the first term

J 1
Dy =L+4+Z=2+1. 5.48
g " + > + (5.48)

In order to test the equations just derived, we consider states of the unbounded hydrogen atom
with radial nodes that provide exact results for the spherical-box model. For example, the 2s state

)\Z,n -
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Table 5.4 Method of Swenson and Danforth for the Isotropic Harmonic Oscillator in a
Spherical Box

o — Jv,n
0=
11(1 1) !
1 glUh-go
_ 6 8
&1 = 6 + T
71115 112112191117
o 1360706 120" " 240" P08
180 g £0° €0°
1.1 1(I4+1) 31 38l 1(I4+1) 12 (141)2
1 st LU+ seatoaa n L U+D— +
og = . 48420 | 256 30240 " 45360
3780 ¢ £0 €0
13 P 3047“1 17312]12 121
L oom2" T re1os P 4032 T 10
0]
4l(1+1) 1 683 N 112972 (1 +1)2 20831 ( + 1)
o= L, 14175 135 , 5120 907200 201600
22680 £03 e e0’
1206711 (I +1) 5771912 (1 +1)% 14573 69673 (I + 1)
L 1935360 2419200 24576 5443200
€0
28114 (I +1)* 853011(I+1) 17771 198443[2 (I +1)2 599373 (I + 1)3
4 777600 92160 +327687+ 691200 259200
&0
7 5 1 19 7
—— I+ - = =PI+ -—=11d+D+—
i L o5l (+D =5 PU+D? -1+ D+ o5
’ 45¢g €02 £03
1 1 93 331 187
—S 4+ I+ —+— I+ - —1%1+1)?
Orp= 1 8+70(+)+128+5040(+) 7560 Y
’ 630 92 &0 g0t
13 3047 173 363
B4+ 4+ - =P+ 1)2 - ==
1512 ¢+ * 2688 G+ 672 ¢+ 512
£0°
32 8 683 1129 2083
- I+l - — — RPU+1)2—-—11+1
0rse L warzs' Y " 135 sao T azaace MY T gea00 Y
’ 2835 ¢¢3 g0t £0°
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il +1 Pl+1)%2-—=— Ba+1)3
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6
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. 57200 D" = 17520 C Y+ 2006+ Beaoo L U " 3pan0 Y
7
£0
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of the dimensionless unbounded hydrogen atom
®(q) =q(2—q)exp(—q/2) (5.49)

is a solution of the hydrogen atom in a spherical box of radius A = 2 with exact energy e = —1/8.
Analogously, the 3s state

®(q) =q (27 —18¢ + 2q2) exp(—q/3) (5.50)

gives the energy ¢ = —1/18 of a hydrogen atom in a box of radius » = (9 — 3+/3)/2. For the
calculation we need the first zero of the Bessel function J1(z), which one either obtains from the
standard bibliography [83] or easily calculates by means of Maple. In the latter case we first expand
Bessel J (1, z) in a Taylor series to a sufficiently great degree, then convert it into a polynomial, and
finally obtain the desired zero by means of Maple root finder fsolve.

The convergence of the partial sums to the exact energy values indicated above confirms that the
perturbation coefficients in Table 5.4 for the harmonic oscillator and equation (5.47) are both correct.
The ground-state energy given in Table 5.5 for some values of A improves results obtained previously
by means of perturbation theory and agrees with energy values coming from other methods. The
third column in Table 5.5 lists energy values obtained from a Taylor expansion of the eigenfunction
of equation (5.39) about¢ =0

D(q) =) cj(e, g/ (5.51)
j=0

that is forced to satisfy the boundary conditionatg = 1
N
D cje.n=0 (5.52)
j=0

for sufficiently great values of N. Such nonperturbative results are a good test for the perturbative
ones.

5.4 Perturbed Rigid Rotors

The rigid rotor has proved to be a suitable approximate model for the study of purely rotational
molecular spectra[78, 79]. Fitting the energy levels of a polar rigid rotor in a classical external field to
appropriate microwave molecular spectra enables one to estimate molecular structure constants, such
as moments of inertia, [78, 79, 84] dipole moments, [78, 79, 84] and polarizability anisotropies [84,
85]. Such applications require sufficiently accurate energy levels in terms of the quantum numbers
and molecular structure constants. Rayleigh—Schrédinger perturbation theory is particularly useful
for this purpose because it produces analytical expressions for the rotational energies. For this
reason there has been great interest in the calculation of energy coefficients of both the weak-field
expansions [81, 85], [86]-[89] and the strong-field expansions [89]-[92].

There is a vast literature about the practical applications of the perturbed rigid rotor, and the
calculation of its energies and states by perturbation theory. We will not try to be exhaustive and
will just mention those works that are relevant to the present discussion. The reader may look up
additional references in those cited here.
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Table 5.5 Ground-State Energy of the
Hydrogen Atom in a Spherical Box for
Several Values of A

A Perturbation Theory ~ Power Series
0.80 4.543380181 4.543380181
1.00 2.373990866 2.373990866
1.20 1.269315015 1.269315015
1.40 0.6471051144 0.6471051144
1.60 0.2713123126 0.2713123126
1.80 0.03255625279 0.03255625279
2.00 —0.1250000000 —0.1250000000
2.20 —0.2320333715 —0.2320333715
240 —0.3063980071 —0.3063980071
2.60 —0.3589782940 —0.3589782940
2.80 —0.3966665967 —0.3966665967
3.00 —0.4239672878 —0.4239672877
3.20 —0.4439029787 —0.4439029780
3.40 —0.458547621 —0.4585476156
3.60 —0.46935119 —0.4693511607
3.80 —0.4773435 —0.4773433863
4.00 —0.483266 —0.4832652506

For the sake of concreteness we restrict the discussion below to a linear rigid rotor under a
perturbation V (6) that depends only on the polar angle 6. The unperturbed Hamiltonian operator is
Ho = J2/(2I), where J? is the angular momentum operator and I is the moment of inertia of the
rotating rigid body. The dimensionless Schrddinger equation in the coordinate representation for the
stationary states reads

2
[— L0 ()— L0 +kv(9)}‘1‘(9 ¢) =€V (0.9), (5.53)

Sin@) 90 ° sin()2 a¢?
where € = 21 E/h%, av(0) = 21V (0)/h%, and A is a perturbation parameter. When A = 0 the
unperturbed energy isep = J(J +1),where J =0, 1, ... isthe rotational quantum number [78, 79].
The eigenvalue equation (5.53) is separable; writing W (0, ¢) = ©(0) exp(im¢),m =0, +1, +2, ...
we are left with an eigenvalue equation for ® (6):

1 d m?
[_sin(e)de ()_+ sin(0)?

+ Av(0)1| O@) =€0(@0). (5.54)

5.4.1 Weak-Field Expansion by the Method of Fernandez and Castro

We first transform the Sturm—Liouville equation (5.54) into another one which is more suitable for
the application of the method of Fernandez and Castro [81]. In terms of the new variable x = cos(9),
equation (5.54) becomes

2
(1 _ x2> x"(x) = 2xx'(x) + <6 — ,il—xz — Av) x(x)=0, (5.55)

where x (cos(9)) o« ®(#). In order to obtain simple polynomial solutions to the pair of coupled
equations occurring in the method of Ferndndez and Castro, it is necessary to remove the singular
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points at x = £1 from equation (5.55). Close to the singular points the solution of equation (5.55)
behaves asymptotically as x (x) ~ (1 — x2)M/2 where M = |m|; consequently, writing x (x) =
(1—x2)M/2® (x) we obtain a more convenient Sturm-Liouville equation for the new function & (x):

(x2 - 1) O (x) + 2(M + D)x®' (x) + [M(M +1) + 2v — €]d(x) = 0. (5.56)
If we now apply the method of Fernandez and Castro with P(x) = (x2 — 1), Q(x) = 2(M + 1)x,
R(x) = M(M 4+ 1)+ Av — ¢, and Ro(x) = M(M + 1) — g, we obtain the following system of

perturbation equations:

(x2 - 1) Al(x) + 2(M +DxA’(x) — 2Ro(x? — 1B} (x) — 2Rox B; (x)

J
+ vA () = Y A j(x) =0, (5.57)
k=1
<x2 _ 1) BI(x) — 2(M —1)xB}(x) — 2MB;(x) + 24’ (x)
j
+ vBj_1(x) — ZekBj_k(x) =0. (5.58)
k=1

In what follows we consider a polar diatomic molecule in an electric field as a particular interaction.
The Stark effect in a polar rigid rotor is of relevance to the study of molecular structure [78, 79] and
has consequently been discussed by several authors, [85]-[88], [90]-[92] among many others. If d
is the molecular dipole moment, and the electric field F is chosen to be along the z axis, then the
classical interaction between them is —d F cos(f), where d = |d| and F = |F|. Its dimensionless
form reads Av(9) = —A cos(0) = —Ax, Where A = 21d F/h?.

By simple inspection of equations (5.57) and (5.58) it is not difficult to convince oneself that the
solutions for the Stark effect are polynomial functions of the form

J j-1
Ajx) = apx®, Bj(x) = bjx*. (5.59)
k=0 k=0

Before proceeding with the discussion of results it is worth noticing that the present application of
the method of Fernandez and Castro to the perturbed rigid rotor is simpler than a previous one [81]
in which the solution of the perturbed Sturm-Liouville equation was written ® (x) = A(x)®g(x) +
B(x)®q(x). The more convenient form ®(x) = A(x)Po(x) + B(x) P (x)Py(x) leads to simpler
perturbation equations and to a simpler polynomial function B;(x). Moreover, since the latter
expression of the perturbed function @ (x) satisfies the boundary conditions ®(£1) = 0, then the
exact perturbation corrections to the energy ¢; arise by simply requiring that A;(x) and B;(x) be
polynomial functions. The present implementation of the method of Fernandez and Castro follows
the outline in Chapter 2 and the corresponding references listed there that are supposed to be an
improvement on an earlier treatment of the Stark effect in the rigid rotor [81].

The perturbation corrections to the energy and eigenfunction depend on M and g = J(J + 1),
where J = M, M+1, .... Theenergy coefficients shown in Table 5.6 agree with those derived earlier
by other authors [81, 88]. For simplicity we have arbitrarily chosen the undetermined coefficients
ajo = 0 forall j > 0O, thus neglecting terms proportional to & which we may add later in order
to normalize the perturbed eigenfunction to unity. The Maple program that produced the results in
Table 5.6 is similar to those applications of the method of Fernandez and Castro discussed earlier in
this book.
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Table 5.6 Method of Fernandez and Castro for a Polar Linear Rigid
Rotor in an Electric Field

_ Mx
Al_Zso
-1
Bl_280
e1=0

_ (=3M+2gp)x?
Az = Feg (—3+deg)

- 3
By = 4o (=344 <)
_ =3 M2+80

€2 = 260 (—3+4¢p)

As = (=39 M3—4 02 M3—18 M3—9 92 M%2+18 M2 eg+4 593 M—8 592 M+550%) x
24 603 (—3+4 &9) (80—2)

+ (2 M g9+6 M—5¢g) x3
24 60 (—3+4 &) (9—2)

Ba — —3M? eg—4eg? M2—18 M?+4 503 —8eg? n (£0+3) x2
3= 24603 (—3+4¢0) (20—2) T2¢0 (—3+4c0) (F0—2)
e3=20
oy — (612 £0%+513 £9—405) M*+(—504 £93+90 £9%) M2+20 £0*+33 £¢°
4= 8(—314e0)3 (4e0—15) 3

5.4.2 Weak-Field Expansion by the Method of Swenson and Danforth

It is not difficult to apply the method of Swenson and Danforth to the Sturm-Liouville equa-
tion (5.54). However, in what follows we first transform it into a Schrddinger-like eigenvalue
equation in order to make direct use of the results of Chapter 3. The function ®(9) = sin(9)/26(6)
satisfies

d? o
———t——+ 2l - E|DPO) =0, 5.60
[d@2+sm(9)2+v() }() (5.60)

where
1 1

2
=m?—2, E=e+>. 61
a=m 4,5 6+4 (5.61)

If the potential-energy function v(6) is even, then the eigenfunctions are either even or odd, and we
have to choose odd functions f(6) in the method of Swenson and Danforth (refer to Chapter 3 for
more details) in order to obtain a nontrivial recurrence relation. In what follows we show that the
set of functions f(8) = sin(@) cos(@)/,i =1,3,...,j =0,1, ..., is suitable for the application
of perturbation theory.

According to equation (3.16) a term of the form

2sin(0) 2 f' + f[sin(e)_z]/ =2(i — 1) sin@®) 2 cos®)/ Tt — 2 sin(®) "tcos@) ! (5.62)
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will appear in the recurrence relation, and we realize that if £(9) = sin(6) cos(#)/, then no undesired
negative power of sin(6) will occur.

When v(0) = — cos(9) the recurrence relation reads
G+1° (. i(j— D —2) .
- > Cit1+j (J2 +1> Cj1— %qu +2(+1DECi11
—2jECj_1+2ajCj_1 —A[(2j +1)C; — (2j +3)Cj121 =0, (5.63)
where
C; = <cos(9)f ) = / ®(0)2cos(6) db | (5.64)
0

and Cg = 1 if the eigenfunction is normalized to unity. To these equations we add the Hellmann-
Feynman theorem d€/dx = —C1.
From straightforward application of perturbation theory

o0 o
E=) &k C;=) Cut (5.65)
k=0 k=0

we easily obtain

2
Cj i (260 — 20 —1—j2)C;_
e u+hm&—u+nab( o 7)€
(-G —2) - ) 4
+ %Cj—&P + 2] ngcj—l,p—s - 2(] +1 ngcj+l,p—s
s=1 s=1
+ j+1DCj p-1— 2j +3)Cjy2,p-1] (5.66)
and
1
Ep=——C1p-1. (5.67)
p
In order to obtain £, we have to calculate Cj1, forallg =0,1,...,p—1and j =0,1,...,

p —q — 1, taking into account the normalization condition Cq_, = 80,,. The perturbation coefficients
for the energy and expectation values are given in terms of M and

1 1\2
50=J(J+1)+Z=(J+§) . (5.68)
Taking into account that the eigenvalue equation (5.60) is invariant under the transformation (A, 6) —
(=X, 0+m),itisnotdifficult toprovethate;; 41 =0, =0,1,...,andC; , =0, j+p=1,3,....
We briefly discuss this point in Appendix C.

Present straightforward application of the method of Swenson and Danforth to the perturbed linear
rotor is different from an earlier adaptation of that method for Sturm-Liouville equations [93]-[95].
The advantage of the approach given here is that the same eigenvalue equation (5.60) is suitable for
both weak and strong fields as we will shortly see.

The method of Swenson and Danforth is faster and requires less computer memory than the method
of Fernandez and Castro. However, the former provides expectation values of chosen trigonometric
functions instead of the eigenfunctions, whereas the latter yields the eigenfunctions explicitly and is
therefore more suitable for the calculation of properties other than the energy.

Table 5.7 shows some moment and energy coefficients. One easily obtains many more by means
of Maple procedures similar to those given earlier for other applications of the method of Swenson
and Danforth. The energy coefficients agree with those in Table 5.6.
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Table 5.7 Method of Swenson and Danforth for the Polar Linear Rigid Rotor in an Electric
Field. Notice that 2,41 =0,C; , =0forall p=0,1,...,and j +p=1,3,...

g=JJ+1)
£0—3 M?
€2 = 288(480—3)

(612 02 +513 £9—405) M*+(—504 £03+90 £92) M%2+20 eg*+33 £¢°
8e03 (459—3)3 (4g9g—15)

g4 =
g6 = ((1505952 s0® — 306099 £92 + 255150 — 147840 £0° — 249840 &9 — 650025 £9) M°®
+ (—170100 £0® + 177216 £0® — 1057644 £o* + 773550 £9® — 63360 £0°) M*
+(—42240 0" + 54360 £0° + 5481 £* + 72336 £0°) M? + 28480 + 576 £0°
—5180 205 — 5640 £0°) / (16 20° (420 — 3)° (g0 — 2) (4 &0 — 15) (4 &g — 35))
eg = ((162753806250 — 620272839375 ¢q + 99436055625 £o? + 2155215016800 £o°
—2376614966715 eo* — 6957377280 £9® — 198105678720 &’
—370733751900 &° -+ 892218823200 &5 + 3122058240 &%) M®
+( — 159137055000 £0? + 26535269376 £0° — 1214163167616 £o”
+171499341312 0® + 1721754031248 £0°® + 924763108500 £o°
—1750322803500 o + 570123095940 £0° — 4896141312 £'°) M®
+( — 719148451464 £ " + 337056493248 £0® — 17097435648 &0 + 17135363700 £o*
—13004234496 £9” — 133846229790 £0° + 412609935582 £° -+ 2108282880 £o™)
M* + (— 226652160 £9™2 4 1541835000 £0° + 14690097360 &o® + 14470172100 &0’
—9888439680 £° + 2100188160 g9 — 3219770880 £9'°) M2 + 8235264 02
+228561696 £910 — 990203130 9 — 1212854283 &8 + 930530052 &o°
+1504256 9% — 155906432 £o1?)
/ (1280” (4eg — 3)7 (0 — 2) (4o — 15)3 (429 — 35) (4 &g — 63))

—g0 +3M?
C11=
g0 (4eg —3)
Coae (—612 £9% — 513 g9 + 405) M* + (504 £9° — 90 £9%) M2 — 20 £9* — 33 g¢°
L3= 2603 (4eg — 3)3 (deg — 15)
c 260 —1—2M?
20 = T e —3
c (252 g — 45) M* + (—200 £92 + 174 69 — 90) M2 + 12 £9% — 1302 + 15 &9
2,2 =

(4eg — 3)3 g (4eg — 15)
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5.4.3 Strong-Field Expansion

The perturbation expansion in powers of A is suitable for sufficiently weak interactions, and its
radius of convergence will be discussed in Chapter 6. In addition to the A-power series it is also
possible to derive an expansion for large values of A that we discuss in what follows. The stronger
the interaction, the deeper the potential well v(6) as shown in Figure 5.2 for the dimensionless Stark
potential v(9) = —A cos(9). When the interaction is sufficiently strong the system oscillates about
the minimum of v(8) which we can approximate by its Taylor expansion in a way that resembles
the approach of small oscillations in classical mechanics. Although we discuss such polynomial
approximation in more detail in Chapter 7, we believe it appropriate to round off the present study
of perturbed rigid rotors with the treatment of strong interactions.

<
!
|

—Acos(@)

1.5

FIGURE 5.2
Dimensionless potential-energy function v(9) = —A cos(9) for increasing values of A.

For concreteness we consider a parity-invariant potential-energy function with a minimum at

0 = 0; thatis to say, v(—60) = v(#), v'(0) = 0, and v”(0) > 0. We expand it in a Taylor series about
the minimum

o0
v(0) = Z v;6%. (5.69)
It is convenient to define the function

F©O) = Z Fj6% . (5.70)

sm(@)2

By comparing the Taylor series of both sides of sin(9)2F (9)/6% = 1 it is not difficult to prove that
the coefficients F; satisfy the recurrence relation

2 2i+1

Fj=3$ i) [ —
Jo+Z< ' G Fi

(5.71)

which is useful to obtain them by means of computer algebra.
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Rewriting the eigenvalue equation (5.60) in terms of the new variable

0 1

== 5= ) 5.72
q N 3 o (5.72)
we obtain
d? o > . ) .
—gE T @ big? e e | 0 =0, (5.73)
j=1
where
1 Vj+l
e=¢& €+Z —EaFy — Ao, aj = o bj:(l—Sj]_)O(Fj. (5.74)

The Schrodinger equation (5.73) describes a harmonic oscillator with a power series perturbation
and accounts for the oscillation of the strongly hindered rotor about the minimum of the potential
well. On solving it by means of perturbation theory we obtain the eigenvalues as power series of the
perturbation parameter &:

o
e=Y el (5.75)
j=0
where [30]
eg=22n+M+1), (5.76)
and n = 0,1, ... is a vibrational quantum number. Solving for ¢ we obtain the eigenvalues of
equation (5.54) as
1 > .
e=wh— 7 +aFi+ D ejuan) 2, (5.77)
j=0

It only remains to calculate the energy coefficients e; by means of any of the methods described in
previous chapters. For simplicity, here we choose the method of Swenson and Danforth. Straightfor-
ward application of the hypervirial and Hellmann-Feynman theorems, and expansion of the energy
e and the expectation values Qy =< ¢" > in Taylor series about £ = 0, yield

1

p
Onip = M{N(wz—mz) Ot + 22N + 1) ek (5.78)

p
— > [2@N +j +2)a;On+jr1.p-j + 202N + HA = 8;)F; Ontj-1.p-i] { -
=1

1< .
e = - Y ilajQjrip—j+a(L=8j1) FjQj-1,-,] - (5.79)
j=1
In order to obtain e, we need all the moment coefficients Qy415, s =0,1,...,p -1, and N =

0,1,..., p—s,where Qo = 8os.
By means of the equations just derived and a Maple program similar to those for earlier applications
of the method of Swenson and Danforth, one easily obtains as many perturbation corrections as
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Table 5.8 Energy of a Polar Rigid Rotor in a Strong Electric Field

K=2n+M+1=2J-M+1

2 _ 2_g2
o=+ U 3L K VIVI - F K24 KCENKD 2

_ 34K%-102 M? K245 K*449-42 M?+33 M4
48 %
K (1722 M?4-813 M*—1230 M2 K24405+410 K433 K*4) V2
65536 3/2

+o5oras (—54 + 1350 M2 K2 — 495 M4 K2 + 420 M? K* — 327 K? — 314 M* — 140 K*

+286 M2 +82M8 —7K®) /2% + .-

desired. Table 5.8 shows an analytical expression for the energy through order four in terms of the
quantum numbers J, M, and K = 2n + M + 1; the latter introduced with the only purpose of
comparing present results with earlier ones [91].

In order to match the weak- and strong-field series for a given state, one should just take into
account that J = M + n. Therefore, writing K = 2J — M + 1 we obtain the strong-field expansion
solely in terms of the rotational quantum numbers J and M = |m| [90].

In Chapter 6 we show that the radius of convergence of the weak-field perturbation series is nonzero
and increases with the quantum number J. On the other hand, the strong-field perturbation series is
divergent but still useful for sufficiently great values of A provided that we truncate it properly. In
what follows we show that both series match smoothly at an intermediate point. As an illustrative
example we consider the ground state (M = 0, J = 0), and arbitrarily choose maximum perturbation
orders p = 20 and p = 5 for the weak-field (WF) and strong-field (SF) series, respectively.

=30
&
E
5
-3.5
/ /
' /
o / |
—4.5 \ / I I y \[
1.60 1.65 1.70 1.75 1.80 1.85 1.90
A
FIGURE 5.3

Logarithmic absolute difference between the weak-field ey r and strong-field egg series for
the dimensionless ground-state energy of a polar rigid rotor in an electric field of intermediate

strength.
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Figure 5.3 shows log |ew r — €sr| for an intermediate region 1.6 < A < 1.9 where we clearly see
that both series match smoothly and even cross twice. If, for example, we use the weak-field series for
A < 1.65 and the strong-field expansion for » > 1.65, then we expect to obtain reasonable results for
all values of A with the greatest error somewhere around the matching point. At = 1.65 the “exact”
(accurately calculated by a numerical method), weak-field, and strong-field dimensionless energies
are, respectively, €.xqcr = —0.3975020830, ey = —0.3972789054, and esr = —0.397311692.
The percent error is 0.056 and 0.048 for the weak-field and strong-field series, respectively, and
must be smaller than these values for A < 1.65 and A > 1.65 where the former and latter series,
respectively, are expected to improve. We have obtained the “exact” results by means of an accurate
summation of the weak-field series in a way described in Chapter 6.
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Chapter 6

Convergence of the Perturbation Series

6.1 Introduction

In preceding chapters we developed several methods for solving the perturbation equations for the
time-independent Schrodinger equation and showed that it is sometimes possible to obtain as many
perturbation coefficients as desired for the energies and eigenfunctions. Except for some trivial cases
perturbation expansions are infinite power series like

> .
Y EjM, (6.1)
=0

and we are faced with the problem of finding a number E (1) which may be properly called the sum
of that series for a given value of A. A rigorous discussion of such a subject is beyond the scope
of this book. However, in this chapter we briefly comment on some of the results and conclusions
derived by other authors keeping present contribution as simple as possible. Moreover, we mainly
concentrate on the practical aspect of obtaining accurate results from the perturbation series.

If the rate of convergence of the perturbation series is sufficiently great, we may obtain accurate
results without difficulty by summing all available terms. If, on the other hand, the series is divergent
or slowly convergent we may need an appropriate summation algorithm to obtain acceptable results.
For concreteness and simplicity we focus on the perturbation series for the energy.

6.2 Convergence Properties of Power Series

The investigation of the convergence properties of the series

Za i (6.2)
=0

is based on the examination of its partial sums Sy = ag + a1 + - - - ay to find out whether or not
they tend to a finite limitas N — oc.

There are several well-known convergence tests that one may apply to a given series [96]. For
example, consider an infinite series (6.2) of positive terms such that

lim 2+

j—o0 aj

—L. (6.3)
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106 CONVERGENCE OF THE PERTURBATION SERIES

The ratio test states that if L < 1 the series converges, if L > 1 the series diverges, and if L = 1 the
test is inconclusive. Accordingly, the power series (6.1) converges for all values of A satisfying [96]

. E;
A < lim B

. 6.4
j=oo |Ejy1] 64

If we can prove that the power series (6.1) converges for all values of A such that |A| < R, then we
say that R is the radius of convergence of the series. For example, the geometric series 1-4+A+%+- - -
convergesto E(A) = 1/(1 — a) forall |A| < 1. In this case the radius of convergence is determined
by a singular point at » = 1 where |E())| becomes infinite. Although the function E (%) is well
defined for all |1| # 1, the power series is meaningful only for |A| < 1.

In general, we say that A = A, is a pole of the function E (1) of order n if A = lim;_,;,
(A — Ap)"E()) is a finite nonzero number for some positive integer n. We find that the function
E (1) behaves approximately as A(A — 1 ,)~" in the neighborhood of A ,. The radius of convergence
of the geometric series considered above is determined by a pole of ordern = 1atx, = 1.

The power series

SN, 1/2) j_q A
Z:O( 1) ( 17 )x =13 , (6.5)

where j denotes the combinatorial numbers, converges to /1 — A for all |A| < 1. The radius

of convergence is in this case determined by a square-root branch point at . = 1. To understand this
kind of singular point consider the simple function f(z) = z/2 in the complex z plane. In polar
representation z = re’?, where r = |z|. If we circle once around z = 0 we arrive at the same point
7 = re'®+2m) = 7 but the value of the function f(z) differs from the initial one: f(z') = —f(2).
In other words, f(z) is not single-valued. We have to circle twice around z = 0 in order that f(z)
returns its initial value. Consider the more general case f(z) = z/", where n is a positive integer.
Solving w”" = z = re'? for w we obtain wy, = r1/7¢!/7+2k7/n wherek = 0,1, ...,n — 1, and the
solution w exhibits n branches. Starting at the kth branch and circling once around z = 0 we arrive
at the (k + 1)th branch: wy (9 + 27) = rl/nei0/n+2iktr/n — 4 1 (6). We say that the function
z1/" exhibits a branch point of order n at z = 0.

6.2.1 Straightforward Calculation of Singular Points from Power Series

We say that a function f(z) is analytic (also regular or holomorphic) in a given region of the
complex plane if it is differentiable and single-valued there [97]. The simplest nonanalytic functions
with algebraic singularities are of the form

f@) =A@z —2z20)", (6.6)

where « is not a positive integer. It is not difficult to obtain the coefficients of the Taylor series
f(@) = fo+ fiz+--- explicitly; however, it is more convenient for the discussion below to derive
a recurrence relation for them from the differential equation

(z—2z0) f'(2) =af () (6.7)

satisfied by the function (6.6). Notice that zg is a regular singular point of the differential equa-
tion (6.7) [98]. Expanding both sides of equation (6.7) in a Taylor series we easily obtain

20 +Dfi+1+@—j)fj=0. (6.8)
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It follows from this recurrence relation that lim;_, o | f;j/fj+1] = |zol is the radius of convergence
of the Taylor series.

We can rearrange (6.8) as a linear inhomogeneous equation with two unknowns: zg and a. Sub-
stituting j — 1 for j we obtain another linear inhomogeneous equation with the same two unknowns.
Solving the resulting system of two equations for zg and a we obtain

_ fifi-1 u (% =D fjrfi—1 — Gfj)? .
G+Dfiafi-1—if? G+ D fjs1fi1— jf?

These expressions, which are exact only if f; are the coefficients of the Taylor expansion of the
function (6.6) about z = 0, are useful to estimate the position and exponent of an algebraic singular
point of an unknown function E (1) if sufficient coefficients of its Taylor expansion (6.1) are available.
To this end we simply substitute Ey for f; (k = j —1, j, j + 1) into equations (6.9) and estimate the
limits of the right-hand sides as j increases. Such an improved ratio method and its variants prove
useful for the estimation of the positions and exponents of the singular points of many functions of
physical interest [99]-[103].

In most practical applications the function E (z) is real for real values of z; therefore, for complex
z we have E(z)* = E(z*), and the singular points are either real or appear in complex conjugate
pairs zo, z5. The expansion coefficients £ are real and thereby equations (6.9) are not suitable for
obtaining a complex singular point zo = zg + iz;. However, even in such a case we can apply
the same method provided that we choose a slightly different ansatz f(z). Taking into account that
(z — 20)(z — z§) = 22 — 2zgz + |z0|? We consider

20 (6.9)

f@)= (Z2 —2zrz + |Z0|2)“ (6.10)

that satisfies the differential equation

(z2 —2zrz + Izo|2> '@ =2a(z—zr) f(2). (6.11)

Notice that zo and zg are regular singular points of the differential equation (6.11) [98]. Expanding
both sides of equation (6.11) in Taylor series we obtain a recurrence relation for the expansion
coefficients f;:

12012 + 1) fj+1 + 2zr(a — j) fj — 2afj—1 = (L — j) fj-1 - (6.12)

Substituting j — 1 and j — 2 for j we derive two additional equations, which together with equa-
tion (6.12) form a system of three inhomogeneous equations with three unknowns: zg, |zo|% and a.
On solving it we obtain simple expressions for the unknowns in terms of the coefficients f. We then
proceed as in the preceding case in order to estimate the exponent and position of a singular point of
an unknown function E (1) from its Taylor expansion (6.1). This method is well known [99]-[103]
and we apply it to some particular problems later in this chapter.

The two methods just outlined provide only the singular points closest to origin that cause the
asymptotic behavior of the coefficients of the power series.

Because in all the practical examples discussed below we already know the exponent of the singular
point, in what follows we concentrate on this simpler case in which it is sufficient to solve a system
of two equations for the remaining unknowns zz and |zg|2, thus obtaining

G+DG—2a—2)fj—2fjx1+jRa—j+ 1) fi-a1f;
2+ DG —a=Dfji-1fira+jla— )7
(—a)j—2a=2)fji2fj+(—a-D@a—j+Df},

0l* = : : — . (613)
G+DU—a=-Dfj1fjvr+jla—j)f;

IR =

© 2001 by CRC PressLLC



108 CONVERGENCE OF THE PERTURBATION SERIES

The imaginary part of the singular points is given by |z;| = /|z0]% — z%. These equations are exact
only for the Taylor coefficients f; of the ansatz (6.10). Substituting the coefficients E; of an unknown
function E (1) for f; we can estimate the position of the pair of complex conjugate singular points
closest to the origin of the A plane provided the sequences (6.13) of zz and |zp| values converge as
Jj increases.

Equations (6.9) and (6.13) are suitable for obtaining the parameters that characterize algebraic
singular points because the coefficients E; of a power series carry information about the singular
point closest to the origin. This information becomes more noticeable as k increases and determines
the asymptotic behavior of Ey. If the coefficients Ej reveal the asymptotic behavior at moderate
values of k, then the method gives accurate results with little computational effort; otherwise it
converges slowly, requiring calculations of large order that may be time consuming.

6.2.2 Implicit Equations

In quantum mechanics we commonly derive exact or approximate quantization conditions of the
form

Q(E, 1) =0 (6.14)

that give the allowed values of the energy E in terms of a model parameter A (or of a set of such
parameters). In what follows we concentrate on the case that A is a perturbation parameter and obtain
the perturbation expansion (6.1) either from the standard formulas given in preceding chapters or
from the quantization condition (6.14).

The quantization condition (6.14) gives us either E(A) or A(E). In the latter case we can expand
A about a given point E = Ej:

[e¢]

. 1 dixn
A:A”;C’ (E—Ep), ¢; = EE(E;)) , (6.15)
]=
where A, = A(Ep). If
di d’a
——(Ep=0,j=1,2,...,n—1, — (E 0, 6.16
257 (Ev) J n g (E0) # (6.16)
then A = Ap + ¢, (E — Ep)" +--- and
E~ Ep+ [0 — k) [ca]H" (6.17)

in a neighborhood of ;. We see that equations (6.16) are sufficient conditions for a branch point of
ordern at A = Ap.

Here we are interested in the most usual case n = 2. Differentiating the quantization condi-
tion (6.14) with respect to E, and taking into account that A depends on E, we have

30 90 dr 320 320 drn 320 [(dr\? 90 d?A
=4 = =0, — 42 — t+— | — ———=0. 6.18
oFE + oA dE dE? + OME dE + ar2 \dE + A dE? (6.18)
Therefore, if
30 30 320
Ep.ap) =0, — (Ep, hp) =0, —= (Ep, A 0, —= (Ep,Ap) 0, 6.19
Q (Ep,dp) =0, - (Ep hp) = 0, == (Ep, dp) # 0.~y (Ep. dp) # (6.19)

then E(X) exhibits a square-root branch point (for a more detailed discussion see reference [104]).

© 2001 by CRC PressLLC



6.3. RADIUS OF CONVERGENCE OF THE PERTURBATION EXPANSIONS 109

6.3 Radius of Convergence of the Perturbation Expansions

As discussed earlier in this book, perturbation theory provides approximate eigenvalues E () of
a Hamiltonian operator H = Hy + A H’ in the form of a power series (6.1). In order to understand
the origin of the singular points that determine its radius of convergence we consider some simple
trivial (exactly solvable) and nontrivial models below.

6.3.1 Exactly Solvable Models

In order to facilitate the study of the analytical properties of the eigenvalues E (1) in the complex
A plane, we first consider some exactly solvable time-independent Schrédinger equations.
Our first example is a Hamiltonian operator acting on a two-dimensional state space:

H=ell><1l+e2><2|+AMV|l><2|+V*2><1]), (6.20)

where the real numbers 1 and e, are the only two eigenvalues of Hy = e1]1 >< 1| + €2]2 >< 2|
and V is a complex number. Notice that Ao and H' = V|1 >< 2| + V*|2 > < 1] are, respectively,
diagonal and off diagonal in the orthonormal basis set {|1 >, |2 >}. A particular form of this
simple operator has already proved suitable to introduce concepts of finite-dimensional perturbation
theory [105]. The secular determinant |H — E1| = 0, where

_( e1—E AV
H—-El= < W e E ) (6.21)

is the matrix representation of H — E1, gives us the characteristic equation
—(e1+ ) E+e1er— 22|V =0. (6.22)

The two roots of this equation are the two eigenvalues of H:

B0 = F RO, B0y =2 4 R0

1
R = z,/A62+4AZ|V|2, Ae = |es —eq] . (6.23)

Each eigenvalue (6.23) exhibits a pair of complex conjugate square-root branch points A,, A}
given by the zeros of Ae? + 412V |2:

N VANS
=1 .
P

(6.24)

Because there is no other singular point closer to the origin (in fact, there are no other singularities)
the perturbation series

Ex(h) =) Ep A (6.25)

for k = 1, 2 converge for all |A| < |Ap].
The curves E1(1) and E>(A) cross at the branch points taking the common real value
€1+ e

E(\p) =E (M) = Ep = - (6.26)

© 2001 by CRC PressLLC



110 CONVERGENCE OF THE PERTURBATION SERIES

Alternatively, we can view E1(A) and E2 (1) as the two branches of a two-valued function.

Because E is a function of A2, it is more convenient to choose & = A2 as a variable instead of A
itself. The characteristic equation (6.22) is a particular case of the quantization condition (6.14) that
gives either E (&) or £(E). In the latter case we have

£ = ﬁ [4 (E — Ep)? — Aez] : (6.27)
therefore
g—i (Ep) =0= g—g (Ep) =0, (6.28)
and
9%¢ A
352 (Ep) #0= 3E? (Ep) #0, (6.29)

which are particular cases of the conditions (6.16) for n = 2.

It is also instructive to consider the eigenvectors of H. A vector of the state space ¥ = b1|1 >
—+b7|2 > isan eigenvector of H with eigenvalue E ifthe coefficients b; satisfy b, = (E—e1)b1/(AV).
The norm of the eigenvector reads

E —e€1)?
Wl = V< W% = = |ba], [1+ (szfz , (6.30)

where we have explicitly assumed A and E to be real. Notice that ||W|| vanishes when b1 = 0 or
when

(E—e)?>+2%|V)P=0. (6.31)

Real values of 2 do not satisfy this equation, but Ej, +-A; are solutions. We conclude that the norm
of an eigenvector vanishes at the branch points.
Another simple illustrative example is the harmonic oscillator with a harmonic perturbation:

L. L1 2
H=Hy+AH = —<_—+x2+Ax2> , (6.32)
X
because one easily obtains the eigenvalues as functions of the perturbation parameter A:
1
Ek(x):\/1+k<k+§>,k:O,l,.... (6.33)

All the eigenvalues collapse at the branch point A = —1 which corresponds to a zero force constant.
In fact, when . = —1 we have a free particle and no bound states; therefore, we do not expect a
perturbation theory for the point spectrum to apply in such a case. When A < —1 the potential-energy
function is no longer a well but a barrier that does not support bound states. We will discuss barriers
and other such problems later in this book.

The two trivial examples studied so far exhibit perturbation series with convergence radii deter-
mined by square-root branch points on the complex A-plane where two or more eigenvalues cross.
This situation is quite common in quantum mechanics as we will shortly see in other problems.

Many authors have resorted to exactly solvable models in their studies of perturbation series. In
particular the delta function has proved useful as a one-dimensional model of Coulomb interaction in
diatomic molecules with one electron, facilitating the understanding of the polarization expansion at
large internuclear distances [106]-[109]. We have briefly discussed the application of perturbation
theory to such problems in Chapter 4.
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6.3.2 Simple Nontrivial Models

As stated earlier, we will not attempt a rigorous study of the convergence properties of the pertur-
bation series in quantum mechanics. However, we outline some well-known mathematical results
that are necessary for the discussions and applications in this chapter.

Many textbooks state that the perturbation series for the eigenvalues and eigenvectors of the
operator H(x) = Ho + AH’ converge for a given value of A if the perturbation A A’ is sufficiently
smaller than the unperturbed part Hy. However, it is not obvious what it means that one operator
is smaller than another. In order to discuss this point briefly, in what follows ||¢|| = V< ¢l¢ >
denotes the norm of a vector ¢ of the state space already introduced earlier. Suppose that Ep is an
isolated simple eigenvalue of Hp, and that there are two real numbers a and b such that

H ﬁ/cpH <a H ﬁoch +b]® (6.34)

for all @ in the state space. Under such conditions there is a unique eigenvalue E (1) of H near Ej,
and E (1) is analytic in a neighborhood of A = 0 in the complex A plane [105, 110].

Before treating any nontrivial problem, we first show that the inequality (6.34) applies to the
exactly solvable models discussed in the preceding subsection. For example, choosing an arbitrary
vector & = c¢1|1 > +c2|2 > of the state space of the two-level model, we easily prove that
||I§/CI>|| = |V|||®]|; therefore, any a > 0 and b > |V| satisfies equation (6.34).

The proof that the inequality (6.34) also applies to the perturbed harmonic oscillator (6.32) is
somewhat more laborious. For convenience we write p = —id /dx, so that Hy = (p2 + £2)/2 and
H' = %2/2. Following the straightforward steps

(1324_22)2 _ 134+)?4+132)?2+)?2132
= it p([p37] %) + 2 (|2 97] + 5%%)
= PR pR%P + RPER 420 [R, P
= PRt pRIp+ipii -2 (6.35)
we obtain
(ﬁ2 +;22)2 F2= PR pR2p + PR (6.36)

The commutator technique in equation (6.35) is well known and was used earlier by other au-
thors [111]. Taking expectation values on both sides of equation (6.36), and realizing that

(w

for any two hermitian operators A and B, we conclude that

ABA|w) = HE’A\IJHZ =0 (6.37)

2 2
[(52+32) 9| + 21912 = |20 (6.38)

Making use of the well-known inequality

la| + 1Bl = /o + B2 (6.39)

that holds for any two real numbers « and 8, we rewrite equation (6.38) in the form of equation (6.34):

HHolI/H n %II\DII > HH’\IIH . (6.40)
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Therefore, the theorem enunciated above tells us that the Rayleigh—Schrédinger perturbation series
for the perturbed harmonic oscillator (6.32) has a finite radius of convergence in agreement with the
conclusion drawn earlier from the exact eigenvalues (6.33).

The perturbed rigid rotor discussed in Section 5.4 is a suitable example of a nontrivial quantum
mechanical model that gives rise to perturbation series with finite radius of convergence. In this case
we have

m2

A 1 d .
Ho = ———~ — , H' =v(0). 6.41
0= ~Gn@ae "¢ ) ot sin@)2 v (6:41)
Assuming that
@) <vm, 056 <m, (6.42)

one easily proves that

HI%IJH = /< U2 > < vyl 9], (6.43)

and the inequality (6.34) is satisfied for any @ > 0 and b > vy,. According to the theorem above the
perturbation series for every state of the perturbed rigid rotor exhibits a finite radius of convergence.

In Section 5.4 we developed two methods for the calculation of the perturbation corrections to
the dimensionless energy ¢ in terms of M = |m| and ¢g = J(J + 1). It was shown there that when

v(0) = — cos(#) the energy coefficients of odd order vanish; therefore, we write
o ) o )
€ = ZEZJ‘)\.Z'/ = Z ijj s (644)
j=0 j=0

where f; = e; and z = 22. As argued above, we can obtain the position and exponent of the
algebraic singular point closest to the origin by means of equation (6.9). Table 6.1 shows sequences
of values of zp and a given by equation (6.9) for the ground-state energy (M = 0, J = 0). We
see that the sequence of values of « appears to converge towards a = 1/2 suggesting that there is a
square-root branch point at a negative value of z = zp = )»f,. The fourth column of Table 6.1 shows
that a new sequence of values of zo obtained with a = 1/2 clearly approaches the same limit point
estimated to be zg ~ —3.6080. We conclude that there are two complex conjugate branch points at
+Ap, where A, = 1.8995; in agreement with previous calculations [99]-[101].

Table 6.2 shows similar results for the perturbation serieswith M = 0and J = 1 (eg = 2). There
is no doubt that this state shares a common branch point with the ground state where they match. As
said above we can view them as two branches of the same two-valued function. What is surprising
is that the sequences of singularity parameters zg and a for those states approach each other faster
than they approach their common limits. Notice that after a relatively small value of j they agree up
to the tenth digit.

Numerical calculations based on the perturbation series for the polar rigid rotor in a uniform elec-
tric field should be carried out carefully in order to remove vanishing denominators in the energy
coefficients. One should first substitute the appropriate value of M and simplify the resulting expres-
sions before substituting the value of €g. In this way zeros of the numerator and denominator cancel
each other. The Maple command simplify produces perturbation corrections free from apparent
poles.

The method for the estimation of singular points from the perturbation series just described applies
only to the states with / = M and J = M + 1, and diverges in other cases. We do not know the
reason of such failure. Numerical calculation shows that each pair of states given by J = M and
J=M+1 M=0,1, ..., exhibits a common branch point closest to the origin.
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Table 6.1 Parameters of the Singular Point
Closest to the Origin Calculated from the
Perturbation Series for the Ground-State Energy of

the Polar Linear Rigid Rotator in a Uniform Electric

Field

J 20 a z0(a =1/2)
1 —3512417638 0.5707045109 —4.090909091
2 —3556560626 0.5527415633 —3.686170213
3 —3.585821089 0.5326075288 —3.633209077
4 —3596819366 0.5219724907 —3.619542326
5 —3.601477950 05161725703 —3.614468003
6 —3.603762887 0.5126933876 —3.612099210
7 —3.605027112 0.5104175963 —3.610814189
8 —3.605793807 0.5088247575 —3.610041506
9 —3.606292185 0.5076511427 —3.609541257
10 —3.606633893 0.5067517094 —3.609198974
11 —3.606878210 0.5060408867 —3.608954523
12 —3.607058873 0.5054651721 —3.608773879
13 —3.607196202 0.5049894780 —3.608636619
14 —3.607303017 0.5045898674 —3.608529882
15 —3.607387730 0.5042494624 —3.608445244
16 —3.607456041 0.5039560264 —3.608376998
17 —3.607511927 0.5037004735 —3.608321169
18 —3.607558228 0.5034759175 —3.608274917
19 —3.607597016 0.5032770442 —3.608236170
20 —3.607629833 0.5030996882 —3.608203387
21 —3.607657845 0.5029405378 —3.608175405
22 —3.607681946 0.5027969278 —3.608151329
23 —3.608130465

113

The Maple program for the calculation of branch points according to equation (6.9) is extremely
simple and we do not show it here.
In order to verify the results just obtained, in what follows we compare them with those produced

by the method of implicit equations outlined in Section 6.2.2.

In order to apply this method we

need an appropriate quantization condition; here we choose the well-known secular determinant.

For brevity we denote the unperturbed eigenvectors by the kets |J, M >, where M =
Taking into account that M remains fixed during the calculation because m is

J=M,M+1,....

|m| and

a good quantum number, it is convenient to simplify the matrix notation by omitting M in the kets
andwriting |i >=|M+i,M >,i =0,1,....

Approximating the perturbed state W as a finite linear combination of unperturbed states

N
= "¢li >
i=0

we obtain the secular equation

N
Z (Hi,j —€8i,j)cj =0, H,j_<i
Jj=
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where [78, 112]

Hi j

Table 6.2 Parameters of the Singular Point Closest to

CONVERGENCE OF THE PERTURBATION SERIES

the Origin Calculated from the Perturbation Series for
the State with |m| = 0 and J = 1 of the Polar Linear
Rigid Rotator in a Uniform Electric Field

J 20 a z0(a =1/2)
1 —5.237205912 —0.09233151889 —2.397260274
2 —3.508036512  0.5984940281 —3.754571777
3 —3.542837739  0.5746700583 —3.651913167
4 —3.594244744 0.5249681057 —3.620069394
5 —3.602136537  0.5151423911 —3.614298564
6 —3.603865496  0.5125097594 —3.612081181
7 —3.605025052 0.5104223879 —3.610814793
8 —3.605792052  0.5088289160 —3.610041753
9 —3.606292071  0.5076514372 —3.609541268
10 —3.606633909 0.5067516623 —3.609198972
11 —3.606878213  0.5060408775 —3.608954523
12 —3.607058873  0.5054651721 —3.608773879
13 —3.607196202 0.5049894782 —3.608636619
14 —3.607303017  0.5045898674 —3.608529882
15 —3.607387730 0.5042494624 —3.608445244
16 —3.607456041 0.5039560264 —3.608376998
17 —3.607511927  0.5037004735 —3.608321169
18 —3.607558228 0.5034759175 —3.608274917
19 —3.607597016 0.5032770442 —3.608236170
20 —3.607629833  0.5030996882 —3.608203387
21 —3.607657845 0.5029405378 —3.608175405
22 —3.607681946 0.5027969278 —3.608151329
23 —3.608130465
. . i(i +2M)
= (M+l)(M+l+l)61,j }L|:4(l'+M)2—l

L [E+DE+2M 4+ 1)
4G +M+1)2 -1

12
} Siv1,; = Hj; .

12
] 8i—1,j

(6.47)

Because the matrix H of the Hamiltonian operator H is tridiagonal the secular equation (6.46)
becomes a three-term difference equation

where

© 2001 by CRC PressLLC

Ajci1+ Bici + Ajz1ci411=0,i=0,1,...,N,

B; = H; ;

— €, Al=

0 if i <0
Hij—1 if0<i<N
0 ifi>N

(6.48)

(6.49)
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The determinant of the homogeneous system of N + 1 equations (6.48) with N + 1 unknowns ¢; is

By A1 0 O
A1 B1 Ay O

Dy = : (6.50)

Ay_1 By-1 Ay
0 AN By

Expanding Dy by minors along the last row, and then the coefficient of Ay along the last column,
we obtain the following three-term recurrence relation [113, 114]

Dy = ByDy_1 — A3 Dy_2 . (6.51)

Taking into account the initial conditions D_ = 0, and D_; = 1, we easily calculate the secular
determinants Dy, N = 0,1, ... to any desired dimension. It is well known that the approximate
quantization condition Dy (e, 1) = 0 becomes increasingly accurate as N increases.

According to the discussion of Section 6.2.2, square-root branch points are simultaneous solutions
of the equations

oD
Dy (ep, Ap) =0, aéN (ep, Ap) =0, (6.52)
provided that
Dy 82DN
o (ep, Ap) # 0, YV (€, Ap) # 0. (6.53)

We use Maple to obtain the determinants Dy as analytical functions of ¢ and A, and to solve
equations (6.52) numerically by means of the Newton—-Raphson algorithm. Because Maple allows
us to predetermine a sufficiently great floating-point precision through the variable Digits, the results
of the final numerical step are supposed to be free from roundoff errors, and accurate up to the last digit
reported. Table 6.3 shows the root closest to the origin of equations (6.52) for m = 0 and increasing
values of N. Because of the remarkable rate of convergence we easily obtain accurate branch points
from determinants of relatively small dimension. The converged value of A,Z, agrees with the value
of zo obtained from the perturbation series by the method of Section 6.2.1 (cf. Tables 6.1 and 6.2). It
is not surprising that the nonperturbative method based on the sequence of secular determinants Dy
yields more accurate results. However, the method of the perturbation series is useful when there is no
other approach to the studied physical property. The agreement of these two completely independent
methods strongly supports the supposition that the radius of convergence of the eigenvalue (1) is
determined by a square-root branch point.

Table 6.4 shows singularity parameters |A,| and €, = €(Ap) = €(Ap)* = €(A};) for some states
with m = 0, 1, 2 which are more accurate than earlier results [113, 114].

Figure 6.1 shows A(¢)? for selected intervals of ¢, calculated by means of secular determinants
and perturbation series. In the latter case we simply substitute the appropriate values of M = |m|
and J (in ¢g = J(J + 1)) for the two branches involved. We clearly see that each pair of energy
eigenvalues with quantum numbers J, J + 1 share a common branch point (minimum of the curve).
The curves that join states with J = M and J = M + 1 look simpler than those joining states with
J > M + 1. This noticeable difference may explain why the method of Section 6.2.1 diverges when
J > M + 1. The curve connecting the states with M = 0, J = 2, and J = 3 was not shown in
earlier discussions of the subject [113].

Maple greatly facilitates the calculation just discussed. The programs for the construction of the
perturbation series were described in the preceding chapter. The procedure that builds the secular
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-2
-3

4 R (@)

55 6.5 75 8.5 9.5 10.5 11.5 12.5

FIGURE 6.1

Curves A2 (€) vs. € connecting the states (M =0, J =0)— (M =0, J=1) (@), M =1,J =
HD-M=1J=2)(b),and M =0,J =2)— (M = 0,J = 3) (c). Continuous lines are
results from secular determinants; broken lines and points come from perturbation theory.
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Table 6.3 Approximate Branch
Point Closest to the Origin for
States with m = 0 Obtained from
Determinants of Dimension N

N Ep )»1%

1121754911 —3.621793885
1118493345 —3.607856626
1.118508634 —3.607916830
1.118508607 —3.607916730
1.118508607 —3.607916730

o0 WN

Table 6.4 Branch Points for the Linear Rigid Rotor in an Electric Field

lm| =0 Im| =1 |m| =2

&b [Ap] &p [Apl b [Ap]
1.118508607 1.899451692 4.558778867 5.413699680 10.32081667 10.42885501

9.182711108 11.44693732 16.13759075 19.03665394 25.42076233 28.15827404
2427433747 29.15703642 34.74306246 40.82876537 47.54188835 54.04029322

determinants is straightforward and we do not show it here. We use the Maple command fsolve to
obtain roots of one-variable functions, and a simple Newton—Raphson algorithm for two variables.
We do not show our Newton—Raphson procedure here because it is extremely naive and there may
be other more elaborate, automatic, and reliable Maple procedures available in the literature.

6.4 Divergent Perturbation Series

We say that a perturbation series is divergent when its radius of convergence is zero. Divergent
perturbation series are so common in quantum mechanics that some authors have stated that they are
more likely a rule than an exception. A rigorous discussion of divergent series is beyond the scope
of this book. We merely summarize some well-known results, and briefly discuss methods for using
divergent expansions in practical applications.

Some of the quantum-mechanical models discussed in earlier chapters lead to divergent series: for
example, the anharmonic oscillators and the Zeeman and Stark effects in hydrogen. In this chapter
we consider one-dimensional anharmonic oscillators as illustrative examples because they are the
simplest models, and we can easily calculate sufficient perturbation coefficients for the application
of summation methods.

We say that the series (6.1) is asymptotic to the function E(A) as A — 0 if [98]

EMN) =Y Ej
lim :

Jm SN = Eny1. (6.54)
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118 CONVERGENCE OF THE PERTURBATION SERIES

6.4.1 Anharmonic Oscillators

In earlier chapters we calculated perturbation corrections for some one-dimensional anharmonic
oscillators. The most widely studied representative of this class of models is the quartic anharmonic
oscillator

+ — +Ax".

H=->—
2dx2 " 2

(6.55)
The analytic properties of the singular perturbation theory for this problem have been studied, first by
means of approximate methods [115] and later in a more rigorous way [111]. It has been proved that
any eigenvalue E (1) has a global third-order branch point at A = 0. On the three-sheeted surface,
A = 0 is not an isolated singularity because there are infinitely many branch points of order two
that accumulate towards origin. As a result the perturbation series is divergent, i.e., the radius of
convergence is zero and the A-power series does not converge for any value of A (no matter how
small it may be) [111, 115]. There are no real numbers a and b satisfying the inequality (6.34) for
all @.
The asymptotic behavior of the energy perturbation coefficients E; for the ground state is [115]

Easymp _ (_1)j+13j‘/6
i - -

Ej~ — LU +1/2). (6.56)

It follows from this expression that the radius of convergence of the perturbation series is zero:

|E |
j—=oo |Ejt1]

(6.57)

Figure 6.2 shows the ratio R; = E;/E?"", where the exact perturbation coefficients E; for the
ground-state energy were calculated by means of the method of Swenson and Danforth described in
Section 3.3.1. As j increases, this ratio slowly approaches unity.

1.00
R

j

0.95 +

0.80 -

0.85 1

0.80

10 30 50 70 % 110 130 150

FIGURE 6.2
Ratio R; = E;/E™"" for the ground-state energy of the anharmonic oscillator.
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If A is sufficiently small the sequence of partial sums
N .
Sy=) EjpJ, N=0.1,... (6.58)
j=0

for an asymptotic divergent series appears to converge as N increases, but after some value of N Sy
clearly exhibits its divergent nature. However, it is commonly possible to obtain acceptable results
by appropriate truncation. If we assume that the error |E(X) — Sy| is of the order of magnitude
of the first neglected term |EN+1AN+1| then it is reasonable to choose the latter to be as small as
possible [98].

Figure 6.3 shows that the minimum of Iog(|Ej+1)J+1|) vs. j increases and moves to smaller j

values as A increases. In other words, as A increases we can sum less terms and obtain a less accurate
estimation of the energy.

60
=
i)
Bas -
A =0.04
30 |
15 - A =002
0
7(7// o
— =001
15 —_— .
0 20 40 60 80 _ 100
J
FIGURE 6.3

Iog(|Ej)J |) for the ground state of the anharmonic oscillator.

Table 6.5 shows the optimum value of N, the approximate energy calculated by perturbation theory
Sy, the estimated error |Ey 1AV 71|, and the exact result obtained by means of a nonperturbative
method [116]. Notice that |E (1) — Sy /| is of the order of | Ey 114" *1| supporting the truncation rule
suggested above. It is clear from the results of Table 6.5 that the perturbation series for the ground
state of the anharmonic oscillator is useful only for sufficiently small 1 values (say, » < 0.05).

. . ~ 1/, A N
Table 6.5 Ground-State Energy of the Anharmonic Oscillator H = 3 (p2 + x2> + Azt

A N Truncated Perturbation Series Sy  Estimated Absolute Error  Exact

0.01 32 0.5072562045246011 0.3527780020 1014 0.5072562045246028
0.02 16 0.514086399 0.5822940303 10~/ 0.5140864273
0.04 7 0.526837 0.2060990198 103 0.5267339644
006 4 0.5369 0.2784570413102 0.5383192923
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6.5 Improving the Convergence Properties of the Perturbation Series

We have just seen that divergent series are useful only for sufficiently small values of the pertur-
bation parameter. However, in many cases it is possible to improve the convergence properties of
the perturbation series and obtain valuable results for greater values of the expansion variable. We
discuss some examples in what follows.

6.5.1 The Effect of Hy

The convergence properties of the perturbation series depend dramatically on the reference model
Hy. Therefore, a judicious choice of this operator is mandatory in difficult cases. In what follows
we illustrate this important point by means of simple examples.

The method that we present here is quite general and flexible. It has been suggested by a recent
application of perturbation theory by means of a factorization method, [117] and has not been
sufficiently exploited as far as we know.

Given a Hamiltonian operator A we construct another operator

HB)=H+B-DHW(EH), (6.59)

where W is an hermitian operator that depends on the new perturbation parameter 8 and can be
expanded in a Taylor series about 8 = 0:

o0
W)=Y W;p. (6.60)
j=0
If we write
e .
Hp) =D Hipl . (6.61)
j=0
where
Ho=H—Wo, Hj=Wj_1—W;, j=1,2..., (6.62)

and expand the eigenfunctions W (8) and eigenvalues £(8) of 7—1(;8) in Taylor series about 8 = 0
o ) o0 )
wp) =) Wip, EB) =) &, (6.63)
j=0 j=0

then we can apply perturbation theory in the way outlined in Chapter 1. The coefficients of those
series are determined by the perturbation equations

(I:IO — 50) \IJ]' = ZJ: (5,' — 7:[1) \I/j_i . (6-64)
i=1

If the series (6.63) converge for g = 1, they give us the eigenfunctions and eigenvalues of H
because H (1) = H. Thus, the problem reduces to selecting an operator W that facilitates solving
the perturbation equations (6.64) and that leads to perturbation series that converge for g8 = 1.
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The simplest case is given by W; = 0 forall j > 0, so that W (8) = Wy is independent of 8, and
H(B) = Ho+ BH1. Ho=H — Wo, H1=Wo. (6.65)
As an illustrative example we choose the anharmonic oscillator (6.55) and

2 2 2.2
—w 1d w°x
+ Ax"T = = _

x? x4 'Hl:>7-lo 2d2+ >

The unperturbed model is a dimensionless harmonic oscillator with frequency w that we may hope-
fully adjust in order to obtain perturbation series with better convergence properties.

This quite popular particular case of the method has proved to yield convergent renormalized
series with partial sums [118]

Wo = (6.66)

N
Sn(@) =Y &j(w). (6.67)

There are several ways to determine appropriate o values. One of them is the principle of mlnlmal
sensitivity [119] which is based on the fact that the eigenvalues and eigenfunctions of HPB=1) =

are independent of w. Therefore, it is reasonable to look for w values in the flattest part of the curve
Sy (w) vs. w. From the Taylor series

EN 328 — wy)?
Sn(@) = Sy (om) + My LM LT ON L (e
dw w=wy ow w=wy 2
we realize that wy may meet the above condition if
a5
N (@) -0 (6.69)
dw w=wpy

and [(82Sy /3%w) (wy)| is small.

The calculation of the perturbation coefficients £;(w) is straightforward by any of the methods
described in earlier chapters. Here we choose the method of Swenson and Danforth discussed in
Section 3.3.1 and easily calculate sufficient energy coefficients £; by means of a program which is
just a slight modification of the one for the dimensionless anharmonic oscillator already given in the
program section. Table 6.6 shows results for the ground state of the anharmonic oscillator (6.55)
with A = 0.06 which is the maximum 2 value considered in Table 6.5. For each value of N we see
wy, the partial sum Sy (wy), and log(|(82Sx /0w?) (wn)]). There is no doubt that the renormalized
series converges towards the exact value indicated in Table 6.5. Moreover, the second derivative at
the optimum value of w decreases with N showing that the curve becomes flatter as N increases.

Itis worth noticing that the renormalized series is divergent for each fixed w value but the sequence
Sy (wy) already converges towards the exact eigenvalue. An alternative and illustrative way of
looking at this problem is through the truncation criterion discussed in Section 6.4.1. Given an w
value we choose Sy (w) such that Ey.1(w) is the coefficient with the smallest absolute value, and
we assume that the error |£(1) — Sy | must be of the order of |Ex41]. Obviously N is a function of
o which is equivalent to saying that » depends on N.

Table 6.7 shows values of wy, N, and Sy (wy) for the anharmonic oscillator (6.55) with A = 0.06.
The convergence of the sequence of selected partial sums seems to be smoother than when we apply
the principle of minimal sensitivity.

The X value chosen in the two calculations above is rather small to convince someone that the
appropriate choice of Hy may be the cure for a divergent perturbation series. For this reason, in what
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Table 6.6 Renormalized Series and the Principle
of Minimal Sensitivity for the Ground-State Energy
of the Anharmonic Oscillator

% (ﬁz + )?2) +0.0654

~

2
N oy Sn(y)  log|=>5 > (@n)
[0}

1 1.146319568 0.5389144739 —0.311
2 No roots

3 1.226408495 0.5383219630 —2.22
4 No roots

5 1.300888395 0.5383192572 —3.87
6 1.292965589 0.5383192752 —4.49
7 1.400529907 0.5383192621 —4.45
8 1.324485680 0.5383192913 —5.48
9 1495147674 0.5383192725 —4.76
10 1.357995526 0.5383192923 —6.52
11 1583362711 0.5383192785 —5.00
12 1.392325919 0.5383192923 —7.56
13 1.666590777 0.5383192820 —5.21
14 1.431988690 0.5383192923 —8.50
15 1.426783737 0.5383192923 —8.98
16 1.481191656 0.5383192923 —8.92
17 1.446057835 0.5383192923 —9.50
18 1.531031398 0.5383192923 —9.14
19 1.467408165 0.5383192923 —10.14
20 1579190627 0.5383192923 —9.33

Table 6.7 Renormalized Series and
the Criterion of Minimal Error for the
Ground States of Two Anharmonic

Oscillators
oy N Sy(wn) log len41l
AD | 2
A +x N
a=", +0.065%
1.00 4 0.5369183938 —2.56
1.10 6 0.5382677955 —3.99
1.20 8 0.5383187776 —6.00
1.30 11 0.5383192937 —8.55
1.40 14 0.5383192923 —11.7
1.45 18 0.5383192923 —134
Y
~ p ad
H=—+x
2
2.0 2 0.6679687500 —2.91
3.0 18 0.6679862617 —8.08
35 35 0.6679862591 —10.78
40 58 0.6679862592 —14.03
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follows we consider the so-called strong-coupling limit of the anharmonic oscillator. As shown in
Appendix C, when A — oo the quartic potential completely dominates and we are left with the pure
quartic oscillator

(6.70)
If the renormalized series converges for this limit case, then we expect it to converge forall0 < A <
oo. In order to construct the renormalized series for this model we choose

1 1 42 N w?x? 1 W 4 w?x?
= ——=——= —_—Q, = =X -—
0= T2 T T T

(6.71)

and obtain the perturbation series for the eigenvalues £(8) of H(B) = Ho + BH1 by means of
the method of Swenson and Danforth. Table 6.7 shows that the sequence of selected partial sums
converge towards the ground-state energy of the quartic anharmonic oscillator. As expected, the
rate of convergence is smaller than in the case A = 0.06 but the results in Table 6.7 suggest that the
renormalized series is valid for all A values.

The renormalized series is also suitable for excited states as shown in Table 6.8 for the quantum
numbers v = 10, 100, 1000, and 10,000. When v is sufficiently large, a precise determination of
w is unnecessary because the renormalized series looks as if it were convergent for any value of
 in a neighborhood of wy. We have observed such behavior in the states with v > 10 shown
in Table 6.8. The eigenvalues in Table 6.8 agree with those obtained by a nonperturbative method
EBBCK] 1120] if we take into account that EPresent — 2-2/3 EIBBCK] aecording to the scaling
arguments in Appendix C.

Table 6.8 Renormalized Series for Some
Excited States of the Quartic Oscillator
2

FI:%+£4
v=10 v =100

oy N  Sy(oy) oy N Sy(wy)
4.0 7 31.65942243 8.0 30 643.1833913

41 13 31.65945673 40 643.1833914
42 20 31.65945647 50 643.1833914
43 23 31.65945648 60 643.1833914

44 28 31.65945648
45 34 31.65945648

v = 1000 v = 10000
oy N Sywy) oy N Sy(oy)
17.0 30 13774.25175 37.0 20 296579.3007

40 13774.25198 30 296579.3010
50 13774.25200 50 296579.3010
60 13774.25200 60 296579.3010

It is a great advantage of perturbation theory that the treatment of highly excited states offers no
more difficulty than the calculation of the ground state (at least for one-dimensional models). In
fact, Table 6.8 suggests that the convergence properties of the renormalized series are better for the
excited states than for the ground state. The reason for this behavior is well understood [121]. On
the other hand, other approximate methods become increasingly demanding as the quantum number
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increases. For example, the Rayleigh—Ritz variational method requires enlarging the basis set (and
thereby the matrix dimension), and numerical integration requires enlarging the variable interval
(and probably augmenting the number of mesh points to account for increasing oscillation in the
classical region).

It has been rigorously proved that the renormalized series for the eigenvalues of the anharmonic
oscillator (6.55) converges uniformly for all values of A [122]. However, such proof does not apply
to other anharmonic oscillators of the form
1 d? x2 2K

+ 5 +Ax

H=->—
2dx2 " 2

(6.72)
with K > 3. Numerical investigation shows that the convergence properties of the renormalized
series deteriorate considerably as K increases. Table 6.9 shows results for some anharmonic oscil-
lators

. 1 42
H=—-— +x%k

6.73
2 dx? (6.73)

that are the strong-coupling limit of the corresponding operators (6.72) as outlined in Appendix C.

Table 6.9 Renormalized Series for
the Ground Statesgf the Anharmonic

Oscillators H = % 452

k=3
oy N  Sy(wny)  log|Eyi1]
50 13 0.6804483108 —4.51
6.0 19 0.6804140173 —4.87
7.0 26 0.6804021439 —4.96
8.0 35 0.6803871123 —5.37
9.0 44 0.6803859985 —6.46
10.0 55 0.6803834400 —5.58
Exact 0.6807036117

k=4
oy N Sy (wn) log |En 1l
9.0 20 0.7165926122 —2.53
10.0 24 0.7187959806 —2.51
11.0 30 0.7161607879 —2.92
12.0 34 0.7201431753 —2.62
13.0 40 0.7199124049 —2.70
140 46 0.7206521523 —2.75
15.0 52 0.7220714811 —2.77
16.0 58 0.7240192116 —2.78

Exact 0.7040487741

The truncated renormalized series for the ground states of the anharmonic oscillators (6.73) with
K = 3 and K = 4 do not appear to converge as indicated by the fact that the estimated error
|En+1] does not decrease sufficiently fast as NV increases. The “exact” results added to that table for
comparison were obtained by means of an accurate, reliable nonperturbative method [116]. In order
to calculate accurate eigenvalues of the anharmonic oscillators (6.73) with K > 3 one has to resort
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to appropriate summation methods [123]-[127] that certainly perform better on the renormalized
series than on the original perturbation series.

The choice W(ﬁ) =W provides the simplest possible realization of the method outlined above.
We have also tried amore general -power series for W (8) which enables one to use a quasi-solvable
anharmonic oscillator as unperturbed Hamiltonian operator. A quantum-mechanical problem is said
to be quasi-solvable if one can solve the eigenvalue equation for just a few states. Because the
unperturbed model is not completely solvable we cannot solve the perturbation equations exactly
unless we choose the operator coefficients W; conveniently. By means of the logarithmic perturbation
theory described in Chapter 2, and aided by Maple, we calculated a perturbation series proposed
recently [117] through larger order. As it did not appear to converge we decided not to show results
here because, in our opinion, they would not add anything relevant to the present discussion.

Another way of building convergent perturbation series consists of splitting the Hamiltonian
operator H into its diagonal Hp and off-diagonal Hy parts by means of a basis set of vectors
{lj>,7j=0,1,...},

H=Hp+Hy, Hp=Y) |j><jlH|j><jl.Hy =) ) li><ilH|j><j|. (6.74)
J i J#

Since Hp is exactly solvable we choose it to be the unperturbed model and Hy to be the perturbation:
H(B) = Hp + BHy. At the end of the calculation we set the perturbation parameter g equal to
unity. Moreover, we can introduce adjustable parameters into the basis set to improve the convergence
properties of the resulting perturbation series, modifying the unperturbed part and the perturbation
more favorably. A particular example of this strategy is the so-called operator method in which the
splitting is carried out in terms of the generators of a Lie algebra [128]-[134].

To illustrate the application of this method we choose the anharmonic oscillators (6.73) which for
convenience we write in operator form as H = p?/2 + x2X, where p = —id/dx. An appropriate
basis set with an adjustable parameter « is

(n>a,n=0,1,...}, n>q=Uln > , (6.75)

where |2 > is an eigenvector of p2 + %2, and U is a unitary operator that generates a scaling
transformation (see Appendix C):

U0 =a'?2, UTpU =a™1?p . (6.76)

We write the matrix elements of A in terms of matrix elements of powers of p and £ in the basis set
{|n >} as follows from

Hy, = a<m H n> =<m Utau n> (6.77)
o
Notice that if we write
JR 1 2
OTHD = — (ﬁz +£2) pakgeK _ X (6.78)
2a 2a

the problem reduces to the calculation of the matrix elements of powers of X which offers no difficulty
if we resort to the recurrence relation (1.55). Therefore, by means of a slight modification of one
of the Maple programs in the program section for Chapter 1, we easily carry out the calculation
described in what follows.

We expand the eigenvectors W of A in terms of the chosen basis set

o0
=Y cilj>a (6.79)
j=0
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and derive the perturbation equations for the energy E and the coefficients c; as indicated in Chapter 1.
For simplicity in this case we choose the intermediate normalization condition ¢, = 1 when Eg =
H,, is the unperturbed energy of the state n, which we do not indicate explicitly by a subscript as
we did in Chapter 1. The reader may easily verify that the perturbation equations are

E, = ZHnjCj,p—lv Cn.p = 8p0
j#n
cip = Eo— Zszijl ZEC,,,S , i #n, (6.80)
J#

where p indicates the perturbation order.

As a pedagogical illustration of how the operator method yields perturbation series with im-
proved convergence properties we consider an exactly solvable problem already discussed above:
the harmonic oscillator with a harmonic perturbation given by equation (6.32). This simple model
was chosen some time ago for a test of the operator method, [130] and here we provide a more
straightforward argument. We already know that the Rayleigh—Schrddinger perturbation series for
the operator (6.32) converges only for || < 1 in spite of the fact that there are bound states for
all A > —1. In order to separate the diagonal and off-diagonal parts of A for the application of
the operator method we write 5 and £ in terms of the creation and annihilation operators 4 and 4,
respectively. We easily obtain

Hp = (1+1/2) (A*a ¥ 1/2) , Ay =x [&2 + (&*)2] /4, (6.81)
so that

Hp + BHy = (L4 A1/2 — AB/2)p%/2 + (1 + 1/2 + AB/2)52)2 . (6.82)

Therefore, the eigenvalues are given by

E(B) = 0 +1/21+2/24/1- 3B/@+ WP, v=0,1,... , (6.83)

which shows that the operator method converges for all |A] < |2+ A| (= A > —1) when 8 = 1;
that is to say, for all values of A supporting bound states. At least for this trivial problem the
operator method certainly improves the convergence properties of the perturbation series even when
the scaling parameter « is arbitrarily chosen equal to unity.

As a more demanding test of the operator method, we consider the ground state of the anharmonic
oscillators (6.73) with K = 3and K = 4 for which the renormalized series diverges as shown above
(for completeness we add the case K = 2). The results in Table 6.10 for several values of « do not
clearly suggest convergence, but show that the operator method is preferable to the renormalized
series in all those cases.

6.5.2 Intelligent Algebraic Approximants

There is a vast literature describing more or less successful methods for the summation of divergent
series. Some of the most popular are Borel and Padé approximants, [135, 136] continued fractions,
[135] and nonlinear transformations [137] among many others. Here we briefly discuss algebraic
approximants that have produced results of unprecedented accuracy for anharmonic oscillators and
other models [138].
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Table 6.10 Operator Method for the
Anharrpzonic Oscillators
AP

_ 22K
H = > +x
K=2
a N Sy () log |En+1l
0.10 18 0.6874191200 —2.87
0.20 16 0.6679809935 —7.22
0.30 18 0.6679862592 —11.14
0.35 19 0.6679862592 —11.53
040 19 0.6679862596 —9.14
K =3
« N Sn () log |En+1l
0.10 16 0.6866545682 —2.62
0.15 16 0.6806778711 —4.36
0.20 17 0.6807037650 —6.61
0.23 17 0.6807036225 —7.91
0.25 14 0.6807038117 —6.97
K=4
a N Sy () log |En 1l
0.10 12 0.7112588258 —2.37
0.15 10 0.7034332514 —4.49
0.18 12 0.7040680092 —5.10
0.20 12 0.7040771959 —5.12
0.25 6 0.7050018759 —4.10

Suppose that we want to obtain meaningful values of the function E (1) from its asymptotic
expansion (6.1). The simplest algebraic approximant is a rational function of the form

v
AG)  Xilear

M/N = = ,
[M/N]1(}) BGh Z?’:obj)uj

(6.84)

where we choose the coefficients a; and b; in order to obtain as many terms of the series (6.1) as
possible. Notice that there are only M + N + 1 approximant coefficients at our disposal because we
can always remove one of them by simply dividing numerator and denominator by it. Therefore, we
can obtain M + N + 1 coefficients E;:

M+N
M/NIO) = 3 EjN +O(AM+N+1) . (6.85)
=0

In some cases Padé approximants converge when we increase M and N conveniently, yielding
reasonable approximate values of E (1) [135]. Notice that we can rewrite £ = [M/N] as a linear
equation A(A) — B(A)E = 0 which we solve for the approximate value of E.

If the function E (1) is known to have branch points of order 2, then it is convenient to use a
quadratic approximant of the form A(A)E2 + B(A\)E + C (%) = 0, where A(%), B()), and C () are
polynomial functions of A [138]. The two roots of the quadratic equation give us the two branches
of the function E(A).
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The linear and quadratic approximants just mentioned are particular cases of algebraic approxi-
mants of the form

N
> A WE" =0, (6.86)
n=0
where Ag(L), A1(A), ..., A, (1) are polynomial functions of A. They prove suitable for the accurate

summation of divergent series to obtain the branches of multiple-valued functions [138].

In principle, one can construct many different algebraic approximants from the same set of per-
turbation coefficients E ;, so that there is great flexibility of choice for a given problem. This
freedom may become a drawback because it may require some extensive numerical calculation
to determine the most convenient sequence of approximants. For example, in the case of simple
guantum-mechanical anharmonic oscillators, different sequences of algebraic approximants give
different answers, and those with the correct large-coupling behavior (see Appendix C) prove to be
the most accurate [138]. It appears to be most important to have clear directions of how to construct
suitable algebraic approximants. Here we show how to address a wide class of problems.

Suppose that we can rewrite the unknown function E (1) as

EQ) =W (r”) , (6.87)

where a and » > 0 are known rational numbers, and W (&) is another unknown function. For
concreteness and simplicity in what follows we restrict to the most usual case a > 0.

Itis our purpose to obtain approximate values of E () by means of an implicit equation of the form
Q(E, 1) = 0. We require that one of the roots of Q(E, A) = 0 satisfies the expansion (6.1) through a
given order. Moreover, in order to take into account equation (6.87) we build Q(E, 1) to factorize as
Q(AW, L) = F(M)G(W, ), and assume that G(W, A~?) = 0 may give us approximate values
of W(x~?). In this way we expect to obtain accurate values of E (i) for all A having only the
expansion (6.1) which is valid for sufficiently small values of .

Algebraic approximants (6.86) are particularly simple implicit equations which for convenience
we rewrite as

M N
AIM,N1=> " BuuA"E" . (6.88)
m=0n=0
In order to construct approximants that factorize in the way indicated above, we substitute A W for
E in equation (6.88) and require that m + an = aN — bj, where j =0,1,...J, < (aN —m)/b.
More precisely, from all the possible algebraic approximants we choose those of the form

M In . aN —m
AM,N1=)" ZAmj)\'"EN—<m+bf)/a, I = [ - } , (6.89)
m=0 j=0
where [u] stands for the greatest integer smaller than or equal to the real number u. The new
coefficients A,,; are related to the original ones B, by Ay = By N—(m—bj)/a- The integers M and
N are independent except for the restriction N > M /a necessary to have J,, > 0 for all m. In order
to remove one degree of freedom we arbitrarily choose N to be the smallest integer greater than or
equal to M/a.
Substituting £ = AW into A[M, N] = 0 and dividing by »*", the resulting implicit equation

DO AW Nmtbila — g (6.90)
m=0 j=0
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gives us W(r7?). If

W) = lim 2E(2) (6.91)

exists, then we obtain it approximately as a root of the implicit equation

M
> AW O =0 (6.92)

m=0

easily derived from (6.90). Moreover, if W (&) satisfies a formal Taylor expansion Wo + W1§ +- - -+
W,&" 4 - .. about & = 0, then we expect appropriate partial sums for

o0
EQ) =Y Wb (6.93)
j=0

to be valid for sufficiently large X values. We say that the approximants (6.89) are intelligent because
their roots also satisfy (6.87) as follows from (6.90).

As said earlier we require that one of the roots of A[M, N] = 0 satisfies the Taylor expansion (6.1)
through a given order. Because one of the approximant coefficients is not independent we arbitrarily
set Agp = 1. Choosing the total number

M Jn M M
YoX1-1=> Un+D—1=M+ )Y Jn (6.94)
m=0 j=0 m=0 m=0

of independent adjustable parameters appropriately we can force a root of the approximant to give
the A-power series (6.1) exactly through order

M
PM)y=M -1+ Jn. (6.95)
m=0

The derivation of the expressions that give the approximant coefficients A,,; in terms of the
series coefficients Ey is rather tedious, but we show it here for completeness. We first rewrite the
approximant as

M N
A= Z AP, (E), Pp(E) = Z BunE" . (6.96)
n=0

m=0

It is convenient to introduce a cutoff function 6(x) which is zero if x < 0 and unity otherwise, and
rewrite the approximant as

o0
A= "0(M—mA\"Pu(E) . (6.97)
m=0
Writing
o
E"=Y"Cyhl (6.98)
j=0
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where Co; = do; and C1; = E;, we have

00 Ny
Pn(E) = mej)hj, Pmj = Zanan . (699)
=0 n=0
Therefore
0 k
A=Y "0 —m)pmim - (6.100)
k=0 m=0

A = 0 for all A provided that

k N
Z (M —m) Z BunCni—m =0. (6.101)
m=0 n=0

Finally, taking into account the relation between n, m, and j, and between the approximant coeffi-
cients B, and A,,; we obtain

mink,M) J,,

Z Z AijN—(m—i-bj)/a k—m = 0. (6102)
m=0 j=0

Substituting the expansion (6.1) into E” = E E"~1 we obtain a recursion relation for the coefficients
an:

J
Coj = Z Ej—iCn-1; - (6.103)
i=0

If P(M) is the perturbation order, then we are left with a system of P (M) + 1 linear inhomogeneous
equations (6.102) k =0, 1, ..., P(M) with P(M) + 1 unknowns A,,; (remember that Agy = 1).
As simple illustrative examples we consider one-dimensional anharmonic oscillators

. 1d>  x? X
H=——-—+—+xx". 104
2 dx2 + > + Ax (6.104)
As shown in Appendix C the eigenvalues E (i) of H satisfy equation (6.87) witha = 2/(K +2) =
b/2. If K is even we arbitrarily choose N = (K + 2)M /2.
We first consider the quartic anharmonic oscillator (K = 4) for whicha = 1/3 and b = 2/3 that
lead to J,, = [(N — 3m)/2] and N = 3M. From the perturbation series of order 5 for the ground

state we construct the approximant
4921 _, 2317 _, 19497 10131

_ _ _ 3
14852 59408E 7426 AT 14852AE

164997 , 75
237632" ' 5056

A[2,6] = ES

(6.105)

For each A value the equation A[2, 6] = 0 has 6 roots, two of them real. The smallest real root
gives an approximation to the energy of the quartic anharmonic oscillator. We discard the other root
because it does not give the exact result E(0) = 1/2. Figure 6.4 shows a satisfactory agreement
between the smallest real root of the simple implicit equation A[2,6] = 0, and the eigenvalue
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FIGURE 6.4

Ground-state energy of the anharmonic oscillator (6.55) calculated by means of the intelligent
approximant (6.105) (continuous line) and by a nonperturbative method (points).

calculated accurately by a nonperturbative method [116]. In what follows we show that the simple
intelligent approximant (6.105) gives reasonable results even for A values much larger than those in
Figure 6.4.

Substituting AY/3W for E in equation (6.105) and dividing the result by 12 we obtain

o_ 4921 4 17 ,, 19497 , 10131

14852 59408 7226 T 14852
75 5 164997

t5o56° 237632

(6.106)

where ¢ = A=2/3. As argued earlier in this chapter, when & = 0 (A — o0) the implicit expression
resulting from (6.106) gives us an approximant for the ground state energy of the pure quartic
oscillator (equation (6.73) with K = 2). One of the roots of this approximant Wy = 0.668215
provides the ground-state energy with an error of 0.034%, clearly showing that equation (6.105) is a
good approach to the corresponding eigenvalue of the quartic anharmonic oscillator for all A values
(even for A — o0). Moreover, the simpler intelligent approximant A[1,6] proves to be more accurate
than other expressions built from perturbation series of order four [139, 140].

In order to test the convergence properties of the intelligent approximants we calculate the leading
coefficient Wy of the strong-coupling expansion for the anharmonic oscillators (6.104) with K = 4,
6, 8, given by a root of equation (6.92) witha = 2/(K + 2).

Table 6.11 shows that the rate of convergence of the intelligent approximants is remarkable for the
ground as well as highly excited states of the pure quartic oscillator. The converged eigenvalues agree
with those in Table 6.8 obtained earlier by means of the renormalized series. By simple inspection
of both tables one concludes that the rate of convergence is considerably greater for the intelligent
approximants than for the renormalized series.

Table 6.12 shows results for the pure sextic and octic anharmonic oscillators. The intelligent
approximants appear to converge in the former case but not in the latter one. We have been unable
to identify a convergent sequence from the roots of equation (6.92) (see 5th, 6th, and 7th columns in
Table 6.12) for the octic anharmonicity.
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Table 6.11 Convergence Rate of the Intelligent Approximants A[M, 3M] for

A2

Several States of the Anharmonic Oscillator A = ? + 34

M P

v=_0

v=10

v =100

v = 1000

v = 10000

1
5
10
17
25
35

o Ok, WN -

0.7211247852
0.6682150331
0.6679536006
0.6679862615
0.6679862592
0.6679862592

33.18593389
31.65916791
31.65945459
31.65945648
31.65945648
31.65945648

673.9051114
643.1772376
643.1833908
643.1833914
643.1833914
643.1833914

14432.11270
13774.12177
13774.25199
13774.25200
13774.25200
13774.25200

310743.9659
296576.4973
296579.3007
296579.3010
296579.3010
296579.3010

Table 6.12 Convergence Rate of the Intelllgent Approximants for the Ground
States of the Anharmonic Oscillators H = 7 + 2K withk =6and K =8

K =6 A[M,4M] K =8 A[M,5M]
M P E P E
1 2 0.5993203292 2 0.5897586004
2 7 8 0.4554075304
3 14 0.6593272643 16 0.4277561778 0.6561496492
4 23 0.6807661937 27
5 34 0.6807031149 40 0.4663678730 0.6864498896
6 47 0.6807048473 56 0.4592557841 0.5707878070 0.8107106475
7 62 0.6807036615

The intelligent approximants are suitable for obtaining the strong-coupling expansion (6.93). For
example, we can rewrite the Hamiltonian operator (6.55) as

N 1 d?

UTAU =313 [ (6.107)

1
2 7x2 + 2)»_2/3 x% + x* i|

by means of the equivalent transformation discussed in Appendix C. Choosing the quadratic term as
a perturbation, and & = A~2/3 as a perturbation parameter we obtain the expansion

o
1/3 —2j/3
= A3y Wi
j=0

EQ) (6.108)

The calculation of the coefficients W; proceeds as follows: first substitute W/3 for E in the
approximant A[M, N1, then divide it by A™, and, finally, substitute & for A=2/3, in order to obtain a
polynomial function of W and &:

min{M,[N/31} [(N—3m)/2]

Equation (6.106) is a particular case of this expression which is a particular case of (6.90). If we
substitute the truncated expansion Wo + Wi& + Wa&2 + - - - + W,£" for W we obtain a polynomial
function of £. Setting each of its coefficient equal to zero we extract the expansion coefficients W;
term by term.

ApjEIWN=3m=21 =0, (6.109)
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Table 6.13 shows the coefficients W;, 1 < j <5, for the ground and excited states; the leading

coefficient Wy is given in Table 6.11. The coefficients Wy and W1 increase with the quantum number
because they are respectively an eigenvalue of the pure quartic oscillator and the expectation value
(x?)/2. The next coefficient W» appears to approach a finite nonzero value as the quantum number
increases. This curious and interesting behavior of W5 is not well known because most of the
calculations of the strong coupling series for the anharmonic oscillators have been restricted to the
ground state [116, 125, 127], [141]-[144]. The absolute values of the remaining coefficients decrease
with the quantum number suggesting an increasing radius of convergence. Present coefficients W;
are related to earlier ones W/, [141, 144, 145] by means of the transformation W; = 2-20U+D/3W’
which follows from the scaling arguments discussed in Appendix C.

2

. . . . 52
Table 6.13 Strong-Coupling Series for the Anharmonic Oscillator # = ”7 +E % + 24
P Wy Wo W3 Wy Ws
v=0
0.1247530653 0 —-0.145043197010-2  0.2708825696 103 0
5 0.1434473426 -0.847767017710-2 0.7551679354 10-3 -0.617592586310~*  0.2377454709 10-°
10 0.1437221947 -0.878581001510-2 0.1190188239 102 -0.917425140110-3  0.1870527091 102
17 0.1436687775 —0.862756006010-2 0.8182047111 10-3 -0.824267790710*  0.8068340550 105
25 0.1436687832 -0.862756568310-2 0.8182088855 103 —0.824291999710—4  0.8069484300 105
35 0.1436687830 -0.862756584110-2 0.8182088741 103 -0.824292188710~*4  0.8069494581 10>
v=10
1 1.160790617 0 -0.520155869010~3  0.1907145983 104 0
5 1.285488559 -0.117031352610~1 0.905509120510—4 0.1827544018105  -0.1106049773 106
10 1.285402347 -0.116853287010-! 0.8833622063 104  0.203429906810->  —0.126122343810°6
17 1.285401386 -0.116850161510-! 0.8827429329 10~4  0.204354527210-5  -0.1272375932 106
25 1.285401385 -0.116850155210-1! 0.8827411300 104  0.204358623610->  —0.1272451861 106
35 1.285401385 -0.116850155310-! 0.8827411537 104  0.204358598210—5>  —0.127245141210°6
46  1.285401384 -0.116850155010-% 0.8827411803 104  0.204358580010-°>  —0.1272451427 10-6
v =100
1 5.234510168 0 —-0.1155679066 102  0.9405426049 10-° 0
5 5794717030 -0.116930769810-1 0.2008458603 10— 0.888286273510~7  -0.1197338502 108
10 5.794317915 -0.116750989310-1 0.1959442465 104  0.989520304010-7 —-0.1367717608 10-8
17 5794317840 -0.116750927810-! 0.1959411962 10-4  0.989634800610-7  —0.1368068196 108
25 5794317849 -0.116750931310-! 0.1959412671 10~4  0.989633679110~7 —-0.1368066423 108
35 5794317844 -0.1167509284 10~ 0.1959411923 104  0.989634973810~7  —0.1368068317 10-8
46 5794317842 -0.116750927610-1 0.1959411788 104  0.989635005610-7  —0.1368068043 10-8
v = 1000
1 24.22394697 0 -0.249733853310~4  0.4391918791 10~ 0
5 26.81631188 -0.116927951810-1 0.4339177809 105 0.415047251510-8  —0.1208946558 10-10
10 26.81448429 -0.116749902610-! 0.4234161483 10->  0.461974251310-8% —0.1379841062 1010
17 26.81448396 -0.116749844710-1 0.4234099352 10>  0.462024717510-8% -0.1380175162 1010
25 26.81448390 -0.116749856510-! 0.4234065495 10->  0.461931405410-8 —0.1382752428 1010
35 26.81448396 -0.116749844410-1 0.4234099260 105>  0.462024730210-% —-0.1380175139 1010
v = 10000
1 112.4038887 0 -0.538196760510~5>  0.2039771776 108 0
5 124.4329670 -0.116927923010-! 0.9351259981 106 0.192764736110° —0.1210043192 1012
10 124.4244875 -0.116749891310-! 0.9124960890 10-¢  0.214557810010—° —0.1381081866 1012
17  124.4244859 -0.116749832710-1 0.9124826986 10-¢  0.214581176310~° —0.13814151511012
25  124.4244857 -0.116749826210-! 0.9124807799 10-6  0.214586406110—° —0.1381556080 1012
35 124.4244858 -0.116749831410-1 0.9124825886 106  0.214581212610-° -0.1381414873 1012
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It has been proved that the perturbation series for any eigenvalue W (&) of the Hamiltonian operator

ﬁ—l
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dZ
dx?

1
+ Eéxz + x4
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has a finite radius of convergence determined by a pair of the so-called Bender and Wu branch
points [111, 115]. Two eigenvalues become degenerate at every one of those square-root branch
points, some of which have been accurately calculated by means of nonperturbative methods [146,
147]. It is our purpose to show that intelligent approximants are suitable for obtaining Bender and
Wu branch points &,. Such a calculation is an even more demanding test of a perturbation method
than the accurate determination of the coefficients of the strong-coupling expansion. We start from
the transformation of an intelligent approximant A[M, N] into a polynomial function of W and
& equation (6.109). Consequently, A[M,3M] = 0 becomes a quantization condition of the form
Q(W, &) = 0 from which we obtain square-root branch points as indicated in Section 6.2.2.

Table 6.14 shows Bender and Wu branch points calculated from intelligent approximants of in-
creasing perturbation order P. They correspond to crossings between pairs of eigenvalues (v =
0,v=2),@w=1v=3),(=20v=4),and (v=3,v =5). Although convergence is rather
slow, we clearly see that our sequences approach the branch points calculated by accurate nonper-
turbative methods [146, 147]. The latter values of W, and &, were multiplied by 2-%/3 and 2%/3,
respectively, in order to compare them with the present ones. We could not obtain all the branch
points reported by Shanley [146, 147]; itis not clear to us whether the failure was due to the algebraic
approximants or to our rather primitive numerical root finding algorithm. Suffice to say that we do
not try to give accurate Bender and Wu branch points but to test intelligent approximants built from
divergent series at singular points of E(L).

Another interesting application of the intelligent approximants is the calculation of the energies
of metastable states. For the sake of concreteness consider the anharmonic oscillator (6.104) with
K =4 and A < 0. The potential-energy function is unbounded from below as shown in Figure 6.5,

3
V&)
2 L

FIGURE 6.5
Potential-energy function V (x) = x?/2 — x*/40.

and therefore supports no bound state. The eigenfunctions satisfy the boundary conditions

W(x) — exp <i%|x|3) as |x| — oo, (6.111)

which correspond to outgoing waves in both channels (x < 0 and x > 0), only for discrete complex
values of the energy E. The real and imaginary parts of E are commonly interpreted as the position
and width, respectively, of a resonance, the latter being related to the lifetime of the metastable state.

© 2001 by CRC PressLLC



6.5.

IMPROVING THE CONVERGENCE PROPERTIES OF THE PERTURBATION SERIES 135

Table 6.14 Bepzder angZWu Branch Points of the Anharmonic
Oscillator H = % + 5% + %4 for Pairs of States with Quantum

Numbers v and v + 2

v=20

P Wy

&b

35 0.2630428496 + 1.624594658i
46 0.2889000800 + 1.876309615i
59 0.2617508958 +- 1.852538472i
73 0.2547451096 + 1.849390225i
89 0.2545953206 + 1.849466123i

— 6.624501579 + 3.576330437:
— 6.669345055 + 3.445029671i
— 6.658672632 + 3.444746306i
— 6.657061544 + 3.444280112i
— 6.657055939 + 3.4442463661

106 0.2546068447 + 1.849473621i —6.657058696 + 3.444247072i
Shanley 0.2546072144 + 1.849472732i — 6.657058631 + 3.444247225i
v=1

P Wi &b

35 1.200465709 + 4.979841203i
46 1.263430140 + 4.974064781i
59 1.265137461 + 4.973918388i
73 1.265141090 + 4.973873844i
89 1.265136142 + 4.973871821i

— 7.909214963 + 6.369208765:
— 7.916591583 + 6.386014949i
— 7.916826785 + 6.386354390i
— 7.916820032 + 6.386360110:
— 7.916819326 + 6.3863596861

106 1.265135846 + 4.973873892i — 7.916819519 + 6.386359449;
Shanley  1.265135800 + 4.973873648; — 7.916819487 4 6.386359463i
v=2

P Wp &p

35 2.530479106 + 8.281701739i
46 2.658342737 + 8.439401379i
59 2.640928270 + 8.450766476i
73 2.649060188 + 8.454160591i

— 8.980053030 + 8.859695343i
— 9.065073467 + 8.847819213i
— 9.064697852 + 8.842465234i
— 9.066174055 + 8.843304710i

106 2.648977207 + 8.454181256i — 9.066163981 + 8.843293687:
Shanley  2.649031393 + 8.454111313i — 9.066162551 + 8.843307413i
v=3

P Wp &b

59 5.177125194 + 11.67311958i
73 4.304386970 + 12.23652612i
89 4.299380545 + 12.23424907i
106 4.299887277 + 12.23487423i

Shanley  4.299828498 + 12.23480418i

— 10.09069392 + 12.75585928i
— 10.13632596 + 11.02995502i
— 10.13550858 + 11.02965413i
— 10.13563744 + 11.02961991i

— 10.13562445 + 11.02962218i
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In order to obtain resonance energies of the anharmonic oscillator mentioned above, we simply
select convergent sequences of roots of A[M, 3M] = 0 for negative values of A. Table 6.15 shows
the remarkable rate of convergence of the one obtained from the perturbation series for the ground
state (v = 0) for A = —0.025.

Table 6.15 Convergence of Intelligent
Approximants to a Resonance of the

Anharmonic Oscillator
A=t2aa) - =g
2 40

E(@w=0)

v

1 0.4800747778
5 0.4791200094
10 0.4791144844

17 0.4791167889 — 0.7289308712 x10°;
25 0.4791168180 — 0.7282280620 x 107 i
35 0.4791168182 — 0.7282385091x 1072
46 0.4791168182 — 0.7282386678 x 107>
59 0.4791168182 — 0.7282386684 x 1072 i
73 0.4791168182 — 0.7282386684 x 107> i

In the program section we show a collection of simple procedures for the construction of intelligent
approximants for the anharmonic oscillator (6.104) with K = 4. One must keep in mind that they are
just the starting point of the calculations described in this section, which must be explicitly carried
out according to the equations given above.

There are many methods for the summation of divergent or slowly convergent perturbation series
that have not been mentioned in this section. The reader may look up some of them in the literature
cited. It is not our purpose to be exhaustive on this subject which we leave at this point.
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Chapter 7

Polynomial Approximations

7.1 Introduction

We call polynomial approximation a particular form of perturbation theory based on the expan-
sion of a nonpolynomial potential-energy function in a Taylor series about a conveniently chosen
coordinate point, in a way similar to the approach known as small-amplitude oscillation in clas-
sical mechanics. This approximate method commonly gives more accurate results for deep wells
and energies close to the minimum of the potential-energy function. Throughout this chapter we
discuss several polynomial approximations, including the celebrated large- N expansion and its vari-
ants [148].

7.2 One-Dimensional Models

For simplicity we begin our discussion with a simple one-dimensional model in the coordinate
representation

H=———+4V(x), —00<x <00, (7.1)
X

where the potential-energy function V (x) exhibits a single minimum V, at x = x, and supports
bound states. Except for these conditions, the potential-energy function is arbitrary.

It is convenient to work with a dimensionless Hamiltonian operator as in preceding chapters.
To this end we define a dimensionless coordinate ¢ = x/y, where y is an arbitrary length unit,
a dimensionless energy ¢ = my2?E/h? and a dimensionless potential-energy function v(g) =
my?V (yq)/h?. The dimensionless Hamiltonian operator is

2 1d2

137
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138 POLYNOMIAL APPROXIMATIONS

7.2.1 Deep-Well Approximation

In order to apply the polynomial approximation we define a new dimensionless coordinate z =
(¢ — qo)/B, where 8 is an arbitrary parameter. On expanding v(g) in a Taylor series around gg

v(g) = Z vj (@ = g0, vj = 1, j;'j (73)
the Hamiltonian operator becomes
ﬁ:i 142 + B%vo + B3v1z + BHuoz +Zv B2 (7.4)
g2\ 2422 =3
Notice that
o .
vjzm;_l—j;% %Fm, X0 =40 (7.5)

If v» >0 we can view equation (7.4) as a harmonic oscillator with a power-series perturbation.
Although the exact eigenvalues are independent of go and B, these parameters affect the rate of
convergence of the perturbation series. Another degree of freedom that is relevant to the construction
of the perturbation series is the way we collect and group the terms of the perturbation into polynomial
contributions. We will discuss these points later; for the time being we keep the approach as
straightforward and simple as possible, setting the adjustable parameters beforehand.

At first sight it seems most reasonable to choose g to be the value of the coordinate at the
minimum of the well so that the linear term of the Hamiltonian operator (7.4) vanishes because
v1(q0) = v'(g0) = 0. We also set

1/4
1\ h?

= — = N 7-6

p (21)2) (2my4V2 (7.6)

and define a new dimensionless Hamiltonian operator

A N 1d?
__ 2 _ J j+2

h=28 (7—[ v@) 2d2+ z+§b,82 (7.7)

where g plays the role of a perturbation parameter and

. V; J
vjit2  Vigy2y _ (7.8)

b; = =
J 2v7 2Vo

The eigenvalue equation hd =ed gives us the dimensionless energies

2B2(E — W,
ezflﬁ#__ﬁ, (7.9)

from which we easily recover the eigenvalues E of H. Notice that #2/(my282) = hw, where

2V
w=]"2 (7.10)
m
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7.2. ONE-DIMENSIONAL MODELS 139

is the classical frequency of a harmonic oscillator with force constant 2V5.
The perturbation coefficients e; of the dimensionless energy series

o0
e=Y ejpl (7.11)
j=0
depend on the potential coefficients 5; and on the unperturbed energy
1
eo=v~|—§,v=0,l,.... (7.12)

The net effect of the scaling transformation described in Appendix C that substitutes —z for z
is the substitution of —g for B in the dimensionless Hamiltonian operator h as follows from
B/ (—2)/12 = (—B)/z/ 2. Since the states of one-dimensional models are nondegenerate we con-
clude that e(—B) = e(B), from which it follows that e;; 11 = 0. Therefore, the energy series for the

eigenvalues of # are of the form
1 00 2
€ =19+ E E e2;B (7.13)

and those for A read
E=Vo+hw(eo+e2ﬂ2+e4,34+-~) : (7.14)

The first term in this equation is the classical energy of a particle at rest at the bottom of the well, the
second term is the quantum-mechanical energy of a harmonic oscillation about this minimum, and
the remaining contributions are anharmonic corrections to this oscillatory motion. In other words,
the perturbation series (7.14) looks very much like successive quantum-mechanical corrections to
a classical approach. This point of view is reinforced by the fact that the perturbation parameter
B is proportional to #1/? and decreases with the mass of the particle. However, this seemingly
semiclassical approach differs markedly from the WKB method [149] in that the accuracy of the
perturbation series (7.14) decreases with the vibrational quantum number.

The dimensionless potential coefficients b, and, consequently, the dimensionless energy correc-
tions e;, are invariant under the substitution of CV (x) for V(x). Only Vo, w, and g depend on C
in equation (7.14). As C increases, S decreases and the convergence properties of the perturbation
series (7.14) improve. If V(x) describes a finite potential well, then the depth of CV (x) increases
with C. For this reason, and that given earlier, we decided to call the present approach “deep-well
approximation” instead of, say, “semiclassical expansion” in spite of the fact that in some cases the
well may become increasingly shallower as the perturbation parameter decreases.

One easily calculates the dimensionless energy coefficients e;; by means of any of the methods
outlined in earlier chapters. For example, the application of the method of Swenson and Danforth
discussed in Section 3.3 is straightforward and we choose it for the calculations described below
because we are not interested in the eigenfunctions. The reader may easily derive the necessary
equations following the lines indicated in Section 3.3 and write a simple Maple program by a
straightforward modification of that one shown in the program section. Table 7.1 shows the first
energy coefficients in terms of eg and the potential coefficients b;.

As shown in Section 3.3, the method of Swenson and Danforth gives us perturbation series for the
expectation values

Zi = <zk> = i Zi B . (7.15)
=0
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Table 7.1 Energy Coefficients of the Deep-Well Expansion for an Arbitrary Potential-Energy
Function

15 2 7 2 3 3
ex =—2e0? b1? — {5 b1? + 3 by + 3 by eo?
eq = — 7]?65 603b14 11556 b1 +459 eob1 b2+ 225 bl by eo — —bleobg——b1b3 eo

17 25
—Eeobz —sz eo® +§b4eo+§b4eo

eg = 7335 bl bZ 602 b3 4 116325 116325 bl bze 4 2338265 b13 6‘02 b3 9765 bl b3 6’0
_626(2113 b12 802 b22 _ 2439245 b12 b22 804 4 8225 b12 b4 602 4 2;%5 b12 b4 eO4
1365 b1 by eo - % bl bs e 0 + 128 b1 by bz — 165 by by 602 — % by by e04

209055 6 115755 4, 6 , 131817 14777 40261 2
256 eo? b1® — 128 60b1+1024b b_zseb b_512b b2

11 1707 7 4 1
+885 12 by — 138 by s + L0 eg? b3 + 32 by eo* — 22 by by — 32 ba? eg®
1085 1107 245 35 315 101479
— D bs?ep? — Sl ba? + SR bseo’ + R bseo’ + 13 be — ooy b1°

+ 1255369 b + 2415 b1 by b3 eO + 239985 2 b14 by

According to the scaling transformation discussed in Appendix C we have

(=2") B = —v*zup) = ze(=p) (7.16)

so that Z, ; = 0if j + k is odd. This property is a useful test for the program.

In the case of a parity-invariant potential-energy function V(—x) = V(x) it is convenient to
proceed in a slightly different way exploiting the fact that only even powers of x appear in the Taylor
expansion of V (x). We define ¢ = /Bz and expand v(g) around ¢ = 0

o0
vig) =Y vl (7.17)
where
1 a% 2j+2 1 d%v
@) dq? |, h 2)! dx?7 | _g
We apply perturbation theory to
2 " 21 2j+2
h=pH—v0) =5+ z—i—X;b,B’ J (7.19)
J
where b; = v;41/(2v1). From the eigenvalues of A
e=vo+— Zejﬂf (7.20)

j =0
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we obtain the energies

o0
E=Vo+ho) e (7.21)
j=0

exactly as in the preceding case. Table 7.2 shows the first perturbation corrections e; in terms of eq
and the dimensionless potential coefficients b;.

Table 7.2 Energy Coefficients of the Deep-Well Expansion for a Parity-Invariant
Potential-Energy Function

61=§b1(1+4602)
€2=——€0b1 ——603b1 +25€0b2+ by eo®

1707 375 885 165 1539 945
e3 = 0 eg? b13 + 3R et b1® — B2 b1 by eo? — 12 by by et + 52 13 — 2 b1 by

%gb +245b3eo +35b380

89165 4 10521 2205 4 29555 2 117281
€4 = 128 603 bl - 764 bl €o b3 - b]_ b3 €o 32 b]_ b €o + 56 eo bl b2
3051 4 10689 4 189 3129 19277
308 eo by eo® b1t — 82 by byeo® + 322 b1 by eo® — BEL e by?
4145 ; 2 393 5,2 45 4 5607 945 63
-5 b2 eo® — 6 b2 e + g baeo + 5 b4€o + 3 b4€0

As afirst illustrative example we consider the Morse potential-energy function [150]
V(x) = D[1—exp(—ax)]?, (7.22)

where D > 0 is the depth of the potential well and « determines the range of the interaction (greater
a shorter range and vice versa). This anharmonic oscillator proves to be a simple two-parameter
model for the study of vibrational properties of diatomic molecules. Figure 7.1 shows the shape of
V (x) for two values of D and «. The Schrddinger equation for this model is exactly solvable when
—00 < x < 00, and the energies are given by [150]

E=h hoocy (7.23)
=hw| e 2D , .
where
2D
w=,—u. (7.24)
m

Choosing y = 1/« the dimensionless potential-energy function turns out to be v(¢) = B(1 —
e~1)2 where B = mD/(h%a?), and the energy is E = De(B)/B. According to equation (7.6) the
perturbation parameter is 8 = (2B)~Y/4. Moreover, since V, = Da? the frequency (7.10) appearing
in the perturbation expansion (7.14) agrees with equation (7.24). A straightforward calculation shows
that all the perturbation corrections to the dimensionless energy vanish except ¢g and

1,

ey = _560 . (7.25)
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16

VX)

FIGURE 7.1
Morse potential-energy function for D = 5, « = 1 (continuous line), D = 5, « = 2 (broken
line), and D = 3, @ = 1 (points).

Therefore, the resulting perturbation series E = hw (eg + e282) gives the exact result (7.23) because
B2 = hw/(2D). Notice that the energies of the Morse oscillator approach those of the harmonic
oscillator as the well depth increases because the perturbation parameter $ is proportional to D~1/4,

One may think that perturbation theory also gives the exact eigenfunctions, but it is not the case
because the perturbation series for them do not terminate. In order to illustrate this point Table 7.3
shows the first coefficients of the perturbation series for the expectation values (z) and (z?). None
of these series terminate although some coefficients vanish as discussed above.

Another interesting exactly solvable model is given by the potential-energy function

Vix) = — A,a >0 (7.26)

cosh(x/a)?’

shown in Figure 7.2 for two values of A and «. The exact eigenvalues are given by [151]

1 2 no[1
E=—-4A(=vV1i+ul—eou) , u=——. (7.27)
2 2V 2mA

In this case we choose y = « so that v(g) = —B/cosh(g)?, where B = ma?A/h?, and
E = Ae(B)/B. According to the general equations given above for a parity-invariant potential-
energy function, the perturbation parameter is 8 = 1/+/2B = 2u and perturbation theory yields

2 — ,
E=—A+ A,/E > ej@B) 2. (7.28)
j=0

It is not difficult to verify that the perturbation series (7.28) agrees with the Taylor expansion of
the exact energy about u = 0. Table 7.4 shows perturbation coefficients obtained by means of the
method of Swenson and Danforth.

The function +/1 + z2 exhibits a pair of complex-conjugate square-root branch points at z = =i.
Consequently, the Taylor expansion of the exact energy (7.27) about u = 0 converges for u < 1, and
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Table 7.3 Perturbation Corrections
to the Expectation Values (z) and (z2)
of the Morse Oscillator

Z1,0:0
Z1,1= %EO
21,2:0

5 7
Z1,3= g5 + § e0®
Z1,4=0

3 5
Z15=3e0+ 3 e’

Z2,0=ep

Z2,1=0

Z2.2= é—l— %eo2
22’320

Zaa= Peo+ 5 eo’
Z2,5=0

Table 7.4  Perturbation
Coefficients for the Energies

Supported by the
Potential-Energy Function
A
V —
x) cosh(£)2
=7
e3=0
e4 = —1z5
e5 =0
€ = 153

the perturbation series (7.20) for 8 < 2. Surprisingly, this radius of convergence is large enough for
the calculation of critical constants; that is to say, particular values of 8 such that £ = 0. It follows
from the exact expression for the energy (7.27) that the critical constants are given by

B 1
B T 7.29
=5 +1n2-1" (7.29)

© 2001 by CRC PressLLC



144 POLYNOMIAL APPROXIMATIONS

0.0 — - P
V&) Y /
05 | . k /
-1.0 + ’ v ,’

-1.5 + . \ !

FIGURE 7.2
Potential-energy function V(x) = —A/ cosh(x/a)? for A = 2, « = 1 (continuous line), A = 2,
o = 1/2 (broken line), and A = 3, « = 1 (points).

Since B, < 2 for all v > 1 we can calculate them by means of the perturbation series. However,
taking into account that each root of E(B) = 0 is double, it is advisable to look for a root of
dE/dB = 0 instead.

Table 7.5 shows that a positive root of

N
% 28 ejp! —1] =0, N=2.3,... (7.30)

j=0
converges towards the exact value 81 = 1/+/2 when ¢p = 3/2. This is the most unfavorable case
because B, decreases with v.

The radius of convergence of the deep-well series for the model (7.26) is unusually large. We
have applied the method to a Gaussian well of the form

V(x) =—Aexp (—ax2> , A,a >0, (7.31)

obtaining poorer results for the energies and failing to estimate the critical constants. However, in
principle the deep-well approximation can be improved by a more judicious choice of the arbitrary
parameters. We will discuss this point later in this chapter.

7.2.2 Weak Attractive Interactions

The reader may wonder why we obtained critical constants of the model (7.26) withv =1, 2, .. .,
but not with v = 0. The reason is that such a critical constant does not exist because there is a ground
state with negative energy for all values of B > 0. In fact, the Taylor series for ¢(B) about B = 0
clearly shows that the dimensionless ground-state energy approaches zero from below as B tends to
zero:

€(B) = —2B? + 8B% —40B* +224B° + ... . (7.32)
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Table 7.5 Critical
Constant 81 Obtained
from the Perturbation
Series for the
Hyperbolic Well

N B

0.7150377815
0.7150377815
0.7064548587
0.7064548587
0.7071722752
0.7071722752
0.7070998079
9 0.7070998079
10 0.7071075521
11 0.7071075521
12 0.7071066940
13 0.7071066940
14 0.7071067912
15 0.7071067912
16 0.7071067800
17 0.7071067800
18 0.7071067813
19 0.7071067813
20 0.7071067812

Exact 0.70710678120

CoO~NOO O WN

145

It is not possible to obtain this expansion by means of a polynomial approximation, and we have
to resort to a different form of perturbation theory that we show in what follows for the sake of

completeness.

It is our purpose to outline a method that produces perturbation expansions for weak attractive

interactions. Consider the dimensionless Schrddinger equation

D" (q) + 2D (q) = 20v(q)P(q) -

It has been proved that if
o
| (1+a?)@idg <.
—00

then there is a bound state for all small positive 2 if and only if

foo v(g)dg <0.

Moreover, if

/ exp(alglv(g)ldg < oo

—00

for some « > 0 then the energy (1) is analytic at A = 0 [152].
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Taking into account the asymptotic behavior of the square-integrable eigenfunctions

, k=+/—2¢ (7.37)

Crexp(kq), q— —oo

®(@) = { Crexp(—kq), g — o0

we conclude that

lim @'(q)=0 (7.38)

lg|—o00

is the appropriate boundary condition whene = 0. Sincee — 0~ when A — 07 the general solution
of the Schrédinger equation in this limit is ®g(g) = coo + co1g Which satisfies equation (7.38)
provided that co1 = 0. Without loss of generality we choose cgp = 1.

In order to obtain an appropriate expression for the solution of the Schrddinger equation we
consider the general integration formulas developed in Appendix B. Viewing equation (7.33) as an
ordinary differential equation with an inhomogeneous term f(g) = 2 v(q)®(g) we have

®(q) = c1exp(—kq) + c2exp(kq)
A1 N
+7 [ewlia-a) -0k -)lvie) o @) da' . (139
qi

where g; is anarbitrary coordinate point. When g — —oo we require that the coefficient of exp(—k¢q)
vanishes, and obtain

1= %/‘7 exp (kq')v(¢') @ (¢') dq’; (7.40)
q

i

analogously, when g — oo we have

o= 2 [~ exp (k) o () 94 741
q

i

Substituting equations (7.40) and (7.41) into (7.39) and rearranging the result we finally obtain
_ A o / / / /
<I>(q)_—z exp(—k|q—q Dv(q)cb(q) dq' . (7.42)
—0o0
In particular, when g = 0 we have an appropriate expression for the energy:
k o0
RIE / exp (—k |¢']) v (¢') @ (¢') dq - (7.43)
—0o0

We easily obtain the perturbation series for the eigenfunction and energy from equations (7.42)
and (7.43), respectively. We solve equation (7.42) iteratively:

)\' o0
D(q) = _E/ exp(—k|qg—q'|)v(q) ®j-1(q") dq’ . (7.44)

where j = 1,2,... and ®g(g) = 1 which is an appropriate starting point for sufficiently small A.
At each iteration step we expand

J
Di(g) = Y D@ON -, (7.45)
i=0
j .
kK = Zki)hl‘i‘"" (7.46)
i=1
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where we explicitly indicate those perturbation coefficients calculated previously. Notice that equa-
tion (7.46) takes into account that k = 0 when A = 0. We then substitute these series into equa-
tion (7.43), expand both sides to order j, and solve for the next coefficient k; 1.

For example, substituting ®(g) = ®o(g) into equation (7.43) and expanding both sides to A° we
obtain

oo
ki = —f v (q') dq’ . (7.47)
—00
The first iteration of equation (7.42) yields
)\‘ o / / /
P1(q) = —%/ exp (—k |g —¢'|) v (¢') dg
—0o0
o I / I k2
= 1+A/ lg —q'|v(g)dg — = |+ . (7.48)
oo k1
From the expansions of the left- and right-hand sides of equation (7.43) to order A, respectively,
k oo
SO0 = ki+kik / la'[v(q) dq’
—0o0
o0
- / exp (—k|q’|) v (¢') @1 (¢') dg’ + - (7.49)
—0oQ

o
=tk [ alo(@) dg
o0

0 oo
— ko) — Af / |q — q’| v(g)v (q’) dgdq’ (7.50)
—0Q —0Q0
we conclude that
o0 o0
ko = —/ / lg — 4’| vig)v(q') dgdq’ . (7.51)
—00 J—00

We obtain contributions of higher order exactly in the same way. However, we leave the discussion
at this point because the procedure soon becomes tedious. The perturbation expansion for weakly
attractive potentials has received some attention [152]-[155] and a few more energy terms are already
available [154].

We easily derive weak- and strong-coupling expansions for the Gaussian well v(¢g) = — exp(—g?):

e(\) = -—mA?48.8857658741% + .-, (7.52)
V2. 3 V2 7

A = —A _— = P .
) T2 716 meyn 20dmn
respectively, by means of the method just described and the deep-well approach given earlier. We
have obtained analytical and numerical expressions of k by means of Maple, but we only show the

latter here.

(7.53)

7.3 Central-Field Models

In what follows we consider a particle of mass m under the effect of a spherically symmetric
potential V (r). Arguing as in Section 3.3.2 we first separate the Schrédinger equation in spherical
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coordinates, then define dimensionless coordinate ¢ = r/y, potential-energy function v(g) =
my?V (yq)/h?, and energy ¢ = my2E/h? in the usual way, and finally make the radial part look
like a one-dimensional model:

. . 1 d? I1+1)
HP(q) =€P(q), H = “2d4 +u(q), u(q) = 22

+ v(g) (7.54)

inorder to apply the method of the preceding section. Asusual,! = 0, 1, ... istheangular momentum
quantum number. In order to apply the polynomial approximation we expand the effective potential-
energy function u(g) about a coordinate point go:

u(g) =Y uj(q—qo)’ (7.55)
j=0

The variable domain 0 < ¢ < oo and the boundary condition at origin ®(0) = 0 do not pose a
problem for the application of the method developed for one-dimensional models because the change
of variable z = (g — go)/B maps ¢ = 0 onto zg = —qo/B which tends to —oo as 8 — 0. In this
case it is convenient to select the perturbation parameter A = B/qo, where gg is the minimum of
u(g) and, thereby, a root of

gV’ (qo) = 1+ 1) . (7.56)

Notice that a perturbation expansion about A = 0 is consistent with the preceding discussion on
the left boundary condition, and that we can choose B = 1/(2u)'/4 as in the nonsymmetric one-
dimensional model.

The operator / is given by equation (7.7) except that

J
Uj+t2q
by =520 (7.57)
and the series for the eigenvalues of # read
1 & :
€ = Up =+ ﬁ ZeszZJ . (758)
j=0

When ¢ is the minimum of u(g) as in equation (7.56), the resulting polynomial approximation
proves suitable for the treatment of Lennard—Jones potentials by means of perturbation theory [156].
The calculation of analytical perturbation coefficients e¢; through the methods discussed in Chap-
ters 2 and 3 is straightforward, specially if one resorts to Maple. The first three nonzero corrections
are exactly those in Table 7.1 provided that the potential coefficients 5; are given by equation (7.57).
We have already seen that the application of approximate methods to exactly solvable models is
most instructive. Here we choose the Kratzer oscillator [157, 158]

C C
V)= ——+ -2, C1.C2 > 0, (7.59)
r r

which resembles the potential-energy function of a diatomic molecule. Choosing the length unit
y = h?/(mC1), and defining B = mC,/ h?, we obtain

1 Il+1)+2B
+—

u(q) = =, 24 (7.60)
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One can solve the Schrodinger equation for the Kratzer oscillator in many different ways [157, 158].
To facilitate the discussion below we define an effective real quantum number L satisfying L(L+1) =
I(I +1) + 2B, so that we can resort to the solutions of the hydrogen atom. It is well known that
every eigenfunction behaves as ®(g) ~ ¢+ sufficiently close to origin. Because L + 1 has to be
positive for all / > 0, the only acceptable root is

L:—%+,/(l+1/2)2+23. (7.61)

The eigenvalues of the Kratzer oscillator are given by [157, 158]

1
= 7.62
¢ 2+ L +1)2 (7.62)
where v =0, 1, ... is the radial quantum number.
The parameters of the deep-well approximation for this simple model are go = L(L+1), 8 = qg/4,
and & = ¢, Y 4; therefore, the accuracy of the series is expected to increase with L. Taking into
account that ug = —1/(2¢o) we obtain

A > .
e=-% +28) Tepin? (7.63)
j=0

where the coefficients e, are given in Table 7.1 with

_CDIG+D

bj >

(7.64)
Figure 7.3 shows the effective potential-energy function u(q) for three values of L(L + 1). Notice
that the well becomes shallower as L increases so that the name “deep-well approximation™ is not
the most appropriate in this case.

FIGURE 7.3
Effective potential-energy function u(g) = —1/g+L(L+1)/(2¢?) for L(L+1) = 1 (continuous
line), 2 (broken line), and 3 (points).
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In order to obtain the perturbation expansion (7.63) from the exact result (7.62) we define the
parameter £ = 1/(L + 1) andsolve L(L +1) =124 = (671 — )¢~ for &:

fo 2 (7.65)
VAR '
Substituting this result into
%-2
= 7.66
2(1 + vE)? (7.66)

we obtain € as a function of A. Its Taylor expansion about A = 0 gives us exactly the perturbation
series (7.63) interms of eg = v + 1/2.

This example allows us to study the convergence properties of the deep-well approximation. The
exact dimensionless energy e exhibits a pole at Ly, = —v — 1 [see equation (7.66)], and square-
root branch points at A2 = +2i [see equation (7.65)]; therefore, we expect the perturbation series
converge for all A2 < 1//v(v + 1) if v > 0, and for all A2 < 2 when v = 0. It is clear that the
radius of convergence decreases with the radial (vibrational) quantum number v. Fortunately, there is
considerable room for improving the convergence properties of the perturbation series. For example,
if we choose & to be the perturbation parameter, then the radius of convergence of the perturbation
seriesis 1/v > 1//v(v +1) if v > 0, and we obtain the exact result when v = 0. Moreover, if
C2 = 0 in the Kratzer oscillator (7.59), then the expressions given above are unsuitable to treat s
states because L = [ = 0 and the perturbation parameter A is undefined. In such a case the variable
& is certainly more convenient. Even better choices are possible as discussed later in this chapter.

7.4 Vibration-Rotational Spectra of Diatomic Molecules

The theoretical study of molecular properties is commonly based on the Born—-Oppenheimer
approximation that separates the motions of electrons and nuclei because of their considerably
different masses [159]. Provided that such an approach is valid, one can model the vibration-
rotational spectrum of a diatomic molecule by means of a Schrédinger equation for the motion of
the nuclei under a potential V (R), where R is the internuclear distance. This equation is separable
in spherical coordinates, and in the case of an electronic state 1 =+ we are left with a radial equation
of the form [160]

m? d®>  R2J(J+1)
2m d R? 2mR?
where m is the reduced mass of the nuclei, J = 0, 1, ... is the rotational quantum number, and ® (R)
satisfies the boundary condition ® (0) = 0. We assume that V (R) has a minimum at the equilibrium

internuclear distance R = R., and supports bound states.

One of the aims of molecular spectroscopy is to determine the form of V(R) as accurately as
possible from the vibration-rotational spectrum. To this end one needs a suitable expression for the
bound-state energies in terms of appropriate potential parameters. If we applied the perturbation
method of the preceding section, then the value of V(R) and its derivatives at a coordinate point
R that depends on the rotational quantum number would appear in the Hamiltonian operator h.
Because spectroscopists are more interested in what they call molecular parameters at equilibrium
(that is to say, values of V(R) and its derivatives at R.), we then resort to a different approach in
what follows.

Hd =Ed, H = + V(R), (7.67)
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The molecular parameters at equilibrium appear naturally in the perturbation method if we expand
the potential-energy function in a Taylor series about R,:

V(R) = Z Vi(R— R, . (7.68)
j=0

In order to facilitate the calculation we define dimensionless coordinate ¢ = (R — R.)/(AR,),
potential-energy function v(g) = mR?A%V (R)/h?, and energy € = m R?)2E /i, where

s\
A= —— 7.69
2mR§V2 ( )

is a dimensionless parameter. We can rewrite A as

s = \/? , (7.70)

where the rotational constant B and the oscillator frequency w are, respectively, given by

2 [2v,
B=—— 0o=,/—. 7.71
2mR? ¢ m (7.71)

For most molecules 1 is sufficiently small to be chosen as perturbation parameter.
If we substitute the definitions above into the Taylor expansion of the dimensionless potential-
energy function we finally obtain

v(g) = vo + qu + Zajqu/+2, v = 20 g = Hix2Te (7.72)

= ,aj =
: ho’ 7 2V,
j=1

We apply perturbation theory to the eigenvalue equation 1® = ¢® for the dimensionless Hamiltonian
operator

1o 1d> 1, &
h:%<H—V0>—JB:—§W+Eq + Wpi@). (7.73)
j=1
where
JUJ+1x2 JU+1B
Jp = 5 === (7.74)
and
Pi(@) = (=1 (j + DJpq’ +a;q’*?. (7.75)

Thefirstterm in the right-hand side of this equation comes from the Taylor expansion of the centrifugal
part of the radial Schrédinger equation (7.67). This example shows a different way of grouping the
anharmonic terms into perturbation contributions. We mentioned earlier that this practice is an
additional degree of freedom in the construction of perturbation series by means of polynomial
approximations, and we will come back to it later in this chapter.
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Straightforward application of perturbation theory to 1d = e® gives us the perturbation series
e=-eg+ e+, whereeg = v+1/2,v =0,1,..., and e2j+1 = 0, as argued before. The
perturbation series for the dimensionless energy € = E/(hiw) reads

o0
e=w+Jp+ Y er? . (7.76)
j=0

Table 7.6 shows e; and e4 obtained by means of the method of Swenson and Danforth discussed in
Section 3.3. We do not provide more corrections because their length increases considerably with
the perturbation order and because one easily obtains as many of them as desired by means of a set of
simple Maple procedures similar to those shown in the program section for anharmonic oscillators.
Many energy coefficients were obtained before in order to study molecular spectra [160].

Table 7.6 Perturbation Corrections to the Vibration-Rotational Energies of Diatomic
Molecules

—ZJB + (6ay +3) eoJB-I-(——al + 5 az) eoz—%a12+%a2

es = (12+8ay) JB3+( 54a1— — 54.g,2 +24a2) eo J32
+[(90a13—9a2+15a3+30a1—78a1a2+45a12+%) eoz—l—%—%azﬁ-%alz

+4a + a1 + a; — Zz‘galaz]JB

35 225 705 17
+<—7ala3+—01202—ﬁal4—702 +5 614) eo®
25 95 459 67 2 _ 1155
+<8a4— araz + T a? ap — §g ar® — a14) e

The first three terms vo + Jp + eg in equation (7.76) give the electronic, rotational, and vibrational
energies (in units of Aw) according to the simplest model of a rigid rotor and a harmonic oscillator.
The remaining polynomial function of eg and Jp accounts for anharmonic effects, vibration-rotation
coupling, and centrifugal stretching [160].

In order to compare present perturbation expansion with those in the preceding section we consider
the same exactly solvable model studied earlier: the Kratzer oscillator, which for convenience we
write as

R. R?
V(R)=D (—2?‘ + ﬁ> . (7.77)
The exact dimensionless energies are
r2C?

__ 7.7
¢ 20+ L +1)2° (7.78)

where C = 2mR?D/h? and

=,/(J+1/2%+C- % . (7.79)

The reader may easily verify that the perturbation parameter is » = C~1/4,
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There are two types of singular points in the complex C plane: a pole of order two at Cs1 =
v(v+1) — J(J + 1) and a branch pointat C; 2 = —(J + 1/2)2. Comparing |Cs.1] and |Cy 2| we
conclude that the radius of convergence of the A%-power seriesis 1/(J+1/2) ifv < v/2(J+1/2)—1/2
and 1/4/v(v + 1) — J(J + 1) otherwise.

Taking into account that vg = —1/(212) we obtain the perturbation series

1 > y
E:—ﬁ-I-JB-l-ZBZj)LJ. (780)

j=0

One easily derives the coefficients e; of the Kratzer oscillator by substitution of the appropriate
potential parameters a; into the general expressions in Table 7.6 (Maple facilitates it). In order to
test the results of perturbation theory we expand the exact expression

1
2e=— (7.81)

2
2 (eokz + V1427502 + x4/4)

in a Taylor series about A = 0 and compare the coefficients.

7.5 Large-N Expansion

The most popular polynomial approximation is the large- N expansion which consists of expanding
the eigenvalues of the Schrédinger equation for N dimensions in powers of 1/N (or arelated variable)
and then substituting the required value of N [148]. In order to illustrate this approach we consider
the Schrddinger equation for a central-field model which is separable in hyperspherical coordinates.
After removal of the N — 1 angular variables and appropriate transformation of the resulting radial
equation we are left with a dimensionless eigenvalue problem of the form H® = E®, where [148]

. 1 d? (k —1)(k—3)
k=N+2l,andl =0,1,... isthe angular momentum quantum number. The boundary condition

at origin is ®(0) = 0.
Following the polynomial approximation discussed above we define a new variable ¢ = (r —
ro)/(Bro), where g and rg are to be determined, and consider

& k=Dk-3)p

B2r2H = _} wW=w=9pF"
0 2 dg? 8(1 + Bg)?

+ BV @) . (7.83)

We write the Taylor expansion of the potential-energy function as follows
o
BHEV( = B Vi(r—ro)
j=0

oo
BriVo + B3rgVag + BUrgVeg® + ) Vira (o) g/t (7.84)
j=1
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If k is sufficiently large the terms proportional to k2 dominate in the centrifugal term. Therefore we
write its Taylor expansion as follows:

(k — 1)k —3) (k= D)k —3)p% & . ,
ﬁ%——gy—— = ———;—J32¥4wu+nwmf
=

_ g2 1223 2442 }2 0
(R V0 Skg S

3—4kp? S
+—( )b Y DG+ DBl (7.85)

j=1

We choose rg in such a way that the coefficient of ¢ in the potential plus centrifugal term is zero to
the leading term in k:

48y
22 = (7.86)
It gives the location of the minimum of the effective potential-energy function
k2
Verr(r) =V(r) + 82" (7.87)

From the coefficient of the quadratic term to the leading order in k we define an oscillator frequency

w as
3k? 3 4\ o
B (—8 + 0V2) = <8+ 0k2> - (7.88)

provided that 8 = 1/+vk.
In this way we obtain the following operator

(k — 1)(k — 3)B?

o= r2p2H - o —r5B*Vo
1 4 y - 42 N D 42
= _EWJF_Q +,z_;(“M’ +ij’)/31+,2_:1ch’/—‘5’ . (7.89)
where
(-=1)/ 2
aj = —(]—}-3)—}- ]J; é+4,
_ (— b/ _ i
bj = G+, ¢; = —(—1) (G+1. (7.90)

Notice that we have substituted 1/«/%for B only in some places, leaving 8 unchanged in others where
itwill play the role of a perturbation parameter. (We finally set 8 = 1/+/k in the resulting perturbation
series.) In this way the Hamiltonian operator (7.89) exactly agrees with the one commonly used by
other authors [148].

If we apply perturbation theory to the eigenvalue equation HP = £ with perturbation parameter
B, we obtain a perturbation series of the form

E=)"EpY. &= +1/2w (7.91)
j=0
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because the coefficients of odd order vanish as argued earlier in this book. Finally, the energy reads

k-Dk-3 1
E=Vy+ 82 zﬁz 252] B (7.92)

A simple scaling argument shows that the actual perturbation parameter is not 8 but A = B/ /.
In fact, the change of variable ¢ = z/./w enables us to rewrite the Hamiltonian operator as H = wh,
where

o

1d bj o
2d2+ = +ZM< ZALEE wz1>+2cjxf+2zf. (7.93)

j=1

3‘)

If we apply perturbation theory to the eigenvalue equation 2® = ed we obtain the series
e .
e=Y er? (7.94)
in terms of which the energy reads

(k — 1)k — 3) 1 & 2
E=Vo+ + erir% . 7.95
ot e 059

Table 7.7 shows the coefficients &, and &4 in terms of the potential parameters a;, b;, and c;.
Coefficients of higher order are increasingly more complicated to be shown there, but one easily
obtains as many of them as desired by means of a simple Maple program similar to those described
earlier. Here, we have chosen the method of Swenson and Danforth discussed in Section 3.3.
The perturbation corrections in Table 7.7 account for most of the results obtained earlier by other
authors [148].

Table 7.7 General Energy Coefficients of the Large-N Expansion

=302+ artbr e 4 —3ay by cg— 15 a1?+3 az eo? 15 a1 eg?
—b1 c1+co €o+§ by
g4 = ———F5—— + (- albs —3b1bzey — —b1a3+b1 by + 2561460 - -bz €o

@
+ b4eo ——a2b2—3a101e0)/a) +(— a1b3e0 +9a1€0b2b1—|—6b1 az eo

b1a3eo —3a2b2eo —%aleoag—i— a4eo + alazbl—albl + a bg
16 az? eg)/® + (—— a1 b1% eq — 32—5 aiazeg® + % az a1? eg + 39 ay az eg? by

+15 b7 602 a12 — ﬂ a22 603 — é a13 bl)/a)8

225 1155
—45a13 by e +— ai? ap 603767 egar? 705 ar* eg?
+ 10 16 o2

In order to understand the relevant features of the large-N expansion we apply it to an exactly
solvable model as we did before with other approximations. In this case we choose the hydrogen
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atom in N dimensions. When V(r) = —1/r we have V; = (=1/ro)? Y ro = k2/4, and 0 = 1/2.
Therefore, equation (7.92) becomes

oo
E=-2p"-88°+68%+168° ) &;p% . (7.96)

j=0
where & is given in equation (7.91), and & and &, follows from straightforward substitution of the
particular values of the potential coefficients a;, b;, and ¢; into the expressions of Table 7.7. It is

not difficult to verify that the perturbation series (7.96) agrees with the Taylor expansion of the exact
result

L 2 . 2p4
T [2(eg— 1)+ k12 [1+2(eg — 1)B2)2

where eg = 26 = v + 1/2.
It is not difficult to prove that the large-N expansion for the hydrogen atom converges for all

(7.97)

ﬂZ

< 2 1| =>k>|2v—-1]; (7.98)
that is to say, the radius of convergence decreases with the vibrational quantum numberv =0, 1, ...
as in previous examples. The radius of convergence of the large-N expansion for a Kratzer oscillator
(which we can view as a generalization of the Coulomb interaction) was already discussed some
time ago [161].

In order to apply the approach developed in Section 7.3 to the radial equation in N dimensions,
we write r = ro(1 + £¢) and choose rg to be the minimum of U (r) = (k — 1)(k — 3)/(8r%) + V (),
which is given by

oV _ (7.99)
k—1(k—-3) '
If
3k — 1)(k — 3) g7 3 2\ 1/4
f=| T v | = (3vik2ned) (7.100)

then the coefficient of ¢2 equals unity. Notice that the large-N expansion and the deep-well approx-
imation lead to different expressions of both rqg and the perturbation parameter, which agree when
k — oo.

In order to appreciate the difference between both expansions more clearly we apply the deep-
well approximation to the hydrogen atom in N dimensions. A straightforward calculation shows
thatrg = (k —1)(k—3)/4and & = r0_1/4, and it follows from equation (7.98) that the perturbation
series converges for all

2

£2 < <2 (7.101)
VI2v =1[(2v = 1[+ 1)

provided that there is no other singular point. There is, however, another singularity coming from
the transformation between the perturbation parameters:

1 2
— _ = _ 4
k= 3w 1+&44. (7.102)
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Since & = 0 is not a singular point of E as one easily verifies by substituting equation (7.102)
into equation (7.97), then we are left with the branch point 5,;‘ = —4 which tells us that the Taylor
expansion of the square root converges for all £2 < 2. Since this radius of convergence is greater
than the one in equation (7.101), we conclude that both perturbation series converge for the same
values of k (although the rate of convergence may be different).

In order to compare the deep-well approximation and the large-N expansion we apply both to
a quantum-mechanical model with potential-energy function V(r) = r. When N = 3 we have to
solve a radial equation of the form (7.82) with

uey =r+ 4 +21) . (7.103)
2r

Notice that the deep-well approximation does not apply to s states because u(r) has no minimum
when! = 0. On the other hand, the large-N series is based on an expansion about the minimum of the
effective potential-energy function (7.87) which already exists for all values of / because k = 3+ 21.
In order to compare the results of both approaches we choose [ = 1. Figure 7.4 shows u(r) for

three values of I. In the selected case I = 1, u(r) is a single well that supports bound states for all
E > ug =23 42723,
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FIGURE 7.4
Effective potential-energy function u(r) = r 4+ 1(I + 1)/(2r?).

We compare the convergence properties of different perturbation series by means of a logarithmic
error defined as the logarithm of the absolute value of the first term neglected in the partial sum,
which we calculate by means of the method of Swenson and Danforth discussed in Section 3.3.
For concreteness consider the eigenvalue with v = 0. Figure 7.5 shows that neither the deep-well
approximation nor the large- N expansion converge, and that the latter gives better results if we apply
the truncation criterion discussed in Chapter 6. In fact, from a deep-well approximation of order 16
and a large- N expansion of order 34 we obtain the best estimates £ = 2.66782and E = 2.66782947,
respectively, while the exact result provided by the Riccati—Padé method [162] is £ = 2.667829483.

The conclusion just drawn appears to be at variance with earlier calculations on Lennard—Jones
potentials which suggest that at low perturbation orders the deep-well approximation is more accu-
rate even than the shifted large-N expansion (an improved version of the large-N expansion to be
discussed later in this chapter) [156]. In order to investigate whether the relative accuracy of those
approaches is model dependent, we consider the Lennard—Jones interactions in what follows.
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Logarithmic Error

Deep-Well
Approximation

Large-N Expansion

-10

FIGURE 7.5
Logarithmic error for the deep-well approximation and large- N expansion for the bound-state
energy with v = 0 and / = 1 supported by V(r) = r.

A general j — n Lennard-Jones potential-energy function is of the form

=2 o2 (] 00

where j > n, r, is the equilibrium distance, and D > 0 is the well depth. This potential-energy
function may support bound states for —D < E < 0. Notice that the Kratzer oscillator is a particular
case of (7.104) with j = 2and n = 1. The dimensionless energy and potential-energy function read
€ = mr2E/h? and

mr2V (req) n? n Jj
v(g) = —=5 ) = - (—] — —n> , (7.105)
h J—n\q q

respectively, where 72 = mrfD /h2. For comparison purposes, here we choose one of the examples
considered by the authors who proposed the deep-well approximation [156]: j = 12, n = 6, and
n = 50+/2; its shape can be seen in Figure 7.6.

Figure 7.7 shows the rate of convergence of the deep-well approximation and large-N expansion
for several s states which we have purposely chosen because I = 0 is expected to be the most
unfavorable case for both methods. The behavior of the perturbation series agrees with our earlier
investigation on the much simpler Kratzer oscillator: both perturbation series appear to converge
with an almost identical rate for all the states considered, and their convergence rate decreases with
the radial quantum number v. Table 7.8 shows dimensionless energies E/D = €/ for the selected
states. It is worth noticing that the smallest perturbation order P (also given in Table 7.8) at which
the last digit becomes stable is exactly the same for both series, and that the perturbation eigenvalues
agree with the most accurate numerical calculation available [163].

From the results above one may be tempted to conjecture that the deep-well approximation and
the large- N expansion for a given state of a Lennard—Jones model exhibit the same nonzero radius of
convergence which decreases with the radial quantum number v; assumption that already applies to
the particular case of the Kratzer oscillator as shown above. However, the methods for the estimation
of the convergence radius of a power series discussed in Section 6.2.1 fail to predict the location
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FIGURE 7.6
Dimensionless Lennard-Jones potential energy function v(g) = (?/6)(6/9*% — 12/4%) for

n = 50+/2.

Table 7.8 Eigenvalues iz of the Schrodinger Equation with the Dimensionless
n

n” 6 12

Lennard-Jones Potential-Energy Function v(g) = E(T ——hn= 504/2
q q

v=~0 v=5
P Polynomial Large-N P Polynomial Large-N
Approximation  Expansion Approximation Expansion
6 —0.9410460320 —0.9410460320 18  —0.4698229102 —0.4698229102
Exact —0.941046 Exact —0.469823
v =10 v=15
P Polynomial Large-N P Polynomial Large-N
Approximation  Expansion Approximation Expansion
28  —0.1857237018 —0.1857237018 44  —0.04646991136 —0.04646991136
Exact —0.185724 Exact —0.046470

and exponent of the singular points. It may therefore happen that the deep-well and large-N series
for the Lennard-Jones potential just discussed are slowly divergent. A more detailed and rigorous
investigation is necessary in order to draw a convincing conclusion on this point.

7.6 Improved Perturbation Series

It is worth summarizing the most noticeable differences between the deep-well approximation and
the large-N expansion. First, one expands the potential-energy function around different coordinate
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FIGURE 7.7

Logarithmic error for the deep-well approximation (line) and large-N expansion (points) for several s states
supported by the dimensionless Lennard-Jones potential of Figure 7.6.
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7.6. IMPROVED PERTURBATION SERIES 161

points: the minimum of u(r) (equation (7.82)) in the deep-well approximation, and the minimum of
Verr (r) (equation (7.87)) in the large-N expansion. For this reason it is possible to apply the latter
and not the former when u(r) does not exhibit a minimum. Second, although in both approaches the
reference model or unperturbed Hamiltonian is a harmonic oscillator, the corresponding oscillator
frequencies are different. Third, the grouping of the perturbation terms that is noticeably different
comes from the use of different perturbation variables.

All in all, the difference between the deep-well approximation and the large-N expansion comes
from the three degrees of freedom available for the construction of perturbation series by means of
a polynomial approximation. In the most general case we may try to obtain the eigenvalues of a
guantum-mechanical problem by application of perturbation theory to a Hamiltonian operator of the
form

TN Py 7.106
H——EWWL?CI +jzok pi(q), (7.106)
where po(q), p1(q), - .. are polynomial functions of ¢ that one conveniently chooses in order to fit
the potential-energy function and centrifugal term for a given value of A.

Those appear to be the main degrees of freedom at our disposal if we restrict to the harmonic
oscillator as the unperturbed model. However, the lack of clear guidelines for setting them con-
veniently makes the task a complicated and tedious process of trial and error. For this reason the
methods commonly used to improve the convergence properties of the polynomial approximations
try to reduce the degrees of freedom to one adjustable parameter.

In what follows we briefly consider straightforward ways of improving the convergence properties
of the polynomial approximation. We simply give the main ideas and show some results, but it is

not our purpose to provide rigorous proofs of convergence which in most cases are not available.

7.6.1 Shifted Large-N Expansion

In the preceding section we obtained the radius of convergence of the large-N expansion for
the hydrogen atom in N spatial dimensions. It follows from equation (7.97) that if we expand the
energy in powers of 1/[2(ep — 1) + k] instead of in powers of 1/k we obtain the exact result with
just one term and all the corrections are zero. This is the basis for the celebrated shifted large-N
expansion [148, 164] that follows from the change of expansion parameter from g = 1/v/k to
B = 1/\/? k = k — a, where a is a real number. If in the case of the hydrogen atom we choose
a=—2(e—1),then E = —234 and all the remaining coefficients of the Ez-power series vanish.
Since the actual variable of the large-N expansion for the energy is 2, we conclude that the net
effect of shifting & is the Euler transformation

—2

2 B =2 B?
B = —2' P = 2
1+ap 1-ap
In order to apply the shifted large-N expansion to a general central-field model we rewrite the
radial Hamiltonian operator (7.82) as

. 1 d? k+a—-1k+a-23)
H:—zﬁ—l—u(r),u(r): 8r2

(7.107)

+ V), (7.108)

and expand u(r) in powers of g = l/\/? exactly as we did before for the large-N expansion. The
resulting effective potential
72
Veff(r) = V(r) + W (7109)
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exhibits a minimum at rg given by

4r3v.
%: , (7.110)
and the Hamiltonian operator reads
32 2,2
v am2n (k=1 -3 2z2,  1d 2
[ L A ‘zd—z+z
o) ' ' ) 00 e
+ > @i +bjg B+ ciqlBT (7.111)
Jj=1 j=1
where
3 Vo
o’ = (Z +2r6‘E—2) : (7.112)
and
aj = Q( +3) 4 L2
k
—Dia—-2)(+1 —1Da—-3)(-1I(+1
b — ( )(a4)(J+ )’C]:(a )(a ;( VG+D (7113)

Notice that when a = 0 these equations reduce to those above for the large-N expansion.
Straightforward application of perturbation theory to HD = £ gives us a series similar to

equation (7.91) with 8 instead of B. The coefficients &, ; are functions of the potential parameters

aj, bj, and c; identical to those for the case a = 0, the first of which are given in Table 7.7. The

optimum value of a is customarily chosen in such a way that the coefficient of 3_2 that appears
when we rewrite the expansion of the energy

B k+(2a—4>k+(a—1><a—3> 1 S, 22
E=Vy+ 872 = Zez iB (7.114)
j=0
in terms of
1 2a — 4+ 8& —~D(@—23)+85 &
E=Vo+ + & G )(“2) 2 ;‘ﬂ2+ (7.115)

826" 828 85 o
vanishes. There is a good reason for this prescription: if a is given by
a=2-45=2-2(2v+ 1w, (7.116)

then the shifted large-N expansion gives the exact energies of the hydrogen atom and harmonic
oscillator in N dimensions [148, 164].

In order to realize how much the shifting just mentioned improves the convergence properties
of the perturbation series we consider a case in which the large-N expansion fails badly. For this
purpose it is sufficient to choose the state / = 0, v = 5 supported by the potential-energy function
V (r) = r. Figure 7.8 shows the logarithmic error defined above for the large-N expansion and for
its shifted version. It is evident that the former series diverges whereas the latter appears to converge.
Even if the shifted large- N expansion proved to be divergent, we would still obtain reasonable results
from it by means of the truncation criterion discussed in Chapter 6.

© 2001 by CRC PressLLC



7.6. IMPROVED PERTURBATION SERIES 163

14

Large-N Expansion /

/

Logarithmic Error
~

Shifted Large-N Expansion

6 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ e

0 4 8§ 12 16 20 24 28 32 36 40 44 48 52 56P 60

FIGURE 7.8
Logarithmic error for the large-N and shifted large-N perturbation series for the state / = 0,
v = 5supported by V(r) =r.

7.6.2 Improved Shifted Large-N Expansion

The shift given by equation (7.116) has become quite popular and has been routinely used to
obtain satisfactory results for many quantum-mechanical models [148]. However it is suitable only
for perturbation approximations of low order. When one takes into account perturbation terms of
sufficiently large order, then the shift given by equation (7.116) leads to divergent series, and a
different criterion for selecting the optimum shift is necessary. A successful prescription is to set a
so that £p = 0, and calculate the eigenvalue by means of a partial sum of order P [165]-[167]. This
choice of a, which is inspired in the truncation criterion discussed in Chapter 6, corrects most of the
problems encountered in earlier applications of the shifted large-N expansion [148].

In order to compare results for different values of the free parameter a, we consider the ground-
state energy of the Schrédinger equation with the potential-energy function V (r) = 27/2r, already
chosen in earlier discussions of the shifted large-N expansion [165]. Figure 7.9 shows results for
the shifted large-N expansion and for its improved version with a given by £19 = 0, £40 = 0, and
Eeo = 0. The peaks at P = 10, 40, and 60 are finite (instead of —oo) simply because the logarithm
of the perturbation terms has been purposefully calculated with low numerical precision. Notice that
the shifted large- N expansion is the most accurate at sufficiently low perturbation order. However,
as we add more perturbation terms the value of a given by £p = 0 is preferable.

In Table 7.9 we give the best estimate of the eigenvalue obtained from a partial sum of order M
determined according to the truncation criterion proposed in Chapter 6. In the case of the improved
shifted large-N expansion we omit the term of order P forced to be zero by the choice of a. Notice
that the greater the value of P, the more negative the value of a, and the greater the order M of
the optimum partial sum. When there are more than one real root of £p = 0 we arbitrarily choose
the smallest (most negative) one. By means of the smallest root of £gg = 0 and the partial sum of
order 58 we obtain the ground-state energy with ten-digit accuracy (with respect to the exact result
obtained by means of the powerful Riccati—-Padé method [162]).

It is worth noticing that the shifted large-N expansion and its variants are based on just one
adjustable parameter that clearly modifies the expansion point g and the frequency w of the harmonic
oscillator. Allowing more degrees of freedom will certainly result in perturbation series with better
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FIGURE 7.9
Logarithmic error for the perturbation series for the ground state of V (r) = 27/?r.

Table 7.9 Ground-State Energy Supported by the
Potential-Energy Function V (r) = 2%y
P M a E

Shifted Large-N
Expansion 20 0.267949192 9.3526

Improved Shifted

Large-N Expansion 10 28 —1.656887641 9.3524301
20 26 —2.212808322 9.3524295
30 32 —2.618371270 9.3524297
40 42 —2.922963203 9.35242966
50 44 —3.211017542 9.35242965
60 58 —4.848680852 9.352429642

Exact 9.352429641839

convergence properties but will at the same time make the calculation more complicated, especially
if we lack sound criteria for setting the optimum values of the adjustable parameters.

7.7 Born-Oppenheimer Perturbation Theory

The starting point of a typical quantum-mechanical treatment of a molecule is the Born-
Oppenheimer approximation that consists of the separation of the electronic and nuclear degrees
of freedom. In this way one simplifies the problem considerably and makes it computationally more
tractable. The first such approach was based on perturbation theory [168] but later a more convenient
strategy was proposed [169] which was rapidly adopted by most researchers, becoming an important
part of the routine theoretical treatment of molecules [53, 159].
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The perturbation approach to the separation of electronic and nuclear degrees of freedom resembles
the polynomial approximation discussed in this chapter. For this reason we briefly discuss it in the
present section under the name of Born—Oppenheimer perturbation theory. The original perturbation
method is rather cumbersome making it considerably difficult for the derivation of moderately large
perturbation orders [168]. This fact motivated the development of a more systematic procedure to
facilitate the calculation [170].

The application of the Born—-Oppenheimer perturbation method to a system composed of an arbi-
trary number of light and heavy particles is straightforward [170]. However, in order to concentrate
on the main ideas and avoid the diversion which may possibly arise from the notation required for
the description of many degrees of freedom, we consider here a system of only two coordinates:

R hz 82 hZ 32
H=—— Vix, X 7.117
2m 9x2  2M X2 +VEX). ( )
This model describes the one-dimensional motion of a light particle of mass m and position x and a
heavy particle of mass M >> m and position X.
In the first step we derive a dimensionless Hamiltonian operator # = mL2H /h?, where L is
a length unit. Defining dimensionless coordinates ¢ = x/L and Q = X/L, and a dimensionless

potential-energy function v(g, Q) = mL?V (Lg, L Q)/h?, we obtain

. 1 92 m 92
- . 7.118
H=—=337"miage V@9 (7.118)

The dimensionless Schrodinger equation reads HY = EW, where & = mL2E/h? and E is an
eigenvalue of H. In order to apply the polynomial approximation to the slow motion of the heavy
particle define

Q=0o0+8y, (7.119)

where y is a new coordinate and the parameters Qg and 8 of the transformation will be determined
later on.
Expanding the potential-energy function about Qg

oo o
vig, @) =) v(@(Q— Qo) =) (@) By (7.120)
Jj=0 Jj=0
the dimensionless Hamiltonian operator becomes

N 1 92 m 92
H=_= 4+ v + + .. 7.121
2092 2MPB? 3y? vo + 1y + 2B’y ( )

In order to simplify the notation we define the kinetic energy operators

. 192 . 1 92
T‘f—_i_z Ty=—>—. (7.122)

The kinetic energy and the harmonic term for the slow motion will appear at the same perturbation
order if m/(MB?) = B that leads to

B = (m/M)M*. (7.123)
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In order to apply perturbation theory we expand the dimensionless Hamiltonian operator as

o0
H=> H;p . (7.124)
j=0
where
Ho = fq +vo, Hi=u1y, Ho= fy + v2y?,

Straightforward application of perturbation theory to the Schrédinger equation with this expansion
of the Hamiltonian operator proves to be rather lengthy requiring great ingenuity to figure out how to
combine the perturbation equations to obtain suitable results [168]. For this reason, in what follows
we develop more convenient equations for the application of perturbation theory.

We first define the Hamiltonian operator

Hy =T, +v(g, Q) (7.126)

that depends on the coordinate Q parametrically. Strictly speaking equation (7.126) represents a
family of Hamiltonian operators, one for each value of Q. In the Born-Oppenheimer approximation
the eigenvalues of 7, are effective potential-energy functions for the slow motion

H, (g, Q) = U(Q)P(q, Q) . (7.127)

For the sake of simplicity we assume that the chosen eigenvalue U (Q) is nondegenerate and normalize
@ (g, Q) to unity for all values of Q:

(D), = f ®(g, 0)?dg =1, (7.128)

where the subscript in the ket |), indicates integration over g. Notice that without loss of generality
we choose ® (g, Q) to be real.
We define a function of the coordinate for the slow motion

F(Q) = (@[¥)4 (7.129)
and a correlation function
F(g, Q) =V¥(q, Q) — f(Q)P(q, Q) (7.130)
which is orthogonal to ® with respect to g:
(®|F), =0. (7.131)

This correlation function vanishes identically if the state function W (g, Q) is exactly factorizable as
f(Q)P(g, Q), which, in general, does not occur. The fungtion F(q, Q) is therefore a measure of
such a factorization and satisfies the differential equation (% — E)F = f(£ — U)® — g2 T,of. We

rewrite 7y ®f = &7, f — [®, T,,1f, where [®, T, ] is a formal notation for the commutator

. PO 1/9%d _0d 9
(.7 =0y~ o =2 (25 +25- ). (7.132)
2\ 9y2 dy dy
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The differential equation for F (g, Q) becomes
(ﬂ—s)F - @(E—U—ﬁzfy)f+ﬂ2 [CD, fy]f. (7.133)
Applying the bra, < @] to equation (7.133) from the left, and taking into account equations (7.127),

(7.128), and (7.131) we conclude that (£ — U — B2T, + B2(®|[®, Ty1),) f = BAPITy|F),.
Differentiating equation (7.128) with respect to y once and twice we obtain

D 92D ad, 9
dl—) =0, (&|—) =—(—|—) . (7.134)
dy dy? dy ' dy
q q q

respectively. Therefore, the differential equation for f(Q) reads

(1, - €) 1@ = -R), (7.135)
where
Hy = BTy + U(Q) + W(Q) (7.136)
and
_ BElod 90 o 1] 3P IF
W(Q) = ﬂg §>q >0,R(Q) = p <E<W|F>q +<§ §>¢,> : (7.137)

By means of equation (7.135) we can rewrite equation (7.133) as follows:
(7%—5)F= OWSf + R + p2 [@, fy]f. (7.138)

In order to apply perturbation theory to the equations above we need the following expansions:

Hy =D Hebl Hoj=H; — 11852, (7.139)
j=0
(q.0) =Y ®;(@)p'y . (7.140)
j=0
UQ) =Yy U;plyl, (7.141)
j=0
W(Q) =) W;p/t2y/=%, (7.142)
j=0
R(Q) =) Rj(»p*, (7.143)
j=0
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o
F(g,Q) =) Filg. ', (7.144)
Jj=0
oo
Hy =) Hyb' Hyj=Tysj+ Uy + Wiy~ (7.145)

j=0

Notice that d®/dy and 92d/dy? are of order B and B2, respectively. Therefore, Wo = Wy =
Ro = 0, so that W and R are at least of order 8% and 83, respectively. Because the right-hand side
of equation (7.138) is at least of order 82 we can choose Fo = F1 = F> = 0. It therefore follows
from equation (7.137) that R1 = R, = R3 =0, and

F:
Ry = <q>1|3—3> (7.146)
q

may be the first nonzero coefficient of the expansion (7.143).
Consider the perturbation coefficients of equation (7.135):

k
(ﬁy,j - 5;) Jimj = —Ri-2, (7.147)
=0

J

where R;_» = 0if k < 6. The solution of the perturbation equation of order zero (Ug — &) fo =0
is

Up=& - (7.148)
From the equation of first order (U1y — &1) fo = 0 we obtain
Up=6=0, (7.149)

which states that Qg is a stationary point of U (Q):

U
3020 = 0. (7.150)

The equation of second order (ﬁy,g —&7) fo = QOisthe eigenvalue equation for the harmonic oscillator
Hyo = Ty + Usy?; therefore

& =w+1/2)/2Us,v=0,1,..., (7.151)

and fy is the corresponding eigenfunction. It is clear that the present approach applies provided that
U, > 0; that is to say, if Qg isa minimum of U(Q).

It is not difficult to verify that the perturbation equations (7.147) of order k = 3, 4, and 5 are
identical to those for a harmonic oscillator perturbed by anharmonic terms of the form gUzy® +
B2(Usy* + Wo) + B3(Usy® + W3y). The inhomogeneous term in equation (7.147) appears at
sixth order. According to equation (7.146) we need F3 in order to obtain R4. It follows from
equation (7.138) that F3 is a solution of

(7%0 - 50) F3= (731%0 _ Uo) F3= @1% . (7.152)
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Since < ®g|P1 >, = 0 we can formally write

A L iy
F3=(Hs0—Ug b —, (7.153)
( 9 ) ay
so that
. -1 92 .
Ry = <c1>1| (Hq,o - Uo) <1>1> WJ;O = —2KTy fo . (7.154)
q
where
N -1
K= <<1>1| (Hq,o - Uo) <1>1> . (7.155)
q

The reader can easily verify that the perturbation equations (7.147) with k& < 6 follow from the
eigenvalue equation

ﬁefff =& f (7.156)
where the effective Hamiltonian operator #, /s given by
Hepr = (1-28%) Ty + Uzy? + pU® + B2 (Uny* + W3)
+ 8% (Usy® + Way) + B* (Uy® + Wa?) (7.157)
is accurate through order g4. Finally, the eigenvalue of 7{ through order six results to be
E~ Uy + B2E.ss . (7.158)

The coefficients of the perturbation series for the eigenfunction

o
W= Wl (7.159)
j=0
are given by
J
W=yt fik+ F (7.160)
k=0

Suppose that we want to derive an approximate expression for the transition integral (¥ |d|¥’),
where d = c1x + c2X is the dipole moment of the system and ¥ and W’ are initial and final
states, respectively. In order to carry out this calculation by means of perturbation theory we rewrite
d = c1L(g + aBy) + c2LQq, Where o = ¢ /c1. Therefore

o0
(wld|w') = (\If|d|\lﬂ)j B, (7.161)
j=0
where
j j-1
(wdw), =L [ 3 (\yk|q|w},k> ta Z(wk|y|w;_l_k) . (7.162)
k=0 k=0
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The leading term
(W1d|¥')y = 1L (Dolq|Pp), (fol fo), (7.163)

is proportional to the well-known Frank—Condon overlap integral ( fo| f3)y.

It is worth noticing that we could approximately separate the eigenvalue equation with two degrees
of freedom into two one-dimensional eigenvalue equations so that the energies result to be eigenvalues
of an effective Hamiltonian operator for the slow motion. In the case of an actual molecular system
we obtain equations for the electrons (light particles, rapid motion) and the nuclei (heavy particles,
slow motion), and the molecular energies are the eigenvalues of a nuclear effective Hamiltonian
operator [170]. The treatment of systems with many degrees of freedom closely parallels the much
simpler example considered here, which we have solved in detail for pedagogical purposes. We
point out that the approach just discussed is of practical value only in the case of many degrees of
freedom [170].

One of the main reasons for discussing the early Born—Oppenheimer approximation here is that
it does not appear to be widely known. Although the polynomial approximations in perturbation
theory (specially the large-N expansion and its variants) are quite popular, nobody seems to think
of the early Born—Oppenheimer method as an example in which the polynomial approximation is
restricted to some properly selected degrees of freedom.

It is instructive to apply the Born—-Oppenheimer method to an exactly solvable model. The
eigenvalues of the dimensionless Hamiltonian operator

192 p* 92 1

y_ - P9 (2 2
A=350 28Q2~|—2(q +0%) + 190 (7.164)
are
E=Ww+1/2/E + (V +1/2) Ve, (7.165)
wherev,v' =0,1, ..., and
1+8% 1
b= w2 Ja- gz izt (7.166)

In order to verify if the Born—Oppenheimer perturbation theory applies, we solve the eigenvalue
equation (7.127) with

2

1 1-
(424 0?) +240 = 5 +202 + 02 (7.167)

v(g, Q) = >

N =

which gives us

42
U(Q):v+3+1 * 0%. (7.168)

2 2

We see that U (Q) will have a minimum at Q = Qg = 0 if A2 < 1. In agreement with this result
notice that the dimensionless force constant &_ is positive only if 22 < 1.

The convergence radius of the Born—-Oppenheimer perturbation series is determined by a pair of
complex conjugate branch points that are roots of (1 — 4)2 4+ 4128* = 0. Solving this equation for
B* we obtain

B =1—202+2xiy1— 22 (7.169)
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and the radius of convergence is | 8,|* = 1; that is to say, the series converges forall 8* = m/M < 1.

We can exactly express the solutions of most of the equations of the Born—Oppenheimer method
for the present trivial problem in terms of the eigenvalues e = v + 1/2 and eigenfunctions yx of the
harmonic oscillator

. 1d>  u? .
h:—zﬁ-i—?, hx(u) =ex) . (7.170)
For example,
®(g. Q) = x(g +1By) , (7.171)
from which it follows that 0® /0y = A8(d x /du), and
22 5 dy dx MR d%x A2t 1
w —) = —— — ) = — = 7.172
@ = <udu>u 2 \Mauz) ==\ "2 (7.172)
In the same way d® /38 = Ay(dx /du) so that
_dx(g)
o= = (Vixo-1 = Vv L) (7173)
where we have explicitly indicated the harmonic oscillator quantum number v = 0, 1, . One

easily obtains the result in equation (7.173) writing d /dq in terms of creation and annlhllatlon boson
operators [49]. Since ’Hq 0 = h withu = g and Uy = v + 1/2, we obtain £ = 12/2, and the
effective Hamiltonian operator

. L 1-22 222 1
(1 q2p4 2 <
Hepr = (1 AP )Ty t—y = (v + 2) (7.174)
is a harmonic oscillator with mass 1/(1 — 228*) and force constant 1 — A2; consequently
2/32
Eepr = ( ) \/(1 AL — A2 + —— < + 5) , (7.175)

wherev' =0,1,....
Finally, the approximate energy reads

22p 1 of o, 1 2 204
£~ <1+T>(v+§)+ﬂ (u+§>\/<1—x><1—w>. (7.176)

According to our discussion above this approximate expression should be accurate to order six. The
radius of convergence of the Taylor expansion of equation (7.176) about 8 = 0is 1//]A] > 1
(remember that |A| < 1 in order to have bound states). Through order six we have

£ =~ <v+ %) + (v/+ %>\/(l—k2)ﬁ2
. (v ; %) e <v’ ; %) 2Ja—mp+o(p0) . )

The Taylor expansion of the exact eigenvalue (7.165) about 8 = 0 gives the same result through
order six, except that the first neglected term is of order g. This difference is not surprising because
the Born—Oppenheimer perturbation theory developed above is accurate through order six.

In Figure 7.10 we compare the exact ground-state energy (v = v’ = 0) of the model (7.164) with
the approximate expression (7.176) and the series (7.177) for two values of A. The two approximate
expressions are almost identical and their accuracy decreases as 8 increases as expected. Moreover,
the accuracy of the approximate results also decreases with .
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FIGURE 7.10

Ground-state energy of model (7.164) for two values of L. The exact result, the approximate
expression (7.176), and the series (7.177) are, respectively, given by a continuous line, a broken

line, and points.
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Chapter 8

Perturbation Theory for Scattering States in One
Dimension

8.1 Introduction

Inthis chapter we briefly discuss the straightforward application of perturbation theory to scattering
states of one-dimensional quantum-mechanical models. Itis not our purpose to give an account of the
methods commonly used to treat realistic problems but simply to show that some of the approaches
developed for bound states can also be applied to scattering states. With that purpose in mind we
consider simple one-dimensional models in which the interactions are nonzero only in finite regions
of space. The reason for this restriction is that the calculation is much simpler.

8.2 On the Solutions of Second-Order Differential Equations

Two functions u(x) and v(x) are said to be linear dependent when there exists two nonzero
constants c; and ¢, such that

ciu(x) + cov(x) =0 (8.1)
for all values of x. Differentiating equation (8.1) with respect to x we obtain
ci' (x) + ' (x) =0. (8.2)

We can view equations (8.1) and (8.2) as a system of two linear equations with two unknowns c¢;
and c2. The determinant of such a system is the Wronskian

Wu,v) =uv —u'v. (8.3)

If W(u, v) is nonzero for some value of x, then the only solution of the system of homogeneous
linear equations is c; = ¢z = 0, and the functions are linearly independent. If, on the other hand,
W (u, v) is zero for all values of x, then there are solutions for nonzero values of ¢1 and ¢, and the
functions are linearly dependent.

Suppose that u(x) and v(x) are two solutions of the second order differential equation

Y'(x) = F)Y(x) . (8.4)

173
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If we multiply v”(x) = F(x)v(x) by u(x) and u”(x) = F(x)u(x) by v(x) and subtract, we conclude
that the Wronskian is independent of x:

(uv" — u/v)/ = %W(u, v)=0. (8.5)

Therefore if W (u, v) is zero for a given value of x, then it is zero everywhere, and the solutions u (x)
and v(x) of the differential equation (8.4) are linearly dependent.
If W(u, v) # 0then

Y(x) = Ciu(x) + Cov(x) (8.6)

is ageneral solution of the differential equation (8.4). Taking into accountthat W (u, u) = W (v, v) =
0 we easily prove that C; and C» are given by
W(,Y) Wu,Y)
= N C2 = .
W (v, u) W(u, v)

1 (8.7)
Notice that all the Wronskians in this equation are independent of x by virtue of the argument given
above.

The practical value of the Wronskians in quantum mechanics was already pointed out some time
ago [171].

8.3 The One-Dimensional Schrédinger Equation with a Finite Interaction
Region

In what follows we consider a particle of mass m moving in a one-dimensional space under the
effect of a force which is nonzero only in afinite region (x, xg). The time-independent Schrédinger
equation reads

2

h
—2—\11//(x) + V@)W (x) = E¥V(x), (8.8)
m
where
0 if x<xg
Vx) =3 Velx) if xp<x<xp . (8.9)
0 if x>xg

If Ve (x) is continuous in (xz,, xg) then | Ve (x)| has a maximum Vj there.

As we did so many times in preceding chapters, we first define dimensionless coordinate ¢ =
(x — x1)/L, potential-energy function V(¢) = V(Lg + xr)/ Vo, and energy ¢ = E/Vp, where
L = xg — x1, and Vp play the role of units of length and energy, respectively. Notice that0 < g < 1
and |V(g)| < 1. In this way the problem reduces to solving the dimensionless Schrddinger equation

" (q) = 2a°[V(q) — €]®(q) (8.10)

mL2V,
a=.| 2 (8.11)

where the dimensionless parameter
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is a measure of the potential strength.
The solution to the dimensionless Schrédinger equation for positive energy is

®r(q) =Arur(q) + Brvp(q) if ¢g<0
d(x) = dc(g) = Au(q) + Bv(q) if 0<g<1 , (8.12)
®r(g) = Arugr(q) + Brvr(q) if ¢g>1

where

up = exp(ikLq) , vy = exp(—ikpLq), ur = exp (ikrq) , vg = exp (—ikrq) , (8.13)

and u(q) and v(g) are two linearly independent solutions of the Schrddinger equation with the
potential-energy function V¢ (g) = Ve (Lg + x1)/ Vo. In the present case

kp = kg = av/2¢ (8.14)

but we keep the notation sufficiently general so that the results apply to other situations as well.
We obtain four of the six coefficients Ay, By, A, B, Ag, and Bg from the equations given by the
continuity conditions at g = 0 and ¢ = 1, where the potential-energy function is discontinuous:

o (07) = oc(0%). ®,(07) = (07)
Pc(17) = Pr(17), P (17) = 0% (17) . (8.15)

In order to solve the system of linear equations (8.15) for the chosen coefficients we systematically
apply the Wronskian as in equation (8.7). For example, we obtain A; and By in terms of A and B
as follows:

AL = W (v, u)o A W(vL, v)o B B — W(ML,M)OA Wur, v)o

- B = B,  (8.16)
W(vr,ur)o W(vr,ur)o W(ur,ve)o W(ur,ve)o

where the subscript indicates that the functions are calculated at the point ¢ = 0. Analogously, at
g = 1 we write

W (v, W (v, W(u, W (u,
A (v, up)1 . (v, vR)1 Bp. B — (u uR)lAR n (u vR)lBR_ (8.17)
W(v, u)1 W(v, u)1 W(u, v)1 W(u, v)1

Notice that equations (8.16) and (8.17) apply to any problem that we separate in three different
spatial regions. The only requirement is that the pairs of functions (uy, vy), (u, v), and (ug, vg) are
linearly independent solutions in each region.

Since V(q) and € are real then ®(g)* is also a solution to the Schrddinger equation (8.10), and
the Wronskian

W (@, @*) = 2i3 (&%) , (8.18)

which is proportional to the current density, is independent of x. It follows from this equation that
|ALI> — |BLI? = |Ar|* — |BrI* . (8.19)

If the flux of particles moves from left to right, then Bx = 0 and the transmission and reflection

coefficients T = |Ag/Ar|2and R = |By /AL |?, respectively, satisfy the flux conservation condition
T+ R=1.
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On substituting equations (8.13) into equations (8.16) and (8.17) we obtain A, and By in terms
of Ag; in particular

AR 2iky exp(—ikp )W (u, v)1
AL D ’
D = [u'(0)+ikpu©][v'Q) —ikv(D)]
—[v'(©) + ik v(O)] [’ (1) — ikzu(D)] . (8.20)

In order to calculate the transmission coefficient, we have to solve the Schrédinger equation with
the potential-energy function V¢ (q) and obtain two linearly independent solutions u(g) and v(g).
If we require that u(go) = 1, u’(g0) = 0, v(go) = 0, and v'(go) = 1, then W(u, v) = 1 and the
functions « and v are linearly independent. In such a case the transmission coefficient results to be
T = 4ki/|D|2. However, when we solve the Schrédinger equation approximately W (u, v) is close
to but not exactly equal to unity and we therefore prefer to estimate 7 as

A 2
T=|2R

2 |2k Wu, o) (8.21)
Ap| '

D

Resonance states are a particular class of scattering states leading to outgoing waves in all chan-
nels [172]. In the case of the one-dimensional models treated here, the boundary conditions are
A = Br = 0 which determine complex values of the energy with precise physical interpretation.
The real part of such energies are the resonance positions and their imaginary parts the resonance
widths: E = Egr —iT"/(2h).

In this chapter we show how to apply perturbation theory to the Schrddinger equation in the
interaction region.

8.4 The Born Approximation

It is not difficult to derive the Born series for one-dimensional scattering models from the inte-
gration formulas of Appendix B. For simplicity and concreteness consider the Schrédinger equa-
tion (8.8), where the potential-energy function vanishes as |x|] — oo. As usual, we define di-
mensionless coordinate ¢ = x/L, energy £ = mL2E /h?, and potential-energy function Aw(g) =
mL?V (Lg)/h?, in terms of an arbitrary unit of length L. We have purposely introduced a perturba-
tion parameter A because we are going to consider weak interactions.

We can view the dimensionless Schrodinger equation

®"(q) + 2EP(q) = 2Aw(q)P(q) (8.22)

as a particular case of those discussed in Appendix B with f(g) = 2 Aw(gq)®(q); therefore, the
general solution reads

e
d(g) = Crexp(—ikqg) + Corexp(ikg) — %/ exp[ik (¢ —q')]w(q") @ (q') dq’
qi
e
+ 2 [ ewlik(e' —q)]w(e) ®(¢) da's k=2E, (8.23)

qi

where ¢; is an arbitrary coordinate point. This solution satisfies the boundary conditions

d(q) — exp(ikq) + Br exp(—ikq), g — —o0; ®(q) — Agexp(ikq), g — oo (8.24)
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provided that

=
[ ewlik) (@) o (@) da' = BL. (8.25)
ai
l)\' o . / / / /
Cz—z exp(—lkq)w(q)cb(q)dq = 1, (8.26)
qi
i)\' o . !/ / / /
C1+7/ exp(lkq)w(q)cb(q)dq = 0, (8.27)
qi
C N kg’ ! dqg = 8.28
e eXp(—qu)w(q)CD(q)dq = Ap. (8.28)

qi

Taking into account equations (8.26) and (8.27) we easily rearrange equation (8.23) in amore compact
form:

. [0
®(q) = exp(ikg) — %/ exp (ik|g —q'|)w(q") @ (¢) dq’ . (8.29)

o

Moreover, it follows from equations (8.25)—(8.28) that
l)\’ *© . / / / /
B, = —7/ eXp(lkq)w(q)CD(q) dq’, (8.30)
—00
l)\’ * . /! / /! !/

Ap = 1—?/ exp(—lkq)w(q)QD(q)dq . (8.31)

—00

In order to compare the results of this section with those of the preceding one, it should be taken into
consideration that here we have arbitrarily chosen A; = 1 to derive the customary integral equations
for the application of the Born approximation [173].

If the interaction is weak, we try an approximate solution in the form of a perturbation series

o
®(g) =) (@) (8.32)
j=0
which we substitute into equation (8.29) to derive a recurrence relation for the coefficients:

®;(q) = 8j0explikq) — % / exp (ik|g —q'|) w(q") ®j-1(q") dq’ (8.33)

that leads to the well-known Born approximation [173, 174].
In the first iteration we have ®q(g) = exp(ikq) and

ZA' o . / / /
B, =~ —7/ exp (21kq ) w (q ) dq’, (8.34)
—00
ir [ , ,
Ap ~ 1—— w(q)dq . (8.35)
k J -0

Notice that this approach is not restricted to a potential-energy function that vanishes outside a finite
region, but it is necessary that w(qg) be integrable over all the range of values of 4.
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8.5 An Exactly Solvable Model: The Square Barrier

The square barrier is one of the simplest models commonly chosen to illustrate the tunnel effect
in most textbooks on quantum mechanics [175]. We easily solve the Schrédinger equation because
Ve (x) = Vo > 0is independent of x. It is customary to consider the two cases E < Vp (¢ < 1) and
E > Vp (e > 1) separately. In the former we have u(q) = cosh(kq) and v(g) = sinh(kq)/k, where
k = a/2(1 =€), whereas u(g) = cos(k’q), v(g) = sin(k’q)/k’, and kK’ = a~/2(e — 1) hold for the
latter. The transmission coefficient is therefore given by

de(1—¢)

T =
4e(1 — €) + sinh(k)?’

e <1, (8.36)

de(e — 1)
T = - , €
4e(e — 1) + sin(k’)?

>1. (8.37)

It is not difficult to verify that both expressions give exactly the same result when ¢ = 1 (E = Vj):

2

T=57. (8.38)

In principle it is not necessary to use two expressions for the transmission coefficient because any
of them applies to both situations. For example, when € > 1 we write k = ik’ and equation (8.36)
becomes equation (8.37). However, we have written the transmission coefficient in terms of two
formulas for clarity.

In what follows we apply two different perturbation expansions to the exact result (8.36), (8.37).
When E >> V; we expand the transmission coefficient given by equation (8.37) in a Vp-power
series. A straightforward calculation shows that

sin(oh/zE)?V2 a/2sin(2a~/2E)  sin(a~/2E)? V3
Tz 0F 8E5/2 I ot

T=1 (8.39)

where o = /mL2/h? = a/+/Vp. In this case the unperturbed model is the free particle and the
whole interaction is chosen to be the perturbation.
In the first iteration, the Born approximation developed in the preceding section gives us

2y/2

a‘V,
T =|A 2_]_ 0 cee 8.40
=|AgRl* =1+ T + (8.40)

which does not agree with equation (8.39). However, if we calculate the transmission coefficient as
T =1 — |Bz|?, we obtain the first two terms of equation (8.39). Notice that |Az|% + |Bz|2 > 1in
the first iteration because the Born approximation violates unitarity or conservation of flux [173].

If we assume that a is a small parameter we can expand the transmission coefficient in a Taylor
series about ¢ = 0; both expressions (8.36), (8.37) give exactly the same perturbation series in
powers of a?:

a?  4e? —4e+3 , 32¢* —64¢% +152¢2 — 120€ + 45
J— _l_ a’ — a + e,
2¢ 12¢2 360e3

The first two terms of this perturbation series would resemble the Born approximation (8.40) if it were
not for the sign of the second term. It is at first sight surprising that we obtain qualitatively different

T=1- (8.41)
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results from what appears to be the same expansion. In order to bring both results to agreement
notice that we can rewrite the Born approximation Ag ~ 1 —i&, & = a/kp,as Ag ~ 1/(1 + i)
keeping the same order of accuracy. From this expression we already obtain the first two terms of
the series (8.41): T ~ 1/(1+ &%) ~ 1 — £2.

It follows from equation (8.38) that the radius of convergence of the series (8.41) for e = 1 is
determined by a pair of conjugate imaginary poles a; = +i+/2. We have calculated the roots of the
Taylor expansion of 1/ T about a = 0 for sufficiently great order, and it seems that for other values
of € the zero closest to origin in the complex a? plane is always real and negative. This calculation
is straightforward if one resorts to the Maple commands taylor and fsolve/complex. Therefore, we
can easily obtain the radius of convergence of the perturbation expansion (8.41) in terms of ¢ as
follows: substitute » = a2 in the inverse of any of the exact expressions (8.36) or (8.37), find the
real roots of the resulting equation for given value of € (using Maple command fsolve, for example),
and select the one closest to origin by = asz. Figure 8.1 shows the radius of convergence r. = |as |2
as a function of ¢ for the square barrier and for a parabolic barrier to be discussed later on in this
chapter. It is worth noticing that we easily obtain the radius of convergence of the perturbation series
for T from the roots of the perturbation series for 1/ 7 (or from the zeros of the denominator D in
equation (8.20)). In this way we can determine the radius of convergence of perturbation series for
models that are not exactly solvable.

5.0
“g45
4.0

35 Parabolic Barrier

3.0
25
2.0
1.5

1.0 Square Barrier

0.5

0.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

FIGURE 8.1
Radius of convergence |a,|2 of the perturbation series in powers of 42 for the transmission
coefficient for the square and parabolic barriers.

8.6 Nontrivial Simple Models
8.6.1 Accurate Nonperturbative Calculation

In order to test the results of perturbation theory we compare them with those provided by a simple
accurate nonperturbative calculation based on a power series approach.
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The dimensionless Schrodinger equation (8.10) for 0 < g < 1is Y"(g) = F(q)Y(q), where
F(q) = 2a[V(q) — €]. If the Taylor series about a point 0 < ¢g < 1,

F(q)=) Fj(qg—q (8.42)
j=0

converges for all 0 < ¢ < 1, then we try a similar Taylor expansion for any solution Y (¢):

o0
Y(9)=) Yj(g—qo0) . (8:43)
j=0
The recurrence relation
l n
Y, = F,_;Y;, n=0,1,... 8.44
n+2 (n+1)(n+2)j:0 n—jij n ( )

yields the coefficients of the series (8.43) in terms of Yy and Y1. The choices Yp = 1, Y1 = 0 and
Yo = 0, Y1 = 1 give us two independent solutions u(g) and v(g), respectively. Since such series
converge for ¢ = 0 and ¢ = 1 we obtain the transmission coefficient from equation (8.21) and use
this result to test the perturbation calculation.

An alternative approach is to make use of the Maple command dsolve with the option
type = numeric to obtain the linearly independent solutions and their derivatives at ¢ = 0 and
g = 1, and substitute them into equation (8.21). We show a simple procedure for this calculation in
the program section.

8.6.2 First Perturbation Method

In what follows we discuss the application of perturbation theory to the Schrédinger equation in
the interaction region. In order to simplify the notation we will omit the subscript in ®¢(q) and
V¢ (¢) hoping that it may not be confusing.

The simplest perturbation approach consists of choosing the whole interaction as a perturbation.
Consequently, we write

" (q) = 2a*[AV(q) — €]P(q) (8.45)
and expand
Og) =) @@ . (8.46)
=0

Substituting this expansion into equation (8.45) and collecting powers of A, we obtain the perturbation
equations

Di(q) + ki (q) = 2a"V()®,1(q), j=1,2,... (8:47)

that are inhomogeneous ordinary differential equations with constant coefficients that we easily solve
hierarchically by means of the method developed in Appendix B. At each perturbation order we have
to calculate

2a° [ .
Di(g) = %/0 sinfkz. (g — V@O @j_1()dt, j=1,2,.... (8.48)
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Notice that we have chosen the lower limit of the integral so that @ ; (0) = CD’J.(O) = 0, which results
in ®(0) = ®(0) and ®'(0) = ®;(0). At the end of the calculation we set the dummy perturbation
parameter A equal to unity.

We substitute u;(g) and v;(g) for ®;(g) in the equations above and obtain the perturbation
series for the functions u(g) and v(q), respectively, that we substitute into equation (8.21) for the
transmission coefficient 7. If we choose the functions u(g) and v(g) such that

u(0) =1, «'(0)=0, v(0) =0, v'(0) =1, (8.49)
then
in(k
uo(q) = c0s (kiq) . vo(q) = w . (8.50)

This perturbation method applies only when ¢ > 1 > |V(q)| because we have assumed that the
interaction is a small perturbation.

In order to test our perturbation equations we apply them to the square barrier and compare the
results with the exact ones. In this case V(¢) = 1 in the interaction region. A straightforward
calculation yields

agsin(®) =, |:aq sin@@)  (aq)? cos(e)}
= 0) + A————= — 8.51
u(q) cos(9) + e oo 7 + (8.51)
sin(@) sin(®) q cos(0)
= A - e 8.52
v = et [zawz 26 ]+ (852

where 6 = a~/2eq. We do not show terms of higher order because they become increasingly
complicated. The calculation is straightforward and Maple greatly facilitates it. In order to verify
equations (8.51) and (8.52) we compare them with the Taylor expansions of the exact functions

_ sinfa/2(e — A)q]
a2 —n)

about A = 0. We do not discuss this perturbation method any further because it is not practical.

u(g) = cos [a 2(e — A)q] , v(g) (8.53)

8.6.3 Second Perturbation Method

In order to develop a perturbation method that applies to all values of ¢ we choose the square
barrier as the unperturbed model and write

Vg, ») =14+ 1AV(g), AV(g) =V(g) — 1, (8.54)
so that V(¢,0) = 1 and V(g, 1) = V(gq) in the interaction region.
For simplicity we treat the cases ¢ < 1 and € > 1 separately. The perturbation equations for the

former case are

D(q) —K*®(q) = 2°AV()®; 1(g). j=1.2..... k=a/2(1—¢), (8.55)

and according to the results in Appendix B we obtain the corrections to u(g) and v(g) as follows:

242 (9 .
Di(g) = 7/0 sinh[k(qg — HIAV()P;_1(t) dt , (8.56)
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where

sinh(kq)
k

uo(q) = cosh(kq), vo(g) =

satisfy the boundary conditions (8.49).
The solutions for € > 1 read

242 (9 .
() = 7/0 sinfk(q — N]AV ()P ;-1(t) dt,

where

ink
uo(q) = cos(kq). vo(q) = 5'”2—‘” k=ay2—1).

Taking the limit &k — 0 in any of the cases above we obtain the equations for ¢ = 1:

q
®;(q) = 24 /0 (g = DAVOD; 1) dr |
where

uo(q) =1, vo(g) =¢q

satisfy the boundary conditions (8.49).
As a simple nontrivial example we choose the parabolic barrier

fo if |x|>L
V(x)_{ Vo(l —4x2/L?) if |x| <L

that leads to the dimensionless potential-energy function

_J 0 if g<Qorg>1
V(Q)_{4q(l—q) if 0<g<1

(8.57)

(8.58)

(8.59)

(8.60)

(8.61)

(8.62)

(8.63)

We have calculated several perturbation corrections using Maple but only the lowest order contri-

butions are simple enough to be shown here. We have

u(g) = cosh(kq) + ra’ {2‘1 (g - 1k)2C05h(kq)
_ [q(S - 63c1k+ 49%) N 2(qu 1)} Sinh(kq)} o
v = Sinhk(kq) + ”1—21—?&,2 + kZ_S] sinh(kq)
- [%ﬂqz) + i—ﬂ cosh(kq)} 4.
fore <1,
uq) = 1—m242<3—4§1+2c12) o
o) = gt OO0
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fore =1, and
u(q) = costkq) + ra? {261(1 —gcos(kq)
g83—6g+4¢%>) 20—¢)7 .
sin(kq) 2 1-2g+ 2612 )
v = % Aa® ”k_s B T} sin(kq)
q(3—6q+49%) 2q
[T - F} COS("‘“} +oe (8.69)

for € > 1. Notice that we obtain the case ¢ > 1 by substituting ik for & in the case ¢ < 1 as argued
earlier for the square barrier.

It is instructive to discuss the form of the transmission coefficient for the simplest case ¢ = 1.
Through terms of second order we have

842
4a2(a? + 2) — 8a*(a? + 5)A/15 + 4a*(6a? + 5)(2a2 + 35)A2/1575 + - - -
2 4a®(@®+5) .  2a%(—350 + 85a® + 36a* + 16a°)

- A A2+, (870
v T @yt T 1575(a2 1 2)° + (8.70)

T =

where, as expected, the first term of the A-power series is the transmission coefficient for the square
barrier. 1t must be kept in mind that the rational approximation always gives better results than the
power series because the convergence radius of the latter is determined by (usually complex) zeros
of the denominator that do not affect the accuracy of the former.

We do not discuss this approach any further because we think that the third perturbation method
developed below deserves more attention than the two just outlined.

8.6.4 Third Perturbation Method

Analytical calculation of perturbation corrections of sufficiently great order based on Maple pro-
cedures for the methods in the preceding sections is time and memory consuming. The remarkably
simple form of the Taylor expansion about ¢ = 0 of the transmission coefficient for the square
barrier equation (8.41) suggests that it is worth trying a perturbation approach based on such a series.
Fortunately, it is not difficult to develop such a method; we simply choose 8 = a2 as perturbation
parameter in the dimensionless Schrodinger equation (8.10) or, equivalently, we introduce a dummy
perturbation parameter A, as in the preceding methods, and write

@ (q) = 20a’[V(q) — €1 (q) - (8.71)
According to Appendix B the solutions to the perturbation equations
?'/(q) = 2a°[V(g) — €1®j1(q), j =12, ... (8.72)

are given by the simple formula

q
Di(g) = Zazfo (g —V@) —€el®;_1(t)dt, j=1,2,..., (8.73)

where ug(g) = 1 and vg(q) = g. The calculation is therefore as simple as the particular case e = 1
in the second perturbation method above.
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It is not difficult to prove that the perturbation series for the eigenfunction ®(q) converges uni-
formly in g € (0, 1) for all values of @ and €. It is sufficient to prove that the series of positive terms
|®;(g)| converges in that interval [96]. We first notice that 2a2|V(q) — €| < k? = 2a?|1 — €|, and
that

q
0,@] <8 [ @=0®0)] dr. (8.74)

By straightforward ap_plication of this recursive inequality to ®o(g) = up(¢) = 1 we conclude
that |u;(q)| < (kq)%/ /(2j)!. Analogously, if follows from ®o(g) = vo(g) = ¢ that |vj(g)| <
k21 q2i%1/(2j + 1)!. Therefore the series with terms |u;(¢)| and |v;(g)| converge for all ¢ and

sinh(kq)

> " uj(q)] < coshikg), Y |vi(@)| < P

j=0 j=0

(8.75)

where the equality holds for the square barrier. Since the perturbation series for u(g) and v(g)
converge for all a, €, and ¢, then the present perturbation theory gives the transmission coefficient
as accurately as desired by means of equation (8.21).

To test our perturbation equations and Maple program we have verified that they already yield
the perturbation series in equation (8.41) for the square barrier. In what follows we show results for
the parabolic barrier introduced above; that is to say, V(q) = 4q(1 — q) for 0 < ¢ < 1 and zero
elsewhere.

The calculation is straightforward, and the simple Maple procedure shown in the program section
allows one to obtain perturbation coefficients of sufficiently great order. The first terms of the linearly
independent solutions are

+<g+%>qz_82if+ii;}+"‘ (8.76)
+<%+%>q2_%+%:|+...' 8.77)

These functions are exact at ¢ = 0, and the perturbation series converge at g = 1 for all values
of a and e. Substituting them into equation (8.21), and keeping terms of second order in A (fourth
order in a), we obtain the transmission coefficient

€
€ +2a2/9+ (8/105 — 4¢/45)a* + - - -
2a®  4(35 — 54e + 63¢2)a?
e 2835¢2

T =

1—

(8.78)

The rational approximation is valid for all values of a and e because the perturbation series for the
functions u(q) and v(g) converge as proved above. On the other hand, the radius of convergence of
the power series is limited by the zeros of the denominator (poles of T). Notice, for example, that
the former gives the correct result T = 0 when e = 0 but the latter is singular for this value of ¢,
failure that shares with the Born approximation [173]. We have explicitly shown the power series in
equation (8.78) for a purely pedagogical reason, but in order to obtain reasonable numerical results
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8.7. PERTURBATION THEORY FOR RESONANCE TUNNELING 185

we directly substitute the perturbation series for the functions u(g) and v(g) into equation (8.21)
and calculate T by means of the resulting rational expression.

In Figure 8.1 we show the radius of convergence r. = |a,|? of the perturbation series (8.78)
obtained from the zero of 1/ T closest to the origin of the a2 complex plane. The curves r.(¢) for
the parabolic and square barrier (both of the same height Vp) are similar except that the former is
greater.

Although the perturbation series for the linearly independent solutions converge for all values of
a and ¢, the rate of convergence depends on the values of these parameters. We calculate the rate of
convergence of the rational perturbation approximation to 7' as log(|T¢*¢¢! — TPT |/ T¢*acty where
Texact js given by any of the accurate nonperturbative methods discussed above in Section 8.6.1. In
Figure 8.2 we appreciate that the rate of convergence decreases as either a or € increases, and that
the effect of the former is more noticeable as it is the actual perturbation parameter.

For completeness in Figure 8.3 we show the transmission coefficient for the parabolic barrier for
three values of a. The perturbative and nonperturbative methods give exactly the same results but
the latter are faster for great values of a.

An interesting application of the perturbation method is the calculation of resonance energies as
roots of the denominator | D|? of the transmission coefficient 7. Perturbation theory provides an
analytical expression for |D|? in terms of a and €. For a given value of a we solve |D|? = 0 for
e for increasing values of the perturbation order till convergence. Figure 8.4 shows the real and
imaginary parts of the complex root for the square and parabolic barriers. Of the two complex
conjugate roots we arbitrarily choose the one with J(e) < 0. Only energies with positive real parts
should be interpreted as resonances, which appear for sufficiently large values of a. Although one
of the barriers is smooth and the other exhibits sharp edges, the behavior of the root as a function of
a is quite similar.

In principle, one can apply this perturbation approach to one-dimensional models supporting
bound states. We do not discuss such a case here but leave it as an interesting exercise for the reader.

8.7 Perturbation Theory for Resonance Tunneling

In what follows we briefly illustrate a straightforward application of perturbation theory to a
particle penetrating a barrier that is not restricted to a finite coordinate interval as in the preceding
examples. More precisely, we assume that the potential-energy function V (x) is positive definite,
vanishes as |x| — oo, and exhibits a single maximum at x = xg. In particular we are interested in
resonance states W (x) that satisfy the boundary conditions

Apexp(—iKx) if x —> —o0

Apexp(iKx) if x— o0 ’ (8.79)

Y(x) > {

where K = ,/2mE/h? [172]. That is to say, we have outgoing waves in both channels. If we choose
only incoming waves we obtain exactly the same resonance energies. Because the set of complex
values of the energy that satisfy such boundary conditions is discrete, their calculation resembles
that of bound-state energies.

As usual, we define dimensionless coordinates ¢ = x/y, energy € = my2E /h?, and potential-
energy function v(¢g) = my2V (yq)/h? in terms of an appropriate length unit y, so that we are left
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FIGURE 8.3
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with the dimensionless Hamiltonian operator

~ my? 1 d?
——H = .
="z H=—g,7+tv@. (8.80)

In order to apply the polynomial approximation developed in Section 7.2.1 we expand

1 div

8.81
=7 (8.81)

v(g) = Zv, (q—qo0) . vj =

9=40

about the maximum go = xg/y of v(g) (notice that in this case v, < 0). We then introduce a
perturbation parameter 8 by means of a second change of variable z = (¢ — qo)/8, and obtain the
dimensionless Hamiltonian operator

. . 1d?
h = g2 (7—[ . vo) gzt z + Zb Bzt (8.82)

where 8 = (2vp)~1/* is a complex number, and the coefficients b; =vj42/(2vp) are real.
We apply perturbation theory to the dimensionless Schrodinger equation h® = e® in the usual
way and obtain

o0 o0
. . 1
¢=Z¢jﬂ],€=2e2jﬁ2], e0=n+§,n=0,l,..., (8.83)

j=0 j=0

from which it follows that

o0
€=y + Z ezjﬂzj_z (8.84)
j=0

as discussed in Section 7.2.1. Notice that the energy corrections e,; are real and that 82 is purely
imaginary; consequently, the terms with j odd are real and those with j even are imaginary.

As in the case of bound states considered in Section 7.2.1, we treat symmetric potential-energy
functions v(—q) = v(g) in aslightly different and more convenient way. In this case the maximum
occurs at ¢ = 0 and the Taylor expansion of the barrier reads

o0 2i
; 1 d%v
vg) =) vig?, vy = o —— (8.85)
= @)1 dg?i |,
By straightforward application of perturbation theory to 7® = e®, where
- . 1 d?
_ _ — -2 4= Jj 2]+2
o= p(H-w) 2d22z+2b,3
q vj 1
= L p=_ pg= , 8.86
¢ B T 200 P V2vu1 ( )
we obtain a perturbation series of the form
e .
e=w+ Y ep . (8.87)

j=0
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190 PERTURBATION THEORY FOR SCATTERING STATES IN ONE DIMENSION

The energy coefficients ¢; are real because the potential parameters b; are real, and the value of the
perturbation parameter 8 is purely imaginary because v1 < 0. Again the terms with j odd are real
and those with j even are imaginary.

Any of the methods developed in Chapters 2 and 3 is suitable for obtaining the perturbation
series (8.83) or (8.87). In particular, the methods of Dalgarno and Stewart and Fernandez and Castro
clearly show that every perturbation correction to the eigenfunction @; is a polynomial function
times the Gaussian function exp(—z2/2), and therefore square integrable in —oo < z < co. The
application of such methods is straightforward as the reader may easily verify; on the other hand,
it is not obvious at first sight that the method of Swenson and Danforth developed in Chapter 3 is
suitable for this problem because the Hamiltonian operatorfz is not hermitian (remember that 8 is
complex). For this reason we discuss the latter approach with some detail in what follows.

In order to apply the method of Swenson and Danforth we introduce the ¢-product

(flg) = / fg)dz, (8.88)

which is a complex number with finite modulus if the complex-valued functions f(z) and g(z) are
square integrable [176]. Notice that (f|f) cannot play the role of a norm because it is a complex
number; however we can normalize f(z) so that (f|f) = 1. The advantage of the c-product is that
the hypervirial and Hellmann—-Feynman theorems

(cb [ W]‘d)) —0, g—;(q>|q>) = (cb

respectively, are valid provided that W is a linear operator. The reader may easily prove them by
simply repeating the arguments given in Section 3.2. Consequently, it makes sense to define the
complex moments Z; = (®|zF|®) normalized as Zg = 1, and expand them in powers of 3:

oh
B

<I>> : (8.89)

o0
Zi=Y ZiiB . (8.90)
j=0

The application of the method of Swenson and Danforth is therefore straightforward following the
lines indicated in Section 3.3.1 [177].

It is always instructive to apply approximate methods to exactly solvable models. In this case we
choose the Eckart barrier [178]

Aexp(g +gm) B exp(q + qm) B <A + B)

v(g) =

- b 8-91
1+exp(g+qm) [L+explg + gm)l? (8.9

"o B—A

where B > |A|. This potential-energy function exhibits a maximum vy = (A + B)?/(4B) atq = 0,
and is symmetric about ¢ = ¢, = 0 when A = 0. Figure 8.5 shows the Eckart barrier v(g) for three
values of A.

It is not difficult to solve the Schrddinger equation with the Eckart potential in terms of hy-
pergeometric functions and obtain the transmission and reflection coefficients in terms of gamma
functions [178]. Setting the appropriate coefficients of the exact solution equal to zero, in order to
have only outgoing or incoming waves, we obtain the resonance energies [177]

. |[veE= 1i(2n+1)i]2+8A}2
_ , (8.92)
32[VBE — 1+ (2n + 1)i]
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FIGURE 8.5
Dimensionless Eckart barrier for B = 50 and three values of A.

wheren =0,1,....
The polynomial approximation yields the perturbation series (8.84), where

8B3 1/4

However, it is easier to study the convergence properties of the closely related expansion in powers
of 1/4/B, which we easily derive from equation (8.92) either by hand or, much faster and more
easily, by means of the Maple command series:

B . [B 4e¢+1 A ey [2 A% iN2e9A? i/ 2eg
EZZ:Fleo §— -+ —

32 st eVt apr Tooaspee T B9

When A = 0 all the resonance energies (8.92) exhibit the same branch point at B; = 1/8 and
the series (8.94) converge for all B > 1/8. When A # 0 there are two singular points By, = 1/8
and By; = —n(n + 1)/2, so that the series (8.94) converge for all B > 1/8 when n = 0 and
forall B > n(n + 1)/2 otherwise. As it usually happens with the polynomial approximation, the
radius of convergence decreases with the quantum number n. A straightforward way of testing the
perturbation method described above is to expand the B-perturbation series in powers of 1/+/B and
compare the result with equation (8.94). To this end the Maple command series proves extremely
useful. In particular, notice that this further expansion is not necessary when A = 0 because
B2 = \:|/:1(8/B)1/2, from which we conclude that the perturbation series (8.87) converges for all
1Bl < V8.

As a simple nontrivial example we choose the Gaussian barrier

V(x) = Voexp [—(x/y)z] , (8.95)
where Vo > 0 and y > 0 determine the strength and range of the interaction, respectively. The
dimensionless Hamiltonian operator reads
d2

_ my*Vo
2dq? N '

H= Y;

+ Aexp <—q2) A (8.96)
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192 PERTURBATION THEORY FOR SCATTERING STATES IN ONE DIMENSION

Table 8.1 shows the first coefficients of the perturbation series (8.87), where vp = A and 8 =
1/4/—2A. The Maple programs for the calculation of tunnel resonances and for the application of
the deep-well approximation are identical, and one obtains them by straightforward modification
of the Maple procedures in the program section that illustrate the implementation of the method of
Swenson and Danforth.

Table 8.1 Coefficients of the Perturbation Series for the
Resonances of the Gaussian Barrier

—_3 _3,2
€1= "33 — 8¢
-1 , 1 ,3
€2 = — 765 €0 — 197 €0

_ 14 1 2 8 4
€3 = 16384 — 5144 €0 3072 €0

__ 300383 01 3 4351 5
€4 = 71796480 €0 T 294917 €0 245760 €0

265567 4 _ 38633 6

9 2, 343
€5 = — 7097152 T 5242880 €0° 1 589824 €0 — 2949120 €0

Figure 8.6 shows that the perturbation series for the Gaussian barrier is divergent. However, for
sufficiently large values of A we obtain reasonable results by means of the truncation criteria adopted
in Section 6.4. In order to obtain the exact resonances necessary for the calculation of the logarithmic
error displayed in Figure 8.6, we resorted to the practical Riccati-Padé method [162]. In principle
one can improve the accuracy of the perturbation series for resonances by means of the methods
discussed in Section 6.5 for bound states.

0 Z B

Logarithmic Error

FIGURE 8.6

Logarithmic errors log|[Re(€cxact) — Re(€approx)1/Re(€exac)| (continuous line) and
log [[Tm(€cxact) — Im(€approx)1/Im(€cxact)| (broken line) for the resonance of the Gaussian
barrier with e¢g = 1/2 in terms of the perturbation order P.
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Chapter 9

Perturbation Theory in Classical Mechanics

9.1 Introduction

Although the title of this book refers only to quantum mechanics, in this chapter we outline the
application of perturbation theory in classical mechanics. It is not our purpose to give a thorough
account of the subject that may be found in other books [179, 180], but simply to show that some of
the approaches developed in preceding chapters for quantum systems are suitable for classical ones
with just slight modifications. We hope that this fact may facilitate a unified teaching of perturbation
methods in undergraduate and graduate courses. We first consider the simplest perturbation expan-
sion that applies when the amplitude of the motion is sufficiently small. This approach is based on
the Taylor expansion of the nonlinear force (or the anharmonic potential-energy function) around the
origin and resembles the polynomial approximation in quantum mechanics discussed in Chapter 7.
We obtain the perturbation series for the trajectory of a particle moving in a one-dimensional space
under the effect of an arbitrary nonlinear conservative force, and the perturbation series for the period
of the motion. Straightforward integration of the perturbation equations gives rise to secular terms
that one easily removes by appropriately scaling the frequency. We choose the simple pendulum
as an illustrative example. Most of that discussion is based on an appropriate modification and
adaptation of a recent pedagogical article on the subject [181].

Later, we concentrate on Hamilton’s equations of motion that allow the development of pertur-
bation theory in operator form that is reminiscent of the interaction picture in quantum mechanics,
already discussed in Section 1.3.1. We explicitly consider secular and canonical perturbation theories
using one-dimensional anharmonic oscillators as illustrative examples.

Finally, we show that it is easier to obtain the canonical perturbation series for separable models by
means of a simple approach based on the hypervirial and Hellmann—Feynman theorems that closely
resemble the method of Swenson and Danforth discussed in Section 3.3.

9.2 Dimensionless Classical Equations

Throughout this book we have transformed physical equations into dimensionless mathematical
equations before solving them either exactly or approximately. In this chapter we proceed exactly in
the same way with the classical equations of motion. For simplicity we consider a one-dimensional
motion and point out that the treatment of more degrees of freedom follows exactly the same lines.

For concreteness consider a particle of mass m moving along a one-dimensional trajectory x(z)
with velocity x(¢) = dx(t)/dt, under the effect of a conservative force F(x) = —dV (x)/dx. From

193
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194 PERTURBATION THEORY IN CLASSICAL MECHANICS

the Lagrangian
LG, x) = %xz V) (9.1)

we obtain the conjugate linear moment p, = d.L£/3dx = mx and the Hamiltonian function
m

S V). 9.2)

H (pe,x)=pxx— L, x) =

In order to obtain dimensionless equations of motion we define dimensionless coordinate g = x/L

and time s = ot + ¢, where L, w, and ¢ are arbitrary length, frequency, and phase, respectively.
The dimensionless Lagrangian and Hamiltonian read

o r .’ .2
Lag = “50 =T g, (9.3
~ p2

H(p,q) = -t v(q) , (9.4)

respectively, where ¢ = dq(s)/ds, v(g) = V(Lg)/(mw?L?),and p = L /3§ = ¢ = px/(mwL).
The equations of motion

mi = For) = — Y& (9.5)
dx
become
d
i=f@)=- Z(Q) (9.6)
q
with the initial conditions
Lq(¢) = x(0), wLg(¢) =x(0). 9.7)

9.3 Polynomial Approximation

Consider Newton’s second law of motion (9.5) with initial conditions x(0) and x(0) at r = O,
and assume a bounded trajectory: |x(z)| < oo for all z. Without loss of generality we place the
coordinate origin at the stable equilibrium position, so that F(0) = 0 and F'(0) < 0. If F(x) is
analytic at x = 0 we expand it in a Taylor series:

, 1 dF
Fx)y=Y Fixl, Fj==——| . (9.8)
j=1

Choosing w = +/— F1/m we can write the dimensionless equation of motion (9.6) as

o

. ; ; Fit

i) +q@s) =Y ajLigs)’™, aj = —;—I. (9.9)
j=1
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9.3. POLYNOMIAL APPROXIMATION 195

If the amplitude of the motion is sufficiently small, then it is reasonable to look for a solution in
the form of a perturbation series

q() =Y _qj(s)L7 (9.10)
j=0

sometimes called the straightforward expansion [182]. In order to facilitate the application of per-
turbation theory to equation (9.9) we rewrite the sum as follows

Y ajLiqsy™t =3 "G(s)L’ (9.11)
j=1

j=1

where the coefficients G (s) are nonlinear functions of the coefficients ¢; (s). We obtain the former
systematically by means of the following equations:

n
Gn=) ajqjsin-j n=12..., (9.12)
j=1

where g;1 « denotes one of the coefficients of the series,

o
g/t = qu+1,kLk ) (9.13)
k=0
that satisfy the recurrence relation
k
qjrik =Y _4iqjk—i - (9.14)
i=0

Notice that g1 x = gk, and go.x = dox. For example, the first two coefficients G (s) are

G1(s) = a190(s)?, Ga(s) = 2a1q0(s)q1(s) + azqo(s)® . (9.15)

It follows from the equation of motion (9.9) and from the expansions (9.10) and (9.11) that the
coefficients ¢ (s) are solutions to the differential equations

qj—i—qj:Gj,j:O,l,..., (916)

where Go = 0. If we arbitrarily choose go(0) = 1, §o(0) = 0, ¢;(0) = 0, and ¢;(0) = 0 for all
j > 0 (that is to say ¢ (0) = 1 and ¢(0) = 0), then the solutions to the perturbation equations take a
particularly simple form. According to the integration formulas developed in Appendix B we have
qo(s) = cos(s), and

N
qj(s) = / sin(s —s') G (s') ds’ (9.17)

0
for all j > 0. This choice may not be the most convenient way of taking into account arbitrary
initial conditions x (0) and x (0), because once we have a sufficiently great number N of perturbation

coefficients ¢ (s) we should obtain the undetermined parameters L and ¢ from the rather complicated
equations

N N
Y gL =x(0), 0 ) 4;(@)LI T = i(0). (9.18)

j=0 j=0
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196 PERTURBATION THEORY IN CLASSICAL MECHANICS

If, for example, we choose ¢, (s) exactly as above for j > 0 (so that equation (9.17) remains
unchanged) but go(s) = Acos(s) + Bsin(s), and ¢ = 0, then we simply have A = x(0)/L and
B = x(0)/(wL). However, we prefer the simpler form of ¢ (s) for the discussion below, which does
not require the initial conditions explicitly.

In the program section we show a set of simple Maple procedures for the application of the
polynomial approximation just described with any form of go(s). When go(s) = cos(s) the first two
perturbation corrections to the trajectory are

1 1 1
q1(s) = m [— — = Cos(s) — 5 cos(2s)}

2 3
2 2 2
a7  58af + 9az aj
= —— —F— CO0S — c0s(2
q2(s) 3 + 588 (s) + 9 (2s)
242 — 3 10a? + 9a

a 2 .
T cos(3s) + Ts sin(s) . (9.19)
The unbounded term s sin(s) in the correction of second order is incompatible with a bounded motion.

Such secular terms are well known in perturbation theory and are commonly removed by means of,
for example, the Lindstedt—Poincaré technique [182] that we discuss later in this chapter.

9.3.1 0Odd Force
The equations developed above apply to any nonlinear force F'(x) provided that 1 < 0. However,

if F(x) isan odd function of x it is convenient to proceed in a different way in order to derive a more
efficient algorithm. In such a case we write the Taylor expansion as

00 2j—1
. 1 d“/=*F
_ 2l g
F(x) = ;F]x = G ae e (9.20)
and realize that the resulting equation for ¢ (s)
o0 ) ) F. 1
) +q) = Y a; L g2, a = _;:_Jlr (9.21)
j=1
suggests the perturbation parameter A = L2. Writing
0 .
q(s) =Y qiHM (9.22)
j=0

and proceeding as before one obtains the same perturbation equations (9.16), except that the inho-
mogeneous terms G ; are different. The reader may easily derive the appropriate equations for their
systematic calculation, and verify that the first two of them are

G1=a193, Ga = 3a192q1 + axqy . (9.23)

© 2001 by CRC PressLLC



9.3. POLYNOMIAL APPROXIMATION 197

Straightforward application of equation (9.17) shows that

qi1(s) = a1 [3—12 cos(s) — 3% cos(3s) + gs sin(s)]
q2(s) = % cos(s) — 3‘51%1% cos(3s)
—3a£ 0_7;3612 cos(bs) + —3a% ;Lzloazs sin(s)
— giszs sin(3s) — %sz cos(s) , (9.24)

where we see secular terms in the contributions of first and second order.

9.3.2 Period of the Motion

From the perturbation expansion for ¢ (s) we easily obtain a perturbation expansion for the period
7. For all r we have x(r + ) = x(¢), so that g(s + t/) = ¢q(s), where t/ = wt, and, in particular,
q(t’) = q(0) = 1. The perturbation expansion for t’ is

o0
T = Z r})»j, 19 =2m, (9.25)
i=0

in terms of the perturbation parameter A chosen to be A = L or A = LZ in either of the two
cases discussed above (expansions (9.8) or (9.20), respectively). Straightforward differentiation of
q(t’) = 1 with respect to A yields

B , . at’
() +4 (1) 5 =0 (9.26)
and
32 ag ot .. ar'\? . . 9%

’ . q1 (S):|
7= lim | = , 9.28
17 o |:q0(s) ( )
and
2 2 . / . 12
o = lim q2(s) + q1(/S)fl+q(S)Tl ’ (9.29)
s—2m 26]0(5‘)
respectively. Substituting the expressions of g (s) derived earlier we obtain [181]
/o /o 1 2
q=0 1= (10al + 9a2) (9.30)
for the general case, and
3 b4
= Jran 1= oo (574 + 80az ) (9.31)

for an odd force.
Proceeding in the same way we obtain perturbation corrections of higher order; aided by Maple
we have derived the results shown in Table 9.1.
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Table 9.1 Perturbation Series for the Period
Arbitrary Force

11=0
T = %naz—i- gnalz
rg:—%alnaz— ga13rr
T4 = 297657'ra1 az + 1287'[61 + gggnal + nalag—i— J'ra4
r5=—3—571a2a13— %naﬁ— %7‘[(136112— 3—5na22a1— iJ'ragag— %(117’[614
Te = gga 7r—|— a T+ 1105533657ta1 az + 8%38571611 ay + 13012547ra23

385 3

+ 32 alazﬂas+ 6471a2614+
4 103565 6

T ag a4+ 48 a1°mwas+ —a1a5r[

31104 ¥ 91
5 875 21 763 275
T7=—ﬁa]_3[122ﬂ— malazsn— ﬁnagazz 78 7[(12(11 a3 — 96 axaiaqgim
385 71995 539 85085 119
- W“13“4” ~ 3456 7 ai®az — ¥“14a3” ~ 15552 a’ 7w — 70 ay ag® w
1 3 335 35
— 504037 — {7 G205 — G2 atlasmw — Sasarm
1425 2550625 18865 28847
18 = Spg A1 A2 T A5 + “Zo150 T a1 a + Tooa T a2 a1 as + 51 Ta2 a13 as
24661 _ 2 2683 223265 30345
+ S a2t avas + g marazas + G war® a® + gy waz’
6551545 1197 401 52661 2 2
+ 8o il + B maz ad + o wazas + By mwai’a
16615 4535 182875 153769
+ S railas+ G admwas + LR warag + 3305w ai® ag
4919915 3335
+ P mabar+ g mald + PR mwatar+ Syagw+ JRararw

+ % as a3
QOdd Force

T = %nal

_ 57
Ty = 128a1 T+ 871a2

49 35
3 = mna1a2+ mal T+ 52037

w= o ratas+ goprat + pm e’ + dea’ra+ pyan

5 = 896?_;23213(12 + 27333521%871 as + 24253525;16871 as + 320&13;_12((1)1 as + 124361432 as
e

T = 04718 1’ 7 a2 + Sggzee n® max® + G an®was + g’ w ag
+ §loz T aras + gheg warazaz+ gogsg s’ w + gy a1’ + iR ar’w
+ 3045 4 7 a2 + gy A T

T L
o+ (RS (o Bt
+ S5 marasaz + 358w aras® + gy asasw + Togeos 7 az’ ag
—l—% 1 +ma7n+ mazawr
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9.3.3 Removal of Secular Terms

In what follows we briefly review the Lindstedt—Poincaré technique for removing unbound secular
terms [182]. For concreteness we apply this straightforward procedure to the expansion (9.8) showing
that equation (9.17) is also useful for that purpose.

If we define g (s) as before, where s =, /y wt + ¢, the dimensionless equation of motion becomes

o
.. ; ; Fjt1
i) +q() =) a;Liq(s)/*, aj = —;—I . (9.32)
j=1
Substituting the perturbation series (9.10), and
e .
y = vl (9:33)
=0
we obtain
J
Go+qo=0, Gj+q;=Gj— Z YmGj—m - (9.34)

m=1

The Lindstedt-Poincaré technique consists of choosing the coefficients y; in such a way that the
right-hand side of equation (9.34) is free from terms that, being solutions of the homogeneous
equation ¥ (s) + y(s) = 0, give rise to unbound terms after integration [182]. Since G does not
contain such terms we set y1 = 0. At second order we choose

Saf 3az
V2 =— <? + T) (9.35)
to remove the term proportional to cos(s) from
1 5 a% Saf 3az af
Gy = 7 (3a2 — 2a1) cos(3s) — 3 cos(2s) + <? + e cos(s) — 3 (9.36)

The resulting correction of second order is periodic:

2 58 2 +9 2
q2(s) = —%1 + % cos(s) + %1 cos(2s)
2a% — 3
T c0s(3s) (0.37)

9.3.4 Simple Pendulum

As an illustrative example consider the equation of motion for the simple pendulum [183]
é:F@):—%ymm, (9.38)
where [ is the pendulum length, 6 is the angle subtended with respect to the equilibrium position,

and g is the gravitational acceleration. If we apply the method developed above with x = 6 and
m = 1 we have an expansion like (9.20) because the force is an odd function of 6. Since F; = —g/!
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and F, = g/(6l), we have a; = 1/6, and ap = —1/120 that we substitute into equation (9.31) and
obtain

, wo ., lxm

175 27 1536

which agree with the first terms of the expansion of the integral representation of the period of the
pendulum [183].

(9.39)

9.4 Canonical Transformations in Operator Form
9.4.1 Hamilton’s Equations of Motion

We consider a classical dynamical system described by a set of generalized coordinates q =

(g1, g2, - - -, qn) and conjugate momenta p = (p1, p2, ..., pn). The trajectory in phase space is
given by Hamilton’s equations of motion
oH oH
gi=—,pi=——, j=12,...n, (9.40)
J 3Pj J qu

where H = H(q, p, t) is the Hamiltonian [184]. Wherever necessary we explicitly indicate the
dependence of g and p on the initial conditions qg and po at a given time (say ¢+ = 0) as d = q(qo,

Po. #) and p = p(do, Po, 1), respectively.
The velocity of change of a general function F(q, p) is given by

oF . 8F oF 0H oF 0H
= Z( p,) > (a—a— - ——) =(F.Hyigp.  (941)
ap; ‘o \0g;9pj  9p;j g,

where {F, H}4, p) denotes the well-known Poisson bracket [185]. In general, for any two functions
F(q, p) and G(q, p) we write

n

oF 0G oF 0G

{F.Glgp1 =) <8_8_ - 8_8_> : (9.42)
“— \9q;9p;  9p; 3q;

In particular, the coordinates and momenta satisfy

{q,’, pj}[q,p] = (Sij . (943)

9.4.2 General Poisson Brackets

It is convenient for our purposes to generalize the Poisson brackets for an arbitrary set of 2n

variables X = {x1, x2, ..., Xn, Xp41, ..., X2, } @S
n
oF 090G oF 090G
(F.Gly=) (a_ — —> . (9.44)
=1 Xj 3Xn+j an_i_j 8xj

We can rewrite this equation in a more compact form in terms of the antisymmetric matrix

0 1
J:( 1 o)’ (9.45)
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where 0 and 1 are the n x n zero and unit matrices, respectively [185]. One easily verifies that
dF 0G
(F.Gh=) Y Jij——. (9.46)
; J

where J;; denotes the element in the ith row and jth column of J. In particular,
{xioxj}, = Jij - (9.47)

ConsiderthesetV = {A, B, C, ...} of differentiable functions of x. The Poisson brackets satisfy

{A,B} eV, (9.48)
{A,B+C}={A,B}+{A,C}, (9.49)

a{A, B) = {0 A, B} = {A,aB), (9.50)
{A,A}=0= {A, B} = —{B, A}, (9.51)
{A,{B,C}} +{C.{A, B}} +{B,{C,A}} =0, (9.52)

where « is a complex number. These equations define a Lie algebra [48]. One easily proves the
properties (9.48)—(9.51), but the proof of Jacobi’s identity (9.52), although straightforward, is rather
tedious [185]. However, using Maple we can easily verify Jacobi’s identity for particular cases. In
the program section there is a set of simple procedures for that purpose.

9.4.3 Canonical Transformations

A change of variables
yi=y;X), j=1,2,...,2n (9.53)

is said to be canonical if {y;, y;}x = {xi, x;}x = Ji;. Expanding the Poisson bracket for any two
functions F(y) and G(y), and using the chain rule we easily prove that

2n 2n
dF 0G
{F, G})C_ZZ y“yj} . (9.54)
i1 i1 dyi 3)’]
Jj=
This equation states that
{Fv G}x = {Fv G}y k] (955)

provided that the transformation (9.53) is canonical.
Given a differentiable function F(x) we define an operator

2n 2n

dF 9
F=Y"%"Jj— i (9.56)

i=1j=1

suchthat FG = {F, G}, for any differentiable function G (x). In what follows we consider a change
of variables y = y(x, 1) depending on a parameter A in such a way that y(x, 0) = x, and

ay; N
D Wy, 9.57
o Vi (9:57)
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where W is the operator generated by a differentiable function W (x, A) according to equation (9.56).
By means of equation (9.57) and the chain rule it is not difficult to show that

dF(y) e
o =W FL=WF. (9.58)

Assuming that (d/dA)(0 F/dx;) = (3/9x;)(d F/d)\) we easily prove that

d
T EW, Gk = (W, F} Gl +{F AW, Gl = {W.{F, Gl , (9.59)

where we have used Jacobi’s identity in order to derive the second equality.
We denote the transformation x — y with generator W (x, 1) and parameter A as

yiCe,A) = Tw (i, &) = Tw ()x; (9.60)
where the transformation operator Tw is a solution to the differential equation

—Tw=WTy, Tw@©) =1. (9.61)

Differentiating the equation Ty 7;," w = 1, which defines the inverse 7}, of Ty, with

respect to A we easily obtain

Il
=

— Tyt =-1,'w, 7,}0) =1. (9.62)
It follows from equation (9.58) and the initial condition y(x, 0) = x that
F(y)=F (fwx) — fwF(x). (9.63)
Analogously, from equation (9.59) we have
(F), GO} = TwlF (0, GO} (9.64)
which shows that the transformation (9.60) is canonical:
{yi.yj}, = Tw {xi.x;}, = Twdij = Jij - (9.65)
For this reason we can write

2n

dy,- W
d_)\'z{vai}x:{Wsyl‘}y: ' JJIE’ (966)
j=1
which is equivalent to
dy; oW dy; oW
i _ [ Wi W 12, . (9.67)
dx 0Yitn dx dyi
These expressions give Hamilton’s equations of motion as a particular case when W = —H, A =1,
y = (g, p), and X = (do, Po)-
If W is independent of A we have
Tw (L) = exp (AW) , Tw) ™ =exp (—AW) ) (9.68)
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It is left to the reader to prove that in this particular case the function W (x) is invariant under the
canonical transformation of variables x — y: W(y) = W(x). The exponential operator (9.68) may
be expressed as a Taylor series about A = O:

Xk

~ AL

Tw() =) FW" . (9.69)
k=0

The operator form of the canonical transformation just outlined provides a useful expression for
the solution of the inhomogeneous differential equation

%Y(x, A = WX, MY X L) + F(X, 1) (9.70)

with a given initial condition Y (x, 0). ChoosiAng Y(X, L) = fWK(x, A), we easily solve the resulting
differential equation for K (X, A) dK /dA = Tv;lF obtaining

A
Y (X, )\)=/ Tw ) Tw (A’)*lF(x, XY da 4+ Tw (WY (X, 0) . (9.71)
0

The operator form of canonical transformations based on Lie algebras offers some advantages over
the more familiar canonical transformation commonly used in classical mechanics [185], and has
been extensively studied by several authors [186]-[191]. An interesting physical application would
be as follows: suppose that x = (q, p) is a vector in phase space, and that y = y(x, ) is a new set
of generalized coordinates and conjugate momenta. The equations of motion for the Hamiltonian in
the new variables Fl(y) = H(X(Y)) = H(X) read

i = b Hool, = [ A (9.72)

A convenient choice of the transformation may lead to simpler equations of motion.

9.5 The Evolution Operator

We can view the solution x = {q, p} of Hamilton’s equations of motion (9.40) as a canonical
transformation x = X(Xp, t) depending on the parameter A = r and write

N d -~ A A ~ ~
X = Ty ()Xo, ETHO) =—HTy@®), THO)=1. (9.73)

This expression of the trajectory in phase space is reminiscent of the evolution of the state vector in
quantum mechanics discussed in Section 1.3.

If the Hamiltonian is independent of time we easily obtain an explicit formal expression for the
evolution operator: fH(t) = exp(— tI:I) where H (X) = H (Xg) [185]. However, even in this simpler
case we are not able to derive exact analytical solutions to Hamilton’s equations of motion, except
for particular models. The substitution of the expansion Ty =1—tH + (tH)? /2 + ... for the
exponential operator yields a Taylor series for x about # = 0.
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9.5.1 Simple Examples

In what follows we consider Hamiltonian functions

_ P

H
2m

+ kyxM (9.74)

that we easily transform into their dimensionless form

2
H = ma?L? <”7 + qM> (9.75)
by means of the change of variables already introduced above: x = Lg, px = mwlp, s = wt,
where the arbitrary length L and frequency w satisfy

kMLM—Z

—=1. (9.76)

maw

In the case of the harmonic oscillator M = 2 it is preferable to choose k2/mw? = 1/2 so that
H = me? + g2 (9.77)
) ( 4 ) ' '

Later on, we apply perturbation theory to the anharmonic oscillator,

2 2.2
H= 5_;1 ’"“’2’“ kM (9.78)
that we may rewrite as
2 2 M-2
r° . q kmL
H = mo’L? (7 +5+ qu> A= (9.79)

Although we believe that one should always transform physical equations into dimensionless math-
ematical expressions, we will sacrifice our philosophy in this chapter to facilitate comparison of
present results with those of other authors.

One of the simplest models is given by the Hamiltonian H (g, p) = p?/(2m) + fq, where m
and f are real numbers, which applies, for example, to a particle of mass m under the effect of a
gravitational field (f = mg). In this case the expansion of the exponential operator 7y yields the
exact result

2
. t o ft
g = op[-tAo0]w=g0+0 I
m 2m
p = exp [—tﬁ (Xo)] po = po— ft (9.80)

because the series terminate when H3¢q = 0 and A2 pg = 0 [185].
Another interesting example is the harmonic oscillator

2 2.2
p mw-q
H(g,p)= -+ , (9.81)
2m 2
where m and w are, respectively, the mass and frequency. The exact solution is
q = qo cos(wt) + Po sin(wt), p = po CoS(wt) — mwqo Sin(wt) . (9.82)
maow
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As discussed above, the application of the expansion of the time evolution operator Ty =
exp[—t H (Xp)] to a given function of the initial coordinates and momenta F(Xp) leads to the Taylor
series of F(x) about r = 0. For example, in the case of the harmonic oscillator the expansion

12 3 *
2 Y Y 2 2 3 2 4
(1—IH(X0)+EH()60) — EH(XO) —i—ﬂH(xo) —) q0

pot  ’qot?  &Ppor®  w'qot’
St T om 24 (989
exactly agrees with the Taylor series of ¢ in equation (9.82) about r = 0.

By means of canonical transformations we may obtain new dynamical variables that render the
equations of motion simpler. For example, if a function z(q, p) satisfies Hz = ¥z, where ¢ is a
complex number, then without much thinking we realize that z = zp exp(—®17). Notice that what
we are actually doing is seeking for eigenfunctions of the operator H.

Taking into account that in the case of the harmonic oscillator Hg = —p/m and Hp = maw?q,
we conclude that the simplest eigenfunctions of H are linear combinations of the coordinate and
momentum: z = c1q + ¢z p. A straightforward calculation shows that there are two solutions given

by

] 1
a=c (q—i—l), ¥ =iw; b=—(>{mwq + p), * = —iw, (9.84)
mw 2c1

where ¢1 is an arbitrary complex number. Notice that the transformation (¢, p) — (a, b) is canonical
because {a, b}|4,p) = 1. We arbitrarily choose c; = /mw/2 so that

a= " g+ ), b=i /" (g = L) = ia*. (9.85)
2 mw 2 mw

The inverse transformation is

q= ! (a—ib) =,/ iER(a), p= /@(b —ia) = vV2mwS(a) . (9.86)
2mw mw 2

_ In terms of these new variables the equations of motion have the simpler form & = —iwa and
b = iwb so that one easily obtains the solutions

a =apexp(—iwt), b =byexp(iwt) . (9.87)

The pairs of alternative initial conditions (ag, bg) and (qo, po) relate each other exactly in the same
way as (a, b) and (¢, p) do, namely, through equations (9.85) and (9.86). Taking this fact into
account, one easily recovers the solution (9.82) from equation (9.87). In terms of the new variables
the Hamiltonian becomes

H(q(a,b), p(a, b)) = —iwab = wla|> = w|ao|® . (9.88)

In order to express the canonical transformation just discussed in operator form, we consider the
functions

b 2 b?
Koa,b) =2 Kiab)y=2L, K_(a,b)= = (9.89)
2 4 2
and their corresponding operators
A 1 d ad N aod 4 ad
Ko==z(b—-a— ), Ky ==-—, K. =—b—. 9.90
0 2( b “aa) T 200 da (9.90)
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We expect the canonical transformation to be given by the product of exponential operators U=
exp(BK_)exp(aK4)exp(®Kp). Taking into account that

Ieoa = —g, I€+a =0, K_a= —-b,
Rob = g Rob= % R_b=0 (9.91)
it is not difficult to verify that
Ua = exp(—0/2)(a — Bb), Ub =exp(6/2) [(1 — aB/2)b + aa/2] . (9.92)

The reader may find detailed discussions of the application of exponential operators in most books
on Lie algebras [4, 7]. If we require thatg = Ua and p = Ub, then it follows from equations (9.92)
and (9.86) that = —i, B =i, and 6 = In(2mw); that is to say:

U = exp (ik_> exp (—ilﬁ) exp [In(me)ko] . (9.93)
The inverse transformation is given by the operator
U™t =exp [— In(me)Iéo] exp (il@r) exp (—i[?,) , (9.94)

where Ko, K, and K_ have exactly the same form (9 90) except that a and b are replaced with ¢
and p, respectively, so thata = U~1¢, and b = U1 p.

9.6 Secular Perturbation Theory
If we cannot solve the equations of motion for the Hamiltonian
H(x,t) = Ho(X) + AH'(X, 1), X =(q, p) (9.95)

exactly, but we expect A H' to be just a small correction to the known dynamics of Hp, then we may
resort to perturbation theory. Here we present this approximate method in a way that closely resem-
bles perturbation theory in the interaction picture of quantum mechanics outlined in Section 1.3.1.
Expanding the trajectory in phase space as

o0

x=» xD, (9.96)

j=0

and taking into account the equations of motion for the Hamiltonian (9.95), we obtain the following
differential equation for the coefficients x(/)

XD = —Hox — A'xU-D . j=0,1,..., (9.97)

where x(=1 = 0. Because each of these equations is a particular case of equation (9.70), the solutions
are

O (xo, 1) = Tp(t)Xo

t
XD (x0, 1) = / Tro (t — ') K97 (x0, ") H' (X0, ') dt’, j >0, (9.98)
0
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where fHO @) = exp[—zﬁo(xo)]. Notice that the approximate solution satisfies the initial conditions
at every perturbation order because X (xg,0) = Xo and x’(xp,0) = 0 for all j > 0. We
calculate the corrections recursively for j = 1,2, ..., taking into account that fHO ) F(Xo, 1) =
F(Tu, (%0, 1) = F(xX@(x, 1), 1), where x© (xo, ) is the known unperturbed trajectory. The
problem reduces to the calculation of the integral in equation (9.98).

This straightforward perturbation theory is called secular because the corrections x> commonly
exhibit unbounded (secular) terms in the case of bounded motion [189]. We have already discussed
this point earlier in this chapter for the polynomial approximation.

9.6.1 Simple Examples

In what follows we consider weak perturbations of the well-known dynamics of the harmonic
oscillator

2 2.2
P mw-q
Ho(q,p)=%+ 5

that gives rise to the trajectory in phase space given by equation (9.82). In the program section
we show a set of simple Maple procedures for the application of perturbation theory according to
equation (9.98). As a particular example we consider a cubic perturbation H'(g, p) = ¢° that
makes the resulting potential-energy function a well with a barrier of height V (¢,,) = m3w®/(5412)
at g,, = —mw?/(3). Figure 9.1 (a) shows this potential-energy function and V (g,,) for arbitrary
values of m, w, and A < 0. In order to shorten the size of the results we substitute the particular
initial condition po = 0. For example, the first two corrections to the trajectory are

(9.99)

2
d® = 20 _[coswr) + 2 cos(wr) — 3]
2mw?
3
q(z) = 4o [3cos(3wt) + 16 cos(2wt) + 29 cos(wt) + 60wt sin(wt) — 48] .(9.100)
16m2w*

Notice the secular term 7 sin(wr) that makes |¢®| grow unboundedly even for initial conditions
leading to periodic motion.

The polynomial approximation discussed in Section 9.3 and the secular perturbation theory in
operator form give exactly the same result. To obtain the trajectory for the cubic oscillator from the
former approach we set F; = —mw?, F» = —34, and F; = 0forall j > 2 in equation (9.8), so
thatay = —F/F1 = —34/(mw?), and a; = 0 for all j > 1 in equation (9.9). By straightforward
inspection of equations (9.19) and (9.100), one easily verifies that L/*1q; (wt) and /¢ (¢) agree
for j =1, 2 provided that L = ¢g.

Itis instructive (and also a suitable test for the equations and programs) to consider the perturbation
H'(q, p) = mw?q?/2, because it enables us to compare the perturbation series with the Taylor
expansion of the exact solution obtained by substitution of w+/1 + A for w in equation (9.82).

Present secular perturbation theory in operator form closely resembles the application of pertur-
bation theory to the Heisenberg equations of motion in quantum mechanics discussed in Section 1.3.
It is instructive to compare classical and quantum-mechanical results. For that purpose we consider
dimensionless anharmonic oscillators of the form

P2 g2

H=7+7+AqM,M=3,4,.... (9.101)
Table 9.2 shows ¢ and ¢®@ for M = 3 and ¢ for M = 4, obtained by means of the Maple
program mentioned above with m = » = 1. Comparing them with the corresponding quantum-

mechanical expressions in Table 1.2 we realize that the former are formally identical with the real
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FIGURE 9.1

Potential-energy functions V (¢) = mw?q?/2 — |Alq° (a) and V (¢) = mw?q?/2 — |r|¢* (b), and
their barrier heights V (g,,).

parts of the latter. The imaginary parts of the quantum-mechanical results arise in the process of
ordering the noncommutative coordinate and momentum operators according to the rule [g, p] = i
and have no classical counterpart.
9.6.2 Construction of Invariants by Perturbation Theory

The total rate of change of a function F(q, p, ¢) with time is

dF <8F

— == F. H . 9.102
o= (5r) e, (0102
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Table 9.2 Secular Perturbation Theory in Operator Form for the

2 2
Dimensionless Anharmonic Oscillators H = % + 1 +agM

M=3
2 2
g = go po sin(21) — 2qo po sin(r) + <—p—2° + 7°> cos(21)
2
+(2 P + qB) cos(r) — 28— 20

15
q? = (2p3 — pogd) sin21) + ( &l

9pogt 3
e _ ﬂ) sin(31) + (q§ + 4o p3) cos(21)

6
151 p3  55qopE2 151 poq? 29q
(— 7 — 0 — 0 4 =2 ) cos(r)

15¢ 5 65 .
+ q0p0+ pg + POqo) Sln(l)

+
~~

+

16 4

9g0p2 . 348
+ (— 00+ lig)) cos(31) — 343
M=4
2 3 2 3 3 2
a® = (242 - ) sin@n + (2o - 2 2 20k ingy

2 3 3 2
+ (_3(,%1;0 + %) cos(31) + (M + 3% 3”°Tp°> cos(r)

A function 1(q, p, t) is called an invariant if d1/dt = 0; that is to say, if

al N
<—) ={H, I}y p=HI. (9.103)
ot

q.p
The reader may easily verify that with just a change of sign in the main equation, the method
outlined above proves suitable for constructing invariants by means of perturbation theory according
to equation (9.103) [192].

9.7 Canonical Perturbation Theory

In what follows we outline a classical perturbation theory free from secular terms which we
present in a way that closely resembles the perturbation theory for operators in quantum mechanics
discussed in Section 3.5. Canonical perturbation theory has been known for a long time and widely
applied to numerous problems in classical mechanics. Here we just mention some references [186]-
[189], [193]-[195] where the interested reader may look up others. In order to illustrate the main
ideas underlying canonical perturbation theory, we choose a simple anharmonic oscillator in one
dimension.

Consider the Hamiltonian H (¢, p) = Ho(gq, p)+AH'(g, p), where Hy corresponds to a harmonic
oscillator and the perturbation H’ is a polynomial function of g and p. If the degree of the polynomial
H' is greater than two, then the dynamical problem is nonlinear.

The complex variables a and b defined in equation (9.85) considerably simplify the application of
canonical perturbation theory exactly as the creation and annihilation operators are suitable for the
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application of perturbation theory for operators in quantum mechanics. We explicitly indicate this
change of dynamical variables as

H(a,b) = UH(a, b) = H(q(a, b), p(a, b)) = Ho(a, b) + LH'(a, b), (9.104)

where Ho(a, b) = —iwab as in equation (9.88).
The aim of the approach is to find a change of variables

a(A,B)=TA, b(A,B)=TB (9.105)
with inverse
A(a,b) =T a, Bla,b)=T"1p (9.106)

such that the transformed Hamiltonian depends on A and B only through Ho(A, B) = —iwAB; that
is to say:

THA, B =H (f"A, fB) —K (I:IO(A, B), A) . (9.107)
Notice that Hy(A, B) is a constant of the motion:
< fio. B) = {fio. k) =0. (9.108)
dt

The equations of motion for the new dynamical variables A and B are

. 0K
A==

: IK
=— =—iQA, B=—— =iQB, (9.109)
9B dA

where Q = a)(BK/aflo) is a constant of the motion because it is a function of Hy. Therefore, the
solutions are given by
A= Agexp(—it), B = Boexp(ift) , (9.110)

where Ag and By are appropriate initial conditions at r = 0.

Later on we will show that the Hamiltonian for the harmonic oscillator in terms of the action J is
Ho = Jo, sothat Q@ = w(dK /0 Hy) = 9K /dJ is one of Hamilton’s equations for the action-angle
variables [196].

In order to express the canonical transformation in a more familiar way we write ¢ and p in terms
of a new coordinate Q and conjugate momentum P instead of the complex variables A and B. Taking
into account equation (9.92) we write

Q=UA, P=UB. (9.111)
It is not difficult to verify that we have carried out the following transformations of the Hamiltonian
K (ﬁo, )\) —TH=T0H=K (UHO, ,\) — UK (Ho, ) , (9.112)

from which it follows that

K (Ho(Q, P), 1) = H(q(Q, P), p(Q, P)) = U 'TUH(Q, P) . (9.113)
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Accordingly, the canonical transformation of the coordinate and momentum is
x=U"T0y, y=U"T"10x, (9.114)

where X = (¢, p) andy = (Q, P).

The transformed Hamiltonian K is commonly said to be in (Birkhoff-Gustavson) normal
form [186, 188, 189], [193]-[195]. In practice it is not possible to obtain the normal form ex-
actly (except for some trivial problems), and one resorts to an approximation. In what follows we
show how to obtain the normal form as a perturbation series:

K (FIO, A) - i K; (Ho) A, Ko=Hp. (9.115)
j=0

We choose a transformation operator 7* given by equation (9.61) with an operator W to be determined
by perturbation theory. By straightforward substitution of the power series

o0

T = Y Wiy, Th=1, (9.116)
=0
o0

W= > MWy, (9.117)
j=0

into equation (9.61), we obtain a recurrence relation for the operator coefficients T, in terms of the
operator coefficients W;:

;o %Z_: (9.118)
j=0

Exactly in the same way we derive a recurrence relation for the coefficients of the expansion of the
inverse operator

=3 (f—l)j , (f—l)o -1 (9.119)

j=0

from equation (9.62) as follows:

. 1=t .
(T_1>n == X(:) (T—l)niH W, . (9.120)
j=

The expansion of equation (9.107) in a perturbation series leads to

fnﬁo + fn_lﬁ/ =K, (9.121)
that we rewrite as follows:
. n—1
HoW, = Z W;T,_jHo+ (n + DI,H —(n+DKpp1=F, — (n + DKy . (9.122)
j=0
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Notice that at the nrh step the unknowns are W,, and K,, 1 because
n—1
Fy=Y W;T,_jHo+ (n+ DT, H' (9.123)
j=0

contains terms already calculated previously.

In order to obtain those unknowns we simply take into account that I-Nloa.f'b_" =i(j — k)walbk.
On choosing K, +1 so that F,, — (n + 1)K,,+1 is free from diagonal terms a’/ b/ we can apply

-~ . Jpk
Holaiph = 22 j+k (9.124)
(j —k)wi
to obtain
Wy = Ho ' [Fy = (n + DKy4a] - (9.125)

An alternative way is to write

(IA?O —l—a)il = /0 exp [z (I/:}o +a>] dt, a >0, (9.126)
—00

and to take into account that (Ho + o) 1K,+1 = K,4+1/c because HoK, 1 = 0. Therefore, if we
define

Wi () =/0 exp 1 (flo+a)]Fn dr (9.127)

-0
we have
Kp+1 = L limaW,(x), (9.128)
n+1a-0

and

DK,
W, = IimO[W,,(a) - M} .

o

(9.129)

These expressions are suitable for the systematic application of computer algebra because we

can easily program the effect of exp(rHo) on any function of a and b as exp(rHo)G(a, b) =
G(aexp(iwt), bexp(—iwt)).

It follows from inspection of equation (9.114) that we can express the operators U and 7" either
in terms of ¢ and p or in terms of Q and P, omitting explicit reference to the intermediate complex
variables a, b, A and B. Proceeding in this way greatly facilitates programming the equations for
the transformation. It is worth noting that the canonical transformations in operator form (9.114)
give both the direct and inverse change of variables, y(x) and x(y), explicitly. On the other hand,
the traditional canonical transformations known in classical mechanics since long ago [185], and
widely applied to many problems of current interest [197]-[199], give implicit expressions. In fact,
the traditional canonical transformation for the simple anharmonic oscillator discussed here is given
by a generating function F>(¢, P) = g¢P + S(q, P) as

_35(g, P)
0 = g+ —2—. (9.130)
P
P po 8@ P (9.131)
dq
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Consequently, to obtain Q(g, p) and P(q, p) explicitly, we should first solve equation (9.131)
for P(q, p) and substitute it into (9.130) to derive Q(q, p). This approach is considerably more
cumbersome than the operator form of the canonical transformations, and in the end both yield the
new coordinate and momentum as perturbation series:

Q=q+Y Qiq.p. P=p+> Pi(q.p)r . (9.132)
j=1 j=1

In the program section we show a set of simple Maple procedures for the systematic application
of canonical perturbation theory according to the equations above. Choosing the cubic and quartic
perturbations H' = ¢3 and H' = ¢*, respectively, as illustrative examples we obtain the results in
Table 9.3. If we substitute A = f/6 and & = f/24 in the cubic and quartic cases, respectively, our
results through second order agree with the expressions derived recently by means of the traditional
canonical transformations [199]. It is straightforward to generalize the equations given above in
order to treat anharmonic oscillators in more than one dimension [194].

In closing this section we mention that we can entirely omit the intermediate transformation to
the complex variables a and b, because equations (9.127)—(9.129) are valid for any set of variables.
If, for example, we choose ¢ and p, this approach offers no difficulty because we know the effect of

exp(t Ho) on them. Although in this way we bypass the transformations U and U ! the resulting
procedure is slower because the integrals are more complicated.

9.8 The Hypervirial Hellmann-Feynman Method (HHFM)

The simplest and most efficient way of obtaining the canonical perturbation series for separable
classical models is based on the hypervirial and Hellmann—Feynman theorems [200]. This approach
is reminiscent of the method of Swenson and Danforth discussed in Section 3.3 that facilitates the
application of perturbation theory in quantum mechanics. In order to apply the HHFM we have
first to present the classical problem in a way that closely resembles a quantum-mechanical one,
and develop the classical counterparts of the hypervirial and Hellmann—-Feynman theorems given in
Section 3.2.

For simplicity and concreteness, we consider the periodic motion of a one-dimensional model
with Hamiltonian

pZ
H(q,p) = om T V(g) . (9.133)

m

The time average of a function F (g, p) is given by

F=: / " Fg), peydr (9.134)
0

where 7 is the period of the motion. In particular,

d—G ={G,H} = l[G(t) —-GO)]=0 (9.135)
dt T

is the classical hypervirial theorem. Choosing G (g, p) = f(g)p we obtain
2Ef' —2f'V — fV' =0, (9.136)
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Table 9.3 Canonical Perturbation Theory in Operator Form for

2 2 2
mw .
H=2L %9 L ;4™ (Continued).
2m 2
M=3
Ki1=0
_ 15 _Hg?
Ky = 4 5m3
K3=0
— _ 105 _Ho®
K4 = 16 o2 ;b
Ks=0
_ 115755 _Hp*
Ko =— " om0
2 2
Y P
01 = mol +2 m3 ot
0, = L e 11 qp?
2= 16 m2ot 16 m4 b
_ 53 _q* 465 ¢?p* | 1us _pt
O3 = 16 m3w6+ 16 msws"‘ 8 ! ol0
04 = — 28889 qp* 4 4795 ¢® 12869 4°p?
= T 512 mfelZ U 12 miaf 256 B 10
Q5 = 317095 > 4 28571 r2q* 51131 _ p® 4 22183 q°
5= TBI2 9,14 64 T w2 256 il 16 512 ;5 10
Qp = — 12574859 ¢ p* 7575957 g p® 1496055 ¢° p?
6 =7 78192 ;U0u6 8192 nl2,18 8192  mBolt
L 1474623 q’
8192 ;b 12
_ _2qp
Pl - Wl(()2
_ 43 4¢*p _ 1 _pt
P = 15 m2 ot 16 m4 o0
__ 5 4qp° _ 3p
P3=-73 5 o8 16 5%
Py—_ 2049 ¢°p° 4171 g¢'p 10389 p°
4= 7 256 mbul0 512 % 8 512 m8 o2
po— _ 50485 ¢°p _ 16811 qp° _ 1185 ¢°p°
5= 256 m5 10 256 m9 % 4T o2
po— _ 3274377 _ p’ 2013997 ¢®p _ 3978499 ¢*p’
6= 8192 ml2 o8 8192 mbol2 8192 mB oA

6691551 g% p°
8192 ;10,16

Wo = — L ¥204% ptp*+i g p*+4%)
0="12 m @)@ o
_ 3 8@ p+pip+ipt—ghH
Wi= 3 3 s

=
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Table 9.3 (Cont.) Canonical Perturbation Theory in Operator Form for

2 22
p mow-q M
H=—+——7"+1
2m 2 4
M =4
_ 3 _Hg?
Ki= 3 o2,
_ _ Ho®
Ky = R
_ 375 _Ho*
K3s= 76 nsom
_ 10689 _Ho®
Ky = 64 8,6
_ 87549 _ Hp®
Ks = 64 710,20
_ 3132399 _Hy'
Ke = T 256 ml2oA
_ 54° 94 p?
01 = 8m w? 8m3 w4
0y =— 1L ¢ _ 4L @p2 493 gp°
2 = 128 m2o? 64 ;46 128 716 48

03 = 49 q’ | 56423 e pt L 8131 @ p? | 19257 ¢pb
3= 1024 w346 T 1024 mTol T 1024 m5e8 T 1024 m9ol2
04 = — 11229 ¢ p® 8237815 ¢5p* 1422157 ¢ p?
4= 7 37768 2 ol6 16384 B o2 8192 B o0
_ 3434637 ¢°p® _ 56829 _4°
8192 w0 o% — 32168 miof
05 = 957363 gt L 721934803 q° p® 841618031 _¢° p®
5= 267144 ;5,0 T 131072 miloie 262144 m13 o1
4 169181199 g pY 4 488103927 q’ p* 205785691 ¢° p?
262148 15 20 131072 m9ol 262144 17 12
Qg = — 317705 g% 230044788423 ¢°p® 102328046375 ¢°p*
= T 7194308 b o2 7194308 T o0 7194304 710,16
7267119483 ¢ p? 58263714797 ¢’ p® 51873744571 ¢° p'°
2097152 mB oA 1048576  miZul8 2007152 ;6 o2
17331036841 ¢ p*?
T4194304 B o2
p, — _154%p _ _3p°
1 8m w? 8m3 wt
_ 835 g*p 311 g%p | 131 _p°
Pr= 108 770f T 68 wies T 128 pbop
Pa— _ 4221 _p' 24943 ¢°p _ 29109 ¢’p° _ 53025 g¢p’
3= T 1024 o2 1024 3P 1024 w70 — 1024 m5of
P, — 1335299 > p’ 3000483 ¢° p® 6642697 ¢* p° 4 3049571 @p
4= 78192 0,1 8192 b 10 16384  mB o2 32768 miwb
652835 _ p°
t 3768 iz
Pe — _ 27973029 p 94246393 ¢°p 596711177 4% p°
5= T 262144 5 262144 ;5,0 262144 mT o2
551855349 ¢%p® 416637985 ¢t p’ 265471245 ¢°p°
131072 m9oW 181072 mil o 262144 ;13 18
P — 151826257737 ¢ p° 27329970085 ¢'° p° 13856811429 g2 p*t
= T 4194304 g0, T T 2097152 mBol T T 2007152 mIB o2
- 45562683987 g% p’ 4 104791019465 q* p° 4 5863791011 2 p
1048576  mIZ 18 4194304 I8, T T 4194304 B ol2

| 2566494119 pt
~7194304 pl8o%

Wo — _ 8p%q+84° p+i (¢*—p?)
- 16 m2 w3
9p°¢—-9¢° p+i (99 ¢* p?+99 42 p*+4°+p?)
W1 =— 4.6
24 m* o
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where E = H is the energy of the motion. In addition to the different meaning of the expecta-
tion values, this expression differs from the quantum-mechanical one in equation (3.16) in a term
proportional to 42 that arises from the noncommuting properties of the coordinate and momentum
operators.

In order to obtain the classical Hellmann—Feynman theorem, we suppose that the potential-energy
function depends on a parameter A: V = V (g, A). The action is [196]

1 1 q2
J:Z_yﬁpdqz_/ J2m(E — V) dq (9.137)
T g q

where the first integral is taken along the periodic trajectory, and the turning points g1 and g2 in
the second integral are roots of V (g1, A) = V (g2, A) = E. Equation (9.137) gives the energy as a
function of A and J that we keep constant. Differentiating equation (9.137) with respect to A, and
taking into account that p(g1) = p(¢g2) = 0and aJ/9A = 0, we obtain

g2 g1 /42 dp /42 IE VY . 4
< = Lag = — - d
P(q2) 5= — P (q1) 5= + . % q L\ T q ~dq
1 ((dE 3V ., 1 (T(dE 9V
- (=)ot = = ———)dt=0, (9138
2y§<ax a/\)q 1 2/0 (a)\ ax) (9.138)

which becomes the classical Hellmann—-Feynman theorem

IE 3V
A A (9.139)
FYSRRFY)

Thisexpression is identical to the quantum-mechanical Hellmann—Feynman theorem in equation (3.7)
except for the different meaning of the expectation value.

9.8.1 One-Dimensional Models with Polynomial Potential-Energy Functions
For simplicity, in what follows we consider anharmonic oscillators with polynomial potentials
n’la)2 2 M

as simple nontrivial illustrative examples. We will obtain the perturbation series for the energy
o
E(J, %) = Z E; () (9.141)
i=0

in terms of a fixed value of J that resembles the quantum number of the quantum-mechanical models.
The coefficient Eq(J) is the energy of the harmonic oscillator for the same value of the action. In
this case the calculation of the integral in equation (9.137) is straightforward giving

=—.

J (9.142)

Because the potential-energy function of the anharmonic oscillator is a polynomial function of ¢, it
is convenient to choose

f@)=q¢" 1L, N=12,... (9.143)
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so that equation (9.136) becomes
2(N —1)EQN—2 —m&*NQy —A2N + M — 2)Qnsm—2 =0, (9.144)

where

Oy =4q". (9.145)

Substituting the perturbation expansion
S .
Oy =) 0N (9.146)
i=0

and the energy series (9.141) into the hypervirial equation (9.144), we obtain a recurrence relation
for the perturbation coefficients:

1 P
ONn,p= > | 2(N = 1) Z EiOn-2p-j— N+ M —2)ONntm—-2p-1 | - (9.147)

mN w o,

The Hellmann—Feynman theorem

0E
= .14
m Om (9.148)

provides a necessary relationship between the coefficients of the series (9.141) and (9.146):
1 .
E.,' = ;QM,/'_;]_, ] Zl, 2,... . (9.149)

We can obtain all the perturbation corrections to the energy and averages Qx from
equations (9.147) and (9.149). It follows from Qg = 1 that the initial condition is Qo , = 8,0. In
order to obtain E, we have to calculate Qy ; forall j =0,1,...,p—1,and N =1,2,...,(p —
J)(M —2)+2. Notice that equations (9.147) and (9.149) are so similar to their quantum-mechanical
counterparts in Section 3.3.1 that one easily writes a set of Maple procedures for the classical models
by slight modification of the quantum-mechanical ones already given in the program section.

Aided by Maple we calculate as many analytical perturbation corrections as desired. Table 9.4
shows results for the cubic (M = 3) and quartic (M = 4) perturbations as illustrative examples.
Writing the Hamiltonian of the anharmonic oscillators in dimensionless form the reader may easily
verify that the actual perturbation parameter is 8 = Am~Y/2¢~(M+2)/2 and that the energy coeffi-
cients satisfy E; (m, w) = wE; (1, Lym~Mi/2¢=M+2)j/2 Notice that if M is odd, then E;41 = 0
and Qy_; = 0if N+ is odd as already discussed in preceding chapters for the quantum-mechanical
counterpart.

The HHFM and the operator method discussed earlier give exactly the same canonical perturbation
series for the energy because Eg = Hp. However, the HHFM is much faster and is therefore preferable
when one is interested in the calculation of perturbation corrections to the energy of sufficiently large
order. The main disadvantage of the HHFM is that it only applies to separable models and that it
does not give the new coordinate and momentum explicitly.

9.8.2 Radius of Convergence of the Canonical Perturbation Series

The singularity of E(J, 1) closest to the origin in the complex A plane determines the radius of
convergence of the canonical perturbation series. Apparently it is possible to locate this singularity
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Table 9.4 Canonical Perturbation Theory for the Anharmonic

2 2 2
. mw
Oscillators H = Zp_ +— 9 1 5 g™ by Means of the
m
Hypervirial Hellmann—Feynman Method (Continued)
M=3
Eo=wJ
E,=0
_ _ 15 _Eg?
gz - (; 3 m30w6
3 —
705  Eq®
Bo=% bt
5 =
_ _ 115755 _E¢*
Eo=— 75" 9,8
Q1,0=0
E
81,1 = 53 s
1.2 =
E 2
81»3 = 545 7 o0
1,4 =
19035 _E¢®
Q1,5 =" 16 mSZ)lG
E
02,0=-"%
021=0
E 2
82,2 = 2-)5 m40w8
2,3 =
45  Eo®
82,4 = 0% m72)14
2,56 =

if one simply assumes that the series converges as long as the potential-energy function supports the
action J [200]. For simplicity we illustrate this argument by means of the simple oscillators with
polynomial potentials V (q) = mw?q?/2 + rg™, M =2,3,4, ....

The exact expression of the energy of the harmonic oscillator M = 2

21
E(J,0) =ol\/1+— (9.150)
ma

exhibits a singular point at A, = —m®?/2, and we realize that there is no bounded motion when
A < Ag; therefore the argument applies to this trivial example.
In the case of an even anharmonic perturbation M = 4,6, ..., the action J is supported for all

A > 0 because the potential is an infinite well. If, on the other hand, A is negative, then the potential-
energy function exhibits two symmetrical maxima V (¢,,) at ¢ = %¢,, and there will be no periodic
motion for E > V(gq,,) (see Figure 9.1 b for an example). Therefore, there is a critical negative
value A = A, for which E(J, A.) = V(g,,) as depicted in Figure 9.1 b.

We can obtain an exact expression of A, for the quartic case that we conveniently rewrite as
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Table 9.4 (Cont.) Canonical Perturbation Theory for the
Anharmonic Oscillators H = % + n 0)22 ¢ + g™ by Means of
the Hypervirial Hellmann-Feynman Method
M =4
Er=§ B
E; =— % mﬁoj)a
Ey= 38 Lo,
Eq = — % mgfle
Eg = — 3132299 _ 30;24
Q02,0 = %
021=— mE?,Oaz)e
0r.=% %
Q23=-3 mf—f:M
Q2.4 = HBE mgfjw
0r5=— 61%343 mlEl—an)ZZ
06,0 = %
0Os,1=— 1%5 mf?:lo
Q6,2 = % mffm
Us,3=— % mg‘fm
Q6.4 = 271113287 %
V(g) = mw?q?/2 — |A|lg*. We have
qm = g\/% (9.151)
From the critical-point condition
E = V(gn) = il qp, (9.152)
we obtain
E—V(g) = Al (612 - q,zn)z (9.153)
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and
2mlhe| (Do, 2 V2m2w?

J=— - dg=—— 9.154
- fqm(qm q)q N ( )

that suggests the radius of convergence

V2m?w®

Aol = —— . 9.155
Al — (9.155)
The potential for an odd anharmonic perturbation M = 3,5, ..., exhibits a barrier at ¢, > 0 if

A < Ooratg, < 0ifx > 0. Therefore, for a given value of the action J there is a critical value A, of
A such that E equals the top of the barrier V (¢,,,) indicated in Figure 9.1 a. The simplest illustrative
example is V(¢) = mw?q?/2 — |1|q° because we can obtain A, exactly. In this case

ma? |k|qm

qm = 3|)‘| Vi(gm) = ) (9.156)

and the critical condition E = V (g,,) leads to

— 2 am
E=V@)=Irl@—an’(1+%) . (9.157)

2 )\' qm
— Yol / —o) Ja+ e (9.158)
b4 _qu 157'[|)» |

which suggests the radius of convergence

and

3,5

m-w

157J °

Al = (9.159)

Strictly speaking, the argument given above tells us that the perturbation series diverges when
Al > |A¢|, but in principle there could be a singular point A, closer to the origin that would make
the convergence radius of the perturbation series to be smaller than |A.|. Only for the harmonic
oscillator we are certain that A, = A, as follows from equation (9.150). In order to verify if there
were singular points satisfying |A;| < |A.| for the anharmonic oscillators (9.140) we resorted to the
numerical method developed in Section 6.2.1 and obtained both X, and the exponent a. From the
energy coefficients through order P = 200 for dimensionless anharmonic oscillators (m = w = 1)
with M = 3, 4, 5, and 6 we constructed the sequences for the location and exponent of the singular
point assuming an algebraic singularity as in the harmonic case. Although the sequences did not
appear to converge, they yielded results close to the ones predicted by the argument above.

In any case the radius of convergence of the classical perturbation series is nonzero in contrast with
the gquantum-mechanical counterpart. This fact has been taken into account in recent discussions
and applications of methods for improving the convergence properties of the quantum-mechanical
perturbation series [121].

9.8.3 Nonpolynomial Potential-Energy Function

If the potential V (x) is not a polynomial function of the coordinate x we apply perturbation theory
by means of a polynomial approximation similar to that discussed above in Section 9.3. We suppose
that V (x) has a minimum at x = x, and choose the energy origin such that V (x.) = 0. We therefore
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have V'(x.) = 0 and V" (x.) = k > 0, where k is the force constant that we write in terms of the
mass m and frequency w = +/k/m. Expanding V (x) about its minimum we have

2 2 2 0
P mw=-q )
H=— + E Vigodd g/, 9.160
2 2 j+2ATq ( )

j=1

where g = x — xe, p = mx = mq, V; = (1/j)(d’V/dx/),—,,, and A is a dummy perturbation
parameter that we set equal to unity at the end of the calculation.

We easily apply the HHFM to the perturbed harmonic oscillator in equation (9.160), and expand
both the energy and time averages Oy = ¢¥ in the A-power series. Proceeding exactly as in the
case of the polynomial interactions discussed above we obtain the following recurrence relation for
the perturbation corrections to the time averages:

On.i = 2N -1 EjOn-2ij— Y N+ )Vjs20n4ji-j| -  (9.161)

2
mw-N s et
In addition to it, the Hellmann-Feynman theorem gives us an expression for the perturbation
corrections to the energy:

1
]:

From these two expressions and the initial condition Qg ; = 8o;, we obtain the perturbation correc-
tions Ejy1, On; foralli =0,1,...,p—1, N=1,2,..., p —i+ 2. One easily writes a Maple
program for this problem by slight modification of the one in the program section for the method of
Swenson and Danforth.

As an interesting illustrative example, we choose the Morse oscillator given by the anharmonic
potential

2
V) =D [1 ~exp (f ‘yx)} , (9.163)

where D is the depth of the potential well, x. is the equilibrium coordinate, and y is a length parameter
that determines the range of the interaction. Substituting the Taylor coefficients

(,_1)] 2/ — 2)} (9.164)

Vi=D [ajo T

into equations (9.161) and (9.162) we obtain the perturbation corrections shown in Table 9.5. Notice
that exactly as in its quantum-mechanical counterpart discussed in Section 7.2.1, the perturbation
series for the energy reduces to just two terms:

E? J2a?
E=E)— -2 =Jw— ) 9.165
0 4D 4D ( )

where v = /2D /(my?). Solving for J we obtain

2D / E / E

© 2001 by CRC PressLLC



222

© 2001 by CRC PressLLC

PERTURBATION THEORY IN CLASSICAL MECHANICS

Table 9.5 Hypervirial

Hellmann—Feynman Method for the

Classical Morse Oscillator

Eo=w/J

E1=0

E3=0

E;s=0

Es=0

Eg=0

01,1 =3k
01,2=0

Q1,3= 37_2 EoDzzL
01,4=0

O15= & EE;L
016=0

017= 105 E?;L
018=0

019= 5% E}ff
021=0

02,2 = % E(’DzzL2
023=0

02.4= 333 50[3)3L?
Q25=0

026 = 5y E(’;fz
027=0

028 = 1555 E‘gst
029=0
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The other root of equation (9.165) leads to an unphysical negative frequency, whereas from equa-
tion (9.166) we obtain the well-known result [196]:

3H OE E E
= —— = _——_—= 2 _— .
QE)= 5 = =wl- = =\/2mDy J1 - (9.167)

Surprisingly, perturbation theory provides a simple way of obtaining the exact action and frequency
for the Morse oscillator. Exactly as discussed in Section 7.2.1 for the quantum-mechanical case,
the energy series has a finite number of terms in contrast with the perturbation expansions for the
averages Qy which do not terminate.

Table 9.5 shows that E5; 41 = 0and Qy,; = 0if N + i is odd, which follows from the fact that
2 appears in the Hamiltonian only in terms of the form A7¢/+2, exactly as in the application of the
polynomial approximation in quantum mechanics discussed in Section 7.2.1.

9.9 Central Forces

As an example of application of the HHFM to classical separable models, in what follows we
consider a system of two particles that interact by means of central forces. The potential V (r)
depends on the distance r between the particles, and the Lagrangian in spherical coordinates for the
relative motion reads

L= 2 [7+ 7202+ r%¢7sin@] - v (9.168)
where m is the reduced mass. The Hamiltonian function is given by
2
1| 5, P Py
H=_— =+ 55— v 9.169
2m |:Pr + r2 + r2sin(6)>2 TV ( )
in terms of the momenta
pr =mr, pg=mr20, Py = mr?ésin(@)? . (9.170)

It follows from the equations of motion that pg and pg + pé/ sin(9)? are independent of time.

It is well known that in the case of central forces the angular momentum L = r x p is a constant of
the motion, and one easily verifies that L2 = r2p? — (r - p)2, where L = |L|, r = |r|, and p = |p|.
Taking into account that r - p = rp, we conclude that

2

1 L
H=_—(p?+=5)+V0©). (9.171)
2m r2

Comparing equations (9.169) and (9.171) we realize that L? = p3 + p3/sin(6)>.
The equation of motion for the variable r is
2

L
pr=—5-V0). (9.172)
mr
Taking into account equations (9.171) and (9.172) we easily obtain
d N —-1)L?
—rNp, =2NE/NL = ;r’v*3 —2NVNL_ Ny’ (9.173)

dt m

where E = H is the energy, which is also a constant of the motion. It is clear that we can apply
the HHFM exactly as in the one-dimensional case if we simply substitute the effective potential
L?/(2mr?) 4+ V(r) for V in the equations above.
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9.9.1 Perturbed Kepler Problem

For concreteness we concentrate on the potential
A K
Vi) =——+rr", (9.174)
r
which we view as a perturbed Kepler problem when A > 0.

Substituting equation (9.174) into equation (9.173), and arguing as in the one-dimensional case
discussed earlier, we easily derive the hypervirial relation

(N =1)L2
2NERNy_1 — —Rn_3+ (2N —1D)ARNy_2» — (2N + K)ARNy+k-1 =0, (9.175)
m

where Ry = rV. As before, we expand the energy and time averages in the A-power series
Ry =) Ry M. E=Y EjM, (9.176)
j=0 =0

the Hellmann—Feynman theorem 0 E /d). = Rk leads to
1
Es=-Rks-1,s=L1,2,..., (9.177)
S
and the initial condition Rg s = 8o, follows from Ry = 1.

When K > 0 we substitute N + 1 for N in equation (9.175), and expand it in a A-power series
obtaining the following recurrence relation for the perturbation corrections

Ry, = L [NE, (2N + DAR
N,s = Z(N T 1)E0 N-2,s N-1s
S
—2(N+1)Y EjRys—j+@2N+K +2)RN+K’S_1:| (9.178)
j=1

valid for N = —1. We obtain R_1 ; from the expansion of equation (9.175) with N = 1:

2
Roas=—-2E+(K+ )Rk 5-1 - (9.179)

In order to calculate £, we have to obtain Ry s fors =0,1,...,p—1, N=1,2,...,(p—s)K by
means of equation (9.178), and R_1 s from equation (9.179), taking into account the initial condition.

When K < —2 we substitute N + 3 for N in equation (9.175) and expand it in a A-power series
to obtain

N
m
Rys = m [(ZN +95ARNt1,s +2(N +3) Jgo EjRN+2,5—j
~@N + K +B)Ry4k+2,-1] (9.180)

valid when N % —2. In order to obtain R_» ; we make use of the Hellmann—Feynman theorem as
0E/0L = LR_»/m, which leads to

R os=— . (9.181)
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The calculation of E, requires Ry s foralls =0,1,..., p—1,N = -3, —-4,..., (p—s)(K+2)-2
that follow from equation (9.180), and R_5 ; from equation (9.181).

In order to round off the discussion above we only need an expression of the unperturbed energy
Ejq in terms of the actions

1 1 1
It is well known that
mA2
Ey=——, 9.183
0 572 (9.183)

where J = J, + Jo + Jy = L + J, [200, 201].

The calculation for positive and negative values of K is straightforward even by hand; however,
if one needs results of high perturbation order it is advisable to resort to computer algebra. It is
not difficult to write a set of simple Maple procedures for the application of the HHFM following
the lines indicated in Section 3.3.2 for the quantum-mechanical counterpart. In Table 9.6 we show
results for K = 1 and K = —3 which were obtained earlier by the same method [200].

The HHFM is most probably the simplest and most efficient method for the calculation of canonical
perturbation series for separable classical systems [200], and is a straightforward transcription of the
guantum-mechanical method of Swenson and Danforth discussed in Section 3.3.
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Table 9.6 Hypervirial and Hellmann—Feynman Method for
2

. . A
Classical Models with Central Forces: H = r_ 2 +ark
2m r
(Continued).
K=1
_ _m A?
EO - 2J2
_ —L%43J?
El - 2Am
_ 1 31%%2-78
Ep = 8 m3 A%
Fr— L —10L8J%-71%/5433/10
3= 16 m5 A7
E,— L 84L87°4001°7%490L% 710465/
4= & mT ALO
Fr— L 1081107826418 /10-3641°/12465L% /111995 /'8
5= 64 m9 AT3
1 —1%243J2
Rio= 3 Atn
Ri . — 1 3L872-7J°
1L1= 7 = 344
_ 1 —30L8J%-21L% 7549910
Rl,Z = 16 5 AT
Ri-— L 84187549016 7849014 10465/
1.3= 16 m? ALO
Ri4— A 99011078 132018 /%0182015 /1223251 7419975 /18
1,4= &1 m9 AL3
A
Ro10= 77
_ 1 —1243J2
Ra=73 =~
R _ 1 31%y%-7J8
-1,2= 3 A5 3
_ 1 —7015s%-491* 54231410
R_13= 16 A8 ;5
R _ 1 42018 J54450L5 j84+495L14 j10_2325 j14
-14= 13 AL 7
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Table 9.6 (Cont.) Hypervirial and Hellmann—-Feynman Method for Classical Models with
2

A
Central Forces: H = 2— — 2 45,k
2m___r
K =-3
343
m> A
El = 13 J3
Fo— 13AmSL2-6A%m°LJ-15A%m° J?
2=1 L7 J5
Fo— 1 Z15A%m  L3-27A%m" L2 J 445 A% m” L J24105 A% m” J®
3=1 JE
1

Es= g7 (—126 A®m® L% + 405 A% m® L* J + 3540 A®m® L3 J? + 5490 A®m® L2 J3
—6390 A®m® L J* — 15015 A® m® J®) / (LY J®)

Es = g (1008 A7 mt L6 + 3465 A7 mt L5 J — 4599 A" m1! L* J2 — 49050 A" m! L3 J3
—74610 A" mt L2 J* + 63945 A" m* L J® + 153153 A" m*! J®) / (L1° J?)

1 —L243J2
Ri0o=3 A+m
131472748
Rii=3"sxm
_ 1 —30L874-211% 7649910
R1,2 = 16 m5 A7
Ri = L 84 L8 76490 1.5 78499 14 J10_465 j14
1.3= 15 m7 ALO
Rig= A —990 210 y8-1320 1.8 j10—-1820 1.8 j12—2325 L4 J14+9975 J18
1.4= & m9 AL3
A
Ro10=7
AZ 3
R_11=-3 Lsr;ls
_ —3m5 A3 L246m5 AS L J4+15m° A3 J?
R—l 2= L7 J5
R _ 1 75m" A*L34135m" A* L2 J—225m” A* L J2—525m" A% J3
-13= 17 L1 j6

R_1,4 =4 (378m% A L5 — 1215m% A® L* J — 10620 m® AS L% J% — 16470m°® AS L2 J3
+19170m° A% L J* 4 45045 m® A® J®) | (L J8)
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Maple Programs

Since we are not experts but simply naive Maple users, our programs may not be efficient or elegant.
However, the reader may profit from the fact that our procedures are just straightforward translations
of the equations developed in the different chapters of this book into simple Maple code. The
procedures given below are not foolproof, but if they are executed as indicated, they certainly
produce the results displayed in the tables and figures of this book.

Programs for Chapter 1

1) Calculation of perturbation corrections to the energies and stationary states of the anharmonic
oscillator (1.54) with M = 4.
Kronecker delta function §;;:

delta:=proc(i,j) if i = j then 1 else O fi end:
Calculation of the matrix elements Q(m, j,n) = (m|q’/|n) in the harmonic oscillator basis set
according to equation (1.55):

Q:=proc (m,j,n) option remember;

if n=0 then delta(m,n) else

expand(sqrt(n/2)*Q(m,j—1,n—1) +sqrt((n+1)/2)*Q(m,j—1,n+1))

fi;

end:
Matrix elements of the dimensionless perturbation in the harmonic oscillator basis set H1(m, n) =
(m|H'|n):

H1:=proc(m,n) option remember;

Q(m.4,n);

end:
Cutoff function used to force C,,4 s = 0 if | j| > 4s:

cut:=proc(j,p)

if abs(j)<=4*p then 1 else O fi;

end:
Calculation of the perturbation corrections E, , and C,, , according to equations (1.10), (1.12),
and (1.13). For convenience we write c[j,n, s]1 = Cyqjn,s

PT:=proc(n,P)

local i,j,k,p,s; global e,c;

e[n,0]:=n+1/2;

for j from —4*P to 4*P do c[j,n,0]:=delta(j,0) od;

229
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for p from 1 to P do

e[n,p]:=expand(sum( "H1(n,n+Kk)

*c[k,n,p—1]*cut(k,p—1) ’, ’k ’=—4..4)

—sum( ’e[n,s]*c[0,n,p—s] ’, ’s ’=1..p—1));

for j from —4*p to 4*p do

if j=0 then

c[0,n,p]:=—1/2*sum( ’c[i,n,s] *c[i,n,p—s]*cut(i,s)*cut(i,p—s) ’,

I '=—4*p+4..4%p—4) ’, ’s '=1..p—1);

else

c[j,n,p]l:=1/j*(sum( "e[n,s]*c[j,n,p—s]*cut(j,p—s) °, ’s ’=1..p)

—sum( "H1(n+j,n+k)*c[k,n,p—1]*cut(k,p—1) ’, 'k '=j—4..j+4))

fi;

od;

od;

end:
Perturbation corrections to the matrix elements (W,,|g*| W, ) calculated according to equation (1.17).

Qpert:=proc(m,k,n,P)

local s,p,j:

PT(m,P):

PT(n,P):

for p from 0 to P do

simplify(sum(’sum(’sum( *c[i,m,s] *c[j,n,p—s]*cut(i,s)*cut(j,p—s)

*Q(m+ik,n+j) 7, "i '=—4%*s,.4%s)

'J '=—4*(p—s)..4*(p—9)) *, ’s '=0..p)):

od:

end:
To calculate the perturbation corrections E, ; fors =0, 1, ..., P simply execute PT (n, P), where
P must be a positive integer, and n may be either a positive integer indicating a particular state (n =
0,1,...) orjustageneric variable name. The perturbation correction of order P for (¥, |c}k|\lfn+.,~)
is given by Qpert(n,k,j,P) where k, j, and P must be integers and n may by either an integer or a
generic variable name.

Programs for Chapter 2

2) Method of Dalgarno and Stewart for the ground state of hydrogen in a uniform magnetic field.
Construction of the factor functions F; (r, u) according to equation (2.23)

funF:=proc(j)

local i,k:global Fc,ru:

if j<O then F[j]:=0 elif j=0 then F[j]:=1 else

F[j1:=sum( *sum( "c[j,i,k]*r 7i 7, ”i ’=0..3*))*u "(2*k) ’, ’k =0..j):
fi:
end:
Substitution of the factor functions into equation (2.22) and calculation of their coefficients
eqj:=proc(j)

local i,i1,i2,ind,sol: global c,e,Fu,requ:
equ:=simplify(—(1/2)*diff(funF(j),r$2) — (1/r)*diff(funF(),r)
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+((u "2—1)/(2*r "2))*diff(funF(j),u$2)
+(u/r2)*diff(funF(j),u)+diff(funF(j),r)
+r72*(1—u"2)*funF(j—1)—sum(e[i]*funF(—i) °, ’i ’=1..j)):
equ:=collect(equ,[u,r]):

for i1 from 2*j by —2 to 0 do

for i2 from —2 to 3*j do
ind:=indets(coeff(coeff(equ,u,il),r,i2)):

if ind <>{} then
sol:=solve({coeff(coeff(equ,u,il),ri2)},ind[1]):
assign(sol):

equ:=collect(equ,[u,r]):

fi:

od:

od:

e[jl:=e[]:

end:

norma:=proc(j)

local i,k,ind,nor,sol: global psi,Fc,ru:
psi[0]:=sqrt(2)*exp(—r):

for k from 1 to j do

psi[K]:=F[k]*exp(—r):
nor:=int(int(sum(’psi[i]*psi[k—i] ’, ’i ’=0..k)*r "2 ,r=0..infinity),u=—1..1):
ind:=indets(nor):

if ind <>{} then

sol:=solve({nor},ind):

assign(sol):

fi:
F[i1:=collect(simplify(F[j],[u,r]):
od:

end:

The procedure below calls the other ones to calculate the perturbation corrections to the energy and
eigenfunction through order k. To this end simply execute PT(k), where k is a positive integer.
However, if one only needs perturbation corrections to the energy it is sufficient to call eqj(1), eqj(2),
.., eqjk).

PT:=proc(k)

local j:

for j from 1 to k do

eqi():

norma(j):

od:

end:
3) Method of Fernandez and Castro for the dimensionless anharmonic oscillator A = (-d2/dg? +
q®)/2+ rq*
Construction of the functions A, and By according to equation (2.58)

funciones:=proc(k)

local j,i: global A,B,a,b,alpha,beta,q:

alpha[0]:=0: beta[0]:=0:

alpha[1]:=1: beta[1]:=1:

for j from 2 to k do
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alpha[j]:=beta[j—1]+3:
beta[j]:=alpha[j—1]+1:

od:

if k=0 then

A[K]:=1:B[k]:=0 else

A[K]:=sum( ’a[k,i]*q “(2*i) ’, ’i =1..alpha[k]):
B[k]:=sum( ’b[k,i]*q “(2*i+1) *, ’i ’=0..beta[k]):
fi:

Construction of the perturbation equations of order k = 1, 2, ... followed by calculation of the
coefficients ay; and by; starting with the coefficient of the largest coordinate power down to zero.

egk:=proc(k)

local j,i,n1,n2,n,ind,ind1,sol:

global A,B,a,b,equl,equ2,e,q:

for j from 0 to k do

funciones(j) :

od:

equl:=diff(A[k],q$2)+2*(q "2—2*e[0])*diff(B[k],q)+2*q*B[k]

+2*(e[1]—q “4)*A[k—1]+2*sum( e[j]*A[k—]] *, '] '=2..k):

equl:=collect(simplify(equl),q):

nl:=degree(equl,q):

equ2:=diff(B[k],q$2)+2*diff(A[k],q)+2*(e[1]—q "4)*B[k—1]

+2*sum( "e[j]*B[k—j] ’, ’j '=2..k):

equ2:=collect(simplify(equ2),q):

n2:=degree(equ2,q):

while equl <> 0 or equ2<>0 do

if n1>=n2 then

ind:=indets(coeff(equl,q,n1)) minus {e[0]}:

if ind <>{} then

sol:=solve({coeff(equl,q,n1)},indl):

assign(sol):

equl:=collect(simplify(equl),q):

nl:=degree(equl,q):

fi:

else

ind:=indets(coeff(equ2,q,n2)) minus{e[0]}:

if ind <>{} then

sol:=solve({coeff(equ2,q,n2)},ind1):

assign(sol):

equ2:=collect(simplify(equ2),q):

n2:=degree(equ2,q):

fi:

fi:

od:

A[K]:=collect(simplify(A[K]),q):

B[k]:=collect(simplify(B[k]),q):

end:

In order to obtain perturbation corrections through order P simply execute egk(1), egk(2), ...,
eqgk(P).
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Programs for Chapter 3

4) Method of Swenson and Danforth for the dimensionless anharmonic oscillator H = (-d?/dx? +
x2)/2 + ax?K,
delta:=proc(i,j) if i = j then 1 else O fi end:
Modified Heaviside function
trunca:=proc(x) if x < 0then 0 else 1 fi end:
Global variable K for the power of the perturbation; for example,
K:=2:
for the quartic perturbation.
Calculation of perturbation corrections through order P according to equations (3.24), (3.23),
and (3.26). Simply execute PT(P):
PT:=proc(P)
local i,j,m: global X,e,K:
for i from 0 to P—1 do
X[0,i]:=delta(0,i):
for j from 1 to (P—i)*(K—1)+1 do
X[, i]:=simplify(1/(2*))*((j—1)/2*(4*(j—1) "2—1)*X[j—2,i]
+2*(2*j—1)*sum( e[m]*X[j—1,i—m] ’, 'm ’=0..i)
—trunca(i—1)*2*(2*j+K—1)*X[j+K—1,i—1])):
od:
e[i+1]:=1/(i+1)*X[K,i]:
od:
end:
5) Moment method for the lowest energies of two-dimensional anharmonic oscillators H = —V2/2+
(x2 + %) /2 + r(ax* + by* 4 2cx?y?).
trunca:=proc(i) if i<0 then 0 else 1: fi: end:
delta:=proc(i,j) if i=j then 1 else O: fi: end:
Calculation of perturbation corrections to the energy and moments of the ground state according to
equation (3.133), (3.131), and (3.137):
PTO:=proc(p)
local i,j,mk: global Fe,a,b,c:
for m from 0 to p—1 do
for i from 0 by 2 to 4*(p—m) do
for j from 0 by 2 to 4*(p—m) do
if i=0 and j=0 then F[i,j,m]:=delta(m,0) else
F[i,j,m]:=simplify(1/(i+j)*(i*(i—1)/2*F[i—2,j,m]+j*(j—1)/2*F[i,j—2,m]
+trunca(m—21)*sum( ’e[K]*F[i,j,m—k] ’, ’k ’=1..m)
trunca(m—21)*(@*F[i+4,j,m—1]+b*F[i,j+4,m—1]+2*c*F[i+2,j+2,m—1]))):
fi:
od:
od:
e[m+1]:=simplify(a*F[4,0,m]+b*F[0,4,m]+2*c*F[2,2,m]):
od:
end:
We do not show the procedures for the two excited states with N = 1 and for the state N = 2 (o, 0)
because they are similar to the one just given. On the other hand, the procedure for the coupling

© 2001 by CRC PressLLC



234 MAPLE PROGRAMS

degenerate states N = 2 (e, ¢) is noticeably different from the one above, and for that reason it is
already shown below:

PT2ee:=proc(p)

local i,j,mk,sol: global Fe,a,b,c,R:

for m from 0 to p—1 do

for i from 0 by 2 to 4*(p—m)+2 do

for j from 0 by 2 to 4*(p—m)+2 do

if i=0 and j=0 then

F[0,0,m]:=1/2*trunca(m—1)*(a*F[4,0,m—1]+b*F[0,4,m—1]

+2*c*F[2,2,m—1]—sum( "e[K]*F[0,0,m—K] ’, ’k =1..m)):

F[0,0,m]:=simplifica(F[0,0,m])

elif i=0 and j=2 then

F[0,2,m]:=delta(m,0)/2+1/2*F[0,0,m]:

elif i=2 and j=0 and m=0 then

F[2,0,0]:=1/(4*c)*(9*(a—b)+R):

elif i+j>2 then

FLi,j,m]:=1/(i+j—2)*(i*(i—1)/2*F[i—2,j,m]+j*(j—1)/2*F[i,j—2,m]

+trunca(m—21)*sum( ’e[K]*F[i,j,m—k] ’, ’k ’=1..m)

—trunca(m—21)*(a*F[i+4,j,m—1]+b*F[i j+4,m—1]+2*c*F[i+2,j+2,m—1])):

fi:

F[i,j,m]:=simplifica(F[i,j,m]):

od:

od:

if m>0 then

sol:=sum( ’(F[0,0,m—k] —2*F[2,0,m—k])*(a*F[4,0,k]+b*F[0,4,k]

+2*c*F[2,2 k]—2*a*F[4,2,k]—2*b*F[0,6,k]

—4*c*F[2,4,k]) ’, ’k ’=0..m)+a*F[4,0,m]+b*F[0,4,m]

+2*c*F[2,2,m]—2*a*F[6,0,m]—2*b*F[2,4,m]—4*c*F[4,2,m]:

sol:=simplify(sol):

F[2,0,m]:=solve(sol,F[2,0,m]):

F[2,0,m]:=simplifica(F[2,0,m]):

fi:

e[m+1]:=2*a*F[4,2,m]+2*b*F[0,6,m]

+4*c*F[2,4,m]—a*F[4,0,m]—b*F[0,4,m]—2*c*F[2,2,m]:

e[m+1]:=simplifica(e[m+1]):

od:

end:
One easily identifies equations (3.151), (3.152), (3.154), (3.131), a coefficient of the Taylor expansion
of equation (3.150), and equation (3.155). Here R stands for the root in equation (3.154).
The procedure below substitutes 81 * (b — a)? + 4 % ¢? for R? in order to simplify the equations,
but it does not substitute the value of R and its negative powers because that would make the results
more complicated.

simplifica:=proc(f)

local grado,f1,numera,denomi,j,dd2:

dd2:=81*(b—a) "2+4*c "2:

f1:=simplify(f):

numera:=numer(fl):denomi:=denom(fl):

grado:=degree(numera):

for j from grado by —1to 2 do
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if type(j,even) then

numera:=simplify(subs(R “j=dd2 "(j/2),numera)):

else

numera:=simplify(subs(R "j=dd2 “((j—1)/2)*R,numera)):
fi:

od:

end:

Programs for Chapter 4

6) Method of Swenson and Danforth for the Stark effect in hydrogen in paraboloidal coordinates.
delta:=proc(i,j) if i=j then 1 else O fi end:
trunca:=proc(x) if x<0 then 0 else 1 fi end:
Calculation of the perturbation coefficients E; in terms of the perturbation coefficients A ; according
to equations (4.17)—(4.20). Here s and e stand for o and E, respectively.
PT:=proc(p)
local i,j,1,U: global s,e,A,m:
for i from 0 to p—1 do
U[0,i]:=delta(0,i):
U[—1,i]:=2/A[0]*(—e[i]+trunca(i—1)*3*s/4*U[1,i—1]—sum( "A[I]*U[-1,i—I1] ’, I ’=1..0)):
for j from 1 to p—i do
U[j,i]:=simplify(2/((j+1)*e[0])*(j*(m "2—j "2)/4*U[j—2,i]

—(+1/2)*sum( "A[I]*U[j—1,i—1] ’, 1 ’=0..i)
—trunca(i—1)*(j+1)/2*sum(’e[I]*U[j,i—I] *, ’I ’=1..i)
+trunca(i—1)*s*(j+3/2)/4*U[j+1,i—1])):

od:

e[i+1]:=1/(i+1)*(s*U[1,i]/2—2*sum( " I*A[IT*U[—1,i+1-I] *, "l ’=1..i+1)):
od:

end:

Construction of the sets of coefficients £/ and E7/ according to the substitutions (4.21) and (4.22),

calculation of A; from E — E7 = 0, and substitution of the results into EJ’ Simply execute PT(p)
followed by extract(p).
extract:=proc(p)
local i,j,j1,E1,E2 k1,k2:
global A.e,n,q,s:
for j from 1 to p do
E1[j]:=subs(e[0]=—A[0] "2/(2*k1 "2),s=1,e[]j]):
E2[j]:=subs({e[0]=—(1—A[0]) "2/(2*k2°2),A[0]=1—A[0],s=—1
,sgq(AU1]=—AD1] J1=1.)}ell):
od:
A[0]:=k1/(k1+k2):
k1:=(n+q)/2:
k2:=(n—q)/2:
A[0]:=simplify(A[0]):
for j from 1 to p do
Alj]:=—subs(A[j]=0,E1[j1-E2[j1)/diff(E1[j1—-E2[j]1.AL]]):

© 2001 by CRC PressLLC



236 MAPLE PROGRAMS

A[j]:=simplify(A[j]):
e[j1:=E1[j]:
e[j1:=simplify(e[j]):
od:
end:
7) Moment method for the Zeeman effect in hydrogen: case j =0, | m |=n — 3.
trunca:=proc(i) if i<0 then 0 else 1 fi: end:
delta:=proc(i,j) if i=j then 1 else O fi: end:
Calculation of energy and moment coefficients in terms of the unknown Go 1,0 = g according to
equations (4.63), (4.64), (4.51), (4.66), and (4.65). In particular, notice that secq is equation (4.66)
and secO stands for the secular equation.
PT3:=proc(p)
local s;t,g,j,m,l,i,k,secq: global G,e,n,sec0,g:
j:=0:m:=n-3:
GJ[0,1,0]:=g:
for q from 0 to p—1 do
G[0,0,q]:=simplify(1/(2*n—3)*(trunca(q—1)*G[1,4,9—1]
—trunca(g—21)*sum( ’e[1]*G[0,2,g—I1] ’, ’l ’=1..9))):
for s from 0 to p—q+1 do
i:=n—3+2*s:
for t from 2 to 3*(p—q)+1 do
i:=n—3+2*s:
if s=1 and t=2 then
G[s.t,q]:=simplify((2*n—4)/(2*n—3)*G[0,2,q] —delta(q,0)):
else
G[s,t,q]:=simplify(n/(k—n+1)*((k*(k+1)
—(i+])*(i+j+1))/2*G[s,t—1,q]
+(i "2—m "2)/2*G[s—1,t—1,q]+trunca(g—1)*sum( e[I]*G[s,t+1,9—1] *, ’1 ’=1..q)
—trunca(q—1)*G[s+1,t+3,q—1])):fi:
od:
od:
secq:=simplify(1/(2*n—3)*sum( ’(G[0,2,1]/(n*(2*n—3))
+n*(n—2)/2*G[0,0,1]-G[0,1,I])*((2*n—4)*G[1,4,9—1]
—(2*n-3)*G[2,4,9—1]) ’, 'l '=0..9)—n*(n—2)/2*G[1,2,9]—G[1,4,q)/(n*(2*n—3))+G[1,3,9]):
if =0 then
sec0:=secq:
else
assign(solve({secq},G[0,1,q])):fi:
e[q+1]:=simplify((2*n—4)/(2*n—3)*G[1,4,q]1—G[2,4,9]):
od:
end:
Substitution of the root (4.67) of the secular equation so that simplifications take place.
prepara:=proc()
global R1,g:
R1:=RootOf(z "2—16*n "2+48*n—41,2):
0:=(3—2*n)/(20*n "2*(n "2—3*n+2))*(8*n "2—24*n+13+(2*n—3)*R1):
end:
Simplification of the results by substitution of R for the square root.
simplifica:=proc(f)
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global R1,R,g:
subs(RootOf(z "2—16*n "2+48*n—41,z)=R,simplify(f)):
end:
Execute first PT(p), where p is a positive integer, then prepara(), and finally apply simplifica(f) to
the chosen perturbation coefficient f to be simplified.
8) Moment method for the hydrogen molecular ion
trunca:=proc(i) if i<0 then 0 else 1 fi: end:
delta:=proc(i,j) if i=j then 1 else O fi: end:
Coefficients of the expansion of the potential-energy function according to equation (4.79)
coeC:=proc(M)
local i,j: global C:
C[0,0]:=1:
for j from 0 to M—1 do
for i from 0 to j+1 do
C[j+1,i]:=1/(+1)*((2*j+1)*trunca(i—1)*C[j,i—1]
—j*trunca(j—i—1)*C[j—1,i]):
od:
od:
end:
Perturbation corrections to the energy and moments according to equations (4.82)—(4.84).
PT2:=proc(p)
local t,q,j,m,l,i,k,u,v: global G,e,n,C:
coeC(p—1):
i:=n—1:
for g from 0 to p—1 do
for j from 0 to p—g—1do
for t from 0 to p—q—1 do
k:=n+t:
if j=0 and t=0 then G[j,t,q]:=delta(q,0) else
Gli,t.q]:=simplify(n/(k—n+21)*((k*(k+1)
—(i+))*(i+j+1))/2*G[j,t—1,q]+j*(—1)/12*G[j—2,t—1,q]
+trunca(q—21)*sum( ’e[l]*G[j,t+1,9—1] ’, ’1 ’=1..9)
+trunca(g—1)*sum(’sum( ’C[u,v]*G[j+v,t+u+1,g—u—1] ’, v ’=0..u) ’, 'u ’=0..g—1))):
fi:
od:
od:
e[g+1]:=—simplify(sum(’sum( *C[u,v]*G[v,u,g—u] ’, v "’=0..u) ’, "u ’=0..q)):
od:
end:

Programs for Chapter 5

9) Straightforward integration of the perturbation equations for the particle in abox with a perturbation
trunca:=proc(x) if x<0 then 0 else 1 fi end:

Construction of the perturbation corrections to the eigenfunction by straightforward integration as

indicated in equation (5.11). Determination of the perturbation correction to the energy ¢; from
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®;(1) = 0. Normalization of the approximate eigenfunction order by order according to equa-
tion (5.13). PT(v,p) gives the perturbation corrections through order p for the interaction v(g) in
terms of w = nr.

PT:=proc(v,p)

local i,j,f,norma: global Fi,e,omega,q,ql,C:

Fi[0]:=sqgrt(2)*sin(omega*q):

for j from 1 to p do

f[j1:=subs(q=q1,2*v*Fi[j—1]—2*trunca(j—1)*sum( ’e[i]*Fi[j—i] ’, ’i ’=1..))):

Fi[j]:=C[j]*sin(omega*q)

+1/omega*int(sin(omega*(q—ql))*f[j],01=0..q):

e[j]:=simplify(solve(subs(q=1,Fi[j]).e[j]).{sin(omega)=0,cos(omega) "2=1}):

e[j]:=factor(e[j]):

norma:=simplify(sum(’int(Fi[i]*Fi[j—i],g=0..1) ’, ’i ’=1..j),

{sin(omega)=0,cos(omega) "2=1}):

C[j]:=solve(norma,CI[j]):

Fi[j]:=factor(subs(sin(omega*q)=1,cos(omega*q)=0,Fi[j]))*sin(omega*q)

+factor(subs(sin(omega*q)=0,cos(omega*q)=1,Fi[j]))*cos(omega*q):

od:

end:

Programs for Chapter 6

10) Intelligent approximants for the anharmonic oscillator H = p2/2 + £2/2 + A% It is supposed
that one has previously calculated the perturbation coefficients E;
delta:=proc(i,j) if i=j then 1 else O fi end:
Order of the perturbation series required by A[M, 3M ]
PO:=proc(M)M—1+sum(’floor((3*M—3*m)/2) *, 'm "=0..M) end:
Calculation of the coefficients Cy; according to equation (6.103).
C:=proc(k,j)
local i: global e,C:
option remember:
if k=0 then delta(k,j) elif
k=1 then e[j]: else
sum( ’C(k—1,i)*e[j—i] ’, ’i ’=0..j):
fi:
end:
Equations (6.101) to be solved for the approximant coefficients A,,;.
equa:=proc(0,M,N)
local m,j,01: global e,A:
0l:=min(o,M):
A[0,0]:=1:
expand(sum(’sum( ’A[m,j]*C(N—3*m—2*j,0—m) ’,
’j ’=0..floor((N—3*m)/2)) *, 'm *=0..01)):
end:
Intelligent approximants with unevaluated coefficients A,,;
apro:=proc(M,N)
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local m,j,m1: global aprox,e,la,A:
A[0,0]:=1:
m1:=min(M,floor(N/3)):
aprox:=sum(’sum( ’A[m,j]*la "m*e “(N—3*m—2%j) °,
’j ’=0..floor((N—3*m)/2)) ’, ’m *=0..m1):
end:
Calculation of the coefficients A,,; and construction of approximants
aproxi:=proc(M,N)
local aes,naes,sol: global e,la,aprox,A:
uneva(M,N):
aes:=indets(apro(M,N)) minus {la,e}:
naes:=nops(aes):
print(‘Perturbation order = *,naes—1):
if e[naes—1]=evaln(e[naes—1]) then ERROR(‘Execute PT*) fi:
sol:=solve({seq(equa(j,M,N),j=0..naes—1)},aes):
assign(sol):
end:
Implicit equations (6.109) for W(g)
strong:=proc(M,N)
local m,j,m1: global apros,W,g,A:
m1:=min(M,floor(N/3)):
apros:=sum(’sum( A[m,j]*g “j*W “(N—3*m—2%*}) °,
’j ’=0..floor((N—3*m)/2)) ’, ’m ’=0..m1):
end:
Unevaluation of the approximant coefficients for subsequent calculation
uneva:=proc(M,N)
local m,j,m1: global aprox,e,la,A:
A[0,0]:=1:
m1:=min(M,floor(N/3)):
for m from 0 to m1 do
for j from 0 to floor((N—3*m)/2) do
A[m,j]:=evaln(A[m,j]):
od:
od:
end:

Programs for Chapter 8

11)Transmission coefficient calculated by means of equations (8.21). The arguments of the procedure
are the function F(g) = 2a?[V(q) — €], the variable g, and the initial point go.

TMaple:=proc(F,q,q0)

local Nu,De,u0,ul,v0,v1,Du0,Dul,Dv0,Dv1,solu,solv,u,v,equ,eqv:

global T,a.e:

equ:=diff(u(q),q,q)=F*u(q):

eqv:=diff(v(q),q,a)=F*v(q):

solu:=dsolve({equ,u(g0)=1,D(u)(q0)=0},u(q),type=numeric):
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solv:=dsolve({eqv,v(q0)=0,D(v)(q0)=1},v(q),type=numeric):
u0:=subs(solu(0),u(q)):ul:=subs(solu(1),u(q)):
v0:=subs(solv(0),v(q)):v1:=subs(solv(1),v(q)):
Du0:=subs(solu(0),diff(u(q),q)):
Dul:=subs(solu(1),diff(u(q),q)):
DvO0:=subs(solv(0),diff(v(q),q)):
Dv1:=subs(solv(1),diff(v(q),q)):
Nu=8*a "2*e*(Dul*v1—ul*Dvl) "2:
De=(2*a "2*e*(v1*u0—ul*v0)—Dul*Dv0+Dv1*Du0) "2
+2*a "2*e*(Dv1*u0—Dul*v0+ul*Dv0—v1*Du0) "2:
T:=Nu/De:
end:
12) Calculation of the transmission coefficient by means of the third perturbation method (a2-power
series). The procedure is a straightforward translation of equations (8.21) and (8.73).
PT3:=proc(P)
local j,t,k:
global a,vc,e,u,v,T,q,Su,Sv,DSu,DSv,u0,ul,v0,v1,Du0,Dul,Dv0,Dv1,Nu,De:
u[0]:=1:v[0]:=q:
for j from 1 to P do
ulj]:=2*a "2*int((g—t)*subs(g=t,(Vc—e)*u[j—1]),t=0..9):
v[j]:=2*a "2*int((q—t)*subs(q=t,(Vc—e)*v[j—1]),t=0..q):
od:
Su:=sum( "u[j]’, ’j ’=0..P):
DSu:=diff(Su,q):
Sv:=sum( *v[j] ’, ’j ’=0..P):
DSv:=diff(Sv,q):
u0:=1:Du0:=0:v0:=0:Dv0:=1:
ul:=subs(q=1,Su):
v1:=subs(g=1,Sv):
Dul:=subs(q=1,DSu):
Dv1:=subs(g=1,DSv):
Nu=8*a "2*e*(Dul*v1—ul*Dvl) "2:
De=(2*a "2*e*(v1*u0—ul*v0)—Dul*Dv0+Dv1*Du0) "2
+2*a "2*e*(Dv1*u0—Dul*v0+ul*Dv0—v1*Du0) "2:
T:=Nu/De:
end:

Programs for Chapter 9

13) Polynomial approximation.
delta:=proc(i,j) if i=j then 1 else O fi end:
Coefficients of the perturbation series for ¢/ obtained according to the recurrence relation (9.13):
Q:=proc(j,k)
local i: global q:
if j=0 then delta(k,0) elif
j=1then g[k] else
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sum(’Q(L,i)*Q(j—1,k—i) *, ”i ’=0..k):

fi:

end:
Coefficients of the perturbation series for G (s) according to equation (9.12):

G:=proc(n)

local j:global g,a:

sum( 'a[j]*Q(+1,n—j) ’, ’j '=1..n):

end:
Coefficients of the perturbation series for G (s) in the case of an odd force:

Godd:=proc(n)

local j:global g,a:

sum( "a[j]*Q(2*j+1,n—j) *, ’j '=1..n):

end:
Coefficients for the perturbation series for the right-hand side of equation (9.34), where g[j] stands
for y;:

GLP:=proc(j)

local m,temp,gj: global g,s,q:

glil:=gj:

temp:=collect(combine(G(j)

—sum(’g[m]*diff(q[j—m],s$2) ’, 'm *=1..j),trig),[sin,cos]):

g[i]:=solve(coeff(temp,cos(s)),qj):

subs(gj=g[j].temp):

end:
Unperturbed trajectory (one can substitute other cases)

g[0]:=cos(s):
Perturbation corrections through order » to the trajectory for the three cases discussed in Chapter 9:
arbitrary force F(x) (case=anything), odd force F(x) (case=o0dd), and Lindstedt—Poincaré method
for arbitrary F(x) (case=LP). PT(case,n) gives results in terms of arbitrary coefficients a;:

PT:=proc(case,n)

local j,s1,Gloc: global g,s:

for j from 1 to n do

if case=o0dd then

Gloc:=Godd(j) elif case=LP then

Gloc:=GLP(j) else

Gloc:=G(j)

fi:

g[j]:=int(sin(s—s1)*subs(s=s1,Gloc),s1=0..5):

g[j]1:=collect(simplify(combine(q[j],trig)),[sin,cos]):

od:

end:
Taylor series for arbitrary and odd forces. Execute this procedure before PT(case,N) when interested
in a particular model. It produces the appropriate coefficients a;; for example, f = —(g/1) sin(q)

for the simple pendulum.
force:=proc(f,case,N)
local j,f1,F: global a:
f1[0]:=f:
F[0]:=subs(q=0,f1[0]):
if case=odd then
for j from 1 to 2*N+1 do
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fi[j]:=diff(f1[j—1].9)/j:
od:
for j from 1 to N+1 do
F[j]:=subs(q=0,f1[2*j—1]):
a[j—11:=—F[LVFI1]:
od:
else
for j from 1 to N+1 do
f1[j]:=diff(f1[j—1].9)/j:
od:
for j from 1 to N+1 do
F[j]1:=subs(q=0,f1[j]):
a[j—11:=—F[VFI1]:
od:
fi:
end:
Perturbation series for the period by systematic application of the argument leading to equations (9.30)
and (9.31). Execute after PT(case,N):
period:=proc(N)
local j,fun:global tau:
fun:=subs(s=s+sum( "tau[j]*lambda 7j ’, ’j ’=1..N),
sum(’q[j]*lambda 7j ’, ’j ’=0..N)):
for j from 1 to N do
tau[j]:=limit(solve(simplify(subs(lambda=0,
diff(fun,lambda$j))),tau[j]),s=2*Pi):
od:
end:
14) Test of Jacobi’s identity (9.52).
Construction of a set of 2NV variables {¢;, p;, j=1,2,...N}.
vars:=proc(N)

local i:global qg,p:
g:=seq(q.i,i=1..N):p:=seq(p.i,i=1..N):
end:

Definition of the Poisson bracket according to equation (9.42)
c:=proc(a,b,q,p)
local n:
n:=nops(q):
sum(*diff(a,op(j,q))*diff(b,op(j,p))—
difg(b,op(j,Q))*diff(a,op(j,p)) ", ’=1n):
end:
Jacobi identity for the set of variables chosen above. Execute Jacobi() to obtain an expression that
simplifies to zero (simplify(Jacobi())):
Jacobi:=proc()
c(A(a,p).c(B(a,p),C(q,p).q.p).q.p)
+¢(C(a,p).c(A(a,p).B(a,p).d,p).q,p)
+C§B(q,p),C(C(q,p),A(q,p),q,p),q,p):
end:
15) Secular perturbation theory in operator form.
Poisson bracket {a, b}y, ) for arbitrary functions a(q, p) and b(q, p)
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c:=(a,b,q,p)—> diff(a,q)*diff(b,p)—diff(a,p)*diff(b,q):
Trajectory for the harmonic oscillator equation (9.99)
g[0]:=q0*cos(w*t)+p0*sin(w*t)/(m*w):
p[0]:=p0*cos(w*t)—m*qO*w*sin(w*t):
Calculation of the perturbation correction of order j + 1 from the perturbation correction of order j
according to equation (9.98), where h1 stands for H’.
plusl:=proc(f,hl)
local s,q0ts,pOts: global m,w,t,p0,q0:
gOts:=g0*cos(w*(t—s))+p0*sin(w*(t—s))/(m*w):
pOts:=p0*cos(w*(t—s))—m*qO*w*sin(w*(t—s)):
int(t=s,[g0=q0ts,p0=p0ts],c(f,h1,q0,p0)),s=0..t):
end:
Calculation of the first N perturbation corrections by repeated application of equation (9.98). For
example, execute PT(q"3,N) for the cubic perturbation, where N is a positive integer.
PT:=proc(h1,N)
local j: global w,t,plusl,q,p:
for j from 1 to N do
g[j]:=combine(expand(plus1(g[j—1],h1)),trig):
g[j]1:=collect(q[j],[sin,cos]):
p[j]:=combine(expand(plusl(p[j—1],h1)),trig):
p[i]:=collect(p[j],[sin,cos]):
od:
end:
16) Canonical perturbation theory in operator form. Notice that we omit explicit reference to the
intermediate complex variables a, b, A, and B which at each step we simply call ¢ and p.
c:=(a,b,q,p)—> diff(a,q)*diff(b,p)—diff(a,p)*diff(b,q):
Transformation Ux, equation (9.86)
Uqg:=(g—p*1)/sqrt(2*m*w):
Up:=sqrt(m*w/2)*(p—g*1):
Transformation U ~1x, equation (9.85)
Ulqg:=sqrt(m*w/2)*(g+1*p/(m*w)):
Ulp:=sqrt(m*w/2)*(g*1+p/(m*w)):
Transformed harmonic oscillator Ho, equation (9.88)

HO:=—I1*w*q*p:

Effect of the operator coefficient 7;, on a given function f according to equation (9.118)
T:=proc(f,n)
local j: global W:

if n=0 then f else
Un*sum( "c(W[j],T(f,n—j—1),q,p) ’, ’j ’=0..n—1):
fi:
end: R
Effect of the operator coefficient (7—1),, on a given function f according to equation (9.120)
T1:=proc(f,n)
local j: global W:
if n=0 then f else
—1/n*sum( "T1(c(W[j1.f,q,p),n—j—1) ’, ’j ’=0..n—1):
fi:
end:
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Calculation of perturbation corrections K;11(q, p), Wj(q, p), Qj+1(q, p), and P;11(q, p), for
j=0,1,...n— 1. Notice how we extract the diagonal terms ¢* p* from F; to construct K ; 11, and
then calculate W; according to equation (9.124) in the text.
canpt:=proc(H1,n)
local j,f,tmp,L: global Ug,Up,Ulq,Ulp,K,W,P,Q:
for j from 0 to n—1 do
f:=sum( ’c(WI[i], T(HO,j—i),q,p) ’, ’i ’=0..j—1)+(j+1)*T(H1,j):
tmp:=expand(subs(gq=q*L,p=p/L,f)):
K[j+1]:=1/(j+1)*coeff(tmp,L,0):
tmp:=expand(tmp—(j+1)*K[j+1]):
WI[j]l:=limit(int(subs(L=exp(I*w*t),tmp),t),t=0):
Q[j+1]:=expand(subs([qg=U1q,p=U1p], T1(Uq,j+1))):
P[j+1]:=expand(subs([q=U1q,p=U1p], T1(Up,j+1))):
od:
end:
For a perturbation H = g™ we simply execute canpt(Ug "M,n).

Programs for the Appendixes

17) Laplacian in Curvilinear Coordinates
The reader may easily identify equations (A.7) and (A.8) in the procedure below:
with(linalg):
g:=proc(xvar,yvar)
local xvarl,i,j,n,e: global G,invG:
n:=nops(yvar):
xvarl:=vector(xvar):
for i from 1 to n do
e[i]:=map(diff xvarl,yvar[i]):
od:
G:=array(1..n,1..n):
for i from 1 to n do
for jfrom 1 to i do
G[i,j]:=simplify(evalm(transpose(e[i])&*e[j])):

Gl,i1:=GIi,j]:

od:

od:
invG:=evalm(1/G):
end:

The arguments of the procedure are two ordered lists xvar =[x1(y), x2(¥), ...xy(y)] and yvar
= [y1, y2, ... yn1, and the program produces the matrix g = G and its inverse g~ =invG.
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Laplacian in Curvilinear Coordinates

In several chapters of this book we make use of the Laplacian in different curvilinear coordinates.
Some of them are standard, and one finds the necessary expressions in any book on mathematics or
quantum mechanics [202, 203]. But when one is interested in a particular set of coordinates that is
not so widely used, one should derive the Laplacian oneself. A general expression for the Laplacian
in arbitrary orthogonal curvilinear coordinates is available in many books [202, 203]. However, this
is not the case of nonorthogonal coordinates because they are not so frequently required. In addition
to this, such scarcely available derivations of the Laplacian in arbitrary curvilinear coordinates are
typically awkward, requiring special tensor notions and notation [204]. For all these reasons we
believe it worthwhile to show a simple and straightforward (although not rigorous) derivation of the
Laplacian in arbitrary curvilinear coordinates. We believe that the discussion below is even simpler
than a recent pedagogical treatment of the subject [205]. However, the reader who is not interested
in the details of the derivation may go directly to the recipe at the end.

Let x = {x1,x2,...,xy}and y = {y1, y2, ..., yn} be sets of Cartesian and curvilinear coordi-
nates, respectively. The volume element is given by

dxidxy...dxy = ||3||dy1dys ... dyn , (A1)

where J is the Jacobian matrix with elements [206]

8x,~

Jij = E,

(A2)

|A| denotes the determinant of a square matrix A, and |a| the absolute value of the scalar a. Taking
into account that

N
ax; dx; 0
X _ Xi 0Yk 251] (A3)
0x; P Oy 0x;

we conclude that the matrix elements of the inverse J—1 are

(J_l)i/ - % . (A.4)

We want to express the Laplacian operator
N 82
vi=Y — (A.5)
i=1

in terms of the curvilinear coordinates y.

245
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Any vector in R" can be written as a linear combination of the Cartesian unit vectors c;:
r=x1C1 + x2C2 +--- + xNCn , (A.6)
so that ¢; = dr/dx;. Analogously, we define N curvilinear vectors

_or

12N, (A7)
ayi

€

Although the Cartesian vectors form an orthonormal basis set with respect to the standard scalar
product ¢; - ¢; = §;;, the curvilinear vectors are not necessarily orthogonal, and we define a metric
matrix g with elements

gij=¢-¢;,i,j=12,...,N. (A.8)

Notice that g;; is symmetric and
N 0xy 0Xk N
R W Z (47
gij = "~ - ‘Jkl (J )jk ’ (Ag)

where J7 denotes the transpose of the Jacobian matrix. Since g = J7J, then |g| = |J|2 > 0, and we
can write the volume element as

dxidxs...dxy = /|gldyidys ...dyN . (A.10)

The scalar product of two functions W (x) and ®(x) that belong to a quantum-mechanical state
space is

/ /\I’*CD dxldxz...dezf /\Il*CDN/|g|dy1dy2...dyN. (A.11)

Straightforward integration by parts, taking into account that the state functions vanish at the bound-
aries of the coordinate space, shows that

/.../\II*VZGD dxidxy . ..dxy

—/ .../V\D*~V¢>dx1dxz...dx1v

= —/ .../V\P*-VCD\/@dyldyz...dyN,(A.12)

where
N N N N
ov* 9d* oW* 9O* dy; dyk
VU . Vo = = —_—
Z 0x; 0dx; ;;; dy; Oyr 0x; dx;
N N N N
W™ 9P* -1 W™ 9d*
= XY (0) (7). =0, S5 (A1)
o 8yj Yk ki ij Pt Jjk 3yj Yk

Another integration by parts gives us

ov* gp*
f._.f(g—l) Vigldyidys ...dyy

jk dy; Oyk

9 /4 ID*
= — .. p* | — —— | dy1dyy ...dyn . A.14
/ / [3Yj (g )jk Vgl Iy ] e W ( )
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Finally, comparing both sides of

f.../w*v2q>,/|g|dy1dy2...dy]v
N N
B N D
= 2> //q, [_ay,- (9 )jk\/|g|_8yk dyidyy...dyy .  (A15)

Vz_LXN:XN:i(—l) gl (A.16)
Vgl 4 ay; )V Iy '

J

which is the desired expression. Present proof of equation (A.16) is not rigorous because it requires
functions W and & that vanish at the boundaries of the coordinate space, while V2 applies to any
twice differentiable function. However, in our opinion this lack of rigor is greatly compensated by
the remarkable simplicity of the argument which we hope will satisfy most readers.

When the curvilinear vectors are orthogonal we say that the corresponding coordinates are orthog-
onal. In this simpler case g;; = g:6;, (g—l),;, = 8;j/gi, and |g| = g182...gn. Most coordinates
used in physical applications (Cartesian, spherical, cylindrical, etc.) are orthogonal. In such cases
the Laplacian (A.16) reduces to a sum of diagonal terms.

Finally, we give the promised recipe to derive the Laplacian in curvilinear coordinates. It suffices
to have the expression of either the direct x(y) or inverse y(x) transformation because J(x — y) =
J~1(y — x). For concreteness we assume the former and proceed as follows:

a) Obtain the curvilinear vectors according to equation (A.7).

b) Calculate the metric matrix g according to equation (A.8).

c) Obtain the determinant and inverse of g.

d) Construct the Laplacian according to equation (A.16).

The reader may convince himself that this procedure is simpler than others. At least, it is easy to
write a simple and general Maple program. In the program section we show a short procedure that
performs the calculation according to the recipe above.

It is worthwhile to notice that equation (A.16) is valid even for a subset of curvilinear coordinates
{y1,y2,...,ym}, M < N. For example, if we consider x = {rsin(6) cos(¢), r sin(@) sin(¢),
rcos()} and y = {0, ¢}, we obtain

2 72
Ve s £+ s = (A7)
r2sin(®) | 90 90  sin(9) 3¢? h2r2
where L2 is the square of the quantum-mechanical angular momentum. This expression of the
Laplacian is suitable for the rigid rotors discussed in Section 5.4 [207].
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Appendix B

Ordinary Differential Equations with Constant
Coefficients

In several chapters of this book we need the solutions of ordinary differential equations with con-
stant coefficients. Such equations are relevant to many branches of physics and chemistry, and are
discussed in most introductory courses on mathematical analysis. In this appendix we develop a
simple and straightforward algorithm which generalizes common approaches to that mathematical
problem [208, 209].

In order to simplify the notation we write the differential operator D = d/dx. The starting point
of our method is the simple identity

exp(rx) D exp(—rx)Y (x) = (i) - r) Y (x) (B.1)
that enables us to integrate the first-order differential equation
(D - r) Y(x) = f(x) (B.2)
very easily:
Y (x) = exp(rx) [c + / ' exp (—rx’) f (x') dx’:| , (B.3)

where C is an arbitrary integration constant.
In order to treat differential equations of any order we define the set of functions

Y, (x) = ]_[ (13 - rj) Y(x) = (D - rx) Yoo1(x), s=1,2,..., Yo) =Y(x),  (B.4)

j=1

where r1, r2, ..., rg are arbitrary (in general complex) numbers. Arguing as before we integrate
equation (B.4) and obtain Y,_; in terms of Y, as follows:

X
Ys_1(x) = exp (rsx) |:Cs +/ exp (—rex’) Yy (x') dx/i| . (B.5)
This simple equation is the main result of this appendix.

A general inhomogeneous ordinary differential equation of order » with constant coefficients a;
is of the form

ﬁ(ﬁ) Y() = f(x), ﬁ(b) - Xn:a,ﬁf, (B.6)
j=0
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where we choose a,, = 1 without loss of generality. We can factorize the differential operator £(D)
as

c (D) =1 (D - rj) , (B.7)

j=1
whereri, r2, ..., r, are the roots of the characteristic equation £(r) = 0. According to the definition
given in equation (B.4) we have Y, (x) = f(x), and in order to obtain Yo(x) = Y (x) we simply apply
equation (B.5) fors =n,n —1, ..., 1. Present algorithm is particularly suitable for the application
of computer algebra. We do not show a general Maple program here because we are concerned only

with the case n = 2 that we discuss in what follows.
It is sufficient for our purposes to consider a differential equation of second order

Y'(x)+a1Y' (x) +agY (x) = f(x) (B.8)
that leads to a quadratic characteristic equation
P +air+ay=0, (B.9)

which we easily solve to obtain its two roots r1 and rp. Straightforward application of the general
recipe outlined above gives us

Y(x) = Crexp(rix) + Coexp (rix) / exp [(r2 — r1) x'] dx’

+ exp (r1x) / ) f " exp [(r2 —r)x' —rax"] £ (x") dx"dx' . (B.10)

Integration by parts enables us to reduce the double integral in equation (B.10) to a single one. To
this end it is convenient to consider the cases of equal and different roots separately.
When r1 = ro, we easily rewrite equation (B.10) as

X
Y (x) = (C1 + Cox) exp (rix) + / (x =x)exp[ry (x —x)] £ (x) dx". (B.11)
On the other hand, when r1 # r, we have

Y(x) = Crexp(rix)+

exp (r2x)
ro—ri

/ Hexp[ra (x = )] —exp[r (x— )]} £ () d' . (BA2)

rz—rnr

In some chapters of this book we face an example of the latter case given by a; = 0 and ag = w?.

Because the roots of equation (B.9) are r1 = —r = iw (we choose w > 0 without loss of generality),
we rewrite equation (B.12) as

Y (x) = Csin(wx) + C’ cos(wx) + 1 /X sin[w (x —x")] f (x) dx’, (B.13)
a)

where the constants of integration C and C’ are related to C1 and C> in a straightforward way.
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Appendix C

Canonical Transformations

In this appendix we give a brief account of canonical transformations [48] that considerably facilitate
the discussion of several subjects covered by this book. In particular we are interested in canonical
transformations of the form

Ba(@) = U @) BUA(a), Ua(a) = exp (—aA) : (C.1)
where A and B are two linear operators. Notice that
Bs(0)=B . (C.2)
One easily proves that canonical transformations preserve commutators; that is to say
[é,é:l=b:>[éA,éA]=bA. (C.3)

In particular, if A is antihermitian AT = —A and « is real, then U is unitary U = U2,
Many equations regarding canonical transformations take considerably simpler forms in terms of

superoperators [48]. For example, if we define the superoperator A as

AB=[A, 8] (C.4)
we easily prove that
by = By = U5 A B0, (c5)
and can formally write
B = exp (aZ) B. (C.6)
By repeated application of the rule
O7Y 870, = 071 BOLOTL B0, C7)
we conclude that
034870, = (0580, = By (C8)

Operator differential equations like (C.5) with the initial condition (C.2) are suitable for obtaining
explicit expressions of canonical transformations. In what follows we consider a few simple cases
that are useful in this book.
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1) If [A, B] = a, where a is a scalar, then
By =B +ax. (C.9
2) If [A, B] = bB, where b is a scalar, then
Ba(a) = exp(ba)B . (C.10)
In particular, notice that

Bu(rwi/b) = Uy (i /b)BU (i /b) = —B . (C.11)

=2 ~
3) If A B = w?B, where w is a constant, then

sinh = A
sinh(wa) 75

Bu(a) = cosh(wa)B + (C.12)
When w? < 0 we rewrite this equation in a more convenient form:
Ba@) = cos(lwla) B + m?'%ﬁé . (C.13)
If we apply U~ tothe Schrddinger equation
HV = EV (C.14)
from the left, we obtain
U AV =0"*A00 v =E0 v . (C.15)
If A is invariant under the canonical transformation
UAU =1, (C.16)

then U 1w is an eigenfunction of A with eigenvalue E. If this eigenvalue is not degenerate then
U0 « v,

A particularly useful canonical transformation is the so-called scaling or dilatation. Consider
dimensionless coordinate and momentum operators x and p, respectively, which satisfy [x, p] =,
and construct the unitary operator

O = exp (—aA), A= (2p+pE) . (€.17)
where « is a real parameter. Taking into account that [A, ] = £, and [A, p] = —p, then we
conclude from Case 2 above that

Ia=€X, pao=e*p. (C.18)

Moreover, if V (x) is an analytic function of x at x = 0, and we apply the result in equation (C.8) to
the Taylor series of V (x) around x = 0, we conclude that

7'V (R) 04 =V (Ra) - (C.19)

© 2001 by CRC PressLLC



APPENDIX C 253

Consequently, the scaling transformation of the Hamiltonian operator

~ p?
H=>+V (%) (C.20)
reads
~ A
Hy = TA +V (%4) - (C.21)

An interesting particular case is given by « = iz because the scaling transformation simply
changes the sign of the operators: x4 = —x, pa = —p.
As an illustrative example consider the anharmonic oscillator

H(a,b,)) =a p? +bi?+ 1k, (C.22)

where a, b, A, and k are chosen so that this operator supports bound-state eigenvalues E(a, b, 1.).
First of all notice that E(a, b, ) = cE(a/c, b/c, A/c). It follows from the results above that

0[1[%(61, b, A)l?A - A (a e~ pete, Ae“k> —e2op (a, be*, Ae“(k+2)) ; (C.23)
consequently,
E(a,b,)) =E (a e 2 b2 ) eo‘k> —e XF (a, be*, A e"‘(k+2)> . (C.24)

This argument due to Symanzik [210] proved useful in the study of the analytic properties of the
eigenvalues of anharmonic oscillators [111].
On choosing e2* = 1~2/%+2) equation (C.24) becomes

E(a.b,2) =26+ (a, A~ Y/k+D) 1) , (C.25)
which suggests that the eigenvalues of the anharmonic oscillator can be expanded as
o0
E(a,b,3) = )2/(F2 % " g3~ 4i/k+2) (C.26)
j=0

It has been proved that this series already exists for k even and exhibits finite convergence radius [111].
The leading coefficient eg is an eigenvalue of the anharmonic oscillator H(a,0,1) = ap® + zF.

The scaling transformation also proves useful to relate the eigenvalues of anharmonic oscillators
with different parameters. For example, starting from E(1/2,0, 1) = E(1, 0, 2¢*%*+2)) /(2¢2*), and
choosing 2% = 2-2/*+2) e prove that £(1/2,0, 1) = 2~%/*+2 E(1, 0, 1).

If the Hamiltonian operator H (1) depends on a parameter 4, its eigenfunctions and eigenvalues
will also depend on A HMW)WYO) = EQ)Y Q). Suppose that H(0) supports discrete states and that
there is a canonical transformation such that

U A0 = H(=)) . (C.27)
It follows from H (—A)W(—1) = E(—A)W(—2) and equation (C.27) that
HMUW (1) = E(—)UW(=1) . (C.28)

This equation tells us that £;(—1) = Ej (1) for some pair of quantum numbers j and k; in particular,

E;(0) = E(0). If the spectrum of H(0) is nondegenerate we conclude that j = &, and the Taylor
expansion of E; (1) about A = 0 will have only even terms:

o
Ej(\) =) Ejar®. (C.29)
i=0

Throughout this book we show several quantum-mechanical problems that exhibit such a feature.
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