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Preface

Ever since the time of Boltzmann, the desire to understand how macroscopic irrever-
sible behavior arises out of the complexity of the underlying microscopic processes
has been driving the development of the statistical mechanical theory of many-body
systems. While most of the "fundamental" questions associated with ipreversible pro-
cesses have yet to be answered to the satisfaction of all physicists, the theory has
obtained valuable results for "down-to-earth" physics by giving molecular expression
for those quantities encountered in macroscopic evolution laws. Most of those ques-
tions concerning the general form of macroscopic evolution equations, their features
and symmetries, and their connection with the molecular process can be answered
quite generally, independent of particular models, on different levels of approxima-
tion, each level being related to the others by a hierachical structure.

These questions can be approached in an elegant manner by utilizing the projectio
operator technique, which will be presented in detail in this volume. This method is
employed to derive transport equations for the relaxation of the mean, Langevin equa
tions for the fluctuations about the mean, and, further, on a more detailed level,
Fokker-Planck and master equations. The relations between the various evolution
equations will be discussed and the equations themselves will be illustrated by ap-
plying them to specific models.

The emphasis of this article is on the unifying aspects of the different statis-
tical mechanical theories of relaxation and fluctuation in many-body systems. How-
ever, the work does not treat those approaches which begin particularly close to
the molecular level, such as the Boltzmann equation, because these approaches. of
necessity, depend on details of particular models.

1 am grateful to the many colleagues who have added to my insights and under-
standing. In particular, I am indebted to those with whom I have had the pleasure
of close collaboration: W. Eidlich, P. Talkner, P. Hanggi, R. Graham, and, especi-
ally, the late M.S. Green.

Special thanks are also due to H. Haken whose suggestions and efforts as a co-
editor were most helpful.
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1. Introduction and Survey

Many -body systems composed of a great number of identical constituents exhibit on
the macroscopic level a rather simple behavior described by equations of motion
for a few macroscopic variables. Examples are the Mavier-Stokes equations for
fluids, the Bloch equations for magnetic relaxation, the Fokker-Planck equation
for a Brownian particle, and the master equation for atoms interacting with a ra-
diation field. The statistical mechanical theory relates this macroscopic dynamics
with the underlying microscepic process. In spite of its complexity in detail, the
microscopic process has simple formal properties: it is a reversible dynamical
process which is determined completely by the Hamiltonian H and the initial proba-
bility density p(to) from which all properties of the system can be calculated, at
least in principle.

8ecause of the common structure of the microscopic dynamics, the macroscopic
evolution laws Of nonequilibrium systems possess common features as well. Among
those is most notably the fact that the macroscopic evolution equations can be
cast into the form of transport equations! which are determined by a thermodynamic
potential and a matrix of transport coefficients. The underlying molecular nature
of the system is primarily manifest in this particular form. The irreversible part
of the transport equations is related to correlations of molecular fluxes by
GREEN-KUBD -type formulae [1,2], while the reversible part has a Poisson bracket
(or commutator) structure [3,4]. Kinetic equations seemingly as different as the
Navier-Stokes equations and the pauli master equation display their common features
when they are cast into the form of transport laws. The analogy is not complete,
but it is extremely helpful if one wants to borrow techniques developed to under-
stand one system for the study of another one.

In this article we make an attempt to develop a general foundation of the statis-
tical mechanics of irreversible processes and to provide a theoretical framework
within which the correspondence between the macroscopic relaxation and fluctuation
behavior of a rich variety of many-body systems can be assessed, The approach is
based on macroscopic kinetic equations of the form of {possibly generalized) trans-

1 We shall use the term transport equation in a broader sense than usual.




port equations which are derived from the underlying molecular dynamics by means
of the projection gperator technique. At.na stage shall we resort to an a priori
introduction of purely stochastic elements.

Before beginning a systematic exposition, it may be worthwhile to elaborate on
some aspects of the problem we wish to address. When dealing with macroscopic
evolution equations for a many-body system, we have to bear in mind that there i
not just one macroscopic evolution Taw but rather a whole hierarchy of kinetic
equations, each of which gives a valid description of the macroscopic behavior
under certain physical conditions and is bound to fail if these conditions are not
met.

Nonequilibrium systems, when they deviate only slightly from equilibrium, and
when they are not close to phase transitions, are well described on the macroscopic
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level by a Gauss-Markov process. The statistical-mechanical theory of irreversible
processes, which began with EINSTEIN [5] and developed through the work of a number
of authors [6-16], realized the intimate connection between fluctuations and irre-
versible behavior, This brings about common features of the near equilibrium Gauss-
Markoy processes crystallizing in ONSAGER's reciprocal relations [11,12] and the
fluctuation-dissipation theorem [10,14]. The whole theory is subsumed in the thermo—
dynamice of irreversible processes, which is now a well-settled matter of text-
books [17-19].

Clearly a macroscopic description by a Gauss-Markoy process can only be an ap-
proximation, since nonlinearities, which are met within all real systems, produce
non-Gaussian stochastics, and the finite correlation times of microscopic variables
lead to non-Harkovian corrections. Considering the time evolution of equilibrium
correlation functions, MOR1 [20] has shown that all these correcticns can exactly
be accounted for if the transport coefficients are replaced by time-retarded trans-
port kernels. In frequency space this means that the transport coefficients are
made frequency dependent. Essentially the same findings have been obtained by
KAOANOFF and MARTIN [21]. These generalized transport coefficients, which are ac-
tually functions of frequency or time, are now often referred to as renormalized
transport coefficients. When they are replaced by constants, thus disregarding the
memory effects, one recovers the standard theory of near equilibrium irreversible
processes [17-19], The differences are particularly pronounced near critical points
where the latter theory fails. An excellent review of Mori theory including many
applications has more recently been given by FORSTER [22].

A significant body of work published during the last three decades has searched
for a nonlinear generalization of the theory of linear irreversible processes. Such
a generalization is needed to treat nomequilibrium systems when they deviate suf-
ficiently from equilibrium. ROBERTSON [23] has shown that the exact time evolution
of the macroscopic state is governed by generalized transport equations which dif-
fer from those of Mori theory in two resepcts. The thermodynamic potential is a




rontinear function of the state variables and cannot be truncated after the bi-
Tinear terms, anl. the transport kernels pick up a functional dependence on the past
history of the macroscopic state when the systems leaves the vicinity of the equi-
Tibrium state, thus rendering the transport laws nonlinear. Closely related results
have been obtained by McLENNAN [24] and ZUBAREV [25].

More recently, this author [26,27] has shown that the fluctuations about the
mean obey exact generalized Langevin equations whose systematic terms are deter-
mined by the transport Jaws and whose stochastic terms are related to the transport
kernels by a generalized ﬂuctuatmmdlss‘patmn theorem, These Langevin equatmns
are linear but nonstationary in general. lized statistical th

we mean a theory describing the re]axatwn and fluctuation behavior of nonequili-
brium systems by means of these generalized transport and Langevin equations. When
the theory is linearized about equilibrium, one recovers Mori theory. On the other
hand, when the memory effects are disregarded, one obtains an approximate descrip~
tion of nonequilibrium systems in terms of a nonstationary Gauss-Markoy process.
We shall refer to this approximate theory as statistical thermodynamics, Various
authors [28-34] have proposed such a theory on the basis of phenomenological argu~
ments. The statistical-mechanical foundation of statistical thermodynamics [3S]
Teads to common features of the nonstationary Gauss-Markov processes which corres~
pond to those of Onsager's theory. Of course, the latter is obtained by linearizing
statistical thermodynamics about equilibrium (Fig.1.1}.

While statistical thermodynamics extends the range of validity of the theory of
linear irreversible processes to the nonlinear regime far from equilibrium, it
still breaks down near equilibrium phase transitions if the memory effects are dis-
regarded. Away from equilibrium there are additional nonequilibrium instabilities,
1ike the 8&nard instability [36] and the Gunn instability [37], which also are
described only roughly by a mean-field-type approximation. While these shortcomings
can be corrected by including the memory effects, it is rather cumbersome to eva-
luate the molecular expressions for the retarded transport kernels even approxima-
tely, and a more straightforward method for the calculation of renormalized trans-
port coefficients is needed.

It has been realized during recent years that the most important contributions
to the memory effects in generalized statistical thermodynamics are not caused by
the finite correlation time of the microscopic variables but rather come from non~
linear couplings between fluctuations of the macroscopic variables [38-42}. These
nonlinearities are disquised in the frequency dependence of the renormalized trans-
port coefficients. As a consequence, it seems natural to seek for an extended theory
of irreversible processes which retains the Markovian property but gives up the
Gaussian property. Such a non-Gaussian Markov process is governed by a Fokker-
Planck equation or a master equation, according to whether the process is continuous
or not.




For most macroscopic systems the discrete nature of the microscopic states can
safely be neglected, and they are well described on the macroscopic level by a con-
tinuous stochastic process. In a pioneering work GREEN [1] derived a Fokker-Flanck
equation for such nonequilibrium systems which explicitly displays the nonlineari-
ties since the drift vector may be a nonlinear function of the state variables and
since the diffusion matrix is not necessarily constant. He further established
molecular expressions and common features for the bare transport coefficients enter-
ing the Fokker-Planck equation. Later ZWANZIG [43] showed that the macroscopic dy-
namics can be exactly described by a generalized Fokker-Planck equation containing
memory effects, In as much as non-Gaussian stochastics is accounted for by the non-
linearities, these memory effects reflect non-Markovian corrections alone. When the
memory effects are disregarded one recovers Green's results.

The Fokker-Planck equation gives a more complete description of nonequilibrium
systems than statistical thermodynamics, because it treats the state variables and
the nonlinear functions of the state variables on an equal footing, while the latter
are not considered relevant variables in the theory of statistical thermodynamics.
As a consequence of this and the nonlinearities, however, the Fokker-Planck approach
does not yield directly closed equations of motion for the mean values and the cor-
relation functions of the state variables, These have to be determined by what is
now commonly referred to as a renormalization. By renormalizing the Fokker-Planck
process one obtains renomalized transport laws with retarded transport kermels of
the same type ad those met within generalized statistical thermodynamics, but the
transport kernels are in fact approximated since non-Markovian effects are not in-
cluded in the Fokker-Planck equation.?

The renormalized transport laws derived from the Fokker-Planck equation or a set
of stochastically equivalent nonlinear Langevin equations [44- 46] lie between sta-
tistical thermodynamics and generalized statistical thermodynamics (Fia.l.1l): they
do contain the major corrections to statistical thermodynamics though. Mostly,
authors have looked for renormalized transport equations in the linearized form in
order to determine eqfilibrium ccrrelation functions [38-42,47,48]. This is the
approach which has been so successful in explaining the dynamical behavior in the
vicinity of equilibrium phase transitions [4,49-51]. In the study of nonequilibrium

systems, however, the renormalized transport laws become nonlinear [53-551,

Particularly in systems where quantal effects are important, it may be neces-
sary to take into account the fact that the macroscopic variables can take on values
out of a discrete set only, The Fokker-Planck equation is then replaced by a quantum-

2 To distinguish the two kinds of renormalized transport equations one could call
those derived from the Fokker-Planck equation "fluctuation renormalized" and those
met within the theory of generalized statistical thermodynamics "fully renor-
malized".
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mechanical master equation.® This approach traces back to PAULI [59], was improved
later by VAN HOVE [60], PRIGOGINE [61,62], NAKAJIMA [63], ZWAMZIG [64-66], and
others [67-72], and has been reviewed by HAAKE [73] and SPOHN [74], Very recently,
objections against the standard approach have been raised on the basis of fundamen-
tal considerations [75,76]. To cope with these, we have found it necessary to aban-
don the usual factorization assumptions [73,74] and to bring the master equation
into the form of a transport equation. This form has not been used so far. The
master equation approach may then be developed in close analogy with the Fokker-
Planck equation approach.

The various macroscopic evolution laws and their mutual dependence are depicted
schematically in Fig.1.1. The hierarchical character is apparent in the one-way
connections which either lead downwards to a theory that has more microscopic de-
tails left out, or rightwards to a theory that has more approximations built in.
Clearly, the scheme in Fig.1.1 is not complete since there are further levels of
description 1ying between a fully microscopic treatment and the level of nonlinear
Markov processes, that is, between level A and B in Fig.1.1.

The usual Fokker-Planck description is not appropriate for a study of phenomena
occuring on a length or time scale close to a microscopic scale. One must then
either take non-Markovian effects into account [77,78] or utilize a more microscopic
method (e.g., a Boltamann equation approach [78-811). Although this approach may
also be analyzed in a language very similar to one given here. a discussion of it
would be beyond the scope of this article. This is because the closer one approaches
the microscopic level. less universal the findings are, and because different physi-
cal systems require different treatment. We shall concentrate on the structural as-
pects of the macroscopic theory of many-body systems.and, in particular, on those
aspects that are independent of a specific model.

Moreover, we shell not discuss the field of nonequilibriun instabilitiss [46,70,
82-85] which has received so much attention recently. In general, these phenomena
do not demand statistical-mechanical techniques different from those treated in
this article; rather one starts from the equations of motion derived here. Often,

a complete macroscopic description of a nonequilibrium system requires a large set
of macroscopic variables, particularly in inhomogeneous systems, where the macro-
scopic variables are local variables. In the vicinity of a nonequilibrium instabi-
lity, however, the set of relevant variables can greatly be reduced because a sep-
aration of time scales between the "stable" and the "unstable" modes occurs. Indeed,
HAKEN [85,86] eliminates the stable modes and derives a close subdynamics for the
unstable modes only. While this second coarse graining can partly be performed by

3 Clearly, there are also classical systems which can approximately be described by
master equations. In particular, well-stirred ideal mixtures undergoing chemical
reactions have frequently been studied [56-58]. Mast of the fundamental questions
raised by quantal master equations are not present in the classical case.




means of the techniques developed here for the firet coarse graining, it is impor-
tant to notice that the effective evolution equations for the unstable modes do not
necessarily share the features thet our equations of motion possess.

In practice, macroscopic phenomena are frequently studied by means of phenomeno-
Togical methods. lndeed, from phenomenological considerations one often obtains a
set of deterministic equations of motion for the macroscopic variables (e.g..
[871). The question of how to account for fluctuations thus arises. In particular,
in the interesting case of nonlinear systems, this problem of stochastic modeling
has extensively been discussed in the literature. Recently, some proposals have been
critically investigated by HANGGI [88]. Considerations on the basis of statistical-
mechanical arguments show that, at least for continuous processes, the stochastic
description by means of a Fokker-Planck equation can be reconstructed from the
1imiting deterministic laws [89,90]. Some macroscopic theories discussed in this
article can, hence, also be approached from the phenomenological point of view
(Fig.1.1). For a recent review of the phenomenalogical approach see [9I}.

The outline of this article is the following. The paper is divided into two parts,
A and B, each of which has several chepters. Each chapter opens with a brief sum-
mary of its content. While the material is presented in a systematic way, all chap-
ters after Chap.3 are to a large extent self-contained. This made it necessary to
repeat occasionally an argument already given in a previous chapter, but it certain-
1y facilitates the use of the article as a source of reference for the various ap-
proaches discussed in it. A general idea about the orgamization of the article can
also be obtained by glancing at Fig.1.1 and its caption.

Part A is devoted to the derivation of macroscopic evolution equations starting
from a microscopic theory. To this purpose we make use-of the projsciion operator
technique which has been introduced into statistical physics by NAKAJIMA [63] and
ZMANZIG [64]. 1n particular ZWANZ1G [43,65,66,92] developed the technique into a
powerful tool for the derivation of formally exact equations of motion for classi-
cal or quantal probability densities. Later MORI [20] put forward a projection
operator technique in the Heisenberg picture, which leads to generalized linear
Langevin equations. Both approaches have been reviewed by HYNES and DEUTSCH [93].
Using an extended time-dependent projection operator technique, ROBERTSON [23] was
able to derive closed nonlinear equations for mean values. This approach was sup-
plemented later by the author [26], who derived exact evolution equations for the
fluctuations about the mean. The latter technique can be shown to cover the pre-
vious ones.

Since most of the specialized applications of the projection operator technique
are best appreciated when the central elements of this method have been understood,
we reserve Chap.2 for a detailed presentation of the basic ideas and the general
scheme. The presentation is more general than is needed for the following chapters,
but the characteristics thus become particularly clear, and the approach also covers
applications not explicitly discussed here [81,94,95].




In Cths.3, 4, and 5, we then apply the technique to derive the various types of
macroscopic evolution equations mentioned above. Molecular expressions for the quan-
tities entering the transport laws are derived, and general properties and symme-
tries of these quantities are proved. We further discuss the mutual connections be-
tween the different equations of motion. In Chap.6 we study the response of the
system to an applied time-dependent perturbation, both from a microscopic and macro-
scopic point of view. Vie show how the macroscopic evolution equations are modified
by the external perturbation and emphasize the conngction with the preceding results

Part 8 contains some select applications of the general formalism which are in-
tended to illustrate the methods discussed in Part A. Chapter 7 is concerned with
the statistical-mechanical theory of a classical nonlinear oscillator in interaction
with a heat bath. This investigation is based on the Fokker-Planck equation approach
The special cases of a 8rownian particle in a fluid and a mass impufit.y in a har-
monic lattice are discussed in some detail, and the renormalization of transport
equations is illustrated by using the Ouffing oscillator as an example.

In Chap.8, statistical thermodynamics is applied to simple classical fluids. We
start out from general considerations of systems described by local densities and
derive exact equations of motion for the hydromechanic modes. The nonlinear Navier-
Stokes equations are recovered in an approximation. Langevin equations for the
spontaneous fluctuations are obtained and used to calculate the structure factor
for Tight scattering in the presence of a steady temperature gradient. 1n Chap.9,
we discuss spin relaxation using the master equation approach. The master equation
for the coarse-grained spin probability density and the Bloch equations for the
mean spin relaxation are derived. Finally, we determine the linear response to an
alternating applied magnetic field. .

While the present article is based on the projection operator technique, it is
not intended to give a comprehensive review of all recent developments related to
projector methods, nor is an extensive or even complete list of literature provided.
The emphasis is on a coherent presentation of those methods which have proved to
be particularly powerful tools for the development of a statistical-mechanical
foundation of irreversible processes in many-body systems.




Part A. General Theory

2. The Projection Operator Technique

In this chapter we present the basic ideas and the general Scheme of the projection
operator technique.! We show how the method extracts exact equations of motion for
a few macroscopic variables from the microscopic process involving all variables

of the system.

The foundations of the method are formed by the particular structure of the
microscopic dynamics governed by a Hamiltonian and by the concept of the relevant
probability density, The important properties of the microscopic dynamics, as far
as we shall need them, are recapitulated in Sect.2.1. On the macroscopic level the
system is described by a set of macroscopic variables. The ability to choose the
appropriate set for a given problem is where physical insight is required. For &
given set of macroscopic variables we introduce a relevant probability density
which is macroscopically equivalent to the full microscopic probability density.
Section 2.2 summarizes the basic properties of a relevant probability density,
while jts particular form is left open during the general considerations of this
part of the article. .

As soon as the set of macroscopic variables and the relevant probability density
have been fixed on the basis of physical arguments, the continuation of the projec-
tion operator method is determined by a mathematical elimination procedure removing
the microscopic variables from the equations of maotion. First, in Sect,2.3 we in-
troduce a projection operator acting in the space of all variables and projecting
out the macroscopic variables. The form of this projection operator is specified in
terms of the relevant probability density. In Sect.2.4 we come to the fundamental
mathematical identity. The microscopic time evolution operator is decomposed with
the help of the projection operator into a sum of three terms, where the first term
is completely determined by the instantaneous values of the macroscopic variables,
the second term by their past history, and the third term is of microscopic origin
leading to the irregular motion of macroscopic quantities.

The fundamental identity is used in Sect.2.5 to derive the generalized transport
equations. They form an exact closed system of integro-differential equations for

1 We essentially follow [26].
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the mean values of the macroscopic variables. In these equations the microscopic
variables are eliminated completely in favor of after-effect functions describing
a retarded interaction among the macroscopic variables.

In Sect.2.6 we derive the generalized Langevin equations describing the dynamics
of fluctuations about the mean path. The Langevin equations are nonstationary if
the mean values depend on time. The fluctuations of the macroscopic variables are
driven by random forces, the stochastics of which depends on the mean path. Section
2.7 contains some concluding, as well as additionai, remarks on the projection
operator technique.

2.1 Microscapic Oynamics

Statistical-mechanical theory relates the macroscopic dymamics of a large system
composed of great numbers of jdentical constituents with the underlying micro-
scopic or molecular process. Clearly, the microscopic process is very complex in
detail, and the laws governing this process might be known only approximately since
we do not always know the molecular constituents of a system and their mutual
interactions precisely. On the other hand, the microscopic process has simpie for-
mal properties: it is a special Markovian process which is completely determined
by the Hamiltonian of the system and the initial probability demsity. These formal
properties of the microscopic process lead to a definite structure of the macro-
scopic dynamics. In this section we summarize some of the general properties of
microscopic processes.

The microscopic dynamics determines the time evolution of a microscopic state
of the system in a unique, deterministic way. However, by macroscopic observation
or measurements we obtain only incomplete information about the microscopic state
of a macroscopic system, We have to consider an ensembie of jdentical systems which
have- been under the influence of identical external conditions (identical prepar-
ation of the initial state) and ask for the ensemble probability of events. In prac-
tice, an ensemble of systems can also be formed by repeating the same process very
often with the same system, or, in the case of stationary processes, by measuring
for a sufficiently long time.

An ensemble of systems is described by a probability density p. In classical-
statistical mechanics p is a distribution function in the phase space @, while
for quantum-mechanical systems p is an operator? acting in the Hilbert space H. In
the following we shall often suppress the ensemble point of view and call p the
microscopic probability of the system. The probability density o is positive

2 In quantum-statistical mechanics p is also referred to as the density matrix or
statistical operator,




o(r) 20 (classical)
p20 , i.e.. (2.1.1)
<ylply> > 0 (quantal)
and normalized
[drp(r) =1 (classical)
trlel = 1S 19 o> s 1 (quantal) @1.2)
1

In classical-statistical mechanics the value of the phase function p(r) is positive
in every point I of the phase space @, and tr denotes the integration over all
phase space. In quantum-statistical mechanics the matrix element <y|p|y> is posi-
tive for every state |p> in the Hilbert space H, and tr denotes the trace over a
complete orthonormal basis (wi] of H.

We consider isolated systems. If necessary, this can be achieved, at least ap-
proximately, by enlarging the system to jnclude the interacting surroundings. The
time evolution of the microscopic probability p of an isolated system is governed
by the Liouville equation

B(t) = -ile(t) . (2.1.3)
In classical physics the Liouvillian L acts upon a phase function X as Poisson

bracket with the Hamilton function H, while the quantum-mechanical Liouvillian
acts upon a Hilbert space operator X as commutator with the Hamilton operator H:

LX = i{H,X} (classical)
LC-F X1 (quantal) (2.1.4)

The formal solution of the Liouville equation reads

o(t) = e 1L (0) (2.1.5)
where p(0) is the initial microscopic probability.?

A variable (observable) F of the system is represented as a phase function in
classical statistical mechanics and as a self-adjoint Hilbert space operator in
quantum statistics. The microscopic probability o(t) determines the mean value (ex-
pectation value) of a variable F at time t

(L) = trifo(t)) . (2.1.6)
While in the Schrodinger picture the probability density is a function of time,
the Heisenberg picture treats the variables as time-dependent phase functions,

F(t) = elLtF FsF0O) , (2.1.7)

3 In quantum-statistical mechanics (2.1.5) can also be written
p(t) = expl-(i/K)Ht1e(0) expl(i/K)Ht].
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and the mean values reads

<F(t) = triF(t)p(0)) . (2.1.8)
The representations (2.1.6) and (2.1.8) are equivalent since the Liovillian has
the property

tr(fLp) = ~tr(pLF} , d.e., LT =
which can be used to transfer the time dependence from the probability density to
the variables, and vice versa.

The Heisenberg picture is particularly useful if we want to consider correlations
of variables Fi(i = 1, ..., p) at different times tie In classical statistical
mechanics the correlation function is given by

<Frlty)es Folt)> = triFy(t). F(t)e(0)) . (2:1.10)

. (2.1.9)

Phase functions under the classical phase space integral tr may be permuted in an
arbitrary way, whereas the quantum-mechanical trace tr is only invariant under cycli
permutations of the Hilbert space operators. Consequently, there are different
multitime expectations of Heisenberg operators Fi(ti) which reduce to the same clas-
sical correlation function (2.1.10) in the classical limit. The differences between
those multitime expectations are a consequence of the quantum-mechanical dispersion,
which introduces an additional stochastic element beyond the scope of classical
stochastic processes. It is merely a matter of convenience which of the various
muititime expectations is called correlation function. In fact, several definitions
of quantum-mechanical correlation functions have been introduced in different con-
texts [14,17,70,96-102]. Some corvenient chojces will. be discussed later.

2.2 Macroscopic Variables and Relevant Probability Oensity

Macroscopic systems exhibit on a macroscopic level a rather simple behavior de-
scribed by equations of motion for a few macroscopic variables. The appropriate
choice of these macroscopic variables is one of the most important steps in a sta-
tistical-mechanical theory of many-body systems, Frequently, the existence of slow
variables can be traced back to conservation laws or, in the case of ordered sys-
tems, to continuous broken symmetries; the associated macroscopic variables are
then densities of conserved quantities and order parameters [22,49,103). There may
be additional variables though: e.g., in systems undergoing slow chemical reactions,
the concentrations of the reacting constituents are among the macroscopic variables
although they are not conserved [104-1061. For concrete systens the macroscopic
variables are generally known by experience. In a kinetic model the macroscopic
variables are mostly algebraic sums of molecular variables.




The set of macroscopic variables A = (Al,A.A,Ai,...) is supposed to be large

enough to specify the macroscopic or thermodynamic state of the system. Naturally,
given the mean values

a,(t) = <A (t)> = triAp(t)} (2.2.1)
of the macroscopic variables at time t, we can not construct the true mtcroscopic
probability density p(t) in detail. This would require the mean values of a complete

set of variables. We introduce instead a relevant probability density e'(t) with the
properties

a) 5(t) has the general properties (2.1.1,2) of a probability density, in parti-
cular

trio(t)) = 1, (2.2.2)

b) 5(t) is completely specified by the mean values of the macroscopic variables

5(t) = pla(t)l . (2.2.3)

c) 5(t) and the true probability density ¢ (t) are macroequivalent
triAp(t)) = triAp(t)) = a,(t) (2.2.4)

d) the initial probability density p(0) 1s a relevant probability density
o(0) =0(0) . (2.2.5)

In this section we will not elaborate much on the appropriate choice of the rele-
vant probability density since several concrete examples will be given 1n subse-
quent chapters. However, it may be worthwhile to stress the following: the projec~
tion operator technigue outlined below Teads to formally exact equations of motion
for the macroscopic varfables A regardless of the particular choice of the rele-
vant probability density p, provided the conditions (2.2.2-4) are satisfied, but
the resulting equations may have a rather complicated structure. To obtain trac-
table macroscopic laws it 1s essentfal that the true probabil1ty density o(t) be
well approximated by the relevant probability density p(t). Hence, the macroscopic
variables A and the relevant probability distribution o associated with their mean
values a have to be chosen carefully by taking into consideration the particular
physical process one wants to describe.

For instance, a useful relevant probability density 5 may be found by making
plausible assumptions about the microscopic distribution p (like a factorization
assumption in the case of weakly interacting subsystems) so that the distribution
would be of the relevant form 5 if those assumptions were true. On the other hand,
the projection operator technique does not rely on the validity of assumptions
that might have motivated the definition of 5. Quite to the contrary, the devi-
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ations of the true microscopic probability density p from the relevant form 5 are
determined systematically, and the final result is formally exact.

2.3 Projection Operator

The macroscopic variables A and the “unity" 1 are supposed to form a set of Yine-
arly independent variables which span a macroscopically relevant subspace in the
space of all variables. One of the characteristic features of the macroscopic
level of description, the restriction to a comparatively small number of macro-
scopic variables, can be characterized mathematically as a projection of the space
of all varfables upon the macroscopically relevant subspace. Only the projected
image F of a variable F is dealt with in macroscopic physics.

We describe this projection by means of a projection operator of the form [26]

PLalF = Fla) = teilalF) + ] (A - 2 tef28lale} (2.3.1)
i i
Note that this projection operator is determined if we have fixed the set of
macroscopic variables and the form of the relevant probability density. The parti-
cular form of P can be motivated by the particular properties of the so-defined
projection. The projected image F of a variable F is a 11near combination of the
macroscopic variables A and the unity 1 with coefficients which may be functions
of the macroscopic state a. The projection F - F has the properties
a) af + 86 =af + 86 , (2.3.2)
by F=F ,
c) F:cofzciAiQF=F .
d) triof} = trliF)
i 2oFf
e) trlp —«} =0 .
-
These properties are a consequence of (2.2.2,4) and the relations

a2 %
t 35;} 0, tr{ki —33.;} <5y (2.3.3)

which follow from (2.2.2,4) by differentiation.
The properties a) -c) are just the general properties of a projection upon the
macroscopically relevant subspace.* Because of d), the projection is chosen in such

4 The properties a) -c) alone do not characterize the projection uniquely since we
have not defined an orthogonality relation in the space of variables. Only the
properties d) and e) specify the "direction" of the projection.




3 way that the reduction of the variables by projection corresponds to a change
from the true probability density o to the macro-equivalent relevant probability
density 5. In gemeral, this latter property can only be obtained if the projection
is allowed to depend on the macroscopic state a. However, this state dependence is
a weak as possible since the averages of the derivatives 3F/2a1. vanish according to
property e). It can be shown that the properties (2.3.2) specify the projection
(2.3.1) uniquely.

Clearly, the properties (2.3.2) of the projection can also be expressed as pro-
perties of the projection operator P. In particular, one shows that P projects out
the macroscopic variables

P[alAi s Ai . (2:3.4)
Further, we have

Plalp(a']l = P[a'] , (2.3.5)
which includes the projection operator property (idempotent operator) for a = a',
and which also gives

Plal(1P[al) = (1-P[al)P[a} =0 . (2.3.6)
By means of the projection operator every variable F can uniquely be decomposed into
a sum of two parts

F = PlalF + (1-P[al)F (2.3.7)
which may be viewed as the macroscopic and the microscopic parts of F, respectively.

1n a nonstationary process the mean values a are time dependent so that the pro-
jection operator becomes a function of time P(t) = P[a(t)], and we have

- 3(t

P(L)F = trl3(t)F) +; IA; - a, ()]t EE;LH F} . (2.3.8)
Equation (2.3.6) may now be written

P(L)P(t') = P(t') . (2.3.9)
From (2.3.8) we obtain for the time derivative of the projection operator

B(OF =7 [A, - a,(t)JA.(t) t i F (2.3.20)

W=y 5a,(t)6a () -3

which has the property

B(t) = P(L)P(L)(1-P(L)) . (2.3.11)
This follows most easily from (2.3.9) by differentiation.

There is a transposed projection operator PT(t) acting in the space of densities
u defined by

telP(E)F) = tr(FP ()l . (2.3.12)
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From (2.3.8) we get explicitely [107]

PT(t) = (t)trin) +] :;» ‘t [trlAgu) = ag(t)tru}] . (2.3.13)
§ %3

This operator projects out the relevant probability density

5(8) = PT(t)(t) . (2.3.14)
1ts time derivative has the form

2

8Tty - g Jﬁﬁ.fg%im 3;(t) TtrtAg} - ay(t)trta)) (2.3.15)
from which we see that

8T(tyo(ty = 8T(t)s(E) =0 . (2.3.16)

This means that the projection operator PT(t) and the time derivative commute when
acting upon the probability density [108]

[ait R PT(C)]n(t) =0 . (2.3.17)

2.4 Decomposition of the Time Evolution Operator

By means of the projection operator, the time evolution operator exp(ilLt) for vari-

ables in the Heisenbarg representation can be decomposed inta a sum of three terms
oLt . eflip(e) . (2.4.1)

t 5
+ f du e™MYp(u)tiL - B(u)I1 - P(u)IG(u.t)
5

+ e - p(s)lags,t)
where s is an arbitrary time in the interval (0, t], while G(t',t) i5s a time-
ordered exponential

t
G(t't) = T, exp{/t" du iLlt - P(u)]} R (2.4.2)

where operators are ordered from left to right as time increases. G(t',t) is an
operator valued functional of the mean path {a(u), t' < u < t} since the projec-
tion operator is a function of the mean values.

The identity (2.4.1) is easily proven by differentiation, Here, we give an
alternative derivation which points to the physical relevance of the decomposition.
First we decompose the time evolution operator into a sum of two terms

ekt < ol 4 et - p(ey (2.4.3)
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If we apply the first term to an arbitrary variable F, we obtain with (2.1.7) and
(2.3.8)

el (t)F = tr(G(0F) +  (A(E) - ai(t)]tr{%—_[{% F} s (2.4.4)
3 i

which is a linear combination of the macroscopi¢ variables at time t. About the

"microscopic" term :
Z(ty = et - Pty (2.4.5)

of the decomposition (2.4.3) we want to obtain some macroscopically available in-

formation by taking into account the past history of the macroscopic variables.

To this purpose we decompose the time rate of change

2ty = et - peey - Bty (2.4.6)
into two terms
3(t) = Z(t)iLl1 - P(t)] (2.4.7)

+etyniL - (630 - (T,

where we have used (2.3.11). Because of (2.4.4), the second term is a linear com-
bination of the macroscopic variables and can be considered as a known inhamogen-
eity in the differential equation (2.4.7). The solution of the homogeneous equation
reads

2, n(t) = 2(s)als,t)
where G(s,t) has been defined previously, and the solution of the inhomogeneous
equation with initial condition Z(s) = e T5(1 - p(s)] follows in the usual way

(2.4.8)

Z(t) = e'L5(1 - P(s)la(s, t) (2.4.9)
t N
+ [ du eMp(uytiL - Bu)I01 - P(u)la(u,t)
s

1f this expression for the second term in equation (2.4.3) is inserted there, we
obtain the identity (2.4,1).

There is a corresponding decomposition of the time evolution operator exp(iLt)
in the Schrgdinger picture. The transpose of (2.4.2) is the exporential

t
. T <
al(e,e) =T, exp{- [ a0-p (u)]u.} R (2.4.10)

where aperators are ordered from right to left as time increases. We now take the
transpose of (2.4.1) and obtain with (2.1.9), (2.3.12) and (2.4.10) a decomposition
of the time evolution operator in the Schridinger picture

oLt 2 pT(gy eiLE (2.4.11)




t :

- faua (b - PTIGL + PT(u)]PT(u) ity
s
+aT(ts)i - PT(s)] 71

The usefulness of the identities (2.4.1,11) lies in the fact that they express the
microscopic time evolution partly in terms of the time evolution of macroscopic
quantities. The macroscopically available information about the microscopic dynamics
is cast into a mathematical relation. This relation constitutes the mathematical
basis of the projection operator technique.

2.5 Generalized Transport Equations

By means of the identity (2.4.1), the time rate of change of a macroscopic variable

at time t
iLt, Pk
Aty =™y A -y (2.5.1)
may be decomposed into a sum of three terms
i iL
Aty = et (nhy (2.5.2)
R
+ [ du e uytiL - B0 - P(u)la(u, tHh;
s
+F1.(t,s) .
where the third term reads
(2.5.3)

Fi(tis) = &0 - p(s)Ia(s, t)h;
The first two terms in (2.5.2) are linear combinations of the macroscopic variables
at time t and at previous times u in the interval [s,t], respectively. This becomes
explicit if we make use of (2.3.10,11) and (2.4.4) to write (2.5.2) in the form

Ai(e) = vi(t) + g 2;5(t)shs(t) (2.5.4)
t
+] du[Ki(t.u) ‘] oﬁ(c.u)snj(u)]
FRy(ts)
where the
(2.5.5)

e, (8) - Aj(t) - ag(t)
are the fluctuations of the macroscopic variables about their mean values, and
where we have introduced the organized drift

(1) = trip(DA) (2.5.6)




the collective frequencies

855(8) =t {3‘3:;3((%' "‘i} . (2.5.7)

the after-effect functions

K (£,5) = triF(s)ILLT - P(s)Ia(s. ) (2.5.8)
and the memory functions '
eyjltis) = tr {%lets-s)’ﬂ.n - P(s)]G(s,t)l’li} (2.5.9)

v (s 3
L) e {3@?%3{??? a(s. A}
The meaning of these quantities will become clear below.

First, we average (2.5.4) over the initial probability density o(0). Since
<8A;(t)> = 0. we have

di(t) = vy(t) + [ duKi(tu) + Fi(t.s) (2.5.10)
s
where
5(t5) = Fy(t.s)> = trip(0)F;(ts)) . (2.5.11)

This term may also be written

£5(£,5) = trise(s) G (5,004, . (2.5.12)
where
So(s) = o(s) - 5(s) = 11 -P(s)Io(s) - (2.5.13)

is the deviation of the true microscopic probability density o(s) from the rele-
vant form. 1n passing from (2.5.11) to (2.5.12), we have made use of (2.1.5),
(2.3.14), and (2.5.3).

The decomposition (2.5.10) expresses the time rate of change of the mean value
of a macroscopic variable as a sum of three terms. The first term, the organized
drift v‘.(t), is the average of the microscopic flux ;11. over the relevant probabi-
lity density g(t). Like p(t) this term depends on t only via the mean values

v;(t) = vila(t)] (2.5.14)
so that Vi“‘) is completely determined by the instantaneous macroscopic state. The
remaining terms form the disorganizad drift

t
v;(t) = Js' du Ko(tu) + fi(t.s) (2.5.15)

which is due to the deviation sp(t) of the microscopic probability density p(t)
from the relevant form. This contribution to éi(t) is again split into two pieces:
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a functional of the mean path {a(u), s < u < t} which the sysfem has run through
in the preceeding time interval [s,t], and a term due to the deviation sp(s) at
the earlier time s.

50 far we have made use of the properties (2.2.2-4) of the relevant probability
density only, The remaining property (2.2.5) requires that the initial probability
density p(0) be of the relevant form. This should be looked upon as a condition for
an adequate definition of the relevant probability density rather than a restriction
of initial states. 8ecause of (2.2.5) and (2.5.12), we obtain from (2.5.15) by
taking into account the whole past history from the initial time to =0 to the pre-
sent time t an expression for the disorganized drift v;(t) in terms of the after-
effect function Ki(t'“):

t
vi(t) = vya(u), 0 cu <ty = gdu Ky () (2.5.16)

t
- é du tr{p(u)iLll - P(u)I6(u. t)A;)

This expression determines the disorganized drift completely as a functional of
the mean path.

The time rate of change of the mean values may now be written

ii(t) = vila(t)] + yyfa(u), 0cuct) . (2.5.17)
These equations form a closed set of equations of motion for the mean values of the
macroscopic variables and will be referred to as generalized transport equations.
They describe the mean relaxation of an ensemble of systems initially characterized
by a probability density o(0) of the relevant form. The derivation of such closed
exact equations of motion for a reduced set of variables js one of the main results
of the projection operator technique.

To shed some additional light on the statistical-mechanical background of the
generalized transport equations, we also give an alternative derivation within the
Schrodinger representation. We use the identity (2.4.11) with s = 0 to get from
(2.1.5) an expression for p(t). This expression can be simplified by means of
(2.2.5) and (2.3.14,16) to yield

.
o(t) = (1) - é du 6 (tuyrt - PT(u) i (u) . (2.5.18)

This formula represents the true probability density p(t) as the sum of the rele-
vant probability density n(t) and the deviation §p(t) from the relevant form ex-
pressed as an integral ovep the past history of the macroscopic variables.
With (2.5.18) the time rate of change of the mean value ai(t) may be written
ay(t) = trihio(t))
(2.5.19)

b H il T L
= trifgpe(t)) - é du tr{ ()t - PI(u)lils(u))
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This equatton coincides with (2.5.17) if we write v;(t) and v,(t) in tems of
molecular expressions by means of (2.5.6,8,16). Note that the order of the trans-
posed operators in the trace in the integrand of (2.5.19) has to be reverse to the
opder in (2.5.8).

2,6 Generalized Langevin Equations

So far we have considered only the average of the fundamental decomposition (2.5.4)
of the time rate of change Ai(t). We now subtract the average relation (2.5.10)
from (2.5.4) to get

» t
shy(t) = § nij(t);sAJ.(t) +£du JE rtxij(t.u)MJ(u) +F(ts) (2.6.1)
where
6Fi(t.s) = Fy(tys) = fi(ts) . (2.6.2)

Equation (2.6.1) gives the time rate of change of the fluctuations of the macro-
scopic variables as a sum of three terms. The first two terms are completely de-
termined by macroscopic quantities. The collective frequencies n”.(t) are functions
of the mean values, and they are related to the organized drift Vi(t) of the gen-
eralized transport equations by

v, (a}
nij[al =

. nij(t) 'nij["(t)] . (2.6.3)

This follows immediately from the molecular expressions (2.5.6,7). The memory
functions ¢, ;(t.u) are defined in (2.5.9) as functionals of the mean path, and they
can be expressed as functional derivatives of the disorganized drift v‘.(t) of the
generalized transport equations (26,27

5Yi(a(u), 0<uxth

@,5(t.5) O N (2.6.4)
To prove this relation we have to express 'i(t) as a statistical-mechanical aver-
age by means of (2.5.8,16). Then the functional derivative can be calculated ex-
plicitly, and the result coincides with the molecular expression (2.5.9) for the
memory functions. Oetails are given at the end of this section.

Given a solution of the generalized transport equations (2.5.17), the collective
frequencies nij(t) and the memory functions °1‘j(t'”) may be looked upon as given
functions of time so that the first two terms of the decomposition (2.6.1) depend
only on the instantaneous fluctuations and their past history in the time interval
(s,tl. The third term sFi(t.s) gives the influence of microscopic processes and
of macroscopic fluctuations prior to time s, and it has the properties




<oy (tusp = 0 (2.6.5)

n{% eTiks SF‘-(t,s)} =0,
J

following from (2.5.3) and (2.6.2).

Going back to the initial time of preparation = 0, we get from (2.6.1) the
generalized Langevin equations [26]:

. t

sA(t) = § n‘.j(t)sAJ-(t) + £ du § oy 5(ta)shg(u) + Fy(t) (2.6.6)
where the random forces

Fi(t) = Fy(t,0) = 6F;(£,0) (2.6.7)

have the properties

<Fi(tp =0, v ;aj" Fi(t)} 0 . (2.6.8)
The generalized Langevin equations (2.6.6) determine the stochastic process of the
fluctuations sA(t) of the macroscopic variables in terms of another process, the
stochastic process of the random forces F(t). This means that we have to know the
stochastic process of the random forces in order to determine the stochastic pro-
cess of the fluctuations. The properties (2.6.8) of the random forces are not suf-
ficient to obtain interesting quantities like time correlations of fluctuations
from the generalized Langevin equations. One has to determine further properties
of the random forces using their molecular expressions. Since these properties de-
pend on the particular form of the relevant density matrix, we will postpone further
discussion to the following sections where we deal with particular forms of 5.

We now give a derivation of (2.6.4). From (2.3.8) it follows that

2.
®(t) . . 3%(t
38 F= § [Ay = a5(t)] tr {—Tt-g—)—(—y“i EEQ F} . (2.6.9)

Further, the functional derivatives of the operator valued functional (2.4.2) read

—_(T_)M Pt) £ ang(t,u)iL ——%G(u t)F (2.6.10)
. 2.
.. § ot why tr {37(%*32_(_7 a(u, t)F} .

We then obtain for the functional derivatives of the disorganized drift (2.5.16)

ay;{au), 0 <u <t}
_‘—Sa?(ﬁ);—' tr{a—ﬂ(—)’-ﬂﬁ PI(u)G(u, t)A}

2
I 3B .
- E tr(a(u)Athr{ EROTR G(u,t)A




4 [T X o%5(u .
- jo' dt! E trip(t! )il - P(t))IG(L" u)A ) tr {Taﬂi%%}(ﬂ Glu, t)A;
_ ao(u) . i
- tr {E(m)y L P(u))G(u.t)Ai}

2
3%p{u A
- ] o) + e {wﬁ%im G(u.t)Ai} R (2.6.11)

where we have made use of the fact that G(t',t) does not depend on mean values

a(u) for times u < t°, and the second transformation follows by virtue of (2.5.6,16)
Finally, with (2.5.17), the relations (2.5.9) and (2.6.11) combine to give

(2.6.4). An alternative derivation, pointing to the physical meaning of (2.6.4),

may be found in [27,1093,

2.7 HMore on Projection Operator Methods

The generalized transport equations (2.5.17) for the mean values and the generalized
Langevin equations (2.6.6) for the fluctuations about the mean path are exact for
every choice of the relevant probebility density p provided (2.2.2-5) hold. The
equations of motion (2.5.17) and (2.6.6) display the universal structure of exact
equations of motion in nonequilibrium statistical mechanics. For the investigation
of particular irreversible processes the general frame has to be adapted by choos-
ing a particular form of the relevant probebility denmsity. The various prejection
operator methods which have been put forward in the last two decades are just such
special cases of the general approach outlined in the preceeding sections.

Scalar Products. Sometimes authors have preferred to specify the projection
(2.3.1) of the space of all variables upon the macroscopically relevant subspace
by means of a scalar product defined in the space of variables as compared to a
specification by means of a relevant probability density. 1n such a case one re-
quires that the direction of the projection be orthogonal to the macroscopically
relevant subspace instead of the properties d) and e) in (2.3.2). Various defini-
tions of such a scalar product have been found useful in different contexts
[20,110,111]. It can be shown [112] that the definition of a scalar product in the
space of variables is in fact equivalent to the introduction of a relevant proba-
bility density, and it is basically a matter of taste as to which is regarded as
primary. Often an adequate choice of , emerges very naturally from physical con-
siderations so that we shall remain with 5.

Modified Projection Operators. By inspecting the molecular expressions (2.4.2)
and (2.5.6-9) which define the quantities that appear in the‘equations of motion
(2.5.17) and (2.6.6), We see that in these formulas the projection operator P(t)
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appears only in the combination LP(t). Thus, we could introduce a somewhat modified
projection operator F(t) so that

LP(t) = LP(t) (2.7.1)
without changing the final result. If we work with the transposed operator we have

At =T (L (2.7.2)
instead of (2.7.1). Consequently, the same equation of motion can be derived by
means of two different projection operators related by (2.7.1) or (2.7.2) (compare
e.g. [23] and [1071).

The Unity as a Macroscopic Variable. Sometimes there arises a situation where
the chosen set of macroscopic variables A already includes the unity 1 as a cer-
tain 1inear combination

=] eA . (2.7.3)
1

Naturally, we always could split off the unity explicitly and use the previous
scheme but this is often unsuitable, and we will shortly discuss the modifications
necessary if we want to allow for (2.7.3). 1n this case the normalization (2.2.2)
of the relevant probability density 1s included in (2.2.4), from which we get

B .
erfa, _afj‘} =84 (2.7.4)
Further, with (2.7.3)
-
t EQLJ} =g (2.2.5)

which is now valld instead of (2.3.3). With (2.7.4,5) it is readily shown that the
properties (2.3.2) of the projection (2.3.1) are still valid if the macroscopic
state a is compatible with the normaTization

Teag=1 . (2.7.6)
1

Hence, we can use the same projection operator (2.3.1) to deal with macroscopic
variables A which include the unity as a linear combination, and the equations

of motion (2.5.17) and (2.6.6) remain unchanged.

Time: Projection Op . The earlier work on projection operator
methods was based on pelevant probability densities plal which are linear functions

of the mean values a. In this case pfal is of the form

plal = 5+ Jgila; - 85) (2.7.7)
1

where the & are suitably chosen reference values. Because of (2.2.4) we have

trGAY = L triAeg) =gy (2.7.8)
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Now, the projection operator (2.3.1) is particularly simple:
PF = te3F) + | (A - &;)tripsF) . (2.7.9)
i
Note that P does not depend on the macroscopic state a and, consequently, it is
time-independent in a dynamical process.

Since we can omit the time ordering prescription in (2.4.2), the molecular ex-
pressions (2.5.6-9) simplify considerably. The organized drift (2.5.6) reads

vilal = v, + § nu(aj - 3) . (2.7.10)
where

¥y = trighy (2.7.11)
while the

5 = trio A (2.7.12)

are the collective frequencies (2.5.7) which are now independent of the macroscopic
state. The after-effect functions (2.5.8) read

Ki(ts) = 35(t - s) + § o5t - s)ag(s)y - 3y) . (2.7.13)
where

Bty - c.{;u.u -p) e‘L(“P)tixi} R (2.7.14)
while the

o5t = tv{ajﬂ.u -P) eiL(1"’)tix‘.} (2.7.15)

are the memory functions (2.5.9) which are now independent of the mean path.
The generalized transport equations (2.5.17) are linear in the mean values

ag(t) = + § a;5(a;(t) - SJ.) (2.7.16)

t
+ Jo' du{&i(t ~u) +§ o4t - uj(ag(u) - aj)] N
and the generalized Langevin equations (2.6.6) assume the form
t
eAL(t) = % a5 (1) + g du § ogi(t = ueAs(u) + Fy(t) (2.7.17)

where the random forces

Fy(t) = (1 - py eILIWPIGR, (2.7.18)
have the properties

() =0, trlpgFi(t)) =0 . (2.7.19)




By adding the evolution equations (2.7.16) and (2.7.17) we get
Aty =T+ § 85(A5(8) - ‘aj) (2.7.20)

t
“ du[e‘(t cu) e § 8150t = WA - sj)] R

which 1s the same equation as (2.7.16) except that the mean values are replaced by
the fluctuating variables and a random source term Fi(t) has been added. This means
that in a system where the mean values obey a linear law, fluctuations of the state
variables can be taken into account simply by adding random forces to the systema-
tic fluxes. This is not true if the transport equations are nonlinear.

Clearly, the exact equations of motion which are obtained with the help of a
relevant probability density linearly dependent on the mean values a have a much
simpler structure than those more general equations derived previously, and one
might ask why do we not restrict ourselves to the linear case. First, the initial
states of a process under consideration can not always be written in the simple
form (2.7.7), in particular if these states are far from equilibrium. Second, since
the equations of motions are linear, physically important couplings among the
macroscopic variables may be hidden under a complicated structure of the memory
functions. In such a case a time-dependent projection operator approach which al-
lows for nonlinear evolution laws may turn out to be simpler in the long run.




3. Statistical Thermodynamics

In this chapter we study the relaxation of a system which has been displaced from
equilibrium by means of external forces. The initial state may be far from thermal
equilibrium, and we shall not restrict ourselves to linearizations about equili~
brium, To a macroscopic nonequilibrium state described by the mean values a of the
macroscopic variables A, we assign a relevant probability density p of the gener~
alized canonical form. Since this relevant probability density is a natural gener-
alization of the equilibrium pmbahi]it); density, we can use it to extend relations
familiar from equilibrium thermodynamics in a natural way to nonequilibrium systems.
We shall employ the projecticn operator technique to determine the effects of the
deviation of the true microscopic state from the generalized canonical form.

In Sect.3.1 we introduce the generalized canonical probability density [23,113-116
and use it to define a nonequilibrium free energy F as a function of the macroscopic
state a. The derivatives [T aFIEa‘. of the free energy have the meaning of thermo-
dynamic forces conjugate to the fluxes a;. 1n Sect.3.2 the generalized transport
equations [23] governing the time evolution of the mean values are cast inte a Spe-
cjal form where the fluxes 3 are expressed in terms of the forces w and of transport
coefficients which depend on the preceeding mean path. 1n Sect.3.3 we give the as-
sociated Langevin equations [27] governing the time evolution of fluctuations about
the mean, and we derive a generalized fluctuation-dissipation theorem of the second
kind. If the mean values assume their stationary equilibrium values, the Langevin
equations reduce to MORL's Langevin equations [20]. The main features of the Mori
theory are summarized in Sect.3.4.

In order to use the equations of motion of generalized statistical thermodynamics
to describe the motion of a given system, the rather involved formal expressions for
the transport coefficients and the correlations of the random forces have to be eva-
Tuated explicitly first. In most cases this can only be done approximately. In
Sects.3.5 and 3.6 we present such an approximation where the time rates of change
of the macroscopic variables are used as small quantities [35]. In the lowest non-
trivial order the approximate equations of motion have a particularly simple struc-
ture: the mean values obey the nonlinear transport equations

IMORE § Lij(tglt) = m(t) 5wy T
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where the Lij are the transport coefficients; the fluctuations about the mean obey
the Tinear nonstationary Langevin equations

. am, (t)
sA(t) = % m MJ.(t) +F()
where the random forces have the properties

<Fi(tp =0 , <Fi(t)anj(s)> =0 for t>s
<Fi(t)Fj(s)> = kET(Lij(t) + Lji(t))é(t ~s)

The last relation is a fluctuation-dissipation theorem of the second kind.! In
Sect.3.7 we show that the time-reversal symmetry leads to

Flal = Fla}
and the reciprocal relations

Lij[E] = EiEJ-Lj].[ﬂ] .
where € 1s the time-reversal signature of A]. so that “ai =58

The approximate equations of motion have the nice property of being specified
completely in terms of the thermodynamic potential Flal, which is an even function
of the state variables a, and the matrix of transport coefficients L‘.j[a]. which
satisfies the reciprocal relations. The theory goes beyond usual thermodynamics by
including fluctuations and beyond standard thermodynamics of irreversible processes
by exterding it to the nonlinear regime, It will be referred to as statistical ther-
modynamics. Although the theory is valid far from equilibrium, the nonlinearities
show only in the large mean deviations from equilibr{dm. i.e., the transport
equations are nonlinear, but the small fluctuations about the mean behave quasi
linear. Clearly, this can only be valid approximately and the approximation may be
poor, especially if the system is near critical points or boundaries of the state
space. In order to improve the thecry, the transport coefficients and the corre~
lations of the random forces have to be determined more precisely, and we have to
keep some of the retardation effects included in the exact form of the equations
of motion. We shall return to this problem in Chap.4.

The theory in this chapter is presented within the framework of quantum statisti-
cal mechanics. Everything can be done in a completely analogous way within the frame
work of classical statistical mechanics. The corresponding classical formulas are
obtained by replacing the commutator (1/if)[X,Y1 by the Poisson bracket {X,Y}, and
by noting that phase functions under the classical phase space integral tr may be

1 Equations of motion of a similar structure have been put forward by a number of
authors on the basis of phenomenological arguments [28-343.




29

permuted in an arbitrary way, leading often to a considerable simplification of the
classical formulas.

3.1 Generalized Caronical Probability Density

We consider a quantum-mechanical system described on the macroscopic level by the
dynamical variables A which are represented as self-adjoint Hilbert space operators,
i.e., A¥ = A, and whose dynamics is governed by the Hamiltonian H. By external forces
h which couple to the macroscopic variables according to

Hy = H - % nAy . (3.1.1)

we may displace the system from thermal equilibrium. If the forces are constant in
time, the system will settle down to a new stationary state described by a generalized
canonical (g.c.) probability density of the form

LU
tre Py
where 8 = 1/kgT is the inverse temperature.” We then release the system at t = 0
by switching off the external forces and study the subsequent relaxation process.
In every instant of time t > O we may choose a relevant probability density 5(t)
of the g.c. form [23,27,113-1161:

(3.1.2)

sty = h(y e BED(BAD (3.1.3)
where the parameters y,(t) and the normalization factor Z(t) are determined by

trip(t)} = 1

tr{AB(E)} = a;(t) (3.1.4)
as functions of the mean values a(t). The g.c, probability density (3.1.3) has the

general properties (2.2.2~4) of a relevant probability density, and it aiso satis-
fies (2.2.5) since the initial state (3.1.2) is of the g.c. form.

2 For a system which consjsts of a subsystem described by the A and a reservoir,
T is the reseprvoir temperature. More generally we may define T as the temperature
of the equilibrium state corresponding to the avev—age values of the extensive
constants of motion, If the A are local variables, the local temperature in the
g.c. state can be quite different from T. The introduction of a temperature can
be avoided by including the Hamiltonian H into the set A (see [271). For macro-
scopic systems this makes no difference in the resulting equations of motion.

to yield
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It is natural to introduce a coarse-grained free energy by

F(t) = tr(p(t)H} + kgT tr(5(t) n(t)} . (3.1.5)
Like 5(t), the free energy F(t) is a function of time only via the mean values a(t)
or the parameters u(t),

F(t) = Fla(t)] = Flu(t)] . (3.1.6)
The relation between the mean values a(t) and the parameters u(t) may then be
written

¥i(£) “%F"(&)T , ai(t);kBT%l . (3.1.7)
The time rate of change of the free energy reads

F(t) = PRACIORS (3.1.8)
This bilinear form shows that the parameters u are the forces conjugate to the

fluxes 3.
Using the formula’

1
RGN f; dg &#A() BK) (100 @19
and (3.1.7), we get from (3.1.3)
- 8
() lg do e Pria, - a ()] Mt 5ty (3.1.10
au;(t) ot
where
He=H - z ug(t)A - (3.1.11

Equation (3.1.10) combines with (3.1.4) to yield
aai(t)

. (t

L8 . ~ably aHy)
FON I tr{p(t)[ki - a;(6)) &Mty - ag()) @ } . (3.1.12

3 To prove this formula we first verify the identity
v
S(MSR) | A !g dp e?(AHOR)gp o(v-0)R
by differentiating with respect to v and showing that both sides satisfy the
same differential equation. Then, using this identity for v = I in connection with

Ei llﬂé (A(XI¥A(X) | A(X)y

where §A(x} = (dA(x)/dx}e, we obtain (3.1.9).
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The right-hand side suggests the introduction of a g.c. correlation function of
time-dependent variables X(t) and Y(s) with t > s by* [27]

(K(8Y(s)) = (V) X(B))
8 . ;
%g a 5o ()1 e Moo gsyy el (3.1.13)

This correlation function is particularly simple for the dynamical variables
X(t) = exp(iLt)X and Y(s) = exp(iLs)Y, where it takes the simple form

(X(£),Y(s)) -Ej' o tv{p(s)x tesy ity e““t} . (3.1.13)

This shows that the g.c. correlation is a natural generalization to Ronequilibrium
states of KUBO's canonical correlation function [101,102]. If the state at the
earlier time s is of the g.c. form, (3.1,14) reduces in the classical limit to the
correct classical two-time correlation (2.1.10).

Equation (3.1,12} may now be written

2a,(t) ( (

Ly = B(sA (1), BAL(E)) (3.1.15)
(T & J

where (sni(t),snj(t)) is the variance matrix in the g.c. state p(t). Because of
(3.1.7), the variance matrix is related to the second-order derivatives of the free
energy by®

2 -1
(R, (£)18R4(8)) = kgT {Ea—?(%%%}lﬁ} . . (3.1.16)

From (3.1.10,13) we get for arbitrary time-dependent variables X(t)

el oo} - sy (3.1.17)

Using the chain rule

. 6 .
%&%'E%f‘%{@r (3.1.18)

as well as (3.1,15,17), we easily see that for the present choice of the relevant
probability density, the projection operator (2,3.8) projecting out the macroscopic

4 Unless otherwise stated variables of the system are always assumed to be repre-
sented by self-adjoint operators. Then, the g.c. correlation function is a real
quantity. Of course, the gemeralization to non-Hermitian operators is straight-
forward.

5 In our notation )(1 is the inverse of the matrix X;j and not the inverse of a
particular matrix Qlement
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variables may be written [27]

B(E)X = (5 (UX) + ] (A - ai(t))(sni(t),snj(t))'l (e"“x,snj(t)) . (3.1.19)
14d

3.2 Transport Equations
The mean relaxation from the initial nonequilibrium state (3.1.2) to equilibrium is
governed by the generalized transport equations (2.5.17), i.e.,

35(t) = v;la(t)] + vyla(u), Ocust} (3.2.1)
The organized drift vy and the disorganized drift vy are defined in Sect.2.5 for a
general relevant probability density, and these expressions can now be evaluated
further when we put in the particular form (3,1.3) of the relevant probability den-
sity.

We write the Hamiltonian in the form

H= [H - § “i(”“i] + ]2 ui (A (3.2.2)

where the first temm commutes with the relevant probability demsity (3.1.3). By use
of (3.2.2) the expression (2.5.6) for v‘.(t) may be transformed to read

vila(t)] = = ] Vysla(t)lugle) (3.2.3)

where the V].j are given by the commutator relations
- - i

vygtal = efotel § g} (3.2.3)
Because of the antisymmetry

Viglal = Vg;ial (3.2.5)
we have

§ovi(thy(t) =0 (3.2.6)

1

so that the organized drift does not contritute to the time rate of change of the
free energy (3.1.8).

Hext we wish to transform the expression for the disorganized drift. The iden~
tity® (1011

1
18,681 = [ do %87 el179)8 (3.2.7)
0

= dy(dC(0}/dy), where C| w{ = exp(B) A expl (1 - ¢)8]. By inserting

6 To prove the identity we start by noting A exp(8) - exp(8) A = €(0) - (1)
nc(.;;aw = -exp(o8)[A,B] expl(

~ 9)Bl, we aobtain (3.2.7).
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yields with (3.1.3,11)
R B g .
ws(e) = § f; @ et Ay et Sty (t) . (3.2.8)
1

With (2.1.9) and (3.2.8) the after-effect functions (2.5.8) may be transformed to
read

K;(ts) = - E Rij(tsshuy(s) » (3.2.9)
where the R“. are given by Green-Kubo type formulae
Ri5(tss)
g - - .
- mr{p(s) Ms[(1 - p(s)a(s. bk le ““snj} . (3.2.10)

when (3.2.9) is put into (2.5.16), we get [23,107]
%
vi(t) = - f; ds § Ry s(t.shuy(t) . (3.2.11)
With (3.2.3,11) the transport equations (3.2.1) read
t
a(t) = - § Vij(thye) - & ds § Rij(Eeshuyls) - (3.2.12)

These equations express the mean fluxes & in terms of driving forces u and gener-
alized transport coefficients. There is an instantaneous reaction of the fluxes
upon the instantaneous values of the forces and a retarded reaction upon the forces
at earlier times. Correspondingly the matrix of generah:zed transport coefficients
consists of two parts. V].J.(c) describes the instantaneous transport. These coeffi-
cients are functions of the instantaneous mean values, i.e., Vij(” = vij[a(t)).
The second part Ry ;(tss) describes the petarded transport caused by the forces at
the earlier time s. The coefficients R”(t,s) are functionals of the mean path in
the time interval [s,t] i.e., R“(c,s) = Ri {a(u), s < u <t} Equations (3.2.4,10)
give exact expressions for the generalized transport coefficients in terms of mole-
cular quantities.

In the transport equation (3.2.12) the driving forces u are derivatives of the
free energy F. For closed systems it may seem more natural to use the entropy as
the adequate thermodynamic potential. Defining a coarse-grained entropy S(t) by

S(t) = ~kg trip(t) Ina(t)) . (3.2.13)
we obtain from (3.1.5) the usual connection between the entropy and the free
energy:

F(t) = <> - TS() . (3.2.14)




S

T is the temperature of the equilibrium state corresponding to the given mean value
of the energy <H> and possibly other extensive constants of motion. Then, we have

. BF(Y) o 8S(t
(1) = E(R)T 5 s (3.2.15)

and the transport equations (3.2.12) could also be written

t
it = § vyt S0 { ds § Ryt - 5) :fjss , (3.2.15)
J
where
Vig s Ty . RiE) = TR (3.2.17)

References to applications of the generalized transport equations may be found in a
recent review article by ROBERTSON [116].

3.3 Langevin Equations

The fluctuations about the mean path obey the generalized Langevin equations
(2.6.6), i.e..
. t

SA(t) = § “13(‘)“5(” +£ ds § eij(t,s)snj(s) +F(t) . (3.3.1)
The collective frequencies "ij(t) and the memory functions wij(t,s) are related to
derivatives of the organized drift Vi(t) and the disorganized drift y;(t) by
(2.6.3,4), respectively, Because of (3.1.17,18), the ‘properties {2.6.8) of the ran-
dom forces read

<Ft =0 L (Fi(t).ag(0)) =0 . (3.3.2)
The second relation shows that the random forces are statistically independent of
the initial fluctuations.

Defining a matrix Mﬁ(t,s) by

t
2 Migtes) = ] fog(tes) + £ @ ] 4 (tauig () (3.3.3)
and
Moj(sas) = a5 s (3.3.4)

the formal solution of the Langevin equations (3.3.1) may be written
t
A (L) = § Mij(t,D)EAj(D) + { du § Mij(t,u)FJ.(u) . (3.3.5)

This relation gives the fluctuations as a function of their initial values and as
a functional of the random forces. The evolution matrix Mii(t,s) is related to the
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g.c. correlations of the fluctuations by
(68, (£) A (5)) = E Mg (a5)(8A (5)u8A5(5)) (3.3.6)
because the g.c. correlations satisfy the same evolution law (3.3.3) with a differ-

ent initial condition. This follows from (2.6.1,5) if we note that (2.6.5) may be
transformed with (3.1.17,18) to read

<Fi(tas)> = 0, (6F,(t.s)ushy(s)) =0 . (3.3.7)
We now define a quantum-mechanical correlation function of time-dependent vari-
ables X(t),¥(s) by [35]
<X(£)¥(s)> = <Y(s)X(t)>
1
= [« 90(0) (1-¢)0(0)
é o cv{e X(t) e V(s)} s (3.3.8)
where

o(0) = (0 (3.3.9)

is the initial probability density. In the classical 1imit the correlation function
(3.3.8) reduces to (2.1,10}. The correlation function (3.3.8) may alsc be written

K(LW(s)>
1 N N
- é de n{ew"(s)(e“'-SX(t)]e“‘”)"(5)[e“"5v(s)1} . (3.3.10)
where
o(s) = (8 v (3.3.11)

is the probability density at time s < t. From this form we see that <X(t)Y(s)>
coincides with the g.c. correlation function 1f the true probability density at
the earlier time s is of the g.c. form (3.1.3), but the correlation functions
(3.1.13) and (3.3.8) will be different otherwise,

Because of (2.2.5), we have with (3.3.2)

<Fi(c)5Aj(0)> =0 . (3.3.12)
Using (3.3.12) and the formal solution (3.3.6) of the Langevin equations, we ob~-

tain for the correlations of the fluctuations

<SR (t)3A(s)> = E M (8005, (5,0) <8, (0)8A, (0)> (3.3.13)

1
t s
! {)’ o {; o E,'I M (EauMgy (a0 )<F (U)F (u')>

This expresses the correlations in terms of the initial correlations and the cor-
relations of the random forces. It should be noted that the evolution matrix
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Mij(t,s) can be determined if we know the transport equations (3.2.12) governing
the mean relaxation, i.e., the time evolution of the one-time averages of the
macroscopic variables, The basic new quantities needed to determine two-time aver-
ages are the correlations of the randon forces. ln general, the <F,(t)Fy(s)> cannot
be related exactly to quantities already appearing on the mean value level; rather,
the <F‘.(t)FJ.(s)> have to be determined by using the molecular expressions.

On the other hand, there is a relation between the correlations of the forces
Fi(t,s) defined in (2.5.3) and the retarded parts R”(t,s) of the transport coeffi-
cients. With (2.6.3), (3.1.13), and (3.2.10) it is readily shown that [27]

Rij(tas) = B(Fi(t,S).Fj(s,S)) . (3.3.14)

This relation will be referred to as "generalized fluctuation-dissipation theorem"
(of the second kind). A relation similar to (3.3.14) has also been obtained by
FURUKAWA [34,111]. The evolution equations (3.2.12), (3.3.1), the theorems (2.6.3,4)
(3.3.14), and the molecular expressions (2.5.3), (3.1.5,7), (3.2.4,10) are the
basis of generalized statistical thermodynamics.

3.4 Mori Theory

In equilibrium the forces u vanish, i = 0, and the mean values a assume their equi-
Tibrium values & which depend on the equilibrium temperature T. If the initial non-
equilibrium state is near equilibrium, the y(t) are small for a1l t > 0, and we may
Tinearize the transport equations (3.2.12). Thus, we can evaluate the generalized
transport coefficients (3.2.4,10) at equilibrium to yield

P

(A tr{p . [A‘.,AJ.]} (3.4.1)
and

Rigle- s = o :r{pe“”m - BE(t - s)iyle “”AJ.} s (3.4.2)
where

5oepluxoy =zt e®t (3.4.3)

is the canonical probability density, and where P and fs(t - s) are P(t) and
G(s,t) for equilibrium mean values a(u) = &, respectively. Hence

" PP

X = tripX} + ;,1 «Ai(sA‘.mj)M (zsAJ.,x)M (3.4.4)
and

B(t - 5) = eiL(1-P){(t=s) (3.4.5)
where

aﬁi A. - &, (3.4.6)
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are the fluctuations about equilibrium, while [20,101,102}
18 sy gaHy joH
(¥ =5 [ da :v{px &Py ¢ } (3.4.7)
50

is MORI's scalar product or KUBD's canonical correlation to which (3.1.13) reduces
in equilibrium. Because of (2.7.1), we could omit the first term on the right-hand
side of (3.4.4). The second term is the Mori projection operator [20].

In the considered approximation the transport equations (3.2.12) read

N t N
(HORES) Viguy(td = lg ds FRy5(E = shuy(s) - (3.4.8)
J J

With (3.1.15) we have to linear order in the deviations from equilibrium

(1) . (3.4.9)

a(t) ~ & = § 85
where

ajy = (ohs.0h )y (3.4.10)
is the equilibrium variance matrix. Hence, the transport equations governing the
mean relaxation in the Tinear regime near equilibrium may be written

ii(t) = % ﬂ‘.j(aj(t) - Sj) + z ds § aij(c - s)(aj(s) - aj) R (3.4.11)
where

b= - E%\'I‘.kég. . (3.4.12)
and

850 - - I %a‘.km;;} . : (3.4.13)

While the transport equations (3.4.11) are valid in the linear approximation
only, they yield exact expressions for the derivatives of the organized drift and
the disorganized drift at equilibrium, so that we can use (3.4.11) in connection
with (2.6.3,4) to determine the equilibrium collective frequencies and the memory
functions exactly. Consequently, the fluctuations about equilibrium obey the Lange-
vin equations [20,22]:

2 P t - N .

Ay (t) = § “ij“j(t) + lg ds E ‘°ij(t - s)snj(s) +Fi(t) (3.4.14)
where !:‘i(t) is Fi(t) for equilibrium mean values:

Filt) = (1 - BOA = (1 - py PTG (3.4.15)

The equilibriun random forces F,(t) have the properties

trEF (8 =0 L (Fi()eh0))y = 0 (3.4.16)
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and theorem (3.3.14) gives at equilibrium
Reo(t = s) = B(F.(t - 5).F, = B(F,(t).F: . .4.17
Rys(t = s) = BF;(t - $).F5(0))y = BF{(8).F5(9))y (3.4.17)
This is the fluctuation-dissipation theorem associated with MORl's Langevin
equation (3.4.14). The last transformation follows from (3.4.15) by noting that

the Liouvilie operator L is antisymmetric with respect to the Mori scalar product
(3.4.7),

(L) = ~(L41)y (3.4.18)
while the projector operator (3.4.4) is symmetric,

(P = BRY)y - (3.4.19)

In equilibrium the correlation function (3.3.8) coincides with the Mori scalar

product of the correlated variables. Because of (3.4.16), we immediately get from
(3.4.14) an evolution equation for the correlations

Ci5(8) = (8A,(£),5A,(0))y = (sA(t45),6R5(s))y (3.4.20)
of fluctuations about equilibrium of the form

. . t .

G50 = E A5t + g ds E 25 (t - 5)04(s) - (3.4.21)

Comparing (3.4.11,21), we see that the mean relaxation from a nonequilibrium state
in the vicinity of the equilibrium state and the time evolution of correlations of
fluctuations about equilibrium are governed by the same law [20]1. This proves
ONSAGER's regression hypothesis [11] in the genera] case.

3.5 Approximate Transport Equations

The transport equations (3.2.12) and the Langevin equations (3.3.1) are formally
exact but their evaluation is very complicated since the retarded parts of the
transport coefficients Rij(t's) and the correlations of the random forces
<Fi(t)Fj(s)> are given in terms of rather inyolved molecular expressions. Clearly,
equations of motion used in the phenomenolagical theory of many-body systems have
a much simpler structure. Such simpler equations of motion can be valid only ap-
proximately. The approximation is based on a characteristic property of macroscopic
variables, namely, that they are varying only slowly in time.

In the following we shall regard the time rates of change A of the macroscopic
variables as small quantities, and we shall disregard those tarms in the equations
of motion that contain ;’1 to the third or higher powers. At present such an approxi-
mation is based mainly on intuitive grounds; it can partly be justified by the a
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posteriori success of the resulting theory. We basically follow [35]. An approxi-
mation along similar 1ines has previously been used by ZWANZIG [43] in a different
context.

The R (t s), defined in (3.2.10), are functionals of the mean path
{a(u), s < u < t}, and they are explicitly of second order in A. since any vari-
ation of the mean values a(u) in the time interval [s,t] is at least of the first
order in A, we may replace the actual mean path by the quasi-stationary path
{a(u) = a(t), s < u <t} to yield

Ryz(ts)
B i . . 5
- [ tv{E(t) eHepeitt-s)ey . p(c))ni1e'“”tnj} +o(hdy (3.5.1)

where we have used (2,4.2) and the fact that iLP(t) is of the order A

The approximation (3.5.1) effectively replaces a(s) by a(t), so that it can be
a reasonable approximation only if the retardation time t - s is much smaller than
the characteristic time t_ within which the macroscopic variables change appreci-
ably. The Rij(t,s) have to decay within a charactgristic retardation time t « t .
Hence, by neglecting terms of the third order in A, we tacitly assume that there
is a clear-cut separation of two time scales, one characterizing the slow macro-
scopic processes and the other characterizing the fast processes of the eliminated
degrees of freedom.

In the second tem on the right-hand side of the transport equations (3.2.12)
we may replace ¥y (s) by ¥y (t) since the R J(t .5) are already of the second order
in A. Further, for t> rr, we may extend the time mtegral to s = - w since the
Ry (t s) vanish for t - s > T, 50 that

[ds Z Ryz(tashugls) # 2 045(thy(t) (3.5.2)
where Gij(c) = U‘.j[a(t)J-Uijlu(t)] is given by

0 [ i = .
Oyal = [[os [ dx erfprare DA TS(1 - praphteoH-Tukhog |

(3.5.3)
Hence, by neglecting terms of the third order in »’i, the transport equations
(3.2.12) assume the form
a(t) # - % Lij(tms(t) (3.5.4)
where the
i3 = V.. is .5.5
Lys(t) = Vi5() + Dy5(t) (3.5.5)

are the transport coefficients. Equations (3.5.4) specify the time rates of change
of the mean values completely in terms of the instantaneous mean values without
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referring back to earlier times. We may write

'ai(t) =mla(t)] (3.5.6)
where
mla(t)] = my(t) = - FLis(tug(t) . (3.5.7)
J

The present approximation disregards retardation effects, but it is not a»’w ap-
proximation restricted to the regime near thermal equilibrium. The transport equa-
tions (3.5.6) are generally nonlinear because the transport coefficients LiJ’ may
depend on the state a and the forces uy are not necessarily linear in the deviations
of the mean values from their equilibrium values.

For a given system the derivation of the approximate equations of motion
{3.5.4) can often be based on firmer grounds, in particular if the time rates of
change A are propartional to a small dimensionless parameter of the problem. Fre-
quently, the time rates of change A are not necessarily small because the reversible
organized motion is not slow. In such a case the part of the time rates of change
due to the interaction with the eliminated degrees of freedom may be small, though.
Then we can 1ook upon the projected fluxes (1 - P(t))fx as small quantities. The
above approximation can be extended to this case leading again to transport laws of
the form (3.5.4). However, the molecular expression {3.5.3) for the coefficients

Uij is modified.

3.6 Approximate Langevin Equations

Because of the general relations (2.6.3,4), the Langevin equations (3.3.1) asso-
ciated with the transport equations (3.5.6) read

. am,(t)
sA;(t) # g—aa—jﬁyﬂj(t) +Fi(t) . (3.6.1)

The present approximation neglects memory effects. The memory functions eﬁ(t,s)
decay within the same characteristic time Ty 38 the R‘j(t,s), and T is assumed to
be small compared to the macroscopic time scale characterized by T In view of
(2.6.1), the present approximation implies that the forces Fi<"’s) rapidly forget
their s dependence, so that .

Fi(tys) # OF (t,s) & Fy(t) (3.6.2)

for t - s> Ty Consequently, on account of (3.3.7), the random forces Fi(t) have
the properties

<Fi(t)> = 0 (3.6.3)




and
(F(t), oA;(s)) 40 (3.6.4)

for t - s > Ty Hence, the random forces Fi(t) are uncorrelated with the fluctuation
Mj(s) for all times s < t - .

Our next aim is a special version of the generalized fluctuation-dissipation for-
mula (3.3.14) which is valid in the present approximation. With (2.5.3) and (3.1.13)
we have a molecular expression for (F((c,s - 1),Fj(s,s - 7)). Making the same kind
of approximations that have led us from (3.2.10) to (3.5.1), and using

(X(£)aLY(S)) = ~(LX(t),¥(s)) + 0(A) . (3.6.5)
we find
(Fltas = T)F;(s,8 - 1)) = (Fi(tas)iFyls.8)) + o(A% . (3.6.6)

We now choose © > t, and make use of (3.6.2). Then, (3.3.14) and (3.6.6) may be
combined to yield

R;s(tas) ¢ B(F {t}:Fy(s)) - (3.6.7)
Since the right-hand side is the integrand in (3.5.3), we have
5ty =8 f ds(Fi(t)Fy(s)) . (3.6.8)
The mean values a(t) are quasi stationary on the time scale characterized by the
decay time T of the integrand in (3.6.B) so that
(FUtLFit - 1)) 2 (F(t + 1hFg() = (Fi(thFy (e ¥ ) (3.6.9)

Consequently, (3.6.8) may be transformed to read
UHORS { ds(F5(t).Fils)y - (3.6.10)

Because of (2.5, IB) deviations sp of the m\croscop\c probability density o
from the g.c. form p are at least of the ﬁrst order in A. Since the random forces
i(t) are themselves of the first order in A, we may, in the present approximation,
identify the g.c. correlations of the random forces with the quantum-mechanical
correlations (3.3.8). Then, in the limit t_ 0 (3.6.8,10) combine to give [35]

<Fi(t)F4(s)> # kBT[“ij(‘) + Oﬁ(t)li(t - s)
= kgTlLys(t) + L ()]8(t - 5) (3.6.11)

where the last transformation follows from (3.2.5) and (3.5.5). This is the fluc-
tuation-dissipation theorem associated with the Langevin equations (3.6.1).
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When we put (3,6.11) into (3.3.13), we get

<6Ai(€)6kj(5)> = E . M £.0)M5 (5.0)<6A, ()34, (0)> (3.6.12)
’ s
+ kT é du E . Mo (Ea Mg (53) (g (u) + g () s

where the evolution matrix Mij(t,s) is the solution of .
» Bmi(c)
3t Mis(tss) = Emmkju,s) o Miglses ) = 855 - (3.6.13)

This follows from (3.3.3,4) in the present approximation.
The evolution law for the correlations of the fluctuations is obtained from
(3.6.12,13) as

am. (t)
aithi(t)Mj(sp B Eﬁﬂ.m\k(c)ski(sp \ (3.6.14)
which has to be solved with the initial condition
<6Ag(s)8hy(s)> = 05:(5) & (3.6.15)

where °1’j(s) is the variance. Equation (3.6.14) follows directly from the Langevin
equation (3.6.1) ard

<Fi()8Ay(s)> = 0 for t>s . (3.6.16)
The Tast equation is a consequence of (3.6.4) in the limit T 0 since 8p(s) has

o influence upon the random forces Fy(t) for t - s > 7. From (3.6.12,13) we also
obtain an equation of motion for the variance :

) am (t) am, (t)

3g %44t = Emukj(t) + E ot W+ kBT[Lij(t) +L ()l (3.6.17)
Equations (3.6.14,17) determine the time evolution of the two-time correlations of
the fluctuations completely. With (3.5.6,7) they are the basis of statistical ther-
modynamics meaning an approximate description of rnonequilibrium systems in terms
of a nonstationary Gauss-Markov process.

3.7 Time-Reversal Symmetry

The time-reversal transformation reverses the sign of the molecular momenta and
spins while it leaves the coordinates unchanged. Let us assume that the Hamiltonian
H is invariant under this transformation,” while the macroscopic variables are

7 The generalization to more general situations, 1ike systems in an external mag-
netic field, is straightforward. For a detailed discussion of the time reversal
transformation see [1171.
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either even or odd with respect to time reversal:

Bt A =eghy (3.7.1)

where ¢ is +1 or -1 for even or odd A;, accordingly. Then, we have with (3.1.3,4)

3 megay (3.7.2)
N (3.7.3)
and
Tral = pral (3.7.4)
which yields with (3.1.6)
Flal = Fla]l . (3.7.5)
Hence, the free energy is time-reversal invariant. Further, using (3.2.4), we get
53180 = egegvyglal (3.7.6)

which combines with (3.2.3) and (3.7.3) to yield

vlal = -egvglal . (3.7.7)
This shows that the orgamized drift is reversible.

The retarded parts Rij(t,s) of the transport coefficients do not have simple
time-reversal symmetries except in two special cases. The equilibrium coefficients
defined in (3.4.2) have the symmetry

i3 = t‘EJRJ‘(C) . (3.7.8)

This follows from (3.4.2) with (3.4.1B,19) and

X = -iLk (3.7.9)
as well as
iy = (V) s (3.7.10)

which holds for all variables X, v represented by self-adjoint operators. The last
relation implies

vl

PX=BX . (3.7.11)
Because of (3,7.10), variables with different time-reversal signature are orthogonal
in the Mori scalar product. Hence, the equilibrium variance (3.4.10) has the sym-
metry

(3.7.12)

85944
This is also a consequence of (3.7.5) and (3.1.16) evaluated at equilibrium.

Away from equilibrium, simple time-reversal sy ries for the transport coef-
ficients only hold if we disregard terms of the third order in A. Using (3.7.9) and
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FTaiX = PlalX , (3.7.13)
which follows from (3.1.19) with (3.1.13) ard (3.7.2-4), the right-hand side of
(3.5.3) may be transformed to yield

il = oo g ds [ da (3.7.14)

. h{E[S]e“(H'Eik"k)[e’iLs<1 - P[E])ﬁi]e'“(H’z"kAk)ﬂj}
Neglecting terms of the third order in A, this may be transformed further to read

@ 8
050al = eqey é ds é da (3.7.15)

- erfrases DA, oDt _pranphyl)
which combines with {3.5.3) to

54181 = ege 0400l (3.7.16)

Finally. (3.5.5) and (3.7.6,16) give the ONSAGER-CASIMIR symmetry of the transport
coefficients (reciprocal relatjons)

1§81 = egegbylal . (3.7.17)

It should be notad that this is not an exact symmetry in a nonequilibrium state but
holds only if retardation effects in the equations of motion can be neglected.

From (3.4.1) and (3.7.6) it follows that
vij = tigjvji . {3.7.1B)
The symmetries (3.7.B,12,18) are necessary and sufficient conditions for the de-
tailed balance symmetry

ROREY

i€4 J‘(1:) (3.7.19)

of the equilibrium correlations. To see this explicitly we consider the Laplace
transformed correlations

€5(2) = f de e, s . (3.7.20)
Then, using (3.4.12,13) we obtain from (3.4.21)

Zcij(z) -

wl

N N Y
EJ [vik + "ik“””mcu(z) N (3.7.21)

where we have also made use of C;;(t = 0) = 5. Equation (3.7.21) Teads to

il - agh - %z Sl + R ()57 (3.7.22)




from which it follows that

iz = esentilz) (3.7.23)

i3 €30 ’ -7
because the right-hand side of (3.7.22) has this symmetry by virtue of (3.7.8,12,
18). Fram (3.7.23) we abtain (3.7.19).

In this derivation of (3.7.19) we did not make use of the precise form of the
retarded transport coefficients R‘.j(t) but only of their time-reversal symmetry.
Hence, the detailed balance symmetry of the equilibrium correlations is not lost if
the memory effects are neglected as in Sects.3.5 and 3.6,




4. The Fokker-Planck Equation Approach

The approximate equations of motion for the mean values of the macroscopic vari-
ables and for the fluctuations about the mean which we have obtained in Chap.3 de-
scribe "normal" features of irreversible processes in many-body systems in a sa-
tisfactory way, but there are important phenomena where the approximations involived
are too crude. For instance, the linear Langevin equations (3.6.1) will not be ade-
quate to describe the dynamics near critical points where nonlinear couplirgs be-
tween fluctuations become important. The exact Langevin equations (3.3.1) de-
scribe these nonlinear interactions in terms of the memory functions, and we can
improve the approximate equations of motion by takirg into account these retard-
ation effects.

Clearly, we have to worry about retardation effects 1f there are slowly vary-
ing quantities among the eliminated degrees of freedom which may cause a slow decay
of the transport kernels. The eliminated degrees of freedom include the nonlinear
functions of the macroscopic variables which are themselves comparatively slowly
varying quantities. Hence, the transport kernels (3.5.1) may have a slowly decaying
part if the fluxes A couple to nontinear functions of the A [38-41). We could try
to determine this part by an improved evaluation of the molecular expressions for
the transport kernels. It is often advantageous, however, not to go back directly
to the molecular level but to tackle the problem by startirg out from a more de-
tailed macroscopic level lyirg between the molecular level and statistical thermo-
dynamics.

Such an intermediate level is obtained by enlargirg the set of macroscopic vari-
ables to include the nonlinear functions of the A. In quantum mechanics there is
an ordering problem associated with the definition of nonlinear functions of non-
commuting variables. We postpone this problem to Chap.5 and restrict ourselves to
classical statistical mechanics for the present. Then, the linear and nonlinear
functions of the A span a well-defined subspace of state functions in the space of
all phase functions. In Sect.4.1 we construct a projection operator projecting out
these state functions, and we use the projection operator technique in Sect.4.2 to
extract an exact subdynamics for the state functions. Some properties of quantities
to be found in the exact equations of motion are summarized in Sect.4.3.
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The enlarged set of variables included into the present macroscopic description
is more 1ikely to exhaust the reservoir of slowly varying quantities of the system,
S0 that we may often disregard retardation effects in the new equations of motion
even in cases where we have to allow for retardation effects on the level of statis-
tical thermodynamics. In Sect.4.4 we work out a corresponding approximation where
again theé time rates of change of the macroscopic variables are used as small quan-
tities. It is shown that in the Towest nontrivial order, the dynamics of the state
functions are governed by a Fokker-Planck equation of the form [1)

22

. . 9
pla,t) = %EK"(“)M“") + IJ Ty

; Kis(edplat)

where the drift vector K1(u) and the diffusion matrix K“(u) are given in terms of
*

a "bare" free energy F‘(u), and a matrix of "bare" transport coefficients L“(u)

by [89]1

.
* ol (o)
Kta) = - Jrigte) Sleh e kr 1 3=
3 J J
and
T
k(o) = 3 kgTILS () + Lij(al]

The bare free energy is related to the stationary probability density ps(u) in the
conventional way:
6F*(a) gl

FgT
We further show that the time-reversal symmetry leads to

F(@) = Fla)

pgla) = e

and

Lig(@) = eqegtiyle)

Naturally, the bare quantities F' and L:j have to be distinguished from the
"renormalized" quantities F and L" introduced in Chap.3. In Sects.4.5 and 4.6 we
start out from the Fokker-Planck dynamics to determine the renormalized thermody-
namic potential F and the renormalized transport coefficients L“- in terms of the
corresponding bare quantities. This renormalization procedure is again carried out
with the help of the projection operator technique. We find that the renormalized
transport coefficients contain a retarded part due to the coupling of the fluxes A
to nonlinear state functions, so that the Fokker-Planck equation approach leads in
a natural way to an improvement of those equations of motion derived in Chap.3 by
disregarding retardation effects on the level of statistical thermodynamics. Final-
1y, Sect.4.7 contains some additional remarks on the Fokker-Planck equation approach.
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The main results of this chapter have been obtained by GREEN [1]1. For the most part,
our presentation follows ZWANZ1G [43], while Sects.4.5 and 4.6 contain results ob-
tained by WEIOLICH and the author [54]. The statistical mechanical derivation of
the Fokker-Planck equation has also been studied in several more recent publications
[118-122], which we take partly into account, and various aspects of the renormaliz-
ation of transport laws are discussed in [47-56]. We shall not discuss here the
sophisticated techniques [123-126]1 that must often be used to obtain concrete re-
sults from Fokker-Planck equations if the nonlinearities cannot be treated in a
perturbative way. Various methods have been developed for the numerous applications
of the Fokker-Planck equation or equivalent Langevin equations to many-body systems.
This includes applications to critjcal systems [49-52], metastable and unstable
systems [127-134]1, and systems in nonequilibrium steady states [46,55,83,135-138],
to mention only a tiny portion of recent work based on Fokker-Planck or closely
related methods.

4.1 Relevant Probabjlity Qensjty

We confine ourselves to classijcal statistical mechanjcs. The macroscopic state of
the system will be described by a set of macroscopjc variables A = (Al""’Ai"“)
which represent coordinates in the state space ]. On the molecular level the macro-
scopic variables are represented by phase functions A(T). A microscopic state T in
the phase space ¢ s macroscopically described by the state a = A(T) in the state
space J. Clearly, there is a huge number of microscopic states T which are molecu-
lar realjzations of the same macroscopic state a. In.the phase space ¢ these re-
alizatjons constitute the hypersurface = (a) on which the phase functions A(r) as-
sume the values a (Fig.4.1).

phase space ¢ state space ¢ Fig.4.1. The hypersurface = (a)
= {T€0[A(r) = a} in the micro-
scopic phase space ¢ corresponds
to a single point a in the macro-
scopic state space z.

z (o)

1n a macroscopic description of the system we want to determine the macroscopic
state a(t) at time t. Even if we know the jnitial macroscopic state a(0), we cannot
determine the future state o(t) with certainty since we will have only probabjlis-
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phase space ¢ state space ¢ Eig.4.2, Two microscopic states
To and To which are molecular
realizations of the same macro-
at scopic state ay evolve into
ot microscopic states I'y and r#
lying on different hypersurfaces
=(at) and =(af) in general. This
E(u't) ag leads to the stochastic motion
=(ay) in the macroscopic state space ¢

s(ag)

tic information about the molecular realizatjon of the initial state. This means
that the macroscopic varjables describing the state have to be considered as
stochastic variables (Fig.4.2).

In Chap.3 we singled out the mean values a(t) of the macroscopic variables and
obtained an exact closed subdynamics for these mean values, namely, the transport
equatjons (3.2.12). Now, we are going to keep the mean values of all nonlinear
functions of the macroscopic variables, and we shall aim at a closed subdynamics
for this enlarged set of variables.

A function of the macroscopic variables, 1.e., a state function g(a), is re-
presented on the molecular level by the phase function

6(r) = g(A(T)) = [da gla)¥ (1) (4.1.1)
where
v () = Hs(Ai(r) - ;) = 8(Alr) - a) . (4.1.2)
i

Hence, a state function is a linear combination of the .vu. The ¥ form a set of
variables with continuous jndex a. They have the property

AN 8(a - a')‘l‘u N (4.1.3)

and their mean values
plast) = trivp(t)] (4.1.4)
= [drs(A(T) - a)e(r,t)
give the macroscopic probability density p(a,t) in the state space J. p(a,t)da is
the probability that the macroscopic variables assume values in the state space
volume element da around a at time t, and the mean value of a state function

reads
<g(a)> = trio(t)} = [da g(a)P(ast) . (4.1.5)
Because of (4.1.1) nonlinear functions of the macroscopic variables are linear

functions of the y . We shall row look upon the y_as the "set of macroscopic
variables" in the sense of the previous chapters. Then, by projecting out the
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macroscopically relevant subspace formed by the linear combinations of the Yy we
project out the linear and ronlinear functions of the A, i.e., the state functions.

Replacing Ai by the enlarged set ¥yr We obtain from (3.1.3) a relevant probabi~
lity density of the form

S(rat) = z'l(t) e-s[H(r)~{duu(u,t)vu(r)) (4.1.5)
. z'l(C) o"BH(r) Idaee“(""‘)wd(r) ,

where 8 = l/kBT, and where the last transformation follows from (4.1.3). Since
pla,t) is the mean vaiue of Yoo conditions (2.2.2,3) give

2(t) = [da Pty ) | @.1.7)
plart) = 270 (t) &BH(® Oerie My 3

We introduce the canonical distribution

- 771 ,-BH(T) . ~BH.
eglr) = 2 e 2= tre™ (4.1.8)
and the associated macrescopic probability density
pgla) = tripgy } = Jdrs(a(r) - a)pg(r) . (4.1.9)
Then the relevant probability density (4.1.6) may be transformed to read
Bra) = o) | dumr’n—t)lvu(r) . (4.1.10)

By construction, the relevant probability density p(t) yields the correct macro-
scopic probability density

plast) = trivp(t)} = triv(t)} . (4.1.11)
In an ensemble described by E(r,t) the occupation probability of a hypersurface
=(a) in the phase space ¢ is determined by the macroscopic probability density
plast), while the relative weight of molecular realizations I within a given
hypersurface Vs determined by the Boltzmann weighting factor exp(-gH(r)).

4.2 Generaljzed Fokker-Planck Equation

Since the relevant probability density (4.1.10) is a special case of the g.c.
probability density (3.1.3) for the set ¥y of macroscopic variables, we could
proceed by specializing the results of Chap.3 to this particular case. Or, by
noting that g(t) depends linearly on the mean values of the ¥, Namely, the
macroscopic probability distribution p(a,t), we could specialize (2.7.20) to
obtain the evolutijon law for the ¥, However, in order to make this chapter more
self-contained, we shall give a brief derivation of the evolution law for the v
starting from the Ljouville equation directly.
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To this purpose we yntroduce the profection operator!

r{pg¥
PX(r) = | da %?;‘f—?u(r) (4.2.1)
which bas the projectjon operator property
2.p (4.2.2)
because of (4.1.3,9). P projects out the Yol
Py (1) = ¥ (r) . (4.2.3)

Hence, it reduces the set of all phase functions to the subset of those which are
state functions.

The transposed projection operator i’T defined by

tr(WPX) = trOPTy) (4.2.4)
reads

PTu(r) = oa(t) | w T, L) (4.2.5)

P (u)
and its projects out the relevant probability density
(rat) = pTp(rat) . (4.2.6)

Clearly, the two projection operators are also related by
T,
Plogk) = ofX . (4.2.7)

The time evolution operator for variables in the Heisenberg representation may be
split into

eI'Lt - e1LtP
t . (4.2.8)

+3 g du eftpL(1 - pyelb(1P)(E0) (g | pyeib1-P)E

This 1s a special version of (2.4.1) for a time-independent projection operator.
Equation (4.2.B) can be proved directly by showing that both sides satisfy the
same differential equation and coincide initially.

If we put (4.2.B) into

Lt = ety et (4.2.9)
we obtain with (4.2.1) an equation of motion for the v

tripgy ¥} s
Fle)  Ya'(®) (4.2.10}

ESACKENE'Y

1 This projection operator follows from the general form (2.3.1) by (4.1.10)
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als) R

where the random forces are

Fo(t) = (1 = pyeltOPIE ¢

(4.2.11)

We now want to evaluate some expressions appearing in (4.2.10) more explicitly.
The classical Liouville operator (2.1.4) acts upon a phase function as a sum of
first-order differential operators. Hence, the fluxes ia of the variables (4.1.2)

read

° § - k] 3 A
v‘,wl-va—-‘Z v LA :-;a—y A,

3a,

Then, (4.2.11) may be written

Ft) = - 1zaiu,.(u,t) .

vhere
LaePe s
Ri(a,t) = (1 - el &
Further, we find with (4.1.3)

triegy $)

8 0
pela”) = - ‘Zﬁ—v‘(u)ﬁ(n -a')

i
where we have introduced the drift vector
trio ¥ A
- 8 a7y
RO
Finally, using (2.1.9), (4.1.3), (4.2.12,13), and
Logh = pgld
we get

trlpg¥  iLF (t = 5)}

Sy a0 i .
= 123 Ty tripgy A Ri(at = 5))

which may be transformed further with the help of (4.2.4,7.14) to read
tr(pﬂva.iLFu(t - s)}

-y 220 (awat,t - s)p(al)
5. 30 Baj i B

where we have introduced the diffusion kernels

(4.2.12)

(4.2.13)

(4.2.18)

(4.2.15)

(4.2.16)

(4.2.17)

(4.2.18)

(4.2.19)
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X tripgR, (@, t)R;(a*,5))
0;4(maa’st = 5) = Trl— . (4.2.20)
When we put (4.2.15) and (4.2.19) into (4.2,10) and integrate partially with
respect to a', the equatijon of motion takes the form

Vu(t) = —Z vila)y (t) (4.2.21)

v (s}
+£ ds g, [d« 05 g(asa’,t = sipgle') 5or “ P_(_'T +F () .

Because of (4.2.3,7,11) the random forces Fu(t) have the property

trlpgy, F () = (a.2.22)

for all a'. Hence, F (t) is not correlated with the initial values of all state
functions.

By displacing the system from thermal equilibrium by means of external forces
which couple to the macroscopic degrees of freedom, we can prepare an initial non-
equilibrium probability density o(0) which is of the relevant form. j.e.,

p(0) = 5(0). We now average {4.2.21) over this initial microscopic probability den-
sity. The average of Yu(t) yields the macroscopic probability density p(«,t), while
the average of Fa(t) vanishes because of (4.2.22). Consequently, the average of
(4.2.21) reads [43}

Fplat) = - f 3o viladpla,t) (4.2.23)

t
3
d d 0 sa' bt =
+£ s‘z! au | da (au s)vs( 3"jF‘

This is the generalized Fokker-Planck equation. The time rate of change of the
macroscopic probability density is expressed as a sum of two terms. The first tem
1s local in time and Tocal in state space and is characterized by the drift vie The
second term is nonlocal in time (retarded) and ronlocal in state space. This tem
is characterized by the diffusion kernels 0, and the stationary probebility pg.

The equilibrium correlation function of two state functions gl(a), 92(“) with
associated phase functions Gl(r). ] (r) of the form (4.1.1) reads

6, (1)6,(0)> = | dada’g,(a)gy(a')p2) (as0", t) (a.2.20)
where
péz)(u,u',t) = triogY (6)Y,.(0)) (4.2.25)

is the stationary macroscopic joint probability density. Because of (4.1.3) we have

p{ a0t 0) = 8o = a)pylat) - (4.2.26)
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Using (4.2.21,22), it is easily shown that (4.2.25) satisfies the generalized
Fokker-Planck equaticn (4.2.23) with the initial condition (4.2.26). Hence. the
generalized Fokker-Planck equation does not only determine the time evolution

of state functions during a relaxation process from a nonequilibrium state towards
equilibrium, but it also determines the time evolution of correlations of state
functions at equilibrium.

4.3 Properties of Orift and Qiffusion Kernels

Because of the chain rule, the Poisson bracket of a macroscopic variable Ai with
the canonical distribution (4.1.8) reads

Ayupg} = -Bog (A HY = 8o A, (4.3.1)
and the Poisson bracket with ¥, may be wri tten
=-7
g.y,] = § a5 va{Ai,Aj] . (4.3.2)

Using these relations, we may transform the right-hand side of (4.2.16) to read
1 3
vi(a) »WEENJ(u)pB(G) . (4.3.3)
where we have introduced the antisymmetric matrix

tripg¥ (A WA

miglad = =agg(e) =%_p(§)_i_— . (4.3.8)

B
This connection between the drift Y3 and the Pofsson brackets of the macroscopic
variables A is often very useful. In particular, (4.3.3) shows that
3

‘Zau_i‘i(“)"a(“) =0, (4.3.5)
so that pﬁ(n) is in fact the statijonary solution of the generalized Fokker-Planck
equation.

We now assume that the Hamiltonian function H js invariant under the time-re-
versal transformation and that the macroscopic variables have a definite time-re-
versal signature:

(4.3.6)

GRS AU

where & is +1 or -1. Then, we easily find that

(4.3.7)

(4.3.8)




Further, using

iGN = - (4.3.9)
and

trX=trX , (4.3.10)
it is straightforward to show that

- -, (4.3.11
and, using

by = P (4.3.12)
that

pg(a) = pgle) - (4.3.13)
We may also show that quantities projected out by the operators (4.2.1,5) transform
according to

X = pX (4.3.18)
and

—

[ (4.3.15)

With the above relations we obtain from (4.3.4)

'1_1(5) = eqegmyide) (4.3.16)
and from (4.2.14)

Ry(a,t) = =eR(a,-t) - (4.3.17)
Now, because of (4.3.13,16). the drift vector (4.3.3) has. the symmetry

Vi(E) = -equgla) . (4.3.18)

Hence, vi(a) is a reversible drift vector. Because of (4.3.17), we obtain from
(4.2.20)

D’.j(q,a',t)ps(a') = a‘.gjo‘,j(;,a‘,-t)ps(&') . (4.3.19)
Dn the other hand, (4.2.2D) implies

Dyslara’stpgle’) = Djs(a’,as-thpg(a) (4.3.20)
which combines with (4.3.19) to give

D;5(8,3"E)pg (') = ege;05i(a’sast)py(a) - (4.3.21)

Equations (4.3.13,1B,21) give the time-reversal symmetries of those guantities
that determine the form of the gemeralized Fokker-Planck equation (4.2.23). Be-
cause of these symmetries the solution of the generalized Fokker-Planck equation
with initial condition (4.2.26), namely, the stationary joint probability density,
has the symmetry
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pgz)(u,u’,t) - pgz)(a',a,t) . (4.3.22)

This is the well-known detailed balance symmetry. Naturally, the symmetry (4.3.22)
follows directly from the molecular expression (4.2.25), However, by connecting
(4.3.22) with (4.3.13,18,21) we avoid going back to the molecular level. The latter
relations can be looked upon as “generalized potential conditions" for the general-
ized Fokker-Planck process (4.2.23).

4.4 Fokker-Planck Equation

We shall now approximate the generalized Fokker-Planck equation using a character-
istic property of macroscopic variables, namely, that they are varying only slowly
in time. To this purpose we shall regard the time rates of change A as small quan-
tities, and we shall disregard terms of the third order in A in the equation of
metion (4.2.23),

First we note that the diffusion kernels (4.2.2D) are explicitly of the second
order in A since the R‘. are explicitly of the First order. Therefore, we may ap-
proximate (4.2.14) by

Ryast) = (1 - Py A(t) + 0(R) (4.4.1)
where we have used the fact the LP is at least of the first order in A and that

et x = v ettt 4 ofh) . (4.4.2)
With (4.1.3) and (4.2.1,15) we obtain from (4.4.1)

Ry(at) = ¥ AL (1) - vy(@)] + 0R%) . (4.4.3)
When we put this into (4.2.2D) we get

0, j(asa’st-s)
tr(pswu[fl‘(t)-vi(u)][ij(s)-vj(u)]}

pgla)

Hence, in the present approximation, the diffusion kernels are local in state space.

Introducing a shorthand notation for the average over a hypersurface =(a) in the
state space ¢ by

. trip ¥ X} fdrs(A(r) - a)e ™ x(r)
BT T T arstany - e O

= §(aa') +o(R%) . (4.4.9)

(4.4.5)

we have
Dy 5(ase’stos)

= s(a=a*)<lh, (£)-<hy(£) 301 hy(s)-ch (s lio> + O(AY) (4.4.6)
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which gives the diffusion kernels in terms of a hypersurface correlation function
of so-called subtracted fluxes A; ~ <hjsa». The subtracted fluxes are internal de-
grees of freedom on the hypersurface =(a), Under the assumption that those inter-
nal hypersurface correlations decay on a short microscopic time scale, we can dis-
regard the retardation in the generalized Fokker-Planck equation (4.2.23) to derive

from (4.4.6) an approximate equation of motion of the form

FEplet) * - T i vialnlast) (4.4.7)
i
+] o by(adngla) 5 Bl
PRI gt 30 pyla

where the £, are given by o formila due to GREEN [11:
g5l =éds <thi(s) - <hy(s)i@llh; - <hpeliar . (4.4.8)

By (4.3.13,21), we observe that the Eij have the symmetry

;'j(a) = =‘=J5J‘( y . (4.4.9)

Equation (4.4.7} is a Fokker-Planck equation which may also be written in the
mere familiar form

2
Snlst) = - g Kiladp(at) + 1 =2 e Figletet) (4.4.10)

with the Fokker-Planck drift
- 1 3 N
Ki(a) = vi{a) + WJX e &;j(alpgla) (4.4.11)

and the diffusion matrix

45 -E[g la) + eyl (4.4.12)
While this form of the Fokker-Planck equation is frequently used in the phenomeno-
togical theory, the statistical-mechanical origin of the Fokker-Planck equation is

primarily manifest in another form given be;low,
Let us introduce a “bare" free energy F (a) in a conventional way by

.
pgle) = e ¥ () (4.4.13)
which defines F‘(u) up to an irrelevant additive constant. Using (4.1.9) we may

give a statistical-mechanical definition of F'(a) by

F*(a) = -kgT In [ s(A(r) - a) e"(/kETH(T) (4.8.12)
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The bare free energy F* has to be distinguished from the free energy F introduced
in (3.1.5). To avoid confusion the latter will be referred to as the renormalized
free energy henceforth. Because of (3.1.16), the rencrmalized free energy Fla) is
a convex function of the mean values a, while the bare free energy F‘(u) is a func~
tion of the fluctuating variables o which is not necessarily convex.

Furthermore, we introduce a matrix of "bare" transport coefficients L:j(u) by

kgT Lisla) = my50e) + g35(a) - (4.4.15)

The two matrices ‘wu(u) and ;”(u) are defined in statistical mechanics as certain
averages over the phase space hypersurface =(u). The matrix =..(a) is given by the

Poisson bracket relations

i3
mygle) = gTeihs Al (4.4.16)
while g, (a) ¥s defined by the Green-Kubo formula (4.4.B). Clearly, the L"'j have to
be distinguished from the renormalized coefficients Lij introduced in Chap.3

Now, using (4.3.3) and the definitions (4.4.13,15), the Fokker -Planck equation
(4.4.7) can be recast into the form [B9,9D]

3 -

et < ] gl [L(ﬂl+ KgT —] (a,t) (0.8.17)

1.2

which gives the Fokker-Planck dynamics in terms of a bare thermodynamic potential

(u) and a matrix of bare transport coefficients L (u). In terms of these quanti-
ties the Fokker-Planck drift (4.4.11} reads

* aF* i3l

Ko == f Ligte) —af,?h T zJ—— : (4.4.18)
while the d\‘ffusion matrix (4.4.12) has the form

K;jla) = Z kBT[L s(a) + L'i(u)] . (4.4.19)

From (4.3.13,16) and (4.4.9) we get the time-reversal symmetry

F*(&) = F¥(a) (4.4.20)
and the reciprocal relations

L;j(a) = E‘EJLJ‘( a) . (4.4.21)

Because of these symmetries the Fokker-Planck equation (4.4.17) can be shown to
satisfy the potential conditions for detailed balance [139].

The Fokker-Planck equation describes an irreversible, generally non-Gaussian,
Markov process. Using (4.4.B) we obtain from (4.4.12)

Kis(a )»jj ds <thy(s) - (s),u>][A () - <hy(0)elie> (4.4.22)
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where we have made use of the fact that the integrand in (4.4.B) is a stationary
correlation function in the approximation under consideration. With (4.4.22) we
have

{j Ky jladxixg = %st K(sX(0)sa> 2 D, (4.4.23)
where
X(s) = J #glhy(s) - <iﬁ(s);¢>] . (4.4.24)
1

The right-hand side of (4.4.23) is positive since the Fourier transform of a sta-
tionary autocorrelation function is positive. Consequently, the diffusion matrix
i(a) is positive.

We now define a functional F(p(a,t)) of the macroscopic probability density
p(ast) by

F(p(a,t)) = Fy + kT [ dap(at) In P};—é‘fﬁl . (4.4.25)

writing the Fokker-Planck equation (4.4.17) in the form

K3

=3
E

5t
at ple,t) = Z k T L‘J(u)ps(u) E "an“ s (4.4.26)
we easily find for the time rate of change of F(p}
F(p) = T [ daplast) Z (a)o;(astioglast) <O (4.4.27)

where we have made use of (4.4.19), and where .

ag(@t) = 5= In %(Tﬁ)- . (4.4.28)

Hence F(p) decreases in time and it reaches its minimum for the stationary probab-
ility density ps(a), which s approached as t -+ =,

4.5 Renormalization of Thermodynamic Forces

In terms of the macroscopic probability density p(«,t) the mean values a of the
macroscopic variables are given by

a;(t) =Jdaap(s,t) . (4.5.1)
In Chap.3 we have derived a closed set of equations of motion for these mean
values, namely, the generalized transport equations (3.2.12), by starting directly
from the Liouville equation. In the remainder of this chapter we shall derive the
evolution law for the mean values from the Fokker-Planck equation (4.4.17) (the
treatment following [541).
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Using (4.4.1D), we find for the time rates of change of the mean values
(1) = [daKg(a)p(ast) - (4.5.2)

If the Fokker-Planck drift Ki(u) is a nonlinear function of the «, the mean values
are coupled to the fluctuations of the o, From (4.4.18) we see that nonlinearities
may have two origins: first, thermodynamic nonlinearities which arise if the thermo-
dynamic potential F*(a) is not a bilinear function of the « leading to a non-Gaussian
stationary probability density "5(°)’ second, dynamical nonlinearities which arise
if the transport coefficients L1 (o) depend on the state a.

The effects of fluctuations are disregarded in the deterministic theory which
may be obtained from the stochastic theory in a certain limit where the Boltzmann
constant kp formally approaches zero with the transport coefficients L‘j and the
thermodynamic potential P kept constant [89,9D], In this limit the Fokker-Planck
equation (4.4.17) reduces to the pure drift equation

\»_ plest) = - Z fila)plast) (4.5.3)
where
.
file) = - Jz L5(e) QF_Q%L (4.5.4)

is the deterministic drift vector. The evolution equation (4.5.3) does not lead to
a broadening of an initially sharp probability density, and the center of such a
probability density moves according to the deterministic equations of motion

36 = fla(t)) = - T L) (4.5.5)
J .

where we have introduced the bare thermadynamic forces

W) = i;g‘ﬂ . ' (4.5.6)

Equation (4.5.5) will alsc be referred to as bare transport equations. Note that
they are given in terms of the same quantities L;. and F* as the Fokker-Planck
equation (4.4.17), so that the Fokker-Planck dynamics can be reconstructed from
the 1imiting deterministic law (4.5.5) (stochastic modeling). The bare transport
equations (4.5.5) have the same structure as the generalized transport equation
(3.2.12) but in a nonlinear system they provide only a lowest-order approximation
to the latter. To obtain closed equations of motion for the mean values alone, we
have to reduce the set of all state functions contained in the Fokker-Planck dyna-
mics to the subset of the linear functions of the a.

The nonlinear state functions can be eliminated with the help of the projection
operator technique. To this purpose we first have to define a relevant macroscopic
probability density p(a,t) which is a function of time only via the mean values
a(t). It is natural to choose as p(a,t) the macroscopic probability density as-
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sociated with a microscopic probability density of the generalized canonical form
(3.1.3) by (4.1.4); f.e.,

Bent) = Tl epery @ BTBAD, (4.5.7)
Using (4.1.2,9) we have?
Bla,t) = Z-l(t)ZepB(u)esz"i(t)“ . (4.5.8)

The parameters Z(t) and u(t) are determined by

[daBla,t) = [daugp(e,t) = ag(t) . (4.5.9)
In particular, we get
2(t) = Z; [da pyla)efHilter (4.5.10)

In tems of the relevant macroscopic probability density p(a,t) the renormalized
free energy (3.1.5) may be written as

- pla,t
F(t) = Fy + T [ da f(a,t) ln%é—?-h)— R (4.5.11)
where
Py = kgl In 2, (4.5.12)

is the equilibrium free energy. By (4.5.8,9) we get
F(t) = T Tn Z(t) + ; uy(thag(t) (4.5.13)

and, using (4,5.10), the renormalized thermodynamic forces read

uy(8) = i% (4.5.14)

while the mean values may be written as

ag(t) = k T‘*—‘"{%—‘l , (4.5.15)

which coincides with our earlier resylt (3.1.7).
The above relations are more transparent if we express the equilibrium probabi-
lity density in terms of the bare free energy F*(u) by

pye) = REAC (4.5.16)

where

2 p(a,t) is also the pmbabﬂﬂy density minimizing the functional (4.4.25) under
the constraints (4.5.9).
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.
7, - [dae™F (@ (4.5.17)
Now, (4.5.8,10) read

Bast) = 27ty @B ()T (D)) (4.5.18)

2(t) = fda B (@) -2ui(t)ay) (4.5.19)

We may use (4.5.19) in connection with (4.5.15) to determine the u as functions of
the mean values a. Then (4.5.13) gives the renormalized free energy Fla] in terms
of the bare free energy F*(a).

If the stationary probability density is Gaussian, which means that F"(u) is a
bilinear function of the «, the integral (4.5.19) can be done exactly, and the re-
normalized free energy coincides with the bare free energy apart from an irrelevant
additive constant. Non-Gaussian behavior of the fluctuations in the stationary state
leads to a renormalization of the thermodynamic potential; i.e., the bare thermo-
dynamic forces w*(a) are renormalized by nonlinear fluctuations to yield the re-
normalized thermodynamic forces ufal. Near critical points, (4.5.19) can not be
evaluated by just expanding the exponential about a Gaussian; rather, renormaliz-
ation group techniques {52,14D,141]1 must be used. In this context the renormalized
thermedynamic potential Flal is usually referred to as the generating functional
for vertex functions.

4.6 Renormalization of Transport Coefficients

We may write the Fokker-Planck equation (4.4.1D) in a form which resembles the
Liouville equation (2.1.3):

Zplast) = “Hiplat) (4.6.1)

where L is given by

2
“iX(a) = - ;% Kg(alX(a) + ; s aT:aTJ Ky 5(aIX(@)

.50

- SRR [?F—;%l kT %] Xa) . (4.6.2)
J

Further, in analogy to (2.3.13), we may introduce a projection operator P(t) by
[54]

P(t)X(a) = B(a,t) | daX(a) + ] ﬁi‘“—’tl[ dala; ~ a;(t)X(a) (4.6.3)
i aa‘.(t)

which projects out the relevant macroscopic probability density
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Blast) = P(t)p(a,t) (4.6.4)
Moreover, we may easily convince ourselves that the validity of the decomposition
(2.4.11) does not depend on the particular forms of the Liouville and projection
operators to be found therein, so that we may write
eIt L p(ey ¢TLE

t (4.6.5)

-édu 6(t,u)[1 - PW)ITTL + Pu)IP(u) eV 4 g(e,0y01 - P(DYT

where G(t,t') is defined analogously to (2.4.1D) by
t
6(e,t) = T, Exp{- [ dury - P(u)liL} . (4.6.6)
t
An initial nonequilibrium state of the generalized canonical form (3.1.2) is
described on the macroscopic level by a probability density of the form (4,5.8),
i.e.,

p(a:0) = B(e,0)
When we apply (4.6.5) to an initial macroscopic probability density of the relevant

(4.6.7)

form, we obtain
t
plast) = pla,t) - gdsG(t,s)ll - P(s)litpla,s) (4.6.8)

where we have used (4.6.4) and

P(t)p(ast) = P(t)pla,t) = D (4.6.9)

which corresponds to (2.3.16). Equation (4.6.8) gives the'true macroscopic proba-
bility density p(a,t) in terms of B(a,t) and its past history.

When we insert (4.6.8) into (4.5.2), we find for the time rates of change of
the mean values

a5(t) = [ da Ki(a)p(ast)
t
- é ds [ daKy(@)6(t,s)1 - P(s)]iLp(a,s) . (4.6.10)

Since the time dependence of p(a,t) and of the projection operator P(t) arises
only through a(t), so does the time dependence of G(t,s), and the right-hand side
of (4.6.10) is completely determined by the mean values a(t) and their past his-
tory. Consequently, the (4.6.1D) provide a closed set of equations of motion for
the mean values.

Equations (4.6.10) are not yet of the standard form where the fluxes are ex-
pressed in terms of transport coefficients and driving thermodynamic forces. In
order to obtain this form, we make some transformations. With (4.4.18) and (4.5.18)
we find after a partial integration
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Jdak;(a)p(a,t) = -] I:ij(t)uj(t) s (4.6.11)
J
where
[ij(t) = fda ﬁ(u,t)L:j(u) . (4.6.12)

Further, we get from (4.5.18) and (4.6.2) by use of (4.4.18,19)

- » -

“1Lp(a,t) = ‘Z’j E—;sz(n)p(u,t)uj(t) ) (4.6.13)
so that

[d«xki(u)G(t,s)[l = P(s)liLp(a,s) = | Aggtashuglsy (4.6.14)
where ’

Ays(tis) = - E [ da Ky (a)6(t,5)(1 - P(s)] %ij(u)ﬁ(a,t) . (4.6.15)

Using (4.6.11,14), the equations of motion (4.6.1D) may be written
t
g0ty = - § L(thu(e) [Dds Aistashugls) (4.6.16)

Here the mean fluxes & are given in terms of the renormalized thermodynamic forces
p- There is an instantanecus reaction of the fluxes upen the instantaneous forces
and a retarded reaction upon the forces at earlier times. Correspondingly, the re-
normalized transport coefficients consist of an instantaneous part [‘ ;(t) which is
a function of the instantaneous mean values, I:‘.j(t) - I:ij[a(t)], and a retarded
part A'j(t,s) which is a functional of the mean path 1.n the time interval [s,tl,
f.e., Ai5(tss) @ Agj(alu)s s < u < th By means of (4.6.12,15) the renomalized
transport coefficients are given in terms of the bare transport coefficients
L';j(u) and the bare thermodynamic potential F(a).

The renormalized transport equations (4.6.16) have the same form as the trans-
port equations (3.2.12). When comparing the two sets of equations, we first note
that (3.2.12) is formally exact while (4.6.16) is valid in the Fokker-planck ap-
proximation only3, In this approximation a part of the retarded coefficient R‘j(t,s)
in (3.2.12) is approximated by an instantaneous coefficient which is added to
Vis(t) to yield the instantaneous transport coefficient I:ij(t) in (4.6.16). This
may be seen explicitly if we insert (4.4.15) into (4.6.12) to yield with (4.1.1D)
and (4.3.4) I:‘j(t) = tr[p_(t)(;\j,ki)hﬂldu E(u,t){ij(u), where the first term coin-
cides with Vij(t) for classical systems.

Dn the other hand, the Fokker-Planck approximation leading to (4.6.16) is more
accurate than the approximation used in Chap.3 in order to obtain (3.5.4) where
all retardation effect are disregarded. To abtain (4.6.16) we had to assume that

3 (3.2.12), (4.6.16), and (3.5.4) correspond to Gy, Cy, and C, in Fig.T.1.
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the state functions g(a) are slowly varying compared to the remaining degrees of
freedom, whereas in order to obtain (3.5.4) we had to assume that the linear func-
tions of a already form a set of slowly varying variables with a characteristic
time scale well separated from the time scale of the other degrees of freedom. As
a consequence, (4.6.16) cover a wider range than (3.5.4). In particular, they are
still useful at and in the vicinity of critical points.

4.7 More on_the Fokker-Planck Equation Approach

Nonlinear Langevin Equations. lnstead of a Fokker-planck equation, one may use a
set of Langevin equations to describe the dynamics of the macroscopic variables.
The equivalence of the two approaches is well known [44,46,911, but there are some
ambiguities associated with nonlinear Langevin equations. That is why we have pre-
ferred to base this part of the article upon the Fokker-Planck equation where such
ambiguities do not arise. However, for completeness, we shall give the form of the
Langevin equations associated with the Fokker-planck process (4.4.7).

When the stochastic integral is defined in the ITD sense [142], the process may
be described by the Langevin equations (Stochastic differential equations)

35(8) = Kyla(t)) + [ ggjaleneg(e) (a.7.1)
J

where K‘.(u) is the Fokker-Planck drift (4.4.18), while the gij(u) obey the re-
lations

L opd@sgde) = 2yte) . (4.7.2)
where Kij(“) is the Fokker-Planck diffusion matrix (4.4.19). The ;‘(t) are Gaussian,
s~correlated fluctuating quantities with the averages

<cg(th =0, <g(they(t)> = 6 a(t - ) . (4.7.3)
Note that the drift vector K;(a) in the Langevin equations (4.7.1) does not coin-
cide with the deterministic drift vector (4.5.4) in general.

When the stochastic integral is defined in the STRATONDVICH sense (441, the
Langevin equations have the form

358 = K(ale)) + T ay5la(tng(e) (4.7.4)
J
where the Stratonovich drift K(a) reads

394(a)
Quk

K(a) = K;(a) - %Ek 950 - (4.7.5)

It is customary to make the g.. symmetric,
i3
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a45e) = 95 (4.7.6)

since without this condition the form of the Langevin equations is rather arbitrary
[143]. Again, the Stratonovich drift (4.7.5) differs from the deterministic drift
(4.5.4) in general. 1In linear systems there is no ambiguity associated with the
Langevin equations and the Langevin drift vector is indeed the deterministic drift
vector.

Fokker-Planck Equation Without Temperature. So far, the theory in this chapter has
made use of a temperature T defined as the equilibrium temperature corresponding to
the given mean value of the energy. The temperature dependence of the equations of
motion automatically disappears if the Hamiltonian H is included in the set of

macroscopic variables A. Then, we have H(r) = H(A (r})) and we find with (4.1.2,8,9)

tr(pavu)() triv X}
Pala)  C ERCv T x> @.1.7)

since the Boltzmann factor expl-BH(T)] can be brought as exp[-8H(a}] in front of
the trace where it cancels. Consequently, the temperature dependence disappears
from all quantities to be found in the exact equations of motion (4.2.1D).

The further evaluation of (4.2.1D) is somewhat simplified by (4.7.7) leading,
instead of to (4.2.23), to the generalized Fokker-Planck equation

Folwt) = - ‘z% ()plast)
+£ ds § g daDjylase’st - s)ulal) o Bla'ss) (4.7.8)
1,3 %% 5 wa')
where
w(a) =trig,}=[ drs(A(r) - o) (4.7.9)

vi(e) = <Agsa> =

w(a) ’
tr{Ry(a,t)R.(a’5s5)}}
Dijloatt - 5) - —L T @7.1)
It is convenient to redefine the A in such a way that Ay = H while A;,Ay,... are
the macroscopic varfables used eariier. Since Ay =D, we then have vo = DI‘J\' = D“D
Consequently, in the generalized Fokker-Planck equation (4.7.8) all terms with i =0
or j = D vanish. Henceforth it is implied that the indices 1,3 run through 1,2,...
only.

4 This means that the widely used procedure to introduce fluctuations by simply ad-
d!n? fluctuating forces to the deterministic equations is subject to pitfalls in
nenlinear systems [89,1441.




67

The drift vector (4.7.10) may be written

vy JZSL riglame) (4.7.12)
where tr[e(uo - H) '{‘1_1 s - w) a0
w5a) = s . (4.7.13)
©(x) 1s the unit step function
for x>0
o0 = for x<D . (4.7.18)

When we make the same kind of approximations as in Sect.4.4, the generalized
Fokker-Planck equation (4.7.8) simplifies to

Pt = -] yi‘fv‘(ummt)

*] ey Sl P'&?ZT)" (4.7.15)

where the ;‘ ( ) are given by (4.4.8) except that the hypersurface average <Xia >
is now deﬁned as in (4.7.7) so that the 5‘3 do not depend on the temperature T but
on the total energy a instead.

The Fokker-Planck equation (4.7.15) may be written

2 et = 5 L‘J(u) - _g_). g 5o ] plast) (4.7.16)
vhere o
$t(a) = kg In w(a) (#.7.17)

is the bare entropy, while the
s 1 s s
Lijla) % risla) + £55(a) (4.7.18)

are the corresponding bare transport coefficients.

The Fokker-Planck equation (4.7.16) has the same form as (4.4.17) except that
the quantities to be found in (4.4.17) depend on the temperature T, while the
quantities to be found in (4.7.16) depend on the total energy aj. It may be shown
that they are related by

exp[»kla.rr*('[,u Y« 1 < enp[ $* (ageay) - %] (4.7.19)
and
Jdop exp[r S (o) - an] apsa)
n.;j(T,ak) = . (4.7.20)

Jday exp[ S (agray) - un]
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If the A‘. describe local properties of the system or properties of small subsystems,
it does not matter whether the total emergy is microcamonically sharp or distributed
canonically if the system is only sufficiently large. For large systems

exp{kLB s - l_;'l' °D}

is a very sharply peaked function of ops and (4.7.19,2D) yield as approximate re-
lations

r‘(r,ai) =0y - T8 (apsey) (4.7.21)
and

(T = Lizlapy) (4.7.22)
where e is related to T by

N 1

3!

&

. (4.7.23)

J

In tl

A

s case the Fokker-planck equations (4.4.17) and (4.7.16) are equivalent,




5. The Master Equation Approach

The macroscopic variables A of a quantum system are generally noncommuting; that
1s, the product of two macroscopic variables has a different meaning depending on
the order of the two variables. Hence, if we follow the 1ine of reasoning of Chap.4
and enlarge the set of macroscopic variables to include the nonlinear functions of
the A, we will encounter new problems not present on the level of classical sta-
tistical mechanics. As a consequence, the Fokker-Planck equation approach described
previously cannot be easily applied to quantum systems. The difficulty lies in the
fact that, because of the quantum-mechanical dispersion, there is no quantum ana-
logue of the classical hypersurface =(a) on which all macroscopic variables A as-
sume given values a.

Dften the macroscopic variables A describe properties of a subsystem S with
Hilbert space HS' The Hilbert space H of the entire system may then be written as
a tensor preduct of Hg and a Hilbert space NR, where R stands for “reservoir® or
“remaining degrees of freedom”. In this chapter we shall consider quantum systems
with this property. This concept is not general enough to account for all situations
of interest. For instance, in a crystal the long-wavelength phonons may constitute
the system S, while the short-wavelength phonons belong to the reservoir. The cor-
responding Hilbert spaces are not just factors of the Hiltert space H of the entire
system. The approach given in this chapter can, however, be extended to systems
where the macroscopic variables are projected out by a more general coarse-graining
operator. To keep things simple, the general case is not discussed here, but an
example is given in Chap.9.

Instead of just projecting out the macroscopic variables A as in Chap.3, we
shall now proceed in a way similar to Chap.4 and enlarge the set of relevant vari-
ables to include all operators acting in HS while leaving HR invariant. This en-
larged set contains the nonlinear functions of the A since the A act in H only.

To put it differently, we keep all variables of the system S and eliminate those
of the reservoir R.

In Sect.5.1 we define a relevant probability density p(t) which yields the same
reduced probability density eg(t) = trR{a(t)} of the subsystem S as the true prob-
ability demsity o(t), and we use the associated projection operator in Sect.5.2 to
study the dynamics of the open system S moving under the influence of the reservoir
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The reduced probability density og(t) is shown to obey a generalized master equa-
tion. In contrast to previous work on the same problem {68-74, 145-147], we do not
assume that the system S and the reservoir R are uncorrelated initially. The advan-
tage of the present approach lies in the fact that the generalized master equation
describes, in addition to the mean relaxation towards equilibrium, the time evolu=-
tion of stationmary canonical correlations. Some properties of the stochastic oper-
ators to be found in the generalized master equation are summapized in Sect.5.3.

In Sect.5.4 we study the limit of a weak coupling between S and R and show that
under certain assumptions about the decay of reservoir correlations the dynamics
of the open system § is described by a master equation of the form

B(t) = = DHguog(B)] + Agpg(t)

The first term describes the free motion of §, and the dissipative Liouville oper-
ator Ag describes the influence of the reservoir. While the free motion is de-
scribed by a commutator, the dissipative Liouville operator is shown to have a
double commutator structure. Some properties of the master equation and in parti-
cular the consequences of the time-reversal symmetry are discussed in Sect.5.5,

Finally, Sect.5.6 is concerned with the problem of deriving fluctuation renor-
malized transport equations for the set A of macroscopic variables of the open
system S by starting from the master equation describing the time evolution of all
variables of $. The resulting transport equations contain a retarded part due to
the internal interaction in S and are compared with those derived in Chap.3.

5.1 Relevant Probability Density

We consider a closed quantum system composed of two interacting parts § and R. The
subsystem S is of experimental relevance while R is a reservoir. We want to de-
scribe the dynamics of $ moving under the influence of R. Each of the two subsys-
tems has its own Hilbert space Hg and Hps respectively, and the Hilbert space H of
the entire system is the temsor product H = Hs ® HR' The Hamiltonian H consists of
three parts!

Ho=Hg+ Ho + g o (5.1.1)

where "S and HR are the Hamiltonians of S and R, respectively, while HSR is the
interaction where we have split off a coupling constant g for later convenience.

1 Dur notation does not distinguish between the operator Xg acting in H% and the
operator X5 ® lp acting in H, where Ip is the unity in Hp. We shall always use
the symbol X§ since no ambiguity will arise. Correspondingly, we shall use Yp
instead of 1g ® Yp.
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Correspondingly, the Liouville operator L = % [H,*/.] divides into three pieces
L=lg+ly+olgy - (5.1.2)
The state of the subsystem § is described by the reduced probability density
oglt) = tralp(t)} (5.1.3)

where p(t) is the probability density of the entire system while trn denotes the

partial trace over a complete set of orthomormal functions in HR‘ Since the trace
operator tr can be carried out in two steps

tr=trg trp (5.1.4)
we find for the mean value of any variable )(S of the subsystem §

<Xg(t)> = triXgp(t)} = trglXg trpla(t)]) = trolXepe(t)) . (5.1.5)
Hence, the reduced probability density ps(t) Jjust determines the mean values of
those variables which we want to project out, and it contains no additional in-
formation.

In thermal equilibrium the state of the system is described by a canonical
probability density

trie™™y (5.1.6)

where g = l/kBT is the inverse reservoir temperature. The corresponding reduced
probability density reads

!trae™ L - (5.1.7)

1f the equilibrium state is perturbed by external forces which are constant in
time and couple to the subsystem S only, the system will settle down to a new
stationary state of the form

o B(H4HS)
trie BOTHET,

where HS‘ describes the coupling to the applied forces. For weak perturbations we
have up to terms of higher order in H‘S

(5.1.8)

st

8
_1 -1 -uH " i) qen(Bo)H
gy = ED““ 7, eI - gHg + Bl le R (5.1.9)
where
‘"S)ﬂ = tr(psHS} . (5.1.10)

We want to study the relaxation of initial nonequilibrium states of the form
{5.1.8).2 (Footnote see next page.) To this purpose we introduce 2 relevant
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probability density

sy =1 Bl omu ~(8=a)H

s(t) 7§é azy” e ™ ve(t) e R (5.1.11)
where the operator vs(t), which acts in the subspace HS only, is determined by the
requirement

tra(p(E)} = trplo(t)} = pg(t) - (5.1.12)
Hence, as far as the state of the subsystem S is concerned, the relevant probability
density p(t) and the true probability density o(t) are equivalent. Further, the re-
Tevant probability density has been defined In such a way that the equilibrium state
g and those states obtained by weak perturbations of the subsystem S are of the

relevant form.3
On defining a transformationZ by

8 N
% :%édnlel e g (BT (5.1.13)

where X is any operator acting in H, the relevant probability density may be written

a(t) = Brg(t) . (5.1.14)
We further introduce a transformation I which transforms the variables of the sub-
system §, that is, operators XS acting in HS only:

ESXS = trR(EXS) . (5.1.15)
Then, (5.1.12) may be written

Ze¥g(t) = pg(t) = trola(t)} . (5.1.16)

Combining (5.1.14,16), the relevant probability density p'(t) may formally be ex-
pressed in terms of the true probability density

st = PToty (5.1.17)

where

2 1t is important to note that we do not assume that the system § and the reservoir
R are uncorrelated initially.

3 We may also study the relaxation of initial states of the form (5,1.8) where the
perturbation HS is not necessarily weak. 1n this case, we define a relevant prob-
ability density of the form p(t) = exp{-B(H = ug(t)]} where ug(t) is determined
by the requirement trr{p(t)} = Pg(t). Following the genaral sCheme given in
Chap.3, we may derive an equation of motion for pg(t) which then describes the
relaxation from initial states possibly far from %hErma'l equiliorium. This ex-
tended theory, which we shall not discuss here, gives the same results for the
linear relaxation near equilibrium and, in particular, for the dymamics of equi-
Tibrium correlations as the present, somewhat simpler, approach.
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T, -1
Plx - 2zl trpx) (5.1.18)

is a projection operator satisfying (PT)2 = PT. The transposed projection operator
defined by

trPTY) = tr(YPX) (5.1.19)
reads
PX = :;1 tro(Zx) (5.1.20)

which is easily shown by using (5.1.4) and

tr{XLY} = tr{YZX} . (5.1.21)
Note that g has been defined as a transformation of operators Xg acting in HS
only, whereas trRE may be applied to any operator X acting in H = HS x HR. The
transformation trRE reduces operators acting in A to operators acting in HS only,
and it has no inverse. However, the two transformations trpZ and Ig coincide yhen
they are applied to variables Xg of the subsystem S. The projection operator
(5.1.20) projects out these variables .

PG =X . (5.1.22)
Clearly, the projection operators (5.1.18,20) are also related by

Pz ozp | (5.1.23)

5.2 Generalized Master Equation o

To determine the dynamics of the open system S, we make use of the operator identity

oLt _pT iLt (5.2.1)
t i(1-pT .
i f s e PNILES) g Ty pT guiLs
0
T
4PN Ty

which is a version of (2.4.11) for a time-independent projection operator. Equation
(5.2.1) may be vepified directly by showing that both sides satisfy the same dif-
ferential equation and coincide initially. Putting (5.2.1) into

55(:) = trefe(t)) = -itrR(Le"Ltp(O)) . (5.2.2)
we find for the time rate of change of the reduced probability density
Bgt) = - trR(LPT,,(t)) (5.2.3)

% T
- é ds trR{L e (P (E5) PT)IJ’TD(S)}
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N T.
o trR{L e TPy PT)a(O)}

We study the relaxation of initial states p(0) of the form (5.1.9). Then, we
have p(0) = 5(0) and thus

(1 -pTe(0) =0 . (5.2.0)
Further, by noting
To(t) = (1) = 30 ag(t) » (5.2.5)
(5.2.3) gives
. t
os(t) ‘ﬂsps(t) + éds 0S(t - s)ps(s) N (5.2.6)
where we have introduced the stochastic operators
J—. -1
agxg = -4 trR{LES ‘s} (5.2.7}
and
s qonT
=i{(1-P )L ]
gt - -trR{L P Ty ppt xs} . (5.2.8)

These stochastic operators act within the space of probability densities of the
subsystem §. Equation (5.2.6) is a generalized master equation which provides an
exact evolution law for the reduced probabiiity density ps(t) in the linear regime
near equilibrium.* Hence, the projection operator techmique has eliminated the re-
servoir variables completely in favor of memory terms described by Gs(t -s).

Let us define an operator us(t) acting in HS by

1

ug(t) =g (¥g(t) - 1) (5.2.9)
where ¥o(t) has been introduced in (5.1.14). With (5.1.16), we have

ug(t) :4{ SLegtt) - 1] . (5.2.10)
Further, from (5.1.13,15) we get

I1= Pg > Esl = Pgg * (5.2.11)
so that (5.2.10) may be written

uslt) = 3258 tog(t) ~og] . (5.2.12)
Clearly, ps(t) characterizes the deviation fram equilibrium.

4 The restriction to the linear regime near equilibrium is due to the fact that the
initial state p(0) has been assumed to be of the form (5.1.9), which is obtained
from the more general expression (5.1.8) with 1inear order in the perturbatien
Hg only.

S




75

The operator us(t) can also be viewed as a thermodynamic force operator conjugate
to the reduced probability density ps(t) in the following sense. Introducing a
coarse-grained nonequilibrium free energy F*(t) as a function of the reduced prob-
ability density pg(t) by’
1 1 - .2.13
FH(t) = Fy + g5 trgllog(t) = og 125 tag(t) = pgg)) (5.2.13)

where Fs is the equilibrium free energy, we have

Lt 5.2.14
8o = uglt) - ( )

With (5.2.12) the free energy F (t) may also be written as

F(t) = Fy * % trolug(t)zgug(t)) (5.2.15)
= Fy g lig(thag(t))
where (5.2.16)
(X,¥) = tr{XEY} = trlYEX) -2
8
< 1Y datrtp x e My &
80 8
is the canonical correlation already introduced in (3.4.7).
Now, with the help of (5.2.7,8,12} and
-1 {5.2.17)
Trgegg T g
the generalized master equation (5.2.6) may be transformed to read
H 5.2.18)
Bgt) = = Veug(®) - [ ds Ry(t - sdugls) (
where we have introduced the transport operators
= 5.2.19)
VgXg = i8trglL IXe} ( )
and
T
“i(1-P)LE T
Rg(t)Xg = etrﬁ{L TP L )LEXS} (5.2.20)
which are related to the stochastic operators (5.2.7,8) by
ag = .%vsr,;l (5.2.21)
e (t) = - Lr(t)zgt (5.2.22)
s gR(tizg . 2.

Equation (5.2.18) shows that the generalized master equation actually has the same
structure as the transport equations discussed earlier.
5 This expression for the free energy is obtained if we seek the minimum of the

functional Flo(t)}=tr{o(t)H}+kgT trip(t) 1ny(t)} under the constraint
traie(t)}=pg(t) and neglect terms of the third order in ps(t)-pss.
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1n equilibrium the canonical correlation of two variables Xg and Yg of the sub-
system S reads
(Xg(t + 5), ¥g(s)) = (Xg(t), Yg(0)) (5.2.23)
N ~iLt
tr()(S e EVS)
Using (5.1.4), we see that this correlation function may be written
(Xg(t)s ¥g) = troXGe(thg) » (5.2.28)

where we have introduced
Gg(t)Xg = trote
which may be viewed as the quantum amalogue of the statiomary joint-probability

density of classical statistical mechanics.
1f we insert the identity (5.2.1) into

kg L (5.2.25)

o i -iLt
ttis(t))(S = -itrplle EXS] {5.2.26)
and make use of

(1 -phzxg =21 -Pxg - 0 (5.2.27)

and the relations (5.1.18) and (5.2.7,8}, we find that Gs(t) satisfies the gener-
alized master equation (5.2.6), i.e.,

. t

G5(t) =ngE(t) + é ds dg(t - s)Gg(s) . (5.2.28)
with the initial condition

64(0) =z . (5.2.29)
Consequently, the generalized master equation (5.2.6) does not only determine the
relaxation of the reduced probability density ps(t) from a nonequitibrium state
towards equilibrium but it also governs the time evolution of correlations of vari-
ables of the open system § in equilibrium.

Finally, we note that the time evolution of ps(t) can be expressed in terms of
Gs(t). Since (5.1.14) teads to

p(0) = 5(0) =Z¥g(0) . (5.2.30)
we get with (5.2.25)

ps(t) = trpte” Y

»(0)) = GS(I)VS(U) (5.2.31)
- 64(t) I5eg(0) -

For the last transformation we have made use of (5.1.16}.
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5.3 Properties of the Stochastic Operators

From the identity (3.2.7) and the definition (5.1.13) we get

8
Xeog) = - éduZ;l ety e (B2 (5.3.1)

= g ILX .
Further, we have
LZ < ZL. {(5.3.2)
Using these relations, the expression (5.2.19) for vs may be transformed to read
L L i
VeXg = g trglgaegl) F loggXgl - (5.3.3)

1t is now readily shown that the instantaneous part of the time rate of change of
ps(t). that is, 4lsus(t), does not contribute to the time rate of change of the
free energy

FH(t) = trglug(t)sg(t) (5.3.4)
since

trelug(t)Vgug(£) = 0 . (5.3.5)
Further, from (5.3.5) it is easily seen that the transposed operator Vg defined by

T,

tI‘S(VSVSXS) = trS{XSVSVS) (5.3.6)
is given by

T

Vis Mg - (5.3.7)

Using (5.1.19,21) and (5.2.20), we obtain for the operator R.Sr(t)‘ transpose to

Rg(t).

Rl(t)xg = strpziL(r - p) LRI .\ (5.3.8)
which may be transformed further by use of (5.1.23) and (5.3.2) to give
RY(t) = Rg(-t) . (6.3.9)

We now assume that the Hamiltonian H is invariant under the time-reversal
transformation, i.e..

H=H . (5.3.10)
Then, we get from (5.1.13,15}

— s = 3
X =EX ;I - I (5.3.11)
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which implies

T X = IX, 5.3.12

% = Tk (6.3.12)

since !:; = Ig. As a consequence of (5.3.12), the free energy F‘(t) is time-reversal
invariant. Further, with (5.1.18,20} we find

Txe Pk : PR

PX=PX ; PX=P'X . (5.3.13)

The Liouville operator transforms as

(TR (5.3.19)
and Vs transforms accordingly since it is a commutator with a time-reversal in-

variant operator, too:

VX = vk ER
Y= v . (5.3.15)
This cambines with (5.3.7) to give

T3k

VX I (5.3.16)
Using (5.3.11,13,14), we obtain

—— R

Rg(Tg = Rg(-t); (5.3.17)
which combines with (5.3.9) to give

—_— R

Rt = Rtk (5.3.18)

The relations (5.3.12,16,18) are the detailed balance conditions associated with
the generalized master equation. These conditions guarantee that Gs(t) transforms
as

—
Gg(e)xg = al(t)g . (5.3.19)

which leads in connection with (5.2.24) to the symmetry of detailed balance
(Xs(8),Yg) = (Tg(t)Kg) - (5.3.20)

This symmetry is a consequence of the microscopic reversibility.
To see the connection between (5.3.19) and the detailed balance conditions ex-
plicitly, it is convenient to Laplace transform (5.2.28). With (5.2.29) we find

H(2) - I =0G(2) + d5(2)ag(2) (5.3.21)
where
Ggla) = [ce ety . (5.3.22)

Other Laplace-transformed quantities are defined accordingly. Using (5.2.21,22),
we get
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&l - [1 +_vr. ns(zxs] . (5.3.23)

: ) ’f SN ;
Now, we may easily determine GS (z)X and (G5 (z)})'X. On comparing the two expres-
sions, which we do not write down explicitly, we find that they are identical pro-
vided (5.3.12,16,18) hold. Thus, the detailed balance conditions fmply (5.3.19).
Instead of (5.3.16,19), we may give conditions for the stochastic operators
g and Bg(t). With (5.2.21,22) we get

CEXERTYA (5.3.2)
and
B (E)EX - T‘s°g“)is . (5.3.25)

However, the symmetries of the process become particularly clear when expressed
as before in terns of I (or F*) and the transport operators Vg and Rg(t). The
reason is that ES characterizes the statics of the system while the transport
operators do not affect the statics; they determine the relaxational behavior.
Such a separation of static and dynamic quantities is very useful im the study of
formal properties of a macroscopic process.

5.4 Weak Coupling Limit

We shall now approximate the gemeralized master equation (5.2.6) under the as-
sumption that the coupling of the system 5 to the reservoir R is weak. To this
purpose we first provide some useful relations. We split the Hamiltonjan and the
Liouville operator according to (5.1.1) and (5.1.2), respectively. It is easy to
see that

trallek) = Lg tro(X} (5.4.1)

and
tro{leX) = 0 . (5.4.2)

Thus, (5.2.7) gives
.. o -1
g = ~ILgXe g trp(lep EG XY . (5.4.3)
From (5.1.18) and (5.2.7) we get
- ch(uaTX) - - try u.r.z trlX1) (5.4.4)
= fg tr(X} = trp(g)
Further, with (5.1.20) we find

T, el :
fgxg = k5 trp(ELXg) = PLXG (5.4.5)
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which gives with (5.1.23) and (5.3.2)
. T e N |
(1 -POLIXG = $T(1 - PIXg = B(iL - Rg)Kg

(5.4.6)

Using (5.4.4,6), the expression (5.2.20) for Rs(t) may be transformed to read

s oT
Ry(E)X = Btrgl (- iL - ag)e TP gy -adx}

(5.4.7)

So far, all relations are exact. We now expand in terms of the coupling constant

g. From (5.1.13) we get

X = £X +o0(g) ,

-allg y o-(8-a)Hg

with
Hy = Hg + By
Using (5.1.15) and (5.4.8), we find

kg = EgXg +o(9) .

where
8
£x. =1 1 -ahg y o -(B-a)g
B ta trgle™™S) ke

which combines with (5.4.9) to yieid

X5 = opgPs¥s
with

N P

"R e PRy

Now, from (5.1.18) we have

Pl =p +oge) ,

where [69]6

(5.4.8)

(5.4.9)

(5.4.10)

(5.4.11)

(5.4.12)

(5.4.13)

(5.4.14)

(5.4.15)

6 Although our projection operator PT reduces to the Argyres-Kelley projection
operator P! for g » 0, the resuiting master equation is somewhat different from
the Argyres-Kelley master equation [69,73]. Recent criticism [75,76] concerning
the compatibility of the master equation with the fluctuation-dissipation theorem

does not apply to the present approach. See also Sect.6.5.
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A -
PX= pRﬂtrR(X) (5.4.16)
is the Argyres-Kelley projection operator. Hext, we introduce the Liouviiie oper-
ator '“U of the uncoupied systems

Ly . (5.4.17)

L0=LS R

N ”L N ith BT,

Using (5.4.1,2) and LRpRB = 0, we find that |.0 commutes with P :
pT - pTh

[WLEY LW (5.4.18)

We wish to examine the dynamics of the open system S in the 1imit of a vanish-
ing coupling to the reservoir R. From (5.1.7), in the 1imit g » 0, it is seen that
the stationary solution [ of the exact master equation (5.2.6) approaches a
canonical probability density of the free system S

oBHs

[ I

= (5.4.19)
trgle #sy

where g is determined by the reservoir temperature. Ciearly, the interaction with
the reservoir jeads to deviations from the canonicai form, but we shall disregard
these corrections to (5.4.19) in the following. The operator E¢ characterizing the
stationary equal-time correiations is then approximated by Ig-

The operator vs governs the reversible dynamics of the open system S. From
(5.3.3) we obtain in the approximation under consideration, that js, by substitut-

ing ssﬂ for Pggs

Vghg = - § IhggXd = TaLKg & (5.4.20)
where the last transformation follows by use of a relation amaiogous to (5.3.1).
Since

P s (5.4.21)
we find

b= - bl - ’ (5.4.22)

Hence, the instantaneous and reversible part of the generalized master equation
(5.2.6) reduces in the Timit g » 0 to the free motion of the system §.

The approximation of the retarded part of the dynamics characterized by Rs(t)
§s 2 somewhat more subtie probiem. From (5.4.3) we obtain with (5.4.8,11,13)

agXg = -ilgks - g trallepda Xc) + oy (5.4.23)
which may be transformed to read

: i . 2
agg = - iLg - 3 [trplip Hegd Xe) + 0(g%) (5.4.24)
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We now expand (5.4.7) for Rs(t) in terms of g. With (5.4.2,8,17,18,24) we obtain

R(t)Xg = glstrtoLgy e LOCE LX) + 0(e) s (5.4.25)
where
1
shggX =  [ofigg X (5.4.26)
with .
Shgy = Hep = trolopghisal - (5.4.27)

Although ﬂs(t) is of the second order in g, we cannot disregard it altogether
in the Timit g » 0. The reason is that the spectrum of the Liouville operator LS
is highly degenerate. Let

Hg = E eqln><n] (5.4.28)

be the spectral decomposition of the Hamiitonian HS' Then the spectral decomposi-
tion of Ly is given by

LS = E un“ N (5.4.29)
where the sum runs over ail energy differences, and where
OXs =] [man|Ximam| . (5.4.30)
e he

Therefore we have
-ilst -iot,
e7iLs X = E et X - (5.4.31)

Thus, aii matrix elements <n|X$]m> that contribute tOIIwXS osciilate with a coherent
phase exp{-iwt). In the Towest order in g the memory terms in the generaliized master
equation will just destroy this phase coherence.

To find the stochastic operator which destroys the coherent phase oscillations
in the weak coupiing 1imit, we replace the stochastic operator Os(t) by [148]

®(t) = En“os(t)nm s (5.4.32)
where each term of the sum acts within a subspace of degenerate eigenoperators of
L. Since

ng = in (5.4.33)

we get from (5.2.22)
ou(t) = - LAyt
5(t) = - gRgitEg (5.4.38)

where

Ri(t) = JILRG(EML . (5.4.35)




1t is useful to write the snteraction in the form

"SR = %R\:sv N (5.4.36)
where the R‘J are operators acting in HR’ while the Sv are operators acting in NS
with the property

LS, = 6, - (5.4.37)
Such a representation of the interaction is always possibie.” Then, we get from
(5.4.26,27)

1

SeX = f E “Rusv’“ N (5.4.38)
where

R =R, - trolBp Rl . (5.4.39)
Further, it is easy to show that because of (5.4.37)

S(Mxg) = nwv(suxs) (5.4.40)
and

(mxg)s, = nmu(xssu) (5.4.41)

Using (5.4.9,38), we obtain from (5.4.25)

kst 3

Rg(t) e3% xg = E’u [5,58K, (£)IS XS]] + 0(97) (5.4.42)
where

K, () = ﬂél 7 daemiout - (5.4.43)

Vi S WED 4.

X troliggtR, () &R or eMRyels y oM By
On inserting (5.4.42) 4nto (5.4.35) we find
s ilgt, _ 3
Ry(t) et = E U R CO (5.4.44)
v
where we have made use of (5.4.33,40,41) and
K, (80, = 1K (t) . (5.4.45)

Now, we are in a position to approximate the memory term in the generalized
master equation (5.2.6) in the weak coupling Jimit. Noting that

7 A general, but clumsy, representation of the form (5.4.36) is Hgp = Jym RnmSnm,
where Rpym=<n|Hggim>, S,,m:qun[, and wnn=(e, < }/K.
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eils(t=s)

psls) = pg(t) + 0(9) (5.4.46)
we obtain from (5.4.34,44)
t
] 95 9308 - s)eg(s) (5.4.47)
~~‘d2 [5,.K -s)s LB o+ o(gd
Tl IS, (e ss Ehgen s gy
AT

Under the assumption that the correlations of the reservoir operators 5Rv decay on
2 short microscopic time scale, we can extend the integration over s from s = 0 to
s = =. With (5.4.22) we then get the Markovian master equation

;S(e) = - ilgpg(t) + Agpg(t) (5.4.48)

where we have introduced the dissipative Liouviile operator

. a-l
Agks = E o IS, IS s 2 7Xs 11 (5.4.49)
N
with
K, = édt K (1) . (5..4.50)

5.5 Properties of the Master Equation

The master equation (5.4.48) which describes the dynamics of the open system S
moving under the influence of a weakly coupled reservoir has several important
properties. These properties foilow partiy from properties of the generalized
master equation discussed in Sect.5.3, but they may aiso be verjfied directly.
First we note that the dissipative Liouviile operator AS conserves probability
since

trsms)(s} =0 . (5.5.1)
Further, Ag commutes with 11 :

A =TA (5.5.2)

This foilows from (5.4.49) by means of (5.4.33,40,41,45). Consequently, we also
have

Aglg - LAs - (5.5.3)

The interaction HSR is seif-adjoint and time-reversal invariant. Thus, in a re-
presentation of Hgp of the fam (5.4.36) the adjoint operators s:, R: and the
time-reversed operators SV, R“ will occur as eiements of the set of the 5,, and RV
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operators. With the notation

=5, . RL=R, (5.5.4)
and
o = S:, N Ru = R; (5.5.5)
the interaction may then be written
Hep = 5 SR, = % SRy = E SRy - (5.5.6)

Using (5.4.43) and L= it is easily shown that

(K, (E)Xg) " = Ky (0, (5.5.7)
which gives by virtue of (5.4.49,50)

(ASXS) =A X . {5.5.8)

Thus. As maps self-adjoint operators to self-adjoint operators.
From (5.4.49) we see that we need Kvu for indices v,u with o + = 0 only.
Then it §s readily shown from (5.4.43) that

ﬂm(c) SR (5.5.9)
Further, by noting weoE we find

m = K-t (5.5.10)
which combines with (5.5.9) to give

—_— .

K (g = Koo(t)Rg . (5.5.11)
Now, it follows from (5.4.49,50) that

It Py ~

AgEgXg = :SAgxs . (5.5.12)

Together with

&
x.

sx :sx (5.5.13)
and

—_— .

-ikgEgkg = x'i:sLsxs s (5.5.14)

the property (5.5.12) guarantees that the stationary process described by the
(masrer equation (5.4.48) has the symmetry of detailed balance.
Suppose now, the spectrum of Hs is nondegenerate. Then we have from (5.4.30)

Tgps(t) = E Pp(t)inoen] (5.5.15)

where
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pp(t) = <nlpg(t}in> (5.5.16)
is the occupation probability of the nP energy Tevel. With (5.4.29) and (5.5.2) we
obtain from (5.4.48) an equation of motion for the diagonal part of as(t) in energy
representation:

Mgt = Aglgeg(t) - (5.5.17)

To evaluate this further, we first provide some useful relations. From (5.4.12)
we get

ﬁslnxn\ = Bymen| (5.5.18)
where
-Ben
= - = _&
By = <n|pggln> = EETE" (5.5.19)
n

is the canonical occupation probability of the nth energy level. From (5.4.37) we
have
ehss efs o oells s

- e"‘""usu . (5.5.20)

Further, by use of (5.4.43,50) and (5.5.20) we obtain

K, [S,sIn><n]] = YoulSye Imeenllsgg o (5.5.21)
where
2 @ @ N N
17, fay(t
oy T ﬁzéd Eédaem“( Tak) (5.5.22)

~ H, H,
x trplBa R () ™R 6B &R}

Recalling a, + o, = 0, it may be shown that the coefficients You have the properties

- By o (5.5.23)
and

Yoy ooy - (5.5.24)

tet us turn now to the investigation of the right-hand side of (5.5.17). Using
(5.4.49) and (5.5.15,18,21), we find after some simple transformations

Adgpg(t) =r2| WonPn(t) = Hoppp(t)Tjnoen] (5.5.25)
where
[
Wop = g’v Yo * Yy i <n[S\'[m><m|Su|n> (5.5.26)

is the transition probability from the nth to the mth energy level. Note that the
terms of the sum are vanishing unless u = o, = (e, = €q)/h 1t may be shown that
the Hmn have the properties
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W0 (5.5.27)
WP = ¥anPm (5.5.28)
Using (5.5.25), the evolution equation (5.5.17) for the diagonal part of the prob-
ability density can be cast into the form of a Pauli master equatjon [59]:
Pa(t) =1 [y P (t) = WP ()] (5.5.29)
m

which has the canonjcal occupation prababilities ;‘:" as a statjonary solution.

5.6 Renormaljzed Transport Equations

Let A be the set of macroscopic variables of the open system S with mean vaiues
a;(t) = trglApg(t)) - (5.6.1)

The reduced probabiljty density ps( t} is assumed to obey the master equation

(5.4.48), which we write in the form

Ss(t) = ilgpg(t) (5.6.2)
with
L= Lo+ ing . (5.6.3)

The probability density ps(t) contains information about any varjable of S jnclud-
ing the nonlinear functions of the A. We now want to keep only the macroscopsc
variables A and eliminate all the other variables of the system S. To this purpose
we introduce a relevant reduced probability density
sty = &1+ T (o - 3] (5.6.4)
ki
where the d are the equilibrium values of the macroscopic variables
8; = trglApg,) . (5.6.5)
and where the parameters p(t) are determined by the requirements
trs(Aip's(t)} =a(t) . (5.6.6)
Note, that an injtjal state of the form (5.1.8) gives a reduced probability density
of the relevant form (5.6.4) in the 1imit of a weak coupling to the reservoir
(9= 0) and to First order in 2 weak perturbation of the form Hg = = JouiA..
Introducing the canonical equilibrium correlation

_1t . ~oH alg
(Xs¥g)g = gé da trelig Xs € S ¥ Sy (5.6.7)

= trs(Xs ESVS] N
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we obtain from (5.6.4,6)

3;(t) = a; + E (GAi,ﬁAJ-) s ij(t) s (5.6.8)
where there
B, = Ay - & (5.6.9)

are the fluctuations about equilibrium. Equation (5.6.8) determines the u(t) in
terms of the mean values a(t), and vice versa. With (5.6.8) it is easily shown that
the projection operator
s P | N

PXS = Es[tfsixs) + g 5 AAi(ﬁAi.GAj)s trs{GAsz)] (5.6.10)
projects out the relevant probability density

b(t) = Pog(t) . (5.6.11)

We now take advantage of the fact that the identity (5.2.1) holds independent

from the particular form of the operators L and PT to be found therein, so that we
also have

) ¢ )
eIt L p eI Ly [ g @ TI-PIL(YS) () | pyyp o7iLS (5.6.12)
0
iRy )

When we insert this identity into

og(t) = e 0y, (5.6.13)
where the initial state ps(o) is the rejevant form .

0g(0) = Pogl0) = 5¢(0) (5.6.14)
we obtain

og(t) = pg(t) = Z ds e TRLES) L opysg(s) (5.6.15)

which gives when put into

sim = -1 trglALpg(t)) (5.6.16)
an evolution Taw for the mean values of the macroscopic variables

a(t) = -i trs(AiL;s(t)) (5.6.17)

¢ )
- é ds trgiagL e TIPS - pyissyy

Since the time dependence of ;S(t) arises only through a(t) the right-hand side is
compietely determined by the instantaneous mean values and their past history.
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While (5.6.17) is the closed set of evolution equations for the mean values we
were looking for, these equations are not yet of the standard form of transport
laws. To obtain this form we first note that (5.4.49) and (5.6.4) give

-iLpg(t) = -4 ;(stSA‘»)ui(t) . (5.6.18)

With this result (5.6.17) may be transformed to read
N t N

()= - g L) - é ds § Rjle = shuges) (5.6.19)

where
is treia L £ o) (5.6.20)
N . SH1-P)LE,, e
L] strs(AiLf (=P . (5.6.21)

In (5.6.19) the time rates of change of the mean values are given in terms of
{renormalized) thermodynamic forces "i(t) and in terms of (renormalized) transport
coefficients consisting of an instantaneous part T‘ij and a retarded part Kij(t).
The renormalized transport equations (5.6.19) govern the relaxation of the mean
values in the linear regime near equilibrium. This restriction to the linear re-
gime is due to the fact that we have treated initial states of the form (5.6.4)
only.

Besides the relaxation towards equilibrium, the master equation {5.4.48) aiso
governs the time evolution of canonical equilibrium correlations of the open
system S, and it follows that the renormalized transport equations (5.6.19) also
determine the time evolution of canmonical equilibrium correlations of the macro-
scopic variables A. Using (5.6.8), the transport equation {5.6.19) may be written

t

a0t = g ug3la5(t) - &)+ é ds § DYCRDICHO RN (5.6.22)

where
1e el

e E 3 Ui (5.6.23)

and
L3, (st 5.6.24

935(t) = - E 5 Bl thogg (5.6.24)
with the canonical equilibrium variance

:,ij = (“i’s“j)s . (5.6.25)

Then, the evolution laws for the canonical equilibrium correlations of the macro-
scopic variables read

N . . . t . N
ad't'(“i(t)’“j)s = E mik(ﬁAk(t),éAj)s + é ds E okt - s)(&Ak(s),dAJ.)s .(5.6.26)




The renormalized transport equations obtained in this section are closely re~
lated to those of Mori theory treated in Chap.3. 1f we replace the Liouville
operator L of the open system 5 by the Liouville operator Lg of the closed system
S in (5.6.20,21), (5.6.19) reduces to (3.4.8) for the closed system S (that is,
the molecular expressions in Chap.3 are read with MS as Hamiltonian and trs instead
of tr). Hence, the internal dynamics of the open system S are treated exactly in
(5.6.19).

On the other hand, the influence of the reservoir is treated only approximately
in (5.6.19). On using (3.4.8) for the closed system S © R (that is, the molecular
expressions in Chap.3 are now read with Hg + Ho + gHgp as Hamitonian and
tr= trstrR) we obtain exact renormalized transport equations. These exact equations
describe memory effects due to the internal dynamics of S as well as memory effects
coming from the reservoir dynamics. The latter are disregarded in (5.6.19) and 2
weak coupling to the reservoir is assumed. However, since effects of nonlinear
couplings within S are treated correctly, the approximate transport laws (5.6.19)
are useful in many situations where a complete disregard of memory effects as in
(3.5.4) is not possible. For a discussion of various applications of the master
equation approach we refer to HAAKE’s review [73].

Finally we mention that the master equation approach given in this chapter is
novel and differs from earlier approaches [68-74] in two respects. First, we have
utilized a relevant probabiiity density defined in such a way that the equilibrium
probability density is of the relevant form, while usually a factorizing relevant
probability density is used. Even in the weak coupiing Timit the present approach
leads to an expression for the dissipative Liouvillian different from expressions
given previously. Since in our approach the irrelevant-part p(t) - 5(t) of the
probabiiity density is dying out for t - = , we obtain the correct long time be-
havior (which is chiefly of interest}. Second, in the Markov approximation correiatio
functions are usually determined with the help of a “quantum regression hypothesis”
or equivalent assumptions. These assumptions are not compatibie with the symmetries
of the process [75). In our approach the master equation is intimately connected
with the dynamics of canonical correlation functions. As will be shown in Chap. 6
symmetrized and antisymmetrized correlation functions (the latter being response
functions) can also be determined from the master equation, but the rules how to
compute these quantities differ from schemes put forward previously. For further
details we refer to [149].




6. Response Theory

The response to an applied time-dependent perturbation gives valuable information
about the nonequilibrium properties of a system. To investigate this reponse we
first have to extend the scope of the methods studied so far, since up to now we
have considered closed systems only. On the microscopic level an applied pertur-
bation is described by a time-dependent Hamiltonian H'(t) which is added to the
Hamiitonian H governing the internal motion. For the most part we will assume that
the perturbation is caused by external forces h coupling to the macroscopic vari-
ables A of the system. Then

Hi(t) = - z hi(t)Ag

In Sect.6.1 we review standard microscopic response theory [2,102) and derive
molecular expressions for the response functions X4j relating the response of the
mean values a to the appijed forces h causing it:

t
saglt) = [ ds E PNCINE -

The response tensor Xij(t) of an equilibrium system with temperature T is shown to
be related to the canonical equilibrium correlations Eij“') by the fluctuation-dis-
sipation theorem of the first kind [I4,102,150]

xi5t) = --r;-ra(t)cij(t) .

In order to study the response from a macroscopic point of view, we have to know
how the coupling of the applied forces comes out in the macroscopic evolution laws.
This crucial question is investigated in Sect.6.2 for the method of statistical
thermodynamics, where the macroscopic evolution Taws are furnished by the general-
ized transport equations studied in Chap.3. We find that the coupling of the
applied forces arises in two ways. First, the applied forces h are subtracted from
the thermodynamic forces u so that the fluxes & are now caused by the differences
between the thermodynamic and the applied forces. This change can be taken into
account by adding the mean value of the perturbation H'(t) to the free energy

F(t) » F(t) - z ni(thag(t) .
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Second, the retarded parts of the transport coefficients pick up a functional
dependence on the applied forces in general.

In Sect.6.3 we use the modified transport equations to reexamine the linear re-
sponse of an equilibrium system from a macroscopic point of view. We show that the
modification of the retarded parts of the transport coefficients does not contribute
to the linear response, and we obtain macroscopic expressions for the response
functions X3 in terms of the free energy and the transport coefficients. The fluc-
tuation-dissipation theorem of the first kind is recovered. The response theory
given in Sect.6.3 does not make use of the particular forms of the transport coef-
ficients and the free energy, so that the method is insensitive to approximations
of these quantities that preserve their basic symmetries. The method can immed;ately
be appiied to macroscopic evolution Taws in which the memory effects have been
negiected.

In Sects.6.4 and 6.5 an appiied perturbation is incorporated into the Fokker-
Planck equation approach and the master equation approach, respectively. The evoi-
ution equations are again modified in two ways. The average energy of the perturb-
ation is added to the free energy, and the transport quantjties describing the
memory effects become functionals of the appiied forces. We aiso study the response
of an equilibrium system and derive expressions for the response functions.

6.1 Microscopic Response Theory .
We consider a system with Hamiitonian H, the microscopic state of which is described
by the probabiiity density o(t). When an external perturbation is appiied to it,
the dynamics of the system §s governed by a time-dependent Hamiitonian

H(t) = H+ H'(t) (6.1.1)
and an initial probability density o(0) evolves in time according to

p{t) = U(t.0)e(0) . (6.1.2)

The time-ordered exponential (t > t')
t
yt,t) =T, ex;:{-'i [ dsL(s)} , (6.1.3)
'

in which operators are ordered from right to left as time increases, is the time
evolution operator in the Schridinger picture with

$H(E),X)  (classical)
L(t)X= (L+L'(t))X -
B (quantal) (6.1.4)
The effect of the perturbation H'(t) upon the state of the system is described
by
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so{t) = o(t) - eglt) (6.1.5)
where
op(t) = €71 0y (6.1.6)

is the state evolving from p(0) by the natural motion of the system. Using the
identity

. t i

u(t,0) = e Lt L5 fasugt,siLi(s) e (6.1.7)
0

which is clearly true for t = 0 and may therefore be verified by showing that both

sides san’sfyyé same differential equation, we get

t
sp(t) = /i éds u(t,s)L'(s)po(s) . (6.1.8)

/

We now gssume that the appiied perturbation is caused by external forces h coup-
Ting to thF macroscopic variables A of the system. Then

LORLEPIIOTY (6.1.9)
\
and (6.1.8) be::omes‘
t .
sp(t) = é ds T Utss)lALog(s)IRs(s) - (6.1.10)
y

The response of the system to the appiied forces h as observed in the average change
of the macroscopic variabies is given by

sa,(t) = triAy(t)}
t
- i
- é ds E F (A Es)[Agu0(s)0hy(s) (6.1.11)
To the first arder in the applied forces (6.1.11) gives [102]
t
sa(t) = é ds E xi3(EsIhy(s) (6.1.12)
where for t > s
X;5(ts8) = tr[[A (t = s),A; Iao(s)) (6.1.13)
- I‘T trilA;(),A5(5)20(0))

is the response tensor, Here A(t) represents the unperturbed motion in the Heisen-
berg picture:

1 To be definite we work in the framework of quantum statistical mechanics. The cor-
responding classical formuias are obtained by replacing {=i/R}[X,Y] by (X,Y}.




At =™ty (6.1.14)
so that the response tensor depends on the internal dynamics of the system only.
Higher-order corrections to the linear response can be obtained by making repeated
use of (6.1.7) to get an approximate expression for U(t,s) in the desired order
and then inserting it into (6.1.11).

If the system is initially in thermal equilibrium, that is, if

-gH
~ e
0(0) = § = S (6.1.15)
© tree®)
the response tensor (6.1.13) becomes
Xyt - 8) = ¥ (LA, (£),A;(s)8)
(6.1,16)

i . ~

= f triA(t S).Aj]p)
The response tensor of an equilibrium system is related in a simple way to the
equilibrium correlations defined by [cf. (3.4.10)}

g - B
_1 5 ~aH aHl
ORS A da trléA(t) e Ay et o), (6.1.17)

where the §A are the fluctuations about equilibrium. Using the identity (3.2.7) we
find
8
4,81 = - [ da oA HieG | (5.1.18)
38 0 bl

Thus for t > O the response tensor may be written

8 . .
xi5(t) = [ da trea() et Ay oy
% (6.1.19)
.- A da trehy(t) e™! A Mgy,
which combines with (6.1.17) to yield [102]
x;5(t) = - e(t)séij(t) . (6.1.20)

This relation between the response tensor and the time rates of change of the equi-
Tibrium correlation functions is the fluctuation-dissipation theorem of the first
kind. The unit step function

for t>0
o(t) = (6.1.21)
for t<0

takes care of the fact that the response tensor is nonvanishing for t > 0 oniy. For
later use, we note that since
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Cyg(t) = Cyql-t) (6.1.22)
the fluctuation-dissipation theorem (6.1.20) is equivalent to

Xig(8) = xg3(+t) = - 6Cy5(t) (6.1.23)

It should be noted that the fluctuation-dissipation theorem (6.1.20) takes the
same form in the classical and the quantal case. This is due to the fact that we
have used the canonical correlation defined by (6.1.17). In the quantal case the

canonical correlation must be distinguished from other sorts of correjation func-
tions such as the symmetrized correlation

1 N . an n .

sij(t) =y t.-([&Ai(t).sAJ + ﬁkjéﬂi(t)]p) . (6.1.24)

The relation between (6.1.17) and (6.1.24) is most easily expressed in terms of the
associated spectral functions

1 -iet
Cijle) =g [t et g5t (6.1.25)
and
1 -jut
Siglel =gz dte S50 - (6.1.26)

The symmetrized spectral function S_i {w) is sometimes called the scattering function
since the differential cross sections observed in inelastic scattering of 1ight,
electrons, etc. are related to quantities of this kind.2 The canonical and sym-
metrized spectral functions are connected by

55(0) = B0 500) o (6.1.27)
where
Eg(u) = 3 ho coth(F 8ho) (6.1.28)

is the average energy of a harmonic oscillator with frequency v at temperature
T = 1/kg8. To verify (6.1.27) it is best to write down each expression in terms
of the matrix elements of 3A‘. and ZAJ in the representation diagonalizing the
Hamiltonian H, Clearly in the classical limit (fw «kaT) the difference between
S”(u) and C“(w) disappears.

Introducing the dynamic susceptibility

Farert, (o= are o, e (6.1.29
%;3(w) / x35( )-(1] e x50 -1.29)

we obtain from (6.1.23) the form of the fluctuation-dissipation theorem in fre-
quency space:

2 A nice and brief discussion of scattering is given, for example, in [22],
Appendix A.
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Xijled = mCyyle) = gy Sygle) (6.1.30)
where
3o = F Lgjle) - xgz(-ol) (6.1.31)

is the dissipative part of the dynamic susceptibility.
Finally we note that for macroscopic variables Ai having time-reversal signature®
£ there follows from (6.1.16) the symmetry

xi5(8) = et . (6.1.32)

6.2 Macroscopic Coupling of Applied Forces

In this section we study the effect of an external perturbation upon the macroscopic
evolution laws. As in Chap.2 we consider a system described on the macroscopic level
by a relevant probability density 5(t) which is projected out by a projection
operator PT(c)

- T

o{t) =P (tho(t) . (6.2.1)

P has the properties (see Sect.2.3 for details)
BTty = 11 - e T (0T () (6.2.2)

and

Ty =0 . (6.2.3)

#l(e(e) =
Unlike in Chap.2, we now allow for an external perturi)htion applied to the system.
Then the microscopic time evolution is governed by (6.1.2-4),

With the help of the projection operator P1(t), the time evolution operator
(6.1.3) may be decomposed into three pieces:

Wt,0) = PT(E)U(t,0) (6.2.4)
t
- gds AT (t,5)01 - PT(s)ILiL(s) + BT(s)IPT(s)U(s,0)
+a'(t,0)01 - pT(0)]
where for t > t'

t
ity = 7, epf- 1 [ an -} (6.2.5)
t

—
3 See Sect.3.7 for & definition of the time-reversal transformation.
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The identity (6.2.4) can be verified by differentiating with respect to t and show-
ing that because of (6.2.2) both sides satisfy the same differential equation, If
we apply (6.2.4) to an initial state p(0) of the relevant form,

9(0) = 5(0), i-e,  [1-PI(O)Ip(0) =0 , (6.2.6)
we optain by virtue of (6.2.1,3)

t
p{t) = p(t) - i éds GT(t.s)n - PT(s)]L(s)E(s) . (6.2.7)

This generalizes (2.5.18) for systems with a time-dependent Hamiltonian.

We now assume that the Hamiltonian H(t) is of the form (6.1.9) so that its
time-dependence arises through applied forces h(t). The time rates of change of
the mean values a(t) of the macroscopic variables A read

Ei(t) = - trAL(t)e(t)) . (6.2.8)
On inserting (6.2.7) we obtain

3,(t) = v;a(t)h(t)] + vs(a(shh(s), 0 <s < 8}, (6.2.9)
where

v;(t) = v;la(t) h(t)] = = § treAL(t)o(t)) (6.2.10)

is the organjzed drift, while

75(t) = y;{a(shhis), 0 <5 < ¥) (6.2.11)
H T T -
== [os e ea)n - P IL(S)s)

is the disorganized drift. Equation (6.2.9) extends the previously derived transport
laws (2,6.17) to include the effects of applied forces. The organized drift Vi(t)
is now a function of the jnstantaneous mean values a(t) and the applied forces h(t),
while the disorganjzed dpjft yi(t) is a functional of their past history. While the
microscopic coupling of the applied forces is determined by (6.1.9), the macroscopic
coupling arises through the dependence of Vi and v o0 the applied forces.

For the remainder of this section the relevant probability density s(t) is taken
to be of the generalized canonical (g.c.) form [cf. (3.1.3)]:

Sty = TNty e BB (6.2.12)
Then, (6.2.9) may be evaluated further. We first provide some useful relations.
The time-dependent Hamiltonian (6.1.9) may be written

H(t) = { -1 u’.(t)A’.} + {; [n(t) - h’.(t)]A’.} R (6.2.13)

where the first temm commutes with p(t). With (6.2.13) we get from (6.1.4) and
(6.2.12) in the quantal case




98

iL(t)e(t) = %Z [A’.,p_(t)][ui(t) SR8l . (6.2.14)
1

Here and in the following the corresponding classical formulas are again obtained by
replacing the commutator (-i/A)[X,Y] by the Poisson bracket (X,Y}. We find another
expression for jL(t)p(t) by taking advantage of the identity (3.2.7)

P )

L)) = lsé da e M ] - PLIOUY -ay e 5(t) (6.2.15)
where

Hy=H - ; py (A . (6.2.16)
On noting that

M TR0 B = =1 LA (8 = h(e) (6.2.17)
(6.2.15) becomes

8
L(E)S(L) = % é da et (1L(0)A) ™ S(t)lug(t) - hglt)] . (6.2.18)

We now put (6.2.14) into (6.2.10) to give

vy(t) = - § V,-J-(t)[vj(t) - hj(t)] s (6.2.19)
where the
¥i5(8) = Vy5la(t)] = tria(t) F]f [A;A13 (6.2.20)

are the instantaneous parts of the generaljzed transport coefficients, Further,
using (6.2.18), we obtasn from (6.2.11) o

t
vy(t) = - é ds g Ri5(t,5)Ing(s) = hy(s)] (6.2.21)
where the
R;5(t,s)
8
B 6 da tre(iL(t)A, )81 (t,s)01 - PT(s)]a'“Hs((I.(s)AJ)e"HSS(s)) (6.2.22)

are the retarded parts of the generaljzed transport coefficients. With (6.2.19,21)
the generalized transport equations (6.2.9) read
N t
a;(t) = 'JZ V,vj(t)[vj(t) - hy(e)] -{] ds § Rij(t,s)[uj(s) - hj(s)] . (6.2.23)
On comparing (6.2.23) with (3.2.12) we see that the effects of the applied forces
are of two kinds. First, the fluxes a are now caused by the differences y - h between
the thermodynamic forces u and the applied forces h. This is natural, since the




g.c. probability density ply = h] is the stationary probability density in the
presence of constant applied forces h. Second, the transport coefficients are
modi fied. There is no change in the jnstantaneous parts V'j(t) but the retarded
parts Rij(t,s) become functjonals of the applied forces h(u) in the time interval
s<uct.

The first modification can be taken into account by simply changing the free
energy function [cf. (3.1.5-7)]:

F(t) » Fp(t) = F(t) - ] hy(t)ay(t) . (6.2.24)
1
Then, the derivatives of Fh(t) with respect to the mean values a(t),
3 ()
mgrey - it - hite) (6.2.25)

are just the appropriate driving forces. This change in the free energy makes al-
lowance for the effects of applied forces on the statics of the system. The second
modification, the dependence of the retarded transport coefficients Rij(t’s) on

the applied forces, may arise in a complicated way. However, this purely dynamical
effect of applied forces must generally be taken into account in the study of the
response of nonequilibrium systems and the nonlinear response of equilibrium systems

6.3 Linear Response of Eq um Systems

in this section we consider a system that js initjally in thermal equilibrium and
then disturbed by applied forces h(t). Using the macroscapic evolution laws, we
calculate the response of the system to the first order in the applied perturb-
ation. In equilibrium the thermodynamic forces u vanish, that is, ji = 0. Conse-
quently, if we start out from equilibrium at time tn = 0, the thermodynamic forces
u{t) at later times t > O are at least of the first order in the applied forces
h{t) and the transport laws (6.2.23) give

N t .
i) = Jz Viglug(t) = hy(t)] = é ds § Ryglt = s)lugls) = hy(s)) + oy,
(6.3.1)

where ‘}ij and fz‘.j(t) are the transport coefficients for vanishing thermodynamic
and applied forces. These coefficients have been introduced previously in (3.4.1,2).
In disregarding terms of the second order in h in the equations of motion, we en-
tirely disregard the dependence of the retarded transport coefficients on the ap-
plied forces. Clearly, this particularly simple situation generally occurs only
if the thermodynamic forces u are at least of the first order in the applied forces
h, that is, for systems which are initially in equilibrium.

Near equilibrium the thermodynamic forces u are related to the mean values a by
[cf. (3.4.9)]
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nag(t) = ] Béijuj(t) , (6.3.2)
i
where the
sa;(t) = ay(t) - & (6.3.3)

are the deviations of the mean values a(t) from their initial equilibrium values
8, while F’ij is the equilibrium variance matrix introduced in (3.4.10). When we ex-
press the thermodynamic forces u in terms of the sa, we obtain from (6.3.1) the
transport equations of Mori theory in the presence of applied forces

t
2dy(t) = § i jha;(t) +éds Bi(t = s)aayls) (6.3.4)
. € B
wLighie) ¢ gds § Rt = s)hy(s) + o(n?y
J o

where [cf. also (3.4.12,13)]

N 1o 1 = I |

G- - E Faskg o+ by = EiRik(t)ka . (6.3.5)

In terms of the evolution matrix Mi,j(t) satisfying

N t .
{En”(t) - E By M08 + &ds@ik(t - )M(s) (6.3.6)
and
H5(0) = 555 s (6.3.7)

the fomal solution of (6.3.4) with initial conditiom sa,(0) = 0 reads
t N s .
s2y(0) = [ s g,k Mgt - 5)[vjkhk(s) ] Ry - u)hk(u)] . (6.3.8)
This result may be written
t
dag(t) = é ds jZ xi4(t = sdhy(s) (6.3.9)
where for t > 0
- t N
xi5(8) = E Moy (81,5 + é ds E"ik(“ - s)Ry;(s) (6.3.10)
is the response tensor. Equation (6.3.9) gives the linear response of an equilibrium

system to an applied perturbation as a superposition of the delayed effects.
The Laplace transform of (6.3.6) reads

Mi(2) = 65 ° E Iy, + Bik(z)mkj(z) R (6.3.11)
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1f we multiply this relation by M .(z) from the left and by H‘]T:(z) from the right
and then sum over the indices i and j, we get

Mn(2) = & = § M (2B + 8 0(2)) s (6.3.12)

which is the Laplace transform of
. ~ t .
Mij(t) - E Hik(t)nkj + é ds E Ho(t - s)ekj(s) . (6.3.13)

We now take advantage of (6.3.5) to express ij and ﬁkj(s) in (6.3.10) in tepms of
%3 and °kj(s)' Then by virtue of (6.3.13) the response tensor emerges as

xi5(t) = -ottys | B (t)oy; (6.3.14)

Since the evolution law (3.4.21) for the canonical equilibrium correlations
Cij“') coincides with the evolution law (6.3.6) for the Hﬁ(t), the two quantities
differ only by their initial conditions, and we have for t > 0

6(t) = E Miltlog - (6.3.15)

Thus the response tensor (6.3.14) is related to the correlation functions by the
fluctuation-dissipation theorem of the first kind (6.1.20). Further, the time-re-
versal symmetry (6.1.32) of the response tenscr can easily be obtained from the
transformation properties of the transport equations. As shown in Sect.3.7, the
latter imply the detajled balance symmetry

Cigltd = egeCys(t) . (6.3.16)
of the equilibrium correlations. Then, we obtain (6.1.32) by virtue of the fluctu-
ation-dissipation theorem.

It should be noted that in this section the response tensor has been determined
by starting out from the macroscopic evolutfon laws, and (6.3.10) gives the re-
sponse tensor virtually in terms of the free energy and the transport coefficients.
If these solely macroscopic quantities are now approximated, as in Sect.3.5 for
example, the line of reasoning in this section remains practically unchanged. Again
we recognize the advantage of writing the transport laws in terms of tramsport
coefficients and forces derived from a thermodynamic potential. Then it is easy
to make approximations in such a way that basic symmetries and properties of the
process, such as the fluctuation-dissipation theorem, are not destroyed.
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6.4 Fokke anck Equation Approach

We now address the problem of accounting for the effects of applied forces in the
Fokker-Planck equation approach. As mentioned in Sect.4.2, the Fokker-Planck eguatio
is formally obtained from the transport equations of statistical thermodynamics by
replacing the set A of macroscopic varjables by the enlarged set ¥, = §(A - a).
Hence, the arguments in Sects.6.2 and 6.3 can be transfered to the Fokker-planck
formalism in a rather straightforward manner.

We start by noting that the relevant probability density is of the form (see
Sects.4.1 and 4.2 for further details)

F(t) = o [ de %“jﬁlvu . (6.4.1)

where p(a,t) is the macroscopic probability density. The associated pmje;éion
operator el is time-independent and given explicitly in {4.2.5). Now, by inserting
the general formula (6.2.7) into

Feplast) = - 1 ey L{E)p(t)) (6.4.2)
we obtain for the time rate of change of the macroscopic probability density
Zpla,t) = - try L{E)3(1)) (6.4.3)
t T T s
- [ ds triy L(1)G'(t,)(1 - PTIL(S)3(s)} .
]

The time-dependent Hamiltonjan H(t), describing the internal motion and the
applied perturbation, is taken to be

H(t) = H + H'(t) = H+ [daH'(a,t)y, - (6.4.4)
This includes (6.1.9) as the special case:

H'(a,t) = - 1[ hi{tha; . (6.4.5)
Usina (6.4.1,4), we find

-iL(t)e(t) = (H{t).o(t))

(6.4.6)
- du[{v wg) s%‘T‘Tl R o, :)]
where we have made use of
tHiogr,d = oglH¥} = =5 Gog ¥y . (6.4.7)

From (6.4.6) we get




=ity L(t)e(t))

- [ da? (tr[(\r e ,E(;(_t,.}.* tr[{vu,Yu.);(t)]H'(u',t))

From (6.4.1) and

oY, )--Z—\'(A,Y.) 2 3”“ Fagar e - @)y Ay,

(6.4.8) can be written
-i tr‘(vuL(t)E(t))

*f 3 E.- \J(“)[“e‘ ®) 5 %(EG)) + () m] »

where the L are given by the Poisson bracket relations
triy pB[A» A3

- - - of ik
Tigled -~ omgie) —ﬁs‘(ﬂ'_‘
On the other hand, we have

SIL(E)5(t) = {H(t),p(t)) = [ du (H(t),0,¥)} p e
Using

()07} = 0, TH{ELYD + ¥ (H(t) o)
.- Z%-ps LH(E) ALY - oy (H(t)H
§
and
(H(E),H) = (H (), H(t))
= [ da Hi(a,t)lyH(t)} = [ du B(BEhy (a uet))
@ 31‘ @ 1

(6.4.12) gives

SiL(t)e(t) = = [ du pg¥ (iL(t)A) [

3 plu,t a,t) ' (u,t)
.Lthpsa tE R o ]

Now, by virtue of (6.4.15) and
=i triy L{t)X} = tr[(‘!u.H(t))X)
3 .
.- § = trly (iL(E)AXD

the integrand in (6.4.3) becomes
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(6.4.8)

(6.4.9)

(6.4.10)

(6.4.11)

(6.4.12)

(6.4.13)

(6.4.14)

(6.4.15)

(6.4.16)
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“tr(e L(6)A(t,5)01 = PTIL(s)3(s))

(6.4.17)
B da’ 0 (a,tia’, o a M'(a',s
Lyt oo oggtantio®ssifpylar) gy Bt sntarse) Mfopsl]
where the
. T T :
triy L{t)A )G (t,s){1 - P )o VunL(s)L)
0;5(estiatis) = ‘Fe("‘) ( ) i (s‘a‘ml),

are the diffusion kernels in the presence of an applied perturbation. i
Finally, because of (6.4.10,17) we abtain from {6.4.3) the generalfzed Fokker-
Planck equation

2 ety . _W,L(g)ﬂg__u,t
Fplet) <] g o) [5 v 32 ) a1

t .
2 ' - 3F (a')  3H'(a'ys) 1 9] .
F g ey o T dyyletietis) [ A S £ A

where

* 1

F'(a) = - 310 pyle) (6.4.20)
is the bare free energy. Again the applied perturbation appears in two ways. The
first change, which accounts for the effects of the perturbation upon the statics
of the system, is taken into account by changing the free energy

F'a) » F7(a) + H'(a,t) . (6.4.21)
Secondly, the diffusion kernels Uij(u,t;u',s) have pick&d up a functional dependence
on the perturbation.

In the remainder of this section we study the linear response of an equilibrium
system. Since

.
aF {a 1 3 -
[_Uaoj +§_90i] Pl =0 (6.4.22)

we then can disregard the modification of the diffusion kernels. Further, we shall
restrict ourselves to situations where the memory effects in (6.4.19) can be dis-
regarded.” In that case the gemeralized Fokker-planck equation (6.4.19) reduces to
the Fokker-Planck equation

Lyt —‘—L‘ ol Mfet) 12 ] piast) (6.4.23)

_EP(“ “)‘f " e a

4 The following discussion can easily be generalized to systems with memory by using
the same Laplace-transform techniques as in Sect.6.3. Compare also [151}.
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where the bare transport coefficients L (u) have been defined previously in
Sect.4.4.

Introducing the conditional probability p(z,t|a') of the unperturbed system,
that is, the solution of the unperturbed Fokker-Planck equation with fnitial con-
dition p{e,0]a’} =6(z-a'),5 we obtain from (6.4.23) by first-order perturbation
theory

8p(a,t) = plast) = ppla)
t ‘ot
< [ s ] dtplast - slat) [J_ rLista) i&}r&lps(u-) . (6.4.24)
T

where we have assumed that the system is initially at time ta = 0 in equilibrium.
Because of (6.4.22) we have

3 * 3H’ (o,
I tigle _g:TsLPg(“)

1,3 74 .4

ot aasiegta)
- -iLsH'(u,s)pﬁ(u) . (6.4.25)

Since the operator acting upon BH‘(u,s)pB(a) in the last expression is the unper-
turbed Fokker-Planck operator (4.6.2) governing the time evolution of the condi-
tional probability, we obtain by putting (6.4.25) into (6.4.24)

t
sp(ast) = - é ds [ da'x(asa’st - SHH'('ss) (6.4.26)
where
xonatst) = =80(t) F p{P a0t st) : (6.4.27)

is the response kernel, while
P88 (a,atst) = plastlat)pyla’) (6.4.28)

is the equilibrium joint probability density. Equation (6.4.27) implies the fluc-
tuation-dissipation theorem of the first kind.

For an external perturbation of the form (6.4.5) the response of the mean values
a(t) reads

t
82;(t) = [daayap(ost) = éds T xggit - sihgls) {6.4.29)
J
where
x35(t) = [dada’ajalx(a,e’st) © (6.4.30)

5 The conditional probability demsity can also be viewed as the kernel of the
evolution operator exp{-ilt), where -iL is the unperturbed Fokker-Planck
operator {4.6.2).
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is the response tensor. Because of (6.4.27) we have
xi5(t) = -8o(t)E;;(t) (6.4.31)
with the equilibrium correlation functions
f 30 (2 .
Oyt = f dada’sagsalp{Diaetst) (6.4.32)

where the §a are the deviations from the equilibrium values. Hence we recover our
previous results.

6.5 Master Equation Approach

In this section we study how the master equation changes when an external per-
turbation is applied to the system. The line of reasoning is very similar to the
one pursued in the preceeding sections so that we can be briefer this time. The re-
levant probability density is of the form (see Sects.5.1 and 5.2 for details)

a(t) = Treg(t) (6,5.1)
Where N
oglt) = trgle(t)) = tryfi(ty (6.5.2)

is the reduced probability density describing the state of the subsystem S. The
projection operator P' projecting out the relevant probability density is time
independent. The Hamiltonian H{t) is taken to be

H(t) = H+ He(t) o {6.5.3)
where Hg(t) describes an applied perturbation acting upon the subsystem S only.

On inserting (6.2.7) into

Bg(t) = 1 trpil(te(t)) (6.5.4)
we obtain
- t -
Bs(t) = =i trplL(t)3(t)) - é ds trglL(t)G(t,5)(1 = PTIL(s)3(s)) - (6.5.5)

For further evaluation we restrict ourselves to the accuracy necessary to describe
the Tinear response of the equilibrium system correctly. We then have

L(E)(E) = La(t) + Ly(tho, + O(HD) . (6.5.6)
Next we note that
ey = L2l (t) = Bty (6.5.7)

where the operator us(t). conjugate to ps(t), has been introduced in Sect.5.2.
Further, because of (5.3.1,2), we have
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Li(the, = % WH3(t).0,] = BLEH(E) (6.5.8)
which combines with {6.5.7) to yield

L(E)5(t) = BL Blug(t) + H(O)] + 0(HT) . (6.5.9)

We now insert {6.5.9) into both terms on the right-hand side of (6.5.5) and ob-
serve that in the considered approximation we may disregard any further dependence

of the memory term on the applied perturbation. Then we obtain

t
Bg(t) = - Velug(t) + Hy()) -g ds Rg(t - s)lug(s) + Hy(s)) (6.5.10)

where the transport operators Vg and Rs(t) have been defined in {5.2.19,20). Clearly
the external perturbation Hé(t) is just added to the thermodynamic force operator
us(t). In view of (5.2.14) this change can be accounted for by changing the free
energy

ET(t) » () + trglog( tIHY(E)) . (6.5.11)

Generally the retarded transport operator Ag(t) will 2lso be modified by the exter-
nal perturbation, but this change does not contribute to the linear response.
Provided ps(U) = Pggr we get from (6.5.10) by first-order perturbation theory

tog(t) = bg(t) - g, (6.5.12)
t -1 s
- fesit-saz [vsué(s) +é duR(s - u)ng(u)] R

where we have used the fact that a solution of the unperturbed master equation is
of the form (5.2.31). This result may be written

spg(t) = - zds Xg(t = s)hg(s) (6.5.13)
where for t > 0
Xg(t) = G(t) Z5hvg + z ds G(t - 5) 25 Ry(s) (6.5.14)
is the response operator. From (5.3.21) we get
wg(2) ~2g = &(2) xlleg + ooz
- -%Gs(z)z;l[vs +Rg(2)] (6.5.15)

where the last transformation follows by virtue of (5.2.,21,22). Since {6.5.15) is
the Laplace transform of

. - t -
&(t) = - Tamzglyg - %% ds Gt - ) Z5R(s) (6.5.16)
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the response operator (6.5.14) may ba written
Xg(t) = -so(t)&(t) . (6.5.17)
“This_relation implies the fluctuation-dissipation theorem of the first kind in as

much a: Gs(t) determines the dynamics of canonical equilibrium correlations.
If the\perturbation is of the form

i
H(t) = - 3‘_ Ahi(t) (6.5.18)
the response of the mean values a(t) reads
t

say(t) = trglAmog(t)) = g ds x5t - sihyls) o (6.5.19)
where
x;5(1) = trglAXg(£)A) (6.5.20)

is the response tensor. Because of (6.5.17), the x“.(t) are related to the canoni-
cal correlations [see {5.2.24)]

ci5(t) = trs[“iss(t)snj) (6.5.11)

of the fluctuations SAi about equilibrium by (6.1.20).

Since the results following (6.5.10) have been obtained without making use of the
precise form of the stochastic operators, we expect that they still hold if the
stochastic operators are approximated as in Sect.5.4. We shall not go through the
arguments in detail but only mention that (6.5.10) reduces in the weak coupling
limit to .

Bg(t) = -iLglog(t) + BEHI(E)) (6.5.22)

where Lg has been defined in (5.6.3), while is has been introduced in (5.4.12).
Clearly, the approximate equation {6.5.22) can only be used if the applied per-
turbation Hg(t) is slowly varying in time. From (6.5.22) we easily obtain for the
response opera tor

X5(t) = iso(t) e ISt B < —sa(t)(t) . (6.5.23)
where
Gy(t) = e7ilstg (6.5.24)

determines the canonical equilibrium correlations by virtue of {5.2.24).




Part B. Select Applications

7. Damped Nonlinear Oscillator

In this chapter we shall deal with the theory of a damped nonlinear oscillator
from @ statistical-mechanical point of view. Our treatment is presented as a simple
application of the Fokker-Planck equation approach given in Chap.4. We first in-
troduce in Sect.7.l a class of microscopic models where an oscillator moving in 2
field of force (not necessarily linear) interacts with a reservoir of bath par-
ticles. This class comprises physically important systems 1ike the damped harmonic
oscillator, the Brownian particle in a fluid, the mass impurity in a lattice, and
the diffusing particle in a periodic potential. Starting out from the exact evol-
ution law for the oscillator distribution function, we reexamine the Markovian
approximation in Sect.7.2 and obtain a Fokker-Planck equation in the limit where
the mass of the oscillator is large compared with the mass of the bath particles.

The special cases of a Brownian particle in a fluid and & mass impurity in a
harmonic lattice are studied in Sect.7.3. Important early contributions to the
theory of 8rawnian movement have been compiled by WAX [152]. We follow essen-
tially the statistical-mechaznical approach by LEBOWITZ and RESI80IS [153] and by
MAZUR and OPPENHEIM (154]. The subject has also been presented in various books
and review articles [22,93,155}. The mass impurity in a harmonic lattice has fre-
quently been studied [156-161] since this model can be solved exactly for simple
couplings and thus makes a detailed study of the Markovian limit possible.

The focus of the last two sections is on damped nonlinear oscillators, where
the non-Gaussian fluctuations lead to a renormaljzation of the transport equations.
Expressions for the renormalized thermodynamic forces and transport coefficients
are derived in Sect.7.4, and explicit perturbation theoretical results for the
Ouffing oscillator are given in Sect.7.5. The Ouffing oscillator has been studied
in greater detail by BIXON and ZWANZIG [162) using numerical methods, and some
aspects of this and related problems have recently been reviewed by ZWANZIG [163]).
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7.1 Microscopic Model and Generalized Fokker-Planck Equation

The damping of an oscillator is due to the interaction between the oscillator and
\\its surroundings. As a simple model we study a mechanical oscillator in interaction
Mth a reservoir consisting of N particles. The Hamiltonian of the closed system

formed by the oscillator and the reservoir is taken to be

HoeHg e g eV . (7.1.1)
Here
% >
HoBd) = 5 +u(d) (7.1.2)

is the Hamiltonian of an oscillator with mass M and momentum B at position § moving
icha pinning potential U(J). Denoting by '61. and Zii the position and momentum of the
i reservoir particle of mass m, we can write the reservoir Hamiltonian in the form
CORL e

HR(i‘.,ﬁ = {j mt W@ - {7.1.3)
Fimally, V(S,ai) describes the interaction between the oscillator and the reservoir.
We treat the system on the basis of classical statistical mechanics using the
Fokker-Planck method given in Chap.4.

Since we are interested in the motion of the oscillator moving under the in-
fluence of the reservoir, we choose its momentum F and positiona as the macroscopic
variables. The time rates of change of these varijables read

<1

G=id= @ =g . (7.1.4)
and

Peibe e - Rk, (7.1.5)
wih o

ere -

S e vl

Kp(Qug;) = - T (7.1.6)

is the force which the reservoir exerts on the oscillator.

In equilibrium the state of the entire system is described by the canonjcal
probability density

og ° z;l et (7.1.7)
where 8 = 1/kgT is the inverse reservoir temperature, while the state of the os-
cillator is described by the macroscopic probability density!

1 In this chapter the macroscopic probability densjty is denoted by f to avoid
confusijon with the momentum p.
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fo(3:8) = trlvgpgd o (7.1.8)
where

e sF-pe@-a) . (7.1.9)
Using (7.1.1-3), we find [cf. (4.4.13)}

* o

£ (B, = o7 () (7.1.10)

with the bare free energy
i

FEE) =g+ U@ + @) (7-1.11)

Here
SO
W) - - % In | da & BIUR(31)+¥(d,d3)) (7.1.12)

is a potential for the average force exerted by the reservoir on the oscillator
when it is fixed at the position § = 4. This average force vanishes in the impor-
tant case where the potentials UR(ﬁi) and V(ﬁ,ﬁi) depend on the distance vectors
ai - EJ. and § - #; only. In the general case we can always add the potential Au(d)

to the pinning potential U(3) so that we may assume

M@ =0 (7.1.13)
henceforth.

The reversible dynamics of the oscillator is determined by the antisymmetric
matrix (4.3.4). Since the Poisson brackets read

Q7P = s, (7.1.14)

where v and u label the space companents, we find

1
Tovav T Tovpy T E (7.1.15)
and the remaining coefficients vanish, To evaluate the diffusion kernels (4.2.20)
which determine the irreversible dynamics, we start by noting that

-BH,
trie ok ) "

Pesake = o — R < e (@ (7.1.16)
L P trie Mgy (LY

where we have made use of (4.2.1) and (7.1.6,12). Equation (7.1.16) in connection
with (7.1.13) gives

o
PR =0 . (7.1.17)

Further, from (4.2.2) and (7.1.4) we get
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1
O-pvdeo (7.1.18)
and from (7.1.5) we obtain in view of (7.1.17)
Fy 03
- P)YE—‘;P = YEEKR . (7.1.19)

Thus, using (4,2.14,20), we find that the only nonvanishing diffusion kernels are

a3 = LG
b G AL(1-P)t,

trip ¥z Yor KB}
CTlepd T BR (7.1.20)

triggtpg ) !

vpu

This expression is a modified correlation function of the force exerted on the os-
cillator by the reservoir.

Having investigated the free energy and the transport kernels, we turn to the
generalized Fokker-Planck equation, which is of the form

. \ s
F @A =155, [s ﬂgdb%] AL
vp  PUa 3q

3 n
el [f —(‘:—q)'*—]f(ﬁ.a.t) (r.1.21)

S 2"

t *iry 3
H ’ >y 3 3F7(p’,a° 3
+ [ds ] = [ dp*de’0 5qsP,a°,5 [B + ]
é gu 3p” P"P“(p ) p* 3t
(3.0t - 5)
Thus, by virtue of (7.1.11,13,15,20), we obtain

S

2 et s (. M@ 2B s
FRCER) (3E - % HREES)

(7.1.22)
+ st 2 [dp'dg’Y(B.8,5° 18 45 ) (%-—w kgT —— f(3 At -s) .
» 3;\

This is an exact evolution law for the macroscopic probability density.

7.2 Fokker-Planck Approximation

In order to make use of the generalized Fokker-Planck equation (7.1.22) we have to
determine the diffusion kernels (7.1.20) more explicitly. This can be done exactly
only for simple models while we have to resort to approximations in general.

1t is useful to decompose the Liouville operator into four pieces:




113

Lelg*lp+lg,ptlp,g » (7.2.1)
where

iLgX = [,Hg} (7.2.2)
and

LK = {X,Ho} (7.2.3)

describe the intermal dynamics of the oscillator and the reservoir, respectively,

N
. X v
gL gt = - . (7.2.4)
AL Wby o8

describes the action of the oscillator on the reservoir, and

[ -%.%=%.KR (7.2.5)
describes the reverse, the action of the reservoir on the osciliator.

We now assume that the mass M of the oscijlator is much Targer than the mass m
of the reservoir particjes. Then, the mean thermal velocity (k T H)I/ of the
oscillator is by a factor (m/H)l/2 smaljer than the mean therma'l velocity (kBT in)
of the Tighter reservoir particies. Hence the position ﬁof the oscillator is a
siowly varying quantity on the time scale set by the reservair motion. Further,
the momentum transfer in a collision between a reservoir particle and the oscil-

/2

Tator is, for M> m, of the order of the mean thermal momentum of a reservoir par-
ticle, that is, (kg7 m)™/2. This momentun transfer is snall compared to the mean
thermal momentum (kBT N)I/2 of the oscillator so that B -is a siowly varying quantity
too. Thus, we can approximate the gereralized Fokker-Pianck equation (7.1.21) ac-
cording to the method given in Sect.4.4.2 The above arguments can be sharpened by

. c o 03 72, 02 172
introducing scaled dimensionless momenta PO = P(kgT M)~/ and 5] = By(kgT m)™/".
Then it is easily shown that

Lol gL O[@Y7] . (7.2,6)
from where we see that the time rates of change of the macroscopic variables B and
4 are of the order (m/M)Y/2.

Since Lp and Ly, p act upon the reservoir variables only, we have

LP =l =0 (7.2.7)

which in connection with (7.2.6) yields

2 If we use the Fokker-Planck equatjon to calcujate the relaxation from an initial
nonequilibrium state we also have to assume that the initial velocity of the os-
cillator is small compared to the mean thermal velocity of the reservoir particles
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SLO-PIE | il p)t *0[(}1)1/2] . (7.2.8)

Now, the matrix y is explicitly of the second order in P that is, of the order
m/M. Thus, on inserting (7.2.8) into (7.1.20), we obtain by use of (4.1.3)

BRI = 6B - 8@ - et Ee) + o @YY (7.2.9)
where

kgTro! (d,t) = <k3(1)KA(0);E> . (7.2.10)
Here

k() = ef(MRHO-RIE | (7.2.11)

is the force exerted by the reservoir on an oscillator held fixed at the position
& >

§=1. K, (t) can aiso be Jooked upon as the force exerted on an infinitely heavy
oscillator. The average in (7.2.10) is defined by

kY (£)KE
<K (EIKE(0);E> = E%E%M (7.2.12)
;dp da e‘B(HR*V(q-‘h) KE()KE0)
] dpyda; e -8 (AR+V(T,37)) :

that is, an average over the equilibrium state of the reservoir in the presence of
the osciilator acting as a force center at the position q.
Now, since

Bt - s) = fEAY + @Y7 ) (7.2.13)

we obtain by inserting (7.2.9) into (7.1.22) the Fokker-Planck equation

3 5, UG =
L fGan - (2.8 2 Bega (7.2.14)
% % £

2 ?(E) (2 +kgT —-f(p,q,t) + o[(}’;):‘/z]

where the ¢*¥ are g1ven by the Green-Kuho formula
4
kT 24(@) = !; ds <K2(s)KE(0);d> . (7.2.15)

In deriving (7.2.14) we have assumed that the time t is Targe compared with the de-
cay time of the force correlation function (7.2.12). However, this correlation
function will rapidly decay to zero because it contains only the rapid dynamical
process of the 1ight reservoir particies. Thus, (7.2.14) holds on the macroscopic
time scale.

Clearly, the Fokker-Planck equation (7.2.14) follows straightforwardly from
(4.4.7), and the formula (7.2.15) for the matrix 7 is just a special case of




15

(4.4,8). We have reexamined here the formal approximation of Sect.4.4 in some de-
tail for a concrete model where the Fokker-pianck approximation emerges naturally
in a certain Jimit, namely, the Timit M» m, thereby showing that the approach of
Sect.4.4 can indeed be based on firmer grounds.

1.3 8rownian Motion and Impurity in a Harmonic Lattice

The only quantity to ba found in the Fokker-Planck equation (7.2.14) not yet ex-
plicitly known is the matrix z; However, in order to obtain further results from
(7.2.15) we first have to specify the model in greater detail. Let us consider two
special cases.

Brownian Motion. A heavy Brownian particie js immersed into 2 fiuid of light par-
ticles. If we treat both the 8rownian particle and the fiuid particies as mass
points, we are led to a microscopic mode) of Brownian motion belonging to the class
of models introduced in Sect.7.l. There is no pinning potential U(F), and the
internal interaction of the host fluid can be written

1 > >
Uo(d:) = u(|g; - a9:0) . (7.3.1)
R(@) =7 1 ulld - g
while the interaction between the Brownian particle and the fiuid reads
v@a) = et - b . (7.3.2)
1

Here u({r) and v(r) are spherically symmetrica) interaction potentials.

The Hamiltonian H of the system is invarfant under translations and rotations.
Consequently, (7.1.13) is automatically satisfied, and"the force Ry depends on
the distances \Q - q | only. Thus, the correlation (7.2.12) is now mdependent of
4 and proportional to 6™ so that the matrix (7.2.15) is of the form

@) ™ (7.3.3)
where ¢ is a constant given by

.. T}ar}“ds & (s) - (o) (7.3.4)
b

This formula has first been derived by KIRKWOOD {13] on quite different lines. The
Fokker-Planck equation (7.2.14) now takes the form

N
3
(Z+ B Drian e 2 Gy
aq 2
Generally one puts in ¢ as a phenomenological parameter since the evaluation of
(7.3.4) is rather complicated.

Lygan (7.3.5)
ap
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A detailed discussion of the Fokker-Planck equation (7.3.5) is given in the re-
view article of CHANORASEKHAR {164]. If we integrate over 4, we obtain from (7.3.5)
an equation for the momentum probability density f(7,t) of the form

3 > a 3 >
o F(P.t) = ¢ 2o (F + kT 2H(B. 1) . 7.3.6)
3t '3 (gf ] 35) Pt (

The conditional momentum probability, that is, the Green's function of (7.3.6), is
found to be

)
FPatR) = [2no(1)1792 exp{— o } , (7.3.7)

where
Bey o B e M oty e kT (L - T BEMY (7.3.8)

Since the stationary momentum probability density reads

-2
By = U2 gl R 7.3.
F4(B) = (2akgT M) exp{ nﬁm} (7.3.9)

we obtain for the momentum autocorrelation function
<”(t)p¥(0)> = | dpdp* p“p'"f(ﬁ‘tlﬁ')fﬁ')
= MTm (WM (7.3.10)
Dther quantities of interest can also be calculated easily.

Impurity in a Harmonic Lattics, As a second example we consider a heavy impurity in
a harmonic lattice consisting of N 1ighter particles. The Hamiltonian is taken to be

22

42 .
NPy 5 > >
Hebg+] . =+ U @ s vdag - (7.3.11)
b

P
Q and q; are the deviations of the particles from their equilibrium positions.
Up(@;) is the interaction of the harmonic lattice with the impurity held fixed at
the position § = 0, and it is of the form

Ug(dp) ’%g

where u;’;‘ is a positive and symmetric matrix

Wioleh (7.3.12)
v 9

o, v
[ (7.3.13)

which has an inverse n;'; defined by

25, 60 L (7.3,14)

V’(E.ﬁi) is a bilinear interaction between the lattice and the impurity
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vy =] vt . (7.3.15)
TaVap

The potential U‘(ﬁ) is not necessarily harmonic, The Hamiltonian can always be
written in the form (7.3.11) if the internal interaction of the N Jattice particles
and their couplings to the impurity are harmonic.

The requirement (7.1.13) is not automatically satisfied. We add

wd) =31 e (7.3.16)
Vi
with '
ey n%’v:“’vs’.‘i (7.3.17)

Tdihe
to the potential U (§) and subtract it from the bilinear interaction V*(3,4;) to

give
U@ = @ + au(d (7.3.18)
and
> > 1 VAgh
VA, = vl qv 4+ b LN 7.3.19
@i -y o (o3 + 31 (7.3.19)
where?
A _ Vit MA he
& - E'u ni%vl (7.3,20)
On adding (7.3.12,19) we obtain
> 3y .1 avou
Uplag) + V(Qay) = 3 §,j,v ey . (7.3,21)
where
ay =)+ ] MY . (7.3.22)

1
Now, (7.1.12) gives only an irrelevant constant, and we are in the position to make
use of our previous results.

From (7.3.19) we obtain by virtue of (7.3,20,22)

v av MV

s atom . vi'q! . (7.3.23)
A 20’ g;u i

The time evolution of the force K, (L) 1ntroduced 1n {7.2.11) has to be calculated

with the impurity held fixed at the position Q q Then, (7.3.22) is a time-in-

dependent transformation. In view of (7.3.21,23) this transformation removes the

dependence on 6 from the evolution law for Kn(t) and from the average (7.2.12).

3 We note in passing that if he Hamiltonian (7.3.11) is invariant under trans-
lations of all coordinates Q.q;, e. g i if the interaction depends on the dis-
tances only, we simply have d“ =
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As a consequence the matrix ¢ is independent of §, and (7.2.15) gives

kgTe™ = [ I, Palsigor | (7.3.2)
Tidshia

where the <qi(s)q (0)> are the stationary correlations of the harmonic lattice with
the impurity held fixed atﬁ 0. For some special cases, where the interaction
(7.3.12) is particularly simple, the integrand of (7.3.24) has been calculated ex-
plicitly £156-1601.

If we restrict ourselves to a one-dimensional lattice, we obtain a Fokker-Planck
equation of the form

F fpant) = (5208l - 2 Bep,q.)
vod (BT 2fean (7.3.25)

As noted above, the potential U(q) is not necessarily harmonic, so that the Fokker-
Planck equation (7.3.25) may contain nonlinearities.

7.4 Renormalization of Transport Equations

In this section we study a system described by the Fokker-Planck equation (7.3.25).
The potential U{q) is symmetric in q and arbitrary otherwise, but later, the form

Ua) = Fa? + §af (7.4.1)

will be used for explicit calculations. Introducing a state vector & = (p,q), the
Fokker-Planck equation (7.3.25) may be written in the standard form (4.4.17); that
is,

2oy = 2.0 [ﬁgél + kgT %]«:,t) . (7.4.2)
sa da da
where
2
F@) = By v V) (7.4.3)

is the bare free energy, while

g ( © 1 (7.4.4)
-1 0,
is the matrix of bare transport coefficients.
The bare thermodynamic forces {4.5.6) read
*
r=£,(& B_U) X (7.4.5)

% gl
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and the bare transport taws (4.5.5) are

FE o) (7.4.6)
or more expticitly

p=- ﬂ “fe

el

A=gp - (7.4.7)

These are the familiar phenomenotogical equations of motion for a damped nontinear
oscillator. To obtajn the remormatized transport equations we have to carry out the
renormalization procedure discussed in Sects.4.5 and 4.6. Here, we shall restrict
ourselves to the tinear regime near equitibrium.

For the present problem the partition function (4.5.19) reads

Ny >
10 = | da @ BFT(ENE) (7.4.8)
where 7 is the vector of renormalized thermodynamic forces which is determined as
a function of the mean values <a> by fcf. (4.5.15)]

N
& . kBTL‘[_llnl . - (7.4.9)
wu

At equitibrium the mean values vanish, and we obtain from (7.4.8) and (7.4.9) hy
disregarding terms of the second order in <q>

i (e . (7.4.10)

where

[ W),
o= %::-TUGT = sy (7.4.11)

is the equilibrium variance of q. Clearly, there is no renormalization of the ther-
modynamic force conjugate to the momentum since the stationary momentum probability
density is Gaussjan.

The bare transport matrix T* does not depend on the state . Hence, it fotlows
from (4.6.12) that the instantaneous part of the renormatized transport matrix
coincides with the bare transport matrix

O (51 ;) R (7.4.12)

The retarded part, A (t - s, of the renormalized transport matrix is a functional
of the mean values <a(u)> in the time interval s < u < t. However, as far as the
linear transport laws are concerned, we can evatuate {4.6.15} for equilibrium mean
valtues <Z(u)>S = 0. To this end we first provide some usefut retations.
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For vanishing mean values the projection operator (4.6.3) reduces to
Pg = P<d> = 01, which is of the form

PX(3) = fﬁ(;)(f daX(3) + Gﬁ'—wjdn PX(3) +%jdﬂqx(;)) . (7.4.13)
where
v e BF(E)
fgla) = —5—— (7.4.14)
(i = 0)
is the equilibrium probabitity density. In deriving (7.4.13) we have made use of
o (E, @) byt L e e (7.4.15)
o g B 0 gy ©
where
t,@ 3
F(3,<d) = —E (7.4.16)

[ da £ (3) o8

is the relevant probability demsity introduced in {4.5.8). From (7.4.14) we ob-

tain by virtue of (7.4.5)

ERAC KRR R T e NN . (7.4.17)
a

and further, by use of (7.4.13)

-7 :‘n f @ =0 (7.4.18)
(1P g5 7@ = s (Dana)

where
au(a) :ﬂaéﬂl -2 (7.4.19)

The right-hand sides of (7.4.18) are proportionat to the differences between the
bare and the renormatized thermodynamic forces.

From (4.4.18) we see that for the present modet the Fokker-Ptanck drift coin=
cides with the deterministic drift:

Ko = (Kp(Z), Kq(;)) Sy . (7.4.20)
Further we find by use of (7.4.6,7,13,19)
Jduk (@1 - PXE) = - [ dasu(@)X(H

[uukq(:)(l - PE)X(K) =0 . (7.4.21)
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Now, from (7.4.18,21} it is readily seen that for vanishing mean valves,
<d(u)> = 0, the retarded part (4.6.15) of the rerormalized transport matrix takes
the form

:r(t—s) 0
Rt -s) = . (7.4.22)
0 0
where
£u(t) = 8 [ doau(a) e"(l’Pﬁ)LtAu(q)fﬂ(Z) . (7.4.23)

On combining (7.4.10,12,22) we obtain for the renormalized transport equation
(4.6.16) in the linear approximation

2 o1 c t g (t-s)
oE <P(t)> = - g <a(t)> - g <p(t)> - é ds Lp——<p(s)> , (7.4.24)

Ze<alt) = A <oitr>

These equations govern the mean relaxation in the vicinity of the equilibrium
state, and they are actually of the same form as (3.4.11) discussed earlier. How-
ever, while (3.4.11) are formally exact, (7.4.24) hold in the Fokker-Planck ap-
proximation only. The renormalized transport equations (7.4.24) also determine the
dynamics of correlations of fluctuations about equilibrium. The corresponding evo-
lution laws, which are immediately wn‘éten down in analogy to (3.4.21), are an
exact consequence of the Fokker-Planck equation (7.4.2).

Notice that by simply linearizing the Fokker-Planck equation (7.4.2) we ob-

tain

P <P(E) = - raq(tp - Eop(t)
&<t = Lep(tys (7.4.25)

where we have assumed that the potential U(q) is of the form (7.4.1). On comparing
(7.4.24,25) we see that the nonlinearity renormalizes r and leads to a retarded re-
normalized damping.* It might be worth mentioning that this memory term does not
describe non-Markovian effects. Rather it is entirely due to the nonlinearity of
the Markovian Fokker-Planck model under consideration.

4 When (7.4.24) is written in Fourier space, the memory term in (7.4.24) gives
rise to a frequency-dependent damping.
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7.5 Expansion in Terms of kB

To make use of the renormalized transport equatjons (7.4.24) we have to determine
o and r;r_(t) explicitly. The potential U{q) is taken to be of the form (7.4.1) with
r and u positive. This system is also known as the Duffing oscillator {162]. Since
the bare transport equations (7.4.7) and the renormalized transport equations
(7.4.24) have both the stable stationary solution p = q = 0, we expect that the
effects of fluctuations leading to the renormalization of the transport laws can
be treated in a perturbative way.S The effects of fiuctuations vanish in the de~
terministic 1imit k8 - 0. Hence the explicit kB dependence of the Fokker-Planck
equation can be used to set up a perturbation scheme where kB is used as an ex-
pansion parameter ‘in order to calculate fluctuation corrections to the determinis-
tic theory {54].

With (7.4.1) we obtain from (7.4.11) after an obvious change of the integration
variable 12

kT fdge’e
- B
o= <q§E £ T T (7.5.1)
Jdt e z T
where
L kgTu
us — . . {7.5.2)
r
By expanding in terms of kg we find
kT i e i 4
o= (1 -30 + 207) + 0(kg) - (7.5.3)

Here a formal expansion in terms of kg amounts to an expansion in terms of the
dimensioniess nonlinearity parameter U.
Next we observe that (7.4.23) may be transformed to read

LitT(1e
o (t) = Bou e L Pg)%,,)g R (7.5.4)

where <evg denotes the average over the equilibrium probability density (7.4.14).
PB is transposed to the projection operator (7.4.13), that is,

P;X(E) =<y + 1@‘?’71"”"3 +daqy (7.5.5)
while -iLT is transposed to the Fokker-planck operator (4.6.2). Using (7.4.1,3,4)
ve Find

2
AtTy@) = [(-rq-uq3- R - AL aip-z]xm . (7.5.6)

5 This is not 50 in the bistable case r < D where naive perturbation methods fail
£127-134]. .
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This operator is also called the backward Fokker-Planck operator.
For further evaluation it js convenient to write ¢ (t) in the form

gr(t) = B<Aul(t)>8 . (7.5.7)

where
"

@) = e LR ) (7.5.8)
Using (7.4.1), we obtain from (7.4.19)

a(a) = (r~big +u® (7.5.9)
and (7.4.17) gives

5 Fol®) = @ + wly . (7.5.10)
Thus we find by inserting (7.5.9) into (7.5.7)

5t = <3_;((]H>B - %<qx(t)>8 . (7.5.11)

The equilibrium averages on the right-hand side of {7.5.11) can now be expanded
in terms of kB. With (7.5.3) we get

2
o (t) =iu_ 2 A(;,t)L oK) (7.5.12)
" r ;j =0

Furthermore, in this approximation the time evoiution of l(;,t) can be determined
from the bare linearjzed transport laws:

B(t) = = ra(t) - fp(t) . d(t) = Eect) (7.5.13)

which have for p(D) = D the solution

q(t) = q(0) e~ (s/2M) (ch B+ Lon %}) , (7.5.14)
where
ne (- el (7.5.15)

Equatfon (7.5.14) holds for real and imaginary n and also in the aperiodic case
for n - 0.

Using (7.5.8,9,14), we obtain

3
[13 A(Z,t)]‘) ) o~(3et/2M) (ch B g,})s “Olky) (7.5.16)
2 2

which combines with (7.5.12) to give
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02, o(3ct/2M t t\3 3
2(t) = il o730t/ ) (chgﬁ+5—sh;ﬂ-) PG (7.5.17)
Again the expansion is actually in terms of the nonlinearity parameter i introduced

in (7.5.2). Equations (7.5.3,17) give the first nontrivial terms of a perturbative
calculation of the renormalized thermodynamic forces and transport coefficients.




8. Simple Fluids

Our objective in this chapter is to derive by statistical-mechanical methods a gen-
eralization of the phenomenological equations of motion for simple one-component
fluids and to show how the phenomenological equations themselves can be recovered
as an approximation. Dur treatment is presented as an application of statistical
thermodynamics, which has been discussed from a general point of view in Chap.3.
Also, since the macroscopic variables of a fluid are local densities of conserved
quantities, it is shown how the general theory applies to systems described by lo-
cal variables.

In Sect.8.1 we summarize some general results for systems with local conservation
laws and bring the equations of motion put forward in Chap.3 jnto a form which is
appropriate for systems with a fluctuating local energy density. In Sect.8.2 we
derjve the conservation laws in simple fluids and obtain molecular expressions
for the local fluxes of the conserved quantities. The properties of the generalized
canonjcal probability density for fluids are discussed in Sect.8.3. We then eva-
Juate the molecular expressions for the organized fluxes explicitly in Sect.8.4.
This yields Euler's equations of motion for ideal adiabatic fluids.

In Sect.8.5 the disorganized motion is evaluated in an approximation where terms
of the third order in the wavenumber k are djsregarded. We show that in this ap-
proximation the fiuid is described by the nonlinear phenomenological equations of
hydromechanics {87]. Finally, in Sect.8.6, we obtain Langevin equations for the
fluctuations about the mean. The theory is illustrated by applying it to a steady-
state nonequilibrium fiuid. In particular, the structure factor for light scattering
in the presence of a temperature gradient is determined.

Our approach [165] has features in common with several cther works. Exact evo-
lution equations for the mean values of the hydrodynamic variables have been put
forward by PICCIRELLI {166} and studied in greater detail by KAWASAKI and GUNTON
[107] and ERNST et a}. {167]. While these papers do not obtain Langevin equatjons
for the fluctuations, the transport kernels are evaluated in {107,167] in approx-
imatjons going beyond the one discussed in Sect.8.5. Qur investigatjon is also re-
Jated to the recent work by OPPENHEIM and LEVINE [168}. We avoid the introduction
of a reference equilibrium temperature, however, and relate some more details to
the dynamics of fluctuations.
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8y disregarding memory effects on the level of statistical thermodynamics one
ignores the complicated nonanalytic structure of the renormalized transport coef-
ficients, which {s particularly important near the gas-liquid critical point, but
which also leads to nontrivial but small corrections outside of the critical re-
gime {78,169]. Rather than evaluating the retarded transport kernels more precjsely
[107,167], one may start out from a more complete Fokker-Planck description of
fluids which is implicit in the work of GREEN £170}. Fokker-Planck models ignoring
the sound modes have been used in the study of the gas-liquid critical point {4,49],
and noncritical fluids have been treated by Fokker-Planck methods in the incom-
pressible {169,171] and isothermal {172) approximations. More recently, Fokker-
Planck equations or equivalent nonlinear Langevin equations have also been em-
ployed to treat nonequilibrium fluids [138,173].

We shall not discuss the Fokker-Planck description of fluids explicitly here.
A Fokker-Planck equation can, however, be derived in a rather strajghtforward
manner by applying the theory in Chap.4. The resulting equation of motion in the
Markovian approximation is given in the appendix of {138]. 1t should be noted that
in a Fokker-Planck description the spatial variation of the hydrodynamic variables
has to be restricted by introducing a cutoff wavenumber [170] because otherwise
singular behavior in the averaged quantities is found [174]. This is not necessary
on the level of statistical thermodynamics, since the spatial variations contri-
buting to the molecular expressinns‘are controlled by the variations of the con-
Jjugate thermodynamic fields.

8.1 Systems with Local Conversation Laws

In this section we consider some general properties of classical systems where the
macroscopic variables Ai(i’.t) are local densities of conserved quantities and where
the energy density is among the macroscopic variables.! The conservation laws read

F oy g > 3 v
ALY = LA (K1) = gax\' BE (8.1.1)

where v labels the space components, while the 31(;.t) are the jocal fluxes of the
conserved quantities. The exact equations of motion derived in Chap.3 are easily
transcribed for systems with macroscopic varjables labeled by the continuous index
(i.X), and some minor modifications are appropriate. We only give the basic de-
finitions and results for later use.

1 Dften the energy density is not included into the set of macroscopic variables
and the system js treated in an isotherma} approximation. For isothermal models
some modifications of the general approach explained below (1ike the replacement
of the free energy functional by an entropy functional} are not necessary and
the previous results can be used directly.
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Since the energy density is one of the conserved densities, the Hamiltonian H
is among the macroscopic variables, and the generalized camonical probability den-
sity (3.1.3) may now be written

sty = 7N exp{- k‘; fo] Ai(;,t)ki(;)} , (8.1.2)
where xi(‘i,t) and Z(t) are determined by
trip(t)} = 1

TrEEA Kt = trip(BA(Kt)) = 25 (Kut) . (8.1.3)
Further, the proper thermodynamic potential is now the entropy functional

S(t) = -kg tris(t) tnp(t)) (8.1.4)
and we have

Aty <SS g gy o g SAREE) (8.1.5)

sa;(,t) 1 8 (Kt)

With (8.1.1) the organized drift (2.5.6) takes the form

[NERI g j(d?(?,t)%r R (8.1.6)
where

Ji(;,t)>°r = tr(a(t)3; (3 (8.1.7)

is the mean organized flux2 Using (8.1.2}, we get
S 1 - M
ile(t) = N pt) f dx g At "'Aim . . (8.1.8)
and by virtue of the conservation taws (8.1.1)
- 1 - v 3 >
iLe(t) = ~ —a(t) f dx RFy Aty . (8.1.9)
0 -0 o g S0
Because of (8.1.1,9), the disorganized drift (2.5.16) may be written
THy = - 2 (T
vi(X,t) = \EJQ <J‘(x.t)>di (8.1.10)
where the mean disorganized ftux is given by
t
N N VH Rt T5) —2 AL (3 (8.1.11)
<Kty éds [ dy }.u RYS( ¥s) o §8)
with

RS (RETs) = klg triz(s)ayHa -P(s)16(s, 1)} (X)) (8.1.12)

2 Since the energy density is among the macroscopic variables, the representation
(3.2.3,4) of the organized drift is not appropriate here. For fluids a corres-
ponding representation wilt be given later.
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The generalized transport equations (3.2.1) for the mean values ai(l.t) of the
macroscopic variables are

%ai(i’.t) - g axl" [o?(i,tpw
t
dés fd RVI(XE.¥s) ~a (us)| - 8.1.13
et g'u 13 (kt.¥8) " A5(¥ 5)] ( )

These exact equations nf mnnon are nonlocal in time and space. In general, even
the organized fluxes <. (x t)> depend on the 3 (¥,t) at different positions y.
The disorganized fluxes <J (x q’d] are caused by the gradients of the A (y s)
at different positions ¥ and earher times s. The effect of these gradients on the
time rates of change at position ¥ and time t is determined by the R"“(xt,ys) which
are functionals of the ai(’"t)‘

Finally, the Langevin equations (3.3.1) are obtained by linearizing the gemer-
alized transport equations about the mean path and adding the random forces. Hence

) N sy
35 A (%, g—[jd {__T"'sn s(%t)
t ERSMERI TN
d ST (3, MR I 8.1.14
+£ sfdy} saj(f.s) éJ(y S)*Ej( ! { '

where we have taken into account the fact that the randem forces are of the form

FKty == ai L) . (8.1.15)
where the
(K1) = 01 - P(0)IG(0, )T, (X) (8.1,16)

are the random fluxes with the properties
<Ei(?,t)> =0

() L oy, =0 . (8.1.17)

8.2 Conservation taws in Simple Fluids

We consider a simple one-component classical fluid described by the Hamiltonian

olryp) » (8.2.1)

where b’a, ;a are the phase space variables of the ath particle. The sums run




129
over all particles, and a prime indicates that terms with a = b are omitted.
o(r) is a spherically symmetric potential depending on the distance
s
rap = 1%y - %yl (8.2.2)

only. The macrovariables Ai(i), (i =0,1,...,4 = 0,v,4) and the conjugate thermo-
dynamic fields Ai(;) are given by

(8.2.3)
n(x) = g s(% - %,) (8.2.4)
defines the particle density,
o¥(%) = [ ga(k - %) (8.2.5)
a
defines the momentum density, and
a2
_ Pa 1 N > _ >
e®) = ] zﬁ*gg alryp) (% - %) (8.2.6)
a

defines the energy density. The meaning of the conjugate fields ).‘.(;) will be clear
from below.
The time rates of change of the macroscopic variables are given by

ARy = (R = A (8.2.7)

These Poisson brackets can be evaluated with the use of
oY
(X - )M s - gi_T’ﬁ(i - %,) (8.2.8)

g
and x

S(% - %) - 6(¥ - %Xp)
X x % - %
b Tab F b a
N I SNy LR R R G | B 8.2.9)
vax’ Tab é ( 2 Tab ) (
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In this way we find the conservation laws:

ECRR et
W oax

(8.2.10)

Lo 08 R0 - ) delryy)

Tab drap

.y
r X - %
« é“bdrs(; A (8.2.11)
2 o

defines the stress tensor and
o [
i 5
RCRIRY RS ST R 8

Y ol o xly o g b g
gy (a = %)% - %) Py ; Py do(rgp) (8.2,12)
a ® r!b

defines the energy flux.

8.3 Generalized Canonical Probability Density

Introducing the inverse tamperature field

B,y s —E— (8.3.1)
kgT(X,t)

we obtain from (8.1.2) and (8.2.3) for the generalized canonical probability density
the form

sty = 27Nt exp{-jdxs(;,t)[e(i) SRR -8 - V(m)n(?))} (8.3.2)
On defining a transformation S(t) of phase functions X(Fa';a) by

S(X(B,.%,) = X(F, - mV(%,.0.%,) (8.3.3)
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one easily establishes that

triS(t)X} = tr{X} , (8.3.4)

s(t)n(x) = n(X) (8.3.5)

S(H)T(R) = §(X) -V (X, tin(%) (8.3.6)

S(tje(®) = e(f) - YLty - 3% + J (. em(B) - (8.3.7)
Now, the generalized canonical probability density matrix may be written

B(t) = S(L)a(t) (8.3.8)
where

a(t) = z'l(t) exp{-jdxs(;,t)(e(;) - u(i’,t)n(?))} (8.3.9)
with

(. = v(Et) + §ERy (8.3.10)

Since e(X) is quadratic in the momenta, the probability density p(t) is Gaussian
with respect to the momenta and we have
tria(tF(E)) = tris(t)S(HFEN
= gLty - V(X tmen(X,t)> =0 (8.3.11)

where we have made use of (8.3,4,6,8) and the fact that o(t) yields correct mean
values of the macroscopic variables. From (8.3.11) we see that

Wy - G (8.3.12)
men(X,t)> .
is the flow velocity. Using (8.3,5,7,11), we also find
tr{p(tm (X)) = <n(X t)> (8.3.13)
and
trip(t)e(¥)) = <c(X,t)> , (8.3.14)
where
<c(X,t)> = <e(f,tp - 1’":§£L£)f.
(¥, t)>
= ce(®tp - § R (Xt (8.3.15)

is the mean density of intrinsic energy.
Equation (8.3.8,9) show that the gemeralized camonical probability density s(t)
describes a state of local equilibrium {114] of small cells with temperature
T(X,t) and chemical potential u(X,t) moving with the flow velocity V(¥,t). Because
of (8.3.13,14), the temperature field T(i.t) and the nonuniform chemical potential
u(X,t) are functionals of the mean particle demsity <n(X,t)> and the mean demsity
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of intrinsic energy <e(X,t)>, while (8.3.12) gives the flow velocity ¥(¥,t) as a
function of the local mean densities. Finally, the quantities T(?,t),u(Y,t) and
J(%,t) are related to the conjugate thermodynamic fields xi(;,t) by (8.2.3) and
(8.3.10).

It should be noted that our gemeraljzed canonical probability density p(t) is
of the grand canonical type. The total particle number is not fixed but rather a
fluctuating quantity. Only the mean particle number coincides with the actual
particle number of the fluid system.3 Correspondingly, in expressions where aver-
ages over ; or p are taken, the trace is a "grand trace" involying a summation
over all particle numbers.

8.4 Ideal Fluids

The organized (ideal) motion of fluids is determined by the mean organized fluxes
introduced in {8.1.7). They read

<g*(%,t)>g, = trip(t)g"(R)) = <g"(K,t)> (8.4.1)
<&, t)g, = () E) (8.4.2)
<k, t)5,, = (0N . (8.4.3)

The first relation expresses the fact that the particle flux ﬁ(i,t)/m has no dis-
organized motion part since E(},t) js jtself a macroscopic variable. To evaluate
(8.4.2) we make use of the transformation S(t) defined in (8.3.3). With (8.3.4,8)
we have :

(X ), = GESTHOMEN (8.4.4)
0n applying §71(t) to (8.2.11) we find
sl
= o)+ VIR + P ENE) - P Rin) - (8.4.5)
Using (8.3.11), the right-hand side of (8.4.4) can be evaluated further to yield
<a"“(?,t)>ar =K B (K, B + PR L), (8.4.6)
where p*H(%,t) is the pressure tensor defined by

>

PRt = tria(t)e MR . (8.4.7)

3 In this respect our approach differs from PICCIRELLI's work [166}. That is why we
have a normalization factor Z(t) in (8.3.2). In Z(t) is related to the space inte-
gral over the pressure [cf. (8.1.5) and (8.4.18)1.
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We now insert (8.2.11) into (8.4.7) to give

P(E ) - <D Kit)> oo
8(¥,t)

b o L i” o J ay'(i -9 - gy DT )

(8.4.8)

with

oAy = I tHB(ESEE - 1,080 - ) - (8.4.9)
,

This relation determines the pressure tensor as a gemerally nonlocal function of
T(¥,t) and y(X,t). However, the second term in (8.4.8) gives a contribution only
for distances |y| within the range ro of the interparticle potential o|y|). The
functions T(X,t) and u(¥,t) are substantially constant on this scale, and we can
replace g )(57' W' +¥) by the corresponding quantity g‘gz)”H:T,u) of an equili-
brium fluid characterized by the intensive variables T and y matched with the local
values T(%,t) and u(¥,t). We then find

P 1) = P EIE™ = B (TR ()™ (8.4.10)
where
Peg(Tsv) = kyTen> ~ %}A ar 3 13511 gég)(r;T,u) (8.0.11)

is a familiar expression for the equilibrium pressure. Equations (8.4.6,10) combine
to give

m"“(i,cpw = ROV E)en(Z,t)> + p(R,t)e™ L (8.4.12)
The right-hand side of (8.4.3) can be transformed in the same way to read

«(t),, © v“(?,z)[a(x,z)) 4 i'ﬂbﬁl]

(%) (8.4.13)

1 4 4 -
~pldy Ey]—ﬁ?—g%{-ui dr [ dy' V(¥ ,t)s( - T-r?)
B3+ Y

Assuming that v"(¥,t) is substantially constant within the range o of the inter-
particle potential and replacing

U S RV QIR RO RYE A0
we find by virtue of (8.4.11)

<ty = v ket + p 1] . (8.4.14)
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With (8.4.1,12,14) the equations of organized motion take the form

E) 15 3 v
<n> = - = § 2o <g¥>
b3 ,
"o

3 2

3 mev¥ens - L (8.4.15)
ax

2 cer = - v

3t <& g o (<e> + p)v¥ ,

where we have omitted the (X,t) dependence of all quantities. Under the assumption
that the local temperature and the local chemical potential can approximately be ex-
pressed as functijons of the local mean particle and intrinsic energy densities,*
the right-hand sides of (8.4.15) are local functions of the mean densities. Then
(8.4.15) is a closed set of reversible, local equations of motion for the conserved
densities. These are just Euler's equations of motjon for an jdeal adiabatic fluid.

Equations (8.4.15) can be cast into a form which makes it apparent that the
fluxes are caused by the conjugate thermodynamic forces A5 From (8.2.3) and
(8.3.10) we get

2z s
A A
1 o, m v v v
T=— , = - =4 s Vm - 8.4.16
X ® [P % ;f A ( )
This, in conmection with the well-known relations
3 + - N
(ﬁ) SseSE P o (8.4.17)
u T
31) -
(a“ r <n>
where s js the entropy density, gives
LR
g
51! -TmvV<n>
v
3
iyt T vp) (8.4.18)

Here p js considered to be a function of the X,.

The mean values ai(i_t) = <Ai(i,t)> of the macroscopic variables (8.2.3) form a
five-component field of mean densities. The reversible equations of motjon (8.4.15)
for this field can be written

4 Near the gas-liquid critical point the mean values <n> and <e> become nonlocal
functijonals of T and u, and gradient terms are of jmportance [4,49].
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E AL RNEY g G EIN Y (8.4.19)
where vij(i,.v) is an antisymmetric matrix
vij(i!,y) = ~Vj1,(y,?) (8.4.20)

which can be expressed in terms of derivatives of the pressure with respect to the

s(X -¥) (8.4.21)

Here the index i runs through 0,v and 4, while j runs through O,y and 4 with
v,u = 1,2,3. The equivalence of (8.4.19) and (8.4.15) follows from (8.2.3) and
(8.4.18,21) after some familiar thermodynamic manipulations.

1t is worth mentioning that except for a factor T, the components with i and
J*4 of the matrix (B,4.21) are just the local equilibrium averages of the Poisson
brackets between the macroscopic variables A, (%) and AJ.(?). However, the compo-
nents with i or j = 4 are not related to Poisson brackets with the energy density
AA(I). This is as it should be since the local equilibrium averages of the Poisson
brackets between the macroscopic variables and the energy density already deter-
mine the organized fluxes completely so that a representation of the organized
fluxes in terms of aZl Poisson brackets would be redundant.

The representation (8.4.19) of the reversible fluxes can be viewed as a modifi-
cation of (3.2.3) which makes allowance for the fact that the emergy density is
among the macroscopic variables. Further results obtain in Chap.3 are easily tran-
scribed for the present case. For instance, instead of (3.2.6) we now find that the
organized motion does not contribute to the time rate of change of the entropy. This
may also be shown directly using (8.1.5) and (8.4.19,20).

5 Viscous Fluids

The irreversibility of the fluid motion is due to the disorganized fluxes (8.1.11)
which are given in terms of the transport kernels (8.1.12). To evaluate the latter
we start by noting that they may be written

RY Rt Js) = tr(E(s)j\i’(?.t,s)j;(Y,s,s)) . (8.5.1)

where
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Fixtis) = 11 - P()IGES, T - P(OITE) (8.5.2)

In obtaining (8.5.1) from (8.1.12) we have inserted operators [1 - P(t)}, this
being permitted because of {2.3.9), and we have made use of

r{B(EXP(E)Y) = tris(t)YP(E)X) , (8.5.3)
which can easily be shown to hold for classical systems. Equation (8.5.1) is a
modification of the generalized fluctuatijon-dissipation theorem (3.3.14), and it
avoids the introduction of a global temperature, desirable trait considering the
fact that the energy density is among the macroscopic variables.

The quantities (8.5.2) will be referred to as subtracted fluxes, henceforth.
8ecause 3(X) - P(t)3(X), there is no subtracted particle flux. The subtracted
stress tensor and the subtracted energy flux read

(X, t,s) = [1 - P(s)IG(s,t) (1 - P(2)1™M() (8.5.4)
and

R, ts) = 1 - P(s)IG(s, 1)1 - P(ENV(R) . (8.5.5)
To get rid of 2 purely kinematical correlation between the momentum flux and the
energy flux, we put

Pts) = § eV sV (Es) + Pk ts) (8.5.6)

¥
which defines the subtracted heat flux §"(X,t,s). Then, using (8.4.1) and the form
(8.2.3) of the conjugate thermodynamic fields, the mean disorganized fluxes (8.1.11)

read

<9v(;,t)>di =0 , . (8.5.7)
t S yava AAw s
‘”uu(y't))di . A s [ oy [Z trip(s)s " (Xst,s)o’ 1z.s,s))_ai V(s
Aom kaT(V,s) ay
= \aVH (T oher
+ g Irlelsld C(LE.S)aTasS) B qggs) |, (8.5.8)
X kgT2(F.5) oy

t = av V.
<1v(z.g)>d1 . é ds [ dy LZ trio(s)q” (%, 1,56 " (¥,5,5)) —i;v"(?,s)

i kgT(¥ss) ay

trE(s)a° (% ts5)8 (745,80} 37,2
+ . 20202 e T(y,s)
! kgT2(3s) '

+ 5 vM(¥,s) - integrand of (8.5.8)] . (8.5.9)
u
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We shall not write down the formally exact equations of motion that follow from
these expressions. Instead. we turn directly to the approximate transport equations
discussed in Sect.3.5. Since for the present system the time rates of change of the
macroscopic variables are proportional to the wavenumber k in a Fourier space re-
presentation, an approximation along the Tines of Sect.3.5 amounts to neglecting
terms of the third order in k in the retarded parts of the exact transport laws. In
real space this means that the right-hand sides of (8.5.8,9), which are functionals
of the conjugate thermodynamic fields, have to be eavluated up to terms of the first
order in the spatial derivatives of the thermodynamic fields. Since all terms are
explicitly of the first order in these derivatives, the traces can be evaluated for
a homogeneous system characterized by constant thermodynamic fields matched with
their local values.

8y way of example we consider the first term on the right-hand side of (8.5.8).
Using the transformation (8.3.3) and (B.5.4), we find

Aw

trio(s)e™ (%,t.5)8" " (7,5,5)}

(8.5.10)
= tri(s)[s™1s) (1 -P(s)G(s, 1)(1 - P(2))e M 0NIS " (s) (1 -P(s))M Y

The projected part of the stress tensor reads

Py = {14 ] & FING) - 2,001 - L e @n . @san

7.ty
where we have specified the projection operator (2.3.6) for the set (8.2.3) of
macroscopic variables. The Tocal equilibrium average (8.4.2) of the stress tensor
has been evaluated previously. With the result (8.4.12) we obtain from (8.5.11)

P(t)e™™ = my¥viem> + pst + yU(g" - <g¥>) (8.5.12)

Y - <g%) -y - an) + 2B (n - <)

+ Vi 5>

vl le - - g gt - <)+ "‘z"VZ(ﬂ - <m)]s"“
Here phase functions are to be taken in the Schridinger representation, and we have
omitted the space and time arguments. Using (8.4.5) and (8.5.12) one finds that

2™ = 57U - ()10

S [n v 5 (e - <o) + 5 (n - <n>)]s““ . (8.5.13)

o"¥ is the intrinsic subtracted part of the stress temsor which is expressed com-
pletely in terms of quantities defined in the local rest frame.
Since itP(t) is of order A, that is. of order k in a Fourjer space representation,

we obtain from (8.5.10) by use of (2.4.2) and (8.5.13)
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tr(5(s)8™ (X, £,5)6*"(F 5,50

- tr{a(s)[exp(s'l(s)im(s)(t - s "G} + oh) (8.5.14)
Next we notice that

expis™HiLsu (B, ¥, - 2)

S AR ST 0(3—;) , (8.5.15)

where X is any phase function describing local properties at position X. Equation
(8.5.15) is proven easily with the definition of § and the Poisson bracket structure
of L. The additional terms in (8.5.15) are of order k and can be omitted. We then
obtain from (8.5.14)

i3 (s)3™ (X, .5)5 " (Fs.50)
= tr(p(s)a™ (X - (t - s)T,s)ad’(3,0)) . (8.5.16)
Here, the right-hand side is expressed in terms of quantities defined in the local
rest frame. As mentioned earlier, for the present approximation it is sufficient to
evaluate this expression for a homogeneous system characterized by a particle den-
sity <n> and a density of intrinsic energy <c> matched with their local values. We
then find after an obvious change of the integration variables

t
[ o 1 & UG i 2o
T(yss) " -
(8.5.17)
t
= A ds [ dy <ao™(X-3,)00"(B,0) Kt L 2VG-stht-y)
T(y-sv,t+s) oy
where the average <... |'i,t> is over the grand canonical distribution
scl%t) = 7R exp{-‘—u« - u(i,t)m} . (8.5.18)

kgT(%,t)

Here T(%,t) and u(¥,t) are determined by <e(X,t)> and <n(¥,t)>. Note that in (8.5.18
X and t are fixed parameters, and the distribution describes a homogeneous equiii-
brium fluid.

The retardation in time and the nonlocality in space of (8.5.17) can be disre-
garded if the equilibrium correlations of the 20¥¥ decay on a time and length scale
well separated from the characteristic time and length scale of the macroscopic
motion (in the local rest frame where possibly large convective parts of the time
rates of change of the conserved densities are absent).S We then obtain
{Footnote 5 see next page)
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AAT

[ds [ dy tri(s)6™ (R, 1,9)5" " (T, 5)) —v"(F,s)
(y.S) 3y
)‘“'”(i,c):%v"(:,c) . (8.5.19)
vhere
AT . s | dy <a0™(7,5)8" (5,0 [, t> . (8.5.20)

k, T(i t) 0

The tensor ='%+A7 fulfills quite a few symmetry relations that follow from the sym-
metry of the stress tensor, from the reciprocal relations, and from the isotropy of
the state (8.5.18) over which the integrand of (8.5.20) is averaged. These symmetrie
lead to the following form of ="H:*7

DT L RET L TER  (- B et (8.5.21)

where n and ; are the shear and bulk viscosities, respectively, and are scalar func-
tions of the Tocal values of <n> and <e>. Green-Kubo formulae for n and ¢ are easily
obtafned from (8.5.20) by appropriate contractions of indices.

8y the same method the other terms on the right-hand sides of (8.5.8,9) can be
evaluated approximately. The second term on the right-hand side of (8.5.8) is ap~
proximated by

Iﬂs [ d trig(s)6™ (Rt 5)8 Fsas)) ——z— 2 T(F,5)

T(Fhs) o
sy Lo 2o . (8.5.22)
T(E,t) oyt
where
At s —L T ds fay o™ (Fs)ag (G0 (8.5.23)
kgT(%,t) 0
and
s =5 (et - f o)
u
R S A (8.5.20)
men>
Symmetry arguments show that
Wik i g, (8.5.25)

5 We remark that such a separation of time and Tength scales does not really occur
even in the hydrodynamic Iimit. We are disregarding here some small effects as-
sociated with the long-time tail phenomena [78]. To include these effects one
has to evaluate the renormalized transport kernels more precisely. They can also
be obtained, however, from the Fokker-Planck description of fluids in a more
strmghtfomard manner [169,171].
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which means that there is no correlation between the random stress temsor and the

random heat flux in the approximation under consjderation.
The second term on the right-hand side of (8.5.9) is approximated as follows:

t
ds [ dy tr(p(s)§"(%,t,8)84 (F05.5)) —i— ~2-T(F,5)

é [ dy tris(s)§q”(X,t,5)9" (¥,5,8) R W s
sV =iy (8.5.26)

T(X,t) ax*

where
1 5 5
K (R, ) = —¢£ ds [ dy <aq”(¥,5)aq"(3,0) %, > . (8.5.27)
kgT(X, t)
Symmetry arguments show that
(8.5.28)

K = aTe™
where » s the heat conductivity which s a scalar function of the Tocal values of
<n> and <e>, (8.5.27) immedjately gives a Green-Kubo formyla for x.

The remaining terms in {8.5.8,9) do not Tead to new coefficients. Finally,
{8.5.8,9) reduce in the present approximation to

=
oM w ] AT Y
LW w
A A
2 ovp ot 3y ) e ot AV
B Ml B B MLl N A (8.5.29)
I A ax‘ A QX)‘
and
= [ oy 2L (8.5.30)
di ES . : -

On adding the mean disorganized fluxes (8.5.29,30) to the mean organjzed fluxes on
the right-hand sides of (8.4.15), we obtain the transport Taws for the mean densities
of the conserved quantities:

> (8.5.31)

Vb 3 5 2 awt
s - 2opp B LS T2
ax” ax” T

41 Ln(svv L
W m v
» X’ ax

a\v x 3\1 T
ax ax

L] =] (cer 4 pU 4 ]
v X v

5 2 oy Yo
+1 ‘;[(c -gn)—l—v‘%n(“—uw—";v“
Van X ax? ! ax
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These are the usyal nonlinear equations of motjon for isotrepic fluids which are
well-known from phenomenoclogical theory [87].

We want to cast the transport equations into the standard form (3.2.16). For the
reversible motion this has been done in (8.4.19). The dissipative motion can be ex~
pressed in terms of the conjugate thermodynamic fields X and a symmetric matrix

-
0,503 = 05;(9.%) (8.5.32)
of the form
0 (R9) = - T e aihing . (8.5.33)
Anax
where
43
! . \
oo 10
3A,dn k VAT '. A
AT g : TV HE SRl . (8.5.34)
[, L.
'
01 TISSNENE 1 T e T
Lo [
Again the index i rums through 0,v, and 4, while j runs through O,u, and 4 with
v,u = 1,2,3. Then, in terms of the transport matrix 3
T3y (F o
LisRT) = vy R9) + 05(85) (8.5.35)

the transport equations {B8.5.31) take the form
LY = fw] Lij(i’,}')xj(},t) . (8.5.36)
4 .

These are transport equations for the mean motion.®

6 We remark that the transport matrix is local in time and space as a consequence
of the approximation made. Nonlocal corrections can be obtained by Tooking upon
(8.5.36) as the deterministic e?uations of motion associated with a Fokker-Planck
equation of the form (4.7.16). Then the coefficients to be found in (8.5.36) have
to be looked upon as bare coefficients and the renormalized coefficients are ob-
tained by carrying out a renormalization along the lines of Sects.4.5 and 4.6.
T#is avoids a complicatad molecular calculation beyond the approximatjons made in
this section,
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8.6 Fluctuations in Nonequilibrium Fluids

On the Tevel of statistical thermodynamics the fluctuations obey linear Langevin
equations of the form (3.6.1), (8.1.14), with random forces, the strength of which
is determined by the symmetric part of the transport matrix. For fluids the Langevin
equations resulting from (8.5.31) take the form

3 1 3
Eonc o l—5s9" (8.6.1)
v X
2 5 2 TyVsgh + v¥ sg° - m¥v¥an | -
3t ® E u[vsg +v¥ 69 mvvsn]
2 2 3 i
N T R n)*&v]
ax¥ Ly ax¥ I IV
v
+ZL[(3 )5n+n(a sv"+i\.5v“)]
woaxt e ax ax! ax
(8.6.2)
9 v av 2 v 3 u
+ ] —[v (a;- sn) + (& =~ 7 )y’ —— &V
Vo x” RET
+(z '?ZI")—SVV} (8.6.3)
a*
47 2 (i + 3—;)(\/ s + nsvH) + V! (_ R sv“)]
Vo ax” Blaxt oy ax”
-E—[ZE“‘“H.] .
v il
Here we have introduced the abbreviations
Vo1 vy
v = W(59 mvVén)
of 3 m. 2 af
o = (m))(n)(se ~eed e B vden) + (9(—"))(9871 , (8.6.4)

where f s p, n, €, x, or T.
The properties of the random fluxes follow from the (3.6.11,16) when the factor
T is absorbed into the definition of the transport matrix as in (3.2.17). This modi-
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fication comes from the fact that we use the entropy as thermodynamic potential.
One finds
< (X, t)> = <e¥(X,t)> = 0 (8.6.5)
and
PUE )6 (Fs)> = <6V (R 16N (Fu5)> = 0 (8.6.6)
for t > s. Furthermore, since the random energy flux has been decomposed into a

purely convective contribution from the random stress tensor £"™ and the random
heat flux £°, we have

VR, )60 (K,5)> = 2gT(R YR8 - Ps(t - 5) (8.6.7)
<€ FE0EFTi5) = kTP ONE D - Ps(t - 5) (8.6.8)
<HME T =0 . (8.6.9)

These correlations of the random fluxes were first derived by LANDAU and LIFSHITZ
[87] in a phenomernological way.

In order to illustrate the theory we consider a particular nonequilibrium steady
state: two heat baths at different temperatures maintain a constant temperature
gradient B in a fluid layer of thickness L. This nonequilibrium state is a sta-
tionary solution of the transport equation (8.5.31) characterized by

viE =0 ,
PR =p,
T(R) =Ty + ] &xY . (8.6.10)
v
The origin of the coordinate system 1ies at the center of the fluid system. To keep
things as simple as possible we disregard the temperature and pressure dependence
of x, , and n.

The Langevin equations (8.6.1~3) for the fluctuations about the nonequilibrium
steady state (8.6.10) take the form

1o 0 v
PR O B EN (8.6.11
T n E ax’ )

PR A ] p
89 - o (a<s> e + ns &“)

J ST
' Z (+im—— o 4 (8.6.12)
1 8 L
+In 6" - T =g,
Wooax ax“ > b oax¥
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3 <e> +
se = -] B2 AR 44
T L va m<n>
ol 2 (” Ge&-—TSn)—ELEV (8.6.13)
5 axvax® \¥E> <n> v N haad

Notice that the strength of the random fluxes £ and £, which is determined by
(8.6.7-9), is nonuniform because of the nonuniform temperature field.

Fluctuations about the nonequilibrium state under consideration have been
studied experimentally by means of Brillouin scattering of light [175] (Fig.8.1).
Since the coupling of the therma] mode to the sound modes has only a small in-
fluence upon the structure factor for Brillouin scattering [176], we shall neglect
this coupling by making the assumption that the pressure is a function of the den-
sity <m> only, i.e., dp/o<e> = 0. We also introduce a Fourier space representation
of the fluctuations

0@ =y [k e F ) (8.6.14)

where ¥V is the volume. The requirement that the fluctuating variables not be in-
fluenced by the boundary of the system restricts the k vector to values with
ki» 1707

Drtector

tasae } - -

°
Fig.8.1. Light scattering from a
fluid with a temperature gradient.
For small scattering angles e the
two detectars show unequal mten-

ol
Batector

sities
We then obtain from (8.6.11,12)
nk,t) = - & klgate)
2 Iklgu(Et) = - icBlm(R,t) - vkBlklgu(k, ) - ig(k,t) (8.6.15)

where g.(K,t) = k|1 T k¥g"(K,t) is the longitudinal momentun,

7 Clearly the Langevin equations (B.6.1-3) can only be used to describe fluctuations
in the interior of the system while they have to be modified nzar the boundaries.
In nonequilibrium systems, boundary effects can often not be eliminated by means
of a formal thermodynamic 1imit. In the presence of a given temperature gradient
we can not let the size of the system tend to infinity since this would lead to
unphysical temperature differences.




145

w \V2
¢= (_Lmkm) (8.6.16)
is the sound velocity, and
T+ ; n
R (8.6.17)

is the longitudinal diffusion constant. The random force £(K,t) is defined by

gk,t) = ] KRk (8.6.18)
Vap
and it follows from (8.5.21) and (8.6.7,10) that
<g(k,t)e(T,s)>
= 2glenke? + (¢ - 2 ..)13121( il I )m S (8.6.19)

The determination of the particle density autocorrelation function from (8.6.15,
19) is standard, and one finds that

‘e
ConEsT o) = 7 [ w etk (.00 (8.6.20)

is given by
.
: (ke § n)k2 2

ConlksTow) =~z 7 77

— (8.6.21)
1% (2P ivaok?) (u2-cB P v ?)

x (To - za" )5(3?+T)
The particle density autocorrelation function is relgted to the structure factor
S(k,u) for light scattering by
1 i T ] g
S(kiw) = ;zj dadr sk - Togck + T (T1e) (8.6.22)
where 8(K) = 8(-K) 1s a weighting function which depends on the bandwidth of the

Tight source focused on a spot around ¥ = 0, and where 8~ { dk B(K)B(=K). Using
(8.6.21), we find

S(ky) = a%j a1 sk - Hae) (8.6.23)
with
k<> 4 2vaa’] 8K
> 8 K
[(%w) = 50 fq - . 8.6.24
. s (0~ rr T
(k) = = (u-ck)+».uk“<° (u-ck)+v§mk“> ¢ )

Since the 1ight source should only illuminate a small portion of the fluid in the
interior, the bandwidth ak has to be large compared to L™ but it may still be
small compared to |k|. In this case the average over B(I - 'f)2 can be neglected in
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{8.6.23) and we have [176-178]
S(Kae) = 1(Kow) . (8.6.25)
The structure factor (8.6.25) has two peaks at w = 2clk|. At equilibrium, where
3 vanishes, the peaks have equal intensity,® while the temperature gradient leads
to an asymmetry of the nonequilibrium spectrum. From (8.6.24) we obtain for the
relative height difference ¢ of the two peaks

2 v K
es - (g (8.6.26)
Touk? ! W

which has a pronounced 1/k2 dependence [179].% This nonequilibrium phenomenon can
be traced back to the fact that the symmetrical part of the transport matrix of
fluids is not constant but temperature dependent [138]. Since 1/k° in Fourier
space means 1/r in real space, there are long-range density correlations in the
nonequilibrium fluid, This has first been predicted by RONIS et al. [179] and was
further studied by various authors [138,176-181]. The asymmetry in the spectrum
has experimentally been confirmed by BEYSENS et al. [175],

8 We have treated the fluid by classical statistical mechanics and miss a small asym-
metry of the equilibrium spectrum which is a quantum effect. Quantum effects are
very small, hopever, for fu<« kgT.

9 The wavenumber |k| is related to the scattering ang1e 8 by |k| = 2]ki|sin{8/2) wher
Jki| is the wavenumber of the incident Tight beam.




9. Spin Relaxation

There are two important pelaxation theories for spin systems. The Bloch-Wangsness-
Redfield theory {145,182,183] constructs a master equation for the reduced spin
probability density, and the Kubo-Tomita theory [184] focuses on the linear re-
sponse of the system. We first reformulate the master equation approach by apply-
ing the results obtained in Chap.5 to a coupled spin-reservoir system. The scope
of the general theory in Chap.5 is extended, however, because we eliminate not only
the reservoir variables but also the molecular spins, keeping only the bulk spin
variables. While this modification, aimed jmmediately at a genuine macroscopic
description, is not required in order to develop the master equation approach to
magnetic relaxation problems, we also intend to show how the previous approach can
be extended in a straightforward manner to situations where the macroscopic vari-
ables do not form a complete set of variables of a subsystem. The necessary changes
are discussed in Sect.9.1.

In Sect.9.2 we derive the generalized master equation for the coarse-grained spin
probability density and evaluate it further for a simple model where the spin-re-
servoir coupling is bilinear. For the treatment of more complicated coupling Hamil-
tonians we must refer to the bocks by ABRAGAM {185] and SLICHTER [186] and recent
review articles {187-190]. Proceeding from the master equation, we derive the Bloch
equations {191] for the mean relaxation in Sect, 9.3. 8ecause of the particular
simple model studied, these renormalized transport laws do not contain memory ef~
fects which will occur, however, if nonlinear spin interactions are taken into ac-
count. Finally, in Sect.9.4, we determine the dynamic susceptibility describing the
linear response to an applied alternating magnetic field.

9.1 Macroscopic Variables and Relevant Probability Density

We consider a macroscopic system which may be composed of various constituents but
does contain N identical molecules carrying a spin 1/2 angular momentum. Upon de-
noting the spin angular momentum of the 1M molecule by )\?1, the components s;’

satisfy
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s A A
[EENER ; M08 (9.1.1)
and
2.3
-7 . (9.1.2)

The Hilbert space H of the system may be written as a temsor product of a spin
Hilbert space "s and a Hilbert space "L associated with the other degrees of freedom

HetgoH . (9.1.3)

For instance, if the spin carrying molecules are in 2 crystal, H is the lattice
Hilbert space,
The spin Hilbert space Hg is a tensor product of single spin Hilbert spaces:

Ho=TeH (9.1.4)
1
where H) 15 a two-dimensional Hilbert space spanned by eigenstates of 32 and sZ:
=2 3
Hlop =g lop » silop = olop (9.1.5)

with 9 =11/2, Later, the coordinates will be chosen such that the z axis is paralle
to an applied magnetic field ﬁn We also introduce the spin flip operators

sj=sfeasy L (9.1.6)

The macroscopic variables of the system are the components of the bulk spin

R- ; s (9.1.7)
and are related to the bulk magretization M by

M=k, (9.1.8)
where y is the gyromagnetic ratio. The components R¥ of the bulk spin satisfy

RY,RY] = 4 g S (9.1.9)
It is convenient to introduce the bulk spin raising and lowering operators

Rt = ; s (9.1.10)
and the square of the bulk spin

R = R'R™ + RE(R? - 1) = RRY + RE(RE + 1) . (9.1.11)
These operators satisfy the commutation relations

IRY,RT] = %, (9.1.12)

[RE,R%] = aR® (9.1.13)

(R, - (R% =0 . (9.1.12)
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The spin operators ‘s’f and sf of the N molecular spins commute mutually and their
simultaneous eigenstates form a complete basis in the spin Hilbert space Hg. On the
other hand, there is a basis |r,m,a> of simultaneous eigenstates of the bulk spin
operators EZ and R%:

Ryr,mes = r(r + 1)|rmas s (9.1.15)

Rzl\‘,m,v = mlr,mae>
where r = N/2, N/2 = 1,..., 1/20r 0, m= =r, =r+1,..., +r, and where the degener-
acy index a runs through d(r) values with

dr) -t (9.1.16)

e+ i -nl

The a can be chosen in such a way that form < r

Irmtlyer = ———t R*|rme> (9.1.17)

/e + 1) - m(m + 1)

with the same value of a. The normalization factor follows from (9.1.11).

The microscopic spin degrees of freedom can be eliminated by means of the coarse-
graining operator

1
ox=g R ) <r,m,a'|X|r,m',u'>)<r,m',u[ (9.1.18)
rym.m',a CION-TIN

which has the property

Z.c . (9.1.19)

The usefulness of the coarse-graining aperator lies in the fact that the macroscopic
state of the system is described by the coarse-grained reduced probability density

vc(t) =C CTL(D(Q)) B (9.1.20)
where tr) 1s the trace over a complete set of orthonormal functions in #, . For a
variable F which is not necessarily a linear function of the buik spin operators, we
have

triFp(t)} = trs{FpC(t)) s (9.1.21)
where trg is the trace over a complete basis in Hge

To define a relevant probability density associated with ac(t), we cannot follow
the Tine of reasoning of Chap.5 Jiterally, since py(t) is mot just the reduced prob-
ability density as(t) = trL(p(t)] for all spin degrees of freedom; rather, the
microscopic spin degrees of freedom have been eliminated, too. However, the theory
of Chap.5 is easily generajized to allow for the present more compjex situation. We
introduce a transformation

ZcXe = Ctr (ZCXc) (9.1.22)
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where I is the transformation of operators acting in H introduced previously in
(S.1.13). The transformation Z acts within the subspace of spin operatars )(c of

the coarse-grained form (9.1.18).
Now the relevant probability density is taken to be

sty =plage)
where
pTx =zz e tr 00

is a projection operator satisfying

ctrLlPTX) = ctr o0
so that
Ctr (p(t)} - C trfo(t)) = oc(t)

(9.1.23)

(9.1.24)

(9.1.25)

(9.1.26)

(9.1.27)

The relevant probability density is defined in such a way that the equilibrium prob-

ability density and those states obtained by applying weak uniform magnetic fields

are of the relevant form.

9.2 Master Equaticn

A master equation for the coarse-grained reduced probability density pc(t) is ob-
tained by following our procedure in Sect.5.2 with thevpmjection operator PT re-

placed by (9.1.24). Instead of (5.2.6), we now cbtain
t

B8] = gsglt) + [ds &t = Shogls) +
where
) -1
QX = -iCtr (LZ7 %)
and ia-pTiLE T 1
aex, =-ctr ke 1P Tzl

The master equation (9.2.1) has the stationary solution

peg =Ctrilegd 5

where Py is the canonical probability density (5.1.6) of the system.

(9.2.1

(9.2.2)

(9.2.3)

(9.2.4)

In analogy to (5.2.12) we define a thermodynamic force operator uc(t) conjugate

10 og(t) bY

welt) = %zc-l“cm -eeg) -
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Then the master equation (9.2.1) may be transformed to read

t

Belt) = - Voug(t) - édsnc(t - shugls) (9.2.6)
where the transport operators are defined by

VeXe = i8Ctr (LEX) (9.2.7)
and N

Re(t)% = 8Ctr (b e” (1P _ Ty (9.2.8)

The form (9.2.6) of the evolution Taw is particularly useful if we want to study
the linear response of the system to an applied magretic field F\)l(t)A Such a per-
turbation is described by an additional term in the Hamiltonian of the form

H() = e (8) = - BoRy(e) (9.2.9)
As shown in Sect.6.5 the perturbation H'(t) can just be added to ug(t) in (9.2.6).

The general properties of the master equation discussed in Chap.5 and Sect.6.5
apply to the present case accordingly. It must be noted, however, that the time-
reversal transformation reverses the direction of an external magnetic field. For
explicit evaluations we now provide some useful relations.

8y virtue of (5.3.1,2) and (9.2.4) the transport cperator (9.2.7) may be trans-
formed to read

i
VeXe = g leggXe! - (9.2.10)
On defining a coarse-grained Hamiltonian Hc by
-6t .
beg e C o, (9.2.11)

(9.2.10) takes the form

Vgke = 8L Ik (9.2.12)
where

Lok = Mexd (9.2.13)
and

X+ %Z da e ™HC X eofic, (9.2.14)

The stochastic operator @ = (-1/8)VZ;" now becortes
. -1
= -i Tzl . (9.2.15)

The transport operator (9.2.8) can be written in a form corresponding to (5.4.7).
From (9.1.24) and (9.2.7) we find
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T -
PLEX, = Bz VX . (9.2.16)
which gives by virtue of (9.2.12,15)
T .
PTLEX, = -izal . (9.2.17)
Equation (9.2.8) can then be shown to take the form
EREY

Re(thtg = scen{(-iLay) e L 5 -ng)xc} R (8.2.18)

which s a suitable starting point for explicit calculations.
For the further evaluation we split the Hamiltonian H into

Ho=lg +H + gy . (9.2.19)
The pure spin Hamiltenian Hg is taken to be the Zeemen interaction

Hg = HaR® (9.2.20)
where

g = vhy (9.2.21)

is the Larmor frequency in a magnetic field Kn = (D.D.-hn) of strength hn applied
along the -z axis. HL governs the molecular motions independent of the spins, and
gﬂSL is the interaction with the spins. For most interactions of interest we have
=BH|,
tr fe Ho )
L SL
H > = =0 . (9.2.22)
— e
L e

We now expand in terms of the coupling constant g: Most transformations are
parallel to those carried out in Sect.5.4. Because of (9.2.22), we obtain from
(9.2.4,11)

2,

He = Hg +0(g%) (9.2.23)

which gfves in connection with {9.1.22) and (9.2.14)
2.

7, =3+ 0 . (9.2.29)

Thus, using (9.2.15) we find
5 2 " 2

g = - il + 0(g8) = - iLg + 0(g) . (9.2.25)
Further, (9.2.18) gives

Re()X, = gsotn (Lg e TS TLUIERL % 4 o) (3.2.26)
where I is T for vanishing g.

One simple example for Hg is the interaction

nsl_=g}?1-§1 . (9.2.27)
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where the operators T, depend on molecular degrees of freedom independent of the
spins. We assume that the variables r behave quasi classically with mean values

<r}(t) =0 (9.2.28)
and correlations
<r;’(c)r§',(s)>L = 638V (It - s]) . (9.2.29)

The interaction Hamiltonian (9.2.27) may be written

Hgy = ; (r1 s 1'1 1 rls]) (9.2.30)
where
REAGCT R (9.2.31)

Then, the correlations (9.2.29) become

<r§(t)r?.(s)> = <r:(t)r;.(s)> = arf(tiry{s)> =0 (9.2.32)

<l'?(t)r11.(s)> = 2<r¥(t)r1-.(s)> = &o (It - sy
By utilizing (9.2.30,32) and
Lst =0 0 Lgs) = mugs) s (9.2.33)
we obtain from (9.2.26)
2
Re(t) eMtSt x - Sn; afne] { s} zgtstircn
(9.2.38)
+ § O, mgtsy I+ 50N, Ssf ) 4 0l

where Ig coincides with I, for the present approximation.

In a coordinate frame rotating about the z axis with the Larmor frequency wpr 3
change of the coarse-grained probability density arises anly through the interaction
] HSL‘ Hence, for weak interactions the characteristic time for a change of the
macroscopic state will be large compared with the decay time of oL(t). We then can
disregard the memory effect in the master equation (9.2.1). Using @c(t) =
= -(llﬂ)lic(t)za1 and (9,2.24,25,34), we may proceed as in Sect.5.4. We then arrive
at an approximate master equatian of the form

pelt) = = ibgec(t) +Aceg(t) (9.2.35)
where

o z 2 -

A= €] RERENEN )

(9.2.36)
SO "
B I RO ve NI RS FURE MO IR Ao )
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The real parameters ‘nn,x'. and ¥" are defined by
]
Hoy = ds ¢, (s)
0 ¥ o L

and
2 e N
MR =izfds e‘“oswl_(s) .
0

9.3 _The Bloch Equations

(9.2.37)

(9.2.38)

The master equation (9.2.35) can be used to derive relaxation equations for the mean

values <R(t)> of the macroscopic variables. Since we have taken particularly simple

examples for the spin Hamiltonian HS and the interaction g H,

SL*

the master equation

(9.2.35) is uncomplicated enough to allow for a determination of the relaxation
laws without utilizing the renommalization techniques presented in Sect.5.6. With

LR =0, LR =i
and
Y +
trototg} = trg(RG)
we obtain from {9.2.35,36)

F A = - ] gl (0 0 R gt B8]
£ g 00 - R Bt s et}
and
Fe R0 =t (0> - ] trg{oplRs71 BgtsT, 53 lnc(0)]
. - -1
+g (= ) RYSTTBgls]) Bg pc(t)]} .
The equation for <R™(t)> is the complex conjugate of {9.3.4).
The spin operators obey the relations
tsh,51.1 = #8y087, (s]sqad - 2608

LR ST zz 1 + 2 2.4
51517 5% T, ss Tgs Ss F ey <0,
which may be used to show that

1.2 2, 4
Igs]y Bg )T =25y

o »
=1, & z T 0 0 +
SRR R | °°”‘('zr§r) 5

(9.3.1)

(9.3.2)

(9.3.3)

(9.3.4)

(9.3.5)

(9.3.6)




155

-1, + -1 e -1 - +
Ig (51.2‘.5 571 = ~Zglsy Ig 51

Hagy
=2 r sh( th
8y utilizing (9.1.7), (9.3.5), and ):s = Ig, the right-hand sides of (9.3.3,4) can

be transformed into expressions which are readily evaluated by virtue of (9.3.6).
We then arrive at

o <R = - TII (<RE(t)> - <RP>) (9.3.7)
and
2 <RE(t)> = #ifuy + Au)eR(t)> - ledz*(t» R (9.3.8)
where
P
3
EE Zr‘r) (9.3.9)
is the equilibrium value of R,
1,0 kel
oo H’u;s"(i_a‘l’) (9.3.10)
and
H
71; gt — cath@ﬂ—) (9.3.11)
2T kgT

are relaxation times, and

W Jop 0
bo o= Wcoth(ﬂi.r) (9.3.12)
1s a frequency shift. Equations (9.3.7,8) are commonly referred to as the 8loch
equations [1911,

In most relaxation problems, it is possible to make the high-temperature ap~
proximation, which is valid when Hug ksT. To proceed further we shall also as-
sume a simple exponential correlation function for Lhe]‘l(t) with correlation

time v 3

2 -t/
ST,L(t) =he . (9.3.13)
K
We then obtain from (9.2,37,38)
Ar, Augel
0= A ¥ — W=y, (9.3.14)
Leages Leufel

and thus from (9.3.10-12) in the high-temperature approximation




(9.3.15)

(9.3.26)

Of course, the master equation (9.2.35) and the 8loch equations derived from it
are only valid if T, Tl' TZ' We remark that in the 1imit of very rapid molecular
motion ('c‘ l/un) the relaxation times Ty and Tz are equal, as is often observed
in Tow viscosity fluids,

9.4 Oynamic Susceptibility

In Sect.5.6 we have shown that the equations {5.6.22) for the mean relaxation lead
to the evolution laws (5.6.26) for the canonical correlations of the macroscopic
varfables. Hence, the Bloch equations (9.3.7,8) can be used to determine the time
evolution of canonical correlations

CV(t) = (SRV(t).6R) (9.8.1)
of the bulk spin. By disregarding the frequency shift, we find

C(t) = ou JHm R (9.4.2)

Xty = Yty - o, e-ltl/TZ cos(ugt) »

X(t) = -V(t) = o, T2 sin(ugt)

In the high-temperature approximation the equilibrium variances o, and o, are
given by
weo =} (9.4.3)
Let us now assume that an applied alternating field ﬁl(t) is present, giving an
extra term (9.2.9) in the Hamiltonian. We study the linear respopse of the bulk

magnetization to this perturbation. By utilizing (9.1.8), (9.2.9), and the fiuc-
tuation-dissipation theorem (6.1.20), we find

t
a<H(t)> = g ds [yt - s)hl(s) (9.4.4)
u

where the response functions are given by
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22 ,
KD = e(t) TE- ey (9.4.5)
kT

In particular, the response to a field
Bty = (h fot 9.4.6,
1(t) = (h,0,0) (9.4.6)
applied along the x axis 1s found to be
<M (t)> = 4 (1) + 0¥ (t)> = x wdhe™t (8.4.7)

where we have neglected the transient term. The complex susceptibility x,(u) is
given by

Xaf0) = X0 (9.4.8)
where
27\2
xe = =0, (9.4.9)

kgT
s the static transverse susceptibility.
It should be noted that the 1 in the numerator of (9.4.8) is generally omitted
{185,186] since it can be neglected for w w~ g if uDTZ) 1. From (9.4.8) we ob-
tain, however, the correct static susceptibility in the Timit » » 0.
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