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Preface

The main purpose of statistical physics is to clarify the properties of matter in aggre-
gate, in terms of the physical laws governing atomic motion. The present book is a
textbook for advanced undergraduates. It assumes background knowledge of classical
and quantum physics on an introductory undergraduate level

thermodynamics, and bring in entropy as that mystrcal ob]ect doogung)out of the
second law, or should one first discuss the randomness of atomic collisions? I choose
thermodynamics, because it describes everyday experience. (And it is profound, as
one realizes after having absorbed the atomic view.)

This book may be divided into three parts, the classical view, the quantum view,
and advanced applications.

The classical portion occupies first thirteen chapters, more than half the book. It
covers the classical ensembles of statistical mechanics andgtﬁl—a\sﬁ processes. The
latter subject includes Brownian motion, probability theory, and‘fhé Fokker—Planck
and Langevin equations, with emphasis on physical understanding. To illustrate the
use of statistical methods beyond the theory of matter, there are brief discussions of
entropy in information theory, Brownian motion in the stock market, and the Monte
Carlo method in computer simulations.

The quantum part comprises five chapters. On quantum ensembles, the discussion
emphasizes what makes quantum mechanics different from classical mechanics—the
quantum phase. Applications include Fermi statistics and semiconductors, and Bose
statistics and Bose—Einstein condensation.

The final three chapters deal with advanced topics. A long chapter introduces what
might be viewed as a major phenomenology after thermodynamics—the Ginsburg—
Landau theory of the order parameter. The last two chapters are devoted to the special
kind of quantum order as rnanrfested in superfluidity and superconductivity.

The present edition is expanded from an earlier edition, which was based on a
one-semester course given at MIT. I am grateful for the opportunity to interact with
students who took the course, known in MIT (@};gcp as 8.08, and people who helped
me teach the course: Alexander Lomakin, Pat Lee and Lisa Randall.

Kerson Huang
2009
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Chapter 1

A Macroscopic View of Matter

1.1 Viewing the World at Different Scales

The world puts on different faces for observers using different scales in the mea-
surement of space and time. The everyday, macroscopic world, as perceived on the
scale of meters and seconds, looks very different from that of the atomic, microscopic
world, which is seen on scales smaller by some ten orders of magnitude. Different
still is the submicroscopic/@_m?‘of quarks, which is revealed only when the scale
shrinks further by another ten orders of magnitude. With an expanding scale in the
opposite direction, one enters the regime of astronomy, and ultimately cosmology.
These different pictures arise from different ways of organizing data, while the basic
laws of physics remain the same.

The physical laws at the smallest accessible length scale are the most “funda-
mental,” but they are of little use on a larger scale, where we must deal with dif-
ferent physical variables. A complete knowledge of quarks tells us nothing about
the structure of nuclei, unless we can define nuclear variables in terms of quarks,
and obtain their equations of motion from those for quarks. Needless to say, we are
unable to do this in detail, although we can see how this could be done in princi-
ple. Therefore, each regime of scales has. to_be_described phenomenologically:—in-
terms of variables and laws observable in. that regime. For example, an atom is de-
scribed in terms of electrons and nuclei without reference to quarks. The subnuclear
world enters the equations only implicitly, through such parameters as the mass ra-
tio of electron to proton, which we take from experiments in the atomic regime.
Similarly, in the macroscopic domain, where atoms are too small to be visible, we
describe matter in terms of phenomenological variables such as pressure and tem-
perature. The atomic structure of matter enters the picture implicitly, in terms of
properties such as density and heat capacity, which can be measured by macroscopic
instruments.

This book is concerned mainly with statistical methods, which provide a bridge
between the microscopic and the macroscopic world. We begin our study with ther-
modynamics, because it is a highly successful phenomenological theory, which
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identifies the correct macroscopic variables to use, and serves as a g_uideposgfor
statistical mechanics. )

1.2 Thermodynamics

From experience, we know that a macroscopic body generally settles down, or “re-
laxes” to a stationary state after a short time. We call this a state of thermal equilibrium. —

2L LAIeL D) Le

When the external condition is changed, the existing equilibrium state will change,
and, after a relatively short relaxation time, settles down to another equilibrium state.
Thus, a macroscopic body spends most of the time in some state of equilibrium,

unﬂg_t_ug@ by almost sudden transitions. In our study of macroscopic phenomena,
we divide the subject roughly under the following headings:

_sitions.among them.

rium states and tran-_

™

---- S

* Kinetic theory aims at a microscopic description of the-transition.process be=
“tween.equilibrium states.

As arule, properties of a macroscopic system can be classified as either extensive
or intensive:

Generally, there are only these two categories, because we can neglect surface effects:
A macroscopic body is typically of size L ~ 1 m, while the range of atomic forces is
of order ry ~ 1079 m. The macroscopic nature is expressed by the ratio L/ro ~ 10%.
The surface to volume ratio, rendered dimensionless in terms of the range of atomic
forces, is of order ro/L ~ 1071°. The extensive property expresses the “saturation
property” of atomic forces, that is, an atom can “feel” only as far as the range of the
force. The intensive property means that atoms in the interior of the body do not feel
the presence of the surface.
Exceptions arise when one of the following conditions prevail:

* The system is small.

* There is a nonuniform external potential.

* There are long-range interparticle forces, such as the Coulomb repulsion be-
tween charges, and the gravitational attraction between mass elements.

* The geometry is such that the surface is important.
These exceptions occur in important physical systems. For example, the volume of a

star is a nonlinear function of its mass, due to the long-ranged gravitational interaction.
We illustrate the different cases in Figure 1.1.
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Figure 1.1 A body has extensive properties if surface effects can be neglected, so
that the energy is proportional to the number of particles. In these pictures, the surface
layer is indicated by a heavy line. '

1.3 The Thermodynamic Limit

We consider a material body consisting of N atoms in volume V, in the absence of a
nonuniform external potential, to be the idealized limit

N — oo

V —> o0

N
v = fixed number (1.1)

This is called the thermodynamic limit, in which the system becomes translationally
invariant.

The thermodynamic state is specified by a number of thermodynamic variables,
which are assumed to be either extensive (proportional to N), or intensive (indepen-
dent of N). We consider a generic system described by the three variables P, V, T,
denoting, pressure, volume, and temperature respectively:

« The pressure P, an intensive quantity, is the force per unit area that the body
exerts on a wall, which can be that of the container of the system, or it may be
one side of an imaginary surface inside the body. Under equilibrium conditions
in the absence of external potentials, the pressure must be uniform throughout
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the body. It is convenient to measure pressure in terms of the atmospheric
pressure at sea level:

1 atm = 1.013 x 10° dyne cm ™2 = 1.103 x 10° N m~2 (1.2)

* The volume V measures the spatial extent of the body, and is an extensive
quantity. A solid body maintains its own characteristic density N/V. A gas,
however, fills the entire volume of its container.

* The temperature 7', an intensive quantity, is measured by some thermometer.
It is an indicator of thermal equilibrium. Two bodies in contact with each
other in equilibrium must have the same temperature. Since the two bodies in
question can be different parts of the same body, the temperature of a body in
equilibrium must be uniform. The temperature also indicates the energy content
of a body, but the notion of energy has yet to be defined, through the first law
of thermodynamics.

In the thermodynamic limit we must use only intensive quantities, mathematically
speaking. Instead of V we should use the specific volume v = V/N, or the density
n = N/V.However, it is convenient to regard V as a large but finite number, for this
corresponds to the everyday experience of seeing the volume of a macroscopic body
expand or contract, while the number of atoms is fixed.

There are systems requiring other variables in addition to, or in place of, P, V, T.
Common examples are the magnetic field and magnetization for a magnetic substance,
the strain and stress in elastic solids, or the surface area and the surface tension.

1.4 Thermodynamic Transformations

When a body is in thermal equilibrium, the thermodynamic variables are not inde-
pendent of one another, but are constrained by an equation of state of the form

fP, vV, T)y=0 (1.3)

where the function f is characteristic of the substance. This leaves two independent
variables out of the original three. Geometrically we can represent the equation of
state by a surface in the state space spanned by P, V, T, as shown in Figure 1.2. All
equilibrium states must lie on this surface. We regard f as a continuous differentiable
function, except possibly at special points.

A change in the external condition will change the equilibrium state of a system.
For example, application of external pressure will cause the volume of a body to de-
crease. Such a change is called a thermodynamic transformation. The initial and final
states are equilibrium states. The system can be considered to remain in equilibrium,
if the transformation proceeds sufficiently slowly. In such a case, we say that the trans-
formation is quasi-static. This usually means that the transformation is reversible, in
that the system will retrace the transformation in reverse, when the external change
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Equation of
state surface

Irreversible
path

Reversible
path

T

Figure 1.2 The state space in thermodynamics.

is reversed. A reversible transformation can be represented by a continuous path on
the equation-of-state surface, as illustrated in Figure 1.2.

An irreversible transformation, on the other hand, cannot be represented by a path
on the equation-of-state space, as indicated by the dashed line in Figure 1.2. In fact,
we may not be able to represent it as a path in the state space at all. An example is
the sudden removal of a wall in a container of a gas, so that the gas expands into
a compartment that was originally vacuous. Although the initial and final states are
equilibrium states, the intermediate states do not have uniform P V. T, and hence
cannot be represented as points in the state space.

In a reversible transformation, we can consider mathematically infinitesimal paths.
The mechanical work done by the system over an infinitesimal path is represented by
a differential:

dW = PdV (1.4)

Along a finite reversible path A — B, the work done is given by

B
AW=/ Pdv (1.5)
A

which depends on the path connecting A to B. This is the area underneath the path
in a PV diagram. When the path is a closed cycle, the work done in one cycle is the
area enclosed, as shown in Figure 1.3. The work done along an irreversible path is
generally not [ PdV. For example, in the free expansion of a gas into a vacuum, the
system does not perform work on any external agent, and so AW = 0.

A uniquely thermodynamic process is heat transfer. From the atomic point of view,
it represents a transfer of energy in the form of thermal agitation. In thermodynamics,
we define heat phenomenologically, as that imparted by a heating element, such as a
flame or a heating coil. An amount of heat A Q absorbed by a body causes arise AT
in its temperature given by '

AQ = C AT (1.6)
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Work done

v

Figure 1.3 The work done in a closed cycle of transformations is represented by
the area enclosed by the cycle in a PV diagram.

where C is the heat capacity of the substance. We imagine the limit in which A Q and
AT become infinitesimal. The heat capacity is an extensive quantity. The intensive
heat capacity per particle C/N, per mole C/n, or per unit volume C/V, is called
specific heat.

The fact that heat is a form of energy was established experimentally, by observing
that one can increase the temperature of a body by AT either by transferring heat
to the body or performing work on it. A practical unit for heat is the calorie (cal),
originally defined as that amount of heat that will raise the temperature of 1 g of water
from 14.5 to 15.5°C at sea level. In current usage, it is defined exactly in terms of the
joule (J):

l1cal=4.1841] (1.7)
Another commonly used unit is the British thermal unit (Btu):
1 Btu = 10551] (1.8)

The heat absorbed by a body depends on the path of the transformation, as is true of
the mechanical work done by the body. We can speak of the amount of heat absorbed
in a process, but the “heat of a body,” like the “work of a body,” is meaningless.
Commonly encountered transformations are the following:

* T = constant (isothermal process)
* P = constant (isobaric process)
* V = constant (constant-volume process)
* A Q = 0 (adiabatic process)
We use a subscript to distinguish the different types of paths, as for example Cy

and Cp, representing, respectively, the heat capacity at constant volume and con-
stant pressure. The heat capacity is only one of many thermodynamic coefficients
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that measure the response of the system to an external source. Other examples
are

1 AV
K = “VAP (compressibility)
LAV (coefficient of th: 1 ion) (1.9)
a = ——— (coefficient of the on .
VAT 0 n rmal expansi

These coefficients can be obtained from experimental measurements. In principle
they can be calculated from atomic properties using statistical mechanics.

1.5 Classic Ideal Gas

The simplest thermodynamic system is the classic ideal gas, which is a gas in the
limit of low density and high temperature. The equation of state is given by the ideal
gas law:

PV = NkgT (1.10)
where T is the ideal gas temperature, measured in kelvins (K), and
kg = 1.381 x 107'¢ erg K~! (Boltzmann’s constant) (1.11)

As we shall see, the second law of thermodynamics implies T > 0, and the lower
bound is called the absolute zero. For this reason, T is also called the absolute
temperature. The heat capacity of a monatomic ideal gas at constant volume Cy has
the value
3
Cy = ENkB (1.12)

These properties of the ideal gas were established experimentally, and can be derived
theoretically in statistical mechanics.

Thermodynamics does not assume the existence of atoms. Instead of the number
of atoms N, we can use the number of gram moles n, which is a chemical property
of the substance. The two are related through

NkB =nR
R = 8.314 x 10’ erg K1 (gas constant) (1.13)

The ratio R/ kp is Avogadro’s number, the number of atoms per mole:

R
Ag = = 6.022 x 10% (1.14)

B
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Isotherms
(Tl > T2 > T3)

0 V4 v,

Figure 1.4 Isotherms of an ideal gas, and various paths of transformations.

Indeed, the atomic picture was a latecomer that gained acceptance only after a long
historic struggle (See Section 10.7).

The equation of state can be represented graphically in a PV diagram, as shown
in Figure 1.4, which displays a family of curves at constant T called isotherms.
Indicated on this graph are the reversible paths corresponding to various types of
transformations:

* ab is isothermal.

* bc proceeds at constant volume.

* cd is at constant pressure.

* de is isothermal.

* abcdea is a closed cycle.

* df is nonisothermal.

To keep the temperature constant during an isothermal transformation, we keep the

system in thermal contact with a body so large that its temperature is not noticeably

~affected by heat exchange with our system. We call such a body a heat reservoir, or
heat bath.

1.6 First Law of Thermodynamics

The first law expresses the conservation of energy by including heat as a form of
energy. It asserts that there exists a function of the state, internal energy U, whose
change in any thermodynamic transformation is given by

AU =AQ0 - AW (1.15)
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That is, AU is independent of the path of the transformation, although AQ and
AW are path dependent. In a reversible infinitesimal transformation, the infinitesimal
changes dQ and dW are not exact differentials, in the sense that they do not represent
the changes of definite functions, but their difference

dU =dQ —dw (1.16)

is an exact differential.

1.7 Magnetic Systems

For a magnetic substance, the thermodynamic variables are the intensive magnetic
field H, and the extensive magnetization M, which are unidirectional and uniform
in space. The magnetic field is generated by external real currents (and not induced
currents), and the magnet work done by the system is given by

dW = —HdM (1.17)
The first law takes the form
dU = dQ — HdM (1.18)

which maps into that for a PVT system under the correspondence H <» —P, M < V.
For a paramagnetic substance, a magnetic field induces a magnetization density
given by

— =—xH 1.19
v =X (1.19)

The magnetic susceptibility x obeys Curie’s law

. (1.20)
X = T .
Thus, we have the equation of state
m="H (1.21)
= .

where k = ¢yV.

An idealized uniform ferromagnetic system has a phase transition at a critical
temperature 7., and becomes a permanent magnet for T < T, in the absence of
external field. However, there is no phase transition in the presence of an exter-
nal field. The equation of state is illustrated graphically in the MT diagram of
Figure 1.5.



10 A Macroscopic View of Matter

H>0

Figure 1.5 Equation of state of a uniform ferromagnet. A ferromagnetic transition
occurs at a critical temperature at zero field.

A real ferromagnet is not uniform, but made up of domains with different orien-
tations of the magnetization. The configuration of the domains is such as to reduce
the fringing fields that extend outside of the body, in order to minimize the magnetic
energy. Each domain behaves according to the uniform case depicted in Figure 1.5.
Atafixed T < T, the domain walls move in response to a change in H, to either
consolidate old domains, or create new ones. This is a dissipative process, and leads
to hysteresis, as shown in the MH plot of Figure 1.6. At zero field, the magneti-
zation is at either a or b, depending on the history. This is the basis of magnetic
memory.

Figure 1.6 Hysteresis in a ferromagnet is due to the formation of ferromagnetic
domains.
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Problems

1.1 Tenzing Norgay heated 1 m* of water from 20 to 40°C, in order to take a bath
before climbing Chomolungma.

(a) How much energy did he use? Give the answer in kWh.

(b) Show that the energy is enough to lift Tenzing’s entire party of 14, of average
weight 150 Ib, from sea level to the top of Chomolungma (elev. 29,000 ft).

1.2 Referring to Figure 1.4, find the work done along the various paths on the closed
cycle ab, be, cd, de, ea, and give the total work done in the closed cycle. How much
heat is supplied to the system in one cycle?

1.3 An ideal gas undergoes a reversible transformation along the path

v (TY
Vo \Tp
where Vj, Ty, and b are constants.
(a) Find the coefficient of thermal expansion.
(b) Calculate the work done by the gas when the temperature increases by AT.

1.4 In a nonuniform gas, the equation of state is valid locally, as long as the density
does not change too rapidly with position. Consider a column of ideal gas under
gravity at constant temperature. Find the density as a function of height, by balancing
the forces acting on a volume element.

1.5 Two solid bodies labeled 1 and 2 are in thermal contact with each other. The
initial temperatures were T1, T, with 77 > T5. The heat capacities are C; and C,
respectively. What is is final equilibrium temperature, if the bodies are completely
isolated from the external world?

1.6 A paramagnetic substance is magnetized in an external magnetic field at constant
temperature. How much work is require to attain a magnetization M?

1.7 A hysteresis curve (see Figure 1.6) is given by the formula
M = My tanh(H £ Hp)

where the + sign refers to the upper branch, and the — sign refers to the lower branch.
The parameter Hy is called the coercive force. Show that the work done by the system
in one hysteresis cycle is 2My Hp.

1.8 The atomic nucleus The atomic nucleus contains typically fewer than 300 protons
and neutrons. It is an example of a small system with both short- and long-range
forces. The mass is given by the semi empirical Weizsacker formula (See deShalit
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and Feshbach 1974):

Z? (Z — N)?
2/3
M = Zmp —I—Nm,, —alA +a2A / —I—@m +a4——‘14—— +8(A)
where Z is the number of protons, N is the number of neutrons, and A = Z + N.
The masses of protons and neutrons are, respectively, m,, m,,anda; (i =1,...,4)
are numerical constants,

Volume energy : a; = 16 MeV/c?
Surface energy : a, = 19
Coulomb energy : az = 0.72

Symmetry energy : as = 28

The symmetry energy favors N = Z. The term § (A) is the “pairing energy” that gives
small fluctuations.
Take Z = N = A/2, m, =~ m,, and neglect §(A), so that

M = (mp — al)A +02A2/3 + %ASB

Make a log plot of M from A = 1to A = 10%, and indicate the range in which M
can be considered as extensive.

1.9 The false vacuum In the theory of the “inflationary universe,” a pinpoint universe
was created during the Big Bang in a “false” vacuum state characterized by a finite
energy density ug, while the true vacuum state should have zero energy density. (For
areview see Guth, 1992).

An ordinary solid too has finite energy per unit volume; but it occupies a definite
volume, given a total number of particles. If we put the solid in a box larger than that
volume, it would not fill the box, but “rattle” in it. Not so the false vacuum. It must have
the same energy density whatever its volume, and this makes it strange stuff indeed.

(a) Imagine putting the false vacuum in a cylinder stopped with a piston, with the
true vacuum outside. If we pull on the piston to increase the volume of the false
vacuum by dV, show that the false vacuum performs work dW = —uodV. Hence the
false vacuum has negative pressure P = —u,.

(b) According to general relativity, the radius R of the universe obeys the equation

d’R A
s = -2 Guo—3P)R

where c is the velocity of light, and

G = 6.673 x 10~ 8cm®/g s = 6.707 x 107>° GeV~?hc3
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is Newton’s constant (gravitational constant). For the false vacuum, this reduces to

dzR_R

a? 12

3c?
T =
8w Gu()

Thus the radius of the universe expands exponentially with time constant t. According
to theory, ug = (101°GeV)*/(hc)® = 10°® erg/cm>. Show

T ~ 1075
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Chapter 2

Heat and Entropy

2.1 The Heat Equations

Thermodynamics becomes a mathematical science when we regard the state functions,
such as the internal energy, as continuous differentiable functions of the variables
P,V,T. The constraint imposed by the equation of state reduces the number of
independent variables to two. We may consider the internal energy to be a function
of any two of the variables. Under infinitesimal increments of the variables, we can
write

aU ou
\4 P

U oU
T P

awv,ny = (YY) avs (YY) ar 2.1)
v ), aT |,

where a subscript on a partial derivative denotes the variable being held fixed. For
example, (3U /3 P)y is the derivative with respect to P at constant V. These partial
derivatives are thermodynamic coefficients to be taken from experiments.

The heat absorbed by the system can be obtained from the first law, written in the
form dQ = dU + PdV.

oUu aU
dQ = <8_P>Vdp+ {(8_V>P + P} dv

aU oU
dQ = (—) dP + <—) dT + PdV
T P

aP oT

oU aUu
A= || — PldV+ | — ) 4T 2.2
o= (), +#] @+ (a7), 22
In the second of these equations we must regard V a function of P, T, and rewrite

oV oV

dV=\|—) dP — | dT 23
(5), 0+ (&), =

15
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The second equation then reads

_[[3u av (U + PV)
s0=((5z),+ (35),Jor+ (57 ) o

It is convenient to define a state function called the enthalpy:
H=U+PV

The heat equations in dQ form are summarized below:

oU oU
dQ = (—a—P>VdP+ [(W)PjLP} av
oU oV 0H
= [(ﬁ)ﬁp (ﬁﬁ ap+ (ﬁ)ﬁ”
oUu U
dQ = [(W>T + P] av + <ﬁ>vdT

We can immediately read off the heat capacities at constant V and P:

oo _ (U
Y=\ar/,
o _ (2H
P=\er /,

(2.4)

(2.5)

(2.6)

Q.7

These are useful because they express the heat capacities as derivatives of state

functions.

2.2 Applications to Ideal Gas

We now use the first law to deduce some properties of the ideal gas. Joule performed
a classic experiment on free expansion, as illustrated in Figure 2.1. A thermally
insulated ideal gas was allowed to expand freely into an insulated chamber, which
was initially vacuous. After a new equilibrium was established, in which the gas fills
both compartments, the final temperature was found to be the same as the initial

temperature.
We can draw the following conclusions:
* AW =0 (since the gas pushes into a vacuum)
* AQ =0 (since the temperature was unchanged)
« AU =0 (by the first law)
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Insulati 1l
SRR WA Hole with stopper

Vacuum

Ideal gas
Before After

Figure 2.1 Free expansion of an ideal gas.

Choosing V, T as independent variables, we conclude U (V; T) = U(V,, T). That is,
U is independent of V:

U = U(T) (2.8)

Of course, U is proportional to the total number of particle N, which has been kept
constant.
The heat capacity at constant volume can now be written as a total derivative:

oo _ (3U\ _au 29
Y—\ar /), dr '

Assuming that Cy is a constant, we can integrate the above to obtain

U(T)=/CvdT=CVT (2.10)

where the constant of integration has been set to zero by defining U = 0atT = 0. It

follows that
oH a(U + PV)
CP e e e _—
oT / p oT P

du n d(NkgT)

=T 3T (2.11)
= Cy + Nkp (2.12)

Thus, for an ideal gas,
Cp — Cy = Nkpg (2.13)

We now work out the equation governing a reversible adiabatic transformation.
Setting dQ = 0, we have dU = —PdV. Since dU = CydT, we obtain

CydT + PdV = 0 (2.14)
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Using the equation of state PV = Nkp T, we can write

_ d(PV) _ PdV+ VdP

dar
Nkp Nkp

Thus

or

where

Cy (PdV + VdP) + NkgPdV =0

Cy VdP + (Cy + Nkg)PdV =0

Cy VdP + CpPdV =0

Assuming that y is a constant, we obtain through an integration

or

InP = —y InV + constant

PVY = constant

Using the equation of state, we can rewrite this in the equivalent form

TVY~! = constant

“(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)

Since y > 1 according to Equation (2.13), an adiabatic path has a steeper slope than
an isotherm in a PV diagram, as depicted in Figure 2.2.

Adiabatic

Isotherm

\4

Figure 2.2 An adiabatic line has a steeper slope than an isotherm.
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2.3 Carnot Cycle

In a cyclic transformation, the final state is the same as the initial state, and therefore
AU = 0, because U is a state function. A reversible cyclic process can be represented
by a closed loop in the PV diagram. The area of the loop is the total work done by the
system in one cycle. Since AU = 0, it is also equal to the heat absorbed:

AW =AQ = %PdV: area enclosed (2.22)

A cyclic process converts work into heat and returns the system to its original state.
It acts as a heat engine, for the process can be repeated indefinitely. If the cycle is
reversible, it runs as a refrigerator in reverse.

A Carnot cycle is a reversible cycle bounded by two isotherms and two adiabatic
lines. The working substance is arbitrary, but we illustrate it for an ideal gas in
Figure 2.3, where T, > Tj. The system absorbs heat O, along the isotherm 75 and
rejects heat Q; along Ty, with Q1 > 0 and Q> > 0. By the first law, the net work
output is

W =0,— 0 (2.23)

In one cycle of operation, the system receives an amount of heat Q, from a hot
reservoir, performs work W, and rejects “waste heat” Q1 to a cold reservoir. The
efficiency of the Carnot engine is defined as

W =1- & (2.24)

0> 0>

which is 100% if there is no waste heat, that is, Q1 = 0. But, as we shall see, the
second law of thermodynamics states that this is impossible.

n

Isotherm

Q,

T,
Adjiabatic

e

Q

Figure 2.3 Carnot cycle on the PV diagram of an ideal gas.
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Q

Figure 2.4 Schematic representation of a Carnot engine.

We represent the Carnot engine by the schematic diagram shown in Figure 2.4,
which emphasizes the fact that the working substance is irrelevant. By reversing
the signs of QO and O, and thus W, we can run the engine in reverse as a Carnot
refrigerator.

2.4 Second Law of Thermodynamics

The second law of thermodynamics expresses the common wisdom that “heat does
not flow uphill.” It is stated more precisely by Clausius:

There does not exist a thermodynamic transformation whose sole effect
is to deliver heat from a reservoir of lower temperature to a reservoir of
higher temperature.

An equivalent statement is due to Kelvin:

There does not exist a thermodynamic transformation whose sole effect
is to extract heat from a reservoir and convert it entirely into work.

The important word is “sole.” The processes referred to may be possible, but not
without other effects. The logical equivalence of the two statements can be demon-
strated by showing that the falsehood of one implies the falsehood of the other.
Consider two heat reservoirs at respective temperatures 7, and T}, with 7» > Tj.

(a) If the Kelvin statement were false, we could extract heat from 7; and convert it
entirely into work. We could then convert the work back to heat entirely, and deliver it
to T3, (there being no law against this). Thus the Clausius statement would be negated.

(b) If the Clausius statement were false, we could let an amount of heat Q, flow
uphill, from 7; to 7,. We could then connect a Carnot engine between T; and T, to
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extract O, from T, and return an amount Q; < Q5 back to T7. The net work output
is O, — Q1 > 0. Thus, an amount of heat O, — Q118 converted into work entirely,
without any other effect. This would contradict the Kelvin statement.

In the atomic view, heat transfer represents an exchange of energy residing in
the random motion of the atoms. In contrast, the performance of work requires an
organized actions of the atoms. To convert heat entirely work would mean that chaos
spontaneously reverts to order. This is extremely improbable, for in the usual scheme
of things, only one configuration corresponds to order, while all others lead to chaos.
The second law is the thermodynamic way of expressing this idea.

2.5 Absolute Temperature

The second law immediately implies that a Carnot engine cannot be 100% efficient,
for otherwise all the heat absorbed from the upper reservoir would be converted into
work in one cycle of operation. There is no other effect, since the system returns to
its original state.

We can show that no engines working between two given temperatures can be more
efficient than a Carnot engine. Since only two reservoirs are present, a Carnot engine
simply means a reversible engine. What we assert then, is that an irreversible engine
cannot be more efficient than a reversible one.

Consider a Carnot engine C and an engine X (not necessary reversible) working
between the reservoirs T and Ty, with T5 > T, as shown in Figure 2.5. We shall run
C in reverse, as a refrigerator C, and feed the work output of X to C. Table 2.1 shows
a balance sheet of heat transfer in one cycle of joint operation.

The total work output is

Wit = (@3 — Q1) — (@2 — Q1) (2.25)

Now arrange to have Q) = Q5. Then, no net heat was extracted from the reservoir 715,
which can be ignored. An amount of heat Q1 — Q', was extracted from the reservoir Ty
and converted entirely into work with no other effect. This would violate the second

Q; Q

| 4 T,

v |
e
S >__C
W’ W -
| 4
T
v | '
Q, Q

Figure 2.5 Driving a Carnot referigarator C with an arbitrary engine X.
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TABLE 2.1 Balance Sheet of Heat Transfer

Engine From T3 To Ty
X 0) 0}
C -0 -0

law, unless Q1 < Q7. Dividing both sides of this inequality by O, and using the fact
Q) = Q,, we have

& < g:l (2.26)
0" Oy

Therefore 1 — (Q1/Q2) = 1 — (Q}/Q%), or
Nc = Nx 2.27)

As acorollary, all Carnot engines have the same efficiency, since X may be a Carnot
engine. This shows that the Carnot engine is universal, in that it depends only on the
temperatures involved, and not on the working substance.

We define the absolute temperature 9 of a heat reservoir such that the ratio of the
absolute temperatures of two reservoirs is given by

5, = 1 0 1—pn (2.28)
where 7 is the efficiency of a Carnot engine operating between the two reservoirs. The
advantage of this definition is that it is independent of the properties of any working
substance. Since Q; > 0 according to the second law, the absolute temperature is
bounded from below:

9 >0 (2.29)

The absolute zero 6 = 0 is a limiting value which we can never reach, according to
the second law.

The absolute temperature coincides with the ideal gas temperature defined by
T = PV/Nkp, as we can show by using an ideal gas as working substance in a Carnot
engine. Thus 6 = 7', and we shall henceforth denote the absolute temperature by 7.

The existence of absolute zero does not mean that the temperature scale terminates
at the low end, for the scale is an open set without boundaries. It is a matter of
convention that we call ' the temperature. We could have used 1/ T as the temperature,
and what is now absolute zero would be infinity instead.

2.6 Temperature as Integrating Factor

We can look upon the absolute temperature T as the integrating factor that converts
the inexact differential dQ into an exact differential dQ/T. To show this, we first
prove a theorem due to Clausius:
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In an arbitrary cyclic process P, the following inequality holds:

do
]{»—T_ <0 (2.30)

where the equality holds if P is reversible.

It should be emphasized that the cycle process need not be reversible. To prove
the assertion, divide the cycle P into K segments labeled i =1, ..., K. Let the ith
segment be in contact with a reservoir of temperature 7;, from which it absorbs an
amount of heat Q;. The total work output of P is, by the first law,

K
W = Z 0; (2.31)
i=1

Note that not all the Q; can be positive, for otherwise heat would have been converted
to work with no other effect, in contradiction to the second law.

Imagine a reservoir at a temperature Ty > T; (all i), with Carnot engines C; operat-
ing between Ty and each of the temperatures T;. The setup is illustrated schematically
in Figure 2.6. Suppose that, in one cycle of operation, the Carnot engine C; absorbs
heat Ql@) from the Ty reservoir, and rejects Q; to the T; reservoir. By definition of the

0
Q” QY
1

¢ Reservoir T,

Closed cycle P

Figure 2.6 Construction to prove Clausius’ theorem.
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absolute temperature, we have

Q]
: T
0" _ D (2.32)
0 T
In one cycle of operation of the joint operations { P + C; + - - - + Ck},

* The reservoir 7; experiences no net change, for it receives Q;, and delivers
same to the system.
* The heat extracted from the Ty reservoir is given by

K

K Q
Qu=) 0"=T) = (2.33)
i=1 !

i=1
* The total work output is

K

K
Wa=W+> (00— 0] =3 0" = 0u (234)
i=1

i=l

An amount of heat O, would be entirely converted to work with no other effect, and
thus violate the second law, unless Q,,; < 0, or

K
PIE (2.35)
—~ T;
i=1
In the limit K — oo, this becomes
d
7{ —Q <0 (2.36)
p T

This proves the first part of the theorem.

If P is reversible, we can run the operation {P + C; + - -- + Cy} in reverse. The
signs for Q; are then reversed, and we conclude that fP dQ/T > 0. Combining this
with the earlier relation, which still holds, we have

doQ o .
7{ T =0 (f P isreversible) (2.37)
P

This complete the proof.

A corollary to the theorem is that, for areversible open path P, the integral || pdQ/T
depends only on the endpoints, and not on the particular path. To prove this, join the
endpoints by a reversible path P’, whose reversal is denoted by — P’. The combined
processes P — P’ then represents a closed reversible cycle. Therefore f p_pdQ/T =

0, or
dQ [ dO
/P T = / T (2.38)

This shows that dQ divided by the absolute temperature is an exact differential.



2.7 Entropy 25

2.7 Entropy

The exact differential
Y
T

defines a state function S called the entropy, up to an additive constant. The entropy
difference between any two states B and A is given by

ds (2.39)

B
d
S(B)—S(A) = / 7Q (along any reversible path) (2.40)
A

where the integral extends along any reversible path connecting B to A. The result is
of course independent of the path, as long such a reversible path exists.

What if we integrate along an irreversible path? Let P be an arbitrary path from
A to B, reversible or not. Let R be a reversible path with the same endpoints. The
the combined process P — R is a closed cycle, and therefore by Clausius’ theorem

[p_rd0Q/T <0, 0r
/%95/51]2 2.41)
P R

Since the right side is the definition of the entropy difference between the final state
B and the initial state A, we have

B dQ
S(B)— S(A) > / — (2.42)
a T

where the equality holds if the process is reversible. For an isolated system, which
does not exchange heat with the external world, we have dQ = 0, and therefore

AS>0 (2.43)

That is, the entropy of an isolated system never decreases and it remains constant
during a reversible transformation.
We emphasize the following points:

« The principle that the entropy never decreases applies to the “universe” consist-
ing of a system and its environments. It does not apply to a nonisolated system,
whose entropy may increase or decrease.

« Since the entropy is a state function, the entropy change of the system in going
from state A to state B is Sg — S regardless of the path, which may be reversible
orirreversible. For an irreversible path, the entropy of the environment changes,
whereas for a reversible path it does not change.

« Theentropy difference Sz —S,4 is not necessarily equal to the integral i) f do/T.
It is equal to the integral only if the path from A to B is reversible. Otherwise,
it is generally larger than the integral.
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2.8 Entropy of Ideal Gas

We can calculate the entropy of an ideal gas as a function of V and T by integrating
dS = dQ/T. In Figure 2.7, we approach point A along two alternative paths, with
V kept fixed along path 1, and T kept fixed along path 2. Along path 1, we have
JdQ/T = Cy [dT/T, and hence

Tdr T
S(V,T)=S(, T0)+CV/ —=S5V,T)) +Cyln — (2.44)
T T Ty
To determine S(V, Tp), we integrate dS = dQ/ T along the isothermal path 2. Since
dU = 0, we have
dv
dQ =dW = PdV = NkBT—V— (2.45)

Thus

14

av Vv
SV, T)=5SW, T) +Nk3/ v = S(Vo, T) + Nkg In v (2.46)
Vo 0

Comparing the two expressions for S(V, T'), we conclude
S(V,Ty) = Co+ NkgInV (2.47)
where Cy is an arbitrary constant. Absorbing the constant Vj, into C,, we can write
S(V,T)=Co+NkglnV +CyInT (2.48)
For a monatomic gas we have Cy = %Nk, and hence

S(V,T) = Cy+ NkgIn(VT??) (2.49)

Path 2 (isothermal)

Figure 2.7 Calculating the entropy at point A.
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A problem arises when N changes, for S behaves like N In V, and is not extensive,
unless somehow Cy contains a term —Nkp In N. As we shall see, this is supplied by
quantum effects, through “correct Boltzmann counting,” as explained in Chapters 5
and 8.

Looking forward, we quote the Sacker—Ietrode equation for the absolute entropy:
5
S = Nkg [5 — ln(n)\3)} (2.50)

which will be derived in Chapter 8. Here, n = N/V and A is the thermal wavelength,
the deBroglie wavelength of a particle with energy kpT':

A = \/27h?/mkgT (2.51)

where 7 is the reduced Planck’s constant. It is interestig to note that this quantum
constant appears even in high-temperature macroscopic physics.

2.9 The Limits of Thermodynamics

Thermodynamics is a very useful practical tool, and an elegant theory. The self-
consistency of the mathematical structure has been demonstrated through axiomatic
formulations. However, confrontation with experiments indicates that thermodynam-
ics is valid only insofar as the atomic structure of matter can be ignored.

In the atomic picture, thermodynamic quantities are subject to small fluctuations.
The second law of thermodynamics is true only on the macroscopic scale, when
such fluctuations can be neglected. It is constantly being violated on the atomic
scale.

Taking the second law as absolute would lead to the conclusion that the entropy of
the universe must forever increase, leading toward an ultimate “heat death.” Needless
to say, this ceases to be imperative in the atomic picture. We shall discuss the meaning
of macroscopic irreversibility in more detail in Section 6.9.

Problems

2.1 An ideal gas undergoes a reversible transformation along the path P = aV?l,
where a and b are constants, with a > 0. Find the heat capacity C along this path.

2.2 The temperature in a lake is 300 K at the surface, and 290 K at the bottom. What is
the maximum energy that can be extracted thermally from 1 gr of water by exploiting
the temperature difference?

2.3 A nuclear power plant generates 1| MW of power at a reactor temperature of
600°F. It rejects waste heat into a nearby river, with a flow rate of 6000 ft3/s, and an
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upstream temperature of 70°F. The power plant operates at 60% of maximum possible
efficiency. Find the temperature rise of the river.

2.4 Aslow-moving stream carrying hot spring water at temperature 7, joins a sluggish
stream of glacial water at temperature 77. The water downstream has a temperature
T between T, and 77, and flows much faster, at a velocity v. The velocities of the input
streams can be neglected. Assume that the specific heat of water is a constant, and
that the entropy of water has the same temperature dependence as that of an ideal gas.

(a) Find v, neglecting the velocities of the input streams.

Hint: The net change in thermal energy was convert to kinetic energy.

(b) Find the lower bound on T and the upper bound on v imposed by the second
law of thermodynamics.

Hint: The total entropy cannot decrease.

2.5 A cylinder of cross-sectional area A is divided into two chambers 1 and 2, by
means of a frictionless piston. The piston as well as the walls of the chambers are
heat-insulating, and the chambers initially have equal length L. Both chambers are
filled with 1 mol of helium gas, with initial pressures 2 Py, Py, respectively. The piston
is then allowed to slide freely, whereupon the gas in chamber 1 pushes the piston a
distance a to equalize the pressures to P.

(a) Find the distance a traveled by the piston.

(b) If W is the work done by gas in chamber 1, what are the final temperatures
Ty, T in the two chambers? What is the final pressure P?

(c¢) Find the work done W.

—>
2P, P,
— 1 —f L —

2.6 The equation of state of radiation is PV = U/3. Stefan’s law gives U/ V = o T*,
with o = w2k*/(15833).

(a) Find the entropy of radiation as a function of V and T'.

(b) During the Big Bang, radiation initially confined within a small region expands
adiabatically and cools down. Find the relation between the temperature 7' and the
radius of the universe R.

2.7 Put an ideal gas through a Carnot cycle and show that the efficiency is n =
1 —T1/T5, where T, and T are the ideal gas temperatures of the heat reservoirs. This
shows that the ideal gas temperature coincides with the absolute temperature.
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2.8 The Diesel cycle is illustrated in the accompanying diagram. Let r = V;/V;

(compression ratio), and r. = V3/V, (cutoff ratio). Assuming that the working
substance is an ideal gas with Cp/Cy = y, find the efficiency of the cycle.

Diesel cycle

Adiabatic

E Fuel
2 injection

2.9 The Otto cycle, as shown in the accompanying diagram, where r = V;/V, is the
compression ratio. The working substance is an ideal gas. Find the efficiency.

Otto cycle 1 —

P 3 Adiabatic
2 k< Ignition
Q2 4
2 Ql 3 l—

|

I 1

L \Y
0 Vs, v, 4 I

2.10 An ideal gas undergoes a cyclic transformation abca (see sketch) such that

ab is at constant pressure, with V;, = 2V,
bc is at constant volume,
ca is at constant temperature.

Find the efficiency of this cycle, and compare it with that of the Carnot cycle operating
between the highest and lowest available temperatures.
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Isotherm

2.11 A monatomic classical ideal gas is taken from point A to point B in the PV
diagram shown in the accompanying sketch, along three different reversible paths
ACB, ADB, and AB, with P, = 2P; and V, = 2V The thick lines are isotherms.

(a) Find the heat supplied to the gas in each of the three transformations, in terms
Oka, Pl, and Tl.

(b) What is the heat capacity along the path AB?

(c) Find the efficiency of the heat engine based on the closed cycle ACBD.

P
\ C B
P2 oo T2
P, A D
- Tl v
Vl Vz

2.12 Here’s a device that allegedly violates the second law of thermodynamics. Con-
sider the surface of rotation shown in heavy lines in the accompanying sketch. It is
made up of parts of the surfaces of two confocal ellipsoids of revolution, and that of
a sphere. The inside surface is a perfect mirror. The foci are labeled A and B.

The argument goes as follows: If two black bodies of equal temperature are initially
placed at A and B, then all the radiation from A will reach B, but not vice versa,
because radiation from B hitting the spherical surface will be reflected back. Therefore
the temperature of B will increase spontaneously, while that of A will decrease
spontaneously, and this would violate the second law.
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(a) Why would a spontaneous divergence of temperatures violate the second law?
(b) Is the assertion true for physical black bodies?

Surface of rotation

O

N
% \

Confocal Sphere
ellipsoids centered
atB






Chapter 3

Using Thermodynamics

3.1 The Energy Equation

In Chapter 2 we obtained the d Q equations [Equation (2.6)], which tell us the amount
of heat absorbed by a system when the independent variables change. However, the
formulas involve derivatives of the internal energy, which is not directly measurable.
We can obtain more practical results by rewriting the equations exploiting the fact
that dS = dQ/T is an exact differential. We illustrate the method using 7',V as
independent variables. From Equation (2.6),

oU
dQ =TdS = Cy dT + {(—) + P} av 3.1
oV ),
Dividing both sides by T', we obtain
Cy 1 oU
dS= —dT+ — || — PldV 3.2
Forez|(57),+ 7 62
Being an exact differential, this should be of the form
0S 0S
dS = — dT 4+ —dV 3.3
oT + oV (3.3)

where we suppress the subscripts on partial derivatives for simplicity. Thus, we can
identify
S Cy
T T
N 1 [dU
= {—— + P}

3V 3.4

ov. T
Since differentiation is a commutative operation, we have

9 39S 9 S
oV aT ~ dT 8V

3 Ccy 8 [1[oU
— Y = |- (=+P 3.6
3V T ~ oT {T (av+ )} (3.6)

33

(3.5)

Hence
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The left side can be written as T~18Cy /3 V, since T is kept fixed for the differentia-
tion. Using Cy = dU /3T, we can rewrite the last equation in the form

190U 1 aU+ +1 88U+8P 37
T oV aT T2 |3V T |av oT = oT :

After cancelling identical terms on both sides, we obtain the energy equation

(a_v) =T<?£) ~P (3.8)
v ), aT ),

where we have restored the subscripts. The derivative of the internal energy is now
expressed in terms of readily measurable quantities.

In Chapter 2, we deduced from Joule’s free expansion experiment that the internal
energy for an ideal gas depends only on the temperature, and not the volume, that is,
(dU/3V)r = 0. Now we can show that this is implied by the second law, through
the energy equation. For the ideal gas we have

P P )
(a_T) = Gdealgay (3.9)

by the equation of state. Therefore, by the energy equation,

oU )
(W) ) =0 (ideal gas) (3.10)

3.2 Some Measurable Coefficients

The energy equation relates the experimental inaccessible quantity (dU/dV)r to
(3P /3T)y. The latter can be related to other thermodynamic coefficients, using the
chain rule for partial derivatives (see Appendix). We can write

(ap) B 1 _@V/aT)p _ «
14

—) == = =— (3.11)
9T (3T/3V)p(@V/aP)r —@V/P)r  «kr

where a and k7 are among some directly measurable coefficients:

1 /aV
oa=—|— (coefficient of thermal expansion)
VAT /p

1 /v
K = v (8_P) ) (isothermal compressibility)

1 /oV
Ksg = v (8—P> S (adiabatic compressibility) (3.12)
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Substituting the new form of (3 P/3T )y into (aU/3V )1 and then the latter into the
dQ equation [Equation (3.1)], we obtain

T
TdS = CydT + 2=-dv (3.13)
KT

This “TdS equation” gives the heat absorbed in terms of directly measurable coeffi-
cients. Using T, P as independent variables, we have

1dS = CpdT — aTVdP (3.14)

To use V, P as independent variables, we rewrite dT in terms of dV and dP:

aT oT 1 KT
dlr={— | dV — | dP = —dV+ —dP 3.15
(aV>p * (aP)V av® G

In summary the 7dS equations are

aTl
TdS = CydT + —dV
KT

1dS = CpdT — aTVdP

c c
TdS = —‘I;dV—I- ( PrT

— ozTV) dpP (3.16)
o

o

3.3 Entropy and Loss

In Chapter 2 we showed that the entropy of an isolated system remains constant during
a reversible process, but it increases during an irreversible process. Useful energy is
lost in the process, and the increase of entropy measures the loss.

To illustrate this point, consider 1 mol of an ideal gas at temperature 7', expanding
from volume V; to V,. Let us compare the entropy change for a reversible isother-
mal expansion and an irreversible free expansion. The processes are schematically
depicted in Figure 3.1. They have the same initial and final states, as indicated on
the PV diagram in Figure 3.2. However, the path for the free expansion cannot be
represented on the diagram, because the pressure is not well-defined.

In the reversible isothermal expansion, AU = 0 because U depends only on the
temperature for an ideal gas. By the first law, we have

Va RT 1%
AQ = AW = ~_dV=RT In—= (3.17)
v, V Vi

The work done AW is stored in a spring attached to the moving wall, and it can be
used to compress the gas back to the initial state. The entropy change of the gas is
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Heat reservoir T

Free expansion

Figure 3.1 Reversible isothermal expansion and irreversible free expansion. In the
former case, the temperature is maintained by a heat reservioir, and the work done is
stored externally.

given by

(AS)gas = / -‘-%Q - %Q =R ln% (3.18)

Since the heat reservoir delivers an amount of heat A Q to the gas at temperature T,
its entropy change is

V.
(AS)reservoir = _AQ/T =—RIn 72 (319)
1

Free expansion
(nonequilibrium)

Reversible
5 isothermal expansion

.

v

Figure 3.2 Isothermal expansion and free expansion. The latter cannot be repre-
sented by a path, because pressure is not well-defined during the process.
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Thus, there is no change in the entropy of the “universe” made up of the system and
its environment:

(AS)universe = (AS)gas + (AS)reservoir =0 (320)

In the free expansion, AW = 0 because the gas expands into a vacuum. since the
temperature of the gas does not change, according to Joule’s experiment, there is no
heat transfer between the gas and its environment. Therefore

(AS)reservoir = 0 3.21)

The entropy change of the gas is the same as that calculated before, since it only
depends on the initial and final states:

V;
(AS)gs = R In — (3.22)
Vi
Therefore |
\%
(AS)universe = R1n VZ (3.23)
1

Had the transformation proceeded reversibly, the gas could have performed work in
the amount

V.
AW =RT In Y/E = T(AS)universe (3.24)
1

The increase in total entropy is a reflection of the loss of useful energy.
In heat conduction, an amount of heat AQ is directly transferred from a hotter
reservoir T, to a cooler one T;, and the entropy change of the universe is

(AS)universe = —— — —— >0 (3.25)

This shows that heat conduction is always irreversible. The only reversible way to
transfer heat from T, to T is to connect a Carnot engine between the two reservoirs,
so that the work output can be used to reverse the process.

3.4 TS Diagram

We can use the entropy S as independent variable and represent a thermodynamic
process on a TS diagram. In such a representation, adiabatic lines are vertical lines,
and the area under a path is the heat absorbed: f TdS = AQ.
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T
Q
T, i
A A v
T |
' 7
Q B
S
Sl 52

Figure 3.3 Carnot cycle on a 7§ diagram.

A Carnot cycle is a rectangle, as illustrated in Figure 3.3. The heat absorbed in the
cycle is equal to the area A + B. The heat rejected is the area B, and the total work
output is A. The efficiency is therefore

A

= 3.26
A+ B (3-26)

n

The TS diagram is helpful in analyzing non-Carnot cycles. As an example, consider
the cycle shown in Figure 3.4. The cycle in the left panel is equivalent to a composite
cycle made up of the two Carnot cycles 1 and 2 in the right panel. Their efficiencies
are given by the corresponding ratios of the areas indicated in Figure 3.4:

A
Mm=4TB

c
_ 327
2 CTD (3.27)

From Figure 3.4 we can see that n; > 1, since cycle 1 has a larger ratio of working
temperatures.

T T
1
2
A Y
A A L C ¥
B D
S S

Figure 3.4 The non-Carnot cycle on the left panel is equivalent the two cycles
shown on the right panel.
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Now the combined cycle has efficiency

_ A+C
T A+B+C+D

n (3.28)
A pure Carnot cycle working between the highest and lowest available temperature
will have the efficiency 7, and we expect that to be more efficient than the composite
cycle, that is, n < 7.
To see this, write

1 _A+B+C+D_A+B+C+D

n A+C A+ C  A+C
1 A 1 C

= — + —
771A+C 772A+C

(3.29)

Since 77 > n,, we can replace 7, by 71 in the above, and arrive at the inequality

1 1 A +1 C 1 (3.30)
s 4 = )
n MmA+C mA+C m

Thus

n<m (3.31)

3.5 Condition for Equilibrium

The first law states AU = AQ — PAYV. Using Clausius’ theorem AQ < TAS, we
have

AU <TAS - AW (3.32)

Thus, AU < 0 for asystem with AS = AW = 0. This means that the internal energy
will seek the lowest possible value, when the system is thermally and mechanically
isolated. For infinitesimal reversible changes we have

dU = TdS — PdV (3.33)

Thus, the natural variables for U are S and V. If the function U (S, V) is known, we
can obtain all thermodynamic properties through the formulas

U
P=—{—
(),

aU
T = <~£)V (3.34)

These are known as Maxwell relations.
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3.6 Helmbholtz Free Energy

In the laboratory it is difficult to manipulate S, V, but far easier to change T, V. Itis
thus natural to ask, “What is the equilibrium condition at constant 7', V' 7 To answer
this question, we go back to the inequality AU < TAS — AW.If T is kept constant,
we can rewrite it in the form

AW < =AU -T9) (3.35)

If AW = 0, then (U — TS) < 0. This motivates us to define a new thermodynamic
function, the Helmholtz free energy (or simply free energy):

A=U-TS (3.36)
The earlier inequality now reads
AA < —-AW (3.37)

If AW = 0, then AA < 0. The equilibrium condition for a mechanically isolated
body at constant temperature is that the free energy be minimum.

For infinitesimal reversible transformations we have dA = dU — TdS — SdT. Using
the first law, we can reduce this to

dA = —PdV — 5dT (3.38)

If we know the function A(T, V), then all thermodynamic properties can be obtain
through the Maxwell relations
0A
P=—|—
(),

S——<8A> (3.39)
= o ) i

The first of these reduces to the intuitive relation P = —0U/0V at absolute zero.
To illustrate the minimization of free energy, consider the arrangement shown in

Figure 3.5. An ideal gas is contained in a cylinder divided into two compartments of

volumes V; and V,, respectively, with a dividing wall that can slide without friction.

Heat reservoir T

P,-» | <7D,

Vi Va

Figure 3.5 The sliding partition will come to rest at such a position as to minimize
the free energy. This implies equalization of pressure: P; = P;.
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The entire system is in thermal contact with a heat reservoir of temperature 7. As the
partition slides, the total volume V = V| 4 V, as well as the temperature T remain
constant. Intuitively we know that the partition will slide to such a position as to
equalize the pressures on both sides. How can we show this purely on thermodynamic
grounds? The answer is that we must minimize the free energy. This means that, when
equilibrium is established, any small displace of the partition will produce no change
in the free energy to first order, that is,

sa=8sy 1 5y o (3.40)
Toav YT av, t T '

with the constraint § V| + 6V, = 0. Thus the condition for equilibrium is

04 AN v o (3.41)
av, vy ) T '

Since T is constant, the partial derivatives give the pressures. Hence P; = P;.

3.7 Gibbs Potential

We have seen that the thermodynamic properties of a system can be obtained from
the function U(S, V), or from A(V, T), depending on the choice of independent
variables. The replacement of U by A = U — TS was motivated by the fact that
dU = TdS — PdV, and we want to replace the term 7dS by SdT. This is an example
of a Legendre transformation.

Let us now consider P, T as independent variables. We introduce the Gibbs poten-
tial G, by making a Legendre transformation on A:

G=A+PV (3.42)
Then, dG = dA + PdV + VdP = —SdT — PdV + PdV + VdP, or
dG = —5dT + VdP (3.43)

The condition for equilibrium at constant 7', P is that G be at a minimum. We now
have further Maxwell relations
oG
V=—
oP /),

3G
S=— (57)19 (3.44)

The Gibbs potential is useful in describing chemical processes, which usually take
place under constant atmospheric pressure.
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v A T
U><G
S H P

Figure 3.6 Mnemonic diagram summarizing the Maxwell relations. Each quantity
at the center of a row or column is flanked by its natural variables. The partial derivative
with respect to one variable, with the other kept fixed, is arrived at by following the
diagonal line originating from that variable. Attach a minus sign if you go against the
arrow.

3.8 Maxwell Relations

The following basic functions are related to one other through Legendre transforma-
tions:

Us,v): dU=1TdS—PdV

AWV, T): dA=—-SdT — PdvV

G(P,T): dG=—-SdT+ VdP

H(S,P): dH=1TdS—VdP (3.45)

Each function is expressed in terms of its natural variables. When these variables
are held fixed, the corresponding function is at a minimum in thermal equilibrium.
Thermodynamic functions can be obtained through the Maxwell relations summarized
in the diagram in Figure 3.6.

3.9 Chemical Potential

So far we have kept the number of particles N constant in thermodynamic transfor-
mations. When N does change, the first law is generalized to the form

dU =dQ — dW + pudN (3.46)

where p is called the chemical potential, the energy needed to add one particle to a
thermally and mechanically isolated system. For a gas-liquid system we have

dU = TdS — PdV + ndN (3.47)
The change in free energy is given by

dA = —SdT — PdV + pdN (3.48)
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which gives the Maxwell relation

n= (-ZE) (3.49)
aN )y 1

Similarly, for processes at constant P and T, we consider the change in the Gibbs
potential:

dG = —S8dT — VdP + pdN (3.50)

n= <§> (3.51)
ON /pr

and obtain

Problems

3.1 We derive some useful thermodynamic relations in this problem.
(a) The TdS equations remain valid when dS = 0. Exploiting this fact, express Cy
and Cp in terms of adiabatic derivatives, and show

Crp «r

Cyv ks

(b) Equate the right sides of the first two 7dS equations, and then use P, V as
independent variables. From this derive the relation

a’TV

KT

Cp—Cy =

(c) Using the Maxwell relations show

Cy = -T2 zA
aT% )\,

Cp=—-T" QEE
aT? ) p

3.2 When the number of particles changes in a thermodynamic transformation, it
is important to use the correct form of the entropy for an ideal gas, as given by the
Sacker-Tetrode equation [Equation (2.50)].

(a) Use the Sacker—Tetrode equation to calculate A(V, T') and G(P, T) for an ideal
gas. Show in particular

A(V, T) = NkgT[ln(nA*) — 1]

where 7 is the density, and A = +/ 27h? /mkgT is the thermal wavelength.
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(b) Obtain the chemical potential for an ideal gas from (dA/dN)y r and
(0G/AN)p . Show that you get the same answer

w = kpT In(nr?)

3.3 A glass flask with a long narrow neck, of small cross-sectional area A, is filled
with 1 mol of a dilute gas with Cp/Cy = y, at temperature T. A glass bead of mass
m fits snugly into the neck, and can slide along the neck without friction. Find the
frequency of small oscillations of the bead about its equilibrium position. This gives
a method to measure y.

X

_T— Equilibrium
position

3.4 A cylinder with insulating walls is divided into two equal compartments by means
of an insulating piston of mass M, which can slide without friction. The cylinder has
cross section A, and the compartments are of length L. Each compartment contains
1 mol of a classical ideal gas with Cp/Cy = y, at temperature Ty (see sketch).

-

Y

(a) Suppose the piston is adiabatically displaced a small distance x < L. Calculate,
to first order in x, the pressures Py, P, and temperatures 77, T in the two chambers.

(b) Find the frequency of small adiabatic oscillations of the piston about its equi-
librium position.

(c) Now suppose that the piston has a small heat conductivity, so that heat flows
from 1 to 2 at the rate dQ/dt = K AT, where K is very small, and AT = T} — T».
Find the rate of increase of the entropy of the universe.

(d) Entropy generation implies energy dissipation, which damps the oscillation.
Calculate the energy dissipated per cycle.
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3.5 A liquid has an equilibrium density corresponding to specific volume vo(T). Its
free energy can be represented by

A(V,T) = Nao(T)[vo(T) — v]> — NAT)

where v = V/N.

(a) Find the equation of state P(v T) of the liquid.

(b) Calculate the isothermal compressibility «7 and the coefficient of thermal ex-
pansion «.

(c) Find the chemical potential.

Note: For v > v, the pressure becomes negative, and therefore unphysical. See
Problem 4.4 for remedy.

3.6 A mixture of two ideal gases undergoes an adiabatic transformation. The gases are
labeled 1,2. Their densities and heat capacities are denotedby nj, Cy;, Cp; (j = 1, 2).
Show that the pressure P and volume V of the system obey the constraint PV¢ =
constant, where

_ mCp1 +n2Cpy
n1Cyi +n2Cys

Hint: The entropy of the system does not change, but those of the components do.
For the entropy change of an ideal gas, use AS = NkIn[(V;/V:)(Ty/T;)*?], where
f and i denote final and initial values.

3.7 Two thin disks of metal were at temperatures 7, and 77, respectively, with T, > T;.
They are brought into thermal contact on their flat surfaces, and came to equilibrium
under atmospheric pressure, in thermal isolation.

(a) Find the final temperature.

(b) Find the increase in entropy of the universe.

3.8 The thermodynamic variables for a magnetic system are H, M, T, where H is the
magnetic field, M the magnetization, and 7 the absolute temperature. The magnetic
work is dW = —HdM, and the first law states dU = TdS + HdM. The equation of
state is given by Curie’s law M = « H/T, where « > 0 is a constant. This is valid
only at small H and high 7. The heat capacity at constant H is denoted by Cp, and
that at constant M is Cy;. Many thermodynamic relations can be obtained from those
of a PVT system by the correspondence H <— —P, M «— V

(a) Show
c (8U>
M=\ T+
T ) i

aU M
Ch=—=) —-H|—
T ) 4 aT ) 4

(b) From the analog of the energy equation and Curie’s law, show that

W\ _,
M ),
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This is the analog of the statement that the internal energy of the ideal gas is inde-

pendent of the volume.
(c) Show

2

M
Cy—Cy=—
K

3.9 Define the free energy A(M, T) and Gibbs potential G(H, T) of a magnetic
system by analogy with the PVT system.
(a) Show

dA = —5dT + HdM
dG = —8dT — MdH

(b) Show (8S/3H)y = (M /3T )y, hence

as _ kH
3H ), T2

(b) With the help of the chain rule, show
aT _ xkH
3H )y  CyT

3.10 Adiabatic demagnetization A paramagnet cools when the magnetic field is
decreased adiabatically. The path shown in the accompanying diagram can be used
to cool the system to very low temperatures.

(a) Using the properties derived in the last problem, verify the qualitative behavior
of S as a function of T and H.

S

H2
A
C 1 H, >H,
L% | B
| |
l 1 T
0 T, To

(b)Put H, = 0, H; = H. Assume Cy = aT?, where a is a constant. Find the heat
absorbed by the system along the path of isothermal magnetization A — B.
(c) In the adiabatic demagnetization B — C, calculate 7} as afunction of Ty and H.
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Phase Transitions

4.1 First-Order Phase Transition

When water boils, it undergoes a phase transition from a liquid to a gas phase. The
equation of state in each of these phases is a regular function, continuous with con-
tinuous derivatives; but in going from one phase to another it abruptly changes to a
different regular function. The two phases can coexist in equilibrium at given pressure
and temperature. This means that the Gibbs potential should be continuous as we go
from one phase to the others. However, since the two phases differ in density and
specific entropy, the first derivatives of the Gibbs potential are discontinuous (see
Equation [4.6]). For this reason, the gas-liquid transition is called a “first-order phase
transition.”

There are second-order phase transitions, in which the first derivatives are contin-
uous, but the second derivatives are discontinuous. Examples include the gas-liquid
transition at the critical point, the ferromagnetic transition, and the superconducting
transition. In this chapter, we shall discuss the first-order transition in some detail.
The second-order phase transition will be discussed in Chapter 19.

An isotherm exhibiting a first-order gas-liquid transition is shown in the PV dia-
gram of Figure 4.1. At point 1 the system is all liquid, at point 2 it is all gas, and
in between the system is a mixture of liquid and gas in the states 1 and 2, respec-
tively. They coexist in thermal equilibrium, at a pressure called the vapor pressure.
Since the two phases have different densities, the total volume changes at constant
pressure as the relative proportion is change, generating the horizontal portion of the
isotherm.

The PV diagram is a projection of the equation-of-state surface shown in Figure 4.2,
where we have included a first-order liquid-solid phase transition as well. The gas-
liquid transition region is topped by a critical point, which lies on the critical isotherm.
The transition regions are ruled surfaces perpendicular to the pressure axis. When
projected onto the PT plane, they appear as lines representing phase boundaries. This
is depicted in Figure 4.3.

Following are some important properties:

« Latent heat: Since the coexisting phases have different entropies, the system
must absorb or release heat during a phase transition. When a unit amount of
phase 1 is converted into phase 2, an amount of latent heat is liberated:

[ = To(s2 — 51) “4.1)

47
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All liquid Gas-liquid All gas
mixture

Liquid |

phase Transition region Gas

| I phase

Vi Vy

Figure 4.1 An isotherm exhibiting a first-order phase transition.

Critical point

o

T

Critical isotherm

Gas-liquid
transition

Triple line

I\

Liquid-solid Gas-solid
transition transition

Figure 4.2 Equation of state surface, showing gas-liquid and liquid-solid phase
transitions, both of first order. (Not to scale.) Isotherms are shown as heavy lines and
the transitions regions are shaded gray.
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Figure 4.3 The PT diagram shows phase boundaries or lines of phase coexistence.

where Ty is the absolute temperature at which the two phases can coexist, and s;
is the specific entropy of the ith phase. The specific entropy may mean entropy
per particle, per mole, per unit mass, or per unit volume.

« Critical point: At the critical point the gas and the liquid have equal density
and specific entropy. The phase transition becomes second-order at this point.
There is no critical point for the liquid-solid transition.

« Triple point: The line along which gas, liquid, and solid can all coexist projects
onto the triple point in the PT diagram.

4.2 Condition for Phase Coexistence

In a first-order transition, the coexisting phases have the same P, T. The condition
for equilibrium, therefore, is that the total Gibbs potential be minimum. The relative
proportion of the two phases present may vary, but each phase is characterized by its
chemical potential, the Gibbs potential per particle. We use the equivalent quantity
gi (P, T), the Gibbs potential per unit mass, and represent the total Gibbs potential in
the form

G=mg +mg 4.2)

where m; is the mass of phase i, with a fixed total mass m = m; + m,. The contri-
butions from the two phases are additive because we have neglected surface effects.
In equilibrium, G is at a minimum with respect to mass transfer from one phase to
the other. If we transfer a small amount of mass ém from one phase to the other at
constant P, T, the change §G should vanish to first order:

3G = g18m1 + g28m2 =0 (43)
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with the constraint §m; = —&ém, = &m. The condition for phase coexistence is
therefore (g; — g2)ém = 0. Since ém is arbitrary, we must have

Ag=g —g=0 (4.4)

That is, the coexisting phases must have equal chemical potential. The derivatives of
g are discontinuous across the phase boundary:

d
<—8§> , = —s (specific entropy)
d
< _g) =1v (specific volume) (4.5)

As the name first-order transition implies, there are finite differences in the specific
entropy and specific volume:

a(A
ASESz— 1:———%%)>0

a(A '
szvz—vlz—%—Pg—)>0 4.6)

4.3 Clapeyron Equation

Since the three variables Ag, As, Av are functions of P, T, there must exist a relation
among them f(Ag, As, Av) = 0, and we can apply the chain rule in the form

a(Ag) oT aP
— — — | =-1 4.7)
0T Jp \OP )5, \0(Ag) /1
or
a(Ag)/oT apP
(3(Ag)/8T)p _ (__) @)
(3(Ag)/3P)r 3T / 4,
In equilibrium, Ag = 0, and (3 P/9T)ag=0 gives the slope of the transition line on
the PT diagram:
dPp _ (dP @.9)
dT — \ 8T ] s, '

For the gas-liquid transition, P is the vapor pressure. Substituting this definition into
Equation (4.7), and using Equation (4.6), we obtain

dP As

== A
dlr  Av (“-10)
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Figure 4.4 The slope of the liquid-solid boundary can have either sign, depending
on whether the liquid contracts or expands upon freezing.

or
dP l
dT ~ TAv
where [ = T As is the latent heat. This is called the Clapeyron equation. Depending
on the sign of Av, the slope dP/dT may be positive or negative, as illustrated in
Figure 4.4. The upper panel shows the PT diagram for a substance like CO,, which
contracts upon freezing. The lower panel shows that for H;O, which expands upon
freezing.
In a second-order phase transition the first derivatives of g vanish and the

Clapeyron equation is replaced by a condition involving second derivatives. (See
Problem 4.10.)

(4.11)

4.4 Van der Waals Equation of State

The gas-liquid phase transition owes its existence to intermolecular interactions. The
potential energy U (r) between two molecules as a function of their separation r has
the qualitative form shown in Figure 4.5. It has a repulsive core whose radius rg is of the
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U(r) Iy

&

Atoms

Figure 4.5 Intermolecular potential.

order of a few angstroms, due the electrostatic repulsion between the electron clouds.
The inset in Figure 4.5 shows why ry can be regarded as the molecular diameter.
Outside the repulsive core is an attractive tail due to mutual electrostatic polarization.
The depth of the attractive part is generally of the order of 1 eV, but varies widely
among molecular species. It gives rise to chemical valence and the crystal structure
of solids, and thus plays an important role in the everyday world.

To take the intermolecular interaction into account in a qualitative fashion, we
separate the effects of the repulsive core and the attractive tail. The hard core excludes
a certain volume around a molecule, so other molecules have less room to move in.
The effective volume is therefore smaller than the actual volume:

Ver=V —b (4.12)

where V is the total volume of the system, and b is the total excluded volume, of the
order of b ~ N7rg /6. For a fixed number of atoms, it is a constant parameter.

The pressure of gas arises from molecules striking the wall of the container. Com-
pared with the case of the ideal gas, a molecule in a real gas hits the wall with
less kinetic energy, because it is being held back by the attraction of neighboring
molecules. The reduction in the pressure is proportional to the number of pairs of
interacting molecules near the wall, and thus to the density. Accordingly we put

a
V2
where Pyineric 1 the would-be pressure in the absence of attraction, and a is a constant
proportional to N2. Van der Waals makes the assumption that, for 1 mole of gas,

P = Pyinetic — (413)

P kinetic Veff = RT (414)
This leads to

(V —b) (P + %) —RT (4.15)
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the van der Waals equation of state. In this simple model, the substance is characterized
by only two parameters a and b.

4.5 Virial Expansion

The van der Waals equation of state approaches that of the ideal gas in the low density
limit: V — oo at fixed N. The successive corrections to the ideal gas equation can
be obtained by expanding in powers of V~1. We first solve for the pressure:

(P + =) al

v2) T (V—b)
p_ RT 1 b\ N a
1% 1% V2
PV b\~
Y _(1-2) -2 (4.16)
RT 1% RTV
Expanding the right side, we obtain
PV 1 a b\> [(bY’
A _(b__) d ) QT 4.17
RT +V RT +<V> +(V) + @17)
This is of the form of a virial expansion:
PV (%) C3
—=14+=4+-=+--- 4.18
RT + 1% + V2 + (418)
where ¢, is called the nth virial coefficient. The second virial coefficient
a
=b—- — 4.19
c2 RT (4.19)

can be obtained experimentally by observing deviations from the ideal gas law. By
measuring this as a function of T', we can extract the molecular parameters a and b.

4.6 Critical Point

The van der Waals isotherms are sketched in Figure 4.6. The pressure is a cubic
polynomial in V:

(V — b)(PV* +a) = RTV?

PV? — (bP+RTV?*+aV—ba=0 (4.20)
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Figure 4.6 Isotherms of the van der Waals gas. The critical point is at C.

There is a region in which the polynomial has three real roots. As we increase T
these roots move closer together, and merge at T = T, the critical point. For T > T,
one real root remains, while the other two become a complex-conjugate pair. We can
find the critical parameters P, V., T, as follows. At the critical point the equation of

state must be of the form
(V-V)’=0
V:-3V.VE43ViV —V3i=0
Comparison with Equation (4.20) yields

3V.=b+ RT.
3V = —
c TP
yr =
¢ TP
They can be solved to give
RT, = 22
27b
a
“T 272

(4.21)

(4.22)

(4.23)
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4.7 Maxwell Construction

The van der Waals isotherm is a monotonic function of V for T > T,. Below T,
however, there is a “kink” exhibiting negative compressibility. This is unphysical, and
its origin can be traced to the implicit assumption that the density is always uniform.
Actually, as we shall see, the system prefers to undergo a first-order phase transition,
by breaking up into a mixture of phases of different densities.

According to the Maxwell relation P = —(0A/dV)r, the free energy can be
obtained as the area under the isotherm:

AV, T) = -/ Pdv 4.24)
isotherm

Let us carry out the integration graphically, as indicated in Figure 4.7. The volumes
V1, V, are defined by the double-tangent construction. At any point along the tangent,
such as X, the free energy is a linear combination of those at 1 and 2, and thus
represents a mixture of two phases. This nonuniform state has the same P and T as
the uniform state 3, but it has a lower free energy, as is obvious from the graphical
construction. Therefore the phase-separated state is the equilibrium state.

Figure 4.7 The Maxwell construction.



56 Phase Transitions

The states 1 and 2 are defined by the conditions

0A 0A
—— = —— (equal pressure)
oV, dV,
Ay — A 0A
2 . (common tangent) 4.25)
Vo — Vi A%
Thus,
(A2 — Ap = o4 (V2 — V1)
2 1) = v, 2 1
V2
/ PdV = P (V, — V1) (4.26)
Vi

This means the areas A and B in Figure 4.7 are equal to each other. The horizontal
line in Figure 4.7 is known as the Maxwell construction.

4.8 Scaling

The van der Waals equation state assumes a universal form if we measure P, V, T in
terms of their critical values. Introducing the dimensional quantities

P=— T=—- V=— (4.27)
we can rewrite the equation of state in the form

v N (pyr3)_2%7 (4.28)
e

This is a universal equation, for the coefficients a, b have disappeared.
The scaling law is partly borne out by experiments. The critical data for the elements
involved vary widely, as shown in Table 4.1. Yet, the scaled densities of the liquid and

TABLE 4.1 Critical Data

Element T, °C) P, (atm)

Ne —288.7 26.9
A —122.3 48.0
Kr —63.8 54.3
Xe 16.6 58.0
N, —14.6 58.0
O, —118.4 50.1
coO —-140.0 34.5

CH, -82.1 45.8
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Figure4.8 Theboundary curve of the gas-liquid transition region becomes universal
when the temperature T and the density n are measured in term of their values at the
critical point. (After Guggenheim 1945.)

gas at the phase boundary depend on the scaled temperature in a universal manner,
as shown in Figure 4.8. The universal behavior can be fit by

ny; — ARG 7 T 173
T — 1= = 4.2
A 2 ( TC> (4.29)

where n; is the density of the liquid phase, and n is that of the gas phase. The expo-
nent 1/3 is a “critical exponent” conventionally denoted by the symbol 8. Although
the van der Waals equation of state predicts the scaling behavior, it gives B = 1/2
instead of the experimental value (Huang 1987). This indicates that the model is not
adequate for quantitative purposes.

4.9 Nucleation and Spinodal Decomposition

The van der Waals equation of state is derived under the implicit assumption that the
entire system has uniform density. The Maxwell construction in Figure 4.7 shows
that, in the transition region, the system can lower its free energy by breaking up
into two coexisting phases with different densities. Does the original van der Waals
isotherm still have meaning in this region?
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Figure 4.9 In the two metastable regions, new phases emerge through nucleation.
In the unstable region, two-phase separation occurs locally and spontaneously, in a
process called spinodal decomposition.

It does.

It corresponds to an initial situation that is not in equilibrium. The system was
prepared in a state of uniform density, for example through rapid compression. The
system needs time to break up into the equilibrium mixture, and the kinetics of this
process depends on the compressibility, or curvature of the free energy.

The region in question is shown in the PV diagram of Figure 4.9 as the isotherm
between points A and B. Where the compressibility is positive (0P/3V < 0), the
system is metastable, and the emergence of a new phase is triggered by nucleation.
Where the compressibility is negative (3 P/0V > 0), on the other hand, the system
is unstable; it breaks up locally and spontaneously, in a process called “spinodal
decomposition.”

For a closer look we refer to Figure 4.10, and note the following:

* In Figure 4.10, point A lies in a region where the free energy has a positive
curvature. The inset shows the local free energy. The local Maxwell construction
shows that the uniform state is stable. However, since a global phase separation
does lower the free energy, the situation is only metastable. Nucleation triggers
phase separation, as illustrated in Figure 4.11. Thermal fluctuations create a
microscopic specks of the other phase, of sufficiently large size that it lowers the
local free energy. This is the nucleus that eventually grows to macroscopic size.

* Point B in Figure 4.10 lies in a region where the free energy has a negative cur-
vature. The separated state now has lower free energy than the uniform state, and
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Figure 4.10 In the region A, the free energy has a positive curvature, as shown in
the inset; the system is metastable and waits for nucleation of a new phase. In region
B, the free energy has a negative curvature; the system is unstable and spontaneously
phase separates locally.
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Figure 4.11 When the local free energy has positive curvature, nucleation of a new
phase lowers the free energy. The nucleus then grows to macroscopic size.
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Figure 4.12 Time development of texture created in spinodal decomposition,
obtained through computer simulation of the Cahn—Hilliard equation. (Adopted from
Zhu and Chen 1999.)

the system will phase separate locally at random moments, in a process called
spinodal decomposition. This results in a two-phase texture which coarsens in
time, as illustrated in Figure 4.12. An equation capable of describing the decom-
position is the Cahn—Hilliard equation, which will be derived in Chapter 19.

Problems

4.1 Calculate the change in entropy of the “universe” when 10 kg of water, initially
at 20°C, is placed in thermal contact with a heat reservoir at —10°C, until it becomes
ice at that temperature. Assume that the entire process takes place under constant
atmospheric pressure. The following data are given:

Cp of water = 4180 J/kg-deg

Cp of ice = 2090 J/kg-deg

Heat of fusion for ice = 3.34x 10° J/kg

4.2 Integrate the Clapeyron equations near a triple point to obtain the equations for
the three transition lines meeting at that point. Make the following assumptions:

The gas can be treated as ideal.

The latent heats are constants.

The molar volumes of solid and liquid are nearly equal constants, negligible com-
pared to that of gas.

4.3 Water expands upon freezing, so dP/dT < 0 on the PT diagram. (See Figure
4.4.) Calculate the rate of change of the melting temperature of ice with respect to
pressure from the Clapeyron equation, using the following data:

Heat of melting of ice £ =1.441]
Molar volume of ice v; = 20 cm?
Molar volume of water v, = 18 cm?

4.4 Reconsider the model of a liquid in Problem 3.5, with free energy
A(V,T) = Nag(T)[vo(T) — v]* = Nf(T)

where v = V/N, and vo(T'), ao(T), f(T') are functions of the temperature only.
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(a) If v > vo(T), then the pressure would be negative, assuming that the liquid is
being stretched uniformly. Actually, the liquid would rather not fill the entire volume
available, but remain at specific volume vg. Thus, the pressure would remain zero for
v > vg. Show this using an argument similar to that for the Maxwell construction.
(See accompanying sketch.)

AV, T)

Maxwell
construction

V/N
Vo

(b) Suppose the liquid is in thermal equilibrium with its vapor, which can be treated
as an ideal gas of density n. There are two conditions to be fulfilled, the pressures and
chemical potentials must equalize. Write down these conditions. Show v < vg, and
v— vonlyatT =0.

(c) For nkgT/ay < 1, show nA3 = e~ /%87 where A = \/27h?/mk.

4.5 (a) In a liquid-gas transition, the specific volume of the liquid (phase 1) is usually
negligible compared with that of the gas (phase 2), which usually can be treated as
an ideal gas. Let £ = T (s, — s1) be the latent heat of evaporation per particle. Under
the approximations mentioned, show

Tdap ¢
PdT — kgT
(b) Use this formula to obtain the latent heat per unit mass for liquid 3He,in 0.2 K
increments of 7', from the following table of vapor pressures of *He. The mass of a
3He atom is m = 5.007 x 10* g.

T (K) P (microns of Hg)
0.200 0.0121
0.201 0.0130
0.400 28.12
0.401 28.71
0.600 544.5
0.601 550.3
0.800 2892
0.801 2912
1.000 8842
1.005 9053
1.200 20163

1.205 20529
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4.6 Sketch the Gibbs potential G(P, T') of the van der Waals gas as a function of
P at constant T'. In particular, show the behavior in the transition region. Derive the
Maxwell construction using the principle of minimization of G

4.7

(a) Calculate the free energy A(V, T) for 1 mol of a van der Waals gas.

Hint: Integrate — [ PdV along an isotherm. Determine the unknown additive func-
tion of T by requiring A(V, T') to approach that of an ideal gas as V — oo, given in
Problem 3.2.

(b) Show that Cy of a van der Waals gas is a function of T only.

Hint: Use Cy = —T(3%°A/3T?)y (Problem 3.1). Show (3Cy/3V)r = 0.

4.8 Find the relationship between 7" and V for the reversible adiabatic transformation
of a van der Waals gas, assuming that Cy is a constant. Check that it reduces to the
ideal gas result whena = b = 0.

Hint: Use the TdS equation in Equation (3.16).

4.9 Form the attached table of the second virial coefficient for 1 mol of Ne, find the
best fits for the coefficients a and b in the van der Waals equation of state. (Data From
Holborn and Otto 1925.)

T(K) c3 (em3/mol)

60 —-20

90 -8
125 0
175 7
225 9
275 11
375 12
475 13
575 14
675 14

4.10 The transition line of a second-order phase transition is shown in the accompa-

nying PT diagram. The first derivatives of the Gibbs potential, giving specific density

and entropy, are continuous across this line. The second derivatives, such as com-

pressibilities, are discontinuous. Show that the slope of the transition line is given by
daP o] —

dar KT1 — K12

where o denotes the coefficient of thermal expansion, and «7 the isothermal com-
pressibility.
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Hint: Calculate the change of volume AV along the transition line. The results for
phase 1 and phase 2 must agree.

P
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Chapter 5

The Statistical Approach

5.1 The Atomic View

Experiments show that 1 g mol of any dilute gas occupies the same molar volume
Vo =2.24 x 10* cm® (5.1
at STP (standard temperature and pressure):
Tp, =273.15K
Py = 1atm (5.2)

From this we can obtain the gas constant R = Py V}y/ 7. The ratio of the molar volume
to Avogadro’s number gives the density of any gas at STP:

Density = 2.70 x 10'° atoms /cm® (5.3)

This indicates the large number of atoms present in a macroscopic volume. We use
the term “atom” here in a generic sense, to denote the smallest unit in the gas, which
may in fact be a diatomic molecule such as H.

A gas can approach thermal equilibrium because of atomic collisions. The scatter-
ing cross section between atoms is of the order of

_ 2
O =T7r,

ro ~ 10 8cm (5.4)
where rg is the effective atomic diameter. The average distance traveled by an atom

between two successive collisions is called the mean free path, whose order of mag-
nitude is given by

AR — (5.5)

where n is the particle density. This can be seen as follows. Consider a cylindrical
volume inside the gas, of cross sectional area A, as depicted in Figure 5.1. If the
length of the cylinder is small, it contains few atoms, and in the projected end view
the images of the atoms rarely overlap. As the length of the cylinder increases, more

65
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Figure 5.1 The atoms in the project view begin to overlap when the length of the
cylinder is of the order of the mean free path A.

and more atoms are included, and the images begin to overlap when the length of the
cylinder is of the order of the mean free path. At that point the area A is roughly equal
to the cross-sectional area of all the atoms: A = (AX) (no), which gives Equation
(5.5). At STP we have

A~ 10 cm (5.6)

Thus, on a macroscopic scale, an atom can hardly move without colliding with another
atom.

We have learned from thermodynamics that the internal energy per particle in an
ideal gas is %kB T . Equating this to the average kinetic energy of an atom, we obtain

1 3
Emvz = EkBT (5.7)

Thus the average velocity is

v =14/ 3kpT (5.8)
m

For numerical calculations, it is useful to remember that

1
kpT =~ ZﬁeV at T = 300K

myc? ~ 0.5 MeV (5.9)
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where m, is the mass of the electron, and c is the velocity of light. Thus, for H, gas
at 300 K, we have

v kT (L ! 4%1071  (5.10)
I ~ —e ~4 X .
2 me? 40 © ) 0.5 x 106 x 2 x 2000 eV

Using, ¢ = 3 x 10'° co/s, we get
v &~ 10° cm/s (5.11)

This is the speed with which a gas expands into a vacuum in a free expansion. The
average time between successive collisions is called the collision time:

A
T=="=~10""s (5.12)
v

which is of the order of the relaxation time toward local thermal equilibrium.

5.2 Random Walk

An atom in a gas at STP undergoes 100 collisions per second, on average. We can
imagine how complicated its trajectory must be. It would be so tortuous and irregular as
to appear random, that is, unpredictable. But thermodynamic order emerges precisely
from randomness. To see how disorder can generate order, let us look at a simple
model, the random walk.

Consider a particle moving in one dimension, say along the x axis. At regular time
intervals it makes steps of equal size, choosing at random whether to go forward or
backward. In a walk consisting of n steps, the particle will end up at different positions
in different trials, and after a large number of runs there will result a distribution of
end positions. Our aim is to calculate that.

Let W (k, n) be the probability that, after taking » random steps, the particle is k
steps from the starting point, where —n < k < n. Suppose in one run the particle
makes F steps forward and B steps backward. We must have

F+B=n
F—-B=k (5.13)
Thus
F=(n+k)/2
B=mn—-k)/2 (5.14)

Since each step involves a two-valued decision forward or backward, the total number
of possible trajectories is 2". Among these, those having F forward steps is just the
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number of ways to choose the F forward step from »n, which is

!
(;) - }WnnTFT (5.15)
Thus
n 277n!
wien =2(3) = oran —o G40
For n > 1, and n > |k|, we can use the Stirling approximation
Inn!~nlnn—n+Inv2mn (5.17)
to obtain’
Wk,n) = ! exp (—k—z) (5.18)
S 2rn 2n

The probability of returning to the origin after a large number of steps » is obtained
by setting £k = O:

W0, n) ~ 2an)"V/? (5.19)

The model does not contain intrinsic scales for distance and time. To measure in our
units, for example centimeter and second, we have to introduce then into the model.

Suppose in our units x is the size of a step, and 7y is the duration of a step. Making
n random steps then corresponds to traveling a total distance x in time ¢, with

X = nxg
t = nfy (5.20)

The probability that the particle ends up between x and x + dx at time ¢ is denoted
by W(x, t)dx, with

1 x?
Wix,t) = exp| ——
(1) A/4m Dt P < 4Dt >
p— X0 (5.21)
- 2t '
The normalization condition is

o0
/ dxW(x,t) =1 (5.22)

—00

1Calculational note: To get the factor in front, it is necessary to keep the last term in the Sterling approxi-
mation In +/27 7, and this makes the calculation laborious. However, one can make a short cut by dropping
this term and obtain the constant by noting that; since W is a probability, it should be so normalized that
o
Jo© dkW = 1.
0
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The mean-square distance traveled after time ¢ is

(x%) = /oo dxx*W(x,t) = 4Dt

—00

This describes diffusion, in which the average distance travel over a time interval ¢ is
proportional to /2. The constant D is called the diffusion constant.

If the random walk takes place in three dimensions, with steps taken independently
along the x, y, or z axis, the probability distribution is the product of the three one-
dimensional distributions. Because of the homogeneity of space, it depends only on

r=4x*+y*+2%:

1 r?
W(r, I) = WCXP (_H> (523)

The normalization condition is

o0
A7 / drr’W(r, 1) =1 (5.24)
0

5.3 Phase Space

To formulate a statistical approach to the classical gas, let us first review how we
describe it in classical mechanics. The state of an atom at any instant of time is
specified by its position r and momentum p. The six components of these vector
quantities span the phase space of one atom. For N atoms, the total number of degrees
of freedom is 6N, and the total phase space is a 6/N-dimensional space. The motions
of the particles are governed by the Hamiltonian

N 2
P; 1
H(p,r) =Z%+ 5Z‘U(r,. —r;) (5.25)
i=1 i#]
where U (r) is the interatomic potential. The Hamiltonian equations of motions are
. __0H
pi = o,
oH
r=— (5.26)
3[),'

In the absence of external time-dependent forces, H has no explicit dependence on
the time. The value of the Hamiltonian is the energy, a constant of the motion.

We shall use the shorthand (p, r) to denote all the momenta and coordinates.
The 6/N-dimensional space spanned by (p, r) is called the I'-space. A point in this
space, called a representative point, corresponds to a state of the N-body system at
a particular time. As time evolves, the representative point traces out a trajectory.
It never intersects itself, because the solution to the equations of motion is unique,



70 The Statistical Approach

P  Energy surface

T\ g T
Locus of \
representative point Cell volume = At
I-space p-space
(6N—dimensional) (Six-dimensional)

Figure 5.2 In I'-space, the evolution of an N-particle system is represented by one
trajectory on a (6 N — 1)-dimensional energy surface. In p-space, it is represented by
the “billowing” of a cloud of N points in a six-dimensional space.

given initial conditions. Because of energy conservation, it always lies on an energy
surface, a hypersurface in I'-space defined by

H(p,r)=E (5.27)

Because of atomic collisions, the trajectory is jagged. It can never intersect itself, for
the dynamics determines a unique trajectory from a given initial state, and it is time-
reversible. Thus the trajectory makes what appears to be a self-avoiding random walk
on the energy surface. A symbolic representation of I"-space is indicated in Figure 5.2.

Another way to specify the state of the system is to describe each atom separately.
The motion of each atom is describe by momentum and position (p, r), which spans
a six-dimensional phase space called the pi-space. The overall system is represented
by N & 10" points, as illustrated schematically in Figure 5.2. These points move
and collide with one another as time goes on, and the aggregate billows like a cloud.

In an ideal gas, which is the low-density limit of a real gas, atoms can be thought of
hard spheres that do not interact except when they collide. The total energy is well ap-
proximated by the sum of energies of the individual atoms. However, collisions cannot
be ignored, for they are responsible for the establishment of thermal equilibrium.

5.4 Distribution Function

We are not interested in the behavior of individual atoms, but statistical properties
of the entire system, for that is what we can observe on a macroscopic scale. Such
statistical properties can be obtained from the distribution function f(p, r, ¢) defined
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as follows. Divide u-space into cells, which are six-dimensional volume elements
At = Ap,Ap,Ap, AxAyAz (5.28)

A cell is assumed to be large enough to contain a large number of atoms, and yet small
enough to be considered infinitesimal on a macroscopic scale. From a macroscopic
point of view, atoms in the ith cell have unresolved positions r;, and momenta p;,
and a common energy €; = p?/2m.

The number of atoms in cell i at time ¢ is called the occupation number n;. The
distribution function is the occupation number per unit volume:

fi,ri, t) At =n; (5.29)

Since there are N atoms with total energy E, we have the conditions
Sw=
Zniei =F (530)

The unit for the phase-space volume At is so far arbitrary. This does not lead to
ambiguities when f At appear together, but when f appears alone, as in the expression
for entropy later, we will have an undetermined constant. As we shall see, quantum
mechanics determines the unit to be 4>, where 4 is Planck’s constant.

We assume that f (p, r, ¢) approaches a continuous function in the thermodynamic
limit, and regard At as mathematically infinitesimal:

At —> dPpdir (5.31)

We can then write

/d3pd3r f,r,0)=N

2
/d3pd3r f(,r, t)2£n; —E (5.32)

If the density is uniform, then f(p, r, ¢) is independent of r. We denote it by f(p, ?),
and write

/d3pf(p, 1) =

(5.33)

<|m <|=z

2
/ £p fo 00 =
ni

The distribution function evolves in time according to microscopic equations of mo-
tion, and we assume that it eventually approaches a time-independent form fo(p, 1),
which corresponds to thermal equilibrium. Our task is to find the equilibrium distri-
bution, and to deduce from it the thermodynamics of the ideal gas.
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5.5 Ergodic Hypothesis

After a time long compared to the collision time, (which is about 1079 s for a gas at
STP,) the system should reach some kind of steady state that corresponds to thermal
equilibrium.

In classical mechanics, the motion of more than three bodies is generally “chaotic.”
That is, two states initially close to each other will diverge from each other exponen-
tially with time. Thus, a small change in the initial condition will lead to very different
final states, after a long time. This is the basis of the expectation that the trajectory
in ['-space becomes a random walk. This is more precisely stated as the ergodic
hypothesis:

Given a sufficiently long time, the representative point of an isolated sys-
tem will come arbitrarily close to any given point on the energy surface.

The statement can be proven for systems with certain mathematical properties that
are somewhat artificial. However, even if one could extend the proof to realistic sys-
tems, it does not provide a criterion for “sufficiently long time.” Most mathematical
attempts to prove the hypothesis use methods that avoid dynamics, whereas the phys-
ically relevant question of the relaxation time is a dynamical one. Thus, although the
ergodic theorem gives us conceptual understanding, it does not hold any promise for
practical applications.

5.6 Statistical Ensemble

In making measurements we effectively perform time averages, because instruments
have finite resolutions. The pressure read on a manometer, for example, is a time
average over the response time of the instrument, which may be a tiny fraction of a
second, but extremely long compared to the collision time. In the statistical treatment,
we assume that a time average can be replaced by an average over a suitably chosen
collection of systems called a statistical ensemble. It is conceptually an infinite col-
lection of identical copies of the system, characterized by a density function p(p, r, t)
in I"-space:

o(p, r, t)dp dr = number of system in dp dr at time ¢ (5.34)
where (p, r) denotes all the momenta and coordinates of the particles in the system:

(p,r)=®@1,...,PN; F1,...,TyN)
dpdr=d*"pd* r (5.35)
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The probability per unit phase-space volume of finding the system in dp dr at time ¢
is given by

p(p,r,t)
[dpdro(p,r,1)

The ensemble average of a physical quantity O(p, r) is defined as in the thermody-
namic limit

Probability density = (5.36)

(0) = [dpdrp(p,r,t) O(p, 1)
[dpdrp(p,r,t)

It is important to keep in mind that members of the ensemble are mental copies of the

system and do not interact with one another.

As the system approaches thermal equilibrium, the ensemble evolves into an equi-
librium ensemble with a time-independent density p(p, r). The ensemble average
withrespect to p(p, r) then yields thermodynamic quantities. We assume that p(p, r)
to depend on (p, r) only through the Hamiltonian, and denote it by p(H (p, r)). This
automatically makes it time-independent, since the Hamiltonian is a constant of the
motion.

(5.37)

5.7 Microcanonical Ensemble

For an isolated system, the density p is constant over an energy surface, according to
the ergodic hypothesis. This condition is known as the assumption of equal a priori
probability, and defines the microcanonical ensemble:

1 GfE<H(p,r)<E4+A)
p(H(p,r)) == { , (5.38)
0 (otherwise)
where A is some fixed number that specifies the tolerance of energy measurements,
with A « E. The volume occupied by the microcanonical ensemble is, up to a
constant factor specifying the units,

'E,V)= /dpdr,o (H(p,r)) = / dpdr (5.39)
E<H(p,r)<E+A

where the dependence on the spatial volume V comes from the limits of the integra-
tions over dr. This is the volume of the shell bounded by the two energy surfaces with
respective energies E + A and E. Since A « E, it can be obtained by multiplying
the surface area of the energy surface E by the thickness A of the shell. The surface
area, in turn, can be obtained from the volume of the interior of the surface. Thus,

AD(E,V
(E. V)

'(E,V)= Yo

OE,V) = / dpdr (5.40)
H(p.q)<E



74 The Statistical Approach

E+A

Volume I'(E)

Figure 5.3 The volume I'" of the thin shell can be obtained from the volume ® of
the interior of the shell: I" = (3®/IE)A.

where ®(E, V) is the volume of phase space enclosed by the energy surface E, as
illustrated in Figure 5.3. Ensemble averages are independent of the unit used for I.
The connection to thermodynamics is furnished by the definition of entropy:

S(E,V)Yy=kpInT'(E, V) (5.41)

The factor kg, Boltzmann’s constant, establishes the unit. The arbitrariness of the units
for I' means that § is defined up to an arbitrary additive constant. The reason for taking
the logarithm of T" is to make S additive for independent systems with the same number
of particles. Two independent noninteracting systems have separate distributions p
and p’, respectively, and they occupy volumes I" and I' in their respective I"-spaces.
The total I'-space is the direct product of the two spaces and the total volume is the
product I'T". Another way of stating this is that the probability of two independent
events is the product of the individual probabilities. Thus the total entropy is

kgIn(l'T") = kpInT + kpInT’ (5.42)

This definition yields S(E, V), the entropy as a function of energy E and volume
V, for a fixed number of particles. To obtain thermodynamic functions through the
Maxwell relations, however, we need to obtain the function E(S, V) from S(E, V).
This procedure is somewhat cumbersome, but we can circumvent it by calculating
ensemble averages, as we shall see.

A more convenient ensemble for calculations is the canonical ensemble, which we
shall take up in a later chapter.

5.8 Correct Boltzmann Counting

In defining the distribution function, we have discretized the w-space of a single
atom into cells labeled by i, and denote the occupation number of the cell by n;.



5.8 Correct Boltzmann Counting 75

We refer to the set of occupation numbers {r;} as a distribution. In classical physics,
this distribution refers to not one microscopic state but a multitude of states. This is
because the permutation of the coordinate of two atoms leads to a new microscopic
state of the gas, but it does not change the distribution. Therefore a given distribution
{n;} corresponds to a collection of states in I'-space; it “ occupies” a volume in
I"-space, which we denote by

Qin;) = Qiny,na, ...} (5.43)

The total volume in I'-space is obtained by adding the contributions from all distri-
butions:

(E,V)= Z Q{ni, ny, ...} (5.44)
{ni}

where the sum ) | () extends over all possible sets {n;} that satisfy the constraints
[Equation (5.30)]. The ensemble average of the occupation number r; is given by

Z[ni} nkQ{nla na, ... }
Z[ni} Q{nl, na, ... }

In computing Q2{n;}, there is what appears to be an ad hoc rule, known as “correct
Boltzmann counting.” Picture the cells of y-space as a array of boxes with n; identical
balls in the ith box, as illustrated in Figure 5.4. The number of microscopic states
corresponding to this distribution is the number of permutations of the N balls that
leaves the distribution unchanged:

{ne) = (5.45)

N n ng
Qofni} = m)w AR (5.46)
where A; is the intrinsic probability for the ith cell. Correct Boltzmann counting
instructs us to omit the factor N! and take

Q) = ——— AT (5.47)
nylng!---ng!
This rule is rooted in the quantum-mechanical notion of indistinguishability, which
has no classical analog. There is no logical way to justify it within classical mechanics
itself, but it is necessary in order to make the entropy per particle a function of the
density N/ V, as is required of a truly extensive quantity.
The intrinsic probabilities A; are introduced for mathematical convenience, and
will eventually be set to unity.

112 K

n; Ny Ny

Figure 5.4 Place n; balls in box 1, n; balls in box 2, and so on.
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5.9 Distribution Entropy: Boltzmann’s H

The probability of finding an atom in state i is given by n; /N. If the distribution {n;}
is sharply peaked about some i, we are relatively certain where to find an atom. If the
distribution is broad, on the other hand, we would be more uncertain about the state
of an atom. We may look upon the distribution as a measure of uncertainty, and it is
quantified by Boltzmann’s H function:?

HB{l’li} = kB In Q{I’ll} (548)

which might be called the “distribution entropy”.
From Equation (5.47) we have

InQfn;} = —Zlnni! + Zn,— Ini; (5.49)

Assuming that n; are large compared to unity, we can use the Sterling approximation
Inn! 2~ nlnn — n (see Appendix). Thus,

Hp{n} = ~kp Y nilnn; — kg > i-Dn (5.50)

The last term vanishes when we put A; = 1, as we must do eventually. The form
of Boltzmann’s H can also be derived in the context of information theory, from
consistency requirements relating to dividing sets into subsets, as we shall see later.

The thermodynamic entropy of the system is, according to Equations (5.41)
and (5.44),

S Hp{n;}
P ln% Q{n;} = ln%exp - (5.51)

which looks somewhat complicated. In the thermodynamic limit, however, the sum
over distributions is dominated by the most probable distribution {7;}, which maxi-
mizes Hp. Thus, for all practical purposes,

S = Hp{A;} = —kp » 7 In7; (5.52)

4

We shall calculate this explicitly in Section 6.5, and show that it agrees with a calcu-
lation using the basic definition (Problem 5.7). The dominance of the most probable
distribution will be explained in Section 6.7.

2Boltzmann’s H was meant to be the Greek capital eta. His famous “H theorem” states that the distribution
entropy never decreases under the action of atomic collisions. It was the first proof of the second law of
thermodynamics from atomic theory. For more details, see Huang 1987.
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5.10 The Most Probable Distribution

The most probable distribution {fi;} is the set of occupation numbers that maximizes
Hp under the constraints [Equation (5.30)]. In principle, we would like to obtain the
ensemble average (ny), but 7, is easier to calculate, and we can show that the two
coincide in the thermodynamic limit. (See Chapter 6)

To find {71;}, we note that, since Hg{7;} is at a maximum, an infinitesimal change
away from {71} will produce a change of second-order smallness. That is, under the
variation n; — 7; + 8n;, the entropy change is §Hgp = O (8n;)?. Therefore the most
probable distribution is determined by the condition

with the constraints
Z sn; =0
Z €dn; =0 (5.54)
i

Because of these constraints, we cannot vary the n; independently, but must use the
method of Lagrange multipliers (derived in the Appendix). That is, we consider a
modified problem

Hpg{n;
5 l;cin}—l—alZn,-—l—ﬂZein,— =0 (5.55)

where o and B are fixed parameters called Lagrange multipliers. We can now vary
each n; independently, and after obtaining 7; as a function of & and 8, we determine
o and B so as to satisfy the constraints [Equation (5.30)].

Varying the n; independently, we obtain

> [=Inn; +a + e +1nén; =0 (5.56)

Since the §n; are arbitrary and independent, we must have
Inn; =a — Be; +1nA;
n; =1 CePé (5.57)
where C = ¢“. We now set A; = 1 and write

n; = Ce P (5.58)
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The Lagrange multipliers are determined by the conditions
C Z ePi =N
CY ge?i=E (5.59)
i

In the limit N — oo, we make the replacement
n; — f (@i, r)d pd’r (5.60)

For a free gas in the absence of external potential, the distribution function is inde-
pendent of r:

f(p) = Ce P¥/2m (5.61)
Thus the conditions become
N
/d3pf(p) = =n
1/d3 P = L (5.62)
n p2m P)= N )

The distribution function f(p) is called the Maxwell-Boltzmann distribution. It de-
scribes a uniform free gas in thermal equilibrium, with density » and energy per
particle E/N. We shall study its properties in detail in the next chapter.

35.11 Information Theory: Shannon Entropy

To derive the distribution entropy from a different perspective, we turn to information
theory, which is concerned with measuring the uncertainty in a message transmitted
through a noisy channel.

A message is made up of characters x, which can assume K possible values
{x1,...,xk} (e.g., K = 128 for the characters in ASCIL) The uncertainty in a
character x is described by a probability distribution {p, ... , px}, where p; is the
probability that x = x;. Clearly, p; > 0 and )", p; = 1. To map this problem into
that of the atom gas, we make the identification p; = n;/N, and allow K to approach
infinity.

Given a probability distribution {p1, ... , px} how can we quantify the uncertainty
inherent in the distribution? (Shannon 1948) proposes the following entropy function

Hg{p;} = Hs(p1, ..., px) (Shannon entropy) (5.63)

which is a continuous function that satisfies a certain “composition rule,” as explained
below.
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qQ

Figure 5.5 A set of cells is grouped into arbitrary boxes of varying sizes. To identify
a cell, we can first point to a box, then point to a location inside the box. The defining
property of the Shanon entropy, which measures the uncertainty associated with a
distribution over the cells, is that it be independent of how the boxes are chosen.

Picture the possible values {x1, ... , xx} as cells illustrated in Figure 5.5. We can
group the cells into boxes of various sizes in an arbitrary manner. To point to a cell,
we can first point to a box and then point to a location inside the box. The composition
rule says that the entropy must be independent of how we choose to box the cells.

Let us put the first a cells into box 1, the next b cells into box 2, and so on. The
probability associated with a box is the sum of cell probabilities inside the box:

g1 =p1+t- -+ Pa
g2 = Pat+1+ -+ Patb

(5.64)

The conditioned probability of cell i, when it is known that it is contained in box A,
is p;/q,. We can see this is by noting that it should reduce to p; when multiplied by
the probability of box A. The composition rule states

D1 a
Hs(p1,...,pn) = Hs(q1, ... ,qm) +q1Hs (—, , B-)
qi q1
+ g2 Hg (pa+1 s Pa+b> + .- (5.65)
q2 q2

The first term on the right side refers to boxes; the subsequent terms refer to locations
within the boxes. The latter are multiplied by the probability of the boxes, because
an additional uncertainty is incurred only when a box is pointed to.

We now find Hs by solving Equation (5.65). It is sufficient to find Hy for ratio-
nal arguments, since it is a continuous function. For the special case of a uniform
distribution, with p; = 1/K, let Hg be denoted by

1 1

Now group the cells into B boxes, with m) cellsinbox A. We must have >, my = K.

The probabilities of box A is given by

mj
qr =
Zﬁ mg

(5.67)
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Under these circumstances the composition rule [Equation (5.65)] reduces to
J(K) = Hs(q1, .- ,98) + q1J(m1) +---+ gpJ(mp) (5.68)

which can be rewritten as

B B
Hs (g1, ... ,q8) =J (Z m) =Y @ (my) (5.69)
A=1 A=1

Now choose all m; = s, so that

B
E nm, = Bs
A=1

1
D=7 (5.70)
Then Equation (5.69) reduces to
J(B)+ J(s) = J(Bs) (5.71)
the solution of which is>
J(@)=Cplnz (5.72)

where Cyis an arbitrary constant. Substituting this into Equation (5.69), we obtain

B B
Hs (g1, .- ,q5) = Coln (Z mx) —Co Y _qrln(my) (5.73)
A=1 A=1
Noting from Equation (5.67) that my = g, > Mg, We obtain

Hg{g:} =—Co > qilng, (5.74)
A

which, up to units and an additive constant, is none other than Boltzmann’s H [Equa-
tion (5.50)].

In information theory, it is customary to put Cy = 1 and replace the natural log-
arithm In by log;, the logarithm to base 2. The unit of the Shannon entropy is then
called a “bit.”

Problems

5.1 Hydrogen gas is contained in a cylinder at STP. Estimate the number of times the
wall of the cylinder is being hit by atoms per second, per unit area.

5.2 A room of volume 3 x 3 x 3 m> contains air at STP. Treating the air molecules
as independent objects, estimate the probability that you will find a 1-cm? volume

3Shannon (1948) shows that the solution is unique.
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somewhere in the room totally devoid of air, due to statistical fluctuations. Do the
same for a 1-A3 volume.

5.3 In a gas at STP, let p(r)dr be the probability that an atom has a nearest neighbor
between distances r and r + dr. Find p(r).

5.4 In an atomic beam experiment a collimated beam of neutral Na atoms traverses
a vacuum chamber for a distance of 10 cm. How good a vacuum is required for the
beam to remain well-collimated during the transit?

5.5 Neutrinos are the most weakly interacting particles we know of, and they can
penetrate the earth with the greatest of ease. This has caused some writer to worry
about neutrinos hitting “a lover and his lass” from beneath the bed (by way of Nepal).
Is the fear founded?

(a) Assuming a neutrino cross section of o = 1
nucleon, estimate the neutrino mean free path in water.

(b) Sources for neutrinos include cosmic-ray reactions in the atmosphere, and
astrophysical events. For the sake of argument, assume there is a neutrino flux of
50 cm™2 s~!. Show that a person whose mass is of order 100 kg would get hit by a
neutrino about once in a lifetime. (Perhaps that’s what kills the person.)

0~ ¢m? for collision with a

5.6 Volume of n-sphere

To calculate the phase-space volume of an ideal gas in the microcanonical ensemble,
we need the surface area of an n-dimensional sphere of radius R. The volume of an
n-sphere of radius R is of the form

®,(R) =C,R"
The surface area is
%,(R) = nC,R*"!
All we need is the constant C,. Show that

277,'"/2
r(¢+1)

n —

where I'(z) is the gamma function.
Suggestion: We know that ffooo dx exp(—kxz) = /7 /A. Thus

x
/ dxy -+ - dx, P R (7w /A)"?

—0

Now rewrite the integral in spherical coordinates as f;° dR R"~! exp(—AR?), which
is a gamma function.

5.7 Entropy of ideal gas
The Hamiltonian for a free classical ideal gas of N atoms can be written as H =
PP+pi+---+ P3x» where we have chosen units such that 2m = 1.

(a) Show that the phase-space volume is I'(E, V) = Ko VNS, (E), where K is a
constant, and n = 3N.
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(b) Calculate X,,, and show that the entropy S(E, V) in the thermodynamic limit
agrees with the result from thermodynamic:

S(E, V) i InN
=In(VE¥ 0| —
Nkz n( )+ N

5.8 Ideal gas in harmonic trap
If we put the ideal gas in an external harmonic-oscillator trapping potential, the
Hamiltonian would become H = (p? + p3+---+ piy) + 3 + 12 +---+7rky),in
special units.

(a) Show that the phase-space volume is I'(E, V) = Kj0,(E), where K, is a
constant, and n = 6N.

(b) Find the entropy of the system.

5.9 Model the trajectory of a molecule in a gas as a random walk in 3D, due to
collisions. Give an order-of-magnitude estimate of the time it would take an air
molecule in a room to traverse a distance of 1 cm. What about 1 m?

5.10 In the free-expansion experiment illustrated in Figure 2.1, a gas of N atoms was
originally confined inside a compartment. A hole was opened to let the gas expand
into the next compartment, which was originally vacuous. Suppose each gas atom
executes random walk due to collisions. In principle, all the atoms can get back to
the initial state by sheer coincidence. Show that, for that to happen, one would have
to wait the order of eV collision times. How many ages of the universe does this
correspond to?
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Chapter 6

Maxwell-Boltzmann Distribution

6.1 Determining the Parameters

The Maxwell-Boltzmann distribution for an ideal gas is

f(p) = Ce PP/ 6.1)
The conditions that determine the parameters C and 8 are
/ d’p f(p) =n
1 p? E
— d3 —_ = — 6.2
sl e = 62)

where n is the density of the gas and E /N is the energy per particle.
To explicitly calculate C and B, we need the Gaussian integral

T -*xzz\/E 6.
/_Oo xe k (6.3)

Related integrals can be obtained by differentiating both sides with respect to A:

o0
2 —ax? _ ﬁ
/_oodxx e = 23
o0 37
4 —rx? __
/_Oo dx x"e = 152 (6.4)
Thus
o —A( 24 p24 2)
n=C [ dpidpadpye i
-—00
—C /Ood —Ap? S—C(”)”2 6.5)
= N Ip e = . .
and
5\ 32
C=n (—> (6.6)
T

83
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Putting A = 8/(2m), we obtain

F; 3/2
c=n <2n_m) : 6.7)
Next we calculate
E C S 2 2 2 _)‘(P2+P2+p2)
N:2mn _OodpldPde3 (p1+P2 +.p3) e 1T +r;
3 A 32 poo o
" 2m (E) /_oo dp,dp,dps P%e A(pi+p3+p3)
3 A 3/2 00 o )
" om (_) U ap) p%e—w} U dpe_kpzl
2m \ 7w e i
-5 kwﬁ(n>_3“3 (6.8)
Therefore
3E
P=3n 6.9)

We shall now show that 8 = (kgT)~!.

6.2 Pressure of Ideal Gas

The pressure of an ideal gas is the average force per unit area that it exerts on the wall
of its container. Take the wall to be normal to the x axis and assume that the wall is
perfectly reflecting. When an atom with x-component velocity v, is reflected by the
wall, it will transfer an amount of momentum 2mv, to the wall. The force acting on
the wall is the momentum transfer per unit time and the pressure is the force per unit
area N the wall:

Pressure = (momentum transfer per atom) x (flux of atoms) (6.10)

The flux is the number of atoms crossing unit area per second, and this is equal to the
number of atoms contained in a cylinder of length equal to v,, of unit cross section.
This is illustrated in Figure 6.1. Thus,

Flux of atoms = v, f(p)d°p (6.11)

The pressure is given by

P= / d’pQ2mv,)v, f(p) = m / d’pv? f(p) (6.12)
v >0
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Unit area

Wall

Figure 6.1 In 1 second, all the atoms with x-component velocity v, would have
evacuated a cylinder of length numerically equal to v,.

In the integrand, we may replace v2 by 3 (v2+ v2+ v2) = p?/3m?. Thus,

_ 1 [ 2 _2E
P—3m/dpp f® = 6.13)

The ideal gas temperature T, which coincides with the absolute temperature, is defined
by PV = NkgT. Thus

E 3T (6.14)
N 2° '

Since E/N = 3/ (2B), as shown earlier, we have 8 = (kg !,
In summary, the parameters in the Maxwell-Boltzmann distribution are given by
= 1
kT

n

6.3 Equipartition of Energy

The factor 3 in the formula £E/N = %kBT represents the number of translational
degrees of freedom, the number of momentum components appearing in the energy
of an atom:

1 2 2 2
€=~ (P2 + P+ p?) (6.16)

Each quadratic term in the energy contributes kz T'/2 to the internal energy per particle,
hence kg /2 to the specific heat at constant volume. This is known as the principle of
equipartition of energy.
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TABLE 6.1 Vibrational and

Rotational Excitation Temperatures

Tyiv (K) Trot (K)
H, 85.4 6100
N, 2.86 3340
0, 2.07 2230

If our “atoms” are polyatomic molecules, there will be additional quadratic terms in
the energy, representing rotational and vibrational degrees of freedom. Each of these
term will contribute kg /2 to the specific heat additively, as long as the thermal energy
kpT 1is sufficient to excite them quantum-mechanically. For example, a diatomic
molecule such as H, has two rotational and one vibrational degrees of freedom. Its
energy is of the form

1 2 2 2 7o P’ | Bap 5
e_ZM(Px+Py+PZ)+2LL+21”+(2M+ 5 q) (6.17)
where P is the total momentum, and J, and J|, respectively, denote the angular mo-
mentum perpendicular and parallel to the symmetry axis of the molecule. The last
two terms represent the energy of a harmonic oscillator corresponding to the vibra-
tional mode. These quantities have to be treated as quantum operators. In particular,
the rotational and vibrational energies have discrete eigenvalues, and have minimal
energies kp Tro1, and kg Toip, respectively. Examples of these threshold values are listed
in Table 6.1 (data from Wilson 1957).

At room temperature the thermal energy is not sufficient to excite the vibrational
mode of H,, and so its specific heat is %k. Figure 6.2 shows the heat capacity of 1 mol

7/2

5/2

CV

R
3/2
2| — —

0
10 50 100 500 1000 5000
T (K)

Figure 6.2 Heat capacity per mole of H; as function of temperature in log scale.
(After Present 1958.)
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of molecular hydrogen over a wide range of temperatures on a logarithmic scale. Thus
we see quantum mechanics at work even at high temperatures.

6.4 Distribution of Speed

The distribution function is independent of position for a gas in the absence of ex-
ternal potentials. This means that atoms move with the same Maxwellian velocity
distribution in every volume element in the air around you. Because of the isotropy
of space, the distribution depends only on the magnitude p of the momentum. Thus,
the components of the velocity average to zero:

d3
v =L LPRID) _ 6.18)
m [ d*p f(p)
The mean-square velocity is not zero:
2 d*pp? 3kgT
w2y = P _ J&pp’f(p) _ 3ks 6.19)
m?  m?[dpf(p) m
and leads to a root-mean-square velocity
3kpT
Vrms = |/ — (6.20)
m
From this we obtain the mean kinetic energy
1 3
§m<v2) = EkBT (6.21)

which agrees with the equipartition principle.

The effective volume element in momentum space is 47 pdp. The quantity 47 p?
f(p) is the distribution of speed, the number of atoms per unit volume per unit inter-
val of p whose magnitude of momentum lies between p and p + dp. A qualitative
graph of the speed distribution is shown in Figure 6.3. The area under the entire
curve is the particle density n. The area under the curve for p > pi is the density of
particle with magnitude of momenta greater than p;. The momentum at the maxi-
mum is pg = +/2mkpT, and the corresponding velocity is called the most probable

velocity:
2kpT
vp = 1/ ’z (6.22)

If the gas moves as a whole with uniform velocity vo, then in maximizing Q{n;}
we must add the constraint that the average momentum per particle is pg = mvy. This
leads to a momentum distribution centered about pg:

f(p) = Ce @R’ (6.23)
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4mp? f(p)

Po P1

Figure 6.3 Maxwell-Boltzmann distribution of speed.

6.5 Entropy

The entropy, defined as S = kp InT" in Equation (5.41), is calculated in Problem 5.7.
We now calculate it according to Equation (5.52), as the distribution entropy of the
most probable distribution:

S(V,T)=—kg » _#;Inn; (6.24)

Writing 71; = f; At, where f; is the Maxwell-Boltzmann distribution function and
At the phase space volume element, we have

> AilnA; =At Y filnfi+ NlnAz (6.25)

The last term is an additive constant, and will be ignored. Thus, in the thermodynamic
limit we have

SV, T) = —Vkg / &p f(®)In f®) 6.26)

Now we calculate the integral:

/d3p f®fp)=C /d3p e In (Ce—*P2>
=C / d>p e (InC — Ap?)

— (CInC) / dpe™ —)\C / Sppe™  (6.27)
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where A = (2mkzT)~". In the first term, we note that C [ d°p e~ = n. For the
second term, explicit calculation gives

AC / dpp*e™ = 4nrC /0 ” dpp*e " = %n (6.28)
Thus
/d3p f@In f(p) =nlnC — %n (6.29)
Finally
S(V, T) = NkgIn(n~'T%?) + Cy (6.30)

where Cj is a constant, which may depend on N. It will be determined in Section 8.7,
where we supply correct units for the phase volume. This result agrees with Equation
(2.49) obtained in thermodynamics.

The distribution entropy obtained here agrees with the entropy calculated from
the basic definition S = kg InT', which includes contributions from all possible
distributions. The reason for the agreement lies in the fact that, in the thermodynamic
limit, most distributions are close to the most probable one. We shall show this later
when we examine fluctuations about the most probable distribution.

6.6 Derivation of Thermodynamics

In the mean time, let us derive the thermodynamics of an ideal gas. The equation of
state PV = NkgT was obtained earlier. The internal energy is just the total energy of
the system:

3
U(T)=E= ENkBT (6.31)

Thus Cy = %Nk, and PV = %U . We have calculated the entropy, which can be
written in the form

S 3
— =NInV+_NInT (6.32)
kg 2

Both U and § are determined only up to an arbitrary additive constant.
Taking the differential of S, we have

ds dv 3dU
—_— = — 4+ -— 6.33
Nkpg Vv * 2U (6.33)
Using the equation of state to write dV/V = (P/T)dV, we can rewrite the above as

1
ds = T (dU + PdV) (6.34)
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The first law of thermodynamics is a definition of the heat absorbed:
dQ = dU + PdV (6.35)
The second law is the statement
dQ =TdS (6.36)

which says 7 is the integrating factor that makes dQ/T an exact differential.

That the entropy of an isolated system never decreases is implied by the fact that it
1s a monotonically increasing function of the volume. For an isolated system, the only
thing that can happen is that the volume increases, as when a wall of the container of
the gas is suddenly withdrawn.

6.7 Fluctuations

We now address the question, “How probable is the most probable distribution?” For
an answer, we calculate the mean-square fluctuation about the average occupation
(n;). We will show that the fluctuation vanishes when N — 00, thereby showing
that almost all microscopic states of the gas have this distribution, and therefore (n;)
coincides with most probable distribution 7;.

We start with the expression

1
- ni e ng
Qi = AP 2 (6.37)

and take advantage of the presence of the factors ;. Taking the partial derivative with

respect to Ag, we have

0
Ak B—MQ{ni} = n;Q2{n;} (6.38)

Thus the ensemble average of the occupation number is given by

1 0
- e S Qg
el prmeivy “ohik o tri)

0 olnl
= A —1 Qn;} = 6.39
o n% {n:} o (6.39)

where

Vv = In )"i (640)
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The ensemble average of n? can be calculated as follows:

12T
2
ny) = n;Q2{n }—
<k> Z{n} { }Z k
_ 0 (Llary 1 /ar 2
Ty \I'dy ) T2 \ou
_ 0 (3WC\  /9Wl 2
—3Vk 3Uk 8vk
d

= o (m) + ()’ (6.41)
Vi

2

Thus the mean-square fluctuation is given by

9 (r)
2 2
— =A 6.42
(ne) — (m) . (6.42)
Assuming for the moment that
(i) ~ 7y = A CePeéix (6.43)
we have
a
A V) CemBek = (ny) (6.44)
A
Thus
(ng) — (m)® = () (6.45)
The fractional fluctuation is given by
2 2
<nk> — (ng) . <nk 1
= ﬁ> - (6.46)

which vanishes like N~! when N — oo. In the sense we have (n;) ~ #;.

We conclude that the Maxwell-Boltzmann distribution is a most prevalent condition
for a gas in equilibrium. Imagine that all possible states of the gas with given N and
E are placed in a jar. Wearing a blindfold, you pick a state from the jar, and you
can expect to get a state with Maxwell-Boltzmann distribution, with overwhelming
probability.

6.8 The Boltzmann Factor

Our derivation of the most probable distribution does not specifically assume that
we are dealing with a classical gas. It only assumes that we have a collection of
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noninteracting units with energy ¢; for the state i. Thus, we have actually proven a
more general result:

If a system has possible states labelled by i, and the energy of the state
i is €;, then the relative probability for finding the system in state i is
given by the Boltzmann factor e /%37  The absolute probability for the
occurrence of the state i is

1 €
—¢€;/kpT
_—_e (6.47)
§ ie-—Gi/kBT

It should be emphasized that e ~</*s7 s the relative probability for the occurrence
of the state i, not the energy value ¢;. The distinction is important, because different
states can have the same energy and this is called a degeneracy in quantum mechanics.

6.9 Time’s Arrow

According to the second law of thermodynamics, the entropy of an isolate system
can never decrease. This seems to be a valid conclusion, for most events on the
macroscopic scale are irreversible. As we all know, it is useless to cry over spilled
milk. Therefore, there appears to be an “arrow of time” that points toward an increase
of entropy, and distinguishes past from future. How is this to be reconciled with the
time-reversal invariance of the microscopic laws of physics?

Consider Figure 6.4, which shows two successive frames of a movie of a gas
contained in a partitioned box, with a hole through which the particles can pass.
Common sense tells us that frame (a) must precede frame (b), and this establishes the
arrow of time.

The equations of motion have solutions for which (a) evolves into (b) or vice versa.
In fact we can always reverse the history by reversing all the velocities of the particles
instantaneously. However, the situations (a) and (b) are not symmetrical. As an initial
state, almost any state that looks like (a) will evolve into a uniform state like (b).

B | [

(@) (b)

Figure 6.4 If these are two successive frames of a movie of particles in a container
with partition, common sense tells us that (a) must precede (b), and this establishes
“time’s arrow.”
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(@) (b)

Figure 6.5 In this case, it is not so clear which frame precedes which.

But an initial state (b) will not evolve into (a), unless it is very carefully prepared to
achieve that purpose.

The point is that, in the 3N-dimensional phase space of the system, the initial
conditions that will make (b) evolve into (a) has a negligible measure, when N is
large. On the other hand, most nonuniform states like (a) will develop into a uniform
state like (b), because such evolutions are overwhelmingly favored by phase space.

If we start with an “average” initial condition, (b) has a chance to evolve into (a)
only after the order of eV collision times (see Problem 5.11). For N ~ 100 as depicted
in Figure 6.4, this time is much longer than the age of the universe, which is a mere
10'7 seconds.

If N is small, as illustrated in Figure 6.5, then the system can evolve from (a) to (b)
or vice versa with equal probability, and there is complete reversibility. Time’s arrow,
therefore, is not inherent in the equation of motion, but is the property of a large-N
system set by the initial condition. Spilled milk is irreversible, because someone had
prepared the milk in the extremely improbable state of being inside the milk bottle.

In the case of the whole universe, unless the Big Bang was “prepared” in any
special way, we must conclude that time’s arrow signifies the spontaneous breaking
of time-reversal invariance. On the other hand, it is believed that the interaction
of elementary particles contains an extremely weak component that violates time-
reversal invariance. It is possible that this could have tilted the Big Bang along a
preferred time axis.

Problems

6.1 The energy of individual atoms in a gas fluctuates about an average value %kBT
because of collisions.

(a) Verify this by calculating &, the mean of € = p%/2m withrespect to the Maxwell—
Boltzmann distribution.

(b) Show €2 — &2 = 2 (kpT)>.

6.2 Find the energy distribution function P(FE) for a classical nonrelativistic ideal
gas, such that P(E)dE is the density of atoms with energy between E and E 4+ dE.
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6.3 If there is an external potential U (r), then the distribution function is nonuniform
in space:

f(p,r) = Ce—[(PZ/Zm)-l-U(r)]/kBT

A column of gas under gravity has a temperature independent of height z. Show that
the density as a function of height is given by

n(Z) — n(O)e—ng/kBT

where g is the acceleration of gravity.

6.4 In the atmosphere the temperature varies with height. Assume that there is a
steady-state adiabatic convection, that is, no heat transfer in the vertical direction.
(a) Show that the temperature 7 (z) changes with height z according to

k= =1 "mg (6.48)

(b) Find T (z), and the altitude of the top of the atmosphere where the temperature
becomes zero.
(c) Show that the pressure P (z) changes with height according to
dpP mg

= — dz
P kT (2)

Integrate this to find P(z).

6.5 A gas in equilibrium has a distribution function

1+yx
fp.r)= T

QumkpT)3/? exp(—p? /2mkgpT)
where x is the distance along an axis with a fixed origin, y is a constant. What is the
nature of the force acting on the gas?

6.6 Molecules in a centrifuge rotate about an axis at constant angular velocity w. In
the rotating frame, they are at rest, but experience a centrifugal force mw?r, where r
is the normal distance from the axis. This is equivalent to an external potential

1
U(r) = ——mo*r?
r) 2ma) r

Two dilute gases, of molecular masses m; and m,, respectively, are placed in a
centrifuge rotating at a circular frequency w. Derive the ratio n1/n; of their densities
as a function of the distance r from the axis of rotation.

6.7 The Maxwell-Boltzmann distribution for a relativistic gas is
f(p) = Cemv 7l

where we use units in which the velocity of lightis ¢ = 1.
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(a) Find the most probable velocity. Obtain its nonrelativistic (kg7 < m), and
ultrarelativistic (kg T > m) limits, both with first-order corrections.

(b) Set up an expression for the pressure. Show that PV = U/3 in the ultrarelativistic
limit, where U is the average energy.

(c) Find the velocity distribution function f(v), such that f (v)d?v is the density
of particles whose velocity lies in the volume element d°v. Find the nonrelativistic
limit to first order in v/c.

(d) At what temperatures would relativistic effects be important for a gas of H,
molecules?

6.8 The Doppler formula for the observed frequency f from a source moving with
velocity v, along the line of sight of an observer is

s(ie2)

where fj is the frequency in the rest frame of the source.
(a) What is the distribution in frequency of a particular spectral line radiated from
a gas at temperature 7?7

(b) Find the breadth of the line, defined as the variance (f — f;)>.

(¢) Atomic hydrogen and atomic oxygen are both present in a hot gas. How much
broader is the hydrogen line compared to the oxygen line, of roughly the same
frequency?

6.9 Neutrinos are particles whose energy-momentum relation is given by e(p) = cp,
where c is the velocity of light. Consider N neutrinos in a volume V/, at a temperature
T sufficiently high that the system can be treated as a classical gas.

(a) Find the heat capacity Cy of the system.

(b) Find the pressure of the system in terms of the internal energy U. Give it in
terms of the temperature.

6.10 If we integrate the Maxwell-Boltzmann distribution over from some momentum
up, we are faced with error functions

erfc(y) = \/if /oodx
y

(See Abramowitz and Stegun 1964.)
(a) Show the following asymptotic behavior for large y:

00 1 1 31
d.x ——XZ% —)’2 e e e “ e
/y ¢ ¢ {Zy 4y3+8y5+ ]

Hint: Transform to new integration variable ¢ = x2. The asymptotic behavior of the
integral fyozo dtt~12¢™" can be obtained by repeated partial integrations.
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(b) Differentiate fyoo dx e with respect to A, and then set A = 1, to obtain the
asymptotic formulas

2

00 e—yz
/ dxxle™ ~ —((y*+1/2)
y 2y

2

o0 2 eV
/ dex*e™ =~ —((y*+y*+3/4)
y 2y

6.11 Suppose a surface of the container of a gas absorbs all molecules striking it with
a normal velocity greater than vy Find the absorption rate W per unit area.
6.12 The atmosphere contains molecules with high velocities that can escape the
Earth’s gravitational field.

(a) What fraction of the H, gas at sea level, at temperature 300 K, can escape from
the Earth’s gravitational field?

(b) Give an order-of-magnitude estimate of the time needed for the escape, on the
basis of a random walk.

6.13 A gas of N atoms was initially in equilibrium in a volume V at temperature
T. In an evaporation process, all atoms with energy greater than €y = p3/2m were
allowed to escape, and the gas eventually reestablishes a new equilibrium. Assume
y=e¢€y/kpgT >> 1.

(a) Find the change AN in the number of atoms, and the change A E in the energy
of the gas, as functions of €.

(b) Find the fractional change in temperature AT /T as a function of AN/N.

Hint: Find AT via E/N = %kBT. Express €p in terms of AN using an iterative
process assuming the smallness of the latter.

6.14 The following exercises illustrate the equipartition of energy.

(a) A long thin needle floats in a gas at constant temperature. On the average, is its
angular momentum vector nearly parallel to or perpendicular to the long axis of the
grain? Explain.

(b) A capacitor C = 100 uF in a passive circuit (no driving voltage) is at temper-
ature 7 = 300 K. Calculate the rms voltage fluctuation.

6.15 An insulated space ship is a cylinder of length L and cross section A filled with
air (treated as N, gas) at STP. It was brought to a sudden stop from an initial velocity
of 7 km/s.

(a) Assuming that a good fraction of the original translational kinetic energy of the
air was converted to heat, estimate the temperature rise inside the space ship. Would
the astronauts be fried?

(b) Suppose the space ship was stopped by constant deceleration a parallel to the
axis of the cylinder, such that the air was in local equilibrium. Show that the pressure
difference between the front and back of the space ship is given by

AP = Py (1 — emall/ksT)

where m is the mass of an air molecule.
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(c) Assuming malL /kgT < 1, find the force F exerting on the space ship by the
air inside, the total work W done by the air, and the temperature rise inside the space
ship.

(d) What condition must be imposed on the deceleration to allow the establishment
of local equilibrium?
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Chapter 7

Transport Phenomena

7.1 Collisionless and Hydrodynamic Regimes

A gas tends toward thermal equilibrium through atomic collisions, which transport
mass, momentum, and energy from one part of the system to another. In a collision,
these quantities are transported over a mean free path A, on average. An important
parameter in the description of transport phenomena is the ratio A /L, where L is an
external length scale, such as the size of the container, or the wavelength of a density
variation. Two extreme limits are amenable to analytical treatment:

Collisionless regime: A > L
Hydrodynamic regime: A < L

We can illustrate the two cases by looking at how a gas flows through a hole of
dimension L in a wall, as shown in Figure 7.1.

When A > L, the atom that went through the hole came from a last collision very
far from the hole, and will not collide with another atom again until it gets very far
from the hole. The passage through the hole can be described by ignoring collisions.
A practical example is air leaking into a vacuum system through a very small crack.

When A < L, an atom makes many collisions during the passage, and thermalizes
with the local atoms during its journey. As a consequence, it moves as part of a
collective flow. This regime is described by hydrodynamics.

In the collisionless regime, atoms escape through a hole in the wall through effusion.
Let us set up the x-axis normal to the area of the hole. The flux of atoms through the
hole, due to those with momenta lying in the element d° p, is given by

dl = v, f(p)d°p (7.1)

The total flux is then

= / @

00 Dx " 00 s 2
= C/ dp,—=e x {/ dpye_’\py} (7.2)
0 m —0

99
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A>>L A<<L
Collisionless Hydrodynamic
regime regime

Figure 7.1 Different regimes corresponding to different magnitudes of A/L, the
ratio of mean-free-path to an external length, in this case the size of the hole in the
wall.

where
A= QmkgT)™!
C =nQumkgT)™? (7.3)
We easily obtain the result
=22l (7.4)

Since the flux is proportional to v,, fast atoms have a higher flux than slow ones, and
so the escaped gas has a higher average energy per particle than the gas left behind.
If the original volume contains a mixture of two gases at the same temperature, with
atomic masses m, m, and densities n1, ny, then they effuse out of a small hole at
different rates, with a ratio
h_m m (7.5)
I 2 ny m;
This formula is the basis for a method to separate nuclear isotopes.
In the hydrodynamic regime, where A < L, the gas reaches local thermal equilib-
rium over a distance small compared to L, but large compared to A. It has well-defined
local properties that vary slowly in space and in time:

T (r,t) : Local temperature
n(r,t) : Local density (7.6)
u(r, t) : Local flow velocity
The flow trajectory with u as tangent vector is called a “streamline.” In general the
system settles into local thermodynamic equilibrium rather quickly, in the order of a

collision time, but it takes much longer for the system to approach a uniform state.
The local equilibrium is described by a local Maxwell-Boltzmann distribution

m—muuxn1

2mkpT (r, t) 7

f(p,r,t) = Cn(r,t) exp I:_

where the local variables are governed by the equations of hydrodynamics.
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7.2 Maxwell’s Demon

As we have noted, effusion is a velocity filter, but it acts in the same manner in both
directions. A velocity filter that acts only in one direction would violate the second
law of thermodynamics.

Maxwell imagined a way to do this by postulating a “demon” who operates a trap
door in a wall separating two gases A and B, which were initially in equilibrium at the
same temperature. The demon opens the door to allow fast atoms to go from A to B,
but not the slow ones, and allow slow atoms to go from B to A, but not the fast ones.
As time goes on, the average energy in A will rise, while that in B will fall. Thus the
temperature of A will rise and that of B will fall “spontaneously.” This fanciful idea
has provoked much debate, centering on whether the demon should be considered
part of the system, whether he/she/it has entropy, etc. Szilard (1929) pointed out that
the demon needs information concerning the velocity of the approaching atoms, and
that the second law can be preserved by regarding information as negative entropy.
This idea has blossomed into the field of information theory, with applications to the
theory of computation (Leff and Rex 1990).

7.3 Nonviscous Hydrodynamics

The hydrodynamic regime is based on the smallness of A/L, where L refers to the
characteristic wavelength of spatial variations. To the lowest order, we consider the
limit A/L — 0, in which collisions are neglected, and the change in the local variables
are governed solely by conservation laws. This leads to nonviscous hydrodynamics.
In this limit the local equilibrium persists indefinitely; there is no damping mechanism
for it to decay to a uniform state.

The relevant conservation laws are those for number of particle, and for momentum
and energy. Because of particle conservation, the mass density

p(r,t) = mn(r, 1) (7.8)
satisfies the equation of continuity
0
a—'(t) + V- (pu) =0 (continuity equation) (7.9)

The conservation of momentum is expressed through Newton’s equation F = ma
in a local frame comoving with the gas along a streamline. Consider an element of the
gas contained between x and x + dx, in a small cylinder of normal cross section A. In
the absence of collisions, the x-component of the force acting on it due to neighboring
gas elements arises purely from hydrostatic pressure:

dF, =[P(x) — P(x +dx)]A = —A%dx (7.10)

where P(x) is the local pressure. This is the total net force on the element if we
neglect collisions, which can create a shear force that leads to viscosity.



102 Transport Phenomena

Newton’s equation now states

oP du,
—A—-dx = d 7.11
ox * dt " ( )
where the mass element dm is given by
dm = Apdx (7.12)
Thus, we have
du, JP
— =0 7.13
o T ax 713

where du, /dt is evaluated in the comoving frame. In a fixed frame in the laboratory,
it is given by

du, Oty n d n 0 + d (7.14)
= Uy— +Uy— + U, — | Uy .
dt ot ox ’dy ‘oz

Generalizing the above considerations to any component of u, and adding an external
force per unit volume £, we obtain Euler’s equation

d
0 (5; +u- V> u+ VP =f* (Euler’s equation) (7.15)

When collisions are ignored, there is no mechanism for energy transfer between a
gas element and its neighbors. This means a gas element can only undergo adiabatic
transformations in a comoving frame along a streamline. For an ideal gas we have

d
(5; +u- V) (Pp™") =0 (adiabatic condition) (7.16)

where y = Cp/Cy, and the local equation of state gives P = pkpT /m.

To be consistent with the premise A/L — 0, we must assume small deviations
from equilibrium. Accordingly, we keep the local velocity u, and all spatial and
time derivatives, only to first order. Second order quantities, defined as products of
first-order quantities, will be neglected. In particular we put

V-(pu) =pV-u+u-Vp

~pV-u (7.17)

because u - Vp is of second-order smallness. This approximation leads to the lin-
earized equations of nonviscous hydrodynamics:

ap
- V-u=0
8t+'0 u

Ju
VP =g
Par Tt

d
5}_(1310—)/) -0 (7.18)

where P = pkpT /m.
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7.4 Sound Wave

Differentiating the first hydrodynamic equation with respect to time, and keeping only
first-order terms, we obtain
9%p Ju
_ V.— =
012 +h ot
where a term (dp/d¢)V - uhas been neglected, because it is the product of two deriva-

tives, and thus of second order. Substituting du/d¢ from the second hydrodynamic
equation with f.,, = 0, we have

0 (7.19)

"0 _ v (1v)p—o (7.20)
PP 0 - ’
To first order, this is equivalent to
9%p
— —V?P=0 7.21
912 (721)

To evaluate V2 P, we make use of the third hydrodynamics equation:

2 _ oP
ViP=V.VP=V-||— ] Vp
o ) g

opP ) )
~|— ] Vpo=pksVp (7.22)
oo /g
where kg is the adiabatic compressibility. Thus we have
1 0%
Vip—=— =0 7.23
P~ 33 (7.23)
where
! (7.24)
c= .
+/ PKs

This gives a wave equation for a sound wave of velocity c.

Sound represents a collective motion of the atoms, and exists only when there are
collisions. The free sound wave here is obtained here by treating A /L to zeroth order,
in which the effect of collisions produces a local thermal equilibrium. The next order
will lead to viscosity and damping.

7.5 Diffusion

We begin the consideration of first-order effects in A /L by looking at how a density
gradient in the gas relaxes. The mechanism involved is the transport of particles from
one place to another.



104 Transport Phenomena

|
1 2
1

Figure 7.2 Diffusion results from a higher flux of particles in one direction than the
other, due to a density gradient.

Suppose the density of a gas at points 1 and 2 along the x axis are n; and nj
respectively. Atomic collisions tend to iron out the density variation, because there
is a higher flux of particles going from the high density to the low density region, as
indicated in Figure 7.2. This is the physical mechanism that gives rise to diffusion,
which we discussed in Section 5.2 via the random walk.

We assume that the temperature is uniform, so that the atoms have a most probable
velocity © = +/2kgT/mT. In 3D space, on average one-sixth of the atoms travel
along the positive x axis, and one sixth along the negative x axis. The flux of particles
from 1 to 2 is therefore n;v /6, that from 2 to 1 is n,9/6, and the net flux is from 1 to
21s (I’ll — nz)'D/6.

The densities at 1 and 2 can affect each other only if the separation is larger than a
mean free path. Assume that they are separate by a distance ry of order of the mean
free path. The x-component of the particle current density can be written as

¥ ()'I_) on

AN —— — 7.25
J 6 9x (7.25)

The minus sign occurs because a positive gradient along the x axis drives particles in
the negative direction. In vector notation, we have

j=—-DVn
ro'l_)
D= (7.26)

where D is the diffusion constant.
Since no atoms can be destroyed nor created, the particle current must satisfy the
continuity equation

on
ot

Using j obtained earlier, we obtain the same diffusion equation obtained in Chapter 5
through the random walk:

+V.j=0 (7.27)

on(r,t)
ot
With the initial condition that all N particles are located at r = 0, the solution is

— DViu(r,t) =0 (7.28)

N e—rz/(47r Dzt)
= @xDyr PP

n(r, t) (7.29)
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where r = |r|. The initial condition is recovered in the limit

n(r, t) — N&(r) (7.30)

Conservation of particles is expressed through the fact

/d3r n(r,1) = N (7.31)

As time goes on, the particles diffuse out from the origin, forming a Gaussian distri-
bution with an expanding width +/47w Dt.

Using ¥ = +/2kgT/m, ro = 2A = 2/(nc’), where o is the collision cross section,
we obtain

1 2kgT
D~ —
3no m

(7.32)

which gives an order-of-magnitude estimate.
Still other approaches to diffusion will be discussed via Browian motion
(Section 10.5), and general stochastic processes (Section 11.5, Problem 12.6).

7.6 Heat Conduction

Assume now that the density # is uniform, while the temperature T varies slowly in
space. The fluxes of particles in Figure 7.2 are now equal to n9/6 in both directions.
The average kinetic energy per particle is lkgT /2, where [ is the number of degrees
of freedom. The heat flux from 1 to 2 is given by the flux of thermal energy

L A (133
We can write, in vector notation,
q=—«VT
1 _
K = —6—nvrocv (7.34)

where cy = lk/2, and « is a transport coefficient called the coefficient of thermal
conductivity. Taking again ¥ = /2kgT/m, ry = 2A = 2/(no’), we have the order-
of-magnitude estimate

Ccy 2kBT
K= —"0
3no m

(7.35)
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When no work is performed, the heat absorbed by an element is equal to the increase
in its internal energy, according to the first law of thermodynamics. This leads to the
conservation law

ou

V. — =0 7.36
q+at (7.36)

where u is the internal energy per unit volume. Using (7.34), we have

3
a—’: —kV2T =0 (1.37)

For an ideal gas u = ncy T, where cy is the specific per particle. Thus we have a
diffusion equation called the heat conduction equation:

- — VT =0 (7.38)

7.7 Viscosity

The velocity of a gas flowing past a wall has a profile illustrated in Figure 7.3. Here,
the gas is flowing along the x-direction with a nonuniform flow velocity u, (y). The
gas sticks to the wall at y = 0, as expressed by the fact u, (0) = 0. We assume that
the density and temperature are uniform.

Consider a plane normal to the y axis, shown as the dotted line in Figure 7.3. The
gas above this plane experiences a frictional force per unit area F), given empirically
by

01y (y)

F,=— 7.39
¥ v 3y ( )
Y
A
w(y)
> 2
—_—
-
—_— 1
— > x

Figure 7.3 Particles sticking to the wall cause viscosity.
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which defines v, the coefficient of viscosity. This force is caused by a transport of
“x-component momentum” along the y-direction, from 1 to 2 in Figure 7.3. We now
calculate v, using the definition

F), = Net flux of “x component momentum” along the y direction (7.40)

Note that u, is the average collective flow velocity, and the transported momentum
is that of the collective flow. The individual molecules, of course, dart about in all
directions with average speed v relative to the flow velocity. Since the “x component
momentum” per particle is mu,, and the flux of particles in the y direction is n/6,
we have

1
Fy = gnﬁm[ux(yl) — ux (92)] (7.41)

Choosing the points 1 and 2 to be separated by a distance rg of the order of a mean
free path, we obtain

1
V= gnﬁmro (7.42)
Putting ro = 2A, we have the estimate
A 2mkgT
= ’3"__3 (7.43)
o

Note that this is independent of the density, a surprising prediction borne out by
experiments on gases.

7.8 Navier-Stokes Equation

When viscosity is taken into account, the forces acting on a fluid element are no longer
normal to the surfaces of the element. The hydrostatic pressure P is now generalized
to a pressure tensor P;;, which gives the jth component of the force per unit area

Ey

/f X

Fy

Figure 7.4 Due to viscosity, a force acting on a liquid element is not normal to the
surface of the element, but has a shear component.
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acting on the ith face, as illustrated in Figure 7.4. The vector force F; on the ith face
has the components indicated below:

Fi = A(Py1, P12, Pr3)

¥y = A(Pyy, Py, Py)

F3; = A(P3y, P3, P33) (7.44)
where A is the surface area. We can thus split the pressure tensor into two terms:

where the off-diagonal term Pl-’j depends on the viscosity, and turns out to have the

form (Huang 1987)
du; du; 2
P, =— . ) v 7.46
i ”{aijrax,- 3oy (7.46)

The generalization of Euler’s equation reads

3 dP;;
pl—+u-Vjuy+—L=f= (7.47)
ot 8Xj
or, more explicitly,
8 v 2 Xt
plg Tu-v u+V<P—§V~u)—,uVu:f" (7.48)

where f*** is the external force per unit volume. This is known as the Navier—Stokes
equation.
The existence of viscosity furnishes a new scale in hydrodynamics. The dimen-
sionality of viscosity is
force/area mul m

~ ~ Lz 7.49
Y velocity/length  ¢tL?u Lt (7.49)

where m = mass, u = velocity, L = length, + = time. Using v we can define a di-
mensionless quantity characterizing hydrodynamic flow called the Reynolds number:

R = PLto (7.50)
%
where
o = mass density
L = characteristic length
ug = flow velocity
V = Viscosity (7.51)

for a stationary object of size L, immersed in a fluid of mass density p, and viscosity
v, flowing with velocity ug, this number marks the onset of turbulence. When R « 1
the fluid flows past the object in streamline flow, and when R >> 1 we have turbulent
flow.
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Problems

7.1 A high-vacuum chamber develops a small crack of area o, and air from the
outside leaks in by effusion.

(a) Find the rate of air molecules leaking in through the crack.

(b) After a short time, the leak was discovered, and patched up by diligent students.
The small amount of gas came to equilibrium inside the chamber. Show that its
absolute temperature is higher than that of the air outside by a factor 4/3.

Hint: Suppose the leak existed for a time 7. Calculate the energy E and number of
molecules N that got through during that time. The equilibrium temperature inside
the chamber is determined by the ratio E/N.

7.2 Natural uranium ore contains isotopes >33U and 2**U with abundances 99.27%
and 0.73%, respectively. To increase the relative abundance of 2°U, a sample of
natural uranium is vaporized, and made to effiuse successively into a series of vacuum
chambers. How many stages are required to achieve equal abundance in the two
isotopes?

7.3 Show that the velocity of sound of an ideal gas is

kBT)/
C = ”
m

where y = Cp/Cy. Evaluate this for air (nitrogen) at STP.

7.4 Sound propagates adiabatically because the effect of heat conduction can be
neglected. Verify this in a real gas, as follows.

Consider a sound wave of wavelength L and period t = L/c, where c is the sound
velocity. Let AT be the variation in temperature over L. Then the magnitude of the heat
fluxis ¢ & K AT /L, where K is the coefficient of thermal conductivity. The amount
of heat transferred by conduction across unit area over the distance L is therefore
Q; = gt = KAT/c. The amount of heat needed to equalize the temperature is
Q> = CpAT. Thus, heat conductivity may be ignored if 01 < Q».

Test this condition for a sound wave with L = 10 ft in air at STP, with the following
data:

p=0.081bft>

c=1088 fts™!
Cp=024Btulb™' CF)!

K = 0.0157 Btu hr 't (°F)~!

7.5 Rederive the equation for a sound wave, using the Navier—Stokes equation instead
of the Euler equation. Find the damping coefficient for sound.
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7.6 A long thin tube along the x axis contains a gas of N particles initially concentrated
atx = 0. A particle detector is placed atx = L. At whattime does the detector register
the first signal?

7.7 A gas is sealed between the thermal panes of a window. The insulating power of
the window is taken to be the inverse of the coefficient of thermal conductivity of
the gas. Normally the gas is air, of average molecular weight 30. What should be the
molecular weight of the gas, in order to double the insulating power?

Hint: Consider how the coefficient of thermal conductivity depends on molecular
weight, through the mass of the molecule and the collision cross section.

7.8 Heat is generated uniformly in the Earth’s interior due to radioactivity, at the rate
W cal/g. Assume that the Earth is spherically symmetric with radius R, uniform mass
density p, and coefficient of thermal conductivity «. Ignore the effect of all other heat
sources.

Find the temperature T (), as a function of distance r from the center of the Earth.

7.9 During heat transfer characterized by the heat flux vector q, there is both entropy
flow and irreversible entropy production.
(a) Show that the entropy density s satisfies the equation

where T is the absolute temperature.
(b) Show that the rate of entropy production is given by R; = q - V (1/T), hence

(F)
Ry=«|—
T

7.10 The temperature of a pond is just above freezing. The temperature of the air
suddenly drops by AT, and a sheet of ice begins to form at the surface of the pond,
and thickens as time goes on. Find the rate at which the thickness of the ice sheet
SIOwS.

Consider only the transition of water to ice, and ignore the cooling of the ice once it
is formed. Let the latent of ice be £, the mass density of water be p, and the coefficient
of thermal conductivity of ice be «.
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Chapter 8

Canonical Ensemble

8.1 Review of the Microcanonical Ensemble

The time has come to look beyond the ideal gas, and consider systems with interac-
tions: a dense gas, a liquid, a solid. We already have the principle for doing this, for
the microcanonical ensemble defined in Section 5.7 can be applied to any system, not
just the ideal gas.

All members of the microcanonical ensemble have the same energy E, within a
small tolerance. The entropy of the system is given by

S(E) = kg InT(E) (8.1)

where k is Boltzmann’s constant, and I'(E) is the total number of states of the system
at energy E. The dependence on the number of particles and total volume have been
left understood. The internal energy is simply E, and the absolute temperature T
defined by

1 9S(E) 8.2

T  JE (8.2)

This method is very convenient when we deal with discrete degrees of freedom,

for the calculation of I'(E) is a matter of combinatorics, as illustrated by problems
in this chapter. For systems like a real gas, which is specified through a Hamiltonian,
the microcanonical ensemble is not as easy to use, and we seek a more convenient
route.

8.2 Classical Canonical Ensemble

The key to a new method is to relax the requirement that the energy be fixed, by
allowing the system to exchange energy with the environment, which we call the heat
reservoir. Now the reservoir and the system form an isolated system, which can be
treated in the microcanonical ensemble. Thus, what is new is a change in emphasis,
and no new principles are needed.

Consider an isolated system divided into two subsystems: a “large” one regarded
as a heat reservoir, and a “small” one on which we focus our attention. Let us label

111
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System of interest

2 Heat reservoir

Figure 8.1 We focus attention on a “small” system 1, which is part of a larger
system. The rest of the sytem 2 acts as a heat reservoir for system 1.

the small system 1, and the heat reservoir 2, as illustrated schematically in Figure 8.1.
In the end, of course, even the small system will be made large, to approach the
thermodynamic limit. The canonical ensemble is the ensemble of the small system.

Neglecting the interactions across the boundary between the two systems, we take
the total Hamiltonian to be the sum

H(pi, q1, p2, q2) = Hi(p1, q1) + Ha(p2, q2) (8.3)

where { p1, ¢1}, { p2, g2 } respectively denote the momenta and coordinates of the two
subsystems. The total number of particles N, and total energy E, are given by

N=N+N,
E=E +E, (8.4)

We keep N; and N, separately fixed, but allow E, and E, to fluctuate. In other
words, the dividing walls between the subsystem allow energy exchange, but not
particle exchange. We assume that system 1 is infinitesimally small in comparison
with system 2, even though both are macroscopic systems:

Ny > N;
E, > E, (8.5

The phase-space volume occupied by system 2 is given by
I (E2) = / dp2dq> (8.6)
E;

where the subscript E; is shorthand for the condition

Ey < Hh(pr, q2) < Eo + A (8.7)
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We are interested in the probability of occurrence of the microstate {p;, g1} of
subsystem 1, regardless of the state of system 2:

Probability that 1 is in dp1dq; o< dp1dg:1I'2(E — Ey) (8.8)
This gives the distribution function p;(p1, 1) of system 1 in its own I'" space:

p1(p1,q1) =T2(E — Ey)

=T (E — Hi(p1,q1) (8.9)

Since E; <« E, we expand the above in powers of E; to lowest order. It is convenient
to expand the logarithm of I';, which can be expressed in terms of the entropy of
system 2:

kIn Fz(E - El) = Sz(E — El)

98, (E'
= 5,(5) — B, 22D
IE" |p-g
E
~ Sy(E) — 71 (8.10)

where T is the temperature of system 2. This relation becomes exact in the limit when
system 2 becomes a heat reservoir. The temperature of the heat reservoir T fixes the
temperature of system 1.

The density function for system 1 is therefore

p1(p1, q) = 5 ENkg=Er/ksT (8.11)

The first factor is a constant, which can be dropped by redefining the normalization.
In the second factor the energy of the system can be replaced by its Hamiltonian.
Thus

p1(p1, q1) = e PHPLa) (8.12)
with
1

This is the canonical ensemble, appropriate for a system of a fixed number of particles,
in contact with a heat reservoir of temperature 7. Since we shall refer only to the small
system from now on, the subscript 1 is unnecessary, and will be omitted. Schematic
representations of the microcanonical and canonical ensembles are given in Figure 8.2.
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Heat reservoir T

Fixed .
N and E Fixed N
Microcanonical Canonical

Figure 8.2 Schematic representations of the microcanonical ensemble and canoni-
cal ensemble.

8.3 The Partition Function

The partition function for the canonical ensemble is defined by
dpd
ON(T, V)= / aPaq. —pH(p.9)
T

7= NIN (8.14)

where dp = d*Vp, dq = d*"gq, and each d°q integration ranges over the volume
V of the system. The factor v makes Oy dimensionless by supplying the unit 4 for
an elementary cell in phase space. The factor N! comes from correct Boltzmann
counting, which takes into account the indistinguishability of particles in quantum
mechanics. It is included here because we assume we are dealing with atoms. The
factor N'! should be omitted if we have a collection of distinguishable objects.

As we shall see, all thermodynamic information can be obtained from the parti-
tion function. In particular, the entropy is completely determined, with no arbitrary
constants, and the factor N! will make it an extensive quantity.

8.4 Connection with Thermodynamics
The thermodynamic internal energy is the ensemble average of the energy:

_ f dpdgH e PH(PD

U=(H)= fdpdqe_ﬂH(Paq)

(8.15)
This can be obtained from the partition function by differentiation with respect to B:

a
U:_E)EIHQN (8.16)
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The general connection between the canonical ensemble and thermodynamics is given
by the statement

ON(T, V) = e PAVT) (8.17)

where is A(V, T') is the Helmholtz energy.
To show that Equation (8.17) correctly identifies the free energy, let us rewrite it
in the form

/ dpdqe—ﬁH(p,q) — o—PAV.T)
T

/ dpdq piav.m-Hpan _ (8.18)
T

Differentiating both sides with respect to B, we obtain

dpd dA(V, T
/ p-,_— qeﬂ[A(V,T)—H(P,q)] |:A(V, T)+ B (8‘3’ ) —H(p,¢)| =0 (8.19)

The first two terms are not functions of p, g and can be taken outside of the integral,
which is equal to 1. The second term gives the internal energy. Thus

dA(V, T
A(V,T)—l—ﬁ—L——)—U:O
op
dA(V, T
AWV, T)—-T ( ) _ U=0 (8.20)
oT
This is consistent with the thermodynamic relations
_ 0AWV.T)
B oT
A=U-TS (8.21)

Therefore we have a correct definition of A(V, T), from which we can obtain all
thermodynamic functions through the Maxwell relations.

8.5 Energy Fluctuations

The systems in the canonical ensemble have different energies, whose values fluctuate
about the mean energy U determined by the temperature. To calculate the mean-square
fluctuation of the energy we start with the expression

3
U= ~ % In / dpdge P! (8.22)
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and differentiate with respect to g:

U _fdpquze_ﬁH (f a’pa’qu“’f“q)2
B [ dpdge=PH (f a’pa’qe“/m)2

= —(H% + (H)? (8.23)

Using thermodynamic definitions, we can rewrite

U 93U aT U
— = ——— = —kpT?*— = —kzT*Cy (8.24)
38 9T 3p oT
Thus
(H?Y — (H)? = kpT*Cy (8.25)

For macroscopic systems the left side is of order N?, while the right side is of order N.
Energy fluctuations are therefore “normal,” and become negligible when N — oo.
This is why the results of the canonical and microcanonical ensembles coincide in
that limit.

8.6 Minimization of Free Energy

We have learned in thermodynamics that a system at fixed V, T will seek the state of
minimum free energy. This principle can be derived using the canonical ensemble.

Note that the partition function [Equation (8.14)] is an integral over states, but
the integrand depends only on the Hamiltonian, whose value is the energy. We can
convert the integral into one over the energy by writing

On(V,T) = /dEe—ﬁE/@S(H(p, q) — E) (8.26)

This is a trivial rewriting, for the dE integration can be done by simply setting
E = H(p, q). The dpdg integral now gives the density of states at energy E:

o®) = [ PLs 1 p. ) - B 827)
which is related to the entropy by
S(E) =kplnw(E) (8.28)
Thus

oN(V,T) = / dEw(E) e PE = / dE e PIEE-TS(E)] (8.29)
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or
Oy(V,T) = / dE ¢ PAE) (8.30)

where A(E) = E — TS(E).

The dominant contribution to the integral will come from the value of E for which
A(E) is minimum. This can be seen as follows. Let the minimum of A(E) occur at
E, which is determined by the condition

Al _ {1 _ Tﬁ} _0 8.31)
OF |\p—p OE | p=k
This gives
asy  _1 (8.32)
0E |,z T

which is only the thermodynamic relation between entropy and temperature. The
second derivative of A(E) gives

3’A . %S (8.33)
dE2 QE? '
From the Maxwell relation 0E /0SS = —T, we have dS/0E = —1/T. Hence
RN 1 aT 1
— === 8.34
0EZ TZ20E T?Cy (8.34)
Thus the second derivative is positive:
”A 1 (8.35)
dE?  TCy '

showing that the free energy at E has a minimum (and not maximum). Now expand
A(E) about the minimum:

A(E) = A(E) + o (E - Ey 4. (8.36)
|4
Neglecting the higher-order terms, we have
ON(V,T) = e PA® / dE ¢~ (E=E) /@ T*Cy) (8.37)

In the thermodynamic limit Cy becomes infinite, and the integrand is very sharply
peaked at E = E, as illustrated in Figure 8.3. This is why we can neglect the higher-
order terms, and evaluate the integral by extending the limits of integration from
—00 to 00, to obtain

QN = 27TkBT2CV e_ﬂA(E)

A(E)

InQOn(V,T) = - T
B

1 2
+ 5 In (27ksT*Cv) (8.38)
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—BA(E)

——————— —_———

«— (KT?/C,)}2

\

Figure 8.3 When the partition function is expressed as an integral over energy, the
integrand is sharply peaked E = E corresponding to a minimum in the free enegy
A=E-TS.

Integrand

3] S ———

0

In the thermodynamic limit, the first term is of order N, while the second term is
of order In N, and can be neglected. Thus, we see that the system seeks a state of
minimum free energy.

8.7 Classical Ideal Gas

We illustrate the classical canonical ensemble with the ideal gas. The Hamiltonian is
given by

N2
p.
H = — 8.39
;m (8.39)
The partition function is
dPNpdNg  pr i tptym
Ow(T, V)= [ = e AL+ +D3)/2 (8.40)

N 3N N
VT[T dr g\ _ 1 (V 8.4
N n ¢ ITACE (8:41)
T\ J o !

where A = \/2mh*/mkgT is the thermal wavelength. Thus, the free energy is given by
A(V,T)=—kgT In Qn(T, V)
= NkpT [In (nA?) — 1] (8.42)

where n = N/V, and we have used the Stirling approximationln N! ~ NIn N — N.
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The chemical potential is given by the Maxwell relation

0A
=|—= = kpT In (nA° 4
# <3N>V,T i n(n ) ©4
and the entropy is given by § = —9dA /0T, which leads to
0A 5
S=—{-=] =Nk|>—Inwm\ :
(8T> ) {2 n(nl )} (8.44)

This is the Sacher-Tetrode equation that fixes the defects in the thermodynamic result
[Equation (2.48)]. It also supplies the undetermined constant in Equation (6.31).

Problems

8.1 A perfect crystal has N lattice sites and M interstitial locations. An energy A is
to remove an atom from a site and place it in an interstitial, when the number n of
displaced atoms is much smaller than N or M.

(a) How many ways are there of removing n atoms from N sites?

(b) How many ways are there of placing n» atoms on M interstitials?

(c) Use the microcanonical ensemble to calculate the entropy as a function of total
energy E, and define the temperature.

*(d) Show that the average number of displaced atoms » at temperature T is given
through

2
n _ _—A/kgT

(N—n)(M—n)

Obtain n for A > kpT,and A K kgT.
(e) Use this model for defects in a solid. Set N = M, and A = 1 ¢V find the defect
concentration at T = 1000 K and 300 K,

8.2 A one-dimensional chain, fixed at one end, is made of N identical elements each
of length a. The angle between successive elements can be either 0° or 180°, as
shown in the accompanying sketch. There is no difference in the energies of these
two possibilities. We can think of each element as either pointing right (+) or left
(—). Suppose Ny is the number of + elements, and L is the total length of the chain.
We have

N=N,+N_
L=a(N,—N_)

An interesting feature of this model is that the internal energy does not depend on L,
but, as is to be shown below, there is a tension 7 defined through

dU = TdS + tdL
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It arises statistically, through the fact that a shorter chain can sample more of a phase
space.

Find the following quantities, using the microcanonical ensemble:

(a) the entropy as a function of N and N,

(b) the free energy as a function of N and N

(c) the tension 7 as a functionof 7, N, L

==

v A
i) 7

8.3 A chain made of N massless segments of equal length a hangs from a fixed point.
A mass m is attached to the other end under gravity. Each segment can be in either of
two states, up or down, as illustrated in the sketch. The segments have no mass, and
the chain can go as far up as it can; there is no ceiling.

(a) Show that the partition function at temperature 7 is given by

QN — (1 +e—2mga/kBT)N

(b) Find the entropy of the chain.

(c) Find the internal energy, and determine the length of the chain.

(d) Show that the chain obeys Hooke’s law, namely, a small force pulling on the
chain increases its length proportionately. Find the proportionality constant.

I

8.4 The unwinding of a double-stranded DNA molecule is like unzipping a zipper.
The DNA has N links, each of which can be in one of two states: a closed state with
energy 0, and an open state with energy A. A link can open only if all the links to its
left are already open, as illustrated in the sketch.
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(a) Show that the partition function of the DNA chain is

| — e~ (N+DA/ksT

On =

T (8.45)

(b) Find the average number of open links in the low-temperature limit kT < A.

Open Closed

8.5 Consider a piece of two-dimensional graphite where N carbon atoms form a
honeycomb lattice. Assume that it costs energy A to remove a carbon atom from a
lattice site and place it in the center of a hexagon to form a vacancy and an interstitial,
as shown in the sketch.

Vacancy

Interstitial

(a) Show that there are N /2 possible locations for interstitials.

(b) Consider a microcanonical ensemble of the system, at given total energy E. For
M interstitials, find the statistical entropy for large N and M.

(c) Find the most probable value M of M, using the method of Lagrange multipliers.

(d) Find the equilibrium entropy S, and express the Lagrange multiplier in term of
the temperature, defined by T~! (3S/3E).

(e) Given M in the limits T — O and T — oo.

8.6 A particle can exist in only three states labeled by n = 1, 2, 3. The energies ¢, of
these states depend on a parameter x > 0, with two of the energies degenerate:

1
€1 =€ = bx* — Ecx

€3 = bx?+cx
where b and ¢ are constants.

(a) Find the Helmholtz free energy per particle a(x,T) = Ay(x,T)/N for a
collection of N such particles, assuming that there are no inter-particle interactions.
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(b) If x is allowed to freely vary at constant 7, it will assume an equilibrium value
X that minimizes the free energy. Find x as a function of 7. Show that there is a phase
transition, and find the transition temperature. Assume that X is small, and expand
da(x, T)/dx in a power series in x to order x?.

This model can be used to describe ions in a crystal subject to a uniform strain
characterized by the parameter x. The phase transition is known as the “cooperative
Jahn-Teller” phase transition.

8.7 Set up the partition function of a classical relativistic ideal gas and obtain the free
energy in terms of an integral In the nonrelativistic and the ultra-relativistic limits,
show that the chemical potentials are given by

Nonrelativistic: @ ~ mc? +kpT In(nr3) (A = /27h%/mkpT)
Ultra-relativistic: w = kgT In(nL3) (L =7*hc/kgT)



Chapter 9

Grand Canonical Ensemble

9.1 The Particle Reservoir

The grand canonical ensemble is built upon the canonical ensemble by relaxing the
restriction to a definite number of particles. The relative probability of finding the
system with N particles at temperature 7', in a volume V, is taken to be

p(N7 V5 T) = ZNQN(Va T) (9'1)

where z = ef# is the fugacity. The chemical potential u is a given external parameter,
in addition to the temperature. The system exchanges energy with a heat reservoir of
temperature 7', which determines the average energy, and it exchanges particles with
a “particle reservoir” of chemical potential w, which determines the average number
of particles. A schematic representation of the ensemble is shown in Figure 9.1.

The grand canonical ensemble is a more realistic representation of physical systems
than the canonical ensemble, for we can rarely fix the total number of particles in
a macroscopic system. A typical example is a volume of air in the atmosphere. The
particle reservoir in this case is the rest of the atmosphere. The number of air molecules
in the volume considered fluctuates about a mean value determined by the rest of the
atmosphere.

9.2 Grand Partition Function

The ensemble average in the grand canonical ensemble is obtained by averaging the
canonical average over the number of particles N. For example, the internal energy
is given by

E N
u = 2Enz On vz On 9.2)
2.2V 0n
where Ey is the average energy in the canonical ensemble:
0
En=——InQpn 9.3)

9B
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Heat reservoir T

Particle reservoir pt

Figure 9.1 Schematic representation of the grand canonical ensemble. The system
exchanges particles within a particle reservoir with fixed chemical potential, and
exchanges energy with a heat reservoir with fixed temperature.

It is useful to introduce the grand partition function:

Qz, V. T) =Y 2V On(V,1) (9.4)

N=0

in terms of which we can write

U= —% InQ(z,V,T) (9.5)

In the thermodynamic limit V — oo, we expect that

1
—InQ(z,V,T) —> Finite limit (9.6)
vV V—o00

9.3 Number Fluctuations

The average number of particles is given by

NzV 9
_Z.ETIZV% =2 InQ(z, V, T) 9.7)

Specifying N determines the chemical potential . = kpT Inz. The mean-square
fluctuation can be obtained by differentiating again with respect to z:

S NZVoy [ZNZNQNT
>N 0w

N =

J 0
7—z—InQ(z,V,T) =
9z 0z Q( ) > Z¥0n

=N?-N’
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In terms of the chemical potential we can write

0 a0 0
— =z——— =kpT — 9.8
i =1y, an kT3, 9.8)
Thus
— , 02
N2 —N" = (kgT)"—InQ(z,V,T) 9.9)
o2
Dividing both sides by V2, we have the density fluctuation
— 5 (kgT)* 02
n? —nt = Vi a2 InQz, V,T) (9.10)

Assuming Equation (9.6), we see that this vanishes like V! in the thermodynamic
limit, and makes the grand canonical ensemble equivalent to the canonical ensemble.

9.4 Connection with Thermodynamics

Assuming that the number fluctuation is vanishingly small, we need to keep only the
largest term in the sum over N:

mQE V,T) =Y N On(V,T) ~In[" Qx(V, T)]
N=0

_ N
= Nlnz+In Qx(V, T):k—“T—+1nQ;V(V, T) (9.11)
B
where N is the average number of particles. Now put
On(V,T) = PAv"D
Ay(V,T)=Na(,T)

where a(v, T) is the free energy per particle, and v = V/N. Then we have

N
InQ@ V,T)=—Iu—a®7T)] (9.12)
kgT
where 7 = V/N.
The pressure is given by a Maxwell relation:
ANV, T 0
P =- SV, 1) = ———[Na@, T)lnr
oV N.T av

da(v, T) . da(v, T)
v du

(9.13)
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The chemical potential is given by

dAN(V, T da(v, T
= Ay (V, T) — a(v, T)—I—N—?(L—) 9.14)
oN VT oN
Since
da(v, T) — a_aﬂ —_ _la_a (9.15)
dN dv ON N2 3v
we have
da(v, T
b= a@, T) — 221 (9.16)
v
Thus we obtain the thermodynamic relation
u=aw,T)+ Pv (9.17)
Using Equation (9.12) we obtain
PV
1 ,V, T) = — 9.18
nQ(z ) ‘s (9.18)

From now on, we shall omit the overhead bar in N, and denote the average particle
number by N, whenever there is no danger of confusion.

9.5 Parametric Equation of State and Virial Expansion

The pressure obtained from Equation (9.18) is a function of temperature and fugacity
z. Combining it with Equation (9.7), we have the equation of state in parametric form:

P 1
=1 V., T
e nQ(z, V,T)
= ! 31 Q( T) (9.19)
=—z—In V .
" Vzaz &

The usual equation of state, where P is given as a function of T and density n, can
be obtained by eliminating z.

In the gas phase of the system, that is, at sufficiently high temperatures and low
densities, it is usually possible to expand the right sides as power series in z:

P 1 &

- = bzt
325

kgT )‘e=1

N 1,
V=% > bz (9.20)
=1
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where b, are coefficients known as “cluster integrals,” which generally depend on 7,
and b; = 1 by definition. The thermal wavelength A = \/27%?/mkgT is introduced
purely as a convenient scale parameter. The £th cluster integral expresses the corre-
lation among a cluster of £ particles due to interactions, and in the classical ideal gas
they vanish for £ > 2. By eliminating z, we can obtain P as a power series in n:

PV

NkaT =1+aX’n+as(Wn)> + .- 9.21)

This is called the “virial expansion,” and a, is called the £th *“virial coefficient.” His-
torically, the earliest information on the interparticle potential was obtained from
experimental data on the second virial coefficient a;.

9.6 Critical Fluctuations

We can now express the density fluctuation in terms of measurable thermodynamic
coefficients. From Equations (9.10) and (9.18), we have

2
n2 — 72 =— @Z 8_P
V ou?
From Equation (9.17) we obtain
o 8%a(v) oP
LS I b A 9.22
dv Vo0 ey ©-22)
where the dependence on T is left understood. Thus
oP 9P odv 0dP/ov 1
du  dvou on/ov T
32P 19
AL A A (9.23)
ou? v2 o v?
where
1 /ov
=— | — 9.24
T v (8 P ) T ( )
is the isothermal compressibility. Thus we obtain
n2—n?  kgT
AL i (9.25)

72 1%

When V — o0, this vanishes unless k7 — co, which happens at the critical point.
The strong density fluctuations at the critical point occurs on a molecular scale,
where the atoms come together momentarily to form large clusters, only to break
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Density fluctuates
on molecular scale

Density fluctuates
on macroscopic scale

Figure 9.2 Critical opalescence at the critical point is due to the intense scatter-
ing of light by density fluctuations on a molecular scale. Density fluctuations on
a macroscopic scale, such as that in a liquid-gas mixture, do not scatter light as
strongly.

loose again. The scattering cross section of light is proportional to the mean-square
fluctuation of density, and becomes very large at the critical point. This gives rise
to the phenomenon of critical opalescence. In CO,, the intensity of scattered light
scattering increases a million fold at 7, = 304 K, P, = 74 atm, and the normally
transparent liquid turns milky white.

During a first-order phase transition, the pressure is independent of volume in the
transition region, and one might think that k7 = oo; but this is not so because k7
refers to the compressibility of a pure phase. In the transition region, the system is a
mixture, and the compressibilities of the components remain finite. It is true that the
density of the mixture will fluctuate, if there is no gravity to keep the two phases apart;
but such fluctuations occur on a macroscopic scale, and do not lead to opalescence.
This is illustrated in Figure 9.2.

9.7 Pair Creation

The grand canonical ensemble includes systems with different particle numbers, with
a mean value N determined by the chemical potential. This makes sense only if N
is a conserved quantity, for otherwise the chemical potential would be zero, as in the
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case of photons. In the everyday world, the truly conserved quantity is N — N, where
N and N are respectively the number of atoms and antiatoms. It appears that N is
conserved only because there are no antiatoms around at room temperature.

We consider an example in which both particle and antiparticle are important. This
is the case of electrons and positrons in the interior of a star, which can be pair-created
and -annihilated through the reaction

e’ + e~ 2 radiation (9.26)

where the radiation consists of photons with a Planck distribution at a very high
temperature. The reaction establishes an average value for the conserved quantum
number N, — N_, where N is the number of positrons and electrons, respectively.
To find the equilibrium condition, it is not necessary to know the transition rate, which
determines how long it will take to establish equilibrium.

The grand partition function is given by

Q=> > 0N 0N (9:27)

N,=0 N—=0

where Q y is the partition function for a free electron or positron gas. Writing Qy =
e PAv and 7 = €Y, we have

nQ=In>» Y exp{—BlAn, + An,_ — v(N; — NJ)]} (9.28)
Ny=0 N—=0

Assuming that the fluctuations of N, are small, we keep only the largest term in the

sum, which is determined by the conditions
9 A
—_— =V
aN,

d
~ Ay = — 2
aN_ N_ vV (9 9)

Thus, the chemical potentials of the two gases must be equal and opposite:
ur +pu_=0 (9.30)

where 4 = dAyn/90N. This will determine the equilibrium ratio of electrons and
positrons.
Assuming kg T < mc?, we use the nonrelativistic limit (See Problem 8.7)

w = kgT In(nr®) + mc? (9.31)

where A = /27h?/mkgT is the thermal wavelength. It is important to keep the rest
energy mc?, because we are considering reactions that convert mass into energy and
vice versa. The condition for equilibrium is then

kT [In(nA3) + In(n_A>)]+ 2mc? =0 (9.32)
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where n. = N./V. We can rewrite the formula as

non_ = A~8¢=2mc*/ksT (9.33)
Assuming the initial value
n_—n,=n~ng (9.34)
where ng > 0, we obtain
n? +nony — A0 T — (9.35)

For n, /ny <« 1, the solutions are

ny 1 o—2mc ks T

n() A‘ no

n_ 1

S R (9.36)

Problems

9.1 A lattice gas consists of Ny sites, each of which may be occupied by at most
one atom. The energy of a site is € if occupied, and O if empty. The atoms are
indistinguishable.

(a) Calculate the grand partition function Q(z, T') at fugacity z and temperature 7.

(b) What fraction of the sites are occupied?

(c) Find the heat capacity as a function of T at fixed z.

9.2 Carbon-monoxide poisoning happens when CO replaces O, on Hb (hemoglobin)
molecules in the blood stream. Consider a model of Hb consisting of N sites, each
of which may be empty (energy 0), occupied by O, (energy €;), or occupied by CO
(energy €3). At body temperature 37°C, the fugacities of O, and CO are respectively
z1 =107 and z, = 1077,

(a) Consider first the system in the absence of CO. Find €; (in eV) such that 90%
of the Hb sites are occupied by O,.

(b) Now admit CO. Find €, (in eV) such that 10% of the sites of occupied by O,.

9.3 Gas molecules can adsorb on the surface of a solid at N possible adsorption sites.
Each site has binding energy ¢, and can accommodate at most one molecule, The
adsorbed molecules are in equilibrium with a gas surrounding the solid. (See sketch.)
We can treat the system of adsorbed molecules in a grand canonical ensemble with
temperature T and chemical potential w

(a) If there are M adsorbed molecules, what is the energy E (M) of the system.
What is the degeneracy I"(M) of the energy?

(b) Write the grand partition function of the system as a sum over M. Determine
the thermal average M as the value that maximized the summand.
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(c) Suppose the gas surrounding the solid has pressure P. Calculate M using the
ideal-gas expression for .
(d) Find M2 — M?.

Gas of molecules

Adsorbed
molecules

94

(a) Calculate the isothermal compressibility of a van der Waals gas near the critical
volume, with T — T, from above. Use the reduced form of the equation of state,
with the critical point locatedat P =V =T = 1.

(b) Describe how the density fluctuation diverges when 77 — T from above.

9.5 In Section 9.7 we worked out the equilibrium distribution of electrons and positrons
in the low-temperature limit k3T < mc? Repeat the problem in the ultra-relativistic
limit k3T > mc?. The chemical potential in this limit is given in Problem 8.7:

u~kgTIn (nL3)
where

7%3h¢
kgT

9.6 Chemical reactions A chemical reaction, such as 2H, + O, = 2H,0, can be
denoted in the form

U1X1+U2X2+""_—“Uin—l-UéYz—f---'

Taking v, = —v;, we can rewrite this as
Z Vi X,‘ =0
i

The numbers v; are called stoichiometric coefficients. Consider a mixture of N;
molecules of the type X;.
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(a) Show that in a chemical reaction the changes § N; in the numbers satisfy the
relation
SNi 8N,

Vi vy

Thus, 8 N;/v; is independent of i, and we can put §N; = v;6N, where § N is some
constant.

(b) Assume that the total Helmholtz free energy of the mixture is the sum of those
of the components. Minimize the free energy by varying N; at constant volume and
temperature, and show that in thermodynamic equilibrium

Zﬂivi =0

where u; is the chemical potential of the ith component.

9.7 Apply theresults of the last problem to 2H;4-O, = 2H,O0, treating the components
as classical ideal gases. Number the components 1, 2, 3. The masses are m, = 2m,
my = 32m, m3 = 18m, where m is the nucleon mass. The stoichiometric coefficients
arevi =2, 1, =1,v3 = —2.

(a) Show that there are two conservation laws: n; — 2n, = A, and ny + n; = B,
where A, B are constants.

(b) Assume that initially there was no H,O, that H, and O, were present in the
ratio 2:1, and that the density of H, was n¢. Find the equation determining »n;/ng as
a function of temperature, and solve it in the high-temperature and low-temperature
limits. Give the results for n,/ny and n3/ny.

9.8 Virial coefficients The virial coefficients can be expressed in terms of the cluster
integral by eliminating the fugacity z from the parametric equations of state. Treating
z as a small parameter, the elimination can be done to each order in z. Show that the
two lowest virial coefficients are given by

a; = —b2

az = 4b3 — 2b;



Chapter 10

Noise

10.1 Thermal Fluctuations

Thermodynamic quantities are supposed to be constant when the system is in thermal
equilibrium. If we measure them with high precision, however, we will notice that
they undergo small fluctuations. For example, the pressure a gas exerts on a wall
fluctuates because of the randomness of atomic impacts. The internal energy of the
gas fluctuates because it exchanges energy with the environment via atomic collisions.
These fluctuations arise from the granular structure of matter, and appear as thermal
noise.

We have calculated mean-square fluctuations in statistical mechanics, such as those
for energy and density. We can usually ignore them, because they are vanishingly
small in the thermodynamic limit. According to Equation (9.23), the mean-square
fluctuation of the number of particles in a volume V is

_ N%kg

2y 2
(N%) — (N) v

Vir (10.1)
where «7 is the isothermal compressibility. For an ideal gas this gives

(N2) — (N)2 1
(N2 N

Numerically, this is utterly insignificant for a macroscopic volume of gas when N ~
10%23. However, in a volume of dimension 4000 A, of order of the wavelength of
visible light, the number of atoms at STP is about 1.8 x 109, and the fractional rms
fluctuation becomes 0.07%. This can be perceived indirectly through the scattering
of light, as for example in the blue of the sky.

The importance of thermal noise therefore depends on the length scale of the
problem. In this chapter, we study two types of noise accessible to direct observation,
the Nyquist noise in an electrical resistor, and the Brownian motion of colloidal
particles in suspension.

(10.2)
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10.2 Nyquist Noise

The thermal motion of electrons in metals produces electrical noise, which is audible
when amplified, as in a radio signal. The spontaneous fluctuations in the voltage
V (¢) or current I (¢) average to zero, but the rms fluctuations are not zero. In circuit
elements that store energy, such as a capacitor C or inductance L, these fluctuations
can be obtained through the equipartition of energy: (See Problem 6.14.)

1 1

—CV2= kT

2 2B

lLﬁ—lkT (10.3)
T B '

For a dissipative element such as a resistor, however, the fluctuation depends on its
environment in a circuit.

For the spontaneous voltage fluctuation across the free ends of an open resistor,
Nyquist (1928) derived the result

V2 = 4RkzT Av (10.4)

where R is the resistance of the resistor, T the absolute temperature, and Av is the
band width—the frequency range of the fluctuations. This result relates the voltage
fluctuation to the resistance, and is an example of a fluctuation-dissipation theorem.

An intuitive argument for the result is as follows. The resistor at temperature
T exchanges energy with a heat reservoir, and the average heat dissipation in the
frequency range Av is

I2R o kg T Av (10.5)

Using Ohm’s law I = V /R, we obtain
V2 o RkgT Av (10.6)

For quantitative results, consider a transmission line of length L and impedance R.
We terminate the transmission line at both ends with resistances R, so that traveling
waves along the line are totally absorbed at the ends with no reflection. Let V (¢) be the
voltage and I (¢) the current in one of the resistors. The frequency of the fundamental

mode is
c

= -— 10.7
Vo =57 (10.7)

At a finite temperature 7' all higher modes are excited, with frequencies
v, =nvyg n=1,273,... (10.8)

The occupation number of the nth mode is [exp(Bhw,) — 11" 'where w, = 2mv,,
B = (kg T)~'. Hence the energy residing in the nth mode is

hw,

En= efhon — 1

(10.9)
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R

Vi 1 ;R

1—>

Figure 10.1 Lumped circuit diagram used in deriving the Nyquist theorem.

For hw, /kgT <« 1, we can use the approximation
E, =~ kgT (10.10)
In the band width Av there are Av/vg modes, and the total energy is

kT Av  2kgTL
E="-2 — B Ay
Vo c

(10.11)

The energy can be regarded as residing in two traveling waves in opposite directions,
and the time it takes to traverse the line is

L
= — (10.12)
c
Thus the energy absorbed per second by each resistor is
E
W= — =kgTAv (10.13)
2t
and the power delivered to each resistor is
I2R = kzT Av (10.14)

As indicated in the lumped-circuit diagram of Figure 10.1, the voltage across aresistor
is V = 2I R. Therefore I = V /2R. Multiplying both sides by I/, we obtain

V2
I’R = — (10.15)
4R
Hence
V2 = 4kgTRAv (10.16)

This is known as the Nyquist theorem, and predicts a universal linear relation between
V2 and R, true for all materials. Numerically the voltage fluctuation is of the order
of microvolts, but Johnson (1928) measured it, and verified the Nyquist relation, as
shown in Figure 10.2. He obtained Boltzmann’s constant to an accuracy of 8%.
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Figure 10.2 Nyquist noise: mean-square voltage fluctuation across the open ends
of a resistor, as a function of resistance. The Nyquist theorem predicts the straight
line, with a universal slope.

10.3 Brownian Motion

In Brownian motion, we can see with our own eyes the manifestations of molecular
thermal motion. This was unsettling to the nineteenth-century mind, which would
rather stick to classical mechanics and thermodynamics. However, the experiments
of Perrin on this subject, which won him the physics Nobel prize in 1926, demonstrated
that matter is not the pristine continuum of classical thermodynamics, but made up
of noisy atoms. In his words (Perrin 1909):

When we consider a fluid mass in equilibrium, for example some water
in a glass, all the parts of the mass appear completely motionless to us.
If we put into it an object of greater density it falls and, if it is spherical,
it falls exactly vertically. The fall, it is true, is slower the smaller the
object; but, so long as it is visible, it falls and always ends by reaching
the bottom of the vessel. When at the bottom, as is well known, it does not
tend again to rise, and this is one way of enunciating Garnet’s principle
(impossibility of perpetual motion of the second sort!).

These familiar ideas, however, only hold good for the scale of size to
which our organism is accustomed, and the simple use of the microscope
suffices to impress us on new ones which substitute a kinetic for the old
static conception of the fluid state.

IThat is, violation of the second law of thermodynamics.
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Figure 10.3 Brownian motion as sketched by Perrin, at 30-second intervals. The
grid size is 3.2 1, and radius of the particle is 0.53 .

Indeed it would be difficult to examine for long preparations in a lig-
uid medium without observing that all the particles situated in the liquid,
instead of assuming a regular movement of fall or ascent, according to
their density, are, on the contrary, animated with a perfectly irregular
movement. They go and come, stop, start again, mount, descend, re-
mount again, without in the least tending toward immobility. This is the
Brownian movement, so named in memory of the naturalist Brown, who
described it in 1827 (very shortly after the discovery of the achromatic
objective), then proved that the movement was not due to living animal-
culae, and recognized that the particles in suspension are agitated the
more briskly the smaller they are. . . .

The figure here reproduced (Figure 10.3) shows three drawings ob-
tained by tracing the segments which join the consecutive positions of
the same granules of mastic? at intervals of 30 seconds. ... They only
give a very feeble idea of the prodigiously entangled character of the real
trajectory. If the positions were indicated from second to second, each of
these rectilinear segments would be replaced by a polygonal contour of
30 sides, relatively as complicated as the drawing here reproduced, and
SO on.

Over a vast range of the size of time steps, the Brownian path is fractal, and a
precise local velocity cannot be defined. In general, the path length L and the step

2Ingredient used in the preparation of varnish, from the bark of Pistacia lentiscus from Chios Island.
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size t are related through a power law:
L=at'"P (10.17)

where a is a constant, and D defines the fractal dimension of the path. A smooth
curve has a length independent of the step size, and therefore corresponds to D = 1.
It turns out that the Brownian path has D = 2. Thus, as we make the step size smaller
and smaller, the path length increases inversely, (i.e., until we reach the molecular
collision time).

10.4 Einstein’s Theory

Einstein thought of Brownian motion as a possible means to indirectly demonstrate
the atomic nature of matter. He was not aware that it had been observed under the
microscope, in pollens suspended in water, by the biologist Brown, who thought he
discovered the life force.

In Einstein’s theory of 1905 (Einstein 1905, 1906), he imagines that the Brownian
path is divided into finite steps of equal length, and he pictures such a step, regardless
of size, to be the result of a large number of smaller steps. This is the idea of a
“stochastic variable,” which we shall discuss more fully in the next chapter.

Consider a particle moving in one dimension, with coordinate x(¢). Consider the
possibility that, between times ¢ and ¢ + t, it makes the transition

x—=>x+A (00 < A< ) (10.18)

The probability for this to happen can be defined as follows. Imagine there are N
such particles making the transtion, and let dN be the number of particles displaced
by a distance between A and A + d A, during the time interval between ¢ and ¢ + .
The probability for the displacement to occur is the fraction of particles so displaced:

dN
fe(A)dA = v (10.19)

This defines f;(A), the transition probability per unit displacement. It should be a
nonnegative function with the properties

f‘E(A) = ft(_A)

(o}

/ dA fr(A) =1 (10.20)

—00

The second condition means that f;(A) should vanish faster than A=! as A — 0.
Let n(x, ) be the density of particles. The number of particles being displaced out

of the interval dx during time interval t is given by

—dx 00
n(x, )] V +/
—00 dx

dA £.(A) (10.21)
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where the first factor is the number originally in dx, and the second factor is the
probability of outflow. As dx — 0, the gap between —dx and dx in the range of
integration becomes insignificant, and the outflow is 100%. Therefore, all the particles
found in dx at time ¢ + T arrived during the time interval 7. That is,

rz(x,t—kr)a’x:/oo dA fi(=A)yn(x +A,t)dx (10.22)
Since f;(—A) = f;(A) we have

nx,t+71) = /00 dA f;(A)yn(x + A, t) (10.23)

—o0

This is an expression of the conservation of particles.
We now expand n(x, ¢ + 7) in powers of 7, and n(x + A, t) in powers of A:

on(x,t)
ot

n(x,t)+t + -

on(x,t A? 9%n(x, ¢t
) APnGn)

o T ax2 (10.24)

= /Oo dA £.(A) [n(x,t)—i—A

—0o0

The integral in the first term on the right is unity, and that in the second term vanishes
because f;(A) is an even function. Successive terms on the right side should rapidly
become smaller, as T — 0. Thus, we have

2 o0
Lot 0 "(x’t)l/ dA A fo(A) (10.25)

ot 0x? 2 J_

which becomes exact in the limit T — 0. Assuming the existence of the limit

D= lim — /oo dAA? f.(A) (10.26)

T—>02T —00

we obtain the diffusion equation

on(x,t) _D 8%n(x,t)
ot dx2

(10.27)

The diffusion constant D, which depends only on the second moment of the probability
distribution f;(A), can be taken from experiments.

The process described is independent of the details of the transition probability
density f;(A), as long as it decreases sufficiently fast with A, such that the diffusion
constant D exists. A more fundamental assumption is that f;(A) depends only on A,
and not on previous history. Such processes are said to be Markovian, which we shall
study further in Chapter 12.
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10.5 Diffusion

The solution to the diffusion equation is the distribution that we have encountered
several times earlier in this book:

1
nx, 1) = ————pe~*/(DN (10.28)

Dt

with the properties

/00 dxn(x,t) =1

o0

n(x,t) t——0> 3(x)

It gives the probability density of finding a particle at x at time ¢, knowing that it was
at x = 0 at ¢ = 0. The generalization of the diffusion equation to 3D is

an(r, t
"(a: ) — DVn(e. 1) (10.29)
with solution
(r,1) = _ vy (10.30)
B '

To verify the diffusion law experimentally, Perrin translated each sketched Brown-
ian path parallel to itself, so that they have a common origin in the plane of the paper.
The theoretical distribution is thus

T —00 P

where r is the radial distance in the plane, and p = 4/4Dt. For Perrin’s experiments
p =7.16u. The distribution of 365 events is shown in Figure 10.4, and the comparison
with theory is shown in Figure 10.5.

Einstein’s simple and physical theory laid the foundation for a formal theory of
stochastic processes. The important points are the following:

* The diffusion law is insensitive to the form of f;(A). We can arrive at the
same law by assuming that, at some small scale, a Brownian particle executes
a random walk of equal step size. (See Section 5.2.)

* The Brownian displacement, which is a sum of a large number of random steps,
has a Gaussian distribution. This is the central limit theorem.
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Figure 10.4 Perrin translated 365 projected Brownian paths to a common origin,
in order to check the diffusion law.
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Figure 10.5 Verification of the diffusion law in Brownian motion. Solid curve is
theory, and the dots represent data from Figure 10.4.
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10.6 Einstein’s Relation

The conservation of the number of Brownian particles is expressed by the continuity
equation

3
V-j—|-a—’::0 (10.32)

where j is the particle current density. Combining this with the diffusion equation
dn/dt = DV?n, we obtain V-(j + DVn) = 0, or

j=—DVn (10.33)

This shows that a density gradient produces a particle current. (See Problem 10.7).
Consider particles moving through a medium under an external force field

Fex((r) = —VU(r) (10.34)
The particles eventually reach a terminal drift velocity proportional to the force:
u = nFex (10.35)

which defines the mobility 5. The drift current density na produces a gradient in
n, which in turn produces a counteracting diffusion current j. In equilibrium these
currents must balance each other, and hence

J+rna=0 (10.36)
or
—DVn —nnVU =0 (10.37)

On the other hand, in equilibrium we must have the Boltzmann distribution

n(r) = n(0)e”V®/kT (10.38)
which gives
nVU (r)
Vn = — 10.39
n iaT ( )
Substituting this into Equation (10.37), we obtain
Dn
—VU —nmnVU =0 (10.40)
kpT

and hence
D =kgTn (1041)

This is Einstein’s relation, historically the first fluctuation-dissipation theorem. We
shall return to this at the end of the chapter.
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10.7 Molecular Reality

At the end of the nineteenth century, three physical constants remained poorly known:
Avogadro’s number Ag, Boltzmann’s constant kg, and the fundamental charge e.
Einstein’s relation provides a way to experimentally measure Avogadro’s number.

According to Stokes’ law, a sphere moving at a terminal velocity u in a liquid
experiences a frictional force

F = 6mravu (10.42)

where a is the radius of the sphere, and v is the coefficient of viscosity of the liquid.
The mobility is therefore

n =6mrav (10.43)
By Einstein’s relation we have
6 b (10.44)
Tav = —— .
kgT

Using the relation k = R/Ao, where R is the gas constant and Ao is Avogadro’s
number, we have

6w avRT
Ap = 400 (10.45)
D
Perrin obtained Avogadro’s number from this relation, among others, and arrived at

a weighted average:
Ao = 7.05 x 102 (Modern value: 6.02 x 10%) (10.46)

Using this, Perrin was able to obtain kp and e. (See Problem 10.7).
Finally, we quote Perrin on molecular reality and the second law of
thermodynamics:

It is clear that this agitation (the Brownian motion) is not contradictory
to the principle of the conservation of energy.... But it should be noticed,
that it is not reconcilable with the rigid enunciations too frequently given
to Carnot’s principle®. ... One must say: “On the scale of size which
interests us practically, perpetual motion of the second sort is in general
so insignificant that it would be absurd to take it into account.”. ...

On the other hand, the practical importance of Carnot’s principle is
not attacked, and I hardly need state at length that it would be imprudent
to count upon the Brownian movement to lift the stones intended for the
building of a house. . ..

3That is, the second law of thermodynamics.
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I think that it will henceforth be difficult to defend by rational argu-
ments a hostile attitude to molecular hypotheses, which, one after another,
carry conviction, and to which at least as much confidence will be ac-
corded as to the principles of energetics. As is well understood, there is
no need to oppose these two great principles, the one against the other,
and the union of Atomistics and Energetics will perpetuate their dual
triumph.

10.8 Fluctuation and Dissipation

The atomicity of matter not only gives rise to fluctuations of thermodynamic vari-
ables, it also explains why there is friction. As Einstein’s relation D = kzTn shows,
fluctuations and dissipations are different aspects of the same physics:

* Fluctuation: In the absence of external force, the path of a Brownian particle
fluctuates because of random molecular impacts. This is manifested through
diffusion, characterized by the diffusion constant D.

* Dissipation: An external force is needed to drag a Brownian particle through
the medium, because there is friction created by random molecular impacts,
characterized by the mobility 7.

These two aspects are illustrated in Figure 10.6.

The interdependence between these two aspects is quite general, and is expressed
by the fluctuation-dissipation theorem, whose specific form depends on the system.
For Brownian motion, it is derived later in Section 13.3:

B /00 dt{(v(t)v(0)) =n (10.47)
0

where B = (kgT)~!. On the left side we have the velocity correlation function in
the absence of external field, and on the right side we have the mobility 7 from the

(a) Fluctuation (b) Dissipation

Figure 10.6  Two aspects of the motion of a body in a grainy medium: fluctuation
(diffusion) and dissipation (mobility). They are united through Einstein’s relation.
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TABLE 10.1 Various Forms of the Fluctuation-Dissipation Theorem

Quantity Fluctuation-Dissipation Theorem Reference

Voltage ﬂ(?z_— V2) =4RAv Section 10.2
Energy B(E? —E*>)=TCy Section 8.5
Density B(n? —n?) = V1ntkr Section 9.5

linear response {v)r = nF, where (v)r is the average velocity in the presence of the
external force F. The relation for other physical systems are listed in Table 10.1, with
reference to where they are discussed in this book.

It should be emphasized that the fluctuation-dissipation theorem is a linear approx-
imation, derived under the assumptions that

+ The fluctuations represent small deviations from the state of thermodynamic
equilibrium.
+ The system responds in a linear manner to a small disturbance.

The relation may fail in nonlinear systems, or in systems that take years to reach
thermal equilibrium, such as glasses.

10.9 Brownian Motion of the Stock Market

If you look at the chart of a stock price, it’s clear that there is noise; random fluctua-
tions are ever present. Louis Bachelier, student of Henri Poincaré, was the first to
model the financial market in terms of Brownian motion. In fact, he derived the
diffusion equation before Einstein did (Bachelier, 1900).

If there is Brownian motion in the stock market, one would not find it in the
stock price, because the price must be positive, and hence cannot have a Gaussian
distribution. Instead, one finds it in the logarithm of the price (Fama 1970). Suppose
the stock price is known at time ¢t = 0. Let

p(t) = stock price at time ¢
s(t) = log p(¥) (10.48)

In the Brownian model, s(¢) is taken to be a stochastic variable with a Gaussian
distribution, whose width increases like J/t, with a drifting center:

1 (s — s0 — pt)?
P(s) = ——— A
(s) 2ot P ( 202t

where s; = s(0), and w is the drift rate. The quantity o is known as the volatiliry. It
is of dimension ~/time, and commonly used as a measure of risk.

In Figure 10.7 we compare Equation (10.49) with actual data. We plot the proba-
bility distribution of s(¢) — s(0) for t = 1 day, for the SP500 index during 2003 to

(10.49)
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Figure 10.7 Data points represent the distribution of log (p2/p1) for SP500 during
2003-2006, with p1 = price, p2 = next day’s price. Solid curve is a Gaussian fit.

2006. We can see that the distribution is roughly Gaussian, with a small drift, but the
tails of the data are much fatter than Gaussian. This indicates that there are departures
from Einstein’s model of Brownian motion. Most probably at fault is the assumption
that the transition probability does not depend on history, that is, the Markovian hy-
pothesis. From a practical point of view, the graph shows that volatility is not a useful
measure of risk for large fluctuations.

For another comparison, this time with a single stock, we consider the increment
of s(¢) over a time interval Af:

As = log p(t + Ar) — log p(t) = log p—(;—“;)A—t) (10.50)

The Brownian model says

As = (u+ w)At (10.51)

where wA? is a random walk. Figure 10.8 (a) shows the weekly price chart of
Nutri System (NTRI) from 2003 to 2006. Panel (b) shows As, with At = 1 week.
Panel (c) shows the 10-day price variance. We see that As does appear to be fluctu-
ating at random. The fact that there are more points above zero than below shows a
general drift. But the drift is unsteady, as the price chart shows. The variance chart
shows a more or less constant band, but large fluctuations occur periodically. This
indicates that the Brownian model can describe qualitative features of a “normal”
market. It breaks down when there are large market moves, for reasons beyond the
model.
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Figure 10.8 Charts of NTRI. (a) Weekly price chart. (b) Increment of s = log(price).
(c) Price variance over previous 10 days.
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Problems

10.1 The Nyquist theorem holds at high temperatures. Find the first quantum cor-
rection to it. At what temperature would it be necessary to take this correction into
account, for a resistor of length 1 mm?

10.2 Model a Brownian displacement as a path of fractal dimension 2. Start with a
straight line of unit length between two fixed points. Draw a new path connecting the
same endpoints with twice the length, and repeat this procedure as often as you can
manage to do.

10.3 Give an arguement to show that Brownian particles in suspension in steady state
behave like an ideal gas., whose partial pressure is given by p = nkgT, where n is
the density of particles.

10.4 Verify the solution (10.28) to the diffusion equation. In particular the normal-
ization and the initial condition.

10.5

(a) Perrin cited p = /4Dt = 7.16, and t = 30s. Find the diffusion constant D
for the Brownian particles, and compare it with that for the self-diffusion constant of
O, molecules at STP, which can be estimated from Equation (7.32). How far would
an O, molecule travel in the same time?

(b) Find the mobility of a Brownian particle at a temperature 7 = 300 K. What
force is required to drag the particle at a velocity of 1 cm/s?

10.6 Calculate Boltzmann’s constant kg = R/Ay, and the electronic charge e =
F/ Ay, using Perrin’s value of Avogadro’s number Ag = 7.05 x 10?3, Here, R =
8.32 x 107erg K™! is the gas constant, and F = 2.9 x 10'* esu is the Faraday, the
amount of charge dissociated in 1 g mol of substance through electrolysis.

10.7 The diffusion equation can be derived in many different ways. Apart from Ein-
stein’s derivation discussed in this chapter, (which was historically one of the first)
it can be derived from the random walk, as shown in Section 5.2. Here is another
derivation, and some generalizations.

(a) Start with Equation (10.33), j = — DVn, as an empirical “constitutive relation”
between the diffusion current j and the gradient of the density. Combining it with the
continuity equation, obtain the diffusion equation in the absence of external force.

— =DV?n
at
(b) When there is an external force Fey, the total particle current is the sum of the
diffusion current —DVr and the drift current nF.. /1, where 7 is the mobility. Show
that the diffusion equation is generalized to
on

3 = DV?n — nFey - Vn

This is a special case of the Fokker—Planck equation.
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(c) If the diffusing particle can be absorbed by the medium with an absorption
probability per second V (r), show that the diffusion equation is generalized to

on )
— =DV°n—Vn
ot

In pure-imaginary time, this becomes the Schrodinger equation, with D = i/2m.
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Chapter 11

Stochastic Processes

11.1 Randomness and Probability

In physics, the term stochastic! refers to probabilistic considerations, and the notion
of probability is based on the frequency of occurrence of random events. From a
physical point of view, therefore, the central questions are

* What is meant by randomness?

» How can we decide whether a process is random?

According to our intuitive notions, a random event is one whose outcome is un-
certain and unpredictable. More specifically, it is an event for which an infinitesimal
change in the initial conditions will produce a very different outcome.

The flipping of a “true” coin has 50% chance of being heads or tails. That is to say,
the outcome is random. Actually, this defines what we mean by a true coin. If we toss
a particular coin a million times, and heads turned up 49.9% of the time, we would
conclude that either the coin is biased, or we have not tossed it enough times. For
us to revise our notion of a true coin will require the shock of monumental failures.
From this point of view, probability is a physical concept no different from any other.

We now formulate these ideas more formally (A general reference for probability is
Feller 1968.) Imagine that n independent experiments are performed under identical
conditions. If outcome A is obtained in n4 of the experiments, then the probability
that A occurs is

Py = lim 24 (11.1)

n—oo

The following basic properties of probability follow from this definition:
* If two events A and B are mutually exclusively, then the probability that either
A or B occurs is the sum of their probabilities P4 + Pg.

 If two events A and B are independent of each other, then the probability for
their simultaneous occurrence is the product of their probabilities P4 Pg.

YErom the Oxford English Dictionary: Stochastic, a. Now rare or obs. Pertaining to conjecture. 1720 Swift,
Right of Preced. betw. Physicians & Civilians 11, I am Master of the Stochastik Art, and by Virtue of that,
I divine, that those Greek Words have crept from the Margin into the Text. ... 1688 Cudworth, Freewill
(1838) 40. There is need and use of this stochastical judging and opining concerning truth and falsehood
in human life.
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In an experiment whose outcome must be one of a number of mutually exclusive
events labeled 1, ..., K, the probability P; associated with the ith event is a real
number satisfying

P, >0

Y p=1

i=1
There are practical difficulties in using this definition to experimentally measure
probability. First, we do not have infinite time at our disposal; secondly no two actual
experiments can be completely identical. Thus, the true function of this definition is to
guide us in assigning a priori probabilities to events. Whether or not the assignment
is appropriate is determined by confronting our theory with reality.

A stochastic variable 1s a quantity whose possible values occur with a certain

probability distribution. It is defined when we give

* the range of its possible values y;
* the probability P (y) for the occurrence of y.
The sum of two stochastic variables is a stochastic variable.
The simplest stochastic variable is the outcome y for tossing a coin. Suppose the

coln is biased, so that the probability for heads is p, and that for tails (1 — p). The
possible values may be taken to be

_ { 1 (heads) (11.2)
0 (tails)
with probability
P =p
PO)=1-p (11.3)

In Einstein’s theory of Brownian motion discussed in the last chapter, the dis-
placement A over a time interval t is a continuous stochastic variable, with range of
—00 < A < o0o. The probability that it has a value between A and A+ dA is
fz(A)dA. In that theory in the limit T — 0, only the second moment of f;(A) is
relevant.

11.2 Binomial Distribution

To put our notion of stochastic variables to use, we derive some probability distribu-
tions that can serve as tests for randomness.

Consider first the sum of a number of stochastic variables, for example, the result
of tossing a coin n times independently:

k=y +- -+ (11.4)
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The possible values are
k=0,1,...,n (11.5)

The probability P (k) can be obtained through the binomial theorem, which states
that, in the expansion of (1 + x)" in powers of x, the coefficient of x* is the binomial

coefficient
ny n! (11.6)
k) kl(n—k)! '
Let us write
(1+x)”z£1+x)---(1+xz (11.7)
nfz;c,tors

To obtain x*, we pick one x each from k of the factor on the right side. The coefficient
of x* is the number of ways we can choose k factors out of the n factors. Therefore,
(7) is the number of ways to choose k things out of n things.

Now, imagine » identical coins being tossed simultaneously. There are (Z) ways
of choosing the k coins that turn up heads. The probability for each of the choices is
p*(1 — p)"*, where p is the probability for heads. The probability P (k), which we

redesignate as B(k; n, p), is thus given by

B(k;n, p) = ¢ k1 —py* (11.8)

n!
n—k) P

This is called the binomial distribution, the probability for getting k heads in n tosses
of a coin, with p the intrinsic probability for heads. For a true coin p = 1/2.
The first few moments of the distribution are

> B(kin, p) =1
k=0

(ky =Y kB(k;n, p) = np
k=0

(k) =" K*B(k; n, p) = n*p? + np(1 — p) (11.9)
k=0
The variance, or mean-square fluctuation, is

(k) — (k)* = np(1 — p) (11.10)

A graph of the distribution is shown in Figure 11.1.
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B(k; n, p)

Figure 11.1 The binomial distribution [Equation (11.8)] gives the probability of
getting k heads in n tosses of a biased coin, with p the intrinsic probability for heads.

11.3 Poisson Distribution
The Poisson distribution is the limit of the binomial distribution when p — 0 and

n — oo, with fixed np = o:

P(k:o) = lim B (k;n, 5) 11.11)
n

n—>00

Itisknown as the “law of small probabilities” for this reason. With the help of Stirling’s
formula, it is straightforward to obtain

ok
Pk; o) = Fe“’ (11.12)

The first few moments are

i Pk;o) =1
k=0

(k)= kP(k;o)=o0

k=0
o0
(k)= KPk;o)=0(c+1) (11.13)
k=0
Thus the variance is
k*) — (k) =0 (11.14)

A 3D representation of the Poisson distribution is shown in Figure 11.2.
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Figure 11.2 The Poisson distribution [Equation (11.12)]. The variable k is discrete,
while o is continuous. Continuous curves are indicated in heavy lines. The dots at
large constant o approach a continuous Gaussian distribution in k.

As an example of the Poisson distribution, suppose you try to sell walrus whiskers
on the telephone. The demand for the product is essentially zero, but you make a
thousand phone calls. What is the chance that you will make ten sales? Twenty sales?
If you know the probability of a sale, you can calculate the chances via the Poisson
distribution.

If you don’t know the probability, and want to find out, you can make a thousand
phone calls every day for a year. At the end of the period you tally up the number
of days N (k) in which you made k = 0, 1, 2, ... sales. If there is enough data, the
histogram of N (k) should resemble a Poisson distribution. You can then normalize it
so that the total area is 1, and try to fit it with a Poisson distribution by adjusting o.
The probability of a sale is then p = o/1000.

11.4 Gaussian Distribution

The Poisson distribution gives the probability for discrete counts k. It is peaked about
k = o, with width /o For sufficiently large o, the values of & in the neighborhood
of the peak can be treated as continuous, and the Poisson distribution goes over to the
Gaussian distribution, also known as normal distribution.

In the neighborhood of £ = o, for 0 >> 1, we can use the Stirling formula to
write

1
Pk; o) ~ gk—ot+kin@/k) (11.15)

2rk
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Using the approximation

() =n[i+ (2 )

1 2
~ (%_1) -3 (%—1) (11.16)
we obtain
1
Pk; o) ~ e~ (k=0)*/2k (11.17)

2k

Since k = o, we can replace k by o everywhere, except in the quantity (k — o)? in
the exponent. Putting x = k — o, we obtain the result

1
G(x;0) = ——e */% (11.18)

2o

where x is regarded as a continuous variable. The moments are

/ dxGk; o) =1

(k) = /00 dxxGk;0) =0

o0

(k%) = /oo dxx*G(k;0) = o (11.19)

o0

Clearly, the variance is o. Graphs of the Gaussian distribution for different o, are
shown in Figure 11.3.

G(x; 0)

N

1 15

e 0 0,‘5\

5
/

—=
———

g

Figure11.3 The Gaussian distribution [Equation (11.18)]. The central limit theorem
states that the sum of a large number of stochastic variables obeys this distribution,
independent of the probability distributions of the summands.
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11.5 Central Limit Theorem

We often work with the sum of a large number of stochastic variables. For example, to
test the trueness of a coin, we make a large number n of tosses, with outcomes y; (i =
1,...,n), and consider the probability distribution of k = ), y;. For sufficiently
large n, we should have the Gaussian distribution [Equation (11.18)], whichis centered
at o = np, with width /o . Changing the variable to

1 n
7= ;Zy,- (11.20)
i=1
we obtain the Gaussian distribution
L —eppo (11.21)
270

The coin is true if p = 1/2.

As another example, let y;, y», ... represent the displacements in the coordinate
of a Brownian particle at successive time intervals 7 ~ 10719 5, on a molecular scale.
If we make observations at 1-second intervals, we are measuring the sum

x=A1+As+---+A, (11.22)
where 7 is of the order 10'°. We learned in the last chapter that, regardless of the

detailed form of the probability P (A), the distribution of x is a Gaussian
1

4 Dt

where D is proportional to the second moment of P(A), and ¢ is the observation time
in seconds.
Summarizing these results, we can assert:

e * /4D (11.23)

The sum of a large number of stochastic variables obeys the Gaussian
distribution, regardless of the probability distributions of the individual
stochastic variables.

This is the central limit theorem. The important property of the Gaussian distribution
is its universality, which makes its “bell curve” so ubiquitous, from error analysis in
laboratory experiments to the forecast of longevity in a population.

11.6 Shot Noise

Shot noise consists of a series of events randomly distributed over a long period of
time. Practical examples abound:

* raindrops impinging on a window pane during a rainstorm;

» electrons arriving at the anode of a vacuum tube;
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Figure 11.4 Shot noise consists of a stream of events distributed randomly over a
long period of time. Here, the time axis is divided into periods of equal durations, and
the collection of these periods forms a statistical ensemble.

* cars crossing an intersection during rush hour;

* customers going up to a service counter.

In reality these events are subject to modulations, of course. But, during a stretch of
time when they appear to be in a steady state, we model them as a random stream.
We can map this problem into the coin-tossing problem discussed earlier. Let us
divide the time axis into bins, each of duration 7, and let X; be the number of events
in the ith bin, as shown in Figure 11.4. We regard the collection of bins as a statistical
ensemble describing the process. The average frequency of events is defined by
Ki+ - -+ Ky

v= lim (11.24)
M—o00 MT

Let the unit of time be Az. The probability of a hit during At is p = vAtz. We consider
At — 0, so p becomes vanishingly small. Then, getting a hit is like getting heads
in tossing a bias coin, with intrinsic probability p. There are n = T /At intervals in
the bin, and we think them as n tosses of the coin. Thus, the probability of getting
k hits in n tries is given by the binomial distribution B(k; n, p). Now go to the limit
n — 00, p — 0, with fixed np = o, given by

o=vT (11.25)

Then, the probability of getting & hits in time T is given by the Poisson distribution

ok

Pk;o0) = Fe“" (11.26)

The average number of hits is (k) = o. The distribution depends on T only through o.

Suppose an event happening at time # = 0 produces a measurable effect f(¢), such

as the sound of a rain drop, or a current triggered by an electron. The output from the
streams of random events is represented by the function

Ity= > ftt—n) (11.27)

k=—00

Generally, f(¢) makes a “plop” that is zero before + = 0, and is significant only
for a finite time A. Thus, at any given ¢, only a finite number of events contribute
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I(t)

0 1.0 2.0 ‘
Figure 11.5 The sound of raindrops. A drop arriving at ¢+ = 0 produces sound
represented by f(¢) = 0(t)e™".

significantly to the output function, namely, those that lie within the width A. As an
illustration, let us represent the sound of a raindrop arriving at time ¢ = 0 by

0 ¢<0
£ ={ - (11.28)
e™ (t >0)

where ) is a constant. Then I (¢) has the form shown in Figure 11.5.
Campbell’s theorem states the simple results

(1) = V/ dt f(t)

—00

o0
(@) — @) =v / dt f*(t) (11.29)
—00
where (I(¢)) denotes the average over an ensemble of time periods of duration T,
with ¢ held fixed in that period. The average turns out to be independent of #, in the
limit 7 — oo.
To show the first statement of Campbell’s theorem, we first consider the cases where
exactly k events arrive in the period T, and average over the arrival times 71, ... , %.
We then average over the Poisson distribution for k:

_ . Tdtl Tdtk
<I(t)>—zij(k,a)/0 7/0 =)+ = 8]

T dtl T
.—_ZkP(k;a)/ 7f(t—t1)=v/ dn ft — 1) (11.30)
& 0

0

where we have used the fact that the average of k over the Poisson distribution gives
o,ando/T = v.
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ft—t,)

A —/ |«—

I [N
0 t T

Figure 11.6 The integral of the function over #; is the area under the curve, except
when ¢ is within a width A of the boundaries.

The function f(¢) is a narrow peak with a width A. If A <« T, then f is like a
d-function, and the integral above is essentially the area under f(¢), that is, f drf(t).
This approximation becomes exact as 7 — 0o, and we have the first part of the
theorem. The second part takes longer to prove, but the method is the same. (See
Problem 11.7.)

Let P(I)dI be the probability that the value of 7(¢) lies between I + dI and I.
For large frequency v of the events, /(f) is a sum of a large number of stochastic
variables, and therefore obeys a Gaussian distribution by the central limit theorem.
Thus we have

1 2
P(]) = ——¢ U~°/? 11.31
(I ﬁy?be ( )
where
a=(I(t))
b= (I*@)) — (I1(1))? (11.32)
Problems

11.1 There were 12 rain showers last week, but none happened on Tuesday. Is it safe
to leave the umbrella home this Tuesday?

11.2 A student drives to school and parks illegally on the street. One week she received
12 parking tickets, all on either Monday or Wednesday. Would you advise her to park
in a pay lot on Mondays and Wednesdays?

11.3 A man in New York gets off work at approximately 5 PM every day, and walks to
the subway station, where he could take a uptown or downtown train from the same
platform. The man takes the first train that comes. (Need we explain? He has a house
in Yonkers and a condo in Brooklyn.) The trains run on a strict schedule: a northbound
train leaves every 5 minutes, and a southbound train leaves every 5 minutes. Over the
years he wound up in Brooklyn 70% of the time. Why?

11.4 Describe a procedure to test the quality of a random-number generator, based
on the Poisson distribution. Carry it out in your personal computer.
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11.5 The behavior of a certain type of semiconductor diode can be modeled on the
current-voltage characteristic

0 (V <0)
Ilexp(V/ Vo) =11 (V 20)
Find the probability density for the current in terms of the probability density for the
voltage.

11.6 A device squares the input: y = ax?. Suppose the input x has a Rayleigh
probability density

{(x/a) exp(—x2/2a) (x 2 0)
Px) =
0 (x <0)

Find the probability density for y.

11.7 Campbell’s theorem The sound of raindrops is represented by the output func-
tion I(¢) = >, f(t — ), as defined in Equation (11.27). Follow the step outlined
below to show that its correlation function is given by

x

00 2
G(‘E)E([(t)[(l‘-l—‘[)):l)/ dtf(t)f(t+1:)+<v/ dtf(t))

—00 —

where v is average frequency of raindrops. The average () denotes an average over
an ensemble of time periods of duration 7', with fixed ¢ and 7, in the limit 7 — oo.
For T = 0, this is the second part of Campbell’s theorem.

(a) Consider first exactly K raindrops falling during the period T, average over the
times at which they fall. Then average over a Poisson distribution P, (K) of values
of K. Show

> K& Tay T dtx
6= nwYY [T [ GEre-wsere-y
K=0

i=1 j=1

where o = vT, and the times T, t, 7, t; are all integers in appropriate units.
(b) Consider separately the contribution from terms with i = j, and those with
i # j.Show

00 Kk [T
6 =3 Po(K) [7/0 dn e — 1) ft+7 — 1)
K=0

KK -1 (T d
+ _5___/ an f(t — tl)/ dhfit+7t—-1)
T 0 0



162 Stochastic Processes

(c) Since f(¢) has a finite width, and 7T — o0, show that for all values of t + t
except for a negligible set within a width of the boundaries of [0, T'], we have

o0 K o0
G(r)=ZPa(K){7 / dn f(6) f(t +7)
K=0 -

K(K—=1)[ [® 2
+ = [/_oodtf(t)}

Obtain the final form by summing over K.
(d) For f(t) = 0(t)e™, show

6@ =(3) + (5 )

Reference

Feller, W., An Introduction to Probability Theory and Its Applications, 3rd ed., Wiley,
New York, 1968.



Chapter 12

Time-Series Analysis

12.1 Ensemble of Paths

A time-series is a stochastic variable v(z) that depends on time. We have seen an
example of this in shot noise. Here, we study its dynamical aspects in greater depth
(Wang and Uhlenbeck 1945). For concreteness we can think of v(¢) as the velocity of
a Brownian particle, or the current in a flow. Being a stochastic variable, v(¢) is not a
function in the usual sense, but a member of an ensemble of functions, as illustrated
in Figure 12.1. The various records of v(z) describe the time evolution of identically
constituted systems, under the action of random forces in the environment.

At each instant of time ¢ there is a distribution of v-values, as we can see from
Figure 12.1. To describe the time series completely, however, we need more; we need
to know the correlations in time. These are given through a hierarchy of probability dis-
tributions, and are listed in the following, where we use the abbreviation 1 for {vy, #;}:

Wi (1)

W)(1,2)

Ws(1,2,3) etc. (12.1)
Here, W, (1, ..., k)dv; ...dv is the joint probability of finding that v has a certain

value

* between v; and v + dv; at time t4;
* between vy and vy + dv; at time £;;

» between v; and v3 + dvs at time f3; etc.

Clearly, W; must be positive-definite, and symmetric under the interchange of {v;, #;}
with {v;, z;}. The nth joint probability W, must imply all the lower ones W; with
k<n:

o0
w.(@,--- ,k):/ dviyr---av, W, (1, ..., n) (12.2)
—x

In principle, we can measure these distributions from records like those in
Figure 12.1, given a sufficiently large sample. To find W, (1, 2)dvdv, from the data
in Figure 12.1, for example, we follow the vertical dotted lines at ¢; and f,, and find
the fractions of records for which v(#;) = v; and v(t;) = v, within tolerances dv;,
dvy, repetitively.

163



164 Time-Series Analysis

v(t)

Figure 12.1 An ensemble of paths representing a stochastic process.

We shall limit our attention to stationary ensembles, for which the probability
distributions are invariant under time translation. This means that W;(vy, #1) is inde-
pendent of ¢, and that, for £ > 1, W, depends only on the relative times (¢, — #;),
(tBz—11),..., (& —1t).

Many physical processes approach a steady state after transient effects die out. In
these cases, we consider only the time records taken during the steady state. In Brow-
nian motion, for example, the velocity distribution becomes Maxwell-Boltzmann
distribution after some time, (although the position never reaches equilibrium).

12.2 Ensemble Average

The ensemble average of v(¢) is defined as

) — Joo dvio Wy (v, 1) _/ dvl v, Wi vy, 1) (12.3).

N TR A B
The denominator in the ratio is unity by definition, because Widv; is a probability.

In a stationary ensemble the above is independent of the time ¢.
The correlation function between v(¢) at two different times #1, ¢, is given by

(U(fl)v(l‘z))=/ dvl/ dvoviva Wi(v1, t1; v2,1) (12.4)
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In a stationary ensemble this depends only on #, — #;. The triple correlation function
and higher ones can be similarly defined.

In a stationary ensemble, the ensemble average is equivalent to time average. For
example,

1 T/2
v) = -—/ dtv(t) (12.5)
T rp2

for sufficiently large T'. As an example, consider the tossing of N coins. The fraction of
heads occurring should be the same, whether one coin is tossed N times in succession,
or N coins are tossed simultaneously, provided N is sufficiently large. We can of
course think of exceptions. It is possible that tossing the N times will result in all
heads, no matter how large N may be. Such a sequence, however, is very unlikely.
That is, in the space of all possible sequences it has a very small “measure” 2%,
Time average and ensemble average are equivalent “except for sets of measure zero.”

12.3 Power Spectrum and Correlation Function

A time series can be decomposed into its sinusoidal components through Fourier
analysis:

o0
d )

V() = / GO g-iory, (12.6)

—o0 2T
with inverse transform

w .

vwz/ dte'“ v(t) (12.7)
—o0

Since v(¢) is real, we must have
Vo = U, (12.8)

The Fourier transform of the correlation function reads

w(E)(E)) = / " dordw,

72%)—2 (Vepy Ve, ) €XP(—i1t1 — Tw212) (12.9)

To input the information that the ensemble is stationary, let us put
h=T+71/2
L=T—-1/2

The exponent can then be rewritten as

T
w1ty + wrty = (w1 + W) T + (w1 — 602)5 (12.10)
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Thus

* dand
(o) = [ T ) exp (=iCor + @i T = i1~ 0))

—oo (2m)?
(12.11)

In a stationary ensemble, the right side should be independent of 7', and that means
(U, Ve, ) must be zero, unless w; + w, = 0. That is, it must have the form

(Vepy Vesp) = 270 S(01)8 (w1 + w2) (12.12)

The coefficient S(w) is called the power spectrum, which we assume to be real, with
S(w) = S(—w).

The power spectrum S(w) is a measure of the strength of various Fourier compo-
nents. When S(w) is independent of w, all frequencies have equal weight, and we
have what is called white noise.

Substituting Equation (12.12) into Equation (12.11), we have

(v(t)v()) = / N d—wS(w)e—"w<’l"2> (12.13)
oo 2T
or
W (@) (0)) = / ” Z—wS(a))e'i“”
—oo 2T
Cdw
=/ —S(w) cos(wt) (12.14)
0 T

Inverting the Fourier transform gives

S(w) = / ” dr (v()v(0))e'”

—O0

- 2/00 dt (v(#)v(0)) cos(wt) (12.15)
0

Thus, the power spectrum and the correlation function are Fourier transforms of each
other. This relation, sometimes called the Wiener—Kintchine theorem, is an imme-
diate consequence of Equation (12.12), which expresses the invariance under time
translation.

Putting ¢+ = 0 in Equation (12.14), we have

(v?) = /oo d—CBS(w) (12.16)
0 b4
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Correlation Fourier analyzer Spectrum

Figure 12.2 Intuitive explanation of the Wiener—Kintchine theorem, which relates
spatial correlation to power spectrum: For a stationary stream of events, correlation
at two different spatial points at the same time is equivalent to correlation at the same
point at different times. The latter gives rise to the Fourier spectrum, while the former
refers to spatial correlations.

If we think of v(¢) as a current, then the above represents the power dissipated in a unit
resistance, and identifies 7 ! S(w) as the power dissipated per unit frequency interval.

The physical basis of the Wiener—Kintchine theorem was elucidated by G.1. Taylor
(1938):

When a prism is set up in the path of a beam of white light it analyses the
time variation of electric intensity at a point into its harmonic components
and separates them into a spectrum. Since the velocity of light for all
wavelengths is the same, the time variation analysis is exactly equivalent
to a harmonic analysis of the space variation of electric intensity along
the beam.

The relation is illustrated in Figure 12.2.

Taylor also verified the Wiener—Kintchine theorem experimentally, using data on
local velocities v in turbulence in a wind tunnel. The verification of Equation (12.15)
requires S(w) and (v(t)v(0)) at the same location. Equivalently one can measure
(v(x/u)v(0)) for different distances x from a fixed location, where u is the average
velocity of the wind. Thus, the relation to be tested can be cast in the form

5‘% — (_1)22_> /Ooodx (v (2) v(0)) cos (";—x) (12.17)

In Figure 12.3, the two sides of the above equation are obtained through independent
measurements, and plotted as functions of w/u, for‘a series of u’s. As we can see,
they are in excellent agreement.
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0.4 ft
03l Power spectrum:
¥ o u=15ft/s
% 20
. A 25
3
= 30
%02 *
=] o 35

© Correlations

Figure 12.3 The power spectrum of turbulence in a wind tunnel, with average wind
speed u. “Correlations” refer to the right side of Equation (12.17), which should be
equal to the power spectrum by the Wiener—Kintchine theorem. [After G.1. Taylor,
op. cit.]

12.4 Signal and Noise

From our perspective, noise is defined by the fact that all its Fourier components are
stochastic variables with zero mean, that is, (v,) = 0. A signal, therefore, is any
definite additive periodic component.

If v(z) does not contain periodic components, then the correlation function ap-
proaches zero when ¢ — oc. For the purpose of illustration, let us assume that it
decays exponentially:

G(1) = (v(1)v(0)) = Ce™7" (12.18)
The corresponding power spectrum is easily found to be
Cb
S(w) = ——— 12.19
@ = (12.19)

This is known as a Lorentzian distribution. Qualitative plots of G(¢) and S(w) are
shown in Figure 12.4.
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G(t)
S(w)

1 . |
0 1y 0 Y

Figure 12.4 The correlation function G (¢) and power spectrum S(w) for a stochastic
process without periodic components. White noise corrresponds to the limit y — oo.

Suppose there is a periodic component, so that v(¢) has the form
v(t) = u(t) + Asin(wot) (12.20)
where u(¢) has no periodic component. Assuming
(u(®u(0)) = Ce™*"! (12.21)
we obtain
G(t) = Ce " + A sin(wot)

Cb
S(w) = ——— + 21 A*8(w — wp) (12.22)
w-+y

An ac signal of frequency wq will show up as a spike in the power spectrum at @ = wy.
A dc signal will give a spike at w = 0. This is illustrated in Figure 12.5.

G(t)
S{w)

Dc signal

/ Ac signal

Ac signal

Dc signal

Figure 12.5 Periodic components show up as spikes in the power spectrum.
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12.5 Transition Probabilities

The dynamics of a stochastic process can be described in terms of transition proba-
bilities that give the probability for an event occurring at a certain time, when condi-
tions are specified at another time. Using the abbreviation k to stand for {v, #;}, we
introduce the notation

P(1]2) = Probability density of finding 2, when 1 is given
P(1, 2{3) = Probability density of finding 3, when 1, 2 are given

P(1, 2, 3|4) = Probability density of finding 4, when 1, 2, 3 are given

(12.23)

where probability density means probability per unit interval of the stochastic variable
v. The specified variables are listed to the left of the vertical bar, and the variable to
be found is written to the right. With these transition probabilities, we can express
Wy in terms of Wy, ..., Wi_1, as follows:

W2 (1,2) = Wi(1) P(1]2)
Ws(1,2,3) = Wa(1,2)P(1, 2|3)

Wi3(1,2,3,4) = Wa(1,2,3)P(1, 2, 3|14)

(12.24)

The transition probabilities must be positive-definite, and satisfy the normalization
condition

/00 dnP(]2) =1 (12.25)

-

Since Wy (2) = [ dviWy(1, 2), we have

o
Wi(2) =/ dviWi(1)P(1]2) (12.26)
-0
This is an integral equation for W; with P(1|2) as the kernel.
The transition probability P (1]2) is notsymmetricin 1, 2, in contrast with W»(1, 2).
However, using the symmetry of W(1, 2), we obtain from Equation (12.24) the
relation

Wi(D)P((1]2) = W12)P(2|1) (12.27)

That is, the transition probability weighted by the probability of the initial state is
symmetric. This property is known as detailed balance.
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12.6 Markov Process

The simplest stochastic process is a “purely random” process, in which there are no
correlations. All distributions are then determined by Wi:

W (1,2) = Wi(1)W1(2)
Ws(1,2,3) = Wi(1)W;(2)W;(3) etc. (12.28)

Such would be the case in the successive tossing of a coin. A continuous physical
variable v(¢) cannot be purely random, however, because v(¢) and v(z + df) must be
correlated, for sufficiently small dt.

Next in complexity comes the Markov process, in which the system has no memory
beyond the last transition. It is defined by the property

P(1,2,...,n—1ln) = P(n — 1in) (tp > the1 > -+ > 1) (12.29)

All information about the process is therefore contained in P(1]2) or equivalently
W, (1, 2). For example, from Equation (12.24) we obtain

Ws(1,2,3) = W,(1,2) P(12|3) = W, (1,2) P(2]3)
= Wi (1) P(1]12) P(2|3) (12.30)

The basic transition probability P(1|2) cannot be arbitrary, but must satisfy the
condition

xO
P(1|3)=/ dv, P(1|12) P(2]3) (12.31)
—00
More explicitly,
o0
P(Ul,t1|U3,t3)=/ dv, P(v1, t1|vz, 1) P (v2, 12| V3, 13) (12.32)
—00

This is called the Smoluchowski equation, or Chapman—Kolmogorov equation. This
follows from the law of composition of probabilities implied by Equation (12.2),
given that P (i|j) are the only independent transition probabilities.

Markov processes are important, because most physical processes are of this type.
Brownian motion falls into this category, and so do quantum mechanical transitions,
where the transition probability per unit time is given by “Fermi’s golden rule”

0 2
—P(1]2) = == |H.|? 12.33
a7 ( | ) 5 | 12i P2 ( )

where t = t; — tp, Hj, is the matrix element of the interaction Hamiltonian, and o,
is the density of final states.
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12.7 Fokker-Planck Equation

We now derive an equation for P(1|2) in a Markov process, under the assumption
that small displacements occur over small time intervals. First, let us make explicit
the invariance under time translation by writing:

P(1]2) = P(v1, tijve, 1) = P(vi|va, 2 — 11) (12.34)

As a suggestive notation, let us designate a transition v — u over the time ¢ as

[u — u] (12.35)

t

If we change the time from # to ¢ + At, the transition can be described as a two-step
process:

[v H—A; u} = [v — w] . [w 7 u] (12.36)

The corresponding Smulochowski equation is

o0

P(lu,t + At) = / dwP (v|w, t) P(w|u, At) (12.37)

—o0

We now introduce the main assumption, namely that the final state is close to the
initial state, over a small time interval. This means that the transition probability over
a small time At falls off rapidly when the final state deviates from the initial state.
More precisely, consider the first two moments of the change in v:

[o.¢]

(Av) = / dw(w — v)P(v|w, At) = / dwwP(v|v+ w, At)

o0 —0
x x
((Av)?) = / aw(w — v)zP(vlw, At) = / dww?P(v|v + w, At) (12.38)
—00 -0
The assumption is that these are of order Az, and hence the the following limits exist:
A(v) = li ! (A
V= a0 A v)

1 2
((Av)?) (12.39)

B = lim —
) A}EI»O At

Higher moments are assumed to be of order (At)?.
Now consider the folding of 3 P /3¢ with an arbitrary function R:

/ duR(u)?P—(;l”—”—) =AltigloAit/ duR@W)[P(lu, 1 + Ar) — P(vlu, 1)]
(12.40)
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We can use the Smoluchowski equation to rewrite the first term on the right side as

/00 du /00 dw R(u)P(vjw, ) P(w|u, At) (12.41)

Interchange the order of integration, and expand R (1) about ¥ = w in a Taylor series,
we have:

R(u) = R(w) + (u — w)R'(w) + %(u —w)’R"(w) + - - - (12.42)

Substituting this into Equation (12.40) gives

/OO duR(u)w = /OO dwP(v|w, t) [R'(w)A(w) + %R”(w)B(w)}

—oo 0 —o0

(12.43)

On the right side, we make partial integrations, change the integration variable from
w to u, and rewrite it in the form

0 9 1 92
/ du {——R(u)a(AP) + ER(u)a—uz—(BP)] (12.44)

—00

where A = A(u), B = B(u), P = P(v|u,t). Thus,

/OodR() aP—I—a(AP) 182(BP) =0 (12.45)
el FPR 2 u? - '
Since R is arbitrary, the quantity in brackets must vanish, leading to the Fokker—Planck
equation

aP 9 1 9?

—+ —(@AP)— -—(BP)=0 12.46

8t+8u( ) 28u2( ) ( )
Here, P = P(v|u, t) is a function of  and ¢, with v as initial condition. The functions
A(u) and B(u) specify the system under consideration. In the next chapter, we shall
illustrate how they can be calculated from the dynamics of the system.

12.8 The Monte Carlo Method

The Monte Carlo method is a computer algorithm to generate a thermal ensemble. An
ideal statistical ensemble consists of an infinite number of copies, and no computer
can produce that. What we can do is to generate members of the ensemble one at a
time. After we make the desired measurements and store the results, the member can
be overwritten. Thus, the size of the ensemble would be limited by computing time
instead of computer memory.
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Consider a system whose state is denoted by C, and the energy of the state by E(C).
In the canonical ensemble with temperature 7', with § = 1/kgT, the probability for
the occurrence of C in the ensemble is e #£() and the thermodynamic average of
any quantity O(C) is given by

e e PEO 0(C)
S eFE©
Our object is to instruct the computer to generate a sequence of states with the
canonical distribution, that is, states should be output with relative probability e #£(©)

Let f(C) be the probability distribution of a given ensemble. The equilibrium
ensemble corresponds to

(0) = (12.47)

e—BE(©)
feq(O) = ) (12.48)
We want to generate a sequence of states Cy - C, — ---C, + C,11 — ---, which

starts with an arbitrary initial state Cy, and, after a “warm up” period of n steps,
reaches a steady sequence of equilibrium states. From the nth step on, the “time
average” with respect to the sequence should be equivalent to an ensemble average
over a canonical ensemble.

The objective is achieved through a Markov process with transition probability
P(C1|Cy) for C; — C,. It is the conditioned probability of finding the system in C,,
when it is in C;. We impose the following conditions:

P(Ci|Cy) >0

Y P(CiIC) =1
Cy

e PECOP(C|Cy) = e PE@ p(Cy|Cy) (12.49)
The first two are necessary properties of any probability. The last is the statement of

detailed balance, when the system is in contact with a heat reservoir.

Theorem 12.1  The Markov process defined by Equation (12.49) eventually leads
to the equilibrium ensemble.

Proof: Summing the detailed balance statement over states C;, we obtain

Z e P p(Cy1Cy) = Z e PEO P(Gy)Cy) (12.50)
C1 Cl

On the right side we note ch P(C,|Cy) = 1. Thus

S eEO P(Cy|Cy) = e PR (azsn
C,
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This shows that the equilibrium distribution is an eigenstate of the transition matrix.
The “distance” between two ensembles f;(C) and f,(C) may be measured by

d(f1, f) = Y _1A(C) = £(O)] (12.52)
C

Suppose f> is obtained from fj through a transition: f>(C) = > fi(C YP(C'|C).
The distance between f, and the equilibrium ensemble is given by

S TIAQ) = fu(O1 =D D ACHP(CIC) = feqg(€)
C C’

C

=Y [SIAC) = ful€IPECIO)
>

C

<D Y 1A — fug(CHIP(C'IO) (12.53)

c

where we have used Equation (12.51) in the second step. Putting >~ P(C’|C) = 1
in the last step, we obtain the inequality

ST1AE) = foO1 <D LA = feq(O)] (12.54)
C C

This shows that the distance from the equilibrium cannot decrease as the result of a
transition.

The Merropolis algorithm gives a recipe in conformity with the rules [Equation
(12.49)], as follows:
* Suppose the state is C.
» Make a trial change to C’.
« If H(C") < H(C), accept the change.
« IfH(C') > H(C),accept the change conditionally, with probability e “AL# €)= H(Ol,

The conditional change in the last statement simulates thermal fluctuations. The
relative transition probability corresponding to this algorithm is

1 if E(C") < E(C)

T(C|C) = , (12.55)
e~ PIECH-EON  if E(C") > E(C)

The transition probability is obtained by properly normalizing the above:

T(C|C)

HEO= ST

(12.56)
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12.9 Simulation of the Ising Model

We illustrate the Monte Carlo method with the 2D Ising model, which is a model
of ferromagnetism defined on a lattice. Attached to each lattice site is a spin that
can point “up” or “down,” and the spins interact with nearest-neighbor interactions.
Possible lattices include the square lattice and the triangular lattice, as illustrated in
Figure 12.6. We shall consider the square lattice here.

Denote the spin variable by s; = £1. A state is specified by all the spins:

C = {s1, sy} (12.57)

The index i = 1,..., N labels the lattice sites. Each nearest-neighbor pair has an
energy —e if the spins are antiparallel, and € if they are parallel, where ¢ > 0 for
ferromagnetism, and ¢ < O for antiferromagnetism. The energy of the system is then

EQC)=—€> sisi—h) s (12.58)
iy :

where (i) denotes a nearest-neighbor pair of sites, and 4 is an external magnetic field.
For the ferromagnetic case on a square lattice, the model is exactly soluble (Huang
1987).

The total magnetization is defined by

MC)=) s (12.59)

In the absence of external field, # = 0, a nonzero value of the ensemble average
(M) indicates spontaneous magnetization. This occurs as a phase transition below a
critical temperature T,. We can numerically compute (M) by averaging M (C) over
a canonical ensemble, generated via the Monte Carlo method.

Set up the lattice in the computer by assigning memory locations to the sites,
and choose a definite boundary condition. It is simplest to choose periodic boundary

e
T II N, / \\
/ \\ ’/ \\
i I 4 s
v

Square lattice Triangular lattice
K=4 K=6

Figure 12.6 2D Ising model: A two-valued spin is placed on each lattice site, with
nearest-neighbor interactions. The geometry of the lattice is characterized by the
number of nearest neighbors «, and their connectivity.
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conditions. After initializing the lattice spins, say all spins up for a “cold” start, or
random assignments for a “hot” start, we bring the lattice to thermal equilibrium by
a sequence of updates. The lattice is updated by going through the spins one by one,
and deciding whether or not to flip it. This is called “one sweep” of the lattice. When
examining s;, we only need to know its four nearest-neighbor spins. The interaction
energy of s; is given by

w; = —€S; Zsj — hs; (12.60)

nn i

where nn stands for “nearest-neighbor to.” If we flip s;, then w; changes sign. The
Metropolis algorithm says:

ifw; > 0, flip s;.

(12.61)
if w; <0, flips; with probability e=2#w
After this is done for a particular spin, we go to the next spin and repeat the algorithm,
until we have gone through all the spins on the lattice. This completes one sweep of
the lattice, and produces a transition C — C’ We keep making sweeps, until we
think the lattice is “warmed up.” Then subsequent updates will generate the canonical
ensemble, and we can start making “measurements.”

There is a more efficient algorithm called the heat bath method, which is appropriate
for the Ising model, or any model in which s has relatively small number of possible
values. It amounts to “touching” the spins with a heat bath and thermalizing them,
one at a time. The interaction energy of a spin s is

w=s(X+h) (12.62)
where ¥ is the sum of nearest neighbor spins. Its possible values are
¥»=4,2,0,-2,—-4 (12.63)

We take the probability of flipping to be

e 12.6
N .64
TR (12.64)
It is easily seen that this is a probability that satisfies detailed balance. For s = 1 the
flip probability is

1

For s = —1, the flip probability is

1

1-pP= 1 + e2B(5+h)

(12.66)

We can prepare a lookup table for P, for each of the possible values of X. This need
to be done only once to initialize the program. During runtime, we decide whether or
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not to flip by lookingup P if s = 1,and 1 — P if s = —1. It can be shown that one
step in the heat bath method is equivalent to an infinite number of Metropolis steps.
The heat bath method becomes unwieldy if s has a large number of possible values.

Having discussed ways to compute the transition probability, we now give an
overview of the computer program. We generate a sequence of states, and regard the
first Ny states as “warm-ups.” The states after this are supposed to have thermalized,
and should have a canonical distribution. That is, the sequence from this point on gen-
erates members of the equilibrium ensemble. The process is schematically depicted
in the following:

(Cl— > C) > (C1 > Cy— ---) (12.67)
Wan;—ups The er:;emble

A member of the ensemble C; is kept in memory only for as long as needed to perform
measurements, and is overwritten by the next member. In the measurement process,
we calculate the energy E(C;), the energy square E2(C;), and the magnetization
M (C;). These quantities are accumulated additively when C; is replaced by C;1;. As
the program unfolds, we keep the following running totals:

E=E(C))+ECy) +---
E*=E*(C1) + E*(C)) + - --
M = M(Cy)+ M(Cy) + - (12.68)

Other quantities can be calculated and accumulated in the same fashion.
Suppose at the end of a run we have generated K states in the ensemble. We then
calculate the following ensemble averages

1 K
m=;§mw

5~ L pe
(B = — > EX(C)
i=1

K

1
(M) = — > M(C) (12.69)

i=1
The heat capacity is given by

1

C =
kpT?

(E?) — (E)Y) (12.70)

These numbers constitute the output of the program in one run.

To calculate the statistical errors in the output, we have to make a large number
of independent runs. The results for a measured quantity should have a Gaussian
distribution, from which we can find the mean and variance.
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Problems

12.1 The correlation function for “the sound of raindrops” is given in Problem 11.7.
(a) Show that the power spectrum is given by

S(w) = ulfol* + (1)) 278 (w)

where f,, is the Fourier transform of f(z), the sound of a single raindrop, and
I =73, f(t — ) is the output stream.

(b) Obtain S(w) for f(t) = 6(t)e~™ and interpret the result. Is there a white-noise
component?

12.2 The shot noise in a diode is described by the voltage V() = R >, ¢(t — 1),
where ¢(t) represents a pulse of current. The arrival times #; are random, with an
average rate v. The output is put through a low-pass filter, so only low frequencies
are observed. Find the power spectrum in the low-frequency limit.

12.3 Random telegraph signals: A stream of random telegraph signals I (¢) in a time
interval [0, T'] is illustrated in the accompanying figure, where T — oo eventually.
The signals have values either a or —a, and are of random length. The zeros on the
time axis are distributed according to a Poisson distribution, with average rate v.
We consider an ensemble of time intervals. Find the correlation function and power
spectrum, by following the following steps.

I(t)

—
T™—]
Y

|
—
—
I

U s

(a) The correlation function (I (#)I (¢ + t)) is obtained by averaging the product
over the ensemble, with fixed ¢ and . It is independent of ¢ because the ensemble
is stationary. Referring to the illustration, we see that the product is a? if the factors
have the same sign, and —a? if they have opposite signs. Thus show

(I(t)l(t +1)) = azpeven - azpodd

where Peyen, Podd are respectively the probability that there are an even and odd
number of sign changes in the time interval 7.
(b) Show

(I + 1)) = a’e 2

(¢) Find the power spectrum.
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12.4 Show that the Smoluchowski equation [Equation (12.31)] follows from the basic
property of probabilities [Equation (12.2)] and the definitions of transition probabil-
ities [Equation (12.24)].

Hint: Start with the equation W5(3,1,2) = f dxsWy(3, 1, 4, 2) from Equation
(12.2), with the variables in the order shown. Express W3 and W in terms of P (i|j)
with the help of Equations (12.24) and (12.29).

12.5 Write and run a computer program, in your favorite language, to calculate the
transition temperature 7, of the 2D Ising model using the Monte Carlo method. The
exact value of T is given by tanh®(2¢ /kpT,) =1/2,or

kT,
€

= 2.269185

12.6 Probability of a path If we consider an ensemble of paths x(¢), we should
be able to assign a probability P[x] that is a functional of the path. We do this in this
problem for the case of Brownian motion.

(a) The transition probability density of finding x at time #, given that it had the
value xg at time £, is given by the following generalization of Equation (10.28):

, L 1 (x — x9)?
(x, t|xo, fp) = —‘l-ﬂ—«/T——to)exp _EG——Z‘O))

(b) Let a Brownian path x(¢) be specified by the positions x; at time ; (i = 0,
1,...,n),withfy < #; < --- < t,, as illustrated in the accompanying figure. The
probability density P[x] for the path is given by a product of transition probabilities:

7)[x] = P(xn, tnlxn—la tn——l) e P(x2’ t2|x1, tl)P(xltllx()’ tO)

n—1 2
1 Xitl — X;
= (4g DT) " "? __E il
(47 DT) exp{ 1 ( . ) ‘L':l

i=0

When multiplied by dxodx; - - - dx,, this gives the probability that the Brownian par-
ticle is found between x; + dx; and x;, at time ¢;, fori = 0, 1, ..., n. Show that it
satisfies the law of composition of probabilities, that is, if we sum this probability
density over all possible paths having the same endpoints, we obtain the transition
probability density to go from the initial point to the final point. That is,

P(xn,fnlxo,fo)=/ dxn—l"'/ dx;Plx]

—00 o

To show this, first prove the relation for n = 1 and n = 2 by direct integration. Then
prove the general result by induction.



Problems 181

t

A

> x(t)

\
—
\/
\
_(:/
N,
X0

12.7 Feynman path-integral representation of diffusion
(a) In the limit n — oo, T — 0, we can write

Plx] = N exp (—%/ dt/)'c2>

where x(¢) is a path, and x (¢) = dx/dt.
(b) The composition law becomes

P(x, t|xg, to) = N/(dx) exp <—$/ dt/)'c2>

where the integral extends over all paths x (¢) with fixed endpoints x (fp) = xo, x () =
x1. This is a Feynman path integral, or “integration over all histories,” as Feynman
calls it. This result gives a path-integral representation of the solution to the diffusion
equation. When the time is continued to pure-imaginary values, this is a solution of
the free-particle Schrodinger equation in quantum mechanics.
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Chapter 13

The Langevin Equation

13.1 The Equation and Solution

The Langevin equation is a simple model of the dynamics of Brownian motion. For
a free Brownian particle in suspension, the Langevin equation is a special form of
Newton’s equation of motion:

agn F 13.1)
m— myv = .
a

where v is the instantaneous velocity and m is the mass. The total force that the
medium is exerting on the particle is split into two parts:

* Random force F().

* Frictional force —myv

These forces represent different aspects of interaction with the medium, one repre-
senting fluctuation, the other dissipation. They are not independent of each other, but
related via the fluctuation-dissipation theorem.

The current [ in a RL circuit also satisfies a Langevin equation of the form

dl
L— +RI=V 13.2
% + (13.2)

where L is the inductance, R the residence, and V the voltage, which fluctuates due
to Nyquist noise.

The friction coefficient y is related to the mobility n, as we can see from the
following consideration. Assume, for the present argument, that F' contains a steady
component Fy. In steady state, when v reaches the terminal velocity vy, we should
have dv/dt = 0. Thus vy = (my)~! Fp, and the mobility is given by

1
n=— (13.3)
my

In the absence of a steady component, the random force F is a stochastic vari-
able described by an ensemble of values. The ensemble is defined through the time-
correlation properties

(F(1)) =0

(F(1) F(r)) = cod(ty — 1) (13.4)

183
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where () denotes ensemble average. This describes white noise, for which the cor-
relation time is zero. Physically, we are assuming that the correlation time is much
shorter than the characteristic time of the problem. That is, we assume that we observe
Brownian motion on a time scale much larger than the molecular collision time, which
is typically 10~2° seconds. Thus, the velocity v(z) is to be thought of as an average
over many collisions. It is therefore a sum of a large number of stochastic variables,
and should have a Gaussian distribution according to the central limit theorem. This
will be shown later, with the help of the Fokker-Planck equation.
The Langevin equation can solved by using Fourier transforms. We write

o0
d .
v(t)—_-/ ﬁvwe_”‘”

—00

F(t):/ 2O F, eier (13.5)
oo 2T

with the inverse formulas

w .
vw:/ dtv(t) &

—00

F, = /OO dt F(t) &' (13.6)

—00

The Fourier transforms have the properties v_,, = v}, , and F_,, = F, because the
quantities being transformed are real numbers.
In terms of Fourier transforms, the defining properties of the force read

(Fo) =0
(FpFuy) =2mcod(w+ o) (13.7)
The transformed Langevin equation is
—imwv, + yv, = F, (13.8)

from which we immediately obtain the solution

F, 1

my—iw

Vp = (13.9)
This is a stochastic variable to be used in calculating correlation functions. The inverse
transform of v, gives a particular solution v(¢). To get the most general solution, one
must add an arbitrary homogeneous solution, that is, the solution to Equation (13.1)
with F = 0.

For illustration, we calculate the velocity correlation functions. First, (v,) = 0,
since (F,) = 0. Next we have

1 (FC:Fw’) . 27TCO 1
m? (y +io)y —ie/) m? 0?4y

(U:;Ua)’> =

58 (w — ') (13.10)
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The coefficient of the §-function gives the power spectrum

Sy =22

—_— 13.11
m2 w2+y2 ( )

13.2 Energy Balance

Multiply both sides of the Langevin equation [Equation (13.1)] with v, and take
ensemble averages:

ﬂd(vz)

= my (v?) = (VF) (13.12)

The average kinetic energy is defined by

_ma) (13.13)
2 4t
and evolves in time according to
fidif = (vF) —2yK (13.14)
The terms on the right side can be interpreted as follows:
(vF) = average rate of work done on the particle
2y K = average rate of energy dissipation (13.15)
In steady state, when dK/dt = 0, these rates become equal to each other.
To solve Equation (13.14), put
v=e"u (13.16)
Substituting this into Langevin equation [Equation (13.1)] gives
m%‘ _oMF (13.17)

With the initial condition v(0) = 0, we have
1 d '/
ut) = — / dfe’ F(t)
mJjo

v(t) = % /0 dte?’"D Pt (13.18)
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Multiplying the above by F(t), and taking the ensemble average, we obtain

(vF) = 1 / t dt’eﬂ"’—’)(F(z’)F(t))
m Jjo

1 ! /s
S / dre? Degs(t — 1) = <0 (13.19)
m 0 2m

The integral is ambiguous at face value, because §(¢ — t’) is nonvanishing only at
the boundary ¢’ = ¢. To render it well-defined, replace the §-function by a Gaussian
centered at #' = ¢. It is then clear that the integral covers half the area under the
Gaussian, hence the factor 1/2. (See also Problem 13.2.)

Now Equation (13.14) becomes

dK cp
— = — —2yK 13.20
dt 2m v ( )
and the solution is
K@) = -2 (1 — e (13.21)
dmy

The energy balance is schematically illustrated in Figure 13.1. The mean-square
velocity is given by

2K() <

a1 e ") (13.22)

(W) =

Environment T

Dissipation Work
2myK Co/2m

Figure 13.1 The Brownian particle comes to thermal equilibrium with the environ-
ment through energy exchange with the indicated rates. Here ¢y and y are respectively
the fluctuation and dissipation parameters in the Langevin equation, m is the mass,
and K is the average kinetic energy.
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13.3 Fluctuation-Dissipation Theorem
Ast — 00, we have

Co

K(o0) = dmy

(13.23)

Equating K (c0) = %kBT by the equipartition of energy, we obtain the fluctuation-
dissipation theorem

co = 2mykgT (13.24)

The parameters ¢y and y are different aspects of the same medium. This tells us how
they must be related, as deduced from the requirement that the Brownian particle
eventually reach thermal equilibrium with the medium.

A more suggestive form of the theorem can be obtained as follows. The Wiener—
Kintchine theorem [Equation (12.15)] relates the power spectrum to the velocity
correlation function:

S(a))=/ dt (v(t)v(0)) cos(wt) (13.25)
0

Using S(w) from Equation (13.11), we obtain, after setting @ = 0 and performing
some substitutions,

/00 dt (v(Hv(0)) = kpTn (13.26)
0

The left side is a manifestation of fluctuations, while the right side refers to dissipation.

13.4 Diffusion Coefficient and Einstein’s Relation

Putting v = dx/dt, we rewrite the Langevin equation in the form

Cx g (13.27)
m-—— my — = .
a2 "

The displacement x (¢) is expected to have a Gaussian distribution, since itis a stochas-
tic variable. The variance of the distribution can be found as follows. Multiplying both
sides of the equation by x, and taking ensemble averages, we have

x| <9>—0 13.28
<xdt2>yxdt_ | (13.28)
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Here, we have put (x F) = 0, by arguing that, while x changes sign under reflection,
F on average does not. (See Problem 13.4 for actual calculation.) We can rewrite the
above in the form

2
d
2 2 2

- — -2 =0 13.29
dt2<x)+ydt<x) (v%) ( )
From Equation (13.22), (v?) = 2’;3)/ (1 — e=27*). We neglect the exponentially de-

caying term, and take (v?) = 2’;‘;)/. Then the above equation yields
(2 = o (13.30)

~ m2y? :

This verifies that x obeys the law of diffusion, with variance increasing linearly with
time. The diffusion coefficient D is obtained by equating the variance with 2Dt:

Co

= 13.31
miy? ( )

Using the fluctuation-dissipation theorem cy = 2mykgT, we obtain Einstein’s rela-
tion

kgT
D=2 (13.32)
my
or, in terms of the mobility defined in Equation (13.3),
D =kgTy (13.33)

13.5 Transition Probability: Fokker-Planck Equation

The Fokker—Planck equation [Equation (12.46)] governs the time evolution of the
probability distribution of v:

aP 9 1 92

5 + 8v(AP) >392 (BP)=0 (13.34)

where P (v, t)dv is the probability of finding v within dv at time ¢. The functions A(v)

and B(v) are related respectively to the mean and mean-square deviation of v over a

small time interval A¢. We consider ¢ > 0, with given initial condition at ¢ = 0.
Integrating the Langevin equation [Equation (13.1)] over a small time interval At

from a fixed initial value v, we have

1 t+At
Av = —yvAt + —/ df'F(t) (13.35)
m J;
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The second term cannot be equated with F(¢)At, even though At is small, because
F (t) varies extremely rapidly. Using (F) = 0, we obtain (Av) = —yvAt, hence

A() = —yv (13.36)
The ensemble average of (Av)? gives
1 t+At t+At
(Av)") =y (AN + — / dny / dty (F(1) F (12)) (13.37)
m= Jj; t
The first term can be neglected, because it is of order (A¢)2. Using Equation (13.4)
we obtain
t+At t+At
((Av)?) / dn / dhé(t) — ) = — (13.38)
Thus
Co
B(v) =— (13.39)
m

If v(¢) were driven by a smoothly varying force, we would expect ((Av)?) ~ (AD?;
but the extremely short correlation time in the random force makes ((Av)?) ~ At.
The Fokker—Planck equation now reads

P 9 co 9°P
_y— T -0 13.40
5t Vo D) T gz (13.40)

The solution is

1 — )2
P (U, t) = mexp <—£13—2‘b£)—>

a=vge !
b= 2;(;)/ (1— e (13.41)

where vg is an arbitrary constant. This is a Gaussian distribution for all #, as one
expects from the central limit theorem. The time-dependent variance b agrees with
Equation (13.22) from energy considerations.

The velocity distribution at 1 = 0 was & (v — vg). As time goes on, it becomes a
Gaussian, whose width continues to broaden while the center shifts from vy toward
zero. Memory of the initial state fades with a relaxation time ¥ ~!, and the distribution
becomes Maxwell-Boltzmann.

13.6 Heating by Stirring: Forced Oscillator in Medium

We can heat a liquid by stirring it. A simple model for this is the Brownian motion
of a forced harmonic oscillator in a medium. As illustrated schematically in Figure
13.2, energy input comes from both the driving force and the medium, and part of the
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Local Environment T

[
Q -
= 5
£ =
wy
A
A

Forced
oscillation
0

Natural
frequency
o

Figure 13.2 Brownian motion of a forced harmonic oscillator. The time-dependent
driving heats the medium through “stirring,” and modifies the fluctuation-dissipation
theorem. The effect is most pronounced when the oscillator is driven at resonance.

work supplied by the driving force goes into heating the medium. This is indicated
by a modification of the fluctuation-dissipation theorem.
The Langevin equation is

d?x dx ) 1
g = =—(F+G 13.42
ar Vg T m( +6) ( )

where wy is the natural frequency of the oscillator. The random force F'(¢) is defined
in Equation (13.4), and G (¢) is a driving force oscillating with frequency w:

G(t) = bycosw;t (13.43)

Let the Fourier transform of x (¢) be denoted by

xa,:/ dte' ' x (1) (13.44)

—00

and that for G(¢) by
G, = 7hby [6(w — w1) + 6(w + wy)] (13.45)

The Fourier transform of the Langevin equation reads
1
(—0? —iwy + @§) xo = — (F,, + Gy) (13.46)
m

and we immediately obtain

Fo+ Gy

m (w} — @? —iwy)

X =

(13.47)

For the velocity v(t) = dx/dt, the Fourier transform is given by

Vyp = —LWX, (13.48)
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Going back to the Langevin equation (Equation [13.42]), we multiply both sides
by dx/dt to get

dxd2x+ pdx dx\? LR
m—— +mwg—x+my | — | =—
dt dP 0 dt "\ dt
(M2 B2 oy = (G 4 ) (13.49)
—f — X = .
dt \ 2 2 v =v
Taking ensemble averages, we have the equation for energy balance:
d
B—t(K +U) = (vF)+ (vG) — 2K (13.50)
where K and U are respectively the average kinetic and potential energy:
m _
K=—{’
5 (%)
mw
U= T(x ) (13.51)

It is straightforward to calculate (vF) and (vG), though somewhat tedious. We
merely quote the results here. Let an overhead bar denote the time average over
periods of the forced oscillation:

coswit = sinwit =0

) 1
cos2 wit = sin® wit = 3 (13.52)
It can be shown that
au
dr
Co
Fy=—
(VF) o
b2w? 1
WGy = 1204 - (13.53)
2 (wh = h) + o]
Thus
dk ¢ y (bow1)?

dK _ o — 2% (13.54)
dt  2m = 9 [(a)g — a)f)2 + yzw%]

The average potential energy U does not participate in energy exchange with the
environment. In equilibrium we should have dK /dt = 0, and K = %kB T. Thus

y (bowi)?

Cco+
" @R — )ty

= 2myksT (13.55)
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which is the fluctuation-dissipation theorem. The second term arises from (vG), the
work done by the driving force, and is maximum at the resonant frequency w; = wy.
In that case the fluctuation-dissipation theorem reduces to

b2
co + 20 = 2mykgT (atresonance: w; = wy) (13.56)
14

This indicates that there is a net transfer of heat to the medium, due to the driving
force.

By setting K = %k T, we assume that the particle is in thermal equilibrium with
the medium. In an infinite medium, overall equilibrium can never be reached. What
happens is that local heating will create a temperature gradient in the vicinity of the
particle, and the local temperature 7T is higher than that in the medium at infinity. The
heated neighborhood will expand at a rate that depends on the thermal conductivity
and specific heat of the medium.

Problems

13.1 The following integrals occur in calculating various correlation functions in
Brownian motion using Fourier transforms. Verify the results using the techniques of
complex contour integration.

/OO do 1w _ L n

oo 2T 0% + 2 2y
fdo 1 . e >0
1| — 5 =

2r w+iy 0 @t<0

Note: The essential step in the complex integration is to decide whether to close the
contour in the upper or lower half plane, so as to make the contribution of the infinite
half circle negligible, and this depends on the sign of ¢.

13.2 Velocity-force correlation Calculate (v(¢) F(¢')). Take the limit ¢ — ¢ and
show (vF) = 2,

2m
Solution:
, 2mcod(w + o)
(@) f (@) = ———
m(y —iw)
dodo’ . ) S ’
WO Py = [ 39 fmion iy 27000+ @)
(27'[)2 m(y _ lCl))
_ e fdo ey 1
m 27 w+iy

co ,—y(E—t") !
B e~ @t >1)
0 @t <t)
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Taking the limit as t — ¢’

(W) F (1) = ZC—; (13.57)

13.3 Displacement and causality .
(a) Obtain x(¢) from its Fourier transform x, = évw.

Solution:
i i F,
Xop = V= ———"——""——
) mw(y —iw)
*d F, .
X([) — L _Cl) @ e it

2nm J_ o 0w Y —iw

This is ambiguous because of the pole at the origin. We will deal with this later.
(b) Calculate the correlation function (x () F'(¢)) fromits Fourier transform (x,, F,,).
Solution:

i2mcod(w + o)
(xa) w) = ;
mw(y —iw)
j dwdw' 8 N I
x(OF 1)) = ~2 / Odw 0@ + &) —jor piat
2mm w y —iw

—_ ‘o /fi_w_;e—iw(t—t’)
2rem o (w+iy)

The integral is ambiguous because of the pole at the origin. We must treat the pole in
such a manner as to ensure causality:

(xMF@E)) =0 (t<t)

That is, the particle cannot respond to a force applied in the future. This can be
achieved by deforming the path above w = 0. Equivalently, we displace the pole to
the lower half plane through the replacement

1
— —

0+
w w+ie (€= 07

We then obtain, through contour integration,
/ L1 —e 7] @ > 1)
(x(@F(@)) =
0 (t <t
At equal time

(x(@)F(@®) =0
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13.4 Variance of the displacement Calculate ((Ax)?) using x(¢) obtained in the last

problem.
Solution:
1 © d F, .
w0 = 5 [ B e (e 0
2rm J_ 0+ i€y —iw
Thus,

- - o 29 [ sin®(wt /2)
((Ax) )= ([x(t) X(O)] )— Tm2 /;oodw(w2+62)(w2+y2)

where we can safely put € = 0. In the limit # — 0o, we use the formula

sin? (wr)
——— — w8 (w)
w >0

to get

([x()) = xO)) — —

1—>00 my

13.5 Show that the power spectrum of a harmonic oscillator in Brownian motion,
with no driving force, is given by.

w2

(a)2 — a)(z))z + (wy)?

co
S = —
(@) =—3

Solution:

1 F,
X = ——
® m w? — w} +iwy
i ok,
Vp = —
C mao? -} +ioy
2mc 2
(VoVur) = ——5- 5w+ o)

m? (w2 — w})’ + (wy)?

The coefficient of the §-function is 27 § (w).



Chapter 14

Quantum Statistics

14.1 Thermal Wavelength

Atoms in a gas are actually wave packets. They can be pictured as billiard balls at
high temperatures, because their size is much smaller than the average interparticle
distance. As the temperature decreases, however, the wave packets begin to spread,
and when they begin to overlap with each other, specific quantum effects must be
taken into account.

The spatial extension of a wave packet is governed by the deBroglie wavelength
Ao = h/po, where pyg is the average momentum. For a gas in equilibrium at temper-
ature T, it is given through

2

Po 3
— = —kgT 14.1
o = 2B (14.1)

which gives Ay = h/+/3mkpT . We can make a wave packet by superimposing plane
waves whose wavelengths lie in the neighborhood of Ay. The spatial extension Ax
and the momentum spread Ap must satisfy the uncertainly relation AxAp ~ h.
There is freedom to adjust Ax and Ap, but for reasonable choices Ay serves as an
order-of-magnitude estimate of the degree of spatial localization.

We define the thermal wavelength by

h2
A= 2’; . (14.2)
mgkp

where the numerical factors are chosen to give a neater appearance to some formulas.
For a system to be in the classical regime, A should be much smaller than the average
interparticle distance rq. Since the latter is proportional to n'/?, where n is the density,
the condition can be stated as

nA? « 1 (classical regime) (14.3)

Quantum effects become important at temperatures lower than the “degeneracy tem-
perature” Tp corresponding to

nA>~1 (onsetof quantum effects) (14.4)

195
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Classical
region 3 =1
-
~
T \ -
y 7
/7 \
/ Quantum
/ region

n

Figure 14.1 Classical and quantum regions in the temperature-density plane. The
rough dividing line is nA3 = 1, where A is the thermal wavelength.

At this point, the wave functions of different atoms begin to overlap, and we must
treat the system according to quantum mechanics.
The condition nA® = 1, or

2h? \ *?
—1 145

defines a line in the T-n plane that serves as a rough division between the classical
and quantum regimes, as indicated in Figure 14.1.
The degeneracy temperature Ty is given by

2wh?
kpTy = ( il >n2/3 (14.6)

m

Its value varies over a wide range for different physical systems, as indicated in
Table 14.1, for example, at room temperature, a gas at STP can be described classically,
whereas electrons in a metal are in the extreme quantum region. Liquid helium has
a degeneracy temperature in between. At 2.17 K it makes a transition to a quantum
phase that exhibits superfluidity.

TABLE 14.1 Quantum Degeneracy Temperatures

System Density (cm?) To (K)
H, gas 2 x 10¥ 5x 1072
Liquid “He 2 x 10?2 2

Electrons in metal 10%2 10*
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14.2 Identical Particles

In quantum mechanics atoms are identical, in the sense that the Hamiltonian is invari-
ant under a permutation of their coordinates. This property has no analog in classical
mechanics. In classical physics, particles have definite coordinates, and thus can be
“tagged.” In quantum mechanics, it is in principle impossible to tag them.

To illustrate the concept, let us consider two particles with respective coordinates
r;, rp. The interchange of the coordinates can be represented by a permutation oper-
ation P on the wave function:

PV (r1,r) = ¥Y(rp, r) (14.7)

Clearly P? = 1. The Hamiltonian is invariant under the permutation, namely, PHP~! =
H, This means that the operators P and H commute:

[P,H] =0 (14.8)

and we can simultaneously diagonalize these two operators. If W is an eigenfunction
of H with energy eigenvalue E, then so is PV, with the same energy:

HVY = EV
PHY = EPV
(PHP™Y)(PW) = E(PV)
H(PV) = E(PVY) (14.9)

If the energy is not degenerated, then PW and W must describe the same state, and
PW can differ from W at most by a normalization factor. Since P? = 1, we can
choose that factor to be £1. Thus

Y(ry,rp) = ¥ (r;, ry) (14.10)

That is, the wave function must be either symmetric or antisymmetric under the
interchange of particle coordinates. Particles with the symmetric property are said
to obey Bose statistics, and are called bosons, while those with the antisymmetric
property are said to obey Fermi statistics, and are called fermions. The wave function
gives the probability amplitude of finding one particle at r; and one particle at r,, but
it cannot tell us which one.

The quantum-mechanical concept of identical particles affects the way we count
states. Consider two identical particles localized at separated points A and B. Let f(x)
and g (x) denote the one-particle wave function localized about A and B, respectively,
with no overlap between the wave functions, as illustrated in Figure 14.2. If the
particles were distinguishable, we would have two possible states f(x;)g(x2) and
f(x2)g(x1), corresponding to particle 1 at A and particle 2 at B, and vice versa. For
identical particles, however, there is only one state, with wave function

W(x1, x2) = fx1)g(x2) = fx2)g(x1) (14.11)

where the + sign corresponds to Bose statistics, and the — sign to Fermi statistics.
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f(x) g(x)

> X
A B

Figure 14.2 We can place two identical particles at the sites A and B, but it is
impossible to specify which one is at A, and which at B.

The important point is that interchanging the coordinates of two particles does not
change the state of the system. Thus, only half of the classical phase space of the
two-particle system is relevant. For N particles, for which there are N! permutations
of the coordinates, only 1/N! of the phase space is relevant. This is the origin of
“correct Boltzmann counting,” which affects the entropy of the system.

14.3 Occupation Numbers

For N identical particles, the wave function W (ry, ... , ry) must be an even (odd)
function under the interchange of any pair of coordinates for bosons (fermions). We
can construct a complete set of N-body wave functions by first considering a complete
orthonormal set of single-particle wave functions u, (r), satisfying

/ dr uk()ug(r) = 84p (14.12)

where « is a single-particle quantum number. We then form a product of N of these
wave functions, and symmetrize or antisymmetrize the product with respect to the
coordinates {ri, ... , ry}. Equivalently, we can symmetrize (or antisymmetrize) with
respect to the set of single-particle labels {«1, ... , @y}. The N-body wave function
so obtained has the form

1
V() = > " 8p Plug, (1) - - - ttgy (r)] (14.13)
P

where P is a permutation of the set {«y, ... , @y}, and the sum extends over all N!
permutations. The signature factor §p is unity for bosons, while for fermions it is
given by

1 if P is an even permutation
dp = (for fermions) (14.14)

—1 if P is an odd permutation
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In the fermion case, the wave function is a determinant, called the Slater determinant:
ui(ry)  ui(r) - wui(ry)

ur(ry)  uz(ra) uz(ry)

Y(ry,...,ry) = (for fermions)

R

un(ry) un(rp) un(ry)
(14.15)

We see immediately that W vanishes whenever two single-particle wave functions are
the same, for example, if #;(r) = u,(r). This is the statement of the Pauli exclusion
principle.

Because of indistinguishability, the N-body wave function is labeled by the set
{a1, ..., an}, in which the ordering of the set is irrelevant. To make this explicit,
we specify the number of particles n, in the state «. The number n, is called the
occupation number of the single-particle state o, with the allowed values

0,1,2,...,00 (for bosons)
Ry = (14.16)
0,1 (for fermions)
For an N-particle system, they satisfy the condition
Y ng=N (14.17)

A sum over states is a sum over all possible sets {n,} satisfying Equation (14.17).
For free particles, it is convenient to choose the single-particle functions to be plane
waves. The label « corresponds to the wave vector k:

1 .
ug(r) = ——=e'x~ (14.18)

vV

In the thermodynamic limit, we can replace the sum over plane-wave states by an
integral:

&rd’
Z—>/ = (14.19)

This has the form of a classical phase-space integral, with unit specified by 43. For
plane-wave states, the state label « is specialized to momentum p, and Equation
(14.17) reads

Y np=N (14.20)
p

which in the thermodynamic limit becomes

Lrd
/ =N (14.21)

h3
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For a uniform gas, np, is independent of the position, and the above becomes

d’p N

14.4 Spin

For particles with intrinsic spin angular momentum, the single-particle states are
labeled by wave vector k and spin state s:

a = [k, s) (14.23)

The occupation number is denoted by n, = ny;. The total number of particles is given
by

25+1

N=)"ny=> "> n (14.24)
o s=1 Kk

For a free gas in equilibrium, ny, is independent of the spin state, and the spin sum
simply gives a factor 25 + 1. Thus, the particles with different spin orientations form
independent gases, each containing N /(2S + 1) particles. This is why we can speak
of “spinless fermions,” from a mathematical point of view.

In nonrelativistic quantum mechanics, the wave function factors into a spatial part
and a spin part:

1 .
Uk (1) = We"”xs (0) (14.25)

where o is the spin coordinate. For the electron, which has spin % (meaning that
the spin angular momentum is %/2,) the spin state has possible values s = +1,
corresponding to “up” or “down,” and the spin coordinate is also two-valued: 0 = 1.
The spin wave function is given by

Xs(0) = 650 (14.26)

which is often displayed in matrix form:

1 0 14.27
X+ = 0/’ X- = . (14.27)

In the relativistic generalization, spin is mixed with spatial properties (Huang 1998).
The wave function is no longer factorizable; but the enumeration of quantum num-
bers {k, s} remains the same, although extra quantum numbers appear referring to
antiparticles.
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14.5 Microcanonical Ensemble

The microcanonical ensemble is a collection of states with equal weight. For non-
interacting particles, states specified by the occupations numbers {n,} are equally
probable, as long as they satisfy the constraints

zna =N
> €ang =E (14.28)

where €, is the energy of the single-particle state labelled by «. In the thermodynamic
limit, the spectrum of states approach a continuum. As an aid to the counting of states,
we divide the spectrum into discrete cells numberedi = 1,2, 3, ..., with g; states
in cell i, as illustrated schematically in Figure 14.3. Each cell must contain a large
number of states, but the cell should be small enough that the energies of the states
are unresolved on a macroscopic scale. We denote the cell energy by ¢;, and refer to
g: as the cell degeneracy. The cell occupation numbers #n; satisfy the constraints

zl’li =N
ze,-n,- —E (14.29)

It should be noted that the division into cells is an imprecise coarse-graining process.
The cell degeneracy g; is an interim number that should disappear from the final
expressions of physical quantities.

Because of coarse graining, the cell occupation {n;} corresponds to more than
one quantum-mechanical state. The set {#;} corresponding to the maximum number
of quantum states is called the most probable set, and we assume that it describes
thermal equilibrium. The development here bears a formal resemblance to the classical
ensemble discussed in Section 5.8, but the fact that we have identical particles changes
the rules for counting states; we have to use “quantum statistics.”

To find the number of ways in which {r;} can be realized, we assign particles
into single-particle quantum states, without paying attention to which particle goes
into which cell, since the exchange of particles in different cells does not produce

Cell degeneracy g g g
Cell occupation n; ny n

Figure 14.3 Grouping the near continuum of states into cells, in order to facilitate
counting.
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a new state. Thus, we can independently calculate the occupation of each cell, and
multiply the results. The number of ways to obtain {n;} is therefore

Qni} = [[w;np) (14.30)
Jj

where w;(n;) is the number of ways to put n; particles into the jth cell, which
contains g; single-particle states.

The formula [Equation (14.30)] is very different from the corresponding classical
formula [Equation (5.44)]. The classical way of counting in effect accepts all wave
functions regardless of symmetry properties under the interchange of coordinates.
The set of acceptable wave functions is far greater than the union of the two quantum
cases. The classical way of counting is sometimes called “Boltzmann statistics,” but
it actually corresponds to no statistics.

14.6 Fermi Statistics

For fermions, each single-particle state can accommodate at most one particle, and
thus each state is either occupied or empty. To place »; fermions into g; states, we
pick the n; occupied states out of a total of g; states. The number of ways to achieve
this is given by the binomial coefficient

PPN 11
w;(n)) = s ] (14.31)

Therefore

o) =] & (14.32)

T nji(g; —np!

Assuming that n; and g; are large numbers, we use the Stirling approximation to
obtain

InQfn;} = [lng;! —Inn; —In(g; —n;)!]
Jj

~ Y [gilng; —njlnn; — (g; —n;)In(g; — n;)] (14.33)
Jj

The most probable distribution {7;} is obtained by maximizing this, subject to con-
straints. Using Lagrange multipliers, we require

5 |nQni}+ad n;j—BY €m;| =0
J j
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under independent variations of each » ;. This leads to

> énjl—Inn; +In(g; —n)) + o — Be;1=0 (14.34)
J

Since the dn; are independent and arbitrary, we must have

—lnnj—}—ln(gj—nj)—}—(x—ﬁej:O (1435)
which gives
_ 8j
= et 11 1 (14.36)

This is the Fermi distribution.

14.7 Bose Statistics

The jthcellis subdivided into g ; compartments by means of g ; —1 partitions, and each
compartment can hold any number of bosons. We can vary the particle numbers in the
compartments by repositioning the partitions. The number of ways to populated the
cell with n; bosons is to throw the n; particles into the cell, in any manner whatsoever,
and then count the number of distinct configurations obtainable, when we permute
the n; particles together with the g; — 1 partitions:

(nj—l—gj —1)'

wi(n;) = (14.37)
Y nji(g; — D!
This gives
(nj+gj—1)!
Qniy=|| —F—1
1;[ nj(g; — D!
InQ{n} ~ > [(n; + g;)In(n; + g;) —n;lnn; — g;Ing;] (14.38)

J

where we have put g; — 1 & g;. The most probable distribution is obtained through
the condition

S " snjln(r; +g;— 1) —Inn; +a — Be;1=0 (14.39)
J

with the result

8
J e—a+ﬁ€j —1

(14.40)

This is the Bose distribution.
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14.8 Determining the Parameters
The Fermi and Bose cases can be discussed together, by writing

gj +: Fermi

& 14.41
e @tPei 4+ 1  —:Bose ( )

nj:

where we have omitted the bar over »n; for simplicity. The total number of particles
is given by

N = Z —ar ﬂq - (14.42)
We may replace the sum over cells j by a sum over states k, through the replacement

dgi—> ) (14.43)
j k

Thus

1
N = ; g (14.44)

where €, = h%k?/2m, with k = |k|. The cell degeneracy, which was a mathematical
device, has now disappeared from the formula.
In the thermodynamic limit, we have

d’k 1 g8 [ k?
— -2 s 14.45
" Qn) eatha £1  x2 /0 e—a+he £ | (14.45)

where 7 is the density. Let us make the substitution Be; = x2, or k = x+/2m/Bh>.

Then
_8 (2m 3/2/Oodx—X2 (14.46)
"Te\r) Jy Teerr i1 '

The density should remain finite in the limit 8 — 0. This requires that the integral
vanish, which in turn requires

e — (14.47)
B—>0

Thus the term £1 can be neglected in this limit, and we have

Ak ﬁ e P (14.48)

which corresponds to the Maxwell-Boltzmann distribution. Therefore we define the
temperature 7' through

B=— (14.49)
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Both the Bose and Fermi distributions approach the classical distribution in the high-
temperature limit, because at high temperatures the particles tend to populate the
excited states sparsely, and when there are few particles in a state, it matters little
whether they are bosons or fermions.

The Lagrange multiplier « is determined by the condition (Equation [14.42]), which
can be rewritten as

ni - = / —1exz - (14.50)

where z = e* is called the fugacity. The chemical potential p is defined through
z=eM* (14.51)
The occupation number for state k can now be written in the form

1

e = Teer £ 1

(14.52)
This is the most probable occupation number, which is in principle different from the
ensemble average. As in the classical case, the two coincide in the thermodynamic
limit, but we postpone the proof to Chapter 15, where formal tools will be introduced.

14.9 Pressure

The pressure of the quantum ideal gas can be calculated using Equation (6.11), which
is based on the particle flux impinging on a wall arising from a momentum distribution

f(p:

P= / &> pmu)vs f(p) =m / d’p v} f(p) (14.53)
v, >0
Using f(p) = h>n,p, and the fact that v2 can be replaced by 1v2, we can rewrite
2 d3k
P== ck (14.54)

(2r)? z7lefe £ 1

Changing the variable of integration such that Be; = x2, that is,

omksT /4
k=4 mhf x = A’” (14.55)

where A is the thermal wavelength, we obtain

P 1 8 Oodx x*

- S 14.56
kBT A3 3ﬁ 0 z‘lexz +1 ( )
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The internal energy is given by

€L d3k €k
U= —_— =V 14.57
Zk: 7 lePe £ 1 @m) z7lePx £ 1 ( )
Comparison with Equation (14.54) yields the relation
2
PV = 3 U (14.58)

This holds for the ideal Fermi and Bose gas, as well as the classical ideal gas. It
depends only on the fact that the particles move in 3D with energy-momentum relation

€ o (p2 + p5 + pd).

14.10 Entropy

The entropy can be obtained from § = kpIn Q2. We use Equation (14.33) for the
Fermi case, and Equation (14.38) for the Bose case, to obtain

S 1 E o E+1
— = —1 +D)+ ——In— 14.59
& Zk:{siln(”& e } (1459
where £ = z le#¢. Using the definition [Equation (14.57)] for U, and
[Equation (14.42)] for N, we obtain
S U
— =-N1 —— 4+ ) In(l+£zeP¢ 14.60
o nz—i—kBT ;n( ze F°) ( )

with + for Fermi, and — for Bose.
In the thermodynamic limit the last term becomes an integral, and we can make a
partial integration. We show this explicitly for the Fermi case:

V[T _pe
2 | dkk 1n(1+ze )

Vv Tk © k39
— [? ln(l—i—ze_"k)l(‘;"—/0 dk—— In(1 + ze= 7€)

= o2 3 9k
V Br? [* Kt 2 U PV
_ VB / e 2 v _ TV (14.61)
672 m J zlePe +1  3kgT  kgT

The same final result holds for the Bose case. Therefore we have the relation
1
S = ?(U + PV —Nu) (14.62)

where p is the chemical potential defined in Equation (14.5). This verifies the ther-
modynamic relation T~! = 9S/3U.
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14.11 Free Energy
We can identify the free energy as
A=Nu—PV (14.63)
for this obeys the Maxwell relations
dA
(7).
dA
(517) = (14.64)
Thus Equation (14.62) reduces to the thermodynamic relation
A=U-TS (14.65)
From Equation (14.60) we obtain explicitly
A=kpTInzFkpT > In(l +ze ) (14.66)

k

where + holds for the Fermi case, and — for the Bose case.

14.12 Equation of State

The equation of state is no longer the simple relation P = nkpT . It can be presented

in parametric form by combining Equations (14.56) and (14.50):

AP /
kgT 3f —lex2 +1

\/_/ —1e"2 +1

The integrals on the right sides can be expanded in powers of z:

2 Z3
3f/ TRt

2?7
f/ —lexzi1_zq:23/2+§3ﬁq:"'

(14.67)

(14.68)
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It is convenient to introduce a class of Fermi functions f;(z) and Bose functions
8i(2):

00 ¢
fi) = Z(—l)“l%

o0
z
ge(2) = Z 7 (14.69)
They obey the recursion relations
d
2= fi@) = — fic1(2)
dz

d
27-8k(2) = 8k-1(2) | (14.70)
<

with integral representations

fi(2) 2%=1 T (
gk(Z)} VT F(2k— 1)/ —1exzi1 (14.71)

where I'(n) is the gamma function. We can then write the parametric equations of
state for the Fermi case as

L fp@
ksT = J5/2Z
Mn = fi2(2) (14.72)
and the Bose case as
VP @
keT 852z
2n = g32(2) (14.73)
The Fermi functions have a singularity at z = —1, which lies outside of the physical

region. The Bose functions have a singularity at z = 1, which leads to Bose—Einstein
condensation, as we shall discuss in a later chapter.

We have obtained P and n as functions of the fugacity z, at a given temperature.
What we need in applications is P as a function of #, and this cannot be obtained in
closed form, but we can obtain it as a power series in 7, which rapidly converges at
high temperatures.

14.13 Classical Limit

In the high-temperature limit A — 0 (and hence z — 0,) both quantum gases approach
the classical behavior P = nkpT . As the temperature decreases, their behaviors be-
gin to diverge from each other, and when we reach the quantum region ni3 ~ 1
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they become dramatically different. In the following, we examine the classical neigh-
borhood in more detail.
Our object is to invert the equation

2 Z3

3 _ Z
nA —Z:F2—3/§+W:F"' (14.74)

in order to obtain z as a function of nA3. To do this by iteration, we take as first
approximation

z~nAl (14.75)
With this, the occupation number approaches the Maxwell-Boltzmann distribution:
np ~ h* f(p) (14.76)

and, as noted before, we recover the classical equation of state.
For the next approximation, we rewrite Equation (14.74) to second order, in the
form

2

Z
z=nA=+ 57 (14.77)

Substituting the first approximation z = nA> on the right side, we obtain
33 4 ni3

3 ni3
uw =kgT |In(ni ):I:W—F--- (14.78)
The second term is the first quantum correction, which has opposite signs for Fermi
and Bose statistics. To this approximation, the equations state are

AP . 72 n
kT T
332 332\ 2
. 5, (A7) 1 5, (nA7)
which leads to
S P STV + - (14.80)
nkBT '

where the upper sign is for Fermi statistics, and the lower sign for Bose statistics.
Compared to the classical gas of the same density and temperature, the pressure is
larger for Fermi statistics, and smaller for Bose statistics. This indicates an effective
_repulsion between identical fermions, and attraction between identical bosons, even
though there is no interparticle potential. These effective interactions arise from the
correlations imposed by the symmetry of the quantum-mechanical wave function.
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Problems

14.1 The thermal wavelength A = +/27h?/mkgT applies only to nonrelativistic
particles. For an ultra-relativistic particle, or a photon, show that it would be replaced
by

_ he
" kgT

where c is the velocity of light. What would be the degeneracy temperature 7;?

14.2 Consider the temperature-density (7'-n) diagram of a free electron gas. Indicate
the regions in which the system should be treated (a) relativistically; (b) quantum-
mechanically.

14.3 At high temperatures the heat capacity Cy of a nonrelativistic monatomic gas
approaches %N k. Find the first quantum correction for both Fermi and Bose statistics.
Expression the correction in terms of 7'/ Ty, where Ty is the degeneracy temperature.

14.4 For a gas at very low density or very high temperature, such that A3z — 0, the
occupation number approaches

n; = ze_ﬁ“

independent of statistics. Although this has classical form, the energy spectrum ¢;, is
still quantum mechanical.
(a) Show z = Q/N, where

Q — Ze—ﬁG}.
A

This is the partition function to be discussed in more detail in Section 15.2.
(b) Show that the internal energy per particle is given by

g :—ian
N 0B

(¢c) For a polyatomic molecule, the energy has contributions from translational
motion, and internal degrees of freedom such as rotations and vibrations. € =
€rans T €ror T €vip Show that partition function factorizes, and the specific heat ca-
pacity decomposes into a sum of terms:

Q = Qtrans Qrothib

CV = Cirans + Crot + Cvib
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where the subscripts refer to contributions from translational, rotational, and vibra-
tional modes.

14.5 The translational energy is labeled by a wave vector k, with e, = h*k?/2m.
Show that

Vv
Qtrans = ﬁ‘
Ctrans E
k 2
14.6 A simple model for the rotational energy is €z, = R2e + 1) /21, where
£=0,1,2,...,m = —£,...,£,and I is the moment of inertia. Thus
o0
Ot = Z(% +1) e—ﬂh2£(£+1)/21
£=0

(a) For kT <« h* /21 keep only the first two terms in Qro. Show

2
cor , (B P/
k 1

(b) For kg T > h?/2I approximate the sum over £ by an integral. Show

(c) Make a qualitative sketch of U/N and ¢, as functions of temperature. Does c¢rot
approach the asymptotic value from above or from below?

14.7 The vibrational energy is €, = hw(n + %), wheren =0,1,2, ..., and w is the
vibrational frequency.
(a) Show

cio _ (e
k B 1— e‘ﬂ ho
Make a qualitative sketch of ¢, as a function of temperature.
(b) Find the mean value (n + ) and mean-square fluctuation ((n + DY —(n+3)2

14.8 On the basis of the specific heats calculated above, we can now understand
why equipartition works only among degrees of freedoms excited, as illustrated in
Figure 6.2. Reproduce that figure qualitatively, and relate the threshold temperatures
to the parameters in the energy spectrum.
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14.9 Consider anharmonic vibrations with energy €, = hwl(n + %) + b(n + %)2],
where b < 1. Find the vibrational specific heat to first order in b. Use the results
from Problem 14.7(b).

TR

£

Reference

Huang, K., Quantum Field Theory: From Operators to Path Integrals, Wiley, New
York, 1998, Chapter 6.



Chapter 15

Quantum Ensembles

15.1 Incoherent Superposition of States

In the last chapter we introduced quantum statistics via the microcanonical ensemble
for ideal gases. We now give a more general discussion.

A fundamental difference between classical and quantum mechanics is that, while
classical mechanics uses real numbers, quantum mechanics uses complex numbers.
This is so because quantum mechanics describes a system in terms of wave functions,
which are complex numbers, with a modulus and a phase. The phase gives rise to the
phenomenon of quantum interference, which has no classical counterpart.

A statistical ensemble in quantum mechanics is a collection of states of the system
that are completely independent of one another. In this respect it is no different from a
classical ensemble. But we must require that there be no quantum interference among
members of the ensemble. What is the wave function of a system described by such
an ensemble?

Consider a system interacting with an environment, which we regard as a heat
reservoir. Let W (x, X; t) denote the instantaneous wave function of system plus envi-
ronment, where x denotes the coordinates of the system, and X those of the environ-
ment. Suppose H is the Hamiltonian of the system (not including the environment),
with eigenfunctions ¥, (x) and eigenvalues E,,:

H% = Enwn (151)

We can expand W as a linear superposition of these eigenstates:

W(x, X;0) =Y ca(X, )P (x) (15.2)

with the normalization condition

Z/dxc;cn =1 (15.3)

The coefficients ¢, (X, t) contain all the dependences on the time ¢ and the environ-
mental variables X.

Quantum interference occurs because W represents not a probability, but a prob-
ability amplitude. The probability density of finding x and X with their designated

213
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values is its squared modulus:
WG, X0 = 3 ch(X, DealX, DY EEE) (154)

Using the polar representation
Cn = rpe'? (15.5)

in which the dependence on (X, ¢) is understood, we have

W@, X 0P = @)ty gt (0) Y (x) (15.6)

The terms with m # n represent the quantum interference.

If the coefficients ¢, have definite relative phases, the wave function ¥ corre-
sponds to a single pure quantum state. If, for some reason, the relative phases can be
regarded as random numbers, then the interference vanishes on average. In that case,
W describes an incoherent superposition of pure states. Such an incoherent superpo-
sition defines a quantum ensemble. We argue that randomness may arise owing to the
complexity of the environment.

For an environment with many degrees of freedom, the relative phase ¢, (X, t) —
®m(X, t) is an extremely sensitive function of X, and it also fluctuates very rapidly
with time. Now, the relative phase has an effective range [0, 27]. If it changes by
an amount much greater than 27, in response to small changes of X and ¢, then on
average it becomes uniformly distributed over [0, 277 ]. The average of exp(i (¢, — D))
over small intervals in X and ¢ will become zero. The net result is that ¥ (x, X; ¢)
becomes an incoherent superposition of states. It corresponds to a quantum ensemble
of the states described by ¥, (x).

The argument given above also applies to an isolated macroscopic system, for we
can focus on one part of the system, and view the rest as environment.

15.2 Density Matrix

In an incoherent superposition of states, the relative phases do not enter explicitly into
any computations. It would be convenient to use a description that avoids mentioning
the phases altogether, and the density matrix enables us to do that.

The quantum mechanical expectation value of any observable O is given by

(¥, OW) = > cremOnm (15.7)
where O,,, is the matrix element:

Onm = /Xmlf,f(X)Ollfm(X) (15.8)
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The thermal average of O is obtained by integrating the expectation value over the
coordinates of the environment, and averaging the result over time:

(0) = /dX(\IJ, ow)=>" Onm/ch;';cm (15.9)

n.m

where an overhead bar denotes averaging over a time interval long compared with the
relaxation time, but short on a macroscopic scale. The random phase assumption says

/ch;(X, Dem(X, 1) =0 ifn+#m (15.10)
The thermal average now takes the form
Z pnOnn
(0) = =2—— (15.11)
Zn. Pn

where

Pn = /dX’Icnl2

This is the relative weight of the state i, in the ensemble, and is the quantum analog
of the classical density function that defines the ensemble.
We define an operator p whose eigenvalues are p, with respect to the v, basis:

(nlplm) = 8pmon (15.12)
This is called the density operator. In the i, basis it is represented by the matrix
pm 0 O
0 pp O
P=lo o p (15.13)

which is called the density matrix. If we change the basis, the matrix will become
nondiagonal, but of course the operator itself remains unchanged.
The thermal average can now be written as
__Tr(p0O)
T Trp

(15.14)
where Tr denotes the sum of diagonal elements. This definition is independent of
matrix representation, due to the elementary property

Tr(AB) = Tr(BA) (15.15)

A change of basis replaces all matrices M by SMS™!, where S is the transformation
effecting the change. Thus

Tr(SMS™!) = Tr(MS™'S) = Tr(M). (15.16)

Thus we can calculate Tr(p O) as the sum of diagonal elements of p O in any matrix
representation, including one in which p is not diagonal.
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15.3 Canonical Ensemble (Quantum-Mechanical)

The canonical ensemble corresponds to the choice
on = e PEn (15.17)

The density operator is given by

p=2 ¢ Pn)(n| =" In) (nl

n

— ¢ PH (15.18)

where we have used the completeness condition ) , [#) (n| = 1. The thermal average
now takes the form

Tr(Oe PH)
(0)=—m (15.19)
The quantum partition function is defined as
On(V,T) =Tre P (15.20)

where the trace extends over all states whose wave functions satisfy specified boundary
conditions, with the correct symmetry as dictated by the statistics of the particles. The
number of particles N enters through the Hamiltonian operator H, the volume V enters
through the boundary condition imposed on the wave functions of the system, and of
course the temperature enters through 8 = 1/kpT. The internal energy is given by

U=(H)= _8_?3— In Q (15.21)

The free energy A(V, T') can be obtained through the formula
e PA =Tre PH (15.22)

and we can obtain all the thermodynamic functions through the Maxwell relations.
The quantum partition function can be written more explicitly as

Q=Tre " = (ale™|a) (15.23)

[24

where |«) is a member of any complete orthonormal set of states, with the properties
(a|B) = dup

Z la) (| = 1 (15.24)
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If we choose |o) to be the energy eigenstates |r), then since e #H|n) = e~ PEn|n),
we have

Q= Ze—ﬂE" (15.25)

From a formal point of view, the energy representation appears to be a natural choice.
However, it is not useful except for the ideal gas, because in general we are not able to
diagonalize H. It practice, we choose the set |«) that is most convenient for making
approximations.

15.4 Grand Canonical Ensemble (Quantum-Mechanical)

The grand canonical ensemble is obtained from the canonical ensemble in the same
method as in the classical case. The grand partition function is still given by
Equation (9.4):

Qi V. T) =Y "On(V,T) (15.26)
N=0

except that here Qn(V, T) is the quantum partition function [Equation (15.20)].
The relation to thermodynamics remains the same as the classical case discussed in
Section 9.4. Actual calculations may be very different. As we now illustrate, the grand
partition function for the ideal gases can be explicitly calculated, although we cannot
calculate the partition function.

The energy eigenvalues of the spinless quantum ideal gases are given by

E{n} = anek (15.27)
k

where ny is the occupation number of the single-particle state with wave vector K,
energy € = h*k?/2m. The statistics is specified through the range:

0,1 (Fermi)
ng = (15.28)
0,1,2,... (Bose)
nx = 0, 1 for fermions, and nx = 0, 1, ... , oo for bosons. The canonical partition
function is
Ov(V,T)= > e PEt (15.29)

{m
Eknk:N

where the sum over all possible sets of occupation numbers {#} is subject to the condi-
tion ), ng = N. This constraint makes it impossible to calculate this sum explicitly.
However, we can calculate the grand partition function, which is given by

o
Qz, V., Ty=Y_ Y zhme Pmms (15.30)

N=0 {n)
Tenk=N
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where we have replaced the power N in zV by 2 4n4. The double summation now
collapses to a single sum over {n}, without constraint:

o, ]
Z Z :Z (15.31)
N=0 {n) {n}

Ying=N

To see this, note that on the left side we first sum over sets of occupation numbers
with a given N, and then sum over all N. On the right side, we have exactly the same
sum, except that we don’t bother to regroup the terms. We can further rewrite

ZEknke—ﬂEknkék — HZ"q H(e_ﬂ‘k)"k = 1_[(ze“ﬂ€")nk (15.32)
q k k

Thus

Qz, V,T) = Z 72 g~ PTinkex

{no,n1,-}

— Z(Ze—ﬂeo)no Z(Ze—ﬂel)nl .
no ni

[T (1 + ze=P) (Fermi)
= (15.33)
[T(1 — zeP%)~1  (Bose)
The average occupation number is given by
) = e S mme e = 2 2 g, v, T)
Qz V. T) P d€k ,
1 (+ : Fermi) 1534
“zlePatl  (_ :Bose) (1539
The equation of state in parametric form is
P o v,y =t " a1 (1 £ ze™P)
—_— == V, T)=%+— n e
T v 2% 72 Jy ¢
1 > ) : /oo e —— (15.35)
n=— k) = — —_— .
V4 KT on2 0 77 le=Be 41

where the upper + sign corresponds to Fermi statistic, and the lower sign to Bose
statistics. We have taken the infinite-volume limit V — oo.
Making a partial integration using

k3 K 9
/dksz(k) =5 f) - /a’kgﬁf(k) (15.36)
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we obtain

pol [ Lk &« _2y (15.37)
T 3) @r)zlebat1 3 '

The equation of state obtained here, in the grand canonical ensemble, agrees with that
in Chapter 14 obtained in the micocanonical ensemble.

15.5 Occupation Number Fluctuations

To calculate the mean-square fluctuation in the average occupation number of the
ideal gases, we start with the definition

Q ane BT (ex—1) (15.38)

{nk}

where we have set z = ePH. Differentiating both sides with respect to €x, we have

d 1 8Q
— () = —— n2e—ﬂ2knk(€k u) _ e BExnk(ek—p) (15.39)

The last term on the right side is of the form

a1
B an 2 () = Blm)? (15.40)
€k
Thus
d
5 (m) = —B(ni) + Blm)” (15.41)
€k
or
1 90
(ng) — (m)? = 53 ™)
e Ble—w) (— :Fermi) 1540
T [L:eP@ W2 (L - Bose) (1542
This can also be rewritten as
, (= Fermd 15.43
(ny) — (nk) F (nk) (+ : Bose) (15.43)

The result for Fermi statistics is obvious, since in this case nZ = ng. Thus, the left
side is equal to (ny) — (nx)?. On the other hand, the Bose case shows unusually strong
fluctuations. These have been experimentally observed, as we discuss next.
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ﬁ
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Figure 15.1 In the experiment of Hanbury Brown and Twiss, a light beam from
a thermalized source is split, and the intensities are measured at the two ends with
time difference 7. This is equivalent to taking instantaneous measurements along an
unsplit beam at a distance ¢t apart, where c is the velocity of light.

15.6 Photon Bunching

According to Equation (15.43), the fractional fluctuation in the occupation number
in a gas of thermalized bosons is given by

(i) — (m)® _ 1
(nk)? (nk)?

which is always greater than 100%. Such large fluctuations were indeed observed in a
classic experiment by Hanbury Brown and Twiss (Hanbury Brown and Twiss 1957),
which is regarded as the harbinger of quantum optics.

The experiment observes the self-interference in a beam of photons emerging from
a thermal source, as schematically illustrated in Figure 15.1. A half-silvered mirror
splits the photon beam in two. The intensity of one of the beams is measured at time
t, while the other is measured at time ¢ + 7. The product of the intensities is then
averaged over t. This is equivalent to simultaneously measuring the intensities in
a single beam at two different points separated by distance c7, and averaging the
product of the intensities over time.

We shall not go into quantitative details, but only report that photons were found
to arrive in bunches. Since the intensity at a particular location gives the photon
occupation number in the thermal source at an earlier time, the bunching of photons
indicates that the occupation number strongly fluctuates in time.

Edward Purcell (1956) gives an intuitive explanation of the intensity fluctuations,
which we paraphrase:

+1 (15.44)

Any real photon beam cannot be exactly monochromatic, for that would
correspond to an infinite plane wave filling all space. A near-
monochromatic beam consists of a train of pulses, each containing one
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photon, with length of order ¢/Av, where Av is the uncertainty in fre-
quency. For small Av the pulses can be very long, and they come at
random times. Occasionally two pulses will overlap, and when that hap-
pens one gets either 0 or 4 photons. This is why the photons appear
bunched together.

The strong fluctuations can also be explained in the context of classical electro-
magnetic waves, and this raises the question whether it has anything to do with Bose
statistics. The answer is yes, for it is Bose statistics that enables photons to exist in the
same state, in sufficiently large numbers to produce a classical electromagnetic wave.

It should be mentioned that a laser beam does not fluctuate in intensity; it is a coher-
ent superposition of states instead of an incoherent ensemble. To achieve coherence,
the states in the superposition must contain varying numbers of photons.

Problems

15.1 To illustrate the difference between a pure state and an ensemble, consider an
atom with two spin states “up” and “down”:

=) ()

Consider the spin wave function obtained by superposing the two states:

v =ax:+Bx2

where « and B are complex coefficients satisfying |a|? + |B]*> = 1. As long as & and
B are definite complex numbers, this describes a state whose spin points along some
direction rotated from the original axis of quantization. A beam of atoms having this
spin wave function is 100% polarized along some direction. If, however, the relative
phase between « and B is randomized, the beam becomes partially polarized, with a
fraction |« |? along the up axis, and a fraction |8|? along the down axis.

Let the scattering cross sections for a polarized beam be respectively o1 and o>, for
100% polarization along the up and down axes. Give the scattering cross section for
a partially polarized beam in terms of a density matrix.

15.2 The one-dimensional harmonic oscillator has Hamiltonian

2
14 155
H=—+-mow
om 2
where ¢ is the coordinate, and p is the momentum.
(a) Calculate the classical partition function, taking the phase-space element to be

dpdq /T, where T is an arbitrary unit.
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(b) In quantum mechanics, the eigenvalues of the Hamiltonian are

1
E,=h -
a)<n+2>

where n = 0, 1,2, ... labels the quantum states. Show that the quantum partition
function is

o—Bho/2

1 — e Pho

Q:

(c) Compare Q in the high-temperature limit (8 — 0) with the classical partition
function, and show that the unit for the classical phase space is T = A, Planck’s
constant.

15.3 In quantum mechanics the kinetic energy K and the potential energy V do not
commute with each other. This poses a challenge in calculating the partition function
Tr e #&+V) because e PE+Y) £ ¢=FK =BV According to the Campbell-Baker-
Hausdorff formula, we have an infinite-product expansion

¢~BE+Y) . y=BK ,=BY ,~FUKV12

where [K, V] = KV — VK, and the dots represent exponential factor involving higher
powers of 8 and repeated commutators. Verify this formula to order 82 by expanding
both sides in powers of .

15.4 Consider a system of N noninteracting spins, whose energies in a magnetic field
B are given by & 1o B. Ignore translational motion.

(a) Calculate the partition function Q.

(b) Calculate the average magnetic moment (M).

(c) Find the mean-square fluctuation (M?) — (M)2.

15.5 Consider an ideal Fermi gas of N spinless particles, with single-particle states
labeled by a set of quantum numbers {A}. Denote the energy levels by ¢;.

(a) Suppose the energy spectrum consists of a bound state of energy — B that is g-
fold degenerate, plus the usual free-particle energy spectrum ¢; = h2k?/2m. Assume
g = aV, where V is the volume, and a is a constant. Give the equation of state in
parametric form.

(b) Find z at high temperatures, as a function of temperature 7 and density =, to
lowest order.

(¢) In the same approximation, find the pressure P, and the densities n; and n s of
bound and free particles, respectively.

15.6 For an ideal quantum gas show that

1 9
(nknp) — (nx) (np) = _B‘E’E;(np) (k #p)

Since (np) does not depend on ey, this gives

(nknp) = (nk) (np) (kK #p)
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Hint: Differentiate the grand partition function with respect to €p, and then €.

15.7 We have obtained the fluctuation for the occupation of a single state. For a
macroscopic system, the energy levels approach a continuum in the limit of infinite
volume, and it is more relevant to consider a group of states. Let o be the occupation
number of a group G:

O‘Zgnk

keG

Show the following relation, with help from the result of the last problem:

(— : Fermi)
2\ _ 2 2
() — (o) (o) :Fé(nk) (+ :Bose)

When no single state is macroscopically occupied, the left side is of order V2, while
the right side is of order V, and this represents a normal fluctuation. The exception
occurs in Bose-Einstein condensation (See Chapter 18).
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Chapter 16

The Fermi Gas

16.1 Fermi Energy

In the low-temperature limit 7 — 0, the Fermi distribution [Equation (14.36) or
(15.34)] has the behavior

1 0 if ¢ >pn
= 16.1
e efla—m +1 1750 |1 if €& < i ( )
where B = (kgT)~!. Using the step function
1if x>0
f(x) = (16.2)
0if x <O
we write
g - O(u — ) (16.3)
This means that all states with energy below the Fermi energy
€r = u(n,0) (16.4)

are occupied, and all those above are empty. In momentum space the occupied states
lie within the Fermi sphere of radius pr, as illustrated in Figure 16.1. Such a condition
is called “quantum degeneracy.”

We can determine the Fermi energy through the condition

N = Z 1 (16.5)

states with
E<ER

For free fermions of spin S the condition gives

VRS+1)4x

where kg = pr/h is the Fermi wave number. Thus

o _@s+ k2.

= (16.7)
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Pz

Pr

Px

Figure 16.1 At absolute zero, all states within the Fermi sphere in momentum are
occupied, and all others are empty. The radius of the sphere is the Fermi momentum
pr = hkr, where kr is the Fermi wave vector. The Fermi energy is €r = p%/2m.

and the Fermi surface is described by

67°n 1/3
N —
i (2S+1>

w2 [ 6nn \ 7
_r 16.8
T om (2S+ 1) (16.8)

16.2 Ground State

At absolute zero, when the system is in its quantum-mechanical ground state, the
internal energy is given by

VRS +1) [k h2k>2
Up = Z € = —(—L)/ dk(4m k?)
0

Sl (2r)3 2m
4 K2 471k5 (169
T3 \2m/) 5 F )

On the other hand
_ VRS+1) 47rk3

G 3 (16.10)
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Thus the internal energy per particle at absolute zero is

Usd 3r%% 3
==z == 16.11
N~ 52m 57 (el
This relation is independent of the spin of S.

We have shown in Section 14.9 that PV = % U at any temperature. Thus, at absolute

Z€ro

2
Py = Cner (16.12)

This zero-point pressure arises from the fact that there must be moving particles at
absolute zero, since the zero-momentum state can hold only one particle of a given
spin orientation. Taking a metal as a Fermi gas of electrons of spin 1/2 contained in
a box, at density of n ~ 102 cm~3, we find a zero-point pressure of the order of

Py ~ 10'° erg cm ™ & 10* atm (16.13)

16.3 Fermi Temperature

At a finite temperature, the occupation number n(¢€) as a function of the single-particle

energy € has the qualitative shape shown in the left panel in Figure 16.2. In the right

panel, we show the momentum space, where particles within a layer beneath the

Fermi surface are excited to a layer above, leaving “holes” beneath the Fermi surface.
The Fermi temperature 7 is defined by

€r = kpTF (16.14)
n(e)
ﬁj\ T=0
€
|||
KT p—— + 2mkT
ep = kT¢
Occupation number Momentum space

Figure 16.2 Left: Occupation number of a Fermi gas near absolute zero. Right:
Particles are excited from beneath the Fermi surface to above, leaving holes behind.
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For low temperatures T < T, the distribution deviates from that at 7 = 0 mainly in
the neighborhood of € = €, in alayer of the thickness of order kz T'. That is, particles
at energies of order k3 T below the Fermi energy are excited to energies of order kg T’
above the Fermi energy. For T > T the distribution is so broad that the Fermi
surface disappears, and it approaches the classical Maxwell-Boltzmann distribution.

Electrons in a metal typically have € 222 eV, which corresponds to Tr & 2x 10* K.
Therefore, at room temperatures electrons are frozen below the Fermi level, except
for a fraction T/ Tr = 0.015. Since the average excitation energy per particle is kg T,
the internal energy is of order (T /Tr)NkpT, and the specific heat capacity tends to
zero:

c . T (16.15)

Nk  Tr

This is why the electronic contributions to the specific heat of a metal can be neglected
at room temperature.

16.4 Low-Temperature Properties

The large z limit corresponds to nA> > 1. At a fixed density, this corresponds to
T « T, the degenerate limit. The condition for z is given in Section 14.12:

nA’ = f32(z) (16.16)

In the low-temperature region z is large, and we cannot use the power series for f3,.
The relevant asymptotic formula is derived in the Appendix:

4 % 1
~ —— [(Inz)’? + — 16.17
f3/2(2) W [( nz) Y + ( )
Keeping only the first term above, we obtain
3T N\ T
Inz~ (Tﬂnﬁ) == (16.18)

This gives the correct limiting value for the chemical potential ¢t = €p.
To the next order, we use the equation

72 1
ni3 ~ N {(mzﬁ/2 : «/ln_} (16.19)
and rewrite it in the form
3./ 2 1
(Ing)?m YT 33 - L (16.20)

4 8 Inz
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1l
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g
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0 T
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Boltzmann

Figure 16.3 Chemical potential of the ideal Fermi gas. The Maxwell-Boltzmann
case is shown for comparison.

Substituting the first approximation Inz = T/ T on the right side, we then obtain

72 [ T \?
LA ep {1 -5 (E) } (16.21)

Combining this with the high-temperature limit given in Section 14.13, we can
sketch the qualitative behavior of the chemical potential as a function of tempera-
ture, as shown in Figure 16.3, where the Maxwell-Boltzmann curve refers to the
high-temperature limit ;& = kg T In(nA>).

The internal energy is given by

V  A4gh? [
U= - dkk* 16.22
2= Gy e (1629

We make a partial integration:

V  4Axh? /°° k3 dny
0

C(27)3 2m 5 ok
v 471h2,3/ 7 lefe de
—(2n)3 5 [z-1ePe + 112 0k

vpn' /°° kBeP (e~
0

- —_— 16.23
207r2m? [efle—m) + 172 ( )
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]
T
0 Tg

Figure 16.4 Specific heat of ideal Fermi gas.

where € = 1%k?/2m. At low temperatures the integrand is peaked about k = k. We
evaluate it by expanding k% about that point, and use the expansion for u obtained
earlier. The result is

3 522 (T \?
U=—-N 1+ — | — 16.24
5 €r |1+ D (TF> + ( )
from which we obtain the equation of state
20 2 572 (T \?
=—— == 1+ —( — 16.25
3v — 5 N (Tp) * (16.25)
The heat capacity is given by
CV .7'1.'2 T
—_ = 16.26
Nk 2 Ty * ( )

A qualitative plot of the specific heat is shown in Figure 16.4.

16.5 Particles and Holes

The absence of a fermion of energy €, momentum p, charge e, corresponds to the
presence of a hole with

Energy = —¢
Momentum = —p
Charge = —e (16.27)

Since the number of fermions in a quantum state is 0 or 1, the number of holes is 1
minus the number of fermions. It follows that, in a Fermi gas in thermal equilibrium,
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Fermi surface

Particle

T

Figure 16.5 Particle excited to above the Fermi surface, leaving a hole beneath the
Fermi surface.

the average occupation numbers for particle and holes are given by

. 1
Particle: np = m
Hole: 1 = ! 16.28
ole: —Rp = m ( . )

where € = p?/2m. As illustrated in Figure 16.5, the number of excited particles is
equal to the number of holes. When an excited fermion falls into an unoccupied state,
it appears that a particle and a hole have annihilated each other. In this sense, a hole
is an “antiparticle.”

The concept of holes is useful only at low temperatures I < Tr, when there are
relatively few of them below the Fermi surface, with the same number of excited
particles above the Fermi surface. Only the holes and excited particles participate in
thermal activities, while the rest of the fermions, which constitute the overwhelming
majority, lie dormant beneath the Fermi surface. When the temperature is so high that
there are a large number of holes, the Fermi surface is “washed out,” and the system
approaches a Maxwell-Boltzmann distribution of particles.

16.6 Electrons in Solids

An electron in the ionic lattice of a solid sees a periodic potential, and experiences
partial transmission and reflection as it travels through the lattice. The reflected waves
can interfere coherently with the original wave to produce complete destructive in-
terference in certain energy ranges. Thus, energy gaps occur in the spectrum of the
electron, and the lattice acts like a band-pass filter. A two-band spectrum is illustrated
in Figure 16.6, with a “valence band” with maximum energy €, separated by an
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Free-particle —_ /

/

Dispersion Spectrum

Figure 16.6 Band structure in the energy of an electron in a periodic potential.

energy gap A from the “conduction band” above it. Suppose the energy bands are
filled with electrons. The two spin states of the electron only supply a factor of 2 in the
counting of states. If the density is very low, we have a free Fermi gas with €r < €,
and the band structure has little relevance. Interesting phenomena happen when the
valence is almost filled, or a bit overfilled.

Suppose at absolute zero the valence band is completely full, and the conduction
band completely empty. Such a system is called a “natural semiconductor.” As the
temperature increases, thermal excitation will cause some electrons to be excited
across the gap into the conduction band, leaving holes in the valence band. The
particles and holes behave like free charge carriers, and the system exhibits electrical
conductivity. As illustrated in Figure 16.6, the dispersion curve near the edges of the
bands can be locally approximated by parabolas. An excited electron near the bottom
conduction band has energy

p2

€ =€+ A+
2m

(16.29)

where p is an effective momentum vector, and m. is an effective mass. Similarly, the
energy of an empty state just below the top of the valence band, has energy

p2

€v = €0 — (16.30)

2my,

The densities of particles and holes are thus given by

_5 d’p 1
Mpart = K3 eflee—m) + 1

d3p 1
Mhole = 2/ h3 eBlu—e) 11 (16.31)
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Assuming B(e. — ) > 1, and B(n — €y) > 1, we have

3 3/2
Ppart = 2/ d_z_)e—ﬂ(ec—u) — ze—ﬂ(€o+A—u) (mckBT>

h3 2 h?
d3 g T\ *?
Mhole A 2 / —h3£e_ﬂ(“—EV) = 2¢ Pl <—";n22 ) (16.32)

Overall electrical neutrality requires npa; = pole, Which determines the chemical
potential:

A 3 me

w=¢€+—=+ —kgTIn— (16.33)

2 4 my
The value at T = 0 gives the Fermi energy of €y + A /2, which is located in the
middle of the energy gap. The approximations made here are valid if BA >> 1. The
particle and hole densities are now given by

_ JmemkgT 3/2
Rpart = Apole = 26 Bas2 <——2(:7'[——712L> (1634)

As an estimate, use the typical values A/k = 0.7eV, and m; = m, = m, where
m is the free electron mass. At room temperature 7 = 300 K, we find np,q ~
1.6 x 10! cm™2, which is to be compared with a charge carrier density of 10%° for a
metal. The electrical conductivity of a natural semiconductor is therefore negligible.

There are, however, gapless natural semiconductors with A = 0, such as «-Sn
and Hg-Te. In these cases the charge carrier densities become large, and depend on
temperature like T3/2.

16.7 Semiconductors

The electronic energy spectrum in a real solid rarely looks like that shown in Figure
16.6, because there always exist impurities in the lattice that can trap electrons into
bound states. These impurities act as sources or sinks for electrons, and cases of
practical interest are depicted in Figure 16.7.

In n-type semiconductors (n for negative), the bound levels lie below the bottom of
the conduction band by an energy § < A, and they are filled by electrons at absolute
zero. As the temperature increases, these levels donate electrons to the originally
empty conduction band. For this reason they are called donor levels.

In p-type semiconductors (p for positive), the bound levels lie above the top of the
valence band by 8’ < A, and are empty at absolute zero. As the temperature increases,
they accept electrons excited from the valence band, thereby creating holes. For this
reason they are called acceptor levels. We neglect excitations between bands.

For the n-type semiconductor, let us measure energy with respect to the bottom of
the conduction band. Suppose there are n p bound states per unit volume, of energy —4.
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n-Type semiconductor p-Type semiconductor

Figure 16.7 Impurities in the lattice of the solid can trap electrons into bound states,
with energy levels in the band gap.

The density of electrons in the donor levels at temperature 7 is

27’1])

Rdonor = m (16.35)

The density of electrons in the conduction band is given by n. in Equation (16.32),
with €y + A = 0 in our convention:

2z

23

27 h?
A= / 16.36
kaBT ( )

where z = eP# is the fugacity, and A is the thermal wavelength with respect to the
effective mass m.. Since electrons in the conduction band were excited from the fully
occupied donor levels, we must have #pa + 7donor = 27D, OF

Rpart =

22 27’1])
= 4 g e o 2np (16.37)
To solve for z, rewrite this in the form
P+ —npA3=0 (16.38)

The solution is

7= %e"% (\/4an3 T1— 1) (16.39)

which leads to
e P

Mo = 5~ (Vanp2i+1-1) (16.40)
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As the temperature rises from absolute zero, the particles in the conduction band
initially increase exponentially like 7%/4¢=%/sT 'but flatten to a plateau at 2np, when
the donor levels are depleted. The particle density can be adjusted by changing np.
In practice this is done through “doping”—mixing in varying amounts of impurity
material.

P-type semiconductors can be discussed in the same manner, with holes replacing
particles:

— ﬂg’

thote = = (Vanar3+1-1) (16.41)

where n4 is the number of acceptor states per unit volume, and A = / 2mh? /mykgT.

Problems

16.1 A metal contains a high density of electrons, with interparticle distance of the
order of 1 A. However, the mean-free-path of electrons at room temperature is very
large, of the order of 10* A. This is because only a small fraction of electrons near the
Fermi surface are excited. How does the mean-free-path depend on the temperature?

16.2 Model a heavy nucleus of mass number A as a free Fermi gas of an equal
number of protons and neutrons, contained in a sphere of radius R = rgA'/3, where
ro = 1.4 x 10713 cm. Calculate the Fermi energy and the average energy per nucleon
in MeV.

16.3 Consider a relativistic gas of N particles of spin 1/2 obeying Fermi statistics,
enclosed in volume V, at absolute zero. The energy-momentum relation is £ =
v/ (pc)? + (mc?)?, where m is the rest mass.

(a) Find the Fermi energy at density 7.

(b) Define the internal energy U as the average of E — mc?, and the pressure P as
the average force per unit area exerted on a perfectly-reflecting wall of the container.
Set up expressions for these quantities in the form of integrals, but you need not
evaluate them.

(c) Show that PV = 2U /3 at low densities, and PV = U/3 at high densities. State
the criteria for low and high densities.

(d) There may exist a gas of neutrinos (and/or antineutrinos) in the cosmos. (Neu-
trinos are massless fermions of spin 1/2.) Calculate the Fermi energy (in €V) of such

a gas, assuming a density of one particle per cm?.

16.4 Consider an ideal gas of nonrelativistic atoms at density n, with mass m, spin
1/2 and magnetic moment 4. The spin-up and spin-down atoms constitute two inde-
pendent gases.

(a) In external magnetic field H at absolute zero, the atoms occupy all energy levels
below a certain Fermi energy ¢(H). Find the number N, of spin-up and spin-down
atoms.

Hint: The energy of an atom is (p?/2m) F nH.
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(b) Find the minimum external field that will completely polarize the gas, as a
function of the total density n.

16.5 Model a neutron star as an ideal Fermi gas of neutrons at absolute zero, in the
gravitational field of a heavy center of mass M.

Show that the pressure P of a gas is in the gravitational field of a heavy mass M
obeys the equation dP/dr = —y Mp(r)/r?, where y is the gravitational constant, r
is the distance from the mass, and p(r) is the mass density of the gas.

(b) Show that P = ap>/3, where a is a constant, and find p as a function of distance
from the center.
Hint: Consider how P and p depend on the chemical potential in a Fermi gas.

16.6 Consider an ideal Fermi gas of N electrons of mass m. In addition to the usual
free-particle states, a single electron has N bound states that have the same energy
—e¢. (Each of these states can be occupied by one electron of given spin.)

(a) Write down expressions for N, and Ny, the average number of bound and free
particles in the gas.

(b) Write down the condition determining the fugacity z = e#*.

(c) Find z as a function of temperature and density, assuming that z < 1. At what
temperatures is this assumption valid?

(d) Find the density of free particles in the low-temperature and high-temperature
limits.

Consider electrons in a metal to be an ideal Fermi gas of spin 1/2 particles.
16.7 At room temperature the distribution is close to that at absolute zero. There are
relatively few electrons excited above the Fermi energy, leaving holes in the Fermi
sea. Show that the probability P (A) of finding an electron with energy A above the
Fermi energy is equal to the probability Q(A) of finding a hole at energy A below
the Fermi energy.

16.8 Consider a two-dimensional Fermi gas consisting of N electrons of spin 1/2,
confined in a box of area A.

(a) What is the density of single-particle states in momentum space?

(b) Calculate the density D(e) of single particle states in energy, and sketch the
result.

(c) Find the Fermi energy and Fermi momentum.

(d) Find the internal energy at 7' = 0 as a function of N and A.

(e) Find the surface tension S at 7' = 0 as a function of N and A.

Hint: dE = TdS + SdA + udN.

(f) In 3D the chemical potential depends on T like 72 at T = 0. Will the behavior
in 2D stronger, weaker, or the same?



Chapter 17

The Bose Gas

17.1 Photons

Photons are the quanta of the electromagnetic field. They are bosons whose number is
not conserved, for they may be created and absorbed singly. The Lagrange multiplier
corresponding to total number is absent, and the chemical potential u is zero. This
means that the particles can disappear into the vacuum.

A photon has two spin states, corresponding to two possible polarizations, and
travels at the speed of light ¢, with energy-momentum relation

€ =cp (17.1)

where p is the magnitude of the momentum p. The wave number k and the frequency
w are defined through

_ha)

p ="k (17.2)

c

Its intrinsic spin is 7, but has only two spin states corresponding to the states of left
and right circular polarization. Any enclosure with walls made of matter must contain
a gas of photons at the same temperature as the walls, due to emission and absorption
of photons by the atoms in the walls. Such a system is called a “black-body cavity,”
and the photon it contains is called “black-body radiation.”

The average occupation number of the state with momentum p is

1

hp

The absence of the chemical potential makes thermodynamic calculations very simple.
The average number of photons is

d*p 1
p

where V is the volume of the system, and the factor 2 comes from the states of
polarization. The density of photons is

2 ©  Axk? 1 00 w? kzT\°>
=~ dk = do——— =i | —— 17.5
" (2m)3 /0 ebhck — 1 m2c3 /0 @ b _ 1 * ( he ) (17.5)
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with
1 fore] 2

K:—2 dx
T 0 er —

- =40(3) ~ 023 (17.6)

where ¢ (z) is the Riemann zeta function.
The internal energy is given by

3

8rcV [ p
U=226p”p:h—3/o P Fep 1
P

Vi [ w?

which leads to Stefan’s law
— =oT*

2kt

o= e (17.8)

where o is called Stefan’s constant. The specific heat (per unit volume) is therefore
cy =40T3 (17.9)

The energy density can be expressed in the form

v_ /oo douw(w, T) (17.10)
Vv 0

where u(w, T) is the energy density per unit frequency interval:

h @3

e 1) = 53 oo — 1

(17.11)
This is the Planck distribution.

The pressure can be obtained through the method described in Section 6.2 modified
for photon kinematics. Consider photons reflecting from a wall normal to the x axis.
For photons of momentum p, which makes an angle 6 with the x axis, the flux of
photons is ¢ cos 8, and the momentum imparted to the wall per reflection is 2p cos 8.
Therefore the pressure is given by

d*p )

P = 2/ —— 2pcnycos” 6 (17.12)
p:>0 h

where a factor 2 comes from the two polarizations. The restriction p, > 0 means that

0 < 6 < 7. Going to spherical coordinates, we get a factor % from the 6 integration,

and obtain

8me [ p

=3 |, Vg (17.13)
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Brightness
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1

Frequency (cycles/cm)

Figure 17.1 Observed frequency spectrum of cosmic background radiation. Dotted
line is the Planck distribution with 7 = 2.73. (The unit “cm’ denotes % x 10710 g,
the time for light to travel 1 cm.) The measurements are so accurate that there is no
visible difference between theory and experiment over the whole frequency spectrum.
(After Mather 1990.)

Comparison with Equation (17.7) leads to the relation

1U
3V
This relation also holds for massive particles at temperatures so high that they move
at close to light speed. It is to be compared with the relation P = %U J/V for a
nonrelativistic gas of particles. »

Our universe is filled uniformly with black-body radiation, as revealed in the mea-
surements shown in Figure 17.1. The experimental points fit perfectly a Planck distri-
bution of temperature 2.735 £+ 0.05 K. Called the “cosmic background radiation,” it is
thought to be a relic of the Big Bang.

P (17.14)

17.2 Bose Enhancement

We have seen in Section 14.13 that there is a statistical attraction between free bosons,
even when there is no interaction potential. The difference between the Planck distri-
bution and the Maxwell-Boltzmann distribution can be attributed to this attraction,
as Einstein showed, in what has come to be known by the historical but clumsy name
of “theory of A and B coefficients.”

Consider a two-level atom in the wall of a black-body cavity, with level a at a higher
energy than level b. Suppose the energy difference is Zw, so that the population of
the two levels in equilibrium are maintained by emission or absorption of photons
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(Bu)n, (A+Bu)n,

b

Figure 17.2 Population of atomic levels maintained by photon exchange. The pho-
ton distribution function is denoted by u, and A and B are the Einstein coefficients.

of frequency w in the black-body radiation. “Bose enhancement” refers to the fact
that the rate of these processes is enhanced by the presence of photons of the same
frequency.

Let n, and n;, denote respectively the number of atoms in level a and b. Einstein
postulates the following rate equations:

e (A + Bu)n, +B
= — U)n, un
dt b
dnb
e (A + Bu)n, — Bun, (17.15)

where ¥ = u(w, T) is the energy density of photons per unit frequency. The gain
and loss for level a are illustrated in Figure 17.2. Since atoms leaving a must go to
b, and vice versa, we must have d (n, + n,) /dt = 0. The coefficient A is the rate
of spontaneous emission, an intrinsic process independent of the environment. The
coefficient B expresses Bose enhancement. It gives the rate of stimulated emission
induced by the presence of other photons of the same frequency.

In equilibrium we must have dn, /dt = dn;, /dt = 0, which requires

(A 4+ Bu)n, = Bun, (17.16)

On the other hand, the ratio of the populations should be given by the Boltzmann
factor

fla _ p=pho (17.17)
np

Combining the last two equations, we can solve for «, and obtain

A 1

we. 1) = 3 Fo 1

(17.18)
Comparison with Equation (17.11) gives A/B = hw?/m?c3. If we had omitted the
stimulated emission term Bu on the left side of Equation (17.16), we would have
obtained the Maxwell-Boltzmann distribution u = (4/B)e~#".
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17.3 Phonons

A solid can be idealized as a crystal lattice of atoms, and the small-amplitude vibrations
can be described in terms of normal modes, which are harmonic oscillators. The quanta
of these normal modes are called phonons. They obey Bose statistics, and their number
is not conserved. A phonon of momentum p has energy

€p =Cp (17.19)

where p = |p|, ¢ is the propagation velocity, and w is the frequency. There are three
modes of oscillation: one longitudinal mode corresponding to sound waves, and two
transverse modes. We have taken the velocities of all three modes to be equal for
simplicity.

The difference between a phonon and a photon, apart from the existence of a
longitudinal mode, is that the frequency spectrum of a phonon has an upper cutoff,
owing to the finite lattice spacing of the underlying crystal. Consider the simple
example of beads on a string, as shown in Figure 17.3. We see that the half-wavelength
of oscillations cannot be less than the lattice spacing.

Debye proposes the following model for the normal modes of a solid. Consider
waves in a box of volume V, with periodic boundary conditions. The modes are
plane wave labeled by a wave vector k. The number of modes in the element d3k is

Figure 17.3 Collective oscillations of a finite number of particles have a minimum
wavelength, hence a maximum cutoff frequency.
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Vdk/(2m)3. The frequency distribution function f(w) is defined by

4
S 4rk?dk (17.20)

where @ = ck and the factor 3 takes into account the longitudinal and transverse
modes. Thus,

f@)do =

2
floy =22V (17.21)
aT-C

The total number of modes of the system must be equal to 3N, where N is the number
of atoms in the lattice. The cutoff frequency w,,, or Debye frequency, is defined by
the requirement

/ " (@) dw = 3N (17.22)
0

which gives
wn = (67%0)'3 (17.23)

where n = N/V is the density of atoms. The characteristic energy hw,, defines the
Debye temperature Tp:

kpTp = hwn (17.24)

Real solids have a more complicated frequency spectrum due to specifics of the
crystalline structure, but Debye’s simple model reproduces the quadratic behavior at
low frequencies, as shown in Figure 17.4.

In the Debye model, a solid at low temperatures is represented by a collection
of phonons. The picture becomes inaccurate at higher temperatures, when phonon
interactions become important, and break down altogether when the solid melts.

fw)

o (21 x 1013 sec™!)

Figure 17.4 Solid curve is the fequency spectrum of normal modes of Al. (After
Walker 1956.) Dashed curve is that of the Debye model.
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17.4 Debye Specific Heat

In the Debye model the internal energy per atom is given by

u 1 3V K ho
—=—) em= dk(4mk?) ——
NT N N(2n)3/0 k) G 1

_ 12zn /wmd w’ 17.25)
T nen)y J, 9o _q (7.

By changing the variable of integration to t = fhw, and introducing the variable

Tp
= — 17.26
U= (17.26)
we can rewrite the energy per atom in the form
U
— =3kpT D(u) (17.27)
N
where and D(u) is the Debye function
3 Mmoo
Dwu)=— [ 4t (17.28)
u3 0 e —1
which has the asymptotic behaviors
D)~ 1= 2ut =i+ (<)
Uu) ~ — —U J— e
8“ " 20" *
Tt
D)~ 5+ 0™ @>1) (17.29)
The specific heat in the Debye model is given by
Cy dD(u)
— =3D 3T 17.30
Nk W +3T=37 (17.30)

which is a universal function of T/ Tp. The universal character is verified by experi-
ments, as we can see from the graph in Figure 17.5. Near absolute zero, the specific
behaves like T3, which is a reflection of the linear dispersion law € = ¢p for phonons.
It deviates from this form at higher temperatures, when the effect of the cutoff becomes
important.

The high-temperature asymptote 3Nk conforms to the law of Dulong and Petit. This
value can be understood in terms of the equipartition of energy among 3N harmonic
oscillators, each with energy p? + g2 (in appropriate units), and thus contributing a
term k to the heat capacity. Of course, the high-temperature limit here means that all
degrees of freedom of the lattice are fully excited, but not so high that it melts—an
effect that lies outside of this model.
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Figure 17.5 Universal curve for the specific heat in the Debye model. Data for
different elements are fitted by adjusting the Debye temperature Tp. (After Wannier
1966.)

17.5 Electronic Specific Heat

There are electrons in the lattice of a solid, and they contribute to the specific heat
of the solid. How important the contribution is depends on the temperature, and
at room temperature it is completely negligible. As we can see from Figure 17.5,
the Debye specific heat at T = 300 K for common metals is of order 3kp, but the
electronic contribution is of order (T / Tr )k, with Tr ~ 40000 K. Thus the electronic
contribution amounts to less than 1%. As the temperature decreases, however, the
electronic contribution becomes more important. If we expand the specific heat in
powers of T, then up to order T3 it should have the form

Cy T T\? T\’ T\
— =c | = — — — 17.31
Nk C1 (TF>+C2 (TF> +C3(TF) +C4 <TD> + ( )

where the first three terms come from the electronic Fermi gas, and the last term
comes from the Debye model. The ¢, are numerical coefficients. Since Tr > Tp, we
can neglect the two terms in the middle, and approximate the above by

— =~ aT +bT 17.32
i ( )
Thus, at low temperatures, a plot of Cy /T against T2 should give a straight line. This

is indeed borne out by experiments, as shown in Figure 17.6. The density of electrons
can be obtained from the data. (See Problem 17.10).
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Figure 17.6 Data on specific heat of K Cl. (After Keesom and Pearlman 1953.) The
straightline is theory, which includes both electronic and lattice contributions.

17.6 Conservation of Particle Number

Why are some particle numbers conserved and others not? It depends entirely on
their interactions. Phonons in a solid are not “real” particles, for we know that they
are collective modes of the atoms in the solid. They are created and absorbed singly,
because that’s the way they interact with the atomic lattice. On the other hand, photons
and electrons are “real” because we have no evidence otherwise.

Photons are created and absorbed singly by charged particles. Electrons can be
created and destroyed only together with their antiparticle, the positron, by emis-
sion of a photon. Thus, the number of electrons minus the number of positrons is
conserved. If there are no positrons present, or if the energy of 1 MeV required
to create an electron-positron pair is not available, then the electron number is ef-
fectively conserved. Similarly, the number of baryons (of which the nucleon is the
lightest example) minus the number of antibaryons is conserved. The pattern of
fundamental interactions is such that bosons can be created or annihilated singly,
while fermions are created or annihilated only in association with antifermions
(Huang 1992).

Atoms are stable in the everyday world, because there are no antinucleons present.
It requires at least 2 GeV to create a nucleon-antinucleon pair, and this greatly exceeds
the thermal energy at room temperature. Were it not for the conservation of baryons,
the bundle of energy locked up in the rest mass of the proton would prefer to assume
other forms that give a larger entropy. The hydrogen atom would quickly disappear
in a shower of mesons and gamma rays. We can use the Boltzmann factor to estimate
the probability for finding a proton of rest mass M at room temperature, if there were
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no conservation law:

oM /kT ;) ,=3x10" (17.33)

This gives us an appreciation of the importance of baryon conservation.

Problems

17.1 Creation, annihilation, and Bose enhancement The excited states of the har-
monic oscillator can be described in terms of quanta, which are prototype bosons.
Bose enhancement arises from the probability amplitude for the creation or annihi-
lation of these quanta. We review this subject in this problem. The Hamiltonian is
given by

H— I 5 n mw? 2
Tt T
where p, g are hermitian operators defined by the commutationrelation [p, g} = —i#.

(a) Make the transformation to annihilation operator a and creation operator a':

hmw
2

h
g =iy/>—(@a—a)
2mw

1
H=rlho (aTa—F —)

p= (a+a)

Show that

2
[a,a']1=1

(b) Show that the eigenvalues of afa are integers n =0, 1,2, ... .
(c) Let |n) be an eigenstate of a'a belonging to the eigenvalue n. Show that

aln) = «/nln — 1)
allny =/n+1n+1)

Thus, a annihilates one quantum, and al acreates one quantum. The factors i/n, +/n + 1
give rise to Bose enhancement.

17.2 A black body is an idealized object that absorbs all radiation falling upon it,
and emits radiation according to Stefan’s law. A star is maintained by internal nuclear
burning at an absolute temperature 7. It is surrounded by a dust cloud heated by
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radiation from the star. Treating both the star and the dust cloud as black bodies, show
that in radiative equilibrium

(a) the dust cloud reduces the radiative flux from the star to the outside world by
half;

(b) the temperature of the dust cloud is 2747 .

17.3 Assume that the Earth’s temperature is maintained through heating by the Sun.
Treating both the Sun and the Earth as black bodies, show that the ratios of the Earth’s
temperature to the Sun’s is given by

Tearth [ Rsun

Tsun 2L

where Rgy, is the radius of the Sun, and L is the distance between the Sun and the
Earth. We have ignored the heating of the Earth due to radioactivity in the interior.
(See Problem 7.8.)

17.4 Suppose a house exposed to heat radiation has a reflection coefficient r, that is,
it reflects a fraction r, and accepts a fraction 1 — r, of incident radiation. Assume that
it radiates heat like a black body. Let the temperature inside the house be T', and that
outside be Ty. Show that under equilibrium conditions

T 1—r\"
T (1—-2r>

17.5 Show that the entropy of a photon gas is givenby S = %U /T, hence the entropy
density is

S 4 5
— =—-0T
\% 3

where o = w2k*/[15(hc)?] is Stefan’s constant.

17.6 The background cosmic radiation has a Planck distribution temperature with
temperature 2.73 K, as shown in Figure 17.1.

(a) What is the photon density in the universe?

(b) What is the entropy per photon?

(c) Suppose the universe expands adiabatically. What would the temperature be
when the volume of the universe doubles?

17.7 Einstein model of solid: The Einstein model is a cruder version of the Debye
model. It assumes that all phonons have the same frequency wyg.

(a) Give the internal energy of this model.

(b) Find the heat capacity. How does it behave near absolute zero?

(¢) Show that the free energy is given by

A = 3NkpT In(1 — e Phev)
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17.8 A solid exists in equilibrium with its vapor, which is treated as a classical ideal
gas. Assume that the solid has a binding energy € per atom. Describe the phonons
using the Einstein model.

(a) Give the free energy for the total system consisting of solid and vapor. (For the
classical ideal gas, you must use correct Boltzmann counting.)

(b) What is the condition for equilibrium between vapor and solid?

(c) Find the vapor pressure P(T).

17.9 A model of a solid taking into account the structural energy of the lattice postu-
lates a free energy of the form

AV, T)=¢(V)+ Aphonon

where ¢ (V) is a structural energy, and Apponon is the contribution from phonons. At
absolute zero, there are no phonons, and the volume of the solid is determined by
minimizing ¢ (V). Near the minimum we may write

K
$(V) =—go+ 5 (V - Vo)?

At higher temperatures, there is a shift in the minimum due to the fact that the phonon
frequency increases when the lattice spacing decreases:

dok) _dv

ok TV

where y is known as Gruneisen’s constant.

(a) Neglect the vapor pressure and take the pressure of the solid to be zero. Find
the equilibrium condition using the Einstein model for the phonon contribution.

(b) Find the equilibrium volume of the solid as a function of temperature, and
calculate the coefficient of thermal expansion.

17.10 In the specific heat formula [Equation (17.32)] for solids Cy /Nk = aT + bT3,
the first term represents the contribution from electrons in the solid, and the second
from phonons.

(a) Give a in terms of the electron density n,

(b) Give b in terms of the Debye temperature Tp.

(c) Obtain the numerical values of @ and & from the graph in Figure 10.6 for K CI,
and find » and Tp.

17.11 Surface waves on liquid helium has a dispersion relation given by

e(k):hwa—kfg
0

where £ is the wave number of the surface wave, o the surface tension, and p the mass
density of the liquid. Treating the excitations as bosons with no number conservation,
find the internal energy per unit area as a function of temperature.
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Chapter 18

Bose—Einstein Condensation

18.1 Macroscopic Occupation

Consider a gas of bosons whose total number is conserved. The equation for the
fugacity is

i’ = g32(2) (18.1)

and a qualitative plot of the function g3/, is shown in Figure 18.1. The function has
infinite slope at z = 1, since

d 2, 7
- — = — 18.2
P 832(2) = g1/2(2) ;21 7 (18.2)
and the series diverges at z = 1. It is thus bounded by the value

gp(l)=> 77 =¢(3/2)=2612-- (18.3)
=1

where ¢ (z) is the Riemann zeta function. There is no solution to Equation (18.1)
unless

na? < gzp(l) (18.4)

This condition can be violated by increasing the density, or lowering the temperature.
What then would be the value of z ?

To answer this question, recall that in deriving Equation (18.1) in Section 14.12,
we took the infinite-volume limit, and replaced the sum over states by an integration.
This assigns zero weight to the state of zero momentum, for the volume element
4np*dp vanishes at p = 0. In the formula (Equation [18.1]), n is therefore the
density of particles with nonzero momentum, and this is the quantity bounded by
Equation (18.4). When this bound is exceeded, the excess particles cannot disappear,
as photons could, because their number is conserved. They are forced to go into
the zero-momentum state, and this single quantum state becomes macroscopically
occupied, that is, occupied by a finite fraction of the particles. This phenomenon is
called Bose—Einstein condensation.
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Figure 18.1 This function refers to particles with nonzero momentum, and is
bounded by g3,,(1) = 2.612. When nA3 exceeds this value, particles must go into the
zero-momentum state, leading to Bose—Einstein condensation.

The fugacity z is stuck at 1 during the Bose—Einstein condensation. Thus,

Rootof nA3 = g35(z) ifni® < g32(1) (gas phase) (185)
z= .
1 if nA*> > g3,2(1) (condensed phase)

The critical value nA> = g3/,(1) corresponds to

272\
n(kaT> = ¢c(3/2) (18.6)

This gives the boundary between the gas phase and condensed phase, as shown
the n-T diagram of Figure 18.2. At fixed density =, the critical line defines a critical
temperature 7, :

kpT, = —

(18.7)

Znhz{ n }2/3

s(3/2)

Critical line
nT~32 = const

Gas phase

0 T

Figure 18.2 Phase diagram of Bose—FEinstein condensation in the density-
temperature plane.
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Figure 18.3 Qualitative behavior of the chemical potential for the Bose, Fermi, and
the Maxwell-Boltzmann gas.

At a given temperature 7, it defines a critical density n,:

kaT>3/2

ne = §(3/2) ( 27Th2

(18.8)

The chemical potential & = kT In z is zero in the condensed phase. Its qualitative
behavior in comparison with the Fermi gas and classical gas is shown in Figure 18.3.

18.2 The Condensate

The Bose—Einstein condensate consists of the particles in the zero-momentum state.
Their number n is determined through the relation

v
N =no+ 583/2(1) (18.9)
Thus,
! T\¥?
no_,_sp®_ (T (18.10)
N na3 T,

This is illustrated in Figure 18.4.
The momentum distribution p?n p is shown in Figure 18.5 for both 7 > T; and
T < T,. The area under the curve gives the density of particles 47h=> fooo dp p*n -
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Figure 18.4 Condensate fraction—the fraction of particles with momentum zero.

Above T, the graph looks qualitatively like the Maxwell-Boltzmann distribution.
Below T, a § function appears at zero momentum, representing the condensate, and
its strength increases as 7 — 0, and at absolute zero only the §-function remains.
Because we are plotting p? times the occupation number, it has the rather singular
form p~28(p).

18.3 Equation of State

The equation of state as a function of fugacity was derived in Section 14.12:

P g5p(R)
kpT A3

(18.11)

This is valid in both the gas and condensed phase, because particles with zero-
momentum do not contribute to the pressure. Since z = 1 in the condensed phase,

S-function

Figure 18.5 Area under the curve is proportional to the density of particles. Below
the transition temperature, a 6-function appears at zero momentum, representing the
condensate contribution.
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the pressure becomes independent of density:

P gs5p(l)

T = (18.12)

where g5/2(1) =3413.--.

In the gas phase we have to solve for z from Equation (18.1). At low densities,
which correspond to small z, the system approaches a classical ideal gas. At higher
densities, we have to obtain the solution through numerical methods. The qualitative
isotherms are shown in the PV diagram in Figure 18.6. The Bose—Einstein conden-
sation appears as a first-order phase transition. The vapor pressure is independent of
the density:

P = ColkpT)>?

m \ 32
Co=\{——= 1 18.13
0 <2nh2) gs2(1) ( )

It can be verified that the vapor pressure satisfies the Clapeyron equation.

The horizontal part of an isotherm in Figure 18.6 represents a mixture of the gas
phase and the pure condensate, and the latter occupies zero volume because there is no
inter-particle interaction. In a real Bose gas, which has nonzero compressibility, the
Bose-Einstein condensation would be a second-order, instead of a first-order phase
transition. This has been observed indirectly in liquid helium, which we shall describe
later, and more explicitly in dilute atomic gases trapped in an external potential, which
will be discussed in Chapter 20.

Transition line

Gas phase

Figure 18.6 Qualitative isotherms of the ideal Bose gas. The Bose—Einstein con-
densation shows up as a first-order phase transition.
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18.4 Specific Heat

The internal energy is given by

3
U= EPV (18.14)
The heat capacity per particle at constant volume is therefore
C 3 oP
v _ — (18.15)
Nkg  2nkg \ 0T /

We shall calculate this separately in the condensed and gas phases. In the condensed
phase P = CoT>/%. Therefore

Cy  15Cy

Nk B N 4dnk B

The behavior near absolute zero should be compared with other types of behavior we
know:

(kgT)* (T <T,) (18.16)

« T3/2 for conserved bosons with € o p?;
» T, for conserved fermions with € oc p2;

« T3, for nonconserved bosons with € o< p.

In the gas phase we have
P 3 kpT kgT ( 0
<8T)V = <8T 3 >Vg5/2(2)+ 3 (8Tg5/2(2))v

S5kp kgT 1 0z
2)L3g3/2(2)+ 3 ——83/2(2) ST (18.17)

where z must be regarded as a function of 7' and V/: The derivative (dz/d7T)y can be
obtained by differentiating both sides of Equation (18.1), with the result

1<8z> _ 3nad 1 (18.18)
2z \3T /), 2T gip@ ’

Thus we obtain the result

Cv _ 15850 983002
Nkg 4 n)3 4 g1/2(2)

(T >T,) (18.19)

In the high-temperature limit g,(z) &~ z &~ n)3, and we recover the classical limit %
The specific heat is continuous at the transition temperature, as we can verify from
Equations (18.16) and (18.19):

Cy 15 g52(1)
Nkp T-T. 4 g3,2(1)

(18.20)

However, the slope is discontinuous. (See Problem 18.4.) A qualitative plot of the
specific heat is shown in Figure 18.7.
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Figure 18.7

18.5 How a Phase is Formed

The Bose-Einstein condensation of an ideal gas is one the few examples of a phase
transition we can completely describe mathematically. It is interesting to see how the
equation of state develops discontinuous behavior in the infinite-volume limit.

To examine the onset of the Bose—Einstein condensation, let us go back to the
condition for z at finite volume:

N 1 1
V=V e T (18.21)
P
In taking the limit V — oo we make the replacement
1 d*p
VZQ.ZT (18.22)
P
which assigns zero measure to the state p = 0. In doing so, we have ignored the

density of the particles in the zero-momentum state:

no 1 Z
— = = 18.23
% V1-z ( )

We have a case of nonuniform convergence here, for this quantity approaches different
values depending the order in which we take the limits V — oo and z — 1:

. . no
lim lim — =0
z—=>1V—oo00

lim lim 22 = 0o (18.24)

Vosooz—1



258 Bose—Einstein Condensation

2612 f————— 2612 |————=——————

83/2(2)

N

8312(z)

\

[URR T U S

1
|
|
|
|
|
L 4
|
|
1

V finite V — =

Figure 18.8 In the infinite-volume limit, the condensate occupation number effec-
tively adds a straight vertical rise to g3, at z = 1.

Let us separate out this term in Equation (18.21), and replace the rest by the large

V limit:
N 1 z +/d3p 1
V Vi—gz h3 z-leBP® — 1

1 z 1
= — — 18.25
STt 38@ (18.25)

The two terms on the right side are shown in Figure 18.8, for finite V and for V — oo.
In the limit V — oo, the term V~'z/(1 — z) is zero for z < 1, and indeterminate
at z = 1. Thus, the density of zero-momentum particles ng/V is zero for z < 1, but
assumes whatever value is required to satisfy Equation (18.21) at z = 1.

The fugacity as a function of nA> is shown in Figure 18.9. It is a continuous function
for finite V, however large. In the limit V — oo, however, it approaches different
functions for nA® > £(3/2), and nA3 < ¢£(3/2). In particular, it is a constant function
z = 1 in the latter region.

In summary, the equation of state is a regular function of » and 7 for finite volume,
however large. However, in the limit V — oo it can approach different limiting forms
for different values of n and 7'. Although the idealized discontinuous phase transition
occurs only in the thermodynamic limit, macroscopic systems are sufficiently close
to that limit as to make the idealization useful.

V finite V—>o

1 Y 1
—_Z_0Oov
1 v)

0 £(3/2) 3 0 {(3/2) 3

Figure 18.9 The fugacity approaches different limiting functions for different
ranges of nA3, in the infinite-volume limit.
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18.6 Liquid Helium

The atom *He, the most abundant isotope of helium, is aboson. We might expect Bose—
Einstein condensation to occur in bulk helium, which is a liquid at low temperatures.
Indeed, there is a second-order phase transition in liquid helium that can be identified
with this phase transition, which is called the “A-transition” after the shape of the
specific heat shown in Figure 18.10. Supporting the identification is the fact that below
T, the liquid is a “superfluid” that manifests quantum behavior on a macroscopic scale,
such as the absence of viscosity. Because of interatomic interactions, the specific heat
of liquid helium behaves like T3, instead of 7%/? as in the ideal Bose gas, indicating the
existence of phonon excitations. The interactions apparently change the order of the
transition changed from first to second. Properties at the transition point are given by

T, =2172K
ne = 2.16 x 10¥%?cm™3
ve = 46.2 A3 per atom (18.26)

Substituting 7. into Equation (18.7) yields T, ~ 3.15 K, which is of the right order
of magnitude.

Low-energy excitations in liquid helium can be detected through neutron scattering.
The experimental dispersion relation € (k), which gives the energy of the quasiparticle
as a function of wave number, is shown in Figure 18.11, which shows the phonon
branch near k = 0,

€phonon = hck

c =239+ 5m/s (18.27)
where c is the sound velocity.
15 —
Z
'_I(bn
= 10—
2
g
T
)
S 51— l
B [
. |
» |
|
. | R
0 1 2.17
T (K)

Figure 18.10 )-transition at 7, = 2.172 K goes between two liquid phases, both in
equilibrium with a gas phase. The specific heat is measured along the vapor pressure
curve. (After Hill and Lounasmaa 1957.)
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Figure 18.11 Dispersion curve of quasiparticles in liquid “He obtained through
neutron scattering. [Donelly et al., 1981, (0 < k£ < .2.5 A~1); Glyde et al. 1998,
(k > 2.5 A~1).] The data points are very dense, with errors about the width of the
line plotted.

At higher values of &, the dispersion curve goes through a minimum, in the neigh-
borhood of which the excitation behaves like a particle named the “roton,” with the
properties
R2(k — ko)?

€roton — A+ %

A = 8.65+0.04 K
ko = 1.92 +£0.01 A~}

o =(0.16£0.01)m (18.28)

where m is the mass of a helium atom. These excitations are quite different from
those in the ideal Bose gas with spectrum %2k%/2m, and make the specific heat at low
temperatures very different from that of the ideal gas.

Problems
18.1 Verify the Clapeyron equation for dP/dT for the Bose—Einstein condensation.

18.2 The Bose functions g,(z) = Zj‘;l £7"z* have the following expansions near
z=1:

g5/2(2) = 2.363 %% +1.342 — 2.612v — 0.730v> + - - -

g3/2(z) = 2.612 — 3.455 v/ 4+ 1.460v + - - -

where v = —In z. They are related through g3/, = —dgs,»/dv.
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Find the fugacity z of an ideal Bose gas of density », as a function of the temperature
T in the neighborhood of T = T,.. For T < T, we have of course z = 1. For T > T,
obtain the first few terms of a power-series expansion in T — T,.

18.3 Show that the equation of state of the ideal Bose gas in the gas phase has the
virial expansion

T =1+ az(n)\3) + a3(n)\3)2 +.-.

where

18.4 Show that the slope of the heat capacity of an ideal Bose gas has a discontinuity

at T = T, given by
o0Cy _[9Cy _3 66]Lk
OT )y T Jrorr T

Hint: Calculate the internal energy via U = 3PV.

18.5 Suppose the particle spectrum has a gap A > 0 :

~A  (k=0)
(k) = 212
n2k2/2m (k> 0)

Show how this would modify the Bose~Einstein condensation.

(a) From the equation determining the fugacity, show that the condensation happens
when z = exp (—BA).

(b) Assuming A /kpTy << 1, where Tj is the transition temperature for A = 0,
find the shift in transition temperature T, — Tp. Use the expansion of g3/,(z) near
z = 1, given in Problem 18.2.

18.6 The heat capacity of liquid “He near absolute zero should be dominated by
contributions from phonons and rotons.

(a) Calculate the contribution Cphonon from a gas of nonconserved bosons, with
dispersion relation

€(k) = hck

(b) Calculate the contribution Cryo, from a gas of nonconserved bosons with dis-
persion relation
2 (k — ko)*

k=A
€@) + 20
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18.7 Compare C = Cphonon + Croton t0 the specific heat data given in the following
table. The phonon and roton data from scattering experiments are given in Equa-
tions (18.27) and (18.28). The number density and mass density of liquid “He are
respectively n = 2.16 x 10%2 cm™3, and p = 0.144 g/cm®.

Temp (K) SpHeat (J/g-deg)

0.60 0.0051
0.65 0.0068
0.70 0.0098
0.75 0.0146
0.80 0.0222
0.85 0.0343
0.90 0.0510
0.95 0.0743
1.00 0.1042

18.8 Consider a box divided into two compartments. One compartment contains an
almost degenerate ideal Fermi gas of atoms with mass m; and density n;. The other
compartment contains an ideal Bose gas of atoms of mass m, and density n, below the
transition temperature for Bose—Einstein condensation. The dividing wall can slide
without friction, and conducts heat, so the two gases come equilibrium with the same
pressure and temperature.

(a) Show that the pressure of the Fermi gas has the form

h2
Pl =C1 <—-—) ni/z
m

where ¢is a numerical constant.
(b) Show that the vapor pressure of the Bose gas has the form

my\ 3/
P,=c (-;l—) (kgT)>?

where ¢ is a numerical constant.

(c) Give the condition on the temperature for the Fermi gas to be approximately
degenerate.

(d) Give the condition for the pressure to equalize.

(e) Find the condition on m;/m, in order that (c) and (d) are both satisfied.

18.9 By repeating the argument for Bose-Einstein condensation in 3D, show that
in 2D the transition temperature approaches zero in the limit of an infinitely large
system.

18.10 If the mechanism for photon absorption or emission can be neglected, as may
happen in some cosmological settings, the number of photons would be conserved.
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Can a photon gas undergo Bose—Einstein condensation under these circumstances?
If so, give the critical photon density at temperature T .

18.11 Consensate fluctuations In the region of Bose—Einstein transition, where z =

1, the mean-square fluctuation of the occupation number is, according to Equation
(15.34),

2 2 e e
<nk> — (m)” = (1 — eF¢)2
where € = /%k?/2m. This diverges for the condensate, since k = 0. But this is for
an infinite volume. Consider a finite but large cubical box of volume V = L3. Show
that, as L — oo, the mean-square fluctuation for ng diverges like L* = V*4/3.

Solution:

The boundary condition should not matter in the infinite-volume limit. With a wave
function that vanishes on the boundary, the lowest single-particle state has deBroglie
wavelength A = 2L, and its energy is

. R? [27\? _ h? (71 )2
T \%) Tom\L
Thus the mean-square fluctuation is

e“ﬂe ) kaBT 2 4
A=y~ PO = ( 2’ ) g
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Chapter 19

The Order Parameter

19.1 The Essence of Phase Transitions

In a phase transition, a system changes from a less “ordered” state to a more ordered
one, or vice versa. The precise meaning of “order” depends on the system, but the
general idea of a change in order applies to all. Take the ferromagnetic transition, for
example. The directions of atomic magnetic moments change from random orientation
to alignment, as illustrated in Figure 19.1. We can describe order through the average
magnetic moment ¢ (x), which can be obtained by averaging the moment vectors in
a small neighborhood about the point x. If the orientations are random we would
get ¢ (x) = 0. Otherwise we get a varying field, and when uniform magnetization
is established we will get a constant field over all space. This is the prototype of an
order parameter.

In general, the order parameter is a field over a D-dimensional spaces, with any
number of components. For physical systems D = 1, 2, 3; but for theoretical purposes
we admit other values, including noninteger ones. In the ferromagnetic case it is a
vector with three real components, but in general it may be a complex number, or
anything the system calls for. We shall use the notation ¢ (x) to denote the generic case.

The field ¢ (x) actually contains more details than needed to explain the usual sort
of experimental data. In the ferromagnetic transition, for example, one measures the
total magnetic moment, that is, the integral f dx¢ (x) over the entire sample. But the
local magnetization density ¢ (x) supplies information concerning fluctuations, and
gives a deeper view of the phase transition.

A microscopic description of the system involves many other degrees of freedom
beyond the order parameter. In a ferromagnetic system, the basic Hamiltonian involves
all atomic details, such as electronic states, interatomic interactions, etc. Calculation of
the partition function using the Hamiltonian would encounter insurmountable mathe-
matical difficulty. Direct numerical computations are beyond the reach of present-day
computers by orders of magnitude. An alternative is to try to build a phenomenolog-
ical theory in terms of the order parameter alone, hiding all other degrees of freedom
in terms of coefficients in the theory. This is the Ginsburg—Landau approach that will
occupy us here.

265
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-

Disorder Order

Figure 19.1 The average local magnetization, obtained by averaging the atomic
magnetic moments in a neighborhood of x (indicated by the dotted circle) is a proto-
type of the order parameter. The dotted circle should contain a very large number of
atoms.

19.2 Ginsburg-Landau Theory

Consider, for simplicity, a one-component order parameter, a scalar field ¢ (x) over a
space of any number of dimensions. The state of the system is specified by ¢ (x), and
the statistical ensemble describing thermal properties of the system is a set of such
fields, with assigned statistical weights given by the Boltzmann factor

e PEIS] (19.1)

where B = (kzT)~!. The functional E[¢], called the Landau free energy, specifies
the system (Historically, such a functional was first used in van der Waals 1893).
The Ginsburg—Landau theory is based on the postulate

2
El¢] = /dx {%IVMX)IZ + W (x)) — h(x)p(x) (19.2)

The term containing | V¢|? is analogous to a kinetic energy. It imposes an energy cost
for a spatial gradient, thus creating a tendency towards uniformity. The constant ¢ is
a “stiffness coefficient.” One can always remove ¢ by recalling, that is, absorbing it
into ¢ (x).

The quantity W(¢) is analogous to a potential. We can expand the potential in
powers of ¢:

W(p(x) = g20*(x) + g3¢° (x) + gad*(x) + - - - (19.3)

where the coupling constants g, are the phenomenological parameters of the theory,
and may depend on the temperature. We did not include a linear term above, for it was
separately displayed in Equation (19.2) in the form A (x)¢ (x). Here, h(x) represents
an external field coupled linearly to the order parameter, such as a local magnetic
field in a ferromagnetic system. This term is singled out, because it serves a very
convenient mathematical purpose, as we see later.
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A sum over states of the system is a sum over all permissible forms of
¢ (x)—a functional integral, denoted by the notation [ D¢. The partition function
1s then

Olh] = / D¢ e PEI9] (19.4)

which is a functional of the external field 4. The field ¢g(x) that minimizes E[¢]
has dominant weight, and describes thermal equilibrium. The other ¢’s correspond
to thermal fluctuations.

The free energy is a functional of the external field, given by

Al[h] = —kpT In Q[A] (19.5)
The ensemble average of a quantity O is given by

f D¢ Qe PEW]

(0) = [ D¢ e=FE9]

(19.6)

In analogy with the total magnetization, the total order is defined as

M = </de ¢(x)> (19.7)

This can be obtained from the free energy by the formula

M = o4 (19.8)
Y '

where A is a uniform external field. The susceptibility is defined by

1 oM

= —— 19.
V oh (19.9)

X
where V is the total volume of the system. The heat capacity at constant external field
is given by

92A

C=-T>"—2= 19.10
TaT2 (19.10)

19.3 Relation to Microscopic Theory

The whole point of the Ginsburg—Landau theory is to avoid dealing with the underlying
microscopic theory. But how is it mathematically related to it? Let us consider a
ferromagnetic system as an example.

The microscopic structure is defined by a quantum-mechanical N-atom Hamil-
tonian, in which atoms have intrinsic magnetic moments. Let the eigenstate of the
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N-body system be labeled by #, with energy eigenvalue E,. Suppose w,(x) is the
average magnetic moment density at the point x, in the nth eigenstate.!

The Landau free energy E[¢] is defined by gathering up all the quantum states
with the same functional form of u,,, through the formula

e PEI®] — Zgw — ] e BEn (19.11)

where §[¢ — w,] is the functional §-function defined through the properties

8l — un] =0 (unless ¢ = w,) (19.12)

/D¢5[¢—Mn] =1

The partition function (Equation [19.4]) then gives
0= /D¢ e PEY] — Z/D(p 5[ — pnlePE = " e PEr (19.13)

It is equal to the microscopic partition function.

Note that the microscopic degrees of freedom are “hidden,” but not ignored. We
have not changed the underlying theory, but merely expressed it in a different form.
The hidden degrees of freedom affect the parameters of E[¢], and their entropy has
been incorporated into E[¢], and that’s why the latter is called a “free energy.”

19.4 Functional Integration and Differentiation

We now explain how functional operations can be carried out in practice.

The functional integration may be performed as follows. First, replace the continu-
ous space x by a discrete lattice of points {x1, x7, . .. }. As a shorthand let ¢; = ¢ (x;).
A functional integral over ¢ can be approximated by the multiple integral over the
independent values {¢, ¢, ... }:

/D¢=/Ood¢1/ood¢2--- (19.14)

This is illustrated in Figure 19.2. We approach the continuum limit by making the
lattice spacing smaller and smaller with respect to some fixed scale. In the limit, the

UIn principle, the magnetic moment density is calculated as follows. Let ¥ (x) denote the quantized field
operator describing the atomic system, and |n) the eigenstate. Then

pn = poln| ¥* (x) oy (x)|n)

where o is the spin operator, 1o the magnetic moment, and the overhead bar denotes spatial average about
the point x. Vector indices have been omitted.
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¢ (x)
f

Vifll

Figure 19.2 The functional integral over ¢ can be approximated by integrating over
the values of ¢ (x;) independently over a discrete set {x;}. The continuum limit is taken
after physical quantities are calculated with this method.

functional integration includes continuous as well as discontinuous functions. In fact,
the vast majority of the functions are discontinuous, but because of their large kinetic
contribution, they give small contributions to the partition function. The continuum
limit of the functional integral itself may be ambiguous, but the limit of the ensemble
average is usually well-defined.

Another way to define a function integration is to specify ¢ through its Fourier
components

P = / dPx¢(x) e™* (19.15)

where x and k are D-dimensional vectors. When the system is enclosed in a large
but finite box, with periodic boundary conditions, the allowed values of k constitute
a discrete set. The functional integral can again be defined as Equation (19.14), only
d¢y, now refers to an infinitesimal change in the Fourier component. The continuum
limit can be taken after ensemble averages are computed.

To define the functional derivative, let us remind ourselves of the difference between
a function and a functional. A function ¢ (x) is a mapping of a number x to a number
¢ (x). A functional E[¢] is a mapping of a function ¢ to the number E[¢]. That s, the
functional depends on the functional form of its argument. The functional derivative
is denoted by

SE
(9] (19.16)
3¢ (x)
and is defined as follows. We make the small change
¢ —> ¢+ 8¢x (19.17)

where 8¢, is a function that is almost zero everywhere except in the neighborhood
of the point x, where it has a small “pimple,” as illustrated in Figure 19.3. The
functional should have a corresponding small change & E[¢] proportional to §¢ (x),
and the coefficient is the functional derivative.



270 The Order Parameter

& + 8¢y l
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1
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X

Figure 19.3 The function ¢ is varied in the neighborhood of x, by raising a small
“pimple” at that point.

Some examples will show us how to carry out functional differentiations:
° /d FY"(y) =ng" ' (x) f(x)
FYVIEN yJsly y)=n X
3¢ (x)

) 0 0
s / 2y FO) o0 0) = 5= ) (19.18)

In the last equation, we have assumed that f(y) = 0 at the boundaries of the
y-integration, or that periodic boundary conditions are imposed.

19.5 Second-Order Phase Transition

In a second-order phase transition, as exemplified by spontaneous magnetization,
the system suddenly magnetizes below a critical temperature 7, in the absence of
an external field, as illustrated in Figure 19.4. In the presence of an external field,
however, induced magnetization is always present, and there is no sharp transition.

Magnetization

Temperature T,

Figure 19.4 Spontaneous magnetization of a ferromagnet. The sharp phase transi-
tion happens only in the absence of external field. Otherwise an induced magnetization
is always present.
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W(e)
I‘0>0 ['0>0
\ =g O /
0 ¢ YON
T>T, T<T,

Figure 19.5 The potential that models a second-order phase transition. As the tem-
perature decreases below the critical temperature, it develops two minima at nonzero
values of the order parameter +¢g. The system chooses only one of these, in a phe-
nomenon known as “spontaneous symmetry breaking.”

Such behavior can be modeled by choosing the potential to have the form
W(¢) = ro¢* + uo* (19.19)

This is invariant under a sign change in ¢, reflecting the intrinsic rotational invariance
of a ferromagnet. As illustrated in Figure 19.5, this function has only one minimum
when rq > 0, but develops two minima when ry < 0. We utilize this feature, by
making ro change sign at the critical temperature:

ro = bt (19.20)

where b is a real positive constant, and 7 is the fractional deviation from the critical
temperature 7.
T-T,
T,

[ =

(19.21)

The parameter ug is assumed to be independent of temperature, and must be positive
to maintain stability.

19.6 Mean-Field Theory

In a uniform external field /4, the mean field is independent of x:
Po(x) =m (19.22)

which is the uniform magnetization density that minimizes E[¢]. If we write a general
field in the form ¢ (x) = m + n(x), then

E[¢] = A(m) + Bln] (19.23)
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with
A(m) =E[m]=V (rom2 + uom* — hm)
B[n] = E[m + n] — E[m] (19.24)

where V is the volume of the system.
The partition function now takes the form

Q = ¢ PAM / Dne A8 (19.25)
and thus

1
Free energy = A(m) — B ln/ Dne P50 (19.26)

The first term is the contribution from the mean field, and the second term arises
from fluctuations about the mean field. Neglecting the latter leads to “mean-field
theory,” in which the free energy is simply A (m). This is a convenient starting point
for investigations, because it is very simple, and because it is able to delineate the
possible phases of the system.

The value of the mean field m is determined by minimizing A(m), leading to the
equation

2rom + dugm® —h =0 (19.27)
For h = 0 we have
2 o
m (m + —) =0 (19.28)
2u0

with the possible roots 0, £./—ry/2ug. The roots £./—ry/2uq are acceptable only
if ryp < 0, because m must be real. We can verify that for ry < 0 the root m = 0
corresponds to a maximum instead of a minimum. Thus we have

{ 0 (ro > 0)
m= (19.29)
*/—ro/2uy (ro < 0)

For ry < 0, we must choose between the two minima, and let us pick the positive
root. (We can tilt the system in favor of this positive root by keeping an infinitesimally
small positive external field.) Then, with Equation (19.20), we have

{ 0 (t>0)
m= (19.30)
V(b up)t  (t < 0)

where t = (T — T,)/ T,. The phase transition is second order, in that m is continuous
at the critical point # = 0, but its slope is discontinuous.
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We have thus described a phase transition involving a discontinuous change, in
terms of continuous functions.? This comes about because of the bifurcation of the
minimum of the potential, when the temperature is varied. The fact that the system
must choose one of the two possible minima is an example of “spontaneous symmetry
breaking,” which we will discuss in more detail in Section 20.2.

19.7 Ciritical Exponents

At the critical point, a thermodynamic function generally contains a term regular in
t, plus a singular part that behaves like a power of ¢. The power is called the critical
exponent. The following exponents «, 3, y are define ath =0 as t — O:

M ~ Itl’3 (order parameter)
x ~ |t|7Y (susceptibility)
C ~ |t|™® (heat capacity) (19.31)

where ~ means “singular part is proportional to.” (Note that 8 here is not (kpT)~!.)
These exponents should be the same whether we approach the critical point from
above or below; but the proportional constant can be different, and may be zero on
one side. Another exponent § is defined att = 0 as h — 0%:

M ~ h'/8 (equation of state) (19.32)

Critical exponents are interesting because they have universality, being shared by a
class of systems. We shall expand on this point in the next sections.

For now, let us calculate the critical exponents in the mean-field theory. From
Equation (19.30) we immediately obtain

B== (19.33)

Att = 0and h > 0, we substitute the value r = 0 into Equation (19.27), and obtain
4uom?3 — h = 0. Therefore

=3 (19.34)

To calculate the susceptibility x, we differentiate both sides of Equation (19.27) with
respect to i, obtaining

1

= 19.35
2bt + 12uom? ( )

X

2This idea is the basis of the so-called “catastrophe theory.” For introduction, see Arnold (1984).
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Substituting Equation (19.30) into the right side, we have
b~ (¢t > 0)
X = (19.36)
6bt)™1 (t <0)
Hence
y =1 (19.37)

For h = 0 and ¢+ — 0, we have from Equations (19.24) and (19.30)

A B 0 (t >0 (19.38)
Vo (302 /u0)r* (t <0) '
from which we obtain, using Equation (19.10),
C 0 (> 0)
— = (19.39)
Vo | —6b%/(uoT?) (t <0)
This gives
a=0 (19.40)

19.8 The Correlation Length

Going beyond mean-field theory, we must consider spatial variations of the order
parameter. Uniformity is the equilibrium situation, since it is favored by the kinetic
term in the Landau free energy. If we perturbed the uniformity by introducing a point-
like disturbance at any point, we expect that the density will return to uniformity as
we go away from that point. There is a characteristic “healing” distance, which is
called the correlation length and is a property of the correlation function defined by

G(x,y) = (¢ x)P () — (P} P (M) (19.41)

If there is no correlation between the values of the field at x and y, we would have
G(x, y) = 0, because the joint average (¢ (x)¢ (y)) would be the equal to the product
of the individual averages. For large separations |x — y| — 00, we expect the behavior

G(x,y) ~ exp <— X ; y') (19.42)
This defines the correlation length &, which will depend on the temperature.

We can estimate the correlation length in the mean-field approximation, by mini-
mizing the Landau free energy in the presence of an external potential concentrated
at the origin, of the form

h(x) = hodP (x) (19.43)
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The Landau free energy is then
E[p] = / dPx EIW)(}C)P + ro@” (x) + uod* (x) — hop ()82 (x)|  (19.44)

The term |V¢ (x)|*> may be replaced by —1¢ (x)V?¢(x), by performing a partial
integration. The mean field m(x) is now nonuniform, and serves as an estimate of
G(x,0).

Consider a small variation about the mean field:

¢x) =m(x) + 8¢ (x) (19.45)

Since m(x) is supposed to minimize E[¢], the variation in the latter should be of
second-order smallness in §¢. Thus,

0=38E[¢] = / dPx[ — VPm(x) + 2rom*(x) + duom®(x) — hod® (x)] 8 (x)
(19.46)
Since 8¢ is arbitrary, we obtain the following differential equation:
—V2m(x) + 2rom(x) + duom>(x) = hes? (x) (19.47)

This equation occurs in such diverse fields as plasma physics, quantum optics, su-
perfluidity, and the theory of elementary particles, and is called the inhomogeneous
“nonlinear Schrodinger equation” (NLSE).

To get a solvable equation, we drop the nonlinear m* term, arguing that m is small
for t > 0. The equation becomes

—V2m(x) + 2rom(x) = hodP (x) (19.48)
Taking the Fourier transform of both sides we obtain
(k* + 2rg) (k) = ho (19.49)

where (k) is the Fourier transform of m(x):

mk) = / dPxe " *m(x)

de ik-x ~
m(x) = / (2n)De m (k) (19.50)
Thus
7 (k) = ho (19.51)
( k2 + 2r '

and the inverse transform gives

de eik-x
2m)P k% 4 2rg

m(x) = hy (19.52)
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For for D > 2 the asymptotic behavior for large |x| is

m(x) ~ Colx[>~P exp (-'2—') (19.53)

where Cy is a constant, and the correlation length & is given by
£=Qro) = @b/ (19.54)

Its behavior at the critical point defines the critical exponent v:
£~V (19.55)

According to our calculation

(19.56)

1
y=-
2
This is a value in the mean-field approximation, since we have ignored fluctuations
about m(x).

Atthe critical temperature £ diverges, and the exponential law is replaced by a power
law. This means that the exponential law governing the decay of inhomogeneity is
replaced by a power law |x|?>~P, according to Equation (19.53). This is a mean-field
approximation, however. More accurate analyses gives

m(x) ~ |x|>P7" ¢ =0) (19.57)

The dimension of space seems to have changed from D to D + 7, which is a critical
exponent called the “anomalous dimension.” This case D = 2 is very interesting,
leading up to vortex-antivortex creation and annihilation; but that is beyond the scope
of our discussion (Huang 1998).

The physical import of the correlation length is that the system organizes itself
into more or less uniform blocks of size &£. Thus, we cannot resolve spatial struc-
tures on a finer scale than £. As we approach the critical point, £ increases, and we
lose resolution. At the critical point, when & diverges, we cannot see any details at
all. Only global properties, such as the dimension of space, or the number of de-
grees of freedom, distinguish one system from another. That is why systems at the
critical point fall into universality classes characterized by a shared set of critical
exponents.

Imagine that you are blind-folded in a room, which you can probe only with a very
long pole. You can find out whether the room is 1D, 2D, or 3D by trying to move
the pole, but you can learn little else. Similarly, if you put on very dark eyeglasses,
you would conclude that all places on Earth are the same, characterized by a 24-hour
light-dark cycle. To experience something new, you would have to go to Mars. (Or
take those glasses off.)
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19.9 First-Order Phase Transition

We can describe a first-order transition in the context of Ginsburg—Landau theory as
follows. We regard ¢ as the spatial density of the system, and construct a potential W
such that, as the temperatures varies, the function assumes a sequence of shapes shown
qualitatively in Figure 19.6. The two minima at ¢, ¢, represent respectively the low-
density and high-density phase of the system. Just below the transition temperature,
¢ corresponds to the stable phase. At the transition point, both ¢; and ¢, are stable,
and just above the transition point ¢, becomes the stable phase.

We can choose W is any convenient way to suit our purpose, but it is interest-
ing to note that W can be so chosen that we obtain the van der Waals equation of
state. For a uniform ¢, in the absence of external field, the Landau free energy takes
the form

E(¢) = VW(9) (19.58)

where the total volume V is a fixed parameter. Thus, the potential W (¢) is the free
energy per unit volume. The pressure is given by the Maxwell relation

OW($)

= — = ¢*W’ 19.59
51/9) "W () ( )

where W/(¢) = W /d¢. Equating this to the van der Waals equation of state leads to

W'(d)) — __R_T_ —a
(1 —bo)
W(@) = RTIn 1~ b9 —ap+c (19.60)

where ¢ is a constant.

\ .

0<P2/

.
\yq

T>T T=T

C C

T<T

Figure 19.6 Modeling a first-order phase transition.
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19.10 Cahn—-Hilliard Equation

In the context of the Ginsburg—Landau theory, the relaxation of spatial inhomogeneity
can be treated as follows. The local free energy density can be obtained from the
Landau free energy by functional differentiation:

SE@] _
56 (x)

where W/ (¢) = W (¢)/3¢. We assume that a spatial gradient in this quantity will
induce a diffusion current proportional to the gradient:

—2V20 (x) + W' (¢ (x)) (19.61)

jx)= — V[-e*V2p + W' (¢)] (19.62)

The proportionality constant has been absorbed into £ and W. If there is no dissipation,
the current density must satisfy the continuity equation

0
o) L v.i=0 (19.63)
ot
Combining this with the previous equation, we obtain the Cahn—Hilliard equation
a
P0) _ w22 — W) (19.64)

ot

Dissipation will add an extra term to the right side, but must come from assumptions
beyond the Ginsburg-Landau theory.

A interesting application is the numerical simulation of spinodal decomposition.
One chooses W (¢) appropriate for a first-order transition, as in Figure 19.6, and
numerically solves the equation with an initial configuration at an unstable point,
such as near ¢ = 0 in Figure 19.6. Results of such simulations (Zhu and Chen 1999)
yield the sequence of pictures in Figure 4.12.

Problems
19.1 Verify Equation (19.53) for D = 3, that is

3 ik-x
S B
2r)3 kK24+2ry x|

19.2 To describe a structural phase transition, for example the cubic-to-tetragonal
transition of barium titanate (BaTiOs3), it is necessary of include a strain parameter &
in the free energy as well as the order parameter 7. Take the Landau free energy in
the mean approximation to be

E(n,e) = atr;2 + bn4 +ce? + gnzg
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wheret = T — T, and a, b, c, g are positive constants. In particular, g is called the
coupling constant.

(a) Minimize the free energy with respect to ¢ for fixed 7, to determine & as a
function of 7.

(b) Obtain the effective free energy for 7 alone. What is the new “renormalized”
value b of b?

(c) What happens to b as a function of g? What happens to the phase transition as
a function of g?

19.3 The nematic liquid crystal used in displays can be described by an order parameter
S corresponding to the degree of alignment of molecular directions. In the ordinary
fluid phase § = 0. The transition between the ordinary fluid phase and a nematic
phase can be modeled via the mean-field Landau free energy

ES) =atS*+bS® +cS*

where t =T — Ty, and a, b, ¢ are positive constants. The third-order coefficient b is
usually small.

(a) Sketch E(S) for range of T, from T > Ty, through T = Ty to T < Ty.
Comment on the value of S at the minimum of E(S) at each value of T
considered.

(b) What are the conditions for £(S) to be minimum?

(c) Find the transition temperature 7. (It is not Tj.)

(d) Is there a latent heat associated with the phase transition? If so, what is it?

(e) How does the order parameter vary below 7.7

19.4 A system has a two-component order parameter: {¢1, ¢, }. The mean-field Landau
free energy is

E(1, 62) = Eo+at (¢ + ¢2) + b(6? + 62)” + c(¢} + ¢?)

where t = T — T, and a, b are positive constants.
(a) Represent the order parameter as a vector on a plane. Use polar coordinate to

write ¢; = ¢ cos 8, ¢; = ¢ sin@, where ¢ = /@7 + ¢5. Minimize the free energy
with respect to ¢, and show that its minimum occurs at the minimum of

b = b+ c(cos* 0 + sin* 6)

(b) Find the values of the order parameter in the ordered phase for the three possi-
bilitiesc < 0, c =0, ¢ > 0.

(c) For ¢ < 0, suppose the order parameter is parallel to the x axis. Calculate the
susceptibility x, with respect to an external field applied in the x direction, and x,, in
the y direction.

19.5 Broken symmetry A highway is proposed to connect four cities located at the
corners of a unit square, as shown in the upper panel of the accompanying sketch. Show
that the total length of the system can be reduced by adopting either of the schemes in
the lower panel. Find the distance a that minimizes the length. The invariance of the
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square under a 90° rotation is expressed through the fact that there are two minimal
schemes that go into each other under the rotation.
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Chapter 20

Superfluidity

20.1 Condensate Wave Function

In the ideal Bose gas, a finite fraction of the particles occupies the same single-
particle state below a critical temperature, forming a Bose-Einstein condensate. When
the particles have mutual interactions, however, single-particle states are no longer
meaningful. Nevertheless, we can still define a condensate wave function (r), as
the quantum amplitude for removing a particle from the condensate at position r. Its
complex conjugate *(r) is the amplitude for creating a particle.

We can imagine creating a particle in the condensate by inducing a transition into
it. As we saw in Section 16.2, Bose enhancement makes the rate proportional to the
existing boson density. Thus, the creation amplitude ¢ *(r) should be proportional to
the square root of the density. We define |3 (r, t)|?d>r as the number of condensate
particles in the volume element dr, so that the total number of particles in the
condensate is

/ Eriv®P = No 20.1)

In Chapter 18, we were able to give a complete mathematical description of the
Bose—Finstein condensation in the ideal gas. Such a treatment is not possible when
there is interaction between particles. Here, we shall describe it in Ginsburg—Landau
theory, with the complex field ¥ as order parameter. The Landau free energy is taken
to be

h2
Ely,y*] = /d3r [2—’7;|V1/f|2 + Uexe — V™Y + g—(l/f*llf)z (20.2)

where |Vy|2 = Vy* - Vi, m is the mass of the particles, Ue(r) is an external
potential, and p is the chemical potential that determines Ny. There are equivalent
choices for independent variables:

* 1 and its complex conjugate ¥,
* real and imaginary parts Re {rand Im v,

* modulus and phase angle /7 and ¢ in the polar representation

¥ (x) = V/no(x) e

where ng is the density of the condensate.

281
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In the Ginsburg-Landau philosophy, Equation (20.2) is to be used near the critical
temperature 7,, where 1 is small. On the other hand, the form of Equation (20.2) can
be derived from a microscopic theory as the effective Hamiltonian for a dilute Bose
gas at low temperatures (Huang 1987), and one can relate the parameter g to atomic
properties:

4 ah?
g e

(20.3)
m

where a is the “scattering length,” an equivalent hard-sphere diameter of an atom.
The conditions for the validity of this picture are
n(l)/ a < 1

% <1 (20.4)

where ng = Ny/V,and A = +/ 2 h? /mkgT is the thermal wavelength. Thus, we can
use Equation (20.2) in two separate neighborhoods: near 7 = T, or T = 0.
The grand partition function of the condensate is given by

Q= / D Dyr* e PEV-Y7) (20.5)

where [ Dy Dy* = [ D(Rey) D(Imyr) denotes functional integrations over the
real and imaginary parts of ¢ independently. The mean-field theory amounts to as-
suming that one configuration dominates the integral, namely the “ground state” that
minimizes the free energy E[v, ¥*] and ignores all fluctuations.

20.2 Spontaneous Symmetry Breaking

The potential term in Equation (20.2) has the form
Wy = St - ulyl? (20.6)

which depends only on || = ¥*y. In Figure 20.1 we show a plot of this over
the complex -plane, for different signs of w. If © < 0. the minimum of the po-
tential occurs at ¢ = 0. For u > 0, however, the potential has a wine-bottle shape,
with a continuous distribution of minima along a trough, along the dashed circle in
Figure 20.1. We can model the Bose—Einstein condensation as a second-order phase
transition by making 1 dependent on temperature, and change sign at the critical
temperature.
The Landau free energy is invariant under the phase transformation

¥ — ety
Yy - e Xyt (20.7)
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Wypy) W(yy)

A A

u<o0 u>0

Figure 20.1 If i > 0, the ground state corresponds to a definite location A on the
dotted circle, which is the same over all space (when there is no external potential).
This state has a definite phase, and breaks global gauge invariance. The Goldstone
mode is the excited state in which A runs along the dotted circle as the spatial location
changes.

where x is a constant. This symmetry is known as global gauge invariance, and leads
to the conservation of particles. When i > 0, the ground state wave function has the
form /ng €' over all space (for the case U = 0). This corresponds to the same
point A on the dotted circle in Figure 20.1, over all space. This breaks the global gauge
invariance, and is called spontaneous symmetry breaking, because it is not induced
by any external agent.

Accompanying the occurrence of spontaneous symmetry breaking is a special mode
of excitation called the Goldstone mode. In Figure 20.1, it corresponds to choosing
A at different points around the trough, as the spatial position changes. Figure 20.2
illustrates this mode in a spin analogy. The orientation of a spin represents the phase
@ at a particular spatial location. In the ground state, the spins are parallel to each
other, but the orientation is arbitrary. In the Goldstone mode, the spin orientations
change as the position changes. The excitation energy of this mode is due to kinetic
energy, and vanishes as the wavelength of variation approaches infinity.

thtt - #fff ==

Equivalent ground states

P A e\

Goldstone mode

Figure20.2 Spinanalogofthe Goldstone mode. The orientiation of a spin represents
the phase angle at a particular location. In the ground state they all point in the same
direction, which is however arbitrary. The Goldstone mode is the excited state in
which the spin turns as the location changes.
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The basic symmetry of the system is not actually violated, but reexpressed through
the existence of the Goldstone mode. This is a general feature of the Ginsburg—Landau
theory. The table below summarizes the phenomenon in various physical systems:

System Order Parameter Broken Symm. Goldstone
Ferromagnet Magnetization Rotational Spin wave
Solid Density Translational Phonon
Superfluid Condensate w.f. Gauge Phonon

20.3 Mean-Field Theory

In the mean-field approximation, we take () = o, which is the uniform wave
function that minimizes the Landau free energy. For simplify we will just write v,
and drop the subscript 0. In the absence of an external potential

El, v =V [ Sl - ulvr?] (20.8)

Minimization should be carried out with respect to Re 1 and Im 1 independent, and
it leads to

Jufg  (u>0)

Thus, i < 0 corresponds to the high-temperature phase where there is no condensate.
When o > 0, a condensate forms. The normalization condition (Equation [20.1])
gives

0 (n<0)
|| = { (20.9)

_ &Mo

v (20.10)

In contrast to the ideal Bose gas, where ;. = 0 in the condensed phase, now it depends
on the condensate density.
In the neighborhood of T = T, we assume that p has the form

=b|(1 d (20.11)
w= T :
where b is a positive constant. Comparison with Equation (20.10) yields

0 (T >T,)

— =< b T (20.12)
4 - (T'<T)
g T,

[
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In this approximation, all the critical exponents have the mean-field given in
Section 19.7.

When there is an external potential, iy must vary in space. Minimization of the Lan-
dau free energy (Equation [20.2]) leads to a nonlinear Schrodinger equation (NLSE):

h2
ﬂn—W+U+mwﬂw=uw (20.13)
2m

which in the present context is known as the Gross—Pitaevsky equation. It can be
generalized to the time-dependent form

2
[—;‘—mvz +U -I-gll,/flz} v = ih% (20.14)

which describes the Goldstone mode, as we see later. The normalization f d3riy|?
is a constant of the motion. It is fixed by g, and cannot be chosen arbitrarily.

20.4 Observation of Bose—Einstein Condensation

Bose-Einstein condensation has been experimentally achieved in dilute gases of
bosonic alkali atoms confined in an external potential (Ketterle et al. 1999). The
condensate typically contains the order of 10° particles, with a spatial extension of
order 1072 cm. The average density is of order 102 cm™3, and the transition tem-
perature is of order 10~¢ K. Compared with liquid “He, the density is smaller by
ten orders of magnitude, and the transition temperature lower by seven orders of
magnitude.

Figure 20.3 shows the observed density profile in a gas of Na atoms trapped in
a harmonic potential, for a series of temperatures. At the t transition temperature
1.7 x 107® K, a central peak begins to form, representing the squared modulus |y]?
of the condensate wave function. It continues to grow with decreasing temperature,
acquiring atoms from the surrounding thermal cloud. Below 0.5 x 10~° K almost all
atoms are in the condensate.

We can neglect the kinetic term in Equation (20.13), where the wave function varies
slowly in space, and obtain the approximate formula

1
|me%§m—MMm (20.15)

This is called the “Thomas—Fermi approximation™ after an approximation with that
name in atomic physics. In the data of Figure 20.3 the condensate has an extension of
about 0.03 cm. This is to be compared with 0.005 cm, the extent of the free-particle
wave function in the potential. We see that the repulsion between atoms considerably
broadens the condensate peak.
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-400 0 400

Position (um)

Figure20.3 Observation of Bose—Einstein condensation in a trapped atomic Na gas.
The density profile is measured at successively lower temperatures. Bose—Einstein
condensation occurs at 1.7 wK, when a central peak emerges, representing the squared
modulus of the condensate wave function. (After Stenger et al., 1998.)

20.5 Quantum Phase Coherence

The order parameter embodies the idea of the macroscopic occupation of a single
mode, and this implies quantum phase coherence. That is to say, if you imagine
pulling particles out of the condensate one by one, you would find that their wave
functions all have the same quantum phase.

Consider two condensates moving toward each other, that eventually overlap, as
illustrated in Figure 20.4. Each has a wave function that is approximately a plane

Figure20.4 Two condensates approach each other, overlap, and exhibit interference
fringes.
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Figure 20.5 Photograph of interference fringes produced by two overlapping con-
densates of Na atoms. The separation between fringes is 1.5 x 10~ ¢cm. (Courtesy
of W. Ketterle.)

wave, except near the edges of the condensate. The total wave function is the sum of
the two wave functions, since an atom can belong to either condensate:

w(r, t) — Clei(kl Ir—wit) + Czei(kz.r——wzt) (2016)

where the subscript i = 1, 2 labels the two condensates, hw; = 7’12ki2 /2M;, where M;
is the mass of the condensate, and C; is a constant. The density of the total system is
given by

[W (r, )F = |C1] + |C2)* + 2ReC} Ce Kak)-roilwr—an)t (20.17)

The last term exhibits interference fringes, which are visible in the photograph in
Figure 20.5 produced by interference between two Na condensates.

The condensate in the ideal Bose gas does not exhibit phase coherence. The con-
densate wave function in this case is a product of single-particle wave functions with
no correlations among them:

Wo = ug(ry) - - - uo(ry) (20.18)

where the phase of each wave function u( can be chosen arbitrarily, for the choices
merely affect the overall phase factor, which is arbitrary. When there are interactions,
no matter how weak, then there is a correction to the free-particle wave function:

Wo = [uo(ry) - - - uo(ry)] + ¥ (20.19)

The relative phase between the first term and the second is now determined by the
interactions, and we cannot change it arbitrarily. Thus, phase coherence is a result of
interactions, just as spontaneous magnetization is a result of spin-spin attractions.

20.6 Superfluid Flow

The time-dependent NLSE (Equation [20.14]) conserves the number of particles in
the condensate, and we have the continuity equation

3
8_’;_|_V.j=0 (20.20)
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where n is the particle density, and j the particle current density:

h
i) = T(zb*vw —¥Vy) (20.21)
nit

Putting ¥ = ./nge’?, we have

h
j= n—Vso (20.22)
m

from which we identify the superfluid velocity

h
vy = — Vg (20.23)
m

which describes a flow of the condensate without dissipation.
The circulation of the superfluid velocity field around a close path C is

h
fds-vs = — f ds -Vo (20.24)
c m Jjc

The integral on the right side is the change of the phase angle upon traversing the
loop C, and must be an integer multiple of 277, by continuity of the condensate wave
function. Therefore the circulation is quantized:

h
]{ds vy = X e=0,41,42,... ) (20.25)
C m

A vortex is a flow pattern with a nonvanishing vorticity concentrated along a di-
rected line called the vortex core. In Figure 20.6 we show a vortex line, in which
the vorticity is contained in a linear core, and a vortex ring, whose core is a closed
curve. The circulation is zero around any closed loop not enclosing the vortex core,
and nonzero otherwise, as illustrated by the loop C in the figure.

Vortex core

A/ ~—

AN

r

Vortex line : Vortex ring

Figure 20.6 Vortex line and vortex ring.
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For the vortex line, cylinder symmetry dictates that the velocity field v, (r) depends
only on the normal distance r from the vortex core. Using Equation (20.25), we have

2 hi
/ dorv,(r) = — (20.26)
0 m
Thus
hi
v(r) = — (20.27)
mr
which, according to Equation (20.23), gives
¢ =«0 (20.28)

where 6 is the angle around the vortex core. This phase is defined only as mod(27),
but the superfluid velocity is unique. When r — 0, the continuum picture breaks
down at some atomic distance, which provides a cutoff to Equation (20.27), and gives
a finite radius to the vortex core.

20.7 Phonons: Goldstone Mode

The Goldstone mode is an excited solution to the time-dependent NLSE
(Equation [20.14]). We outline the steps to obtain it and quote results.
Take Uex = 0. The ground state wave function is uniform in space, given by

Vo = /no exp(—iput/h) (20.29)

where ny is the condensate density, and ;1 = gn. For an excited state, we postulate
the wave function

Y (x, 1) = Yo+ f(x, 1) exp(—iut/h) (20.30)

Substituting this into Equation (20.14), and assuming that f(x, ¢) is small, we obtain
the following linear approximation to the equation:

LOf B Of .

which can be solved by putting
fx, 1) = Ue @k 4 y+gilo—hn) (20.32)

where U and V* are complex constants. The equation then imposes a relation between
w and k:

hk
w = —+\/k*+ 16mwang (20.33)
2m
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This is called the Bogoliubov spectrum, and represents the dispersion relation between
energy hw and momentum %k of the Goldstone mode. In the long wavelength limit
k — 0, we have a phonon spectrum:

w=ck (20.34)

where c is the sound velocity given by

h
c= 5——\/ 167 ang (20.35)
m

Problems

20.1 In the photograph in Figure 20.5, the interference fringes between two Bose—
Einstein condensates have a spacing of 1.5x1073cm. Find the relative velocity
between the two condensates.

20.2 Estimate the scattering length a of sodium atoms from the data contained in
Figure 20.3, as follows. Use the Thomas—Fermi approximation (Equation [20.15]) for
the condensate profile. Use Equation (20.10) for the chemical potential, with No/V =
10" cm™3. The oscillator potential has a characteristic length rg = /h/mow =
5 x 1073 cm. The half width of the condensate is 3 x 1072 cm.

20.3 Cold trapped atoms Consider a gas of N non-interacting nonrelativistic bosons
of mass m in an external harmonic-oscillator potential in 3D. The Hamiltonian of a
particle is

2 1
H = f—m + Ema)zr2
where p> = p? + p} + pZ, and r* = x* + y* + z°. Let [n) be an eigenstate of H,
where n = {n,, ny, n,}, withn, =0, 1,2,..., etc. The energy eigenvalues are

3
E, =ho (nx+ny+nz+ 5)
The fugacity z is determined through

1
N =
Zn: T exp(En/ksT) — 1

The chemical potential is u = kgT In z.
(a) Show

3
(n]r2 in) = rg (nx +ny+n, + 5)

where ro = 4/h/mo.
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Hint: Write x? in terms of creation and annihilation operators. (See Problem 10.1.)
(b) Prove the virial theorem
2

1 mw 1
- nl p*n) = —2—<nlr2 In) = - En

(c) Show that the thermal average of r? is

2
2y _ " 3 !
=N <"" Tyt 2> T exp(En/ksT) — 1

20.4 Continuing with the previous problem, estimate the transition temperature of the
Bose—Einstein condensation, as follows. For kT >> hw, it is a good approximation
to replace the sum over the quantum numbers by an integral.

Calculate the temperature Tp at which u = %ha). Show

kpTy = boN'/3

where b is a numerical constant. This is not intensive because of the external potential.
The N''/3 dependence is verified by experiments, as shown in the accompanying figure.
(After Mews et al., 1996.)

Condensate Fraction

Temperature/ NY3(nK)

20.5 Continuing with the previous problem,
(a) Evaluate u as a function of N and T in the classical limit, when the term —1 in

the Bose distribution may be dropped. Show

—3ha)—|—3k Tt (10
k=3 B bT

(b) Evaluate the mean-square radius {(r?) of the trapped gas in the classical limit.
Show

T
(r?) = 3br} (—) N'/?
Ty
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(c) Make qualitative plots of 1 and (r?) as functions of T, extrapolate down to Tp,
and comment on what happens below Tj.

20.6 Soliton
Show that the 1D NLSE has a soliton solution.
Solution: From Equation (20.14)

Ay n? 9%y )
L0V _ Y
R = " om oz TEWIY

with g = 4wah®/m, and [ dx|y|* = N. Rewrite the equation in the form

09 0%¢ 2
LA A Y
e gz TAeIe

where ¢ = N2y, v = (h/2m)t, and A = 8maN.
The following is a solution for A > 0:

b (x, T) = f(0)e I (V2O+4bD)
where = x — v, b = v?/8, and

f(©@) = by/2/Atanh (b9)

This represents a “dark soliton”—a dark spot of defnite shape, propagating with
velocity v. The constant b is related to the density at infinity:

b2

Roo =
dma

The case A < 0 supports a “bright soliton.” Both dark and bright solitons have been
observed in an optical fiber, which is governed by a NLSE.
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Chapter 21

Superconductivity

21.1 Meissner Effect

Some metals make a second-order phase transition to a superconducting phase below
a critical temperature. Electrical resistance seems to disappear in this phase, as the
name suggests. The physical phenomenon arises from attractive interaction between
electrons in the metal, induced by their coupling to lattice vibrations. The attractive
force creates a bosonic bound state called the Cooper pair, and the transition is caused
by the Bose—Einstein condensation of these bosons. One may view superconductivity
as the superfluidity of the charged condensate. However, the Cooper pair is not a
particle like an atom, but an extended object covering many lattice sites. Nevertheless,
a superconductor can be described in Ginsburg—Landau theory.

The order parameter ¢ of a superconductor is the complex wave function of the
condensed Cooper pairs. We directly write down the NLSE, which is the generaliza-
tion of Equation (20.14):

2ieh

2
[—— (V — —C—~A> +ay + by idd

Y =ih @21.1)

where a and b are constants. The system is coupled to a static vector potential A,
which corresponds to an external magnetic field B = V x A. The coupling constant
e is the magnitude of the electron’s charge. That is, the charge of the electron is —e,
and the charge of a Cooper pair is —2e. This equation accounts for all the salient
manifestations of superconductivity: the Meissner effect, magnetic flux quantization,
and the Josephson effect.!

The equation is invariant under the gauge transformation

A— A—Vy
Y — e e (21.2)
We impose the Coulomb gauge V - A = 0. The current density is then given by

h 4¢?
i= S@VY — YY) — —|yPA (21.3)
nmi mc

which satisfies V - j = 0.

1For a more detailed discussion of the Ginsburg-Landau theory of superconductivity, see De Gennes 1966.

293
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In a static uniform magnetic field, the order parameter is uniform, and the current

density becomes

4en

mc

j=—26"A 21.4)

where n = |y|? is the density of the condensate. This is know as the London equation.
The vector potential satisfies Maxwell’s equation

4
VxVxA=—2j (21.5)

C

Using V x V x A =V(V-A)—V?A and V - A = 0, we obtain

2
<v2 4. Lome ") A=0 (21.6)

mc?

For uniform A, we must have A = 0. This means that the magnetic field must vanish
inside a superconductor, and so does the current density. This is the Meissner effect.

If the superconductor is immersed in a uniform magnetic field, then the field can
penetrate into the superconductor only within a layer of thickness called the penetra-
tion depth:

mc?
d =1\ ——— 21.7
16me?n @1.7)
A current density exists in this layer to shield the interior from the external magnetic

field, and this makes up the superconducting current.

21.2 Magnetic Flux Quantum

Consider a hollow pipe made of a superconducting material like lead, with a total
magnetic flux ® inside the hollow, as shown in Figure 21.1. Inside the superconducting
material the magnetic field must be zero. Thus, V x A = 0, and the vector potential
has “pure gauge” form

A =Vy (21.8)

On the other hand, its line integral along the closed loop C must give the total flux:

j[ds-A: o (21.9)
C

For a circular loop C, this can be satisfied by choosing

0o

= — 21.
7 (21.10)

X
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A A A

N ——— -

Superconducting
pipe

Magnetic flux

Figure 21.1 Magnetic flux inside the superconducting pipe is quantized in units of
Py = .

e

where 6 is an angle around the loop. However, the vector potential must be removable
through a gauge transformation, for otherwise there will be a current inside the su-
perconductor according to Equation (21.4). Under such a gauge transformation, the
order parameter undergoes the phase change

w — we—i(Ze/hc)x — we—i(Zetb/hc)G

Since ¥ must be periodic in 6 with period 2, we must require

2ed
— =k 21.11)
hc

where « is an integer. This is the analog of vortex quantization in superfluids. The
quantization condition can be rewritten as:

@:%% 21.12)
where

Do = % ~ 107" Gauss cm® (21.13)
is defined as the magnetic flux quantum.

The flux quantization is an equilibrium condition. If we create an arbitrary flux
through the pipe in Figure 21.1, by suddenly thrusting the pipe into an arbitrary
preexisting magnetic field, for example, supercurrent will be induced to create a
magnetic field that adjusts the net flux to a quantized value.
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21.3 Josephson Junction

We can represent the order parameter in the polar form

¥ = /ne'’ (21.14)

As we have seen in Equation (20.22), a spatial gradient of ¢ generates a supercurrent,
which physically is a current of Cooper pairs. By placing two different superconduc-
tors in contact, we have a Josephson junction. The difference in phases in the two
superconductors constitutes a gradient that drives a supercurrent flowing across the
junction.

Using Equation (21.14), we rewrite the current density [Equation (20.22)] as

Deh 4e?
j=gy 60N (21.15)
m mc

The first term is the supercurrent density. The order parameters of the two supercon-
ductors making up the Josephson junction, labeled 1 and 2, can be represented as

Yy = J/me’?
Uy = /nye'” (21.16)

If ¢; > ¢, a current will flow from 1 to 2. In practice, a thin wafer of insulator
is placed between 1 and 2, so that the Cooper pairs pass through the junction via
quantum tunneling.

In the typical arrangement illustrated in Figure 21.2, the Josephson junction is a
sandwich, with face area 0.025 x 0.065 cm?, and an insulating layer of thickness of

Superconductors

Insulator l J

™~
T~

1 2

Voltage Current I

(+)
>

Figure 21.2 A Josephson junction.
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2000 A. The entire assembly is maintained at a temperature of 1.5 K. A voltage V
is applied between the superconductors, and a current I flows across the junction.
The reference point for voltage is so chosen that the voltage is —V//2 at 1, and V /2
at 2. Since the tunneling link is very weak, we assume that the two superconductors
are coupled linearly, and postulate the following equations for the order parameters,
which are modeled after the NLSE neglecting the nonlinear self-interactions:

h?‘ﬁl_ = eV + Ky

h% —eVir + K (21.17)

where K is a coupling constant. Bear in mind that the charge carriers are Cooper
pairs with charge —2e. Our object is to study the current-voltage characteristic of the
Josephson junction.

We now use the representation (Equation [21.16]). The first of the coupled equations
becomes

ih dn1
2 /n dr

where a dot denotes time derivative. Equating real and imaginary parts on both sides,
and putting

—hnig) = eV /n + K. /nye' @) (21.18)

P =¢2— @1 (21.19)
we obtain the equations
dn1 2K sin
nin
i 1n2 s g
do; eV K [np
— = —— — —4/—CO0Ss 21.20
dt n o \m (21.20)

A second set of equations can be obtained by interchanging the indices 1 and 2, and
reversing the sign of V:

dn2 2K sin
— = nin
ar h 1h2 2
d vV K
4 _ ¥ 2 M cos @ (21.21)

d  h n\ n,

From these we obtain

K
‘;—f ﬂ——(,/——,/m)cow (21.22)

Assuming n; ~ nj, we neglect the second term on the right side and obtain

dp 2eV

= 21.23
dt h ( )
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The Josephson current is defined by

d
=2 — Iysing (21.24)
dr |
where
2eK
Io = eT " (21.25)

The current-voltage characteristic of the Josephson junction is therefore given by

I = Iysing
h do

V=——2 21.26
2e dt ( )

As we shall see, the behavior of this system is most peculiar. If we apply a DC voltage,
we get an AC current of such high frequency that it averages to zero. On the other
hand, if we apply an AC voltage, we get a DC current.

21.4 DC Josephson Effect

Let us apply a constant voltage
V=V (21.27)

We can integrate dg/dt = 2eV,/h to obtain

2e Vot
@) = @0+ . (21.28)
The current is given by
. 2e Vot

I(t) = Iysin | ¢ + - (21.29)

For a typical voltage Vo = 1073 v, we have

2eV,

eh 0 =32 %102 sec™! (21.30)

Therefore the current oscillates with an extremely high frequency and time-averages
to zero:

Iy =0 (21.31)
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21.5 AC Josephson Effect

Consider an AC voltage

V(@) = Vy+ Vicoswt (21.32)
We can write
de
T = wp + w) cos wt (21.33)
where
2e
wy = '—h—V()
2e
w] = EVI (21.34)
Thus

)
o) = @o + wot + 1 sin wt
w

1(t) = Iosin (goo + wot + 2 sin a)t) (21.35)
w
To simplify the notation, put
A = ¢ + wot
B = sinwr (21.36)
w

Suppose w; <K wy. Then
I(t) = Iy sin(A + B) = Iy(sin A cos B + sin B cos A)

~ Ip(sin A + B cos A)

= I, [sin(d)o + wot) + 2L sinwt cos(d + a)ot)]
w

= I sin(¢o + wot) + 10;0—;) [sin(¢o + (@ + wo)?) + sin(¢y + (@ — wp)?)]

(21.37)
Upon time-averaging, all oscillating terms go to zero, and only the last term survives:
0 (w # wo)
Ly = (21.38)
Iysingy (0 = wy)
The average current as a function of frequency has a sharp peak at
2eV,
wp = ‘; 0 (21.39)

Using the AC Josephson effect, the value of e/h can be measured to very high
accuracy.
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21.6 Time-Dependent Vector Potential

The presence of a time-dependent vector potential A givesrise to magnetic and electric
fields given by

B=VxA

1 0A
E=-VV_--— (21.40)
c ot

We can generalize the current-volatge characteristic [Equation (21.26)] by making
the replacement

1d
V —> V—l———/dr-A (21.41)
cdt

where the integral is taken along some path in space. Thus, the voltage equation
becomes

dp 2e 2¢e d

= — —— [dr-A 21.42
i~ w Thea) (2142)
Integrating this gives
2 2
o(t) = @ + = /a’tV + 2 [ar-A (21.43)
h hc
The current is then given by
2 2
I = Iysin [goo + _hf /dtV + ﬁf dr - A] (21.44)
c

All this is preparation for the next section.

21.7 The SQUID

The SQUID (superconducting quantum interference device) is a device that can mea-
sure magnetic flux, with enough sensitivity to detect one flux quantum. The arrange-
ment is shown in Figure 21.3. Two Josephson junctions a and b are connected in
parallel. The currents flowing through the junctions are respectively

2
I, = Iysin (goo—l——e/dr-A)
he J,

2
I, = Iy sin <¢0 it / dr - A) (21.45)
he b
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I

— 1

a

Magnetic flux

Figure 21.3 A SQUID consists of two Josephson junctions connected in parallel,
forming a loop. Magnetic flux through the loop induces currents in the loop.

If there is a magnetic field V x A through the loop, then

/dr-A—/dr-A:%ds-A=CI> (21.46)
a b

where & is the total magnetic flux going through the loop. We can put

1

1
/dr-A=~—2—CI>+Co (21.47)
b

where Cy is a constant that can be absorbed into ¢g. Thus

. ed
I, = Isin <g00 + ———>
hc

®
I, = Iosin <¢0 - eh—c) (21.48)

Adding these, we obtain the total current

. ed ) ed
I =1Iy|sin|gy+— ) +sin|@ ———
hc hc
) 2w d
= 21 sin ¢y cos = 21, sin ¢ cos o= (21.49)
hic Dy

where @ is the elementary flux quantum given in Equation (21.13). As ® changes,
the current oscillates with a period ®q as illustrated in Figure 21.4.
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Fy=hc/e
A

\ANAL
JAVATAY

Figure 21.4 Current response to magnetic flux in a SQUID. The oscillation period
is one flux quantum.

21.8 Broken Symmetry

We recall that the emergence of the superfluid order parameter is accompanied by a
breaking of global gauge invariance. In the case of superconductivity, the symmetry
under Equation (21.2) is a local instead of global gauge invariance, and it is sponta-
neously broken when the superconducting order parameter emerges. However, there
is no Goldstone mode in this case. The nature of the electromagnetic coupling is such
that the would-be Goldstone mode becomes the longitudinal component of the vector
potential, which is needed to satisfy Equation (21.6). Now the photon acquires mass
in the superconducting medium:

Lo [l6me?n
Mphoton = —
C

5 (21.50)
me

which corresponds to the inverse of the penetration depth. Such a transfiguration of
the Goldstone mode occurs whenever local gauge invariance is spontaneously broken.
In the theory of elementary particles, this is called the “Higgs mechanism,” and is
supposed to be the mechanism that generates all the particle masses.

Problems

21.1 Consider a nonmagnetic superconducting medium filling the half space x > 0.
Suppose at x = 0~ there is a uniform magnetic field normal to the x axis. Find the
magnetic field B(x) in the medium.
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21.2

(a) Consider a circuit in which a Josephson junction is connected in series with a
resistor R, and a voltage source Uy. Set up the equation for the time development of
@, based on the current-voltage characteristic [Equation (21.26)].

(b) For k = IyR/ Uy > 1, show that the current approaches a limiting value I,
while V — 0.

Reference

De Gennes, P.G., Superconductivity of Metals and Alloys, W.A. Benjamin, New York,
1966, Chapter 6.






Appendix

Mathematical Reference

A.1 Stirling’s Approximation

In statistical analyses we frequently encounter the factorial
nl=12...n (A.1)
For large n, Stirling’s approximation gives
n!~n"e "s/2nn (A.2)
or
Inn! ~nlon —n +In27n (A.3)

Usually the first two terms suffice. The relative error of this formula is about (12n)_1 ,
which is about 2% for n = 4.
To derive Stirling’s approximation, start with the representation

nl=T(n+1) :/ dit"e™ (A.4)
0

The integrand has a maximum at ¢ = n. The value at the maximum gives n! ~ n"e™".
Expanding the integrand about the maximum yields the corrections.

A.2 The Delta Function

The Dirac delta function 8(x) is zero if x ## 0, and infinite if x = 0, such that

/de(x) =1 (A.5)

where the range of integration includes x = 0. Itis not a function in the ordinary sense,
since its value is not defined where it is nonzero. We use it with the understanding that
eventually it will find its way into an integral. Mathematicians call it a “distribution.”
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Some useful properties of the delta function are

d3(x) =86(—x)

1
§(ax) = Z(S(x) (A.6)

For any given function f(x), we have

/de(X)(S(x —a) = f(a) (A7)

Its integral is the step function

1 (x>0
B(x) = (A.8)
0 (x<0
The derivative of the delta function is the e-function
I (x>0
e(x) = (A9)
-1 (x <0
The Fourier analysis is given by
dk .
S(x) = | —e** (A.10)
2w

In higher dimensions the delta function is defined as the product of 1D delta functions.
For example,

) =8(x)8(»)8(z) = @k e*x (A.11)
@2n)? '
A.3 Exact Differential
The differential
df = A(x, y)dx + B(x, y)dy (A.12)

is said to be an “exact differential” if there exists a function f(x, y) which changes
according to the above when its independent variables are changed. We must have

3
Ax,y) = 5!;—

B(x,y) = % (A.13)
dy
Since differentiation is commutative, we have
dA 0B
3y ox

This is the condition for an exact differential.

(A.14)
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A.4 Partial Derivatives

Suppose three real variables x, y, z are constrained by one condition f(x, y, z) = 0,
where f is a regular function. Partial derivatives have the properties

(8x> 8y) _<8x

dy w(a_z w 8_Z>w
ax 1
— | = A.15
). @) e

where w, the quantity being held fixed, is some function of the variables.

A.5 Chain Rule

The chain rule states

BE.E
dy /), \9z/),\9x/,

This follows from

9 0 0
df = —J:aix + —fdy + —fdz =0 (A.17)
ax ady 0z

where 0f/0x denotes the partial derivative with respect to x, with the other two
variables kept fixed. From this we get

(a_x _ _3f/by
ay)f af/dx
<8_y) __af/az
dz ), 3f/dy

<?£> _ _Of/ox (A.13)
ax), = " of/az

The desired relation is obtained by multiplying the above together.
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A.6 Lagrange Multipliers

Consider a function of n variables f(x), where X represents an n-component vector.
An extremum of f(x) is determined by

dfix) = dx - V£(x) =0 (A.19)

where dx represents an arbitrary infinitesimal change in x. If, however, there exists a
constraint '

gx) =0 (A.20)
then dx cannot be completely arbitrary, but must be such as to maintain dg = 0, or
dg=dx-Vg=0 (A.21)

This requires dx to be tangent to the surface g = 0, as represented schematically in
Figure A1. We have to find the extremum of f(x) on the surface g(x) = 0.

An arbitrary differential dx can be resolved into transverse (orthogonal) and lon-
gitudinal (tangential) components with respect to the given surface:

dx = dXT +dx; (A22)
The condition for an extremum is
dx;,-Vf=0 (A.23)

Since dx;, - Vg = 0 by definition, the above can be generalized to

dx; - V(f+1g) =0 (A.24)
Constraint Absolute
maximum maximum
Xr
XL
g(x)=0
f(x)

Figure A.1 Illustrating the method of Lagrange multipliers to find a constraint
maximum.
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where A is an arbitrary number. Let us choose A such that it satisfies
dxr -V(f +x1g)=0 (A.25)
Then, by adding this equation to the previous one, we have dx - V(f + Ag) =0, or
dlf(x) +Arg(x)] =0 (A.26)

without any constraint. The parameter A is called a Lagrange multiplier. To solve the
problem, we can first find x for arbitrary A. Denoting the result by x(1), we determine
A by requiring g(x(1)) = 0. This determines the location of the desired extremum
x(A).

To summarize: the extremum of f subject to the constraint g = 0 can be found by
finding the extremum of f + Ag, and then determine A so as to satisfy the constraint.

A.7 Counting Quantum States

A free particle in quantum mechanics is described by the wave function

1 .
¢x(r) = Welk'r (A.27)

where the wave vector k labels the state. This is normalized to one particle in the
volume V. Periodic boundary conditions require

kT — pikrtikmL (A.28)

where m is a vector whose components have possible values 0, £1, 2, ... . Thus
k-mL = 0 mod(27), and the spectrum of k is given by:

2
k=" (A.29)
L
where n is a vector whose components have possible values 0, £1, £2, ... . Since the

spacing between successive values is 2 /L, the spectrum approaches a continuum
as L. — oo.
A sum over states is denoted by:

2= > ¥ (A30)

n=—0 n=—X0 nN3=—0
In the limit L. — oo, this approaches a multiple integral. The spacing between values
of k1 is given by

2
Ak = TAnl (A.31)
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and An; = 1. Thus

oo x> o<
Yoo= > Aam=— Z Aky — —/ dky (A.32)
n=—o0 n=—o0 kl—— ]T -0
Therefore
vV
>~ / d’k (A.33)
(2n)3
k
In terms of the momentum p = %k, we have
vV d’rd’p
dp = A34
> o [ = [ (34
This shows that the volume of a basic cell in phase space is
70 = Ih° (A.35)
A.8 Fermi Functions
The Fermi functions have the power series expansions
(7)) = —H (A.36)
£ @) ;( T

We illustrate the large z behavior by calculating that for f3/,(z). Go back to the integral

representation (14.70), and put y = x2, z =e"

2 [ /5
f32(2) = ﬁ/o d)’;_v_ﬂ

(A.37)

For v, the factor (¢?~” + 1)~!, which is the occupation number, is nearly a step
function, whose derivative is nearly a delta function. If we can rework the integrand
into something involving that derivative, then most of the contribution to the integral
would come from the neighborhood of the Fermi surface y = v. With this goal in

mind, we make a partial integration:

2 20 ¥ 1° 2/ .8 1
= —& - | _— d r- __ -
F32(@) ﬁ{3[ey—”+1]o 3/0 P aye

3f/ yv+1>

(A.38)
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The integrand is now peaked at y = v. We put y = v + ¢ and obtain

37 )

We are interested in large v, so the lower limit is near —o00. Accordingly we write

41)3/2 [ors] t 3/2 el
f32(2) = dt (1 + —> (A.39)
v (e' + 1)?

43/ A2 .
f3/2(Z) = 3ﬁ . dt (1 + ;) (et—+f)—2 + O(e™) (A.40)

The asymptotic expansion is obtained by neglecting O (¢™"), and expanding the factor
(1 4 £)3/2 in inverse powers of v = In z:
v p

fp@~ 2l [T (143038 L) e (A41)
SEA WS 2y 82 @ + 1) '

In the power series, only terms of even power in ¢ survive the integration. Thus

4p3/2 3
f3p(@) = W <Io +-—=h+- ) (A.42)
where

I,=2 / Ta

T e+ )P

=1

2
L= % (A.43)

It is interesting to note
=m— DI —2""¢(®) (neven) (A.44)

where £ (z) = Yoo £ is the Riemann zeta function, a celebrated function of number
theory. ,
For our purpose we only need the first few terms in the asymptotic expansion:

1
(h’l )3/2

f32(2) = f 8 VY

4. (A.45)
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A

A and B coefficients, theory of, 239
Absolute temperature, 21-22
Integrating factor of, 22-24
Absolute zero, 22
AC Josephson effect, 299
Adiabatic line
Carnot cycle, within, 19
Compressibility, 34
Isotherm, versus, 18
Atomic nucleus, 11-12
Atoms
Collisions, 66, 67, 70
Diameter, 65
Distribution functions, 70-71
Distribution, most probable, 77-78
Distribution, speed, 87
Energy fluctuations, 93
Flux, 99-100
Identical particles, 197-198
Kinetic energy, mean, 87
Kinetic energy of, 66
Macroscopic view, 65-67
Occupation numbers, 198-200
Random walk (see random walk)
Spin state, 200
Thermal wavelengths of, 195-196
Avogadro’s number, 7, 65, 143

B

Big Bang, 12-13, 239
Black-body cavity, 237, 239. See also
black-body radiation

Black-body radiation, 237, 239, 240, 246-247.

See also black-body cavity
Boltzmann’s constant, 74
Boltzmann’s counting, correct, 74—75
Boltzmann’s H, 76

Bose-FEinstein condensation. See also Bose gas

Clapeyron equation, 260
Condensate, 253-254
Description, 251

Equation of state, 254-255

Ideal Bose gas, of, 281
Liquid helium, in, 259-260
Macroscopic occupation, 251-253
Observations of, 285, 286f
Phase diagram, 252f
Phase formation, 257258
Specific heat of, 256
Bose enhancement, 239-240, 246.
See also Bose gas; Bose-Einstein
condensation
Bose gas. See also Bose-Einstein
condensation; bosons
Debye specific heat, 243
Electronic specific heat, 244-246
Enhancement, 239-240, 246
Ideal, 255
Maxwell-Boltzmann distribution, 239-240
Phonons, 241-242, 245
Photons density, 237-239
Planck distribution, 238
Spontaneous emission, 240
Stimulated emission, 240
Bose statistics, 197, 203, 221. See also Bose
gas; bosons
Bosons, 197. See also fermions
Classical limit, 208-209
Entropy, 206
Equation of state, 207-208
Occupation numbers, 198, 219, 220
Parameters, 204-205
Photon bunching, 220-221
British thermal unit (Btu), definition of, 6
Brownian motion, 136-138, 141f
Conservation of particles, 142
Einstein, importance to, 138-139
Forced oscillator in medium example,
189-192
Gaussian distribution, versus, 145-146
Langevin equation (see Langevin equation)
Stock market, model of, 145-146, 147f

C

Cahn-Hilliard equation, 60, 278
Campbell’s theorem, 161-162

313
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Canonical ensemble, 113, 114f
Classical, 111-113, 118-119
Energy fluctuations, 115-116
Grand (see grand canonical ensemble)
Microcanonical (see microcanonical
ensemble)
Quantum partition function, 216-217
Thermodynamics, relationship between, 115
Carnot cycle, 1920
TS diagram, 38
Carnot’s principle, 143
Central limit theorem, 140
Chain rule, 307
Champman-Kolmogorov equation, 171
Clapeyron equations, 50-51, 60
Classical canonical ensemble, 111-113
Ideal gas, of, 118-119
Clausius, 20, 22
Clausius’s theorem, 22-24, 39
Coefficient of thermal conductivity, 105-106
Collisionless regimes, 99-100
Conservation laws, 101
Correct Boltzmann’s counting, 74-75
Critical opalescence, 128
Curie’s law, 9

D

DC Josephson effect, 298

Debye frequency, 242

Debye function, 243

Debye model, 241-242, 243, 247
Debye specific heat, 243

Debye temperature, 242
Degeneracy, 92

Delta function, 305-306

Demon, Maxwell’s, 101

Diffusion, 140

Diffusion constant, 69, 103-105
Dirac delta function, 305-306
Dissipation, definition of, 144
Distribution entropy, 76, 78, 88—89
Distribution function of atomic systems, 70-71
Dulong and Petit, law of, 243

E

Effusion, 99, 101
Einstein’s relation, 142, 187188
Einstein’s theory of 1905, 138-139, 140, 152
Einstein, Albert, 138-139
Electron donor levels, 233
Energy
Exchange of, 111, 112
Fixed, 111

Index

Free, identifying, 207
Free, minimizing, 116-118
Energy surface, 70
Entropy
Calculating, 206
Distribution (see distribution entropy)
Ideal gas, of, 26-27, 8§1-82
Irreversible isothermal expansion,
relationship between, 35-37
Isolated system, of, 25
Loss, relationship between, 35-37
Shannon theory (see Shannon entropy)
Equation of state, 207-208
Equipartition of energy, principle of, 85-87
Ergodic hypothesis, 72
Exact differential, 306

F

False vacuums, 1213
Fermi energy, 225-226
Fermi functions, 310-311
Fermi gas. See also fermions
Ground state, 226-227
Holes, 230-231
Low temperature properties, 228-230
Particles, 230-231
Thermal equilibrium of, 230-231
Zero-point pressure, 227
Fermi statistics, 197
Fermi surface, 230-231
Fermi temperature, 227-228
Fermi wave number, 225
Fermions, 197. See also bosons; Fermi gas
Classical limit, 208-209
Entropy, 206
Equation of state, 207-208
Fermi statistics, 202203
Free, 225-226
Number of, in quantum state, 230-231
Occupation numbers, 198, 199, 219
Parameters, 204-205
Slater determinant, 199
Ferromagnetic systems, 9-10
Feynman path integral, 181
First-order phase transitions
Gas-liquid, 48f
Isotherm, of an, 48f
Liquid-solid, 48f
Overview, 47
Phase coexistence, 49-50
Triple point, 49
Fluctuation, definition of, 144
Fluctuation-dissipation theorem, 142,
144-145, 187
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Fokker—Planck equation, 148—149, 172-172,
184, 188-189
Fourier analysis
Power spectrum, 166, 168
Time series, of, 165-166

G

Gas
Liquid transition, 56-57
Thermal equilibrium, 65
Uniform velocity movement, 87
Velocity, 106
Gaussian distribution
Brownian motion, versus, 145-146
Poisson distribution, relationship between,
155-156
Gibbs potential, 41
Ginsburg-Landau theory, 266-267, 278, 293
Microscopic theory, relationship between,
267-268
Goldstone mode, 283, 289290
Grand canonical ensemble
Density fluctuations, 127-128
Ensemble average, 123-124
Grand partition function, 123-124, 217-219
Pair creation, 128-130
Parametric equation of state, 126—127
Particle average, 124—125
Particle reservoir, 123
Thermodynamics, relationship between,
125-126
Viral expansion, 127

H

Hamiltonian equations of motion,
69-70, 73
Heat
Latent, 47, 49
Heat bath method, 8, 177
Heat capacity 5-7
Heat conduction, 105-106
Heat reservoir, 8, 177
Heat transfer, 5-7, 22¢
Helmboltz free energy, 4041
Hydrodynamics, 99, 100
Nonviscous, 101-102
Sound wave equations, 103

I

Ideal gas
Energy equation, 34
Entropy of, 26-27, §1-82
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Law, 7

Occupation number fluctuations, 219

Pressure of, 84-85, 205-206

Properties of, 16-18

Temperature, 7

Thermodynamics, 89-90
Inflationary universe, 12
Information theory, 78-80, 101
Ising model, 176-178
Isothermal compressibility, 34
Isothermal expansion, 36
Isotherms, 8

J

Josephson junction, 296298, 300-301
Joule, James Prescott, 16
Joules, definition of, 6

K

Kinetic theory, 2

L

Lagrange multipliers, 77, 78, 308-309

Landau free energy, 274

Langevin equation
Diffusion coefficient, 187-188
Einstein’s relation, 188
Energy balance of, 185-186
Fluctuation-dissipation theorem of, 187
Fourier transforms, solved using, 184
Oscillator/liquid example, 189-192
Overview, 183-185
Transition probability, 188-189

Latent heat, 47, 49

Legendre transformation, 41

Liquid helium, 259-260

Liquid, heating of, through stirring,

189-192
Lorentzian distribution, 168

M

Macroscopic bodies

Exceptions of intensive/extensive

classifications, 2

Extensive quantities, 2

Intensive quantities, 2

Thermal equilibrium of, 2
Magnetic flux quantum, 294-295
Magnetic systems

Overview, 9-11
Markov process, 171, 174
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Matter, atomic structure of, 1

Maxwell relations, 39, 40, 41, 42, 42f, 43

Maxwell-Boltzmann distribution, 78,
231 :
Distribution entropy, 88—89
Equipartition of energy, relationship
between, 85-87
Fluctuations, 90-91
Ideal gas pressure, 8485
Parameters of, 83-84, 85
Probable distribution, 90-91
Speed distribution, 87, 88f
Maxwell’s demon, 101
Mean free path, 65
Meissner effect, 293-294
Metropolis algorithm, 175
Microcanonical ensemble, 73-74
Overview, 111, 114f
Quantum states of, 201-202
Molar volume, 65
Molecular reality, 143144
Monte Carlo method, 173-175,
176-178
Motion equations, 92

N

N-type semiconductor, 233
Navier-Stokes equation, 107-108
Noise

Definition, 168

Thermal (see thermal noise)
Noise, shot, 157-160, 179
Non-Carnot cycle, 38
Nyquist noise, 134-135, 136f
Nyquist theorem, 135, 148

o

Occupation number, 71
Order parameter
Cahn—Hilliard equation
(see Cahn—Hilliard equation)
Correlation length, 274-276
Critical exponents, 273-274
First-order phrase transition, 277
Functional differentiation, 268-270
Functional integration, 268—270
Ginsburg-Landau theory, 266267
Mean field theory, 271-273, 274
Microscopic theory, 267-268
Overview, 265
Phase transitions, essence of, 265
Second-order phase transition,
270-271

Index

P

P-type semiconductor, 233
Paramagnets, 46
Partial derivatives, 307
Perrin, M.J.
Brownian motion, 137f, 140, 141f
Molecular reality, 143-144
Nobel prize, 136
Noise of atoms, 136-137
Phase space, 69-70
Phase transitions
First order (see first-order phase transitions)
Overview, 265
Second order (see second-order phase
transitions)
Phonons, 241-242, 245
Goldstone mode, 289-290
Poincare, Henri, 145
Poisson distribution, 154-155
Gaussian distribution, relationship between,
155-156
Probability
Basic properties of, 151-152
Binomial theorem, 153

Q

Quantum degeneracy temperatures, 196
Quantum mechanics
Classical mechanics, versus, 213
Density matrix, 214-215
Free particle counting, 309-310
Incoherent superposition of states,
213214
Quarks, 1

R

Random walk, 67-69, 72, 104
Randomness, 151

Shot noise, of, 157-160, 179
Representative point, 69
Reynolds number, 108

S

Sacker-Tetrode equation, 43
Second-order phase transitions, 6263,
270-271

Description, 47
Semiconductors, 233-235
Shannon entropy, 78-80
Shot noise. See noise, shot
Single-particle quantum numbers, 198
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Slater determinant, 199
Smoluchowski equation, 171
Solids
Einstein model of, 247
Electrons in, 231-233
Lattice of, 244
Sound waves, 103
SQUID. See superconducting quantum
interference device (SQUID)
Statistical ensemble, 72-73
Statistical mechanics, definition of, 2
Stefan’s constant, 238
Stefan’s law, 238, 246-247
Stirling approximation, 118, 202, 305
Stochastic processes
Binomial distribution of variables,
152-153
Central limit theorem, 157
Definition as related to physics, 151
Gaussian distribution, 155-156
Markov process (see Markov process)
Overview, 151-152
Poisson distribution of variables, 154—-155
Shot noise, randomness of, 157-160
Time-series (see time-series analysis)
Stoichiometric coefficients, 131-132
Superconducting quantum interference device
(SQUID), 300-301
Superconductivity
AC Josephson effect, 299
Broken symmetry, 302
DC Josephson effect, 298
Josephson junction, 296298, 300-301
Magnetic flux quantum, 294-295
Meissner effect, 293-294
Superconducting quantum interference
device (SQUID), 300-301
Time-dependent vector potential, 300
Superfluidity
Condensate wave function, 281-282
Flow, 287-289
Global gauge invariance, 283
Mean-field theory, 284-285
Quantum phase coherence, 286287
Spontaneous symmetry breaking, 282284
Velocity, 288
Vortex, 288

T

Theory of A and B coefficients, 239

Thermal ensemble, 173-175

Thermal equilibrium, 2, 133
Atomic collisions, 65-67, 99
Equation of state, 4
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Fermi gas, of (see Fermi gas)
Liquid-vapor, 61
Thermal expansion, 34
Thermal noise
Diffusion of, 140
Importance of, 133
Nyquist noise, 134-135, 136f
Thermal wavelengths, 195-196
Thermodynamic limits, 27
Free particles, of, 199-200
Intensive quantities used, 4
Variables of, 34
Thermodynamic transformation, 4-7,
42-43
Internal energy, of, 4-78-9
Thermodynamics. See also thermal
equilibrium; thermodynamic limits;
thermodynamic transformation
Classical, 136
Definition, 2
Energy equation, 33-34
First law, 8-9, 16-18
Heat equations, 15-16
Ideal gas, of (see ideal gas)
Internal energy, 114
Quantities, 27
Second law, 19, 20-21, 30-31, 92,
136, 143
Thomas—Fermi approximation, 285
Time’s arrow, 92-93
Time-reversal invariance, 92
Time-series analysis
Decomposition of, into sinusoidal
components, 165-167
Detailed balance, 170
Ensemble average, 164—165
Fokker—Planck equation (see Fokker—Planck
equation)
Fourier analysis, 165—-166
Markov process, 171, 174
Noise, relationship between, 168—169
Overview, 163-164
Power spectrum, 166, 168
Signal, relationship between, 168—-169
Transition probabilities, 170

A\

Vacuums, false, 12-13

Valence band, 231, 233

Van der Waals equation of state, 51-53
Critical point, 53-54
Density, assumptions regarding, 57-58
Maxwell construction, 55-56, 57
Nucleation, 58, 59f
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Scaling, 56-57 \%Y
Spinoidal decomposition, 58, 60
Virial expansion, 53

Vapor pressure, 47

Virial expansion, 53 Z

Viscosity, 106-107, 108

Volatility, 145 Zero fields, 10

Wiener—Kintchine theorem, 166, 167, 168f



Physical constants

Planck’s constant h=6.626 x 107 erg s
h=nh/2r =1.054 x 107 erg s
Velocity of light c=3x10"cms!
Proton charge e=4.803 x 1070 esu = 1.602 x 10~19 C
Proton mass M,=1673x10"%#g¢
Electron mass me=9110x 10728 g

Avogadro’s number  Ag = 6.022 x 10?3
Boltzmann’s constant kp = 1.381 x 1076 erg K~!
Gas constant R =8314 x 1077 erg K~ 'mole !

Conversion

Length, weight, temperature

1 litre = 10% cm3
lin=2.54cm
11b=0.453 kg
X°C=(273.15+ X)K
X°F = 3(X —32)°C
Energy

17=10"erg
1eV=1.602x 107% erg
1 eVikg = 1.160 x 10* K
lcal =4.184]

1 Btu= 10557

1ftlb=1.356T
l1kwh=3.6x10°7J

Power

IW=17Js1
1hp =550 ftlbs~! =746 W

Pressure

1 atm = 1.013 x 10° dyn cm~2 = 760 mm Hg
1 bar = 750 mm Hg = 10° dyn cm™2

I torr = 1 mm Hg = 1333 dyn cm ™2

1 Pa= 107> bar = 10 dyn cm2

Water at STP

Density = 1 g cm™>

Cp=1calg ! K!



