Introduction to Statistical
Physics

An Instructor’s Guide

Kerson Huang
v

& F
PR

LSAYZ
e

& N
%unded 0

London and New York




Introduction to Statistical
Physics

An Instructor’s Guide

Published 200! by Taylor & Francis
11 New Fetter Lane, London EC4P 4EE

Simultaneously published in the USA and Canada 6
by Taylor & Francis Inc,
29 West 35* Street, New York, NY 10001

Taylor & Francis is an imprint of the Taylor & Frandis Group

© 2001 Kerson Huang

This book has been produced from camera-ready copy supplied by the authors
Printed in Great Britain by T) International Ltd, Padstow Cornwall

Ali rights reserved. No part of this book may be reprinted or reproduced or
utilised in any form or any electronic, mechanical or other means, now known
or hereafter invented, including photocopying and recording, or in any

information storage or retrieval system, without permission in writing from the
publishers.

ISBN 0-7484-0943-2

Chapter 1

1.1

Mass of water =10%g, heated by 20°C.

Heat needed Q = 2 x 107cal = 8.37x107J.=23.2 kwh.

‘Work needed = mgh = 14x150x29000 = 6.09x 107 ft-1b =22.9 kwh.

1.2
Work done along various paths are as follows
ab: . > gy v
b
/a PdV=NkT1/a a =NkT1h17a
cd: "
Py(Va— V) = NkTs (1= o=
de:

A% Ve

= NkTxln -2

N kTg L % NE 3 In Vd

No work is done along bc and ea. The total work done is the sum of the

above. Heat absorbed equals total work done, since internal energy is unchanged
in a closed cycle.

1.3
(a)
18V bTe!
“=ver T mv
(b)
b—1
v = BT
T
NkT  NET} -
- Y =T
P v 7
Work done = PAV =bNEAT
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Consider an element of the column of gas, of unit cross section, and height
between z and z-+dz. The weight of the element is —gdM, where dM is the mass
of the element: dM = mndz, where m is the molecular mass, and n = P/kT
is the local density, with P the pressure. For equilibrium, the weight must
equal the pressure differential: dP = —gdM .Thus, dP/P = —(mg/kT)dz. At
constant T, we have dp/ P = dn/n.Therefore

n(z) = n(0)e™™5%/*T



1.5

No change in internal energy, and no work is done. Therefore total heat

absorbed AQ = AQ; + AQ2 =0. That is, heat just pass from one body to the
other. Suppose the final temperature is 7. Then

AQ1 = Cl(T - Tl), AQQ = CQ(T - TQ). Therefore
T CiTh + Co Ty
C1 + Cy
1.6
Work done by the system is — f HdM. Thus the work on the system is

2
HdM:ﬁfHd _ KH
f 7 ) TOH = 57

L7

Con§ider the hysteresis cycle in the sense indicated in Fig.1.6. Solve for the
magnetic field:

H = £ Hy + tanh™" (M/Mp)
(+ for lower branch, — for upper branch.). Using W = — [ HdM, we obtain

Mo 1 —Mpop
W=— f_ , Mo + tach™ (/3] - fM dM{~Ho + tanh™ (M/Mo)]

= -‘4M0H0

1.8

A log log plot of mass vs. A is shown in the following graph
ine i i ) . The dashed
line is a straightline for reference. § &18p € dashe

log M
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Chapter 2

2.1

Use the dQ equation with P,T as independent variables:

dQ = CpdT +[(8U/OP)r + P(8V/OP)r|dP

For an ideal gas (8U/0P)r =0, P(8V/8P)r = —V. Thus

dQ = Cpdl — VdP.

The heat capacity is given by

C =Cp— V(OP/IT )patn-

The path is P = aV?, or equivalently P**! = a(N kT)® by the equation of
state. Hence

V(OP/OT)pasn = lab/(b+ DV(NET)®T! = bNk/(b+1). Therefore

b
C—CP—me

This correctly reduces to Cp for b= 0.

2.2

Use a Carnot engine to extracted energy from 1 gram of water between 300
K and 290 K.

Max efficiency 7 = 1 — (290/300) = 1/30.

W =nCAT = 516(4.164 Jg 'K ' x1gx10K)=1.39]

Gravitational potential energy =1 g x 9.8 kg s72x110m =1.08J

2.3

The highest and lowest available temperatures are, 600 F = 5838.7 K and 70
F =2943 K.

The efficiency of the power plant is W/Q, = 0.6[1 — (294.3/588.7)] = 0.3.

In one second: W = 10° J.

So Q; = 2.33 x 10° J = CyAT. Use Cy =4.184] g 1K1,

Flow rate = 6000 x(0.305m)*

2.33x 10% J

T = — % =327Tx 107°K
(4.184 J ¢~ K2)6000(0.305 m)” 10° cm?/m?

2.4
(a)

Since water is incompressible, a unit mass input gives a unit mass output.
The net heat supplied per unit mass is AQ =C(Ty —T) — C(T - T7),




where C is the specific heat of water (per unit mass.) In steady state v*/2 = S —Constant. -. T3 ~ V~! Thus

AQ. This gives
v=+/2AQ = /2C(T1 + T» — 2T) T~ R}

(b)

The entropy depends on the temperature like nT. A unit volume of water 9.7
fro.m each of t.he mput streams has to!:al entropy InTj +InT This makes two The heat absorbed by an ideal gas in an isothermal process is
unit volumes in the output stream, with entropy 2InT. Therefore the change
in entropy is In (T?/T1T3) > 0. Thus T > T3, and AQ = NkTIn(V;/Vi)

Vmax = V2C l\/ T —+/ T2| where V; and V; are respectively the final and initial volume.The temperature

T in this formula is the ideal-gas temperature.
Draw a Carnot cycle on the PV diagram, and label the corners 1234 clock-
wise from the upper left.

2.5 The heat absorbed at the upper temperature T3, and the heat rejected at
(a) N N the lower temperature Ti, are
PV = 2Ry, PV =20PRVy Qs = NkT; In(Va /V3)
(W/Va)"=2. [(L+a)/(L—a)]" =2. Q1 = NETy In(Vs/Vs)
o/ 1 Because 23 and 12 lie on adiabatic lines, we have
T3 G
1% 2— =V 1_
(b) Dividing one equation by the other yields V5/V) = V3/V}.
AU =AQ—~W, AQ = 0. The efficiency of the cycle is therefore
Cy AT =-W, AT = -W/Cy. T
T, = 2Ty + AT = 2Ty — (W/Cy), To = Ty — AT =Ty + (W/Cy). n=1- —g—l— =1-2
P RTY _ R[2T, — (W/Cy)]
Vi A(L+a) 28
() Diesel cycle:
e O e 526/ 1)
P, =2P, AL +2)", B = RVy/[A(L - z)]". o
1 0 0/[ ( )] 2 0 0/[ ( :z:)] 7]=1—(Q1/Q2)=1—’)"‘1[(T4—T1)/(T3—T2)]
_ RW a %2a We have P; = Ps, hence
=5 0-=) -7 T /Ty = Va/ Vs = re
The processes 12 and 34 are adiabatic, with TV~ = constant. V3, = V.
0 Thus ) )
6 TV~ =TV
(a‘) T21f27—1 — T1 V-l—y-—l
PV =U/3,U=0VT* Using the three relations derived, we obtain
P =0T%/3.
dS = dQ/T = (dU + PdV)/T. n=1—l re -1
Integrate along paths with T=const, V=const. yrri(re—1)
S = %UVT’B' 2.9
Otto cycle:
(b) Qo =Cv(Tz — Tp)




Q =Cv(Tu—Th) 2.12

n=1-(@/Q:) =1-[(Ta —T)/(Ts - T)] (a)
The processes 12 and 34 are adiabatic, with TV7~! = constant. We have Since no work is being done, and the temperatures diverge, heat must be
Va=W, V3=V, Thus transferred from the colder body to the hotter body, with no other effect, and
I Vf-l = T’-’V;_l- this violates the Clausius statement of the second law.
TVl =TV (b)
Taking the ratio of these equations, we have The assertion is not true for physical black bodies, because they cannot be
Ty /Ty =Ts/Ty =771 point-like but have finite size. Even if the two bodies have identical shapes,
Thus their optical images are not reciprocal. That is, the radiation from one body
n=1-r""7 may form an image that is larger than the other body, and thus not completely
0 absorbed by the other body.
2.1
First note T, /T, = V3/Va = 2.
Work done Heat absorbed
a—b | Po(Vh— Vo) = P.Vo = NkT, | CpAT = CpT,
b—c | O —CvT,
c—a | — [PdV = ~NKkI,In2 —NET,In2

W (Net work done) = NkT,(1 —In2)
Q2 (Heat absorbed) = CpT, = %N kT,

w2

=—==(1-In2) =012
=0, = ( )
In comparison, Peamot = 1 — (Tp/Ta) = 0.5.
2.11
First note T = 4T1. The P, V, T for the points A, B,C, D are as follows:
p v T
A Pl Vi = NkT]_ /P1 T1
B | 2P | 2V; 4T
cCl2P | W) 2Ty
DI P |2V, 2T

(a)

Heat supplied along

ACB : CyTi 4+ Cp(2Th) = (2 +5) NET, = L NKT1.

ADB :CpT1 + Cv(2T1) = (% + 3) NEKT, = %Nle‘

AB : AU+ AW = ENk(2T) + § PV = 6NETy.

(b)

Heat capacity = AQ/AT = 6NkT, /311 = 2Nk.

(c)

Work done = P;V; = NkT,. Heat absorbed = Heat absorbed along ACB
= (13/2)NkT;.

77=§




Chapter 3

3.1

(a)

For a adiabatic process dS = 0, and the T'dS equations give
CvdT = —'(aT/FET)dV

Cpdl = aTVdP

Dividing one by the other, we obtain

CP/CV = KT[‘V(BP/BV)s] = Is'.T/K.S

(b)

CvdT + (oT/kr)dV = CpdT — oTVAPT. Put

dT = (8T /OP)ydP + (0T /0V)pdV.

Equate the coefficients of dP and dV on both sides. One of them gives
CP - CV = (QTV/KT)(BV/BT)P = a2TV/ch.

(c)

Using U = A+TS, H= G+ TS (enthalpy), we have

Cv = (8U/8T)y = (8A/OT)v + S +T(8S/8T)y = T(8S/6T)v
= —T(824/8T%)y

Cp = (8H/8T)p = (8G/8T)p + S + T(8S/0T)p = T(8S/0T)p
= -T(8°G/8T?)p

3.2

The Sacker-Tetrode equation is

S = Nk[(5/2) — In(n)®)], where n = N/V, and A = /2wh? /mkT.

(a)

A=U-TS = (3/2 T — TS = NkTIn(n)*) — NkT.

G = A+ PV = NKkT'In(n)?).

(b)

Write In(n)®) = Inn + In \*. The second term is a function of T only.
p=(8A/8N)y,r = kTn(n)®) + NkT(8Inn/8N)vr — kT = kT In(n)®).
p=(8G/8N)pr = kTIn(n)®) + NkT(dlnn/dN)pr = kT In(n)?).

3.3

The force on the bead is (P — P,)A — mg, where

P = pressure in gas,

P, =1 atm.

The equation of motion for the displacement z is m& =(P — P,)A — mg.
In equilibrium the pressure in the gas is Py = P, + (mg/A).

The volume is Vo = RT/F,.

Assume adiabatic oscillations: PV = const.

This implies dP = —y(P/V)dV = —y(Py/V;) Az.

P =Py +dP ~ Py — y(Py/Vp)Az.

Thus mi + (yA2P§/RT) ¢ =0.
The frequency of oscillations is

w = APy\/v/RT

3.4

Let the equilibrium pressure and temperature be Py, To. Under an infin-
itesimal displacement z, suppose the pressure of compartment 1 changes by
dP. Since the process is adiabatic, we have PV = constant, or (dP/P) +
v(dV/V) = 0. In terms of the temperature, we have TV?~" = constant, or
@r/m)+ 1)(dV/V) = 0.

a

For compartment 1, we have to first order

_ Pz
dP = <
(= DTz
dT = T

For compartment 2, replace z by —z.

(b)

The force acting on the piston is dF = AdP. The equation of motion for z
is dF = M#, where M is the mass of the piston. Thus Z + (yAFy/ML)z =0,
and the frequency of small oscillations is

W= \/’YAPo/ML
()

Due to the finite thermal conductivity of the piston, heat flows back and
forth between the two compartment, because of the oscillation in the temper-
ature difference.Assume that the temperatures change so slowly that at any
moment we regard heat conduction as taking place between two heat reservoirs
of fixed temperatures. When an amount of heat d@ flows from 1 to 2, the
entropy increase is dS = (dQ/T2) — (dQ/T}). Thus

§=<1 1)dQ_MzK(AT)2

dt T, T) d Tih To

The temperature difference is

(AT)* = (Ty - T2)* = (2dT)* = 4(“/_‘%@

Hence
gﬁ = az®
dt

where a = 4K (y— 1)2/L2.




(d)

Energy dissipation, which has so far been ignored, occurs at the rate TpdS/dt =

aTyz?. The time average of this rate is 2aToz3, where zo is the amplitude of
oscillation. The energy of oscillation is E = $ Mw?z}. In one period of oscil-
lation, the energy dissipated is AE = (2 Jw)2aTpzg. This gives a fractional
dissipation per cycle

AE _ 2xT

E = aMu3

35
(a)

pem(22) et
(b)

kr = —v"(8v/0P)r = (agv)™!
a=v"8v/8T)p = —v~(8P/8T)y(8v/OP)r, by chain rule.

oo L da
" agu dT

Z(OAN  _ Le? o2

3.6

For this problem it is important to use the entropy expression with arbitrary
Cv, instead of setting it to (3/2)k. Write the adiabatic condition as

AS =AS; +AS; =0, or

(Nl + NQ)k].Il(V_f/‘/-,,) + (N]CVl + NQCVQ) ]D(Tf/ﬂ) =0.

Th'U.S, T_f/ﬂ - (Vi/Vf)c,where (: = k(Nl + NQ)/(NICVI + NZCV2).

This means TV¢ = constant. Putting T = PV/NET, where N = Ny + N,T,

we have
PV = constant
where
f=(+1= Ni(Cv1+k)+ No(Cyv2 +k)  n1Cp1 +12Cps
N1Cyy + NaoCyg n1Cy1 +n2Cv2
3.7

(a)

Since the disks are thin, we can assume that their temperatures always
Temain uniform.

Let the final temperature be T

10

The changes in temperatures are respectively AT} =T — 11, ATy =T —Ts.

For simplicity write Cpl = Cl, Cpg = CQ.

The amounts of heat absorbed are respectively AQ: = C1AT1, AQ:
Co ATs.

Since the system is isolated AQ; + AQ2 = 0. This gives

CiTh + Co Ty
Cy 4+ Cy

T =

(b)

Consider the instant when the two temperatures are Ty, T7, (T3 > T7).
When an amount of heat dQ flows from 2 to 1, the entropy increase is
dS = (dQ/T7) — (dQ/T3).

We can express d@ in terms of the dI” through dQ = C1dT} = —ChdT}.
Thus we can rewrite dS = C1(dT}/T) + C2(dT3/T5).

T T
dTy dTs T T
= — 4+ C 2 —Ciln— +Cyln—
AS=C o T +Cs e T & T1+ eln

3.8
The relations are straightforward mappings from a PV system to a magnetic
system.

3.9

(a)

The desired expression are straightforward mappings of those for a PV sys-
tem.

(b)

The first relation is the condition that dA be an exact differential. The
second is obtained by using the equation of state M = xH/T.

(©)

The chain rule states (0T /0H)s(8H/8S)r(0S/0T)m = —1.

From (b) we have (0H/8S)r = —T?/(xH).

By definition, the heat absorbed at constant H is given by TdS = CydT.

Thus (85/8T)n = Cu/T.

3.10

(a)

The important property to verify is that at constant T' the entropy decreases
as the magnetic field H increases.

(b)

Isothermal magnetization: dT" = 0.

The heat absorbed is

dQ = CydT — HAM = —HdM. Therefore

kH?
275

H
AQ:—/ HdM = —
0

11




{0)
Adiabatic cooling: d@Q = 0.
From dQ = CydT — HdM we obtain
fT = (H/Cym)dM = (k/aT?) MdM. Multiply both sides by T2and inte-
grate:
Ty
o T%dT = (k/a) [y, MdM.
This gives T7 = T§ — (x/2a) M?, or

K3 H2

3 __ 73
=T~ 57e

This beco-mes negative when the magnetic field H is sufficiently large. However,
the equation becomes invalid long before that happens, for it is based on Curie’s
law, which is valid only for weak fields.

12

Chapter 4

4.1

The system is in contact with a heat reservoir, but initially not in equilibrium
with it. Let the stages of the process be labeled A,B,C:. We first calculate the
heat absorbed AQ, and the entropy change AS of the system.

(A) Water cools from 20°C to 0°C.
AQ =CpAT = —10 x 4180 x 20 J = —8.36 x 10° J.

AS = [dQ/T = Cp [ dT/T = Cp In(Ty/T;) = 41800 n(273/293) = —2.96
103] /deg.

(B) Solidification at 0°C.

AQ = —10 x 3.34 x 105 J =.—3.34 x 108 J.
AS =AQ/T = —3.34 x 105/273 = —1.22 x 10* J/deg.

(C) Ice cools from 0°C to -10°C.

AQ = CpAT = —10 x 2090 x 10 J = —2.09 x 10° J.

AS = CpIn(Ty/T;) = 209001n(263/273) = —7.80 x 10% J/deg.
Total heat absorbed by system: AQays = —4.39 x 108

Total entropy change of system: ASes = —1.39 x 10* J/deg.

The reservoir has a fixed temperature Tp = —10°C..

The total heat absorbed by reservoir equals that rejected by the system:
AQres = 4.39 x 108].

Entropy change of reservoir:

ASee = AQres /To = 4.39 x 10°/263 = 1.67 x 10* J/deg.

ASuniverse = ASres + ASres =2.8x 103 J/deg

4.2

Let Py, Ty be the pressure and absolute temperature at the triple point. Let
L be the extensive latent heat (not specific latent heat.) Since the solid-gas
transition can be made either via a direct path or a solid-liquid-gas path, we
must have ‘
Lsublim ation — Lmelt + Lvap

Vaporization: dP/dT & Lyap/TV = PLyap/NET?.

_ Lvap TO
P=rew |5t (1- 7))

Melting: dP/dT = Lyap/TAV.

Lmelt In T

= P —_
P o+ AV T

13




Sublimation: dP/dT = P(Lysp + Luert)/NKT?.

va me. T
P=Pyexp Fﬁo— (1‘%’)}

4.3
dP/dT = ¢/TAv = [1.44 J/(18 ~ 20)em®|T1.
~.dT/dP = —cyT, where ¢y = 1.39 cm®/J.

44

(a)

At a given v > wg, the dashed line lies at a lower free energy than the
solid line. The latter represents a “stretched” that fills the whole volume. The
former represent a liquid drop at specific volume vy that does not fill up the
entire volume. This is therefore the preferred state of the liquid. At » = vg the
pressure is zero.

(b)

Now assume that the liquid coexists with its vapor, treated as an ideal gas.
We are in the transition region of a first-order phase transition. At the given
temperature, the liquid and gas have fixed densities, which must be consistent
with the requirement of equal pressure P and chemical potential p. Denote
quantities for the liquid with subscript 1, and those for the vapor with subscript
2:

P, = ag(vg —v),

Hq =ao(v§ ”vz)—f7

b= TLkT,

ty = kT In(n)%).
where Py, u, were obtained in Prob.3.5, and p, was given in Prob.3.2, with
X = /2rh?/mkT. Thus, the conditions determining v and n are

ag(vo —v) = nkT
ap(vg—v?)—f = kTkn(nx3)

From the first equation, we see that vy — v > 0. It approaches zero as nT — 0.
(c)
Small n corresponds to (vg — v) — 0. The second equation becomes —f ~
kT In(nX®). Thus

nX® = exp(—f/kT)

4.5
(a)
dP/dT = £/[T(va — v1)] = £/Tvy = £/[T(kT/P)]. Hence

TP _ ¢
PdT ~ kT
14

(b)

T (K) £ (ergs/g)
02  821x107

0.4 9.37
0.6 10.5
0.8 11.8
1.0 131
1.2 14.4
4.6

The accompanying sketch shows G = [ VdP. The system skips the closed
loop in the graph of G, because it is higher than need be

\Y

4.7

(a)

A(V,T) = —RTIn(V —b) - (a/V) + f(T)

ASV 5 oo, A(V,T) » —RTInV + f(T)

This should approach the ideal gas result (Prob.3.2) RT{ln(n)%) — 1].
Therefore, up to an additive constant,

f(T)=—RT (1 + glnT)

(b)
Cy = ~T(d*f/dt?) = (3/2)R, which is a constant.

48
TdS = CydT + T (8P/8T),, dV = 0.

15




dT/dV = —(T/Cv) (8P/8T),, = —(RT/Cy)(V — b)~ L.
Integrating this yields

InT = —(R/Cv)In(V — b)+ constant.

Thus the adiabatic condition is

T(V - b/ = constant
When a = b = 0, the system reduces to an ideal gas, for which

R _Cr-Gv

Oy oy ol

Thus we recover TV'~1 = constant.

49

The second virial coefficient for the van der Waal gas is given by ¢; =
b— (a/RT). A rough fit is

b ~ 17 cm®/mole
a = 2100R deg cm®/ mole

4.10
Let AV = Vi — V; be the difference in volume across the transition line.

Consider variations along the transition line, such as going from a to b, as
illustrated in the sketch. The chain rule says

(or), ()., (aav), =~

<B_P> __ (OAV/OT)p o1 —ag
or AV (BAV/E)P)T B KT1 — K12

If the transition line refers to a second-order phase transition, then across this
line AV =0, while the differences in o and & are nonzero. Thus

This gives

fif_Aa
dT_AKZT

16

Chapter 5

51

n = 2.70 x 10*° atoms /cm?
v=2x10° cm/s.

N =nv/6~ 10% s~! cm~2

52

Let tVj be the volume of the room, and V' be the volume under consideration
The probability of finding an atom in V is V/Vp.

The probability of finding it elsewhere is 1 — (V/V}).

Since there are N independent atorus, the probability of finding none in V'

is
VY 14
=(1-=) = Nio{1-=
7= (-5) =ew(ve ()
For small V/V, we can use the expansion In (1 — (V/V)) = —V/V,. Thus
p~ exp(—NV/Vp)

Under STP,

_ Vo
" 9294 liter mole™?

x (6.02 x 10%* mole™™)

For V; = 27 x 103 liter,we have

for V.= 1lem® pmexp(-27x10%) = 10710
for V.= 1A% pmexp(-27%x107%) =1-2.7x107°=0.99997

5.3

Let n= N/V

Probability of finding one atom in dV = ndV.

Probability of finding no atom in dV =1 —ndV.

Probability of finding no atom in V = exp(—nV).

p(r)dr = Prob.(one atom between r,7 + dr)xProb.(no atom in sphere of
radius )

p(r) = 4mnr? exp (-—%T(TLTB )

5.4

For the beam to remain well-collimated, the atoms should suffer no scattering
by the air in the chamber along the flight path of length L. The condition is
therefore X\ > L, where A & (no)~! is the mean-free-path, where n is the density

17




of the air, and ¢ is the cross section for a collision between atoms in the beam
with an air molecule. Thus 1
n<—
Lo
For a rough estimate, take o =~ 1076 cm?. This gives n < 1072% cm™3. The
estimate can be refined by using a more precise value for o.

5.5

(a)

The mass density of water is 1 g cm™3. This corresponds to a number density
n=2x10% cm~3. Thus A=5 x 10' cm.

(b)

The rate of reaction is R = NIo, where N is the number of nucleons, [ is
the neutrino flux, and o is the reaction cross section. A person of mass 150,kg
contains N = 10%° nucleons. Thus R =5 x 10719 71,

The collision time is 7 = R~ =2 x 10° s = 70 yts.

Thus, one gets hit by a neutrino about once in a lifetime.

5.6
Following the hint, the answer is obtained straightforwardly:
2™/ n n,. mn n
C,=———r —hhr—=In—+—
TEt]) w2 " 27273

8.7
(a)
From (5.28), T'(E,V) = (8®/0E)A, where

2=v~ [ dpy -+ dps
pi+..+pI<E

with n = 3N. Thus

F(E,V) = KOVnZn (\/E) — KovnnCnE(n—l)/z
(b) Using S = kInT', we have, up to an additive constant,
].IngN nN

S(E) _ 3/2
g - aVA—§ thE +O(T)

In (VEs/Z) +0 (mTN)

5.8
(a)

18

By the same reasoning as in the last problem, we obtain I'(E, V') = Ky X, (\/f) ,
where n = 6N. There is no volume dependence,in the limit V' — oo, because
the particles are confined by the harmonic oscillator potential.

(b) Transcribing the result of the last problem, we have

S(E) . _a ln N
NE T REHO (Tv“)

5.9
The solution has been outlined in the problem.

5.10

Let the mean-free-path be A = 10~° cm. To be away from the origin by a
distance L, a total of {(L/ /\)2 random steps would have to be taken. Since each
step lasts a collision time T =2 10710 5, the total time required is 7 (L/ /\)2. For
L =1 cm the time is:1 sec. For L = 1 m the time is 10* sec.

5.11

For one coordinate, the probability of return after k collisions is p = 1/2/7k,
according to Prob.5. For the N-particle state to recur, all 6V coordinates have
to return at the same time. As an estimate of this probability, assume they all

do so after k collisions, where k is some fixed number.The probability is then
PN, Thus

Recurrence time ~ p~ " =exp <6N In l)
p

in units of the collision time. For macroscopic N, this number is so large that
the unit is irrelevant..
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Chapter 6

6.1
Let A = (2mkT)~1.
@ = [d®pe f(p) _ _l_fo dpp* exp(=Xp?) §kT
J& f(p)  2m [ dpp?exp(—Xp?) 2
(@)= L& fe) 1 Jo_ dppexp(-Ap?) 15
[ flp) — 4m? [° dppPexp(—Ap?) 4

2 2 _ 3,2
(€% = (e} = 5(kT)

(kT)°

6.2
The energy distribution is defined through P(E)dE = f(p)4rp®dp, where
(p) is the Maxwell-Boltzmann distribution of momentum. Using E = p*/2m,
we obtain
P(E) = cyVEe BT
where ¢g = nr—/2(kT)~%/2.
6.3

The density is obtained by integrating the distribution function over the
momentum. The result is

n(z) = n(O)e”mg‘"‘/kT

6.4
Using the equation of state of the ideal gas, we obtain P(~"/7T = Cj.After
some manipulation this leads to

ap _ 7 dI'  mg v _dar
P AT ®r T y-1T
Thus T changes with height 2 according to

dr -1
R Tt S

dz
This can be integrated to yield

KT(2) = kTo — j—;—lmgz

For Ty = 300 K and v = 7/5, the temperatures becomes zero at z = 3.17x10*m
(b)

20

From the above, we find
aP  myg
P kT
Using the expression for from the last part, we can integrate this to obtain

P :(1 ,Y__lmgz>"//("/-1)

B\ v kD

—=dz

6.5
There is an effective temperature-dependent potential U(z), given through
exp(—U/kT) = co(1 + vx).

6.6

The answer is

ny(r)

o (r) = exp [w? r2(my — ma)/2kT]

6.7
(a)

The most probable velocity is that at the maximum of the speed distribution.
This will be obtained in (c).

(b)

The pressure is given by

P=

&*p2p,vs
o P2p02f(P) = 3/ \/Tjr——f(p

where we have used v, = p./+/p? + m?. Write

“_L 2.__L
T VT o

The second can be neglected in the ultra-relativistic limit p? > m?. Comparing
P with the energy density U/V = [ d®p+/p? + m? f(p), we obtain

PV — Ly
3

()

The velocity distribution f(v) is defined by
f(v)d®v = Cexp (—ﬂmv/\/ 1- v2> d®

Using p = mv/v/1 — v2, we obtain

Ccm?

10) = ez o (- =)
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The non-relativistic kimit corresponds to m(1 — v?)™¥2 = imv? + m + O(v?)

Now return to part (a). The most probable velocity vy corresponds to the
maximum of the speed distribution 47v?f(v). It is given by the root of the
equation

(1 _ ,1)2)3/2 + _g,u2(1 _ ‘U2)1/2 . __,UZ =0
The non-relativistic and ultra-relativistic limits are (with c restored)

Vo 2T

~ 2
- — (kT <« mc*)
v, me?\’
0 o~ 1- 2
" 1 (5kT) (kT > mc?)

(d)
Relativistic effects become noticeable when kT /mc? is appreciable, say, at
10%. For H, this corresponds to kT =0.1 x 2 GeV, or T = 2 x 10*? K.

6.8
(a)

The distribution is proportional to the velocity distribution exp (—mv2 /2kT) .

Substitute v, = ¢(f — fo) /fo and then normalize the distribution. The result

1S
2nkTfo\ "2 mc? 2
— ) exp (—W(J’—fo) )

P = (
(b)

The variance is

a1 e (A0 - A))
P dfen (AU - R))

(f - fo)?

where A = mc? /(2kT f2). Change the variable of integration to v = vV A(f — fo).
The lower limit of integration becomes —vAfy = —+/mc? /2kT. This can be
replaced by —oc when kT <« mc?, which is true in usual laboratory conditions.
We then obtain

(F=fo) = =518
(c) :
The line width is given by the square root of the variance, and thus inversely

proportional to y/m. The Hz line width is therefore broader than that of O
by a factor /32/2 = 4.
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UJN = cp = 3kT,
C'V =3Nk.

(b)

PV = U = NkT.

6.10
Follow the hints and directions given in the problem.
6.11
00 2 oQ 2
W = / Epv.f(p) = C’/ dpyv e Pz [/ dp, exp (-)\pf,)]
vz >Ug mvo -0

_ kKT 9%

= "W 2mm P\ T 2mkT
6.12

(a) The escape velocity is v. = \/2GM/R ~ 10* m/s. This is to be compared
with the most probable speed at STP vy = 1/2kT/m =~ 2.2 x 103 m/s. The
fraction of gas that can escape is

f= g ~ dparpPe?"/2mkT — el /oo dzzle™™"
v

mug ™

where C' = n(2rmkT)~3/2 and y = v./vy. Using the results of Prob.6.10(b), we
obtain
f o~ —216_.‘”2
™

With y =~ 4.5, we find f ~ 5 x 1078,

(b)

The time it takes for an atom to go from sea level to the top of the atmosphere
through random collisions is

2

L
t~ =3 x 10*s = 10* yr
AU

where L = height of atmosphere ~100 km, A = mean-free-path ~3x10~"m.

6.13

(a)

The number of atoms with momentum magnitude between p and p + dp
is V4np? f(p)dp, where V is the volume, and f(p) is the Maxwell-Boltzmann
distribution. Thus
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AN

i

4V / dpp® f(p)
P

0

AE

i

o0 2
20’
4rV . dpp* 5— ()
Using the results of Prob 6.10(b), and .N =nV,and E = %N kT, we obtain the
fractional changes

é]\—/,]\—] = 2myl/%e7?
% = gyii/?e—y

for y = €9 /KT > 1..
(b)
From kT = %E/N, we obtain kAT = %[(AE/N) —~ E(AN/N?)], hence

Taking the logarithm of the equation for AN/N,we have In(N/AN) = y —
In(27y/?), which gives

y = In(N/AN) +1n (27r In(N/AN)Y 2) =In(mN/AN) + Inln(N/AN)
We then find, to leading order,

AT 44N AN
T 3N N
6.14
(2)
Let the axis along the needle be labeled 1, and a perpendicular axis 2.

The moments of inertia about these axes are I, I, with Is > I;. By the
equipartition of energy we have

KoLK

2 2, 2

where J; is the components of angular momentum along the axis ¢. Thus
Jo [
A

That is, the angular momentum is nearly parallel to the axis of the needle.

(b)

24

The equipartition of energy states
1 — 1
=CV? =—kT
2 2
This gives VV2=6.5 uV.

6.15

(a)

Take 1 mole of Np. The mass is 28 g.

For v =7 km/s, the kinetic energy is

K.E. = § Mv? = 0.5(0.028)(7000)* = 686 kJ.

When this energy is converted into heat, the temperature rise is of the order
of

AT =K.E./k = 5500 K.

Thus, the astronauts would be fried.

(b)

A constant deceleration a is equivalent to the application of a potential mza,
where z is the distance, and m is the mass of an air molecule. The Boltzmann
factor gives a relative density distribution

o =ee (-57)

which equals the fractional change in pressure AP/Pat constant temperature.
The difference in pressure between the points £ = 0 and =z = L is therefore
AP = By{(1 — exp(—max L/kT))].

()

Let the total mass of air be M = Na, where IV is the total number of air
molecules. The force is

APymal, _ BV

F=AAP =—F— =37

Nma = Nma = Ma

The stopping time is ¢ = v/a, which corresponds to a distance at? = v?/2a.
The work done is therefore

Fo2 1,
W= =3Mv

Thus the translational kinetic energy is completely converted to mechanical
work, and AT = 0..

(d) The translational velocity of the air must be, at all times, much smaller
than sound velocity, relative to the walls of the container.
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Chapter 7

7.1
Particle lux: Iy = fvz>0 & pv. f(p)
Energy flux: Ip= [, 4 & po f(p)mov? /2
Average energy of an escaped particle
Iz m [ dvo’exp (—mwv?/2kT)

== = 2kT
Iv 2 [)° dvvd exp (—mov?/2kT)

Thus, the escaped atoms come to thermal equilibrium at a temperature 11,
with %le =2kT. Hence T} = %T. This assumes that the total amount of gas
escaped is so small that the temperature of the original system is unchanged.

7.2
Let ni,np denote the densities of U-238 and U-235 respectively. Flux

= n/kT/2rm.

After one stage of effusion,

After k stages,

k/2
my (P (M2
&).-&).G)
Find & such that n; = ns.

_ 2In(ny/ng), _ 2In(99.27/0.75)

= lm/me) . In(238/235)

=773

7.3

In an adiabatic process PV? = constant. Using the equation of state, we
find that P(INkT/P)” = constant, or P~7T7 = constant. Differentiating this
relation with respect to P we obtain

oy _y-1T
BPS_ v P

The particle density is n = P/kT. Thus
ony _ 1
8P )¢ kT~

ks

Hence

nkTy
KTy
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7.4

Test the condition K/c < Cp. Using the data given, we find K/c = 1.44 x
1075, Cp = 0.247T, in the mixed unit given. Thus the condition is well-fulfilled,
and shows that sound propagated adiabatically.

7.5
From (7.19) 8%p/0t2 + pV - du/0t = 0. Instead of the Euler equation
pdu/Ot = —V P, use the Navier-Stokes equation.(7.48). Then in first-order
approximation (7.21) is replaced by
.62 p 9 4v
e vV EPtg
where v is the viscosity. Use the continuity equation pV - u= — 8p/&¢, and
convert V2P to V?p as in (7.22). The result is

V3(V-u) =0

32p 1 2 4v 28,0
BE 2 P

For a sinusoidal wave p = pg+ p, exp(tkz —iwt), the last term is {(dvkw/3py)p; -

Thus the damping coefficient is 4vkw/3p;.

7.6
The one-dimensional diffusion equation has solution

n(z,t) = N ex ( 2 )
= Tamnt P\ 4D
The gas is characterized by the diffusion constant D. Suppose the detector has

spatial resolution Az. We want to find the time ¢ at which n(L,t)Az = 1. That
leads to the implicit equation

L2 1

"= @Dy, (NAx/\/M)

In the first approximation, we put t = L2 /47D on the right side. This gives

12 1

"= %D (NAz/L)

The logarithm is not very sensitive to Az.

7.7

The insulating power 7 is the inverse of the coefficient of thermal conduc-
tivity. Thus 1 oc oy/m, where o is the collision cross section, and m the mass
of the molecule of the gas. Assuming that the molecular diameter increases like
m!/? we have

n o md/8
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To double 7, we need to increase m by a factor 26/ = 2.3. To double the
insulating power of air, we would need a gas of molecular weight 69.

7.8

This is a hypothetical exercise, since we are ignoring an important heat
source, the radiation from the sun. {See Prob.10.3).

The total rate of heat generated is $7R*W, and this must equal the rate of
heat radiated 4w R20T, where T} is the surface temperature, and o is Stefan’s
constant. This give the surface temperature

1/4
= ()
3o

In the interior, the rate of heat generation per unit volume is pW, and this
equals V - q, where q is the heat flux vector. Using q = —«VT, we have the
equation for the temperature distribution V2T = —pW/k. Assuming that T is
spherically symmetric, and using spherical coordinates, we obtain

d ,dT(r) __pW ,
drr dr TT

Integration of this equation, observing that T cannot be singular at r = 0, gives
T(r)=Tp — %r"’

where T is the temperature at 7 = 0. The surface temperature is

T =T - 2V R?

6
Thus »
L wrry (BW
To = 6,OVVR + ( 3 )
7.9
(2)

The heat absorbed by per unit volume is dQ = —V - qdt, which defines the
heat flux vector q. Putting dQ = T'ds, we have

gs 1
a + TV -q - 0

(b)

Consider the heat flux due to heat conduction q = —«xVT. Write (V-q)/T =
V- (q/T) - q- V(1/T). The last equation can be rewritten

ds q vT\?
R f“(?)

28

The second term, which is always positive, is the rate of irreversible entropy
production.

7.10

Suppose the thickness of the ice sheet is . Consider a unit square of the ice
sheet. The mass of the sheet increases at the rate pdz/dt, and generates heat
at the rate pdz/dt. This must equal the heat flux, which we can represent as

AT
gz =
T
for a small thickness z. Thus
éf _ AT
dt ~ fpx
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Chapter 8 ©

8.1 Q = Z €xp (_IB (Efzmns + GE?Ot + EYyib)) = QtransQrot Qvib
The relativistic energy is E = 1/(pc)? + (me?)2. In the ultra-relativistic do- Nl
main we can neglect the mass term and thus E = pe. The deBroglie wavelength _U_ - _ i (10 Qurans + 10 Qror + In Quip)
is h/p = hc/E. The thermal wavelength is therefore proportional to he/kT. N B
10U
8.2 Cy = Né’T" = Ctrans T Crot + Cvib
KT (2nh?/m)n 23 s
. \ cémms = V(2m)34r ;7 dkk? exp (—BR%K2/2m) = V/)°.
9 Relativistic Y U/N = —0lm 3?98 = $kT
mC T ctr&ns - §
Classical k 2
Quantum 86
(a)
. Relativistic
i - 10Que & In(1+exp(~BR/1)) ~ exp (~BK2/1)
? U _ _aanrot _ ﬁe __Ez_
| N T e TP\
(2mc7 7)7/(6n2) 2\2 2
= LG N
EOoC\T ) TP\TT
8.3 (b)
3 3 —5/2,_13 °° 2,2 -1
U = SRV INET(1+275/0)%) Oy ~ / de2eexp (~FH22/21) o B
0
ou 3 7
Cv =z~ NE(1F277/2n) ) U/
The upper sign is for fermions, lower sign is for bosons. Crot 1
k
o © ,
(2) The internal energy rises exponentially from T = 0 to approach a linear
N= Z”A =z Zexp (—=Bex) = 2Q behavior. The qualitative behaviors are as shown in the accompanying sketch.
A A C
(b) rot
The internal energy per particle is defined by k Lo o -
2 — 2 €xexp (=Be,)
N 25 exp (—Pex)
Thus,
6@ _ 1 KT ! kT
Y Z)—Ze,\exp (=Bex)=U 72
A

30 31



8.7
(a)

Quib = iexp (=Bhw(n +1/2)) = /2 (e’\ — 1)—1

n=0
_Z:l — _31nQvib ___ﬁi’-)_e,\'*'l
N 08 ~ 2e -1

Cib _ g (B ?
k 1 — e Bhw

(A=)

| kT

(b)

where A\=0fw.

8.8

kTvib ~ Tuu
h2
kTt = —f

For Hg, Tvib = 6100 K, Trot = 85.4 K
From T = 0, the specific heat rises to 3k/2 before it reaches T, then
increases by k around T = T,,, and increases by k again around T = Ty

8.9

€n = Tn -+ bCTn

1

1 2
n = hw fud
o = hofn+3)

32

_ 20 (Vn + bon) e POntbon)
() = S e~ Bratbon)

Expanding this to first order in b, we have
;% ~ 7_;-; + bU% — bBRw (L?—‘Jfr/)

where v = fi + 1/2, and a bar denotes average with respect to the unperturbed
system with b= 0.

- EXﬁ =13 - 12p
From Prob.8.7(b) we have

7= e? +6e* +1
4(er —1)°

from which we obtain

where A=0fw. Thus

() — e +6e*+1 B Ae* (3e* + 4)
bhw 4(e* —1)? 2(e* — 1)

The specific heat is obtained by differentiating the above with respect to T



Chapter 9 For n*/3 >> mc/h, particles near Fermi surface are ultra-relativistic:

9.1 (ep)? +(mc?)? = op
The fraction of electrons that can excited is of the order of kT'/er. Hence the
effective density is nkT'/er, where n is the electron density. The mean-free-path We have v =cp/p. Hence
iswhere ¢ is the collision eross section.
U =~ 2V / cp
P
~ _EF 2 1
nokT PV = —V/cp=—U
3/ 3
9.2
n=4.35x 10*cm 3 (d)
€ =24.6 MeV erp =6 x 1075 eV.
Av. energy per nucleon = %e r=14.8 MeV
94
9.3 (a)
(a) ) o Let py be the Fermi momenta of the spin-up and spin-down gases. The
The Fermi wave number kr is given through (2s + 1)V (47/3)k3 = N. energy of an atom of up(down) spin is
Thus, kr = [3n/4r(2s + 1)}/
2
p
pr = hkr e(H)= 5= FuH
er = /phc? +m2ct Thus
__ V 4rm 3 __47TV 3/2 3/2
(b)
For complete polarization, we have N_. = 0, hence ¢(H) = pH, and
U= 2V/ [ (cp)? + (mc2)2 ~ mcz] v
P 4
2 Ny = 55 (4muH )
P:2/vaz:=_/(p'v)
P 3Jp

The total density is now n = N, /V. The minimum field is
where j;v = j;pkpp d3p/h3_

© 37\ ? pn2/o
F. 1/3 H Hein = (—>
or n*/® << mc/h, particles near the Fermi surface are non-relativistic: ‘ K

(P maE me 1 £ 0.5
i (a)

Consider a shell of thickness dr in the gas. Let the pressure differential be
dP. The inward force acting on a patch of the shell of area dA is —dAdP. In

U=V / ﬁ hydrostatic equilibrium this must equal the gravitational attraction due to the
P

We have v = p/m. Hence

2m mass at the center. Thus
2 2 .
PV =~ §V/% - %U —PdA = vyMp(r)yr—2dAdr
’ P _yMp(r)
dr r2
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(b)

Thus
dp dr
FRER)
Assuming p(oc) = 0, we have
Co
p(r) = 373
9.6
(a)
N
N, =
b z—le=Be 1]

where €; = A2k? /2m.
(b)
The condition is N, + Ny = N, or

1
P S A

where A = | /2nh2 /mkT.
(c)
For small z, the condition becomes
zeP + z/(nX3) =1
Thus
z=n)3 (1- n/\3eﬁ‘)
This is valid for n)% < 1.
(d)
For high temperatures 8 — 0. Thus n)3 < 1,and z
. , < 1.
From Ny = (V//\3)f3/2(z), or nsAd = J3/2(2), we obtain

nsX° & z=n(1- nA%ePe)

n
<~ 1- n)3efe
n

For low temperatures we expect most particles to be in one of the bound states
and thus ny/n — 0.For 8 — 00, the condition for z becomes

Zf3/2(z) = nA3e—ﬁ€

36

This means that z is small, so the condition reduces to z2 = nA3e~P<.Thus

Rf oL g
n

~ VS

9.7
The probability of finding an electron with energy A above the Fermi level
is P(A) = (eP® + 1)~1 .The probability for finding an electron with energy A
below the Fermi level is P(—A). Therefore
1

QA)=1-P(-8)= 7x—~

9.8
(a)
The number of states in a volume element in momentum space is 2L?dp..dp, /2.

The density of states is
24

D(p) = Grh?
(b)
Obtain D(e) through D(e)de = D(p)rpdp:
mA

D) = gz

(¢)
N =2[A/(2r)*] 7k%

27N

beo= T
_ ThiN

eF = mA

3 ﬂ'hz N2

_OE _ _«h? (N’
T84T "om \ A

(e)

()

In 3D D(e) « /e, while in 2D D(e) is independent of . When the tempera-
ture increases from 7" = 0, the average energy increases like €g + k7, and hence
the density of states in 3D increases like k7", whereas it remains constant in 2D.
Thus we expect the chemical potential to be less sensitive to temperature in the
2D case. That is, the temperature dependence is weaker.
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Chapter 10

10.1
(a)
The operators p and i .
for a and o', we have hermitian, and defined by [p, ] = —ih. Solving

1: = (2h7ruu)_1/2p~z‘(m/2)i)1/2q
at = (2hm)‘l/2p+i(m/2ﬁ)1/2q
which give
[a,aT] =1
We can write
P L
m T 1™ [a'a + aa® + (o +a'?)]
-l-nzw2 2 _ Ly o4 t 2
g™ e = jhwlafa+taal — (a? +a1?)]
Hence
H P2 1 1
= —— 2
om + -2-mw q2 = Ehw (aTa +aaT)

= hw (aTa + %)
(b)

Define the eigenstate |n) by
dlajn) = njn)
(rjn)y = 1

The number <n’ata n iS th
non-negative. & e norm of the state vector ajn), and therefore

This means that the ei
mea genvalues of a'a cannot be negati
Multiplying both sides of the first relation by a, we ia;;ze.

aala|n) = najn)
Using aa’ = ata + 1, we have
(afa + laln) = naln)
(ala)ajn) = (n — 1)aln)

This means that ajn) has eigenvalue n — 1.

If n were not an inte
ger, then successi icati
make n negative. ’ 1ve application of a would eventually

38

Since this cannot happen, n must be an integer.

(c)
We have shown that a|n) has eigenvalue n — 1.
By the same method we can show at|n) has eigenvalue n + 1. Thus

ajn) =Cn—1)

where C is a constant. The norm of this state is C*C, which should be n.
‘We can choose the real solution

C=+n
Similarly we can show

aln) =vn+1n+1)

10.2
(a)

The star is completed enclosed by the shell of dust cloud, which absorbs all
the radiation from the star. The dust cloud has two surfaces, an outer one and
an inner one, and we assume that they have approximately the same area.

Let the temperature of the star by T, and that of the dust cloud T

Let the power radiated by the star be R, and that of the dust cloud be R’
from each surface.

The net power outflow from the star is R — R’. The net influx is R’. In
equilibrium R — R’ = R'. Hence the power radiated to the outside world is

1
R'—§R

(b)
Since R o T4, R o T/* we have T'/T = (R'/R)Y/* =271/%.

10.3
We are ignoring heat generated due to radioactivity in the Earth’s interior.

(See Prob. 7.8.)
Let the subscripts S and E identify quantities relating respectively to the

Sun and Earth, which are separated by a distance L. The radiation per umnit
surface area is oT%. From the viewpoint of the Sun, the fractional solid angle
subtended by the Earth is 7R%/(4wL?). Thus the power received by the Earth

is R2
e
UT§ (47rR25) y lf;

This must equal the power radiated by the Earth oT4(4wR%). Thus the radius
of the Earth drops out and we obtain

Ts _ [Bs
Ts V2L
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10.4

due to transmission of radiation originating
outside, and reflection of radiation originating inside. Thus the rate of inflow

is (1~ r)T¢ 4+ rT4. The loss rate is (1 — )74, In equilibrium we must have
(1=n)T¢ +r7¢ = (1—r7)T*.Thus

T 1\ /4
70 ~ (1 —~ 27‘)
10.5

From (8.61) § =711 U+pPV - Nuy).
For photons y = 0, PV =U/3. Thus

4U 4
S=-L-= 3
3T =3 VorT
10.6
(2)
From (10.5) the photon density is n = k(KT [hc)® ~ 4000 cm=3 for T — 2.73
K.

(b)

From Prob.10.5, the entropy density at T — 2.73Kis S

The entropy per photon is independent of the temperature:

S 47
where k is Boltzmann’s constant.
(c)

When S = constant, T V=13 Wh

en the radius of the universe doubles,
the temperature drops by a factor 2-1/3 = (.793.

10.7
(2)

There are 3N modes, each with energy Auyg.

3N,
= NV
€xp (,Bhwo - 1)
(b)
Cv = 0U/OT — 3N (uvg)? kT~ exp (—Bhiw,)
(c)
A=3NkTIn(1- e Phewo)
10.8

/V = k(4 /45) (kT /he)®.

(a)
A= Nyotia [—€ + 3kTIn (1 — e5)] + Ny okT [1 - In (n)°)]
(b)

The chemical potentials must be equal:
In (n)\3) =—€+3kTIn(1— e”ﬂh“)

10.9
(2)

The free energy is
A=¢+3NkTln (1 - e P")
i = ich gives
The condition for equilibrium is P = —9A4/0V =0, which gi

0p _ _ 3ynhwo
8V~ exp(Bhwo) — 1

where n = N/V
(b)
3ynfuvg
V. = W+ K [exp (Bhwg) — 1]
3kynhwg
KT? [exp (Bhwn) — 1

where ng = N/Vq.

10.10
(a)

The heat capacity of an electron gas is

Cyv W_Zl
Nk = 2 7Tr
2 2/3
= — (3 2n
kTF - 2m ( T )
Thus _ w2
“= 9Ty
(b)
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The Debye heat capacity for T <« T}, is given by
Cv 122t [ T\®
Nk~ 75 TE)

4
p= 1277
573

Thus

(c)
The plot is Cy /nR vs. T2,

Th i .
slope of the line gives 2, Fro us, the intercept at 72 = ¢ gives Ra, and the

m the plot, a rough reading gives

Intercept = Rg=19x 1073 cal mole™ K2
Slope = Rb=4x 107 cal mole~ x4
Thus
a = 6x1073K~!
b = 2x10°8 K3
which lead to
Tr = 820K
Tp = 490K
The electron density is n a 1020 cm—3
10.11
The energy is € = ak?/3 where q = Ry/o/p.
U _ &2k €
A (2m)” exp (Be) ~ 1

Changing the variable of integration to £ = fe = Bak*3 we find

U _ Co P 2/3
355 (5) kTP
where

o0 4/3
CO=/ do— =168
0

et —1

Chapter 11

11.1

In the transition P = kTA g5 /2(1).Since this is proportional to 7°/2, we
have dP/dT = —gk)\'s g5/2(1) The specific volume of the gas phase at transition
is given by its inverse density vo(T) = X* [g3/2(1)] ! This represents the change
in specific volume in the first-order transition, since the other phase has vg = 0.

Thus
dP _ 5kgsa(1) 1

dT ~ 2 ga/5(1) vo(T)

We can read off the change in specific entropy:

_ 5k gs/2(1)
2 g3/2(1)

The latent heat of transition is £ = T'sq.

11.2
Just above the transition z is slightly less than 1. Using the expansion
given in the problem we have

nX® = g3/2(2) = g3/2(1) — bV/v +av
where v = —1In z. Thus the equation for the fugavity is
av —b/v+c=0

where

3/2
c = g32(1) —nX® =gga(1) [1 - (%) }

3 T - Tc
593/2(1)"‘1::"

%

Choose the solution that goes to zero when ¢ — 0. To order ¢? we have
= 2y 2
Vi=ct (b) ¢
This leads to the expansion

2
z=1—c2-——b(—zc3+---

11.3



The parametric equation of state is

Ap 22 23
kT z+25/2+35/2+"'

2 3

/\371, = _Z._ Z
z-i—23/2 337.;_

W i i
e w'ant to obtain P as a power series in A*n. To do this, invert th d
equation by writing z = A%n + &, (135,)> 3n)? : ciente 1
+ks ( n)" + ks (A n)" +---. The coefficients ke

The details are as follows: Let z = \3p. We have

T=(z+kyz? + k3z®) + 2732z 4 2kyz?) 4 373/243 4 O(z*)
which gives » = 273/2 ; — 1 _ g-3/2 Ty

\3p
T T @Rt hes®) 427525 4 9kya?) 4 357259 4 O(p)

= z-oogz (1 2 4

(8 55 = + 0l
which gives

as = _2—5/2

o = 12

8 9v3

11.4

Putting /\3 = CT§3/2,We have

3
U = §Pv=§Vk{ T5295/0(2) (T'>To)

. 2c Ts/zg5 2(1) (T < T.)

C = — = i §T3/2 5 T5/2 1dz

v 3T 2ch{ 2 9/2§(;%7; _ 932(2)3 5% (T>T.)
517795 2(1) (T <T.)

We differentiat i 3
e the relation n)\3 = 93/2(2) to obtain

ldz 3 )3
zdT 2m

which approaches zero when z — 1, because 9172(2)

ous at z=1. = o0o. Thus CY is continu-

We use g, (2) =
/2(2) = z(d/dz =_
Prob.11.2, we have the exp aii%‘—;(‘;)ear 2‘33{% (2)/dv, where y = — Inz . From

9/2(2) = b~/ 4 p, 4 ...
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I————

where by = 1.7275, by = 1.460. Thus near z = 1, or v = 0,we have
1dz dv 3ET"5/2W

zdT ~ dT ~ 2b
Differentiate Cy, and setting v = 0, we obtain
3 d (1ldz Nk
o _ =2 ey Eheindt —
Cr — O = 5Nk [dT (z dT)]V=O . T.
where + and — indicate approaching the limit from above and below, respec-

tively, and
2 2
E - gz g3/2(1) _ 2_7 2.612 =386
16 bo 16 \ 1.7275

11.5
(a)
Let € = h?k?/2m. The total number of particles is

1 1
No= T P51 Z z—lefe — 1
k50
N 1 1 1
V T vrieesoi T penl)
The first term is the condensate density. When V' — oo, it is negligible except
when z = e84,

(b)

The unperturbed transition temperature Ty is determined by the condition
n/\g = g3/2(1). The perturbed transition temperature T is determined by the

condition nA3 = gg 2(e7P<2). We can use the approximation
g372(e7P2) = g3/2(1) — a/ A[kT,
where a = 3.455. Let T. = Ty + 6T To lowest order in A/kT; we obtain

LA S
T, ~ V&

Cg = = =0.881

11.6
(2)

The internal energy due to phonons is
00 2 V(k 4
U= 471'V3 dEE? hick _T ( Tz.)
(27)° Jo exp (Bhck)—1 30 (o)
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The heat capacity per unit mass is given by

10U  27% e

e =T 78
Cphonon mNOT =~ 15 p(he)?

where p is the mass density. Using data for liquid helium
= 239x10*cm s~!
p = 0.144gcm™3
we have
Cohonon = 0.021 T3 J g—1K-1

where T is the absolute temperate in K.

(b)

The internal energy per unit volume due to rotons is
U dr mdkkz A+h2(k-k0)2/2cr
Ve exp (BA) exp (B2 (k — k)?/20) — 1

We are interested in termperatures below 1 K. Since A =
the term —1 in the denominator. The main contributions will come from the
neighborhood of the roton minimum, i.e., at k = ko. Thus we only need to keep
the term A in the numerator, Now change variable of integration to g = k— ky.
The lower limit of can be replaced by —oo for low temperatures. Thus

E ) 1 Ae—B4 * 2 hQ 2 9
v~ 55 e /_mdQ(Q'l-ko) exp (~Bh*¢* /20)

We can replace (g + k0)? by k3. Thus we obtain

9 K, we can ignore

u ~ kA akTe_A/kT
Vv T VY 2rh2

c . kEA? [GET e-a/kT
Toton ~ Tp mw

Using data for liquid helium

Ak = 885K
ko = 1.92x 108 cp~1
g = 107x 1024 g
we obtain

., 387 8.65 e
Croton’\f me}(p (—T) Jg lK 1

where T is the absolute temperature in K.

-
117

The specific heat is

387 8.65 —1g-1
. . . b
T is the absolute temperate in K. The numbers in tils i‘om:fu}llz af.;elzl Owasedmd
where n scattering data independent of the specific heat. e follom ;
0? tnelct:;(;a:es this formula to data on specific heat Shozl ;s . }2 At.here i
oty i i djustible parameters. =1 K,
omparison with no adj _ : o s
o al()iSOlZ:):ic;blg discrepancy, the main source of which probably comes
?;;?ogimations we used in the roton specific heat.

L ]
ki 0.1
o]
> 0.08: .
s 0.06 .
T ;
5 0.04) .
a o
»  0.02 ./.,/
: _,_,_,——'"""/
= 0.5 0.6 0.7 0.8 0.3 1
T (K)

11.8

g): —8Ey/8V = — (3/5) NOer BV = ¢; (R?/m)n/>,
a= (671'2)2/3 /5.

Sﬁ;): kTA™3gs/2(1) = ca(me/R)¥/2(KT)%/,

eo = (2m)=1% g5 15(1).

(c)

kT << ep, 2/3
kT << (h%/2m) (3ny /4m)"" .
(d)

my

0\ _3_>1°/9 (k__T)”“
my (E) 4T €r
(e)

. To fulfill
For Fermi degeneracy m; /my << 1. For Bose degeneracy T < T,
both conditions we must have

5/3
K (ﬂ) < ™ <<1
N9 mo
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where K is a numerical constant.

11.9
In 2D the fugacity z is determined by

, &’k 1
N=A
veaf (2n)? 2 exp(BHE?2m) — 1

where A is the area of the system. By e di i ide i
e s the are y y expending the right side in 5 power
N _ mkT 1

A - 27 h2 1-2
5;: 0 5 z S 1. there is no upper bound to N, except when T = (. This me
that. the states of nongero momentum can accommodate any N, and ther:?z
1

no Bose-Einstein condensation Th
. ) . e except occurs at 7" = .
go nto the zero-momentum state. 0, when al Particles

1116

For a gas of N phot i .
mined by phiotens with number conservation, the fugacity 2 is deter-
Bk 1

where n = \/y . _

but has an infini t:n s:cgngz()i = 2621 £ The function g3(z) is finite at = 1

§1iz] diverges at z = 1 Tenvauv?' W? can see by noting that 213'4‘93(2) -
© = L Thus n is finite at » = 1, but cannot %ze gcz)ntinued

beyond z = 1. Therej
3 2= 1. lhere is Bose-Einstein con i
when n exceeds the critical density densation to the #ero-momentum state

L2 (kT
cTx2 E) 93(1)

Chapter 12

12.1

a - -
’(I‘l)le number of ways to choose the n atoms to remove from N sites is

NY [nt(N —n)]
(b)

The number of ways to choose the n interstitials out of M is

MY/ [nl (M —n)l]
() _ .
The total energy is £ = nA.The phase space volume is

NM!
T(n) = (N —n)inl (M —n)!

Using the Stirling approximation, we obtain the entropy

S:]nI‘(n):nln% —(N—n)ln(l~%) +n]n%f———(M-n)].n(1——J%)

The temperature is defined through
1 _1_£7‘§_ _ l@]nI‘(n)
kKT _k8E A On
This gives

B0 (2 1) o (%)

(d)

The previous equation can be rewritten as

()
N_m)(M-n) P\ &
The low- and high-temperature limits are
~ VNMexp(-A/2kT) (kT < A)

n
1 11
2 RS KT > A
n Y ( )
@ )
— —A/2ET
N exp (—A/2kT)

For T=300K: n/N=e2=2x10"°
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For T=1000K: n/N~e%=25x103.

12.2

() - o

Since each link can be pointed left or right independently, the number of
ways to choose N. links to point right is " = N VINLY(N - N We muygt
have N_ =N — N.. The entropy is S = £ InT", which leads to

where 7 = N. /N is the fraction of right-pointing links.

(b)

The internal energy is independent of N, , and we can set it to zero. Thys
the free energy is A = ~T'5, where T is just a constant scale factor.

(c)

The tension 7 can be obtained from dU =0 = TdS + TdL, where L is the
length of the chain:

L=a(N; —~N_)=a(2N; — N) = aN(2r — 1)

We obtain
T _ 1 85 1 1

= mNker R rior
where kT is just a scale factor. The tension is never zero. It is minimum when
r = 1/2, and goes to infinity when the chain is fully stretched to the right
(r=1) or to the left (r=0).
In this model, “temperature” is not a relevant concep
evant. The factor T in TdS is an arbitrary scale factor.
If we give each left-pointing link an energy e, then the total energy would be

E'=eN_=eN(1-r). The temperature would be given by T7-! = _ Iy [r(1-7],
apart from a scale factor

t, since energy is irrel-

12.3
{a)

s the product of the partition functions of the individual links. The possible
energies are 0 and mga. Thus On =1+ exp (_5mga)]zv - We have ignored the
fact that the energy of the nth link depends on its height, and therefore on the

lnks sy Proceding links. We have also ignored is the restriction that the
> SAnnot go above the ceiling.
(b)

U=_910y  Nmga
- I
o8 exp (Bmga) + 1
50

The length of the chain is L = (N — N')a, where N’ =U/(mga) is the number
he le
of up links. Thus Na

L= oo hm

(S(i?lce U = mga[N — (L/a)], the force constant is mg.

124

o fopen linksn = 0,1,2,--- ,N.
ible states are labeled by the number o ope =0,1,

The:r f:?epr);swlx]?iltehss open links is F, = nA. The partition function is

N 1 — e-BE+1A
—~BnA __
Qv=) e = 1 e-PBA

n=0
o links i
The average number of open is

10InQn eB5 (N +1) e*f(ml)ﬁ
R="RAT98  1—ePR  1_eAWtDA

The second term is negligible for large N. At low temperatures A > 1 we

have ) R
na e

12.5
(a)

There are 6 sites in each hexagon, but each site is shared b_‘y;h 3;22;&%,(31;
Thus we can assign 2 sites to a hexagon. On the. othgr ha.nd., eathere arge n
associated with one interstitial site. Thus, in an infinite lattice, t

as many interstitial sites as lattice sites.

(b)
The entropy is given by

5 = In F(E) =In Fvacancy + in Finterstitial

k
N!
Tiacaney = m
(N/2)

Fim:erstitial = m
i N. Thus,
The energy is E = MA, and the volume ﬁJ.ced, -and prop}(;)tr;gnal to
this gives S(E,V).Using the Stirling approximation, we 0

l (NInN — MIn M — (N — M)In(N — M)} + {N — N/2}
k

2M

2M1n—\7_12%\2——(N—M)1n(1-—%{)— (']2!"M>1n(1—7>
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()
From T—! = 85//8E we obtain the relation

2
£ =l 1___E.’__) 1_2£ e—A/KT
NA 2 NA NA

This can be easily solved, but we only give the high- and low-

E { 2'/2 exp(—A/2kT) (KT > A)
NA ™ 1/3 (kT < A)

temperature limits.

The above is equal to the average interstitial fraction M /N at a given temper-
ature.

12.6
()
The partition function for N non-interacting particles is Qv =QY,

where
(1 is that for a single particle:

3
Q1 =) exp(—fe,) = 2e~Blbz*~ca/2) + B2 tcx)

n=1

The free energy per particle is a(z,T) = ~kTInQ,.

(b)

We fmd the equilibrium value of by minimizing a(z, T) with respect to z,
0£ maximizing ¢);.Assume that 7 is small, and expand the exponential to order
z”. The condition @} = 0 gives two roots:

, 0
= { (4kT/c) [1 - (4bkT/c2)]

Since Z cannot be neg

o ative, the nontrivial root is acceptable only when T < T,
where

2
C

kT, = <
45

Examining the 51gn of @ shows that when T < T the nontrivial roots corre-
sponds to a maximum, while 7 = ( corresponds to a minimum. For T > T, the

only go}ution is Z =0, which corresponds to a maximum, Thus there is a phase
transition at T = T..

12.7
For a classical relativistic gas,

B dszdqu N VN 1
Qn(V.T) = TNIRIN T &P {“ﬁ;\/(q’i)z + (mCz)z} = ﬁhs_NIN(ﬂ)

52

where

I(B) = / d®p exp [—,Bx/ (cp)? + (mc2)2]

Using the Sterling approximation to write N! ~ NV, we obtain

AN(V,T)=—-NkT []n (NL%) +1 +]J1I(,3)]

In the nonrelativistic limit kT < mc® we have

2 . .
I(8) = /d3p exp ‘:——ﬂ (mc2 + ;)_m)] = ¢~ /KT (27rka)3/

AN
An(V,T) =~ N [mc2 +kTIn <~V—) -—kT:I

TR mc® +kTln (n/\s)

In ultra-relativistic situations kT >> mc? we can neglect the rest energy, and

take
o ET\?
I(8) = /d3pe‘5°p=47r/0 dpp?e™PP = 8r (—c__)
N ()P
AN(V,T) ~ NET || = (22
TS len(nL3)
where Be
— 2/31%
L=mTF
12.8

The partition function is Qn = £N , where £ is the partition function for one
particle:

V aR2i2 |4

—BR2K2/2m Bhk/?m:____

£=Eeﬁﬁk/ _—(27r)3/d3ke 3
k

; 3
where A = \/27h? /mkT. The free energyis A = kT InQn = —NkT'In (V/X%),
The equation of state is P = —84/0V = NkT/V.

12.9
(@ | N
The partition is Qn =&, where
e 2nkT
o ~fAmw?q?/2 -
§=l/ dpe—ﬁp2/2m/ dgeBme’a* /2 — —

T

(b)



The free energy is

2rkT
A=—kI’nQy=-NkTIn ( . )
Thus
0A 2nkT
S = —a—T-=Nk[1+ln( p.
U = A+TS=NkT
oUu
- = 4+ Nk
Cy T +
12.10
(a)
The partition function is @~ =&Y, where
oo ~Bhw/2 kT
_ “Phetnii/zy _ € 77 KT
E_Ze —1—6“'3’“"'6—»07&0

n=0

Comparing with the result of Prob.12.9(a), we find 7 = 2755 = h.

{b)

The state of the N-oscillator system is labeled by the set of occupation
numbers {n,}, where n, is the number of oscillators in state @, with energy
€a = Rw(a +1/2). The possible values of « are 0,1,2,--- .The occupation
numbers have the possible values

n — 0,1 (fermions)
*7101,2,-.. (bosons)

They are constraint by the condition

ZnQ=N
(=4

The energy of a State is given by

E{ny} = ieana

a=0

The partition function is given by

QN = Z e~ BE{n,} - Z [e—ﬁﬁonoe-—ﬁﬁlnl L. ]

12.11
(2)

Qn = (B + 6_'3“°B)N

1 a eﬁy.oB — e—ﬁy’oB

(M) =_-E-a—§anN=#on

, 1 & 4ugN
(M%) = (M) = S 5m INON = 5, By’
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Chapter 13

13.1
(a)
Na N,
- NO N - & 2 N _
Q(Z7T)“ Z (N)Z e PNe = Z (J\(f)) (ze BG) = (1-}-26*66
N=0 N=0
(b)
W _ 28 01
No  Npoz T 2-leBe 4
(c)
d Nye
U = —— = ‘—.O
ap < z71lefe 11
_ OU _ Nok(Be)® e
or Z(Z—leﬁe+ 1)2
13.2
(a)

The grand partition function for the Oz lattice gas is
N

@)= 5 (V) (e ) = (14 memsey™

N1=0

The fraction of occupied sites is

D) 28 o 1
NO NO 621 1= zl_leﬁel +1

Setting the above to f = 0.9, with 21 =107° and T =310 K, we find

€@ = lenzl(;f_f-) ~ —0.37 eV
(b)

The grand partition function is now given by

N N-nN;

WD = 305 ()TN et ey

Ny=0 No=0
N

N
= Z (N1> (Zle_Bel)Nl (1+z2e_562)N—N1

N1=0

= (l+ze Py 223—,362)1"

56

The fraction of sites occupied by Oz is

{N1) _ f-l--—a—ln _ zie~ P
N N 8z, T+ 216_551 + zle—ﬁffz

Set this to 0.1 and solve for e;. With €; from (a), we obtain

€3 = —0.55 eV
133
(a)
E(M) = —eM
T(M) = (Z)

(b)
The grand partition function of the adsorbed gas is

N
5

o(=T)= 3 (ﬁ) (2e5)™ = (14 ze%)"

M=0

where z = e## The average fraction of occupied sites can be obtained either by
maximizing the summand using the Stirling approximation:

In [(ﬁ) (zeB‘)M} ~ M (ze?) + NInN — MInM — (N — M)ln(N — M)

or by calculating the grand canonical average:

M z 0 1
N oNe 29T T

{c)
The chemical potential for an ideal gas is given in Prob.3.2: 4 = kT'In (nx\a),
where A = \/27h28/m, and n = BP. In equilibrium, the chemical potntail of
the adsorbed gas must equal that of the surrounding gas. Thus

M X3P
N~ eBe £ X38P
@ 8 98 —Pe
5 2 _ O - ze
Mi-M =255 (=P +2)°
13.4
(a)
57



The equation of state is

(e 2)-2

Dlﬂ'erentiating both sides with respect to P at constant 7', we find
3

Y V-4 v-3)"
5P 3 _ 8 iy = .
Pror-we (V-1 T-%&(v-1)°
Near the critical point we put V =1 and let T — 1+. Thus
19V 1

Kp = —=

VoP " 6(T—1)
(b) The fractional density fluctuation near the critical point diverges:

n2—72 T 1

— KPR e
72 VT -1

13.5

The condition for equilibrium is In (n4+L%) +In (n_L3®) =0,ornyn_ = L5

Given n_ —n, = ng, we find

ne _ 1f /4
ng 2|\ Tngre T171
ne o _ 1[4
o = 3|\ fezep t1H1
13.6
()

Let N; be the number of molecules of type X;

sumes v; molecules of type X;. Thus the change in
thet same proportionality constant for all 4. Hence

(b)

Minimizing the free energy, we have

DA
0=64= ZB—MaN,— = SN =0

present. The reaction con-
N; is proportional to ;, with
6N =6N;/v; is independent

Since 6N is arbitrary, we have ;=
13.7 e ki =0

(a)

58

In a fixed volume, the densities obey the relations

bna _ Sny = _@_3_
g ~MTTT
Hence A = n; — 2ny and B = n; + n3 remain constant.

(b)

The chemical potential for a classical ideal gas is, according to Prob.3.2, u =
kT'ln (nA%), where A = /27h? /mkT. The condition for chemical equilibrium
is 21n (n1A}) +1In (ngA}) —21n (n3A3) = O where the ; are independent of thus

densities. Thus D)
ning

2
n3

Ky

where Ko = (4/9)° (ka/th)s/z. Two other conditions are

np+ng = ng
ny = 2nq
These imply 3 2
n3 = 2Kq (ng — n1)

High-temperature limit Ky — o0 :

g
ny~mng|l— 2K,

Low-temperature limit Ko — 0
1/3
ny = (2Kqng) /

13.8

(a)

From Sec.8.12 we have
b — £-8/2 (Bose)
T (-2 (Fermi)

(b) :
This is a generalization of Prob.11.3. Let y = n)3. We seek the expansion

P 3 b

_ =1+a® +ags®+--
PRT 3 gt 2

by eliminating z through the relation y = E?f’__l 2bp2t. To find a2 and az we
rewrite the above as

oo b £ b ? — ’
z£=1 T =1+a2 <Zeblz£) +as (Zlbzzl P

< z
21 thez £=1 =1
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and expand both sides to order 23, obtaining the equation

Z+bez® £ b32% 4 ...

1 W
() = 5 Z nyexp[—0 (e1n1 +emng+--- )+ 0y =—5—nQ
{ni1,m2,-} ﬂ@ek

— 2
= (z+2byz +3b3z3+-~-) [1+a2 (z+26222+---)2+a3(z+---)3+--~]
= 2+ (2bs+a2) 2% + (4bgag + a3 + 3b3) 23 4 - ..

3+ 3b3) 2% + Differentiating both sides with respect to €, with p # k, we obtain

Equating the coefficients of 22 and 2° on both sides, we obtain

10 1
" 60, () = 35 Z ninp exp [~ (am + e2no + -+ ) + Op
ag = —by ) ,6 €p {numzy-}
R s 1701
B (56_"@) Z nk exp [—0 (e1m1 + €ana +--+) + By
13.9 Y R
(a) = (npnk) — (np) ()
Using the result InQ = —Be L _1
thermodynamic limit Q=3 In(1+42e7P%) from Sec.13.6, we find in the g:elilo:rthat (my) = (z7ePe* £ 1) does not depend on €p. Thus the above
(npni) = (np) (m) (P # k)
3
BP = aln(l +zeBB) +/ : ks In (1 + ze‘ﬁﬂ;)
(2) 13.11
n = a + dak 1
e 2
z~1¢-BB 1 | (21)° z~TePer + 1 (@%) — (@) =D > [nunp) — () (np)] = > [(ni) — () ]
(b) kEG PEG keG
For high temperatures z — 0. Thus The last relation follows from the fact that terms with k # p do not contribute,

as shown in the last problem. By (13.40), (n}) — (ni)? = {m) F (nye)®. This
directly leads to the answer desired.

n s BB &Lk e
zae +2/(27r)3e k=z(aeﬁB+/\_3)z/\_§(1+a/\3)

~ 3 3 13.12
z nA (1 - ax ) @)
where A = \/27R2/mkT. The number of particles in the condensate is ng = N — N', where N’ =
(c) Ek;éo ng. Thus
Bk 2 2 (n2 >2] Z zePe
P =~ akT2e8B —Be n2) — (ng)? = ni) — (n =) ———
et +2kT/(27T)3e P ~ 2kT (a + 27%) (5} = o) ,;[ 6 {re 5 (1= zeBex)’
~ 0N (L a\) AT (o 4+ A7) |
~ kT [140(a?)] (b)
In the infinite-volume limit, when we make the replacement
14
n, ~ az~na)® do—— / dkdnk?
k0 (27)

z
n F = il n{l-aq /\3
A ( ) we see that the integral diverges at z =1 due to contributions near k = 0. For
13.10 a finite volume, however, k never assumes the value 0, but has a minimal value
’ of order L=1 = V~1/3, For z = 1, the integrand near k = 0 is proportional to
k=2 and thus the integral diverges like k= ~ V1/3. Thus the fluctuation is

proportional to V473,
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Chapter 14

14.1

For give a, let b be the length of a diagonal line, and 4 the angle between

a diagonal line and the horizontal. Then bcosf = %, and a + 2bsinf = 1.

These give the relation b = 5v1+ (1 = a)?. The total length of the highway is
L=4b+a=2,/1+(1- a)?+a. The minimum occurs at a =1- -1 =0.306.

V3
The minimum length of the highway is L = 1 + V3 =273

14.2
We wish to solve M = tanh (8yJM ), where 8 = 1/kT. Near the transition
point M is small, so we put tanh(z) =~ z — %zg’ and obtain M =~ fyJM —
3 (ByIM)®. This gives

k
M~ EY_J;';_M@ (7 —&T)

Thus kT, = vJ, and M ~ VI — T near the critical point. The critical exponent

is therefore 3 = i

14.3
From (14.59) we have

/dD:rm(z) = /dDz)xfz*De_"VE = 52/dDy]y}2*De"y' ~t!

The last relation comes from (

14.60), which gives ¢ ~ t~1. From (14.30) we
have y ~ ¢~

, with the same critical exponent.

144
1 00 1 etkrcos 8 1 oo etk _ g—ikr
m(z) = dkk22/d e\=~_/ e e’
(=) (271')3 /0 4 -1 (cos )k'2 +2rg  4n%r J, kk k2 4 2r
_ 1 _6_/°° dke etkr _ 1 8exp (—r\/2r0) _exp (—1+/2rg)
Amr?rdr | o K242 . dmr or V2rg N 4xr

The dk integration was carried out over a contour in the complex plane.

14.5
(a)

Minimize E(7,¢) with Tespect to e:

oF
0 = == 2
% 2ce + gy
2
_ an
== 2c
62

Eeg(n) = (at—g)772+5774

ot
|
o
i
I

()

Minimize E.g(n) with respect to 7:

0 - 6§eﬁ=n[2(at—g)+45’f72}
z

0 (t>g/a)

n o= {\/m (t <g/a)

the effect
The transition temperature corr&cpongls- tot=g/a,or I, —irI—‘ Igl/e aeq'll‘nli:;)s;mm cltect
of the coupling g is to raise the transition temperature.

parameter in the low-temperature phase is, more explicitly,

a 9y _
1= o= ama 02

= stem
which increase as g increases from 0, and becomes 00 a{, g= ﬁd’-rhe sy
becomes unstable for larger values of g, for Eeg has no lower

14.6

g)b = 0, we have the usual quartic curve. Just add 2 cub;;tf;rﬁl ;:; %:;t. tiz
aphs shov:vn. We see that the transition tempera.tureﬁ 1s-tgervalue e ing

%’er show in more detail later, S jumps abru_ptly ﬁomLa cr{];u e ey with &

a first-order phase transition. This is typical of a Lan

cubic term.

E A 4
! vz’s &V
T<To T=To T>To g

(b)




We s it
minhnumeearféom the sketch above that the conditions for E(S) to beat g
(i) 0E/8S = 0,
(i) E<o0,
(i) S <o.
The first leads to the condition

S (2at + 3bS + 4652) =0

The possible roots are
S =0
_ 3 32cat
T & (‘li\/l_ 9b2
For the nontrivial root to correspond to the minimum, it is necessary that

32cat/9h* < 1. We see from the
graphs that when ¢ = 0 th ion i
S =0. Thus we must choose the — sign. Thus © setution is not

_ §§ 32cat

> (Hvl‘ 962

if3?c;zt < 95® and E(S) < 0. Otherwise S = 0.
C

We note that at T = T, we have OE/b
B =T, S =0and E = i
trivial root, we can write these two conditions as - ¥ Brcluding the

v

2at +3bS +4¢S5? = ¢
at+bS+¢5? = ¢

Multiniod .
2 éul—tlglg;?g ;he se:conq equa_thn by 4 and subtracting it from the first, we find
= - Substittuting this into the second equation gives t = 2 /4a’c or

T. =1T; i
e =do + Zac
(d)
When the t is i
have emperature is increase from below toT =T, ort="02 /4ac, we
§=-2
2¢

and E(S) = 0. When T is further decreased it Jumps to § = 0, where E = 0.

Thus the transition is first-order. This is illustrated in the accompanying sketch.
E

T<T. g
S
First-order
T=TC transition
T>Tc

Since F is the free energy, the entropy of the system is
—— = —a8?

(It was unthoughtful of us to have used the symbol S for the order parameter!)
Thus, the latent heat is

) 2\ [ b\*
L=aﬂ5==a@5+z;><%>
(e)

According to the model § decreases steadily as the temperature decreases
below T.. But the model breaks down when the magnitude of S becomes too
large, for it must saturate when molecular alignment becomes perfect.

14.7

()

E = Ey+até® +bs*

b = b+ c(cos*8+sin*6)
Minimize E with respect to ¢:
0 = %% = ¢ (2at + 4b¢”)
” - _;—; 2,2
B30 = Bo-
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Thus the minimum of E occurs at the minimum of 5.
(b)
c<0:8=0,0r=mn/2.

bmin = b-— ICI
Z alt|
2 (b— [c[)
¢=10: 0 irrelevant.
Emin = b
= [alf
¢ z
c>0:0=m/4.
bin = <
min b+ 2
z ajt]
¢ = 2b+ ¢

In all cases, the critical exponent for the order parameter is B=1/2.
(c)

To find the susceptibility, we turn on an infinitesimally small external field
h = (h;, hy), so that

2
B=Fo+at (61 +63) +b (67 + ¢3)" — || (6 +¢3) — h1dy — oo,
First consider the case h = (h1,0).We can take ¢ =(¢,,0). The condition
OE[8¢, =0 gives
2atdy +4(b—le]) ¢ — by =0
DiEerentiati.ng with respect to &, yields the longitudinal susceptibility:
d¢; 1 1

X1 = 5~

O 2at+12(b— g2~ 3at

The last step is obtained by using ¢7 = ~at[2(b - |c)] .. The relevant critical
exponent is y = 1.

Next consider the case h — (0, k). We must consider ¢ =(¢,,¢,) with a
small ¢, induced by the transverse field. The field causes the order parameter
to deviate from the z axis by an infinitesimal angle 0, while the magnitude ¢ is
unchanged, as illustrated in the accompanying sketch.

We write E in the form
E = Ey + at¢® + [b— || (sin* 8 + cos* 6)] ¢* — hogsind
The condition 8E/8¢ = 0 gives
2ate + 4 [b— |c| (sin* 0 + cos* 6)] 4> — hysind =0

Differentiating with respect to k2 and setting hs = 0, 6 = 0, we obtain

o0 1
Ohy ~ 16|c|¢®
The transverse susceptibility is
Odq a9 1 =ic[—b1
X2 = Bhy = %8y~ 16jg”  16ald] T

Thus, the associated critical exponent is v = 1.
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Chapter 15

15.1

Half wavelength of deBroglie wavelength A2 =1.5x10"3cm.. The waye.
number difference between the condensates is ki —ky = 27",and the relative
velocity is

R
-~ (ky — k2) = 0.05 cm/s

15.2

From (15.16) [¢[® = ¢-1 (u— $mw?r?) | With (15.11), we put y = gng,
where ng = Ny /V . Thus

2 r?
= | R
el = g ( 167ran0'r3)
The half-width is ré+/8rang. With the data given, we obtain

a=57x10"" cm

15.3
(a)
From Prob.(10.1), the coordinate of a 1D harmonic oscillator is expressed in

terms of creation and annihilation operators through ¢ = i\/h/2mw (a —af)
Thus

h 1 1
2= gt O T
z [azax-f-Q 5 (a2 +af )J

and similarly for ¥ and z.The last two terms have no diagonal elements. There-
fore

<nf$2 +y2 +22'n> = i (n: +ny + n, + §)
mw 2

(n n) =5,

(i) = 1p,

Subtracting the two equations yields the desired result.
(¢)
In the N-boson System, the probabilit
by the fraction of particles in that state:

(b)

We know that

p? + mw?r?
2m 2

From part (a) we have

y of finding a boson in state n is given

1 1
P(n)= N Tem e b (BT 1

68

Therefore

r2 (nz +7ny+n, +1)
(rY? => (njr*|n)P (n) = ﬁ(’ — 2T exp (En/KT) - 1

n

15.4 . ) .
Estimate the transition temperature Ty by putting the chemical potential

: 3
equal to the zero-point energy: g = $hw. Thus

1
exp (hw (nz +ny +n.) /kTp) — 1

3 00
kT 1
10 d
(,»w) / ey e Ty -1

kIo — pN/3
hw

N =~ / dndn,dn.,
1]

It

and we obtain

where b is given by

1
exp(z+y+z)—1

{o o]
b3 — / dzdydz
0

15.5
(a)

In the semiclassical approximation

o 3
N = z/ dnzdnydn, exp (—-ﬂﬁw (n, +ny+n. + 5))
0
3
= z (ﬁﬁ/.u)_3 exp <—§ﬁﬁw)

Thus 5 - s . N

2 N (o) op (oo ) = (2) oo (6m)

where we have used Tp defined in Prob.15.4. The chemical potential is
3 Ta

) . - 3 t T =Tp.
We should put b ~ 1 in the spirit of this approximation, so g — $hw a 0

(b)
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)
l

—]% /dnzdnydnz (le +n, +n, + g)

X exp (—mm (nz +ny +n, + g))

= 2 3 -4 3 -3
= L (—iﬁhw) [3 (Bhw)™ + 5 (Bhw) J

We neglected the second term, and obtain

() 8kT . /T 13
O
According to (b), (r)’ is a linear function of T.
comes invalid below T =~ T, where a condensa
sate wave function is that for n
the harmonic potential of radius
constant value r3. (See sketch)

However, the formula be-
te begins to form. The conden-
= = Ny = 0, and occupies a central region in
0. Thus below T} the linear plot flattens to a

<r2s

15.6

The equation for the magnetic field is the same as that for the vector poten-
tial:

52
where A = 0 outside the medium (z < 0),

A and A = 16me’n/me? inside (z > 0).
Since B = B, outside, and B(z) must be

continuous, the solution inside is

B(z) = Byexp (—\/Xz) (z>0)
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o y—1/2
The penetration depth is A /2,

15.7

a
é‘r%)m Ohm’s law Uy — V = IR. Thus

Rk dy .
— ——— = Iy Rsin;
07 gear OV
(b)
h dp .
—— =U (1 —ksiny)
2e dt o

The left side is the voltage. When it approaches zero, we must hix;eI sing =
This is possible if £ > 1. Thus there is a nonzero current I = £~ Jo.

—i

8 o ) )
%/'irify the solution by substituting it into the equation. The dark soliton

has unifrom density at infinity n = 2b%/8ma, which fixes the constant b.

15.9
(a) The NLSE is

o h? 8%y

> s 2

The uniform solution v, is independent of z with {12 = n. Substituting ¥q =
Vnexp (—iut/h) into the equation yields y = gn.

()

T b = (/7 + f) exp (it /h)
we straightforwardly obtain the first-order equation for f.

(c)

The complex constants U and V satisfy the coupled algebraic equations

R2K2
= nl/ 4+ gnV
hoU = o U+g
RkK?
= V 4+ gnV + gnU
—hV = om +g

ituing it i Ist, we
Solving for V from the second equation and substituing it into the first,
obtain the condition

K2k? K2E2 _ ﬁw) _ (gn)z -0
( 5 +gn+ﬁw> (—_—Qm +4gn
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(c)

In the long-wavelength limit (¥ — 0), w approaches the phonon spectrum

w = ck with sound velocity

2k
¢ = —+/man
m

This corresponds to the Goldstone mode. In the short-wavelength limit (
we recover the particle spectrum fiw = k2k2/2m.
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Chapter 16

16.1
The energy residing in a mode of frequency w of the transmission line is
Fuw Fuw
E=— = - . ~ kT (1 o Jw
e =1 Bhw+ 5 (Bhw)” + - 2kT

The second term above gives the first quantum correction. As a estimate use
the fundamental mode w = m¢/L, where ¢ is the velocity of light, and L the
length of the transmission line. The Nyquist theorem becomes

— whe
V2 =4kT —
4T RAv (1 2LkT>

For L =1 mm, the correction amounts to approximately 1% at T = 300 K.

16.2

The accompanying sketch illustrates the construction that would lead to a
fractal of dimension 2.

(2) Start with a straight line of unit length.

(b) Halve the step size, and double the path length by taking more steps.
The way to do this is not unique. Pick one of the ways.

(c) In the next iteration, each previous segment is independently replaced
by a path of twice the length with half the step size.

The path length L depends on the step size T according to L o 770, with
D=2

16.3

Ignoring the possibility that two suspended particles collide with each an-
other, we can regard the suspension as an ideal gas in equilibrium with. the
medium, which acts as a heat reservoir. Therefore its partial pressure obeys
the ideal gas law.

16.4



It is straightforward to show that

n(z,t) = exp (~z*®/4Dt)

1
4Dt
satisfies the diffusion equation. To show the initial condition, note ]

{3 &2

n(x,t) >

and, for all ¢ # 0,
QO
/ drn(z,t) =1

o
Therefore
n(z,t) s é(z)
16.5
(a)

For the Brownian particles: D = 4 x 10~%cm? /s.

For Oy: D ~ 0.1cm?/s

Thus an Oy molecule will travel Vi X101 ~ 10 cm.
(b)

From Einstein’s relation n = D /kT.
F=u/n=kTu/D ~ 10-3dyne,

16.6
Perrin obtained Ay =T7.05 x 10%3, which would have led to
_ 8.32x108 1 »
= Torxi0m = L18X107% cgs (Modern value:1.381 x 10 )
2.9 x 104

e = 705 <108 = 414X 107" cgs (Modern value: 4.803 x 10~19)

16.7
(a)
Substitute j = —DVn, into the continuity equation V- j + on/ét = 0 to
obtain 5
n

—-DV?p, 4+ 5 =0
(b)

With a drift current produced by a uniform constant external force F.y,
The total particle current is

j=_Dvn+%Fext

74

where 7 is the mobility. Thus the diffusion equation generalized to

on
—DVin+ %Fext -Vn+ e 0

(©

The absorption,contributes a term —V(r)n to Eh(.a rate of chgnge (;)f th% ‘;:.r;
ticle density. From this point of view, tl_le Schrodinger equatlop escri

st in imaginary time, with absorption, of the wave functlog 'L/) Wha_t
igjéosumtm mechanics distinctive is that 1 is a complex probability ampli-

tude, and not a probability.

7



Chapter 17

17.1

If the showers are distributed at random, the probability that one oceurred
on Tuesday would be 1/7, and the probability that it did not occur would be
6/7. The probability that none of the 12 showers occur on Tuesday would be
(6/7)'? = 0.157. Better bring the umbrella.

17.2

If parking tickets were issued at random, the probability of getting 12 tickets
on two days of the week would be (2/7)!2 = 3 x 10~7. This is so small that we
must reject the assumption that tickets were given out at random, and advise
the student to use a parking lot on those days. Of course, this assumes that the
police maintains the same tactic.

173

What determines whether the man goes north or south is the correlation
between northbound and southbound trains, as illustrated in the sketch. If he
enters the station during the interval z, he goes north. Otherwise he goes south.
Since he went north 70% of the time, we conclude z = (.7.

Northbound

1-x i r—’ l-_" ime
| ] JTm

Southbound

17.4

Generate a sequence of random number between 0 an 1. Divide the interval
(0,1) into say 10 equal bins, and keep a running score of the number of random
numbers in each bin, as they are being generated. At the end of the run, plot
a histogram of the numbers in each bin. If the sequence is truly random, the
histogram should fit a Poisson distribution..

17.5

The current-voltage characteristic of the device is shown in the accompa-
nying sketch.
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Let the probability of finding the voltage to have a value between V' and

P(V)dV.
Y +Lgtk}’12 pfob)ability of finding the current to have a value between I and

T be QX(I)dl.
! +Tdhe Smc?rg:n)t is never negative. So Q(I) =0 for I < 0. For I > 0, we have
v Vo I>0
o =PW =PV (>0
where

I
V=Voln(1+1—0)

In the range V < 0, we must have
0

/ i dIQ(I) = / dVP(V)=a

Thus Q(I) should contain a term a§(I). The complete result is

Mo 4 as(I) (I>0)
Q(I)={ Pz +oD) (1<0)

17.6
Let the probability density for y be Q(y). We have

[ waw)=[ P

here £ = ,/y/b. The integrands on both sides are zero for negative argurments.
W = .
Thus . 2 . 1

Y 2\ _ A
/ dy'Q(y') = /0 dz' — exp (— 5 ) exp ( 2ab)

0

Differentiating this gives

QW = 5500 (-55) @20

7



Chapter 18

18.1
(a)

Sw) = /_ deeﬁ“fc(f)

The = » / ~ dreir / G FO)F(t+ ) + 2m6() I

= v|f2] + 2mé(w) I

where I = v [% dtf(t)] =v J25, dif(t) by Campbell’s theorem (17.29)..
(b)

Jo = [§7 dtem=2 = (jw — X)7*,
I=v [{°dte>t = y/A.
v 2nv?
w? 4+ A\? + 22 5(w)
The white-noise component is /A%, the first term in the limit \ > w.

S(w) =

18.2

We can use the result of Prob.18.1(a), with
fo = J20 dte () — [ dto(t) = q.
I= foooo dip(t) = vq.

S(w) vat 222 6(w)

18.3
(a)
I(t) and I(t + 7) are the same if there are an even number of sign changes

during T and equal but opposite if there are an odd number of sign changes.
Thus

<I(t)I(t + T)) = (12 (Peven - Podd)
(b)

The probability that there are k crossing in the time interval 7 > 0 is given
by the Poisson distribution

wn)* ..
P(k;v) = PR
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The probability there are an even and odd number of crossings are given re-
spectively by

2 4
Peven = eV (1 + (UT) + (UT) +-- )

ST
—uT (VT)3 (l/’l')5
Poaa = e (VT+—-—3! +___5! R
Thus for 7 >0
2 vr)® o
(IRIE+7)) =a%e™" (1—1/7-{-9—/21!)— - _(_3_')_. Ger | = q2e2

] - _ = (I{t)I(t + |7})) by invariance
<0, then (I(t)I(t+7)) = (I(t = |THI(®)) = (I( :
g:ime tra.nsla.ti<on. Thus the general answer is obtained by replacing 7 by |7]{.

()

oo 2 TWT—UT 2 d LWT+UT
/ dr(I{t)It+7))=a /Odee +a /:o e

Sw) =
o iWwT—LUT 21/0'2
= 2a2Re/; dre* =3 ey
18.4
From (18.2)

Wi(3,1,2) = / dz,Wa(3,1,4,2)
From (18.21) and (18.26)

Wa(3,1,2) = Wa(3,1)P(3,1]2) = Wa(3,1)P(1|2)
W4(;,(1,4,2; = Wz(3,1,4)P(3,1,4;2)=W3(3,1,4)P(4!2)
= Wa(3,1)P(114)P(4]2)

Substituting these into the last equaton we obtain
WaB,DP(R) = [ draWa(3 DPOIOPEAR)
P(1}2) = /da:4P(1|4)P(4|2)

18.5
(a)



The diffusion equation is invariant under space-time translations. The solu-
tion in Sec.16.5 was base on the choice z = 0 and ¢ = 0 for the space-time origin.
We can generalize the result by replacing z,t by = — zg, t — tg, respectively.

(b)

Denote

of o l s
P(il7) = m exp ( WT—?J_))

First show, for n =2,

P(2/0) = / dzy P(2)1) P(1]0)

The right side is

_ 1 N R R e )
X_47TD'\/(t2-t1)(t1—to) [mdzl xp( 4D ( tQ'—tl tl—to ))

The exponent can be wrtiten as
1 z3 " z3 A 224 2B -
4D \ty—t; " t1—-t,) 4D \T1T g™

1 i 1
ta—t;  t1—t
Z2 Zo
ty — t; + ty —tg

where

Perform the integral, we obtain

. VArDJA ( 1 ((xz —21)" (21 -m)® Bj))

4Dt~ ) (s = fo) 4D\ th-4 ti—to A

1 (.’L‘Q - 230)2
VErD(t — ) ¥ (‘ 4D(t; — to))

Next show that the result for n — 1 implies that for n, where n > 2. The
integrals one has do is similar to the one above.

18.6
The instructions are fairly explicit.

18.7

Compute the thermal average of the total magnetic moment M. as a function
of temperature 7. It is easy to obtain a rough value for T, but it is difficult to
attain precision, for the transition will not be sharp, owing to the finite lattice
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size. When one increases the lattice size, the system will take.longer and longer
to a-tta.in thermal equilibrium near the critical point3 becausg it f:ake longer and
longer for large blocks to flip due to thermal fluctuations. This difficulty is knovxi
as “critical slowly down”, and is of course the essence of sp.onta.neous sy_mmet.rjy
breaking. To overcome this, one has to imprqve the a.lgonthJ‘n by making trial
flips of not just single spins, but blocks of spins of random sizes.
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