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Preface

This book is intended as a text for undergraduates in the atmospheric sciences. The
students are expected to have some calculus, general chemistry and classical physics
background although we provide a number of refreshers for those who might have
less experience or need reminders. Our students have also had a survey of the
atmospheric sciences in a qualitative course at freshman level. The primary aim of
the book is to prepare the student for the synoptic and dynamics courses that follow.
We intend that the student gain some understanding of thermodynamics as it applies
to the elementary systems of interest in the atmospheric sciences. A major goal is
for the students to gain some facility in making straightforward calculations. We
have taught the material in a semester course, but in a shorter course some material
can be omitted without regrets later in the book. The book ends with two chapters
that are independent of one another: Chapter 8 on thermochemistry and Chapter 9
on the thermodynamic equation.
This book is the result of teaching an introductory atmospheric thermodynamics

course to sophomores and juniors at Texas A&M University. Several colleagues
have taught the course using earlier versions of the notes and we gratefully
acknowledge Professors R. L. Panetta, Ping Yang, and Don Collins as well as
the students for their many helpful comments. In addition, we have received useful
comments on the chemistry chapter from Professors Sarah Brooks, Gunnar Schade,
and Renyi Zhang. We also thank Professor Kenneth Bowman for many fruitful
discussions.We are grateful for financial support provided by the Harold J. Haynes
Endowed Chair in Geosciences.
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1

Introductory concepts

The atmosphere is a compressible fluid, and the description of such a form
of matter is usually unfamiliar to students who are just completing calculus
and classical mechanics as part of a standard university physics course. To
complicate matters the atmosphere is composed of not just a single ingredient, but
several ingredients, including different (mostly nonreactive) gases and particles in
suspension (aerosols). Some of the ingredients change phase (primarily water)
and there is an accompanying exchange of energy with the environment. The
atmosphere also interacts with its lower boundary which acts as a source (and
sink) of friction, thermal energy, water vapor, and various chemical species.
Electromagnetic radiation enters and leaves the atmosphere and in so doing it
warms and cools layers of air, interacting selectively with different constituents
in different wavelength bands.
Meteorology is concerned with describing the present state of the atmosphere

(temperature, pressure, winds, humidity, precipitation, cloud cover, etc.) and in
predicting the evolution of these primary variables over time intervals of a few
days. The broader field of atmospheric science is concerned with additional themes
such as climate (statistical summaries of weather), air chemistry (its present, future,
and history), atmospheric electricity, atmospheric optics (across all wavelengths),
aerosols and cloud physics. Both the present state of the bulk atmosphere and
its evolution are determined by Newton’s laws of mechanics as they apply to
such a compressible fluid. Dynamics is concerned primarily with the motion of
the atmosphere under the influence of various natural forces. But before one can
undertake the study of atmospheric dynamics, one must be able to describe the
atmosphere in terms of its primary variables. An essential tool needed in this
description is thermodynamics, which helps relate the fundamental quantities of
pressure, temperature and density as atmospheric parcels move from place to place.
Such parcels contract and expand, their temperatures rise and fall; water changes
phase, back and forth from vapor to liquid to ice; chemical constituents react,
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2 Introductory concepts

etc. The key to understanding these changes lies in applications of the laws of
thermodynamics which relate these changes to fluxes of energy and other less
familiar functions which will be introduced as needed.

1.1 Units

The units used in atmospheric science are the Standard International (SI) units.
These are essentially the MKS units familiar from introductory physics and
chemistry courses. The unit of length is the meter, abbreviated m; that for mass
is the kilogram, abbreviated kg; and for time the unit is the second, abbreviated s.
The units for velocity then are m s−1. The unit of force is the newton (1 kgm s−2,
abbreviated N). Tables 1.1–1.2 show the SI units for some basic physical quantities
commonly used in atmospheric science.
The unit of pressure, the pascal (1 Nm−2= 1 Pa), is of special importance in

meteorology. In particular, atmospheric scientists like the millibar (abbreviated
mb), but in keepingwith SI units more andmoremeteorologists use the hectopascal
(abbreviated hPa, 100 Pa= 1mb). The kilopascal (1 kPa= 10 hPa) is the formal SI
unit and some authors prefer it. One atmosphere (abbreviated 1 atm) of pressure is

1 atm = 1.013 bar

= 1013.25mb

= 1013.25 hPa

= 101.325 kPa

= 101325 Pa

= 1.01325× 105 Pa (1.1)

and 1mb = 1 hectopascal = 100 Pa. In some operational contexts and often in
the popular media one still encounters pressure in inches of mercury (in Hg) or
millimeters of mercury (mmHg); 1 atm = 760.000mmHg = 29.9213 inHg.
The dimensions of a quantity such as density, ρ, can be constructed from

the fundamental dimensions of length, mass, time and temperature, denoted by
L,M,T,Temp respectively. The dimensions of density, indicated with square
brackets [ρ], areML−3. In the SI system the units are kgm−3. Many quantities are
pure numbers and have no dimension; examples include arguments of functions
such as sine or log. The radian is a ratio of lengths and is considered here to be
dimensionless.
Temperature in SI units is expressed in degrees Celsius, e.g. 20 ◦C; or Kelvin,

e.g. 285K. We say “ 285 kelvins” and omit writing the superscript “◦” when
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Table 1.1 Useful numerical values

Universal
gravitational constant 6.673×10−11Nm2 kg−2
universal gas constant (R∗) 8.3145 JK−1 mol−1
Avogadro’s number (NA) [gram mole] 6.022 ×1023 moleculesmol−1
Boltzmann’s constant (kB) 1.381 ×10−23 J K−1molecule−1
proton rest mass 1.673 ×10−27 kg
electron rest mass 9.109 ×10−31 kg
Planck’s constant 6.626 ×10−34 J s
speed of light in vacuum 3.00× 108 m s−1

Planet Earth
equatorial radius 6378 km
polar radius 6357 km
mass of Earth 5.983× 1024 kg
rotation period (24 h) 8.640× 104 s
acceleration of gravity (at about 45◦N) 9.8067m s−2
solar constant 1370 Wm−2

Dry air
gas constant (Rd) 287.0 JK−1kg−1
molecular weight (Md) 28.97 gmol−1
speed of sound at 0 ◦C, 1000 hPa 331.3m s−1
density at 0 ◦C and 1000 hPa 1.276 kgm−3
specific heat at constant pressure (cp) 1004 JK−1 kg−1
specific heat at constant volume (cv) 717 JK−1 kg−1

Water substance
molecular weight (Mw) 18.015 gmol−1
gas constant for water vapor (Rw) 461.5 JK−1kg−1
density of liquid water at 0 ◦C 1.000×103 kgm−3
standard enthalpy of vaporization at 0 ◦C 2.500×106 J kg−1
standard enthalpy of fusion at 0 ◦C 332.7 kJ kg−1
specific heat of liquid water 4179 kJ kg−1 K−1

STP T = 273.16K, p = 1013.25 hPa

using degrees kelvin. In operational meteorology we sometimes find temperature
expressed in degrees Fahrenheit, e.g. 70 ◦F.
Each side of an equation must have the same dimensions. This principle can

often be used to find errors in a problem solution. The argument of functions such
as the exponential has to be dimensionless.

1.2 Earth, weight and mass

The Earth is an oblate spheroid, with slightly larger diameter in the equatorial plane
than in a meridional (pole-to-pole) plane. The distance from the center to the poles
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Table 1.2 Selected physical quantities and their
units

Quantity Unit Abbreviation

mass kilogram kg
length meter m
time second s
force newton N
pressure pascal Pa = Nm−2 = 0.01 hPa
energy joule J
temperature degree Celsius ◦C
temperature degree Kelvin K
speed m s−1
density kgm−3
specific heat J kg−1 K−1

Table 1.3 Greek prefixes applied to SI units

Prefix Numerical meaning Example Abbreviation

nano 10−9 nanometer nm
micro 10−6 micrometer µm
milli 10−3 millimeter mm
centi 10−2 centimeter cm
hecto 102 hectopascal hPa
kilo 103 kilogram kg
mega 106 megawatt MW
giga 109 gigawatt GW
tera 1012 terawatt tW

Table 1.4 Selected conversions to SI units

Quantity Conversion

energy 4.186 J = 1 cal
1 kWh = 3.6×106 J

pressure 1 atm = 760mm Hg
1 atm = 29.9213 in Hg

distance 1m = 3.281 ft
temperature T (K) = T (◦C) + 273.16

T (◦F) = 9
5T (◦C) + 32

T (◦C) = 5
9 (T (◦F) − 32)
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Table 1.5 Some relationships
between SI units

Quantity Equivalent

1N 1 kgm s−2
1 J 1 kgm2 s−2
1 Pa 1Nm−2

is 6356.91 km and the radius in the equatorial plane is 6378.39 km.About two thirds
of the Earth’s atmosphere lies below 10 km above the surface, hence the atmosphere
and the oceans (depth averaging 4–5 km) only form a very thin skin of about 1/60
the radius of the sphere.
The weight of a mass is the force applied to that mass by the force of gravity. It

may be expressed as the mass in kilograms times the acceleration due to gravity,
g = 9.81m s−2:

W = Mg [weight and mass]. (1.2)

Weight is expressed in newtons, abbreviated N; N = kgm s−2. The acceleration
due to gravity varies slightly with altitude above sea level

gz = g0(1− 3.14× 10−7z) z in meters. (1.3)

There is also a slight variation (< 0.3%) with latitude due to the ellipsoidal
shape of the Earth (due to both centrifugal force and the equatorial bulge). In
most meteorological applications these variations are negligible. However, in
calculations of satellite orbits such variations are extremely important.

Example 1.1 The density of water in old fashioned units (cgs) is

ρwater = 1 gram

cm3
.

To express this in SI units, we can multiply by

1 = 1 kg

103 gram
= unity (no dimension).

We obtain:

ρwater = 1
kg

103 cm3
= 1

kg

liter
.
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This gives us an intuitive measure of the kilogram. Now we can multiply by

1 =
(
102 cm

1m

)3
.

The final result is

ρwater = 103 kgm−3. �

Physics refresher: vertical motion of a particle The acceleration due to gravity is
g = 9.81m s−2. A particle falling from a height z0 with no initial velocity, has a
velocity −gt after time t. After the same time interval it will have fallen 1

2gt
2 meters.

These are both obtained by simple integration:

vz(t) =
∫ t
0

−g dt = −g
∫ t
0
dt = −gt, since g = constant (1.4)

and

z(t) − z(0) =
∫ t
0

vz(t) dt =
∫ t
0

−gt dt = −1
2
gt2. (1.5)

More vertical motion mechanics The minimum work necessary to lift a particle a
vertical distance z against the force of gravity is force × distance = Mgz (Mg is the
weight or vertical force necessary to lift the mass without accelerating it). This work
done in lifting the particle is equal to the change in its potential energy Mgz. If the
particle is released, work will be done by the gravitational force applied to the
particle. The kinetic energy of the particle during its fall is 12Mv2. The conservation
of mechanical energy says the sum of these two forms of energy is conserved:
E = PE + KE = constant, or more explicitly

1

2
Mv20 + Mgz0 = 1

2
Mv2t + Mgzt (1.6)

where the subscript 0 denotes the initial time and the subscript t denotes evaluation at
a later time.
The conservation law is derived by first writing Newton’s Second Law:

Mdvz
dt

= Fz = −Mg. (1.7)

Now multiply through by v dt and integrate with respect to t. The left-hand side
becomes



1.3 Systems and equilibrium 7

∫ t
0

vMdv

dt
dt = 1

2
Mv2t − 1

2
Mv20. (1.8)

On the other side of Newton’s equation we have∫ t
0

−vMg dt =
∫ zt
z0

−Mg dz = −Mg(zt − z0). (1.9)

Equating these expressions gives our answer (1.6).

1.3 Systems and equilibrium

Thermodynamics is the study of macroscopic or bulk systems of masses and
their interrelations under conditions of steady state (no dependence on time). By
macroscopic we mean the system contains large numbers of individual molecules
(within a few orders ofmagnitude of amole1 which contains 6.02×1023 molecules).
We call these states equilibrium states if they are not only time independent but
also stable under small perturbations. Thermodynamic states are describable by a
set of dimensional quantities which we refer to as coordinates. Thermodynamics is
concerned with the changes in energy-related quantities (certain of the coordinates)
when the system undergoes a transition from one state to another.A thermodynamic
system is a region of space containing matter with certain internally uniform
properties such as pressure and temperature.We will be concerned with the interior
of the system and the variables (coordinates) that characterize it. For example,
a mass of pure gas (only one chemical species) contained in a vessel may be
characterized by the pressure it exerts on the walls of the vessel, the volume
of the vessel and the temperature ( p,V , T ). These comprise the complete set of
thermodynamic coordinates for this particular system. For more general situations
such as mixtures of species or phases, the coordinates necessary to describe the
state have to be determined experimentally. It is important to note that an individual
thermodynamic system is uniform in its interior. There are no gradients of pressure
or temperature, for example, inside the system.2

1 The mole is an SI unit defined as the number of carbon atoms in a mass of 0.012 kg of pure carbon. The
number of moles of a substance is the number of multiples of this number (known as Avogadro’s number:
NA = 6.02× 1023). In formulas the unit is designated as “mol.”

2 Note that a column of air in the atmosphere is not a simple thermodynamic system because its pressure and
temperature vary with altitude. However, it is convenient to consider the column as composed of thin slabs,
each of which contains substance with approximately uniform temperature, pressure and composition. Then
each individual slab may be considered as a simple thermodynamic system for many purposes.
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1.3.1 Examples of thermodynamic systems

Gas in a vessel Suppose a container holds a gas of uniform chemical composition. Let
the walls of the container be thermally insulating and let the volume be fixed. In a very
short time after fixing these conditions the gas will come to values of temperature and
pressure that are uniform throughout and independent of the shape of the container.
This is the simplest thermodynamic system in a state of equilibrium.
A second case is where the container’s walls are held at a fixed temperature and the

pressure is allowed to vary. Equilibrium will be established such that the temperature
of the gas becomes equal to that of the surrounding walls, the volume is given and
the pressure comes to some value that we can estimate.
A third case is where the container has a frictionless movable piston that is pushed

upon externally by a fixed pressure (such as the atmospheric pressure). This means
that the pressure in the vessel is held fixed along with that of the temperature. The
piston will shift in such a way to make the pressure inside equal to that outside, and
the volume will change until all these conditions are met.
Our gas might not be homogeneous, but instead it might be composed of a mixture

of chemically noninteracting gases, such as those in our atmosphere: nitrogen, oxygen
and argon. We still have a thermodynamic system as long as the composition does
not vary from location to location or from time to time. In each of the above cases let
two of the following be fixed: volume, temperature, or pressure. Then the remaining
variable is allowed to find its equilibrium value. Note that once in equilibrium, the
variables or coordinates are uniform throughout the vessel.

Two-phase system Suppose we have a liquid of uniform chemical composition such
as water in our vessel and vacuum above the liquid surface. Let the temperature and
volume be fixed. After a sufficient adjustment time some liquid will have evaporated
into the volume above its surface and an equilibrium will be established (the flux of
water molecules leaving the surface becomes equal to the flux entering and sticking
to the surface). There will be a gas pressure exerted on the walls by the vapor that
evaporated from the liquid surface. This is a two-phase systemwith liquid and gaseous
phases, but only one component (water) which depicts the number of distinct chemical
species. The pressure throughout will be uniform (ignore the pressure increase as
a function of depth due to gravity in the liquid). The temperature will also be
uniform throughout both phases of the system. This two-phase configuration is also a
thermodynamic system. The system can be made to pass through changes in volume,
temperature, etc., to establish new thermodynamic states of equilibrium. Note that
the temperature and pressure are uniform throughout but the density varies from one
phase to the other. As we shall see in a later chapter there is another quantity that
is also uniform in the two-phase system called the specific Gibbs energy (chemical
potential in the chemical literature when expressed as molar Gibbs energy). It acts as
an intensive variable (see Section 1.5) in such multicomponent systems similarly to
pressure or temperature.
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Aqueous solutions Imagine a vessel filled with water (at a fixed temperature and
pressure) and some salt is placed in the liquid. If we continue to put more salt into
the water eventually some salt will remain in crystal form sinking to the bottom
(but ignore gravity otherwise). We will have established an equilibrium between the
saturated saline solution and the precipitated crystalline salt.Achange in temperature
will result in a new equilibrium state with a different concentration of salt in solution
(concentration of a species in solution is another thermodynamic coordinate). This is
an example of a thermodynamic system. Variations on this include allowing the water
vapor above the liquid to be in equilibrium with the saline solution. The presence
of salt in solution will alter the vapor pressure over the liquid surface (as well
as the freezing temperature). As the temperature changes the vapor pressure will
change, etc.

Chemical equilibrium Imagine a gaseous mixture in our vessel at fixed temperature
and pressure composed of O and O2. There will be a reaction

O+ O2 +M → O3 +M, (1.10)

where M is a background molecule used to carry away momentum (e.g., O2, N2 or
Ar in the atmosphere).3 Some ozone will decay and after a while there will be an
equilibrium established and the reaction can be written:

O+ O2 +M � O3 +M. (1.11)

The amount of reactants (the left-hand side) may bemore than the amount of products
(right-hand side) for a given temperature. But as the temperature is changed the
balance may shift. This is a thermodynamic system. The ratio of O2 to O3 is now a
thermodynamic coordinate along with T , p,V ,Mtotal.
Of course, there are many other types of thermodynamic systems, and we will

encounter several of them in due course.

Everything outside the system which may affect the system’s behavior is
called the surroundings. In atmospheric science, we can often approximate an
infinitesimal volume of gas embedded in the natural atmosphere as having uniform
interior properties. When appropriate, such an infinitesimal volume element can be
considered as a thermodynamic system. In many cases the “infinitesimal volume
element”might be as big as a classroom or sometimes as small as a cubic centimeter
depending on the application.
A thermodynamic system composed of a very large mass is called a reservoir

and is characterized by a temperature, TR. If a finite system is brought into contact
with the reservoir through a diathermal membrane (one which allows the passage

3 Energy and momentum cannot be conserved simultaneously when two bodies go to one with a release of energy.
A third body in the collision can provide the means of conserving both.
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Figure 1.1 Isotherms for 1 kg of dry air taken as an ideal gas. The vertical
coordinate is pressure in hPa, the abscissa is volume in m3. Upper curve, 300K;
lower curve, 200K.

of thermal energy,4 but not mass), the smaller system will adjust the values of its
coordinates (for a gas, p,V , T ) to new values, while the reservoir does not change
its state appreciably (this actually defines howmassive the reservoir has to be). The
system is said to come into thermal equilibrium with the reservoir (its temperature
approaches that of the reservoir). In the case of a gaseous system, experiments
have shown that there is a locus of pairs of values (V , p) for which the system is
in equilibrium with a given reservoir – in other words, a curve p = pT (V ) in the
V–p plane. To put it another way, if our system has a certain fixed volume, then
when it is brought into contact with the reservoir of temperature T , the pressure will
always come to the same value, p = pT (V ).As we do the experiment with different
control volumes we can sweep out the locus of points in the V–p plane. This curve
is called the isotherm of the system for that reservoir temperature (Figure 1.1). The
isotherm represents a series of equilibrium states that can occur while the system
is in contact with the reservoir (of fixed temperature). For example, the volume
might be forced to alter by a change in the wall dimension (e.g., a piston can have
different positions in a cylinder which contains the system in question). In this case
the pressurewill change as a function of volume along the isotherm.Whilewe could
invent an algorithm based upon a series of reservoirs of different temperatures to
build a temperature scale, it will suffice for our present purposes simply to use the
familiar thermometer.

4 Thermal energy refers to the microscopic motion of molecules in the system. When in diathermal contact, the
thermal energy of molecules from one system can pass from the system to its neighbor through collisions. In
time the thermal energies of the two systems will equalize. More on this in later chapters. The transfer of thermal
energy is loosely referred to as heat transfer.
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Figure 1.2 Isotherm and adiabat for 1 kg of dry air taken as an ideal gas. The upper
curve (solid line) is the 300K isotherm and the dashed curve is the adiabat passing
through the 300K isotherm at V = 1m3. The vertical coordinate is pressure in
hPa, the abscissa is volume in m3.

A system can also be in equilibrium when isolated (no mass or thermal energy
flows into or out of the system) from other systems.We call this an isolated system.
It can have coordinates just as in the case of a system in contact with a reservoir.
We call the locus of values of pressure in the isolated system for different volumes
of the system adiabats (Figure 1.2). We could find the temperature of the isolated
system at fixed values of p andV by bringing it into contact with different reservoirs
until we find one which does not cause the coordinates of the system to change.
The system has the same temperature as this reservoir. In this way we could map
out the locus of points defining the isotherm which crosses the adiabat at the point
in question. As a simpler alternative, we could insert a thermometer, whose mass
is so small that it will come to equilibrium with the system (which now acts as a
reservoir with respect to the tiny thermometer) without disturbing the state of the
system appreciably.
States of thermodynamic equilibriummust not involve time. They are steady and

only require a knowledge of the thermodynamic coordinates such as temperature,
pressure and volume. When the “states” traversed by a system involve the time
we cannot use thermodynamic equilibrium states to describe them. Conventional
thermodynamics cannot be used to describe what goes on in states that are not in
equilibrium.
Certain changes of a system can be made to occur through a sequence of

infinitesimally nearby equilibrium states. For example, we might bring the system
into contact one at a time with a series of reservoirs of infinitesimally differing
temperatures, and at each step we wait for equilibrium to be established. We call
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this a quasi-static process. Such quasi-static processes can be approximated in the
laboratory. From a molecular point of view the gas in the interior of the system
has to have time during each infinitesimal shift of the constraints to adjust to
a new equilibrium with its surroundings. In a gas this is roughly the time for a
typical molecule to make a few hundred collisions, but over a finite sized volume it
might be more appropriate to use the time for sound waves to traverse the volume
several hundred times. This multiple pass traversal time works for pressure, but
other properties might take considerably longer. For example, temperature and
species concentrations smooth out much more slowly because these differences
are smoothed out by diffusive processes such as thermal conduction. Stirring due
to turbulence can speed up the homogenization but even then the adjustment is
slower than for pressure differences. At each infinitesimal step (waiting for these
adjustments) along such a system path, we could reverse direction and retrace the
same steps. This is a reversible process.
Note that a system may go from one thermodynamic state to another by a path

which does not involve such a sequence of thermodynamic states. We call this an
irreversible change in state. An example of an irreversible process is the case of
a system which goes from state A to state B spontaneously, but not from B to A.
A concrete example is if two bricks, one hot and one cold, are brought into contact,
the result is two warm bricks. This is an irreversible process. Note that it never
happens that when we bring two warm bricks into contact we end up with a warm
brick and a cold brick (even though energy is conserved).
Reversible processes do not actually occur in nature. So why study them? The

reasons are pretty simple. First of all, irreversible processes are nearly impossible to
treat theoretically. Secondly, experience has shown that approximating the nearly
quasi-static processes that do occur in nature works reasonably well in many cases
whenwe treat them as exactly quasi-static.We proceed then to adopt the philosophy
used by practitioners for many years: we will freely approximate many processes in
the real atmosphere by idealized reversible analogies in order to obtain numerical
results that can be used in practical situations.

1.4 Constraints

An important concept in the study of thermodynamic systems is that of constraints.
This notion is best illustrated by example. Consider the gas in a cylinder whose
volume is determined by the position of a piston as in Figure 1.3. Several
constraints are operative in this case. Most obvious is the position of the piston.
It constrains the volume to have a certain value. If the piston is removed by a
small amount the constraint is said to be relaxed. Note that a force must be applied
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GAS

ADIABATIC WALLS

PISTON

Figure 1.3 Schematic diagram of a gas filled cylinder with adiabatic walls and a
movable piston.

(actually relaxed, then gradually reapplied) externally to implement this change in
the constraint. If the piston is removed by a small amount, some agent must perform
work to restore it to its original position. Similarly, the walls that are impervious to
the transfer of thermal energy form a constraint. If a leak of thermal energy were to
occur, such as on bringing the system into contact with a temperature reservoir at a
slightly different temperature, this constraintwould be said to have been relaxed and
the thermodynamic coordinates of the system will have to be changed to restore
the original temperature. Thermodynamic systems are always subject to certain
constraints and their nature and number are essential ingredients in the description
of the system and its state.
Consider two thermally isolated chambers adjacent to one another separated by

a partition. On one side is gas A and on the other is gas B. Let the chambers have
the same temperature and pressure. The partition forms a constraint restricting the
two gases from mixing. If the partition is removed, the constraint is relaxed and
the two systems will pass through nonequilibrium states to their final well-mixed
equilibrium state. The irreversible process following removal of the constraint
represents onewhich for ideal gases involves no changes in pressure or temperature,
but external work must be performed to restore the original conditions.

1.5 Intensive and extensive quantities

Consider a thermodynamic system. The interior properties of the system are
uniform. Now, imagine subdividing the system into two equal parts (say, two
warm bricks in contact). If a variable is the same for the two individual parts
(e.g., pressure, temperature, chemical composition, density, etc.), the variable is
an intensive variable. On the other hand, if the thermodynamic variable for each
subsystem is proportional to the mass of the constituents in that subsystem (e.g.,
volume, mass), we call it an extensive variable.
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Figure 1.4 Schematic diagram of a gaseous pressure reservoir in contact with a
small system. The membrane between the system and the pressure reservoir is
movable so that the two systems can adjust their volumes in such a way that the
pressures equalize.

Example 1.2 An example of an isolated system is a 1 kg mass of gaseous O2,
confined in a box with thermally insulating walls. Suppose the volume is 1m3.
This means the density of the gas is 1 kgm−3. If the temperature of the gas is given,
say 300K, then the pressure will be determined (this is an experimental fact). The
thermodynamic coordinates of this (pure) system are: V , the volume;M, the mass;
T , the temperature; and p, the pressure. �

Example 1.3 A thermodynamic system might be in thermal equilibrium with a
reservoir. In the case of the mass of O2 gas in a fixed volume of 1m3, take the
gas to be in thermal contact with a reservoir at 350K. The pressure will be quite
different from the last example. �

Example 1.4 We might have a pressure reservoir. Consider the box of gas to be in
contactwith a reservoirwith a slidable interface, such that the pressures can equalize
between the two systems. Let the system otherwise be insulated thermally from the
reservoir and the rest of the universe. If the gas has a given temperature initially, it
will expand or contract until its pressure equals that of the reservoir (please let it
happen gradually). The volume and temperature of the gas may change in order to
establish equilibrium with the pressure reservoir (see Figure 1.4). �

1.6 System boundaries

Before setting up a problem in thermodynamics it is extremely important to choose
the part of the universe you want to call your system. It might be a mass of matter or
it might be a certain volume in space. As in the atmospheric examples the mass or
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volumemight be inmotion. If we are considering amass in space with no additional
matter allowed to enter or leave this fixed mass we say it is a closed system. In the
fixed volume case mass might enter or leave. We call this an open system.

Calculus refresher: the exponential function The function y(x) whose derivative
is itself is called the exponential function:

dy

dx
= y. (1.12)

Suppose we try y = ax. Then

�y

�x
= ax+�x − ax

�x
= ax

a�x − 1

�x
. (1.13)

The factor on the right must tend to unity as�x → 0. It will be more easily seen if we
let �x = 1/N where N is an integer. A little rearrangement yields

a∞ = lim
N→∞

(
1+ 1

N

)N
(1.14)

and the number a∞ is given the symbol e whose numerical value turns out to be
2.718281. . .. To see how the limit comes about call the approximate value of
a∞ = eN . Simple computation gives, e5 = 2.48832, e10 = 2.59374, e100 =
2.70481, e1000 = 2.71692, and e10000 = 2.71815 . . ..
Note that e0 = 1, e−1 = 0.367879 . . ., and ex is called the exponential function. We

can easily derive a few properties of y = ex. From its definition, dex/dx = ex, and we
can use the chain rule to show that deαx/dx = αeαx.
The function e−αx decreases exponentially from a value of unity at x = 0 to a value
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Figure 1.5 The exponential function ex as a function of x.
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Figure 1.6 The decaying exponential function e−x as a function of x.

of e−1 = 0.367879 . . . at x = 1/α, which is called the e-folding distance if x is a
distance or the e-folding time or time scale if x is a time, see Figures 1.5 and 1.6.

1.7 Thermodynamics and atmospheric science

The plan of this book is to present the subject of thermodynamics in such a
way as to help us better understand the atmosphere, but also to give us some
rules and methods that can be used in the practical application of atmospheric
science. Thermodynamics is a huge subject more than a century old, treated
by excellent textbooks in physics, physical chemistry, chemical engineering,
mechanical engineering, etc. We cannot possibly cover all the material in these
fields. We cannot even cover all the basic theory of thermodynamics in a short
course intended for students majoring in atmospheric sciences – especially at
the sophomore/junior year level for undergraduates, where not much science and
mathematics can be required prerequisites. Some compromises will have to be
made. This means those who want to delve deeper into some of the derivations will
have to check elsewhere among the many sources listed at the ends of chapters.
Sometimes we will limit derivations or justifications to the point that it is clear
that enough information is there to determine that such and such a formula can be
derived by the methods already discussed.
So what problems in atmospheric science can be addressed by thermodynamics?

After all we have seen already that thermodynamics consists of a set of laws
applicable under conditions that are so idealized that they are rarely attainable
even in the laboratory let alone in nature. The processes that occur in nature
are spontaneous and virtually never do we find a system (perhaps our leading
application consisting of a parcel of air) in true thermodynamic equilibrium. The
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answer to these questions is that thermodynamics affords us a useful framework
in which some approximate calculations can be conducted. Over the years these
approximate results have proven to be useful.
The following is a list of applications that we will work on in this book.

Gaseous mixtures These occur in nature since the atmosphere is composed mainly
of several relatively inert gases (at typical atmospheric temperatures anyway) and
several other gaseswhichoccur in trace amounts (i.e., ozone,methane, carbondioxide,
even water vapor). We will be concerned with how the pressures of these individual
gases add up to the total pressure and how the density of a local blob (or parcel) of
the gas might differ from that of its surroundings, which might give rise to parcels
lifting themselves from their present altitudes to somewhere above, just how high
and how fast depending on the parcel’s thermodynamic properties and those of the
surroundings.

Liquid–vapor equilibria Water exists in all three phases in the atmosphere. We
would like to know how the pressure of water vapor above liquid surfaces varies
with temperature. We would like to have useful ways of describing the amount of
water vapor in the air (humidity) and how this affects the air’s buoyancy and how
condensation leads to release of thermal energy and therefore changes in buoyancy.
Other related issues treatable in thermodynamics include how liquid water droplets
grow in humid environments. Does the presence of air affect the vapor pressure above
a liquid surface? Does the air dissolve appreciably in the liquid? Does the presence of
salt dissolved in the liquid affect the vapor pressure? Does the size of a droplet affect
its vapor pressure?

Dynamics of air parcels How can we tell whether a given environmental temperature
profile (function of altitude) leads to stable conditions or unstable ones (does the air
start to turn over spontaneously)? What is the role of moisture and cloud formation
in this process? As parcels rise, they expand and their temperature drops (why?).
Does this mean they are denser and they might return? What are the conditions for
continued rising? What temperature profiles are likely to lead to severe weather?

Atmospheric chemistryMost chemical reactions in the atmosphere are between trace
gases such as ozone and so-called air pollutants, but many occur between natural
constituents. What are the criteria for a reaction to proceed one way or another? How
are chemical equilibria between reactants and products established and how do these
equilibrium concentrations vary as the temperature varies?

Notes
Acomplete bibliography is given at the end of the book.All university level physics
books contain a few chapters on thermodynamics; the numerous editions of Sears
and Zemanski as well as those of Halliday and Resnick and the one by Giancoli
are good examples. Many general chemistry books also contain a good description
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of the subject, for example, Whitten, Davis and Peck (1996). The little paperback
titled simply Thermodynamics by Enrico Fermi has some marvelous descriptions
of thermodynamic states, equilibria, etc.
An older advanced book which contains specific applications to meteorology

and especially applications to cloud physics is that of Irebarne and Godson (1981).
Two newer books on applications of thermodynamics to atmospheric science and
oceanography are those by Bohren and Albrecht (1998) and Curry and Webster
(1999). Both are pitched at a higher level than the present text and both delve more
deeply into many aspects of the subject.

Notation and abbreviations for Chapter 1
atm pressure unit, one atmosphere
g, gz, g0 acceleration due to gravity, its value as a function of

altitude, its value at the surface (m s−2)
G gravitational constant (Table 1.1)
h height
kB Boltzmann’s constant (Table 1.1)
L dimension length
mb, pressure unit, one millibar (1mb= 1 hPa)
M dimension mass
M mass of a macroscopic object or system (kg)
ME mass of the Earth (kg)
NA Avogadro’s number (Table 1.1)
p pressure (Pa, hPa)
Pa unit of pressure, 1 Pa = 1Nm−2
R,RG,Rd,Rw,R∗ gas constants: no subscript indicates for an unnamed gas,

sometimes explicitly for a specific gas, G; the subscript d
for dry air, w for water vapor, and the superscript * for
the universal gas constant (Table 1.1)

SI Standard International system of units
T dimension time, also period of a repeating process, and

temperature
Temp dimension temperature
v speed (m s−1), sometimes with a subscript indicating

velocity component along a coordinate axis (e.g., vx)
V volume of a system (m3)

Problems
1.1 A useful mathematical model of the vertical dependence of pressure is

p(z) = p0e
−z/H
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where H is called the scale height. H is usually between 8 and 9 km. What is this in
thousands of feet? Compare to the altitude of typical jet air flights.

1.2 What is the ratio of the atmospheric scale height (Problem 1.1) to the Earth’s radius?
1.3 If p0 is 1000 hPa, what is a typical pressure in Denver (mile high city)? Use the

expression in Problem 1.1 with H = 8 km with 1mile = 1.6 km.
1.4 (a) Compute the circumference of the Earth at the Equator in km. (b) How many km

are there per degree of longitude at the Equator? (c) Howmany km are there per degree
of longitude at 30◦N?

1.5 A numerical model of the atmosphere has horizontal resolution (grid boxes) 2◦ × 2◦.
What is the area of one of these boxes at the Equator, and at 30◦N?

1.6 Use the conservation of energy to show that for a particle falling under gravity from
rest at a height z0, at height z its velocity is given by

v2 = 2g(z0 − z)

where g is the acceleration due to gravity (9.81m s−2).
1.7 Newton’s Law of Gravity says that the force on a particle of massM is

F = −GMEM
r2

.

Use the fact that the acceleration of gravity at the surface is g = 9.81m s−2 along with
the mass of the Earth ME = 5.983 × 1024 kg and the radius of the Earth of 6365 km
to compute the gravitational constant G (see Table 1.1).

1.8 A particle falls from outer space to the Earth’s surface. Far away its potential energy is
zero. At the Earth’s surface the potential energy is −GMEM/RE = −MgRE (relative
to r = ∞) where ME is the Earth’s mass, RE its radius andM is the mass in question
(see Table 1.1). What is the velocity of the mass when it strikes the Earth’s surface?
(This is exactly the vertical velocity it would have to have if it were to escape the
Earth’s gravity field after being projected upwards from the surface. It is called the
escape velocity.)

1.9 Suppose a particle is dropped from a height h and it bounces elastically (i.e., no kinetic
energy is lost in the collision: vafter = −vbefore). How long does the round trip take?
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Gases

2.1 Ideal gas basics

Gases are a form of matter in which the individual molecules are free to move
independently of one another except for occasional collisions. Most of the time the
individualmolecules are in freeflight out of the range of influence of their neighbors.
Gases differ from liquids and solids in that the force between neighbors (on the
average over time) is very weak, since the intermolecular force is of short range
compared to the typical intermolecular distances for the individual gas molecules.
If an imaginary plate is held vertically in a gas as shown in Figure 2.1, there will

be a force exerted on the thin plate fromeach side.The forces on opposite sides of the
inserted plane are equal; otherwise, if forces on the opposing sideswere unbalanced,
the plate would experience an acceleration. The force on the left side of the plate
is caused by the reflection of molecules as they hit the left face of the plate and
rebound. These impulsive forces are so frequent that the resulting macroscale force
is effectively steady. The force is perpendicular to the face and has the same value
no matter how the face is oriented. This can be seen by considering the collisions
with the wall and the tendency for no momentum to be transferred parallel to
the plane surface. The perpendicular component of the force per unit area on the
plane is called the pressure. Tangential components of the force cancel out (when
averaged over many collisions with the wall) and therefore vanish when averages
are taken over a large number of collisions with the surface. The pressure has units
of newtons per meter squared or Nm−2; 1 Nm−2 is called a pascal, abbreviated
Pa.Atmospheric scientists use hPa (hectopascals 1 hPa = 100 Pa) or the equivalent
mb (millibars). The more appropriate unit would be the kPa, but this is not used
much in practice. A newton is the force necessary to maintain an acceleration of
1m s−2 on a 1 kg mass. The units of force may be decomposed to kgm s−2.
The state of a gas is characterized by three quantities: its pressure, p; (mass)

density, ρ (note that knowledge of density is equivalent to knowledge of the

20
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FORCES ON A VERTICAL PLATE
                      IN A GAS

FL FR

Figure 2.1 Illustration of the forces exerted by a gas on a thin vertically oriented
plate. Since the plate does not feel a net force, FL = −FR.

volume for a single-phase system of a given mass, ρ = M/V ); and temperature,
T (in kelvins). In general, there is a mathematical relationship between the three
variables, or thermodynamic coordinates, called the equation of state. It is important
to remember that the density is uniform throughout the volume of a gas in
thermodynamic equilibrium.
The number density, n0, is the number of molecules per unit volume

([n0] = moleculesm−3). The equation of state of an ideal gas is given by

p = n0kBT [Ideal Gas Law] (2.1)

where kB is called Boltzmann’s constant:

kB = 1.381× 10−23 J K−1 molecule−1. (2.2)

Boltzmann’s constant is a universal constant independent of the molecular
species. Almost all gases behave as ideal gases if they are sufficiently dilute.
The condition for this is that the molecules spend a large fraction of their time
apart from one another so that the intermolecular forces are acting only a small
fraction of the time for a given molecule. This will become clearer in the next few
sections where some estimates of intermolecular spacings and distances between
collisions are compared to the sizes of the molecules. Typical intermolecular forces
for neutral molecules are appreciable only over distances of the order of the radius
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of a molecule. This is to be contrasted with the long-range electrical forces of an
ionic species (Coulomb’s Law) where the forces are of long range, varying as the
inverse square of distance.

Example 2.1 A gas is at standard temperature and pressure (referred to as STP:
p = 1 atm = 1013 hPa, T = 273.16K). What is its number density?
Answer: n0 = p/(kBT ) = 2.69 × 1025moleculesm−3. This value is called the
Loschmidt number. �

2.1.1 Intermolecular spacing

The approximate intermolecular distance can be found by taking the molecules at
an instant of time to be uniformly distributed in space with number density n0.
Place a cube around each molecule in the gas. Then each molecule sits at the center
of a cube of side length d . The number of these cubes per unit volume is n0. The
volume of one of them is d3 = 1/n0; or d ≈ 1/n1/30 = 3.34× 10−9 m = 3.34 nm
(at STP). Note that the radius of a molecule r0 is only a few times 10−10 m= 0.1 nm
(several tens of times less than the intermolecular distance). In a liquid or a solid
intermolecular distances are on the order of the molecular sizes (see Table 2.1).

Atomic refresher The Bohr atom has radius a = h2ε0/πmeQ2e , where
ε0 = 8.85× 10−12 Fm−1 (permittivity constant), h = 6.63× 10−34J s (Planck’s
constant), Qe = 1.60× 10−19 C (electron charge), me = 9.11× 10−31 kg (electron
mass). The Bohr radius for a hydrogen atom is a = 5.29× 10−11 m = 0.0529 nm.
Most high school or college chemistry books describe the Bohr model of the
hydrogen atom.

2.1.2 Mean free path

The average distance amolecule travels in the gas before collision is called themean
free path. To obtain an estimate of the mean free path imagine the background
gas particles to be stationary. Take our test molecule of radius r0 to be moving
through the lattice of fixed points used in the last subsection. A collision between
our prototype molecule and a background molecule will occur when their centers
are within 2r0 of each other (Figure 2.2). We can think of the test molecule having
radius 2r0 and the lattice composed of stationary points (see Figure 2.3). Hence, as
the test molecule moves through the lattice it sweeps out a cylinder of radius 2r0.
In time�t the volume swept out is (2r0)2π × v�t (number per unit volume times
volume). The cross-sectional area of the sweeper is sometimes given the symbol σc
and called the collision cross-section (see Table 2.2). The number of background
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2r0

Figure 2.2 At the moment of collision two spherical molecules have a distance
between their centers of 2r0.

2r0

n0

v∆t

Figure 2.3 As a molecule moves a distance v�t, it encounters all the point centers
in the volume of the cylinder whose length is v�t and whose cross-sectional area
is 4πr20 . The number of point centers in the volume is n04πr

2
0v�t.

molecule centers in this cylinder is n0×σcv�t (number per unit volume×volumeof
the cylinder). Then the number of collisions per unit time (the collision frequency) is

fcoll = n0σcv [collision frequency]. (2.3)

We may calculate the average distance between collisions to be the [distance per
unit time]= [velocity]× [the time between collisions] (this last factor is the inverse
of collision frequency):

λ = v × 1

n0σcv
= 1

n0σc
[mean free path, approximate form]. (2.4)

The Greek letter λ is used in most texts to denote the mean free path. Actually,
it is possible to solve the problem when all the particles are in motion, and the
derivation can be found in books on the kinetic theory of gases. The same formula
occurs for the mean free path except for an additional factor of

√
2 = 1.414 . . . in

the denominator:

λ = 1√
2n0σc

[mean free path, more exact form]. (2.5)
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Table 2.1 Some characteristic lengths in the
kinetic theory of gases at STP (all in units of
nanometers, 10−9m)

Bohr Intermolecular Mean Wavelength of
radius spacing free path yellow light

0.053 3.3 52 500

Table 2.2 Some collision cross-sections σc for gases of
interest in nm2

For interspecies estimates use the average. Data from
Atkins and de Paula (2002).

Ar–Ar N2–N2 O2–O2 H2–H2

0.36 0.43 0.40 0.27

For a typical gas r0 = 2× 10−10 m (0.2 nm) and thus, σc = 4πr20 ≈ 5× 10−19 m2
(0.5 nm2). Using n0 from above we have λ ≈ 5.23 × 10−8 m (52.3 nm), which
is about an order of magnitude more than the intermolecular spacing at STP
(Table 2.1).

Example 2.2 Take as a model for the vertical dependence of number density:

n0(z) = n0(0)e
−z/H

where z is the altitude above sea level and H is called the scale height (typically
8 km in midlatitudes, but up to 12 km in the tropics). Our exponential model was
just cooked up, but it turns out to be a very good approximation. What are typical
mean free paths at z = 0,H , 2H , taking STP at z = 0?
Answer:

λ = 1

n(z)σc
= ez/H

n(0)σc
= λ0e

z/H .

Then: λz=0 = 52 nm, λz=H = 141 nm, λz=2H = 384 nm. �

From the previous example we see that the mean free path is still very small
compared to our familiar everyday sizes of things, especially weather phenomena,
even at altitudes of several scale heights (well into the stratosphere). When the
dimensions of the body of gas (say, a storm or a cold air mass) are large compared
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to the mean free path, we can ignore the molecular motions and treat the gas as a
fluid, obeying the macroscopic laws of fluid mechanics. This is usually the case in
atmospheric science up to altitudes of about 100 km.
Themean free path also gives us an idea of the length scales over which transport

of properties occurs. If a property is transported via collisions between molecules it
has to happen over length scales comparable to the mean free path. Such processes
are said to be diffusive, and they are rather slow compared to some fluid motions
such as convection.

2.1.3 Pressure from kinetic theory

An intuitive feeling for the pressure of an ideal gas can be gained by considering a
gas enclosed in a cubical box of edge length L (see Figure 2.4). Imagine a molecule
going left and right across the box and bouncing back at the walls.Around trip takes
a time 2L/v0 where v0 is the speed of the molecule. At a reflection it experiences
a change of momentum �(m0v0) = 2m0v0. Each reflection imposes an impulsive
force to thewall (see the physics refresher below). The frequency of such reflections
(by the entire box of molecules) is so large that the force is effectively steady (we
shall see later that typical molecular speeds are hundreds of m s−1). The rate of
such impulses by an individual molecule is the change in momentum divided by
the time interval between reflections, 2m0v0/(2L/v0) = m0v20/L. If we suppose
that one third of the molecules are going left-right (the others are going up-down
and in-out), then the number going left-right is n0L3/3. The total force on the
wall is

F =
(
m0v

2
0/L
) (
n0L

3/3
)
. (2.6)

L

–v0

v0

Figure 2.4 Amolecule moving left to right with velocity v0 is elastically reflected
by the wall. After the collision the velocity is −v0. The side dimension of the
cubical box is L.
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This total force on the wall should also be the pressure× the area of the wall which
can be expressed as

F = pressure× area = pL2. (2.7)

Equating these we have

p = 1

3
n0m0v20 [pressure related to v20] (2.8)

where the overbar indicates statistical averaging over the probability distribution
of molecular speeds, v0. Since we know the equation of state for an ideal gas (from
experiments), p = n0kBT , we can use this along with the relationship just found to
identify the corresponding coefficients and arrive at the new relationship:

1

2
m0v20 = 3

2
kBT [kinetic energy and Kelvin temperature]. (2.9)

Note that the left-hand side is just the average kinetic energy (12m0v
2
0) of a molecule

in the box. This relationship says that the temperature expressed in kelvins is
proportional to the average kinetic energy of individual molecules. The coefficient
of proportionality is thus determined to be 32 times theBoltzmann constant.Note that

when the absolute orKelvin temperatureT is zero, themolecules are at rest (v20 = 0).
All thermal motion is presumed zero at this temperature at least in the ideal gas as
we have defined it. Actually, there is no such thing as an ideal gas at 0K (any real
gas would have been liquified or solidified well above 0K). Moreover, quantum
mechanics tells us that there is motion even at this lowest of low temperatures.
Fortunately, we never encounter these low temperatures in meteorology and the
Ideal Gas Law virtually always applies to the gases of interest.
While the derivation above is highly simplified with many details omitted, such

as flights that are not perpendicular to the walls, distributions of the molecular
velocities, collisions between the molecules, etc., these details cancel out in the
more rigorous derivation. Hence, the formula and its interpretation are correct.

Physics refresher: impulse force When a particle reflects from a rigid surface it
exerts a force on the surface. The force on the wall is found by integrating Newton’s
Second Law over the time of the collision:

Fτ = 1

τ

∫ t+τ/2

t−τ/2
m0
dv(t)

dt
dt

where τ is the (very short) time interval during which the molecule is in contact with
the wall. Unfortunately, we do not know the value of τ in general. However, over
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longer periods outside the interval (t − τ/2, t + τ/2) the integrand vanishes so the
integration period can be extended from t − Trt/2 to t + Trt/2 where Trt is the length
of time for the molecule to make its round trip between collisions with the wall. The
force exerted on the wall during a round trip of a single molecule is then

F rt = 1

Trt

∫ t+Trt/2
t−Trt/2

m0
dv(t)

dt
dt = 2m0v0

Trt
.

If the round trip time (Trt = 2L/v0) is short enough (compared to the sluggish wall’s
response time) the wall will feel a nearly steady force of this magnitude. Now if we
add the collisions of all the molecules, as in the derivation of pressure, we can be
assured of a steady force perpendicular to the wall.
There are a few loose ends that must be addressed. First, not all molecules are

traveling strictly in the x, y and z directions. This can be disposed of by noting that for
the wall perpendicular to the x direction only the x component of the motion matters.
The y and z components do not affect this wall. Do the collisions one by one cancel
their y and z components before and after the collision with the wall? After all, the
wall is not a smooth surface at the molecular level. The answer is that over the long
run and averaging over many particles this cancellation is complete. Lastly, the
molecules do not travel uninterrupted from one end of the box to the other. They go
only one mean free path (a few tens of nanometers at STP) before they suffer a
collision with another molecule. The solution to this problem lies in the conservation
of momentum. After a collision the x component of momentum is conserved for the
colliding pair and it is the momentum change at the wall that matters, whether it is the
same molecule or not.

In specific applications such as meteorology it is useful to cast the Ideal Gas
Law into yet another form by multiplying and dividing by the mass of an individual
molecule, m0:

p = m0 n0

(
kB
m0

)
T = ρRT (2.10)

where ρ is the mass density (ρ = m0n0 = M/V ) in kgm−3, and the gas constant
defined by R is kB/m0 (note: this is not the universal gas constant which is to be
defined later). For dry air

Rd = 287 JK−1 kg−1. (2.11)

Note that this definition of the gas constant depends on the mass of individual
molecules m0. Dry air is a mixture of different ideal gases. The value of Rd takes
this mixture into account as will be explained shortly.
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Table 2.3 The composition of dry air

Percentage
by volume Percentage Molecular

Constituent (number count) by mass weight

nitrogen 78.09 75.51 28.02
oxygen 20.95 23.14 32.00
argon 0.93 1.30 39.94
CO2 ∼ 0.03 ∼ 0.04 44.01

Table 2.3 gives the composition of dry air by volume percentage – this is the ratio
of the number density of a substance n0 to the total number density. The same table
also gives the percentage by mass – the ratio (×100) of the mass of the constituent
in a sample to the mass of the whole sample.

Example 2.3 What is the density of a parcel of dry air at 270K at the 500 hPa level?
Answer: Use ρ = p/(RdT ):

ρ = 50 000 Pa

(287 J kg−1 K−1)(270K)
= 0.645 kgm−3. (2.12)

�

Example 2.4 What is the root mean square (rms) speed of a molecule of air at STP?
Answer: We can write

v2 = 3
kB
m0
T = 3Rd T (2.13)

vrms = √3RdT ≈ 485m s−1. (2.14)

�

Example 2.5 What is the collision frequency of “air” at STP? (air is in quotes
because we imagine the air composed of a single species whose molecular weight
is 29.0, i.e., 29 times the mass of a proton).
Answer: We use the collision frequency formula: ≈ n0σcvrms = 2.69 ×
1025 moleculesm−3 ×5×10−19 m2 ×485m s−1 = 6.52×109 collisions s−1. �

Example 2.6 What is the typical number of collisions with a wall perpendicular to
the x-axis per unit area per unit time? Let the conditions be STP.
Answer: The number ofmolecules impinging on thewall from the left is (n0/4)(Av)
where n0 is the number density, A is the area of the wall (1m2), and v is the average
speed of the molecules as shown in Section 2.3. n0 = 2.69× 1025 moleculesm−3
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and v can be taken to be roughly the vrms of the previous example. Hence, there
are about 1027 collisions per second with the 1m2 wall at STP. So where did the
divisor 6 come from? It comes from a careful integration over all the angles, etc. A
simple minded (but correct) way of obtaining it is to note that 13 of the molecules
are going in the x direction, but only half of these are going in the +x direction.
With or without the 6, this is a very large collision rate. �

Math refresher: probability density function (pdf) The quantity P(u) du is the
probability of finding the variable u to lie in the range (u, u + du). The probability of
finding it to have any real value is unity; thus∫ ∞

−∞
P(u) du = 1.

The mean value of u is defined to be

µu =
∫ ∞

−∞
uP(u) du

and its variance or mean squared value is given by

σ 2u =
∫ ∞

−∞
(u− µu)

2P(u) du.

The variable u is called a random variable. In treating random variables we consider
independent realizations of the variable (like drawing values from a hat).

2.2 Distribution of velocities

Obviously the molecules in a box are not moving parallel to the x, y and z directions
exclusively. Instead molecules will have instantaneous velocity components vx, vy,
and vz. Consider the vx component for an individual molecule at a given time.
The value of vx will take on a range of values from one time to the next because
of collisions with other molecules (it can be thought of as a random variable).
Computer simulations suggest that after only a hundred or so collisions permolecule
the probability density of values of vx settles to a steady functional form.After this
equilibration or thermalization time vx is found to be distributed as:

P(vx) = 1√
2πσvx

e−v2x/2σ
2
vx [normal distribution] (2.15)
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Figure 2.5 Graph of the normal distribution for σx = 1 and for σx = 2, where
σx = √

R∗T/M . The larger value of σx (higher temperature or lower molecular
weight) leads to a broader distribution, but still has the same area under it. In the
case of the x component of velocity, this means the velocity is expressed in units
of 280m s−1 at 300K. Note that this differs from the rms speed (485m s−1), since
we are only considering one of the three components of velocity.

which is called the normal distribution.The normal (sometimes called theGaussian)
distribution occurs often in nature. It generally comes about when the variable is
subjected to a long history of random jolts that add up to its current value. After
a long time (many additive increments to the value of the variable) its probability
distribution approaches the normal distribution. This can be proved under rather
general conditions in mathematical statistics under the heading of theCentral Limit
Theorem. The normal distribution has the familiar bell shape shown in Figure 2.5.
This probability density function (pdf) is normalized such that

∫ ∞

−∞
P(vx) dvx = 1 [normalization]. (2.16)

The area under a portion of the curve between two values vx1 and vx2 is the
probability of a given molecule having its x component of velocity lying in that
range.Obviously the probability of its lying in the range (−∞,∞) is unity.Themost
probable velocity is the one for which the pdf is maximum – it is called the mode
of the distribution; the mode is the value of vx for which dP/dvx = 0. The average
value of vx is given by

vx =
∫ ∞

−∞
vxP(vx) dvx = 0 [mean value] (2.17)
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which vanishes because P(vx) is an even function on the integration interval and
it is multiplied by an odd function, vx.
The mean square of vx (also called its variance) is given by

(vx − vx)2 =
∫ ∞

−∞
(vx − vx)

2P(vx) dvx [variance] (2.18)

and this can be shown to be

(vx − vx)2 = σ 2vx . (2.19)

Example 2.7 The escape velocity of a molecule is the least vertical velocity vesc at
which the molecule can escape the Earth’s gravitational field. We can compute this
velocity by finding the velocity a (collisionless) molecule might have upon falling
from infinity to the Earth’s surface. The procedure is to equate the kinetic energy of
the particle 12m0v

2
esc to the potential energy at the Earth’s surface GMm0/R. After

cancelling the m0 on each side we find vesc = √
2gR where g = 9.8m s−2 and

R ≈ 6400 km. The final answer is vesc = 11.2 km s−1, which is independent of
mass (molecular species). �

There are many interesting pdf forms that arise in nature. These next two examples
occur often. More cases can be found in elementary statistics books.

Example 2.8: uniform pdf

P(u) =
{
1 if 0 ≤ u ≤ 1
0 otherwise.

After performing the integrals we find:

µu = 1

2
, σ 2u = 1

12
, σu ≈ 0.289. �

Example 2.9: exponential distribution
This distribution is given by the formula

P(u) = 1

b
e−u/b (2.20)

which has mean value b and variance b2. �

We have already established the variance for an ideal gas from the relation
(see (2.13))

1

2
m0v2x = 1

2
kBT . (2.21)
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Note that the factor of 3 seen before is not present because of the consideration of
only the x component of velocity instead of all three components.
The three components of velocity are actually statistically independent of one

another, and one of the rules of probability is that under these circumstances the
joint distribution of the three variates is just the product of the individual densities:

P(vx, vy, vz) = P(vx)P(vy)P(vz) (2.22)

=
(

m0
2πkBT

)3/2
exp

(
−m0v2x
2kBT

+ −m0v2y
2kBT

+ −m0v2z
2kBT

)

where exp(·) stands for e(·). And of course, the square of the velocity vector of a
molecule is given by the sum of the squares of its components:

v2 = v2x + v2y + v2z [speed from velocity] (2.23)

or written more compactly

P(vx, vy, vz) dvx dvy dvz =
(

1

2πσ 2

)3/2
exp

(−v2

2σ 2

)
dvx dvy dvz (2.24)

where

σ 2 = kBT

m0
[variance of velocity component]. (2.25)

The probability density function for molecular velocities (2.23) is called the
Maxwell–Boltzmann distribution (see Table 2.4).
The distribution of velocities has no dependence on direction, only on speeds

(i.e., it is isotropic). We can go to spherical coordinates in the velocity space and
replace dvx dvy dvz by v2 sin θ dθ dφ dv. Since there is no θ or φ dependence in
the integrand we can integrate over them and the differential becomes 4πv2 dv.
The pdf (the remaining integrand) becomes a function of speed only:

P̃(v) dv = 4πv2
(

1

2πσ 2

)3/2
exp

(−v2

2σ 2

)
dv [speed pdf] (2.26)

and the integrals now run from 0 to ∞. The last formula gives the probability of
finding the speed of a molecule in the infinitesimal interval (v, v + dv). A graph of
this function is shown in Figure 2.6.
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Table 2.4 Comparison of characteristic velocity scales for a
Maxwell–Boltzmann distribution; the values are for the “hypothetical” air
molecule (M = 29)

Value at
Quantity Math form Formula 300 K (m s−1)

rms velocity vrms = (v2)1/2
√
3kBT
m0

=
√
3R∗T
M = √

3RT 508

mean speed v
√
8kBT
πm0

= 0.921vrms 811

mode speed vm

√
2kBT
m0

= 0.816vrms 415

speed of sound (air) vS

√
7kBT
5m0

= 0.683vrms 331

standard deviation (air) σ

√
kBT
m0

= 0.577vrms 293

v (ms–1) 

(v )
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Figure 2.6 Graph of the distribution of molecular speeds 4πv2P(v) for air
molecules (M = 29) at a temperature of 300K. The speed v is expressed in
units of m s−1. Recall that the escape velocity is 11.2 km s−1 independent of mass.
The value of the probability density function at v = 38σ is 10−313 sm−1, which
might help to explain why the Earth retains its atmosphere.

It is interesting to compare the escape velocity (11 200m s−1) with the
distribution shown in Figure 2.6.The value of the distribution is some 10−313 sm−1.
The number of these molecules to escape even over the history of the planet
(4.7×109 years) is exceedingly small. The median of the distribution moves to
higher speeds if the temperature is raised or if the mass of the molecules is lowered.
For example, Figure 2.7 shows the case of hydrogen atoms (M = 1) at 350K, a
value characteristic of altitudes ∼ 120 km. The value of the density distribution
at the escape velocity is 8 × 10−12 sm−1, and after numerical integration of the
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Figure 2.7 Graph of the distribution of molecular speeds 4πv2P(v) for atomic
hydrogen (M = 1) at a temperature of 350K, a value for the upper atmosphere
(∼ 120 km). The speed v is expressed in units of m s−1. Recall that the escape
velocity is 11.2 km s−1 independent of mass. The value of the probability density
function at v = 11.2 km s−1 is 8 × 10−12 sm−1, and the area under the rest of
the curve is 2×10−9. This is a value large enough that if H reaches the upper
atmosphere it will be depleted over planetary lifetimes. However, H is continually
produced in the upper atmosphere by photodissociation (see Chapter 8) of water
vapor.

density from the 11.2 km s−1 to infinity, we find that the probability of the speed
being higher than the escape value is 2× 10−9. This is probably large enough for
H to escape, but small enough that water molecules steadily being disassociated
by hard (very short wave) solar radiation can maintain a presence at very high
altitudes.

Example 2.10 By contrast the Moon has a smaller radius (0.24 rE =1737 km) and
mass (7.349×1022 kg= 0.01229ME) than Earth. This means that the acceleration
of gravity is

gMoon = GMMoon/R
2
Moon = 1.63m s−2

and

vesc = √2gMoonRMoon = 2380m s−1.

The maximum surface temperature on the Moon is about 400K. Figure 2.8 shows
the distribution of speeds for this case. The integral from the escape velocity to
infinity is 2.73 ×10−7, easily large enough for the Moon to lose its atmosphere
over its lifetime. �
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Figure 2.8 The distribution of molecular air molecules for theMoon at 400K. The
escape velocity is 2380m s−1.

2.3 Flux of molecules striking a wall

There are many derivations of elementary processes in kinetic theory. We present
one more here since the result comes up often. We want to know the number of
molecules striking a wall (perpendicular to the x-axis) per unit time and area. This
is simply the number density times the x component of velocity averaged over the
velocity distribution. We proceed by finding n0vx using the Maxwell–Boltzmann
distribution for the x component (the other factors for the y and z components
integrate to unity). We consider only the positive component of vx:

flux/(⊥ area) = n0vx = n0

∫ ∞

0
Avx exp

(
− v2x
2σ 2

)
dvx (2.27)

with A = (m0/(2πkBT ))1/2 and σ 2 = kBT/m0. The integral can be evaluated
to give

flux/(⊥ area) = n0vx = n0

(
kBT

2πm0

)1/2
. (2.28)

And finally:

flux/(⊥ area) = 1

4
n0v [flux of molecules hitting a wall]. (2.29)

If we apply this to leaks through a small hole in the wall the process is called
effusion. The formula holds when the hole is smaller than the mean free path of the
molecules so that they flow through the hole without collisions; otherwise the gas
acts like a fluid when passing through the opening and onemust use fluidmechanics
methods rather than kinetic theory.
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Table 2.5 Gas notation

p pressure (Nm−2= Pa; 100 Pa = 1 hPa = 1mb)
V volume (m3)
ρ mass density (kgm−3)
α specific volume (m3 kg−1), α = ρ−1
m0 mass of an individual molecule (kg); for H, m0= 1.67× 10−27 kg
n0 number density (moleculesm−3)
kB Boltzmann’s constant: 1.381×10−23 J K−1 molecule−1
MG gram molecular weight; for hydrogen, MH =1 gmol−1
M̃G the gram molecular weight divided by 1000
Md dry air effective molecular weight, Md = 28.97 gmol−1
ME effective gram molecular weight of a mixture of gases
Mi bulk mass of constituent i (kg)
NA Avogadro’s number: 6.022×1023 moleculesmol−1
ν number of moles of a gas
R∗ universal gas constant: 8.3143 JK−1 mol−1
Rd gas constant for dry air: 287 JK−1 kg−1
R,RG gas constant for a particular gas, G (JK−1 kg−1)

2.4 Moles, etc.

The molecular weight, M , of a pure gas is the sum of the atomic weights of the
atoms making up the molecules. The molecular weight has dimensions grams per
mole, denoted gmol−1 (see Table 2.5). In keeping with SI units one might choose
kg kmol−1, which gives the same numerical value. For example, the molecular
weight of isotopically pure (no deuterium (2H) or tritium (3H) atoms in the gas) H2
is 2 and that ofCO2 is 12+ 16+ 16= 44.The chemical properties of the element are
determined by the number of protons in the nucleus, which is designated the atomic
number. The atomic weight is determined by the sum of the number of protons and
the number of neutrons. An element can have different isotopes, i.e., the number
of neutrons might vary slightly from atom to atom. But the most abundant isotope
found in nature is usually dominant, with only a small percentage of the other
isotopes present. If we take a random sample from nature this leads to a weighted
average of the atomic weight, and this is the value used in most computations.
For our purposes, we can simply use the numbers given in Table 2.6 which take
into account the distributions of naturally occurring isotopes. Strictly speaking the
standard is set by the most abundant isotope of carbon which is defined to have a
molecular weight of exactly 12.000 kg kmol−1.
The number of molecules in a gram mole is called Avogadro’s number

NA = 6.022× 1023 moleculesmol−1 [Avogadro’s number]. (2.30)
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Table 2.6 Selected atomic and molecular weights in
grams per mole (equivalent numerically to kg kmol−1)

Ar 39.948 N 14.0067
N2 28.0134 S 32.066
O2 31.9988 H2O 18.01534
CH4 16.04303 dry air 28.97
C 12.01115 H 1.00794
H2 2.01594 He 4.0026
O 15.9994

The number of moles of a substance is denoted by ν. It is the number of molecules
N under consideration divided by NA:

ν = N

NA
[number of moles]. (2.31)

In terms of number density (n0 = N/V ), the number of moles is given as ν =
n0V /NA, where V is the volume occupied by the gas in m3. The mass (in grams!)
of an individual molecule is related to these quantities by m0 = MG/NA, where
MG is known as the (gram-)molecular weight of the gas G. (Avogadro’s number of
pure hydrogen atoms has a mass of 1g.) The gram-molecular weight is the one used
in most existing tables; hence, we use it here. But in keeping with our SI units, we
need to expressm0 in kilograms inmost formulas. Thus the applicable expression is

m0 = MG
NA

[m0 in grams]. (2.32)

However,

m0 = 1

NA
M̃G, with M̃G = MG

1000
[m0 in kilograms]. (2.33)

The Ideal Gas Law can then be written:

p = ρRGT (2.34)

= n0m0RGT (ρ in kgm−3, p in Nm−2,m0 in kg)

since ρ = n0m0. Now n0 = νNA/V , the total number ofmolecules per unit volume.
Also note that m0 (in kilograms) is M̃G/NA. Then

p = νNA
V

1

NA
M̃GRGT (2.35)

p = ν

V
R∗T (2.36)
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where

R∗ = M̃G RG [relating R∗ and RG] (2.37)

is called the universal gas constant (R∗ = 8.3145 JK−1 mol−1).
Note the relationship:

R∗ = kBNA [relating R∗ and kB]. (2.38)

In other words, the Boltzmann constant is the gas constant per molecule while R∗
is the gas constant for a mole of molecules. The gas constant for a specific gas is
related to the universal gas constant by

RG = R∗

M̃G
[in JK−1 kg−1] (2.39)

= kBNA

M̃G
(2.40)

= kB
m0

[m0 in kg]. (2.41)

Again the use of M̃G instead of MG above simply converts to SI units; this is
because of the conventional definition of the mole in terms of grams instead of
kilograms.
Standard conditions (denoted STP) for a gas are 0 ◦C and 1 atm of pressure

(= 1013 hPa). It is useful to know that 1 mol of an ideal gas occupies 22.4 liters
(1 liter = 1000 cm3 = 10−3 m3) or 0.0224m−3 at STP.

Example 2.11 Calculate the gas constant for dry air.
Answer: Use (2.39) with Md = 28.97. Rd = 287 J kg−1 K−1. �

Example 2.12 Calculate the gas constant for water vapor.
Answer: Same as above, Mw = 18.015,Rw = 461.5 J kg−1 K−1. �

Example 2.13 Calculate the densities of pure dry air and pure water vapor at STP.
Answer: Use the gas law, ρ = p/RG T :

ρd(STP) = 1.013× 105 Pa/(287 J kg−1 K−1)(273.2K) = 1.292 kgm−3 (2.42)

ρw(STP) = 1.013× 105 Pa/(461.5 J kg−1 K−1)(273.2K) = 0.803 kgm−3.
(2.43)

Water vapor at the same temperature and pressure is less dense than dry air. �

Example 2.14 A vessel contains 1.2 kg of dry air at STP. How many moles of O2,
N2, and Ar are there?



2.5 Dalton’s Law 39

Answer: 1200 g = νdMd. Then νd = 1200/28.97 = 41.4 mol of dry air. We know
that νO2 = 0.21νd, νN2 = 0.78νd, νAr = 0.0093νd. Inserting, we find: νO2 = 8.70
mol, νN2 = 32.3 mol, and νAr = 0.41 mol. �

Example 2.15 How high would a molecule with upward directed speed 485m s−1
go before turning back in the Earth’s gravity field?
Answer: From elementary mechanics the height of such a flight is given by
converting all the initial kinetic energy into potential energy:

1

2
mv20 = mgh (2.44)

or h = v20/(2g) ≈ 12000m= 12 km. This is just larger than the scale height of the
atmosphere. �

Example 2.16 What is the average force exerted by a molecule of massm0 making
elastic reflections on the floor under the influence of gravity?
Answer: Let the molecule fall from a height h. The time for its fall is t = √2h/g.
Its speed upon impact is v0 = √2gh. The momentum change on a reflection is
2m0v0 = 2m0

√
2gh. The force exerted on the floor is then 2m0v0/�t; �t is the

time for a round trip up and back down by the molecule. We finally obtain,

F = 2m0
√
2gh

2
√
2h/g

= m0g. (2.45)

In other words, the average force on the floor is just the weight of the bouncing
molecule. Note that the result is independent of the initial dropping height h. Is it
any wonder that atmospheric pressure measures the weight of air in the column
above a square meter? �

2.5 Dalton’s Law

Dalton’s Law deals with a mixture of ideal gases. It states that the partial pressures
of the individual constituent gaseous components are additive. Based upon the
kinetic theory derivation above it is not surprising that the pressures would be
additive for mixtures of ideal gases with different molecular masses m1,m2, . . ..
Writing the expression for the sum of partial pressures,

p = p1 + p2 + · · · . (2.46)

Once we accept this rule we can compute the effective gas constant for a mixture of
gases. To do so we substitute for the partial pressure of the different constituents:

p = (ρ1R1 + ρ2R2 + · · · )T . (2.47)
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After multiplying and dividing through by ρ, the mass density of the mixture,

p = ρ

(
ρ1

ρ
R1 + ρ2

ρ
R2 + · · ·

)
T . (2.48)

After noting that the volumes are the same for ρi and ρ, we can write

Reff = M1

M R1 + M2

M R2 + · · · [effective gas constant for a mixture]. (2.49)

Note that the coefficients in the last equation are mass fractions, not mole fractions.
It might be necessary to calculate the effective molecular weight of a mixture (as

we have used Md = 29 gmol−1 for dry air). We can start with

R∗ = kBNA, R = kB
m0

= kBNA
m0NA

= R∗

M
, (2.50)

where M is the molecular weight (kgmol−1). Now return to (2.49) and set

Reff = R∗

Meff
. (2.51)

This leads to

Meff = R∗

Reff
[effective molecular weight for a mixture]. (2.52)

As a check let Reff = 287 J kg−1 K−1, and we find Meff = 0.029 kgmol−1 =
29 gmol−1.

Example 2.17 An argon atmosphere. What is RAr?
Answer: RAr = R∗/M̃Ar = 8.31 × 103 JK−1 kmol−1 / 39.94 kg kmol−1 =
208.2 JK−1 kg−1. �

Example 2.18 What is the density of argon gas at STP?
Answer: ρ = p/(RArT ) = (101325 Pa)/(208.2 JK−1kg−1 × 273K) =
1.78 kgm−3. �

Example 2.19 Suppose the atmospheric density is given by ρ(z) = ρ0e−z/H , where
z is altitude above sea level, ρ0 = 1.2 kgm−3 and H is the scale height, nominally
10 km. What is the mass of air above 1m2 at sea level?
Answer: dm for a slab of thickness dz is ρ(z)A dz where A is the horizontal cross-
sectional area of the slab. Adding up all the infinitesimal slabs in the column
amounts to

M =
∫ ∞

0
Aρ0 e

−z/H dz = Aρ0H = 1m2 × 1.2 kgm−3 × 104 m = 1.2× 104 kg.

�
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Notes
There are many good classical thermodynamics books. One which is very
readable and includes a mix of elementary kinetic theory as well is Sears (1953).
Another more recent but very readable account is by Houston (2001). A purely
thermodynamic treatment is given in the physics text by Zemansky (1968). Modern
physical chemistry books are perhaps best for discussions of gas thermodynamics,
for example Atkins (1994). For a readable but rigorous discussion of constraints,
etc., see Reiss (1965).

Notation and abbreviations for Chapter 2
a Bohr radius
F force (N)
h Planck’s constant (J s)
h0 initial height
kB Boltzmann’s constant (Table 2.5)
L length of box edge (m)
λ mean free path (m)
me electron mass (kg)
m0 mass of a single molecule (kg)
Meff effective molecular weight (gmol−1)
MG gram molecular weight of a gas (gmol−1)
M bulk mass of an object (kg)
n0(z) molecular density as a function of height (moleculesm−3)
N total number of molecules
N newtons
NA Avogadro’s number
p, pG pressure, partial pressure for gas G (Pa)
P(vx, vy, vz) joint probability density function for velocity components
P(z) probability density function
r0 effective molecular radius (m, nm)
R∗ universal gas constant (Jmol−1 K−1)
Rd gas constant for dry air (J kg−1 K−1)
Reff effective gas constant for a mixture of gases (J kg−1 K−1)
Rw gas constant for water vapor (J kg−1 K−1)
ρ density (kgm−3)
�t time interval (s)
T temperature (K)
σ standard deviation
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σ 2 variance
σc collision cross-section (m2)
(u, v,w) velocity components (vx, vy, vz)
v speed (m s−1)
v mean speed (m s−1)
vesc escape velocity (m s−1)
v2 mean square velocity (m2 s−2)
v2x mean square of x component of velocity (m2 s−2)
V volume (m3)
z elevation (m)

Problems
2.1 Calculate the mass of a 1m3 parcel of dry air at STP. Calculate its mass at the same

pressure but at 10 ◦C and 20 ◦C.
2.2 Calculate the mass of a 1m3 parcel of water vapor at STP.
2.3 What is the partial pressure of oxygen in a dry 1 m cube of air at STP?
2.4 What is the weight of the 1 m cube of dry air at STP? In newtons, in pounds? (Note:

1 kg weighs 2.2 lb at sea level.)
2.5 What is the number density of a volume of pure oxygen (O2) at STP?
2.6 Express Rd in terms of hPa instead of Pa.
2.7 Use dP(v)/dv = 0 to find a formula for the most probable speed of a molecule at

STP.
2.8 Compute the vrms for O2, N2, Ar, and H2 at STP. Compare to the escape velocity.
2.9 Themass of a certain air parcel is 1 kg, its temperature is 0 ◦C and it occupies a volume

of 1m3. It is known to have 5 g of water vapor and the rest is dry air. What is the
partial pressure of water vapor? What is the density of this moist air? Compare to the
density of dry air at the same overall pressure.

2.10 A cylindrical column of air has radius 1 km. The surface pressure is 1000 hPa. The
entire column is rising at a speed of 10 cm s−1. What is the kinetic energy of the
column?

2.11 The cylinder of the previous problem is rotating about its axis of symmetry at a rate of
2π radians per day (1 day= 8.64×104 s). What is its rotational kinetic energy? (Hint:
The moment of inertia of a cylindrical slab is I = 1

2mR
2; kinetic energy = 1

2 Iω
2

where ω is angular velocity in rad s−1.)
2.12 Suppose the number density of molecules in a column of air is given by n0(z) =

n0(0)e−z/H . What is the total number of molecules in a column with unit cross-
sectional area? What are reasonable values for n0(0) and H? Use STP at z = 0.

2.13 Given the conditions of the last problem and a reasonable value for σc what is the
approximate altitude zH for which the mean free path, λ, is equal to H?

2.14 Given that the molecules in a column of air are distributed vertically as in the last two
problems and that the temperature is constant in the column at T0, what is the total
gravitational potential energy in the column in Jm−2 ?
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2.15 Suppose the column of air in the last problem is isothermal at a temperature of 300K.
What is the total kinetic energy of the molecules in the column?

2.16 Compare the collision frequency of “air” molecules at STP to the frequency of yellow
light. Note also for comparison that the lifetime of an excited state of an atom is about
10−8 s.
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The First Law of Thermodynamics

Often in meteorology we deal with a fixed mass of a gas whose volume and other
characteristics may change as the air mass moves about. The particular mass of
gas may be thought of as a small parcel of matter that is transported through the
environment by natural forces acting upon it. We could also imagine moving it
virtually via an abstract thought experiment, for example to determine its stability
under small perturbations. As an air parcel rises for whatever reason in the real
atmosphere, it will almost instantaneously adapt its internal pressure to the external
pressure exerted by the local surroundings, but the temperature and composition
adjust more slowly. In convection, entrainment of neighboring air also speeds up
the process of equalizing the temperature between inside and outside air. Still there
is a huge separation of equalization times between pressure and temperature and/or
trace gas concentrations. This time scale separation has made the parcel concept
a useful and even powerful tool in the atmospheric sciences. We will return to it
often.
Thermodynamics is concerned with the state of a system (an example of which is

the parcel alluded to above now treated as an approximate thermodynamic system)
and the changes that occur in its state when certain processes occur (such as its
being lifted). In the case of a parcel composed of an ideal gas, the state is completely
described by the state variables p,V ,M and T (actually in equilibrium only three
variables need to be specified, since the equation of state in the form of the Ideal
Gas Law can be used to calculate the fourth from knowledge of the other three). In
practice in our applications using parcels, the total mass M(M = ∑i Mi where
i indicates different species such as O2, N2, etc.) is usually also held fixed (unless
otherwise specified), making only three state variables. There are some other state
variablesmore directly related to energetics that are convenient for certain purposes
andmuchof this chapterwill be concernedwith the first twoof them, internal energy
and enthalpy.

44



The First Law of Thermodynamics 45

�x

SYSTEM EXPANSION

Figure 3.1 Illustration of an expansion of the system in the x direction by a
distance�x. The force exerted by the system on the movable wall is pA, where A
is the area of the wall. The work done can then be expressed as p A�x = p�V
where �V is the change in volume of the system.

The most basic energetic quantity to consider is the work performed by the gas
on its surroundings during an expansion of the system’s (e.g., the parcel’s) volume
(see Figure 3.1). If the system (whose shape we take to be the volume defined by
the cylinder of Figure 3.1) expands in the x direction by a distance �x, then the
force exerted on the environment is F = pA, where A is the area of the movable
wall in the cylinder and p is the pressure the system exerts on the wall. The amount
of work done by the parcel on the environment in this infinitesimal process is 1

work done by the system = F �x = p A�x = p�V

where �V is the infinitesimal change in volume associated with the expansion in
the x direction. The expansion need not be solely along the x-axis as shown in the
figure, but can be a distortion in any or all directions. The formula W = p�V still
holds for infinitesimal �V .
If the pressure is not constant during the expansion, we must sum the

contributions from a sequence of infinitesimal expansions

WVA→VB =
∫ VB
VA

p dV [expansion work done by the system]. (3.1)

On a coordinate plane with pressure and volume as ordinate and abscissa, the work
performed is the area under the curve of p versus V (Figure 3.2). This makes it
clear that the amount of work done by the system on its environment depends on
the path taken p = p(V ), which defines a curve in the plane. One might imagine
a cyclic process in which the system expands from VA to VB along one path and
returns along another path. The area between the two curves represents the net work

1 In this text we use the sign convention that positive W means work done by the system on its environment.
Some textbooks use the opposite sign for work done by the system.
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VVA VB

Area = Work

p

Figure 3.2 Graph of pressure p versus volume V for an expansion of a gaseous
system from VA to VB along a specified curve p(V ). The area under the curve is
the work performed by the system on the environment.

p

VVA VB

p0

Work

Figure 3.3 Graph of pressure p versus volume V for an expansion of a gaseous
system from VA to VB along a constant pressure path (isobaric path). The area
under the curve is the work performed by the system on the environment.

done by the parcel on its surroundings during the cyclic process. When the parcel’s
volume decreases, it does negative work.

Example 3.1 Consider a system composed of 2 kg of dry air at 0 ◦C. Let the system
expand isobarically from its initial volume of 1m3 to 3m3. How much work is
done by the system? (See Figure 3.3.)
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Answer: The amount of work done by the gaseous system on its environment is
given by the formula

W =
∫ VB
VA

pA dV = pA

∫ VB
VA

dV = pA(VB − VA) (3.2)

where VA = 1m3 and VB = 3m3, pA = ρRdTA. The density is given by 2 kg/1m3,
TA = 273K,Rd = 287 J kg−1 K−1; hencepA = 1.57×105 Pa. Finally,W = 3.13×
105 J = 313 kJ (kilojoules). �

Example 3.2 How much does the temperature change during the above process?
Answer: TB= pA/(ρBRd). We can compute ρB= mass/VB= 2 kg/3m3= 0.667
kgm−3. Then TB= 820K. Obviously an isobaric process leading to a tripling of
volume is very unlikely in the atmosphere. �

3.1 Reversible and irreversible work

In the preceding we assumed that the work done by the system was along a
well-defined path p(V ). Actually this is a rather strong assumption – that at
each infinitesimal adjustment the curve p(V ) exists. We are implicitly assuming
that we are in a state of thermodynamic equilibrium at each step – in other
words the system has time to come to equilibrium (i.e., uniform temperature
throughout, etc.) before the next infinitesimal step. In real processes such as
the compression of a piston in an internal combustion engine, the gas in the
chamber might be highly nonuniform and locally disturbed by such things as
shock waves during the next change in volume (perhaps the equation of state does
not even hold during this interval of time). For an irreversible change such as
in the internal combustion engine, an amount of work will be done, but it may
not be calculable using

∫
p dV . In more advanced books on thermodynamics it is

shown that when the system does work (for example by expansion)
∫
p dV is the

maximumwork that can be done. But when the system is compressed, the reversible
(calculable) work (

∫
p dV ) is the minimal work done by the system during the

compression. In the high compression engine the amount of work done is seldom
more than 75% of the estimate based on the reversible assumption. The unfortunate
mechanical engineer simply cannot win in the face of irreversible processes.
Luckily, most natural processes of interest to the atmospheric scientist are better
behaved.
The idealization of reversible work allows us to do calculations using

∫
p dV even

though in reality it never quite works that way. In most applications that follow in
this book the assumption of reversible work is adequate.
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3.2 Heating a system

In the expansion process undergone by a parcel (fixed mass) in moving
from (VA, pA) to (VB, pB), the parcel will do some work on the environment,∫ VB
VA
p(V ) dV . During this process some energy might be transported into the

system because of a temperature difference between the interior of the system and
the surrounding environment. This energy transported into the system is thermal
energy 2 as described in Chapter 2. Thermal energy consists of all the modes of
energy associatedwith individualmolecules: translational kinetic energy, rotational
energy for polyatomic molecules and vibrational energy (potential and kinetic)
for polyatomic molecules that experience internal stretching oscillations. These
individual energy terms each contribute to the thermal energy of a molecule (but
only the translational kinetic energy contributes to pressure). In fact, the energy on
the average is shared equally between the different modes (translational kinetic,
etc.), although at atmospheric temperatures the vibrational modes are not excited
because of quantum threshold effects.3

This transport of heat is effected at the molecular level by the collisions of
individual molecules. If there is a gradient of temperature, molecules from the
warmer region will penetrate a distance of the order of a mean free path before
suffering a collision into the cooler region (and vice versa), causing the cooler region
to warm; molecules moving the other way cause the warmer region to cool through
individual collisions. The random motions of molecules crossing the boundary
bring the news of their different “temperature” via a random walk process (each
step forward or backward determined by the proverbial flip of a coin). The news
and conversion are brought about slowly but surely. The distance advanced by
the spreading edge of a “warm front” at the molecular level is proportional to
the square root of the time elapsed. This is in stark contrast to the propagation of
pressure differences which move via a sound-like wave (distance of advance of the
pressure front being proportional to time). To obtain an idea of this contrast consider
a one-dimensional gas (x direction only) and let an instantaneous hot spot develop
at x = 0 (perhaps a fire cracker explodes). It is possible to solve this problem
analytically, but the details need not be given here. The basic idea is that heat flux

2 In most texts this thermal motion is referred to as heat as though it were a material substance moving around
in space, but some authors (e.g., Bohren and Albrecht 1998) shun the use of the noun heat in favor of the verbs
heating or cooling as a transport process involving the energizing of neighboring molecules by their aggregate
being in contact with an aggregate of molecules of a different temperature. We will use the term heat to mean
the integral over the heating rate with respect to time. Just keep in mind that heat is not a fluid flowing about in
the medium.

3 The energy levels in quantum mechanics are discrete and the disturbing collisions need to have a sufficient
energy transfer to effect a transition to the next higher energy level. Typically, rotational levels are closely enough
spaced for them to be excited, but vibrational thresholds are much higher, requiring very high temperatures for
excitation.
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Figure 3.4 Spread in meters of a localized pulse of thermal energy due (only)
to molecular thermal conductivity in air at STP after 2 h and after 12 h. The
functional form is the normal distribution with standard deviation σ =√

2Dt,
where D= κH/ρcp ≈ 2× 10−5 m 2 s−1 and t is time in seconds.

is proportional to −κHdT/dx, where κH is the thermal conductivity of air (≈0.024
Jm−1 s−1 K−1).The pulse spreads out in the shape of a normal distribution as shown
in Figure 3.4. The standard deviation of the spread of the elevated temperatures is
only about 3m after 12 hours. This means that the concept of parcel integrity for
objects of the order of several hundred meters is safe for days if the only stirring
mechanism is molecular diffusion. There are other mechanisms that can shorten
the time of mixing depending on the conditions, but these are still usually slow
compared to the adjustment of the interior to the exterior pressure. Note that sound
waves travel at several hundred meters per second. The adjustment of pressures
should be accomplished in several hundred passes of sound waves back and forth
across the parcel – still very fast compared to molecular and even eddy (turbulent)
transport processes. The soundwaves are eventually dissipated into thermal energy.
Thermal energy or heat as we have been discussing it can now be contrasted with

the work being done by a system during a process. The thermal energy is at the
molecular level and it migrates from place to place via gradients in the temperature
(say from the system to a reservoir), while work is at the truly macroscopic
level. Work is performed when one of the macroscopic dimensions (sometimes
called configuration coordinates), say the position of a piston, is altered a finite
(macroscopic) amount.
Returning to our system, heat can be transported into it because of small

differences in temperature between the system and its environment. The amount of
heat taken into the systemduring a finite process is traditionally given the symbolQ.
We say 4QA→B as the systemmoves from the state denotedAto the state denoted B.

4 Note that in our notation if a positive amount of heat is absorbed by the system then QA→B is assigned a
positive value. This is the sign convention followed by virtually all textbooks.
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Consider first the simple heating of a parcel where the volume is held fixed (an
isochoric process). The parcel is heated by an amount QA→B and its temperature
undergoes a change�T = TB−TA. The heat energy absorbed and the temperature
change are related with the coefficient of proportionality being the mass times the
specific heat capacity cv (units J kg−1 K−1); Cv = Mcv, where Cv (units J K−1) is
called the total heat capacity:

QA→B = Mcv�T [heating at constant volume]. (3.3)

In general, cv might be a function of temperature, but for an ideal gas it is not.
For dry air the value of cv is 717 J kg−1 K−1. In this process no work is done by
the parcel on its environment, since the volume of the parcel does not change.
All the heat given to the system goes into its internal energy. From the molecular
relation 1

2mv2 = 3
2kBT we recall that the average kinetic energy of the molecules

is proportional to the Kelvin temperature. Hence, a change in internal energy is
equivalent to a change in the kinetic energy (for an idealmonatomic gas).Aswewill
see later the kinetic energy of translation still has the same relation to temperature
for multi-atomic gases, but the internal energy in the multi-atomic case is modified
(next section).
In chemical applications (also chemical texts and handbooks) it is common to

use the molar specific heat for a substance, cv. In this case the total heat capacity
is Cv = νcv where ν is the number of moles in the system. In this formulation:

Q = νcv�T . (3.4)

Example 3.3 A sealed room with walls made of perfectly insulating material has
dimensions 4m×4m×3m. The conditions are p = 1000 hPa, T = 300K.What is
the mass of air in the room? How many joules are required to raise the temperature
by 1K?
Answer: M = pV /RdT = (105 Pa × 48m3)/(287 J kg−1 K−1 × 300K) =
55.7 kg.
Q = cvM�T = 717 J kg−1 K−1 × 55.7 kg× 1K = 4.0×105 J = 400 kJ. �

Example 3.4 Howmany kilowatt hours of energy are expended in the last example?
Answer: 1 kWh = 3600 kJ. So the result is 0.11 kWh. Note that the cost of 1 kWh
is a few cents (US). �

Example 3.5 In the last example, consider the effect of thin walls. Let us take the
walls to be wood and 1 cm thick. What is the amount of heat necessary to bring
these walls (and floor) up 1◦C?
Answer: The specific heat of wood is 1760 J kg−1 K−1, and the density of wood is
600 kgm−3. The walls, ceiling and floor have an area of 72m2 making a volume
of 0.72m3. The mass of this material is 600 kgm−3× 0.72m3 = 432 kg. The total
heat capacity of the solid matter is 760 kJ, nearly twice that of the air contained. �
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3.2.1 Internal energy and the First Law

When a system undergoes a transition from one state to another, energy passes
from the system to its environment or vice versa, since energy in all its forms is
conserved (even if the process is irreversible). The change in internal energy,�U ,
for a system is defined to be

�U = QA→B − WA→B [internal energy]. (3.5)

The differential form is

dU = d−Q − d−W [First Law] (3.6)

where the bar crossing the d of d−Q and d−W is to remind us that both of these
differentials depend on the path (it is not a perfect differential as in multivariable
calculus, whereas dU is). In the last expression dU is the infinitesimal change in
internal energy. The last equation is a statement of the conservation of energy. The
First LawofThermodynamics actually goesmuch further and states that the internal
energy U is a function only of the state of the system. For the ideal monatomic
gas this is obvious from our simple kinetic theory model since the internal energy
is the total kinetic energy summed over all the molecules in the system and this is
proportional to the Kelvin temperature. For a given mass, being a function of the
state means its value is uniquely determined at each point in a V−p diagram. Note
that neither Q norW are functions of state.

3.3 Ideal gas results

3.3.1 Internal energy of an ideal gas

In addition to the ideal gas equation of state another property is necessary to define
an ideal gas.Wemust specify its internal energy as a function of the thermodynamic
coordinates. This can be accomplished by laboratory experiments to yield:

U = f

2
NkBT [internal energy of ideal gas] (3.7)

where N is the number of molecules in the system. There are many alternative
forms of this relation because of the different ways we can describe an ideal gas:

U = f

2
n0kBTV = f

2
ρRTV = f

2
pV (3.8)

U = f

2
MRT = f

2
νR∗T (3.9)
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where kB is Boltzmann’s constant (Table 1.1),M is the mass of gas in the system,
and f is a constant equal to 3 for an ideal monatomic gas (e.g., Ar), and f = 5
for most diatomic gases at room temperature (e.g., air). The internal energy can
be determined by a series of experiments involving adiabatic processes in which
�U = −WA→B is easily measured. The constant f depends upon the internal
structure of the molecules; it is known as the number of degrees of freedom in the
molecule. For a diatomic molecule that is very stiff (does not stretch and contract
under the temperature conditions being considered) such as O2 and N2 near room
temperature, the value of f is 5 because there are two more degrees of freedom due
to the ability of the molecule to rotate in a two-dimensional plane, but not about the
axis joining the two atomic constituents (its moment of inertia is too small about
the axis joining the two atoms).At high temperatures (not naturally occurring in the
lower atmosphere) the number of degrees of freedom goes up by two because of
molecular vibration due to the spring-like binding. Hence, for normal atmospheric
conditions such as encountered in the troposphere and stratosphere:

f = 3 ideal monatomic gas (e.g., argon) (3.10)

f = 5 N2, O2 near STP (3.11)

f = 6 CO2, H2O and other nonlinear molecules. (3.12)

It is not difficult to see why the specific heat should be larger for molecules with
larger f . Consider the constant volume heating case. If heating occurs in a box
of monotonic gas, all the energy must go into increasing the linear (translational)
kinetic energy of the molecules. If the molecule is spatially extended such as a
diatomic molecule, it can rotate as well as translate. The added energy can go into
rotational energy as well as translational energy. Hence, the heat capacity (amount
of heat necessary to raise the system’s temperature by 1K) will be larger. Basically
the heat energy (that at the molecular level) must be shared among all the degrees
of freedom, but only the linear kinetic energy goes into causing pressure since it
carries momentum to the walls (or across boundaries).
Aremarkable theoremproved in the classical study of statisticalmechanics shows

that in equilibrium the energy will be shared equally between each of the rotational
and translational modes (and vibrational modes when applicable): the principle
of equipartition of energy. In the case of a diatomic molecule only two rotational
modes are available, the rotation about the axis joining the two atoms does not
count. In the case of a triatomic molecule in which the atoms are not in a straight
line (e.g., CO2), all three rotational modes are involved: f = 6. Molecules actually
can vibrate (stretching and contracting like masses joined by a spring) as well, and
at sufficiently high temperatures these modes can enter and raise f even more, but
as remarked above, this vibrational degree of freedom is not important in most
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applications of thermodynamics to the atmosphere. On the other hand, such modes
of vibration and rotation play an important role in the absorption and emission of
infrared radiation as it passes through air. In summary, eachmolecule on the average
possesses 12kBT for each of its mechanical degrees of freedom. For 1 mol of such
molecules at 300K this is 12R

∗T = 2.5 kJ for each degree of freedom. Hence for
argon it is 7.5 kJmol−1 and for O2 and N2 it is 12.5 kJmol−1.

Example 3.6 Find the internal energy of a 1 kg mass of dry air at STP.
Answer: We can useU = ( f /2)ρRdTV = ( f /2)MRdT0, whereM is the mass of
the gas in the system (here 1 kg) and f is 5. Then U = 1.96× 105 J = 196 kJ. �

Example 3.7 Compare the rise in potential energy due to lifting the 1 kg parcel to
9 km, approximately one scale height.
Answer: The change in potential energy isMgh= 1.08× 105 J = 108 kJ. Hence
the gravitational potential change is comparable to the internal energy for a lift of
one scale height. �

3.3.2 Heat capacities

If a system composed of an ideal gas absorbs heat at a constant volume, its
temperature will increase. Since the volume is held constant, the system can do
no work on its environment in the process, therefore

(�U )v = QA→B = Mcv�T [constant volume]. (3.13)

Differentiating the equation for the internal energy of an ideal gas (3.9) we obtain

cv = f

2
R [specific heat at constant volume and R]. (3.14)

Note that R as used in this equation is for a particular gas such as dry air. The
heat capacity at constant volume, cv, is proportional to the number of degrees of
freedom.
Another important process is the heating of the gas at constant pressure. In this

case

QA→B = Mcp�T [heating at constant pressure]. (3.15)

We also have

WA→B = p�V (3.16)

and

�V = MR�T

p
. (3.17)
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This leads to

�U = Mcp�T − MR�T . (3.18)

If U is a function of state as the First Law claims,5 then it is given by Mcv�T ,
and we have an identity:

cv�T = cp�T − R�T (3.19)

or

R = cp − cv [also R∗ = cp − cv] (3.20)

which is a very important relation for ideal gases, holding independently of the
value of f . This last tells us that for an ideal gas

cp =
(
f

2
+ 1

)
R

[
also cp =

(
f

2
+ 1

)
R∗
]
. (3.21)

That cp is always greater than cv has an easy interpretation: some of the heat
absorbed in the isobaric case is “wasted” by the expansion (work done by the
system on the environment) rather than being devoted to raising the temperature.

Example 3.8 Dry air: what are cv, cp, using ideal gas rules?
Answer: We have cv = 5

2Rd = 717.5 J kg−1 K−1, and cp = ( f /2 + 1)Rd =
cv + Rd = (717+ 287) = 1004 J kg−1 K−1. �

Example 3.9 How much heat is required to raise the temperature of a 1 kg
parcel of air at constant pressure (constant altitude in the atmosphere) by 1◦C?
Answer: 1004 J. �

Example 3.10 Amass of 2 kg of dry air is heated isobarically from a temperature
of 300K to 310K. How much heat is required?
Answer:

Q = Mcp�T = (2 kg)(1004 J kg−1K−1)(10K) = 20080 J = 20.1 kJ. (3.22)

�

5 A subtle thing is about to happen here: even though the process is occurring at constant pressure from one
temperature to another, we can use the formula �U = Mcv�T . This is because U is a function of state. No
matter how we go from TA to TB, the change in U is the same. Here we see one of the most powerful tools
in thermodynamics, the invoking of a state function’s being a function only of its state (not path). Remember,
however, that for many substances other than the ideal gas U might depend on more than just temperature;
nevertheless, it is only a function of state.
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Example 3.11 For Example 3.10, what is the change in internal energy?
Answer:

�U = f

2
MRd�T = 5

2
× (2 kg)(287 J kg−1K−1)(10K)

= 14350 J = 14.35 kJ. (3.23)

�

Example 3.12 For Example 3.10, what is the amount of work done?
Answer: Use the First Law:

W = Q − �U = 5.72 kJ. (3.24)

�

Example 3.13 A column of dry air 1 km thick (approximate thickness of the
atmospheric boundary layer) and unit cross-section (1m2) is heated by sunlight
at a rate dQ/dt = 250 J s−1. If the heating takes place at constant pressure
( p = 1000 hPa, T = 300K), by how many degrees per day is the column heated?
(Assume the air above and the ground below are insulated from the well-mixed air
in the boundary layer.)
Answer: M = 1.16× 103 kg,

dT

dt
= dQ/dt

cpM

where dQ/dt is the rate of heating (J s−1). Then dT/dt = 2.14 × 10−4
K s−1 = 18.5K day−1. This of course is a large rate of increase for normal
conditions. The assumption of 250W is the problem. The next example shows a
more realistic case in which the heating is accomplished by black carbon particles
in the air. Much of the heating in the atmospheric boundary layer comes from the
absorption of infrared radiation as well as solar radiation by water vapor. �

Example 3.14: black carbon aerosol in air Suppose there are 100 black carbon
particles per cubic centimeter in the air (108 particlesm−3). Let us take the radius
of one of these particles to be 1µm. This means the cross-sectional area of an
individual particle is 3.14 × 10−12 m2. The total area of intercepting carbon in
a 1m3 block of air is 3× 10−4 m2. (Note that this is only a tiny fraction of
the 1m2 cross-sectional area of the cube of air.) If the sun is straight overhead
its flux is 1370Wm−2. The heating rate of this cubic meter of aerosol-loaded
air is then 0.43W. If the air is at sea level its density is about 1.2 kgm−3, and
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cp = 1004 J kg−1 K−1. After some arithmetic we find that the air will experience
an increase of temperature of 1.29K h−1. �

Calculus refresher: the natural logarithm The natural log of x is denoted by
y = ln x (Figure 3.5) and is defined by

ey = x.

We can deduce a few values, for example, for x = 1, y = 0, as x → ∞, y → ∞ and y
is only defined for x positive. As x → 0, y → −∞. Moreover,

dx

dy
= ey = x.

We can turn this into dy = dx/x, and then integrate:∫ y
0
dy =
∫ x
1

dx

x

which leads to an alternative definition of ln x:

ln x =
∫ x
1

dx

x
.

Now a few properties. First the wonderful identity: x = eln x which follows from the
definition. This can be used to derive a number of useful things: ab = eln aeln b =
eln a+ln b = eln ab ⇒ ln ab = ln a + ln b. xa = eln x

a = (eln x)a = ea ln x ⇒ ln xa =
a ln x. Finally, we already found that

d

dx
ln x = 1

x
.

lnx

x

–3

–2

–1

 1

0.5 1.0 1.5 2.0 2.5

Figure 3.5 The natural logarithm ln x as a function of x.
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3.3.3 Adiabatic processes and potential temperature

Many processes in meteorology involve parcels of air moving in such a way that
no heat is exchanged with the environment during passage from one location to
another, i.e., Q = 0. The parcel effectively is surrounded by a thermally insulating
blanket. A key point here is that it takes a long time for temperature differences
to diffuse into a parcel from outside compared to the relatively short time for the
pressures inside and outside to equalize. This means that in many situations we
can regard the process as being adiabatic, that is, isolated from diathermal contact.
In that case for an infinitesimal displacement

dU = 0− pdV (3.25)

or

Mcv dT = −pdV = −MRT

V
dV (3.26)

or

dT

T
= − R

cv

dV

V
. (3.27)

The next steps become smoother if we use the identity cv = cp − R, leading to:

(cp − R)
dT

T
= −RdV

V
. (3.28)

Next we use the Ideal Gas Law

pV = MRT (3.29)

and take natural logs to obtain

ln p+ ln V = lnMR+ ln T . (3.30)

Taking the differentials we find:

dp

p
+ dV

V
= dT

T
[logarithmic derivative]. (3.31)

The term d(lnMR) disappears because it is constant. Now we can substitute in our
original adiabatic equation to eliminate the V dependence:

(cp − R)
dT

T
= −R
(
dT

T
− dp

p

)
(3.32)
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and finally,

cp
dT

T
= R

dp

p
. (3.33)

After dividing through by cp and defining

κ = R

cp
[0.286 for dry air] (3.34)

we can integrate from (T0, p0) to (T , p) to find

ln
T

T0
= κ ln

p

p0
(3.35)

or taking the anti-log: 6

T = T0

(
p

p0

)κ

[Poisson’s equation]. (3.36)

In atmospheric science the formula (3.36) is very important; one usually sees it in
the form

T

θ
=
( p

1000 hPa

)κ
p in hPa (3.37)

where θ (θ = T0 at p = 1000 hPa) is called the potential temperature. We often
see it in the following form:

θ ≡ T

(
p0
p

)κ

[potential temperature]. (3.38)

The last equation is called Poisson’s equation. It gives the temperature that
a parcel of dry air would have if it were brought adiabatically to a pressure
of 1000 hPa. No matter where the parcel lies as a piece of the environment, its
potential temperature is well defined. If the parcel moves adiabatically its potential
temperaturewill not change.Whenwefind a quantity describing the system (defined
here as the parcel) which does not change as the parcel moves about (in this case
adiabatically), we refer to it as a conservative property. In practice parcels do
move adiabatically in convective motions to a good approximation. Moreover,

6 Taking the anti-log means raising each side to be the power of e: y = f (x) ⇒ e y = e f (x). Now using x = eln x

means the anti-log of ln x is just x.
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Table 3.1 Important formulas for ideal gases
in adiabatic processes

Variables Formula

T , p T/T0 = (p/p0)κ

θ , T , p θ = T ( p0/p)κ

p,V pV γ = p0V
γ

0
T ,V TV γ−1 = T0V

γ−1
0

κ R/cp = 0.286 for dry air
γ

cp
cv

= 1.400 for dry air

175 200 225 250 275 300 325
T (K)

z /Ha = –ln (p /p0)

0.25

0.50

0.75
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Figure 3.6 Dry adiabat for a parcel of air whose potential temperature is 300K.
The abscissa is T in K, and the ordinate is − ln(p/p0) = z/Ha. The value z/Ha is
the height above sea level in units of the scale height, Ha, which is typically about
8 km in midlatitudes.

parcels moving horizontally move along constant θ surfaces (isentropic motion)
(see Table 3.1).

Tip It might be difficult to remember the form of (3.38) (Poisson’s equation), since it
will appear in a variety of forms: is the κ with a negative sign? Is p0 on top or not?
etc. Just remember: let a parcel rise, in doing so θ stays constant, so that as T goes
down, so must p. This can help us to obtain the correct formula.

Figure 3.6 shows how the temperature of a parcel is lowered if it is lifted in
an atmosphere whose pressure follows p(z) = p0e−z/Ha , which is a reasonable
approximation to the actual behavior of the pressure. Here Ha is called the scale
height of the atmosphere. Typically in midlatitudes, Ha ≈ 8 km.

Example 3.15 Air in a jet plane near the tropopause is taken into the plane and
compressed adiabatically from an outside pressure of 300 hPa to 1000 hPa. The
temperature outside is 255K. What must be done to the air to bring it to an inside
temperature of 300K?
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Answer: In adiabatically compressing the gas the Kelvin temperature is raised by a
factor of 1.411 to 360K. The air must now be cooled at constant pressure to 300K
by the air conditioning system. Recalling that 3600 J = 1Wh, this requires 60 kJ =
0.0167 kWh for each kilogram of air brought into the plane from the outside. �

Example 3.16 A 1 kg parcel of dry air is located at the 500 hPa level in the
atmosphere. Its temperature is 246K. What is its potential temperature?
Answer: θ = (1/2)−0.286T . We find θ = 300K. �

Example 3.17 A1 kgmass of dry air is located at 500 hPa. Its potential temperature
is θ = 300K (as above). 1 kJ of heat is absorbed by the parcel at constant pressure.
What is the change in the parcel’s potential temperature?
Answer: First, compute the change in temperature, �T = Q/(Mcp) = 1 kJ/
(1.004 kJ kg−1 K−1× 1 kg) = 0.996K. Next, use Poisson’s equation at 500 hPa:

�θ = �T/(0.5)0.286 = 1.21K. (3.39)

�

Example 3.18 A 50 kg parcel of dry air has temperature 300K at the surface
(1000 hPa). It is lifted adiabatically to the 700 hPa level. What is its potential
temperature?
Answer: θ = 300K. What is its temperature at the 700 hPa level?

T = θ
( p

1000mb

)κ = 300K × (0.7)(0.286) = 270.9K. (3.40)

�

Example 3.19 Air at 300K is forced up a mountain slope adiabatically through a
vertical height of 2 km. Suppose the pressure is given by p(z) = p0e−z/H ,H =
10 km. Howmuch is the temperature changed? By what ratio is the volume of such
a parcel changed?
Answer: p(2 km) = p0e−2/10 = 0.819 p0. T/300K = (0.819)0.286. T = 283K.

VB/VA = (TB pA)/(TA pB) = 1.15. �

Example 3.20: other forms of the adiabatic curve Returning to the relation (3.27),
use R = cp − cv, then divide through by cv. We obtain

dT

T
= −(γ − 1)

dV

V
(3.41)

where γ = cp/cv is called the ratio of specific heats. For an ideal diatomic gas (and
air acts like one) γ = 1.400. We can integrate as in the text and obtain

ln
T

T0
= + (1− γ ) ln

V

V0
(3.42)
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and finally

TV γ−1 = T0V
γ−1
0 [adiabatic process (T ,V form)]. (3.43)

Another form useful in physics and engineering can be derived:

pV γ = p0V
γ

0 [adiabatic process (p,V form)]. (3.44)

�

3.4 Enthalpy

In many meteorological and chemical applications the internal energy is not
the most ideal state function for describing energetic changes during transitions.
The classical form of the First Law is especially useful for transitions in which
the volume is held fixed (dV = 0) since the volume-work term vanishes, but
in atmospheric applications most changes in the state of a parcel occur either
adiabatically or isobarically. Hence, it becomes convenient to introduce a new
function of state called the enthalpy, H , defined by

H ≡ U + pV [enthalpy]. (3.45)

Take the differential to obtain

dH = dU + p dV + V dp. (3.46)

After substituting the earlier form of the First Law in terms of the internal energy
we obtain

dH = d−Q + V dp [enthalpy form of the First Law]. (3.47)

Very often atmospheric processes take place at a fixed pressure (altitude). These
include heating of a parcel by solar radiation at a particular altitude, condensation
heating, and contact heating at the surface. In this case the enthalpy is a very
convenient function to describe the parcel’s thermodynamic state. Note that the
change in enthalpy under a constant pressure process is just

(dH )p = d−pQ = McpdT (3.48)

or (
∂H

∂T

)
p
= Mcp. (3.49)
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Integrating the last equation:

H = McpT + F(V ) (3.50)

where F(V ) is an arbitrary function of volume appearing here as an integration
constant. We can find this function by noting that U =McvT and using the
definition of H , (3.45), to obtain

H = McpT [enthalpy for an ideal gas]. (3.51)

In other words, the arbitrary function F(V ) is identically zero for the ideal gas.
The adiabatic process is expressed as

(dH )d−Q=0 = 0+ Vdp (3.52)

and for the ideal gas,

cp dT = RT

p
dp (3.53)

and

cp
dT

T
= R

dp

p
(3.54)

which will quickly lead us to Poisson’s equation (3.36).

Calculus refresher: partial derivatives Thermodynamic functions nearly always
involve more than one variable as we have seen already, e.g., V (T , p). The “partial”
of V (T , p) with respect to p holding T constant is defined by(

∂V

∂p

)
T

= lim
�p→0

V (T , p+ �p) − V (T , p)

�p
.

In most fields the subscript T following the large parentheses is omitted, but in
thermodynamics it is conventional (and useful) to retain this reminder of which
variable is being held constant. Sometimes especially in mathematics and physics, the
partial derivative is denoted by a subscript. For example, let f be a function of x and
y, then ∂f /∂x = fx, etc. You simply take the ordinary derivative but hold all variables
constant except the one being varied. For example, take the ideal gas: V = MRT/p,
then (∂V /∂p)T = −MRT/p2.
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This is a good time to search out your old calculus book and review the chapter on
partial differentiation. An important result to remember is that if we go to second
partial derivatives such as fxx or fxy, the order does not matter:

fxy = fyx. (3.55)

The differential of f (x, y) is

df = fx dx + fy dy. (3.56)

If we divide through by dx and set dy to zero we obtain(
df

dx

)
dy=0

= fx. (3.57)

Suppose the function f (x, y) is held constant. Then

fx dx + fy dy = 0 (3.58)

and we find

dy

dx
= − fx

fy
. (3.59)

The notation in the last equation will be encountered often.

Example 3.21 A1 kg parcel is heated at the surface (p= 1000 hPa) at a rate dQ/dt =
20Wkg−1 (W= watts). What is the rate of change of enthalpy?
Answer: Note that dp/dt = 0. Then, dH/dt = dQ/dt. �

Example 3.22 A parcel moves along an isobaric surface (constant pressure) and is
heated at a rate dQM/dt = 10Wkg−1. What is the rate of change of T along the
path of motion?
Answer: (dH/dt) = McpdT/dt = dQM/dt; dT/dt = (dQM/dt)/cp =
10Wkg−1/1004 J−1 kg−1 = 0.01K s−1. �

3.5 Standard enthalpy of fusion and vaporization

Enthalpy is a very useful function in describing the energy transfers in processes
involving a change of phase (e.g., liquid to vapor). Enthalpy is especially useful
since these processes often take place at constant pressure. An example is the
evaporation of 1 mol of water. In this case the system (the volume containing
the water) is heated by maintaining a small temperature differential with its
surroundings at constant pressure and constant temperature. The heat (now we
can call it enthalpy) absorbed to effect this transition is often called the latent heat



64 The First Law of Thermodynamics

Table 3.2 Standard enthalpies of transition for selected
compounds
The standard enthalpies of fusion and vaporization are
evaluated at the freezing and boiling points (K)
respectively at 1 atm of pressure. Units in this table for
the enthalpies are kJmol−1, but be careful in using
tables since the units of energy might be in kcal (4.18 kJ
= 1 kcal). In the table Tf is the freezing point and Tb is
the boiling point at 1 atm of pressure.

Species Tf �fusH
◦

Tb �vapH
◦

CO2 217.0 8.33 194.6 25.23 (sublimation)
H2 3.5 0.021 4.22 0.084
H2O 273.16 6.008 373.15 40.656
Ar 1.188 87.29 6.506

of vaporization in the older literature, but in keeping with current convention it is
called the enthalpy of vaporization.Many tables give values in terms ofmoles rather
than kilograms of the substance. To make useful standardized tables, conventions
have been adopted. In the case of evaporation for example, �vapH

◦
indicates that

1 mol of the substance is being considered (the overbar) and the superscript ◦
indicates that it is at a standard temperature (units should be indicated in the table).
See Table 3.2.
By definition, the standard enthalpy for vaporization, �vapH

◦
, is the heat

transferred to the system at constant pressure permole in the process of vaporization
of the substance from its liquid to its vapor form. The standard quantity is defined
at the boiling point (373K for water) at 1 atm of pressure.
Similarly the standard enthalpy for fusion is the heat transferred by the system to

the surroundings at constant pressure permole in the process of fusing the substance
from its liquid to its solid form. It is labeled �fusH

◦
. By convention the standard

quantity is evaluated at the freezing point at 1 atm of pressure.

Example 3.23 We have 36 g of liquid water at 373K and 1 atm of pressure. We
wish to evaporate the water and raise its temperature to 473K at constant pressure.
What is the change in enthalpy for the two steps? (cpvap ≈ 2 kJ kg−1 K−1.)
Answer: 36 g is 2.0 mol of water. We must then give the system 2 mol× 40.656
kJmol−1 = 81.312 J for step 1. Step 2 is a heating at constant pressure. �H2 =
Mcp�T = 0.036 kg× 2 kJ kg−1 K−1 × 100K = 7.2 kJ. �

Example 3.24 Two grams of liquid water are evaporated into 1 kg of dry air at 1
atm constant pressure. The temperature is 300K. What is the change in enthalpy
of the system?
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Answer: The dry air is irrelevant.We must do several steps to accomplish our goal.
To use the value in Table 3.2 we must heat the 2 g of water to its boiling point. The
change in enthalpy for this is �H1 = Mcliq�T = 2 g × 4.18 JK−1g−1 × 73K =
610 J. Next the water is evaporated: �H2 = (2/18)mol 40.7 kJmol−1 = 4.52 kJ.
In step 3 we must cool the vapor back down to its starting temperature: �H3 =
2 kJK−1 kg−1×0.002 kg×(−73K)= − 292.0 J. Combining all three steps:�H1+
�H2 + �H3 = 4.84 kJ. �

Example 3.25 In the last example, what is the temperature and density change for
the original 1 kg of air which holds the 2 g of liquid water?
Answer: �T = �HM−1c−1p = 4.84 kJ/(1 kg 1004 J kg−1 K−1) =
4.5K. The change in density is �ρ = −p�T/Rd T 2 = 105 Pa ×
4.5K/(287 J kg−1K−1)(300K)2 = 0.019 kgm−3. This represents a 1.6% change
in the density, enough to cause important buoyancy effects. �

In these examples we made liberal use of the fact that the enthalpy of a system
depends only on its state, not on the path through which the state is found. This
freedom allows us to use standard tables.

Notes
Most of the good thermodynamics books referred to in earlier chapters work well
for this one.

Notation and abbreviations for Chapter 3
cv, cp specific heats (heat capacity per kg) at constant volume, pressure

(J kg−1 K−1)
cv, cp molar specific heats (Jmol−1 K−1)
Cv,Cp heat capacities at constant volume, pressure (J K−1)
(dH )p change in enthalpy at constant pressure (J)
dH/dt, dQ/dt time rate of change of enthalpy, heat transfer rate (J s−1)
d−Q, d−W differentials for heat, work, the bar emphasizes path

dependence (J)
�V change in volume (m3)
�fusH

◦
(X ) standard enthalpy of fusion of substance X (Jmol−1)

�vapH change in enthalpy during vaporization (J)
�vapH

◦
(X ) standard enthalpy of vaporization of substance X , the overbar

indicates 1 mol of substance, the superscript ◦ indicates at
standard conditions (usually 25 ◦C) (J mol−1)

�x displacement in x
f number of degrees of freedom of a molecule
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fx partial derivative with respect to x
F force (N)
γ ratio of specific heats cp/cv (dimensionless)
H enthalpy (J)
Ha scale height of the atmosphere
kB Boltzmann’s constant
κ = R/cp (dimensional)
κH thermal conductivity (JmK−1)
M bulk mass (kg)
n0 number density (moleculesm−3)
ν number of moles
p pressure (Pa, hPa)
dQM/dt rate of heating per unit mass (J kg−1 mol−1 s−1)
R,RG,Rd,R∗ gas constant (J kg−1 K−1), gas constant for a gas G, for dry air,

universal gas constant (J K−1 mol−1)
ρ density (kgm−3)
T temperature (K)
θ potential temperature (K)
V volume (m3)
VA,VB initial and final volumes
WVA→VB work in going from VA to VB
W ,Q work done by the system, heat taken into the system

Problems
3.1 Suppose p(z) = p0e−z/H . Evaluate the following.

(a) dp/dz at z = H/3.
(b)
∫∞
0 p(z) dz.

(c)
∫ H
H/2 p(z) dz.

(d) ∂p/∂H at z = H/2.
3.2 Let p = ρRT . Evaluate the following.

(a) ∂p/∂T .
(b) ∂ρ/∂T .
(c) ∂p/∂ (1/T ).

3.3 The compressibility of a substance is defined by

κX = − 1

V

(
∂V

∂p

)
X

(3.60)

whereX is the variable being held constant.We can compress the gas isothermally (κT )
or adiabatically (κθ ) (θ is the potential temperature). Calculate both for an ideal gas.
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3.4 The coefficient of expansion is defined by

β = 1

V

(
∂V

∂T

)
p
. (3.61)

Compute β for an ideal gas.
3.5 Show that for any gas (

∂p

∂T

)
V

= β

κT
. (3.62)

(Hint: dV =
(

∂V
∂p

)
T
dp+ ( ∂V

∂T

)
p dT , see the Calculus refresher in this chapter.)

3.6 Find the internal energy of 1 kg of dry air at STP.
3.7 Suppose the atmosphere has its pressure given by p(z) = p0e−z/H with p0 = 1 atm

and T (z = 0) = 273K. Now suppose a 1 kg parcel is lifted adiabatically one scale
height H . How much work does the parcel do on the environment in the process?
What is the change in its specific internal energy, �u?

3.8 Isobaric process A 1 kg parcel of dry air has temperature 285K and pressure
1000 hPa. It is heated by contact with the dry ground to a temperature of 295K.
(a) What is Q? (b) What is the change of the parcel’s specific internal energy? (c)
What is the change in the parcel’s specific enthalpy?

3.9 Isothermal process 1 kg of dry air at 300K and 1000 hPa is expanded isothermally
(pretty unusual in the atmosphere) from a volume of 2m3 to twice that value. (a)What
is the work done by the gas in this expansion? (b)What is the heat absorbed? (c)What
is the change in enthalpy?

3.10 Isochoric process 1m3 of dry air at 1000 hPa and 290K is enclosed in a rigid box.
What is its density (kgm−3)? 3 g of liquid water are evaporated into the box. What
is the increase of temperature in this box whose volume is held fixed? What are the
changes in internal energy and enthalpy? Sketch a diagram of the change in the V–p
plane.

3.11 Adiabatic processA parcel of mass 1 kg is lifted adiabatically from 800 hPa, where
its temperature is 270K, to 600 hPa. What is the new temperature? What are the
changes in internal energy and enthalpy? Sketch a diagram of the change in the V–p
plane.

3.12 Isobaric processA parcel of essentially dry air is held at a fixed altitude where the
pressure is 950 hPa. It is heated by infrared radiation being absorbed by some water
vapor in the parcel. The heating rate is 20 J kg−1 s−1. What is the rate of change of the
temperature, specific enthalpy and specific internal energy? How does the potential
temperature change per unit time? Sketch a diagram of the change in the V–p plane.

3.13 An air column is composed of dry air and the density of the air is given by ρ(z) =
ρ0e−z/H , where ρ0 = 1.25 kgm−3 and H = 10 km.

(a) What is the mass of air (kg) lying above 1m2 ?
(b) How many idealized “air” molecules are above the 1m2 ?
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(c) Then approximately how many “air molecules” are there in the entire Earth’s
atmosphere?

3.14 The speed of sound in air can be computed from the formula vsound = √
1/ρκX , where

κX is the compressibility holding the parameterX constant. Compare the sound speeds
(taking ρ = p/RT ) when X = κT and X = κθ . The latter fits the data. Do you recall
from physics why the adiabatic compressibility gives the correct answer instead of
the isothermal compressibility? See Problem 3.3 above.

3.15 Suppose the atmosphere satisfies p(z) = p0e−z/H and that it is isothermal (T (z) = T0).
What is the potential temperature θ as a function of z? Sketch a graph.
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The Second Law of Thermodynamics

The Second Law of Thermodynamics deals with changes in the conditions of
a system and its surroundings under transitions from one thermodynamic state
to another. We will introduce a new function of state by considering a simple
quasi-static series of changes for an ideal gas. First recall that some quantities are
functions of the state only, while others depend on the path taken between two
states. According to the First Law, the internal energy U is a function only of
state with changes in going from state A to state B, denoted �U , depending only
on the initial state coordinates (e.g., pA,VA, TA) and the final state coordinates
(pB,VB, TB). Recall that the enthalpyH is also a function of state. Changes in other
quantities such as the amount of work done by the system on the surroundings in
the (quasi-static) transition depend upon the path taken between the two states. In
this case the work done by the system on the surroundings may be written,

WA→B =
∫ B
A
p(V )dV (4.1)

and the function p(V ) is a specific curve in the V–p plane defining the path taken
in going from A to B. The path must be quasi-static and reversible, otherwise the
path p(V ) may not even be defined, nor could we use pdV in computing dW . The
change in internal energy depends only on the difference

�U = UB − UA (4.2)

nomatter what the path (even if the process is irreversible). For example, in the case
of the ideal gas the internal energy (and enthalpy) depend only on the temperature,
independent of the history of the system. For more complex systems U and H
might depend on other state variables as well, but not on the history of the system.
Note that the heat (induced by a temperature difference between the system and its
environment) taken into the system during the transition must also depend on the

69
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V

p

A

B

Figure 4.1 Illustration of two paths joining points A and B in a V–p state diagram.

path since

QA→B = WA→B + UB − UA (4.3)

and thework done by the system surely depends on path as we have seen earlier (see
Figure 4.1). Next we explore quasi-static transitions of an ideal gas to see whether
there might be another function of the state of the system.
Consider the case of an ideal gas where the mass M is fixed. We can use the

definition of the enthalpy to obtain:

dH = Mcp dT = dQ + Vdp. (4.4)

If we multiply through by the integrating factor 1/T we obtain

+Mcp
dT

T
= dQ

T
+ V

dp

T
. (4.5)

Using the Ideal Gas Law, V /T = MR/p and solving for dQ/T :

dQ

T
= −MR

dp

p
+ Mcp

dT

T

= −MR d ln p+ Mcp d ln T

= Mcp

[
d ln

(
T

pR/cp

)]
= d
[Mcp ln(Tp

−κ)
]

(4.6)

where as before κ = R/cp. The last expression says that dQ/T is a perfect
differential. That is, its change in going from A to B does not depend on the path
chosen for the sequence of quasi-static infinitesimal steps.Anecessary and sufficient
condition for the differential to be perfect is that integrals around arbitrary closed
loops result in no change in the function.
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Calculus refresher: perfect differential Suppose F is defined by:

F =
∫
path

A(x, y) dx +
∫
path

B(x, y) dy (4.7)

where A(x, y) and B(x, y) are well-behaved functions. It might happen that there exists
a function f (x, y) such that

∂f

∂x
= A(x, y) and

∂f

∂y
= B(x, y), (4.8)

if so

df = ∂f

∂x
dx + ∂f

∂y
dy, or

∂A

∂y
= ∂B

∂x
(4.9)

is the exact differential of f and

F =
∫
path

df = f (upper) − f (lower) (4.10)

which means that F is independent of the path along which the integral is taken
joining the upper and lower limits. It might be easier to see this if we introduce a
parameter t which defines the curve

x = x(t), y = y(t) (4.11)

(for example, a parabola y = x2 could be written x(t) = t, y(t) = t2) this defines a
curve in the x–y plane (the path). The integral can be written:

F =
∫ t2
t1

(
A
dx

dt
+ B

dy

dt

)
dt

=
∫ t2
t1

(
∂f

∂x

dx

dt
+ ∂f

∂y

dy

dt

)
dt

=
∫ t2
t1

df

dt
dt =
∫ f (x(t2),y(t2))
f (x(t1),y(t1))

df

= f (x(t2), y(t2)) − f (x(t1), y(t1)). (4.12)

Example 4.1 Consider the function

f (x, y) = sin xy. (4.13)
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Then fx(x, y) = y cos xy and fy(x, y) = x cos xy. Then

df = y cos xy dx + x cos xy dy = d(sin xy). (4.14)
�

Example 4.2: integrating factor Consider the first-order linear differential equation
for the function y(t):

dy

dt
+ by = g(t) (4.15)

where b is a constant and g(t) is a given function. Now multiply through by the
integrating factor ebt . We can show that

d

dt

{
ebty
}

= ebtg(t) (4.16)

and the left-hand side is rendered a perfect differential, by virtue of our knowing the
proper integrating factor. Now we are in position to solve the differential equation
by integrating each side:

ebty(t)
∣∣∣t
t0

=
∫ t
t0
ebt

′
g(t′) dt′. (4.17)

Then

y(t) = y(t0)e
−b(t−t0) + e−bt

∫ t
t0
ebt

′
g(t′) dt′. (4.18)

�

Example 4.3 Consider the differential expression

dZ = 2xy3 dx + 3x2y2 dy. (4.19)

We want to consider integrals of this differential from the point (0,0) to the point
(1,1) along some different paths. First consider the straight line path, y = x, which
connects the two points. Then,

dZ = (2x4 + 3x4) dx = 5x4 dx, (4.20)

�Zstraight line =
∫ 1
0
5x4 dx = 1. (4.21)

Next consider the parabolic path, y = x2, dy = 2x dx, which also passes through
the two points:

dZ = 2x7 dx + 3y3 dy, (4.22)



4.1 Entropy 73∫
parabolic

dZ =
∫ 1
0
2x7 dx +

∫ 1
0
3y3 dy = 2

8
+ 3

4
= 1. (4.23)

We obtain the same answer for the two different paths. In fact, it is possible to write

dZ = d(x2y3). (4.24)

In other words, dZ(x, y) is a perfect differential. Integrating from one point in the
x–y plane to another always yields the same answer.
On the other hand, suppose we had the function

dP = 2xy dx + 3x2 dy. (4.25)

This differential is not perfect, but with the aid of the integrating factor, y2, we can
create the perfect differential, dZ . �

Example 4.4 In classical mechanics we encounter the same concept with
conservative forces, which implies the existence of a potential energy function.
If a force can be described by a potential energy function V (x, y, z) and if the force,
F(x, y, z) can be written as the gradient of the force:

F(x, y, z) · dr = −∇V (x, y, z) · dr

= −
(

∂V

∂x

)
dx −
(

∂V

∂y

)
dy −
(

∂V

∂z

)
dz

= −dV . (4.26)

Or we can write

F(r) = −∇V (r). (4.27)

Hence the work done in going fromA to B:

WA→B =
B∫
A︸︷︷︸

path

F · dr

= V (A) − V (B)︸ ︷︷ ︸
independent of path

. (4.28)

�

4.1 Entropy

In the case of the ideal gas mentioned above, we can use Poisson’s equation,

T = θ

(
p

p0

)κ

(4.29)
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or

Tp−κ = θ(p0)
−κ (4.30)

and inserting into (4.6) we obtain:

dQ

T
= Mcp d ln

(
θ(1000 hPa)−κ

)
= Mcp d ln θ

≡ dS (4.31)

where S is called the entropy. In chemistry and physics the entropy is usually
denoted S and the entropy per unit mass s; in some older meteorology contexts it
is denoted φ. The important thing is that entropy is a function only of state and
that its change in going from one state to another can be calculated by choosing a
reversible path joining initial and final states.
For an infinitesimal displacement along a reversible path (for a general

thermodynamic system, not just an ideal gas),

dS = dQrev
T

[Second Law of Thermodynamics]. (4.32)

The extra subscript rev is added to remind the reader that the calculation of dQ/T
must be along a reversible path. Recall that a reversible path is one in which the
infinitesimal steps along the path are quasi-static and such that each can be reversed
to restore the system to its previous state. In performing the calculation, we should
find such an imaginary but realizable path joining the two states for the purposes of
calculation. Of course, in nature the transitionmight be (and often is) an irreversible
or spontaneous one from stateA to state B, but there always exists a reversible path
joining the two states so that the change in entropy can always be calculated. As
indicated in the last equation, the very existence of such a function of state as
defined above constitutes one statement of the Second Law of Thermodynamics.
In the case of dry parcels of ideal gas (nearly always satisfied in the dry

atmosphere) we can use the formula

dS = Mcpd ln θ (4.33)

or

S = Mcp ln θ (4.34)

and in terms of specific quantities (kg−1):

ds = cp d ln θ , s = cp ln θ , (4.35)
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where an arbitrary integration constant has been set to zero, since it is never actually
needed. In these last formulas s refers to the entropy per unitmass (units J K−1 kg−1)
or the specific entropy. We will use s (units J K−1 mol−1) to indicate entropy per
mole. For a parcel of dry air, knowing the potential temperature is equivalent
to knowing its entropy. Hence, the change in entropy for a parcel undergoing a
reversible transition (through a series of quasi-static changes) can be computed
simply by computing the change in its potential temperature

�S = SB − SA

= Mcp ln
θB

θA
. (4.36)

It is obvious that for a reversible adiabatic process, the change in entropy vanishes,
since d̄Q = 0 along the reversible path. For so-called diabatic processes (ones
in which some heat is exchanged between the system and its surroundings), the
formula defining the change in entropy can be used (dS = dQrev/T ).

Example 4.5 Show that dQrev/T = Mcp d ln θ really works for an ideal gas. First
write

dQ = dH − V dp. (4.37)

Substituting for dH and V :

dQ = McpdT − MRT
dp

p
. (4.38)

After dividing through by T we simply repeat the steps leading to (4.6). �

Example 4.6 Compute the change in entropy for a parcel of mass M at pressure
level p0 being heated diabatically (e.g., by radiation heating) from temperature
T0 to T .
Answer: Since the heating is done at a fixed level, the pressure p remains constant
at a value p0. We can proceed to compute the change in entropy by using

dS = dQ

T
(4.39)

�S =
∫ T
T0
cpMdT

T

= cpM ln
T

T0
. (4.40)

�

Example 4.7 Howmuch does the potential temperature of the parcel change in this
heating if it takes place at 500 hPa?
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Answer: Since θ = T (p/p0)−κ , p = constant = 500 hPa, and p0 = 1000 hPa, we
have �θ = �T (p/p0)−κ = (T − T0) (500/1000)−0.287, for an isobaric heating
process. �

Example 4.8 Aparcel of ideal gas is taken from (V0, p0) to (2V0, 12p0) by first (path
a) expanding isobarically to 2V0, then the pressure is reduced at constant volume
to 12p0 (path b). What is the change in entropy?

Answer: Along path a we compute �Sa = ∫ dQ/T = Mcp
∫ 2T0
T0

dT/T =
Mcp ln 2. Along path b, �Sb = ∫ dQ/T = ∫ dU/T = Mcv

∫ T0
2T0
dT/T =

−Mcv ln 2. Now �Sa + �Sb = M(cp − cv) ln 2 = MR ln 2. �

Example 4.9 Using the same initial and final states as in the previous example,
compute the change in entropy but along the isothermal path joining the two states
(path c).
Answer: Along c we have

∫
dQ/T = ∫ dW/T = (1/T0)

∫ 2V0
V0

p dV =
(MRT0/T0)

∫ 2V0
V0

dV /V = MR ln 2, which is the same as in the alternative
reversible two-step path chosen in the previous example. �

Example 4.10: change in phase Compute the change in entropy for 1 kg of water
being evaporated to gas at 373K at constant pressure.
Answer: First note that 1 kg of water is 55.56mol. The change in entropy is
Q/(373K). Since the pressure is held constant, Q = ν�vapH

◦ = 55.56mol ×
40.66 kJmol−1 = 2259 kJ. The change in entropy is then�S = 2259 kJ/(373K)=
6.06 kJK−1. �

4.2 The Second Law of Thermodynamics

There are several equivalent statements of the Second Law of Thermodynamics.
For our present purposes it suffices to state the law as follows.
There exists a function S of the extensive parameters of the system that is a

function of state and whose changes from one state to another can be calculated by

dS = dQrev
T

(4.41)

and such that

dS ≥ 0 (4.42)

for an isolated system.
The subscript is again a reminder that the calculation must be conducted along

a reversible path.
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4.3 Systems and reversibility

It is time to pause and review some definitions. Consider a system which is
embedded in its surroundings. Together we say these comprise the universe. The
system is in contact with its surroundings by various movable or stationary walls
andmembraneswhichmight (ormight not) allowfluxes (heat ormass) to cross. If no
mass crosses we say the system is closed, whereas if mass crosses into or out of the
volume confining the system we say it is an open system (sometimes this is called
a control volume). So far in this book we have only considered closed systems, but
we will encounter open systems as well. In equilibrium, both the system and the
surroundings have thermodynamic coordinates.A reversible change is one which is
quasi-static (taken in small slow steps in such a way that equilibrium is maintained;
that is, there is enough time between steps for the pressure and temperature to
homogenize throughout the volume of the system) and which can be reversed at
any point returning both system and surroundings to their former coordinate values
without the expenditure of any additional work (more on this below).
Often a system in contact with surroundings undergoes a spontaneous transition

when a constraint is released or relaxed to some new configuration. Such a transition
is irreversible. Undermany of these spontaneous transitions the internal energy does
not change, but the entropy does.
Example 4.11: Free expansion Consider a chamber isolated from the outside by
adiabatic walls. Inside the chamber is a wall separating half the volume on each
side.There is an ideal gas on one side of the partition, vacuumon the other. Suddenly
the partition is removed (slipped out sideways so that no work is done), such that
the gas expands (irreversibly) to fill the whole volume. What are the changes in
internal energy, enthalpy and entropy?
Answer: The internal energymay be calculated from the First Law. The system does
no work since the vacuum exerts no back pressure during the expansion. Also no
heat is taken into the system because the walls are impermeable to such a transfer.
Therefore, the internal energy does not change:�U = Qfree exp. −Wfree exp.. Note
that we were able to apply the First Law even though the path was irreversible.
The fact that the internal energy is invariant means that in the free expansion, the
temperature does not change (true for an ideal gas – in a real gas there is some
temperature change, even though no change in U occurs). Since the temperature
does not change we can see that the enthalpy does not change for the ideal gas. The
change in entropy must be computed by an alternative reversible path. There are
many, but we can choose the one along an isotherm from V0 to 2V0:

�S =
∫ 2V0
V0︸ ︷︷ ︸

along isotherm

dQ

T
. (4.43)
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Along the isotherm, dQ = dW = p dV = MRT dV /V , therefore

�S =
∫ 2V0
V0

MR
dV

V
= MR ln 2 > 0. (4.44)

We could also compute the change in entropy for the surroundings (the adiabatic
walls). It is zero. Hence, the change in entropy for the universe is MR ln 2 which
is a positive number. �

In the free expansion process in the example above, the entropy of the system
experienced a net increase, while that of the surroundings did not change. This
is an example of the second part of the Second Law. For an irreversible process
the entropy of the system and its surroundings (taken together, the universe) will
always increase. Note that for an infinitesimal increase in volume that is an adiabatic
free expansion, the entropy of the universe increases. This means that some quasi-
static processes are irreversible. An irreversible process could be defined as one in
which the entropy of the universe increases. So how could an adiabatic expansion
ever be reversible? The way out is that one can imagine making infinitesimal (and
reversible!) expansions at constant volume then at constant pressure in a stair-step
procedure to approximate the adiabatic expansion curve in the V–p plane, much as
an integral can be approximated by summing rectangular boxes whose upper edges
approximate the curve being integrated. In this way a reversible approximation can
be found to the adiabatic expansion curve.

4.4 Additivity of entropy

The entropy for a set of thermodynamic systems is the sum of the individual
entropies of the constituent subsystems. Hence, the entropies of the system and
its surroundings are additive. The same additivity principle applies to the internal
energy and the enthalpy and any other of the extensive parameters describing the
composite system. The extensive parameters volume and mass also satisfy this
principle. When we add up several systems to form a larger system in which the
entropies, internal energies and enthalpies can be added up, we call this a composite
system. We can express this in equation form:

S = S1 + S2 + · · · (4.45)

U = U1 + U2 + · · · (4.46)

H = H1 + H2 + · · · . (4.47)

Example 4.12: a column of air We can think of a column of air as a composite
system. Its pressure and temperature might be varying with altitude z but we can
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add up these contributions from individual slabs:

Ucolumn =
∫ zupper
zlower

ρ(z)u(z) dz (4.48)

Hcolumn =
∫ zupper
zlower

ρ(z)h(z) dz (4.49)

Scolumn =
∫ zupper
zlower

ρ(z)s(z) dz (4.50)

where ρ(z) is mass density, u(z) is the specific internal energy, etc. �

In general, if two systems are brought into “contact” we can say the sum of the
internal energies of the system will remain the same. Bringing two systems into
contact amounts to removing or relaxing a constraint. For example, if two gases A
andB at the same pressure are in a chamber, but separated by a partition, the removal
of the partition will allow the gases to mix. No change in internal energy will occur
if the chamber containing both subsystems is insulated from its environment. On
the other hand, the change in the total entropy must be zero or positive. Processes
(either reversible or not) in which the sum of the entropies of a system and its
surroundings yield a negative change in total entropy do not occur in nature. This
principle can be of great utility in determining which way a process will proceed
when a constraint is relaxed or removed. Recall that removal of a constraint means
that in order to restore the system to its original state additional work must be
performed by some external agent. This last is really the essence of the Second
Law of Thermodynamics. Solutions to problems of this type may not always be
facilitated by use of the internal energy alone, since it may remain fixed when the
constraint is removed. But restoration of the original conditions does require work,
and hence changes in the internal energy alone are insufficient to describe what has
happened. It turns out that the entropy change provides this additional information.

Example 4.13 How could we restore the gas in Example 4.11 to its original
condition and how much work would be required?
Answer: First we would have to bring the ideal gas into contact with a reservoir
of temperature T , then we would perform an isothermal compression of the gas
from volume 2V0 to V0. As we perform the compression of the gas, infinitesimal
temperature differences will develop between the system and the reservoir: heat
will transfer from one system to the other to maintain the fixed temperature. The
work performed (by the system) in the isothermal compression is just−MRT ln 2.
Note that in the case of mixing two gases A and B mentioned above we would

need to recompress each to its original volume by an isothermal route in order
to restore them to their original states. We might in this case use a membrane
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which allows molecules A to pass into a new adjacent chamber but not B. But
suppose A and B are the same gas. Does the entropy increase when the partition is
removed? No. �

4.4.1 Expression for entropy of an ideal gas

It is possible to derive an analytical expression for the entropy of an ideal gas.
To proceed consider the expression for an ideal gas dry air parcel. Recall that the
entropy S is given by

S = Mcp ln
θ

θ0
. (4.51)

Using the expression defining the potential temperature we have

S = Mcp ln

[
T

T0

(
p

p0

)−κ
]
. (4.52)

While this is a perfectly good expression for the entropy, it is not in terms of
extensive variables M,U ,V . Making use of the defining equations for an ideal
gas: p = MRT/V , U = ( f /2)MRT and the ideal gas property cp = ( f /2+ 1)R,
we eventually find

S = MR ln

[(
U

U0

)f /2 ( V
V0

)]
[entropy of an ideal gas] (4.53)

which holds for any ideal gas. For dry air, R = Rd, f = 5. To express this in molar
form replaceMR with νR∗. We immediately see that such a function S does exist
for the simple ideal gas system. We also see that S is extensive (proportional to
M), and the extensive argumentsU and V are expressed as ratios of standard states
with the same mass. In addition we can see that S(U ,V ) is an increasing function
of the internal energy U and the volume V .
Amore direct way of deriving the entropy of an ideal gas is to start with the First

Law (now with d−Q replaced with T dS; hence the expression that follows will hold
for reversible paths in the V–S plane):

dU = T dS − p dV [differential for U in terms of entropy]. (4.54)

Dividing through by T and rearranging:

dS = 1

T
dU + p

T
dV . (4.55)



4.4 Additivity of entropy 81

Using U = ( f /2)MRT and p = (MRT/V ):

dS = f

2
MR

dU

U
+ MR

dV

V
. (4.56)

Then,

S = S0 + f

2
MR ln

(
U

U0

)
+ MR ln

(
V

V0

)
. (4.57)

The last equation is equivalent to the expression (4.53) with S0 = 0.

4.4.2 Expression for the internal energy of an ideal gas

We can solve for U using the last equation:

U

U0
=
(
V

V0

)−2/f
exp

[
S − S0

(f /2)MR

]
[U for an ideal gas]. (4.58)

This expresses U =U (S,V ,M) for a single-component system. The thermo-
dynamic potentials are the intensive parameters of the system that come from taking
partial derivatives of U with respect to its arguments:

(
∂U

∂S

)
V ,M

= T [positive definite] (4.59)

(
∂U

∂V

)
S,M

= −p [negative definite]. (4.60)

The first leads to T = U/(( f /2)MR) which defines U for the ideal gas. The
second leads to the ideal gas equation of state, pV = MRT .
While we worked out the analytical expressions for the case of an ideal gas,

the differential relations for dU and dS are general and hold for any substance.
Therefore the last two equations for the partial derivatives also hold generally. We
then learn two important facts. (1) The internal energy is always an increasing
function of S (likewise, S is an increasing function of U ). (2) For constant entropy
the internal energy is a decreasing function of V .
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4.4.3 Enthalpy of an ideal gas

By a series of steps similar to those of the last subsection we can find:

H (S, p) = H0

(
p

p0

)κ

exp

(
S − S0
Mcp

)
[enthalpy of an ideal gas]. (4.61)

This expression shows explicitly that for a simple ideal gas, the enthalpy is a function
of the entropy and the pressure.
In the general case (not just the ideal gas) we have for a single-component system

dH = T dS + V dp [differential of H in terms of entropy] (4.62)

and therefore (
∂H

∂S

)
p
= T ,

(
∂H

∂p

)
S

= V (4.63)

An important corollary of the expressions for dU , dS and dH is that they
are natural functions of certain pairs of variables (fixed mass). For example,
U = U (S,V ), S = S(U ,V ) and H = H (S, p).

4.5 Extremum principle

Since the entropies of the system and its surroundings together always increase
in a natural (spontaneous) process, we can see that the final state after constraints
have been released will be one in which the entropy is a maximum. For example,
the equilibrium concentration of gaseous reactants and gaseous products in a
chemical reaction will reach its equilibrium value when the entropy of the system
is maximized (see Chapter 5).

Example 4.14 Consider two isolated parcels of dry air with massesM1 andM2 at
the samepressurep1 = p2 (same altitude) but at different initial temperaturesT 01 and
T 02 . The two subsystems come into thermal contact. What is the final temperature
after this irreversible process takes place?
Answer: The enthalpy is constant during this mixing process

H = cpM1T
0
1 + cpM2T

0
2

= cp(M1 + M2)TF (4.64)

where TF is the resulting temperature of the mixture. We can solve for TF:

TF = M1T 01 + M2T 02
M1 + M2

= xT 01 + (1− x)T 02 (4.65)
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Figure 4.2 Entropy versus final temperature for component one of a mixture
subject to the constraint that enthalpy be conserved.

where x = M1/M, M = M1 + M2. The last equation is the answer to our
problem, but let us look further to see what happens to the entropy. The potential
temperature of subsystem i is θi = (p0/pi)κ × Ti; p0 = 1000 hPa. The entropy of
the system is the sum of the entropies of the individual subsystems comprising the
whole system

S = cpM1 ln θ1 + cpM2 ln θ2

= cp ln
[
(θ1)

M1 (θ2)
M2
]

= cp ln
[
(T1)

M1 (T2)
M2
]+ constant

= cp ln
[
(T1)

Mx (T2)
M(1−x)]+ constant. (4.66)

�

Consider a particular example for which M1 = 2 kg,M2 = 3 kg, x = 0.4,
T 01 = 250K,T 02 = 260K and for simplicity cp = 1. The resulting TF = 256K.
Figure 4.2 shows a plot of S as a function of T1. Our assumption based on intuition
and experience that both masses come to the same temperature of 256K is justified
by its being the value of temperature that maximizes the entropy of the combined
system.

4.5.1 Carnot cycle

The Carnot cycle is the most important closed loop process in thermodynamics.We
illustrate it here for an ideal gas. This is a four step loop process as illustrated in
Figure 4.3. The branch ab is along a hot isotherm at temperature Th during which
heat Qh is transferred to the system from the hot reservoir. The next step is an
adiabatic expansion bc to the cooler temperature Tc. The third step, cd is isothermal
and an amount of heat Qc(> 0) is expelled from the system to the cooler reservoir
at Tc. Finally, there is the adiabatic compression da, which completes the cycle
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Figure 4.3 Carnot cycle for 1 kg of dry air (taken as an ideal gas) in the V–p
plane. The cycle proceeds as follows. Step ab is an isothermal expansion from
a to b, at temperature Th, drawing in heat Qh. Step bc is an adiabatic expansion
from b to c. Step cd is an isothermal compression at temperature Tc expelling heat
Qc from the system. Finally, step da is an adiabatic compression from d to a. In
this case Va = 0.50m3, T2 = 300K, Vb = 1.50m3, T1 = 200K. Then all other
intersections are determined, e.g., pa =1720 hPa, pb = 574 hPa.

back to the starting point a. We can list the products:

Wab(> 0), Wab = MRTh ln
Vb
Va

= Qh(> 0) (4.67)

Wbc(> 0), Wbc = −�bcU = Mcv(Th − Tc) (4.68)

Wcd (< 0), Wcd = MRTc ln
Vd
Vc

= −Qc(< 0) (4.69)

Wda(< 0), Wda = −�daU = Mcv(Tc − Th) (4.70)

�abS = Qh
Th
, �cdS = −Qc

Tc
(4.71)

and since it is a closed loop,
∮
dS = 0, we have

�abS + �cdS = 0 (4.72)

which leads to

Th
Tc

= Qh
Qc

(4.73)

and in addition we can find from the above formulas:

Vb
Va

= Vc
Vd

. (4.74)
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In the Carnot cycle we follow convention and call the heat transferred to the
system along the hot isotherm (a → b) Qh and the heat rejected along the cooler
isotherm −Qc. This way both Qh and Qc are positive numbers. Note that Qh >

Qc: more heat is always drawn from the hot reservoir than is rejected to the cold
one. The difference is the work extracted from the system during the cycle. It
would be nice to use all of the heat from the hot reservoir to create work, but
this is impossible, since some heat is always rejected to the cold reservoir. We
can never turn all of our heat extracted from the hot reservoir into work. This
is a major consequence of the Second Law. The First Law says energy must be
conserved, but the Second Law goes further to tell us that we not only cannot
obtain something for nothing, we cannot even obtain all of the something to be
used for work.
The efficiency of the process is the work performed over the whole loop divided

by heat extracted from the hot reservoir:

efficiency = Qh − Qc
Qh

= 1− Tc
Th

(4.75)

Figure 4.4 shows (not to scale) the same cycle in the entropy–temperature plane,
referred to as the S–T plane. In this plane the cycle is a more simple geometric
figure, a rectangle. Consider the area enclosed in a closed figure in the S–T plane

S

T

Sb,cSa,d

Td,c

Ta,b
a b

cd

Figure 4.4 Schematic diagram of the Carnot cycle of Figure 4.3 except in the S–T
plane. The geometrical figure is a rectangle independent of the substance (i.e., this
diagram is not restricted to the ideal gas). The area enclosed is the work done by
the system.
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(such as Figure 4.4):

area enclosed =
∮
T (S) dS [area-energy in the S–T plane]. (4.76)

The First Law of Thermodynamics states that dU = T dS − p dV . Since the loop
integral of dU vanishes, we find that the area enclosed in the S–T plane above is
exactly the work done in the loop process. In most cases in atmospheric science
it is easier to deal with areas in the S–T plane than in the V–p plane. This is
because the volume of a parcel is not easily observed, whereas its pressure (same
as the environmental pressure and approximately equivalent to altitude) is easily
observed. Similarly for adiabatic transformations s = cp ln θ is fixed and in a
diabatic heating p is usually fixed.
Note that the rectangular shape of the closed figure for a Carnot cycle in the

T–S plane does not depend on the system being composed solely of an ideal gas.
Isotherms and adiabats are straight lines for any system in the S–T diagram in
Figure 4.4. This means that the Carnot cycle is useful in describing cycles even
of a composite system composed of any substances. A particular example is the
case of a composite system consisting of a liquid in equilibrium with its vapor,
both enclosed in a chamber. This last configuration is similar to a steam engine
wherein vapor is condensed and later evaporated as separate legs of the cycle. It
is shown in more advanced thermodynamics books that the Carnot cycle is the
most efficient reversible cycle in terms of obtaining work from the system by
extracting heat from a hot reservoir and rejecting part of it to a cold reservoir.
Irreversible cycles are always less efficient than reversible ones. Thermodynamic
loop diagrams for atmospheric processes will be exploited in later chapters as
we analyze the energetics involved in parcels undergoing transitions in the real
atmosphere.

Example 4.15: Carnot cycle for any system The S–T depiction of the Carnot cycle
(Figure 4.4) works for any thermodynamic system. We can show a few properties
that hold for the general case that were derived above only for the ideal gas case.
For example, consider the work done in the cycle. The First Law tells us that since
(�U )loop = 0 for the closed loop, Wloop = Qh − Qc. Next consider the Second
Law which says that (�S)loop = 0; hence Qh/Th = Qc/Tc. The efficiency is still
Wloop/Qh and it can be written as 1−Qc/Qh = 1− Tc/Th, exactly as for the ideal
gas. Finally, we can verify that the area enclosed in the rectangle isWloop. The area
is given by

(�T )(�abS) = (Th − Tc)(Qh/Th) = Qh − TcQh/Tc = Qh − Qc.

�
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4.6 Entropy summary

The extensive thermodynamic variables we have discussed so far are the volume
V , the mass M, internal energy U , the enthalpy H and the entropy S. There are
also the intensive parameters, pressure p, and temperature T . It is best to think of
the internal energy as a function of the entropy, volume and mass. Note that each
is an extensive variable:

U = U (S,V ,M) (4.77)

The following form of the First Law actually incorporates the Second Law (for
fixed mass):

dU = TdS − p dV (4.78)

and it shows explicitly that the internal energy is best characterized by these two
variables, S and V . Note that this last expression shows how the internal energy
changes in terms of other state variables (S and V ). The associated intensive
parameters are given by partial derivatives:(

∂U

∂S

)
V

= T ,

(
∂U

∂V

)
S

= −p (4.79)

The enthalpy can be written:

H = H (S, p,M) (4.80)

and the First Law (combined with the Second) is expressed (for fixed mass) as

dH = TdS + Vdp (4.81)

along with the corresponding partial derivative expressions. We can also think of
the entropy as the dependent variable:

S = S(U ,V ,M) (4.82)

and

dS = 1

T
dU + p

T
dV (4.83)

and (
∂S

∂U

)
V

= 1

T
,

(
∂S

∂V

)
U

= p

T
(4.84)
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4.7 Criteria for equilibrium

We return now to the extremum principle. If we consider a system and its
surroundings, and we allow a spontaneous change to occur (release a constraint),
we know that

dSuniverse ≥ 0 ⇒ dSsys + dSsurr ≥ 0 (4.85)

where the subscripts refer to the system and to the surroundings while the equality
sign holds for a reversible process.Note that the entropy change for the surroundings
can be written

dSsurr = dQsurr
T

. (4.86)

Here we have taken dQsurr to be the same as dQrevsurr since the surroundings might
be assumed to undergo a reversible change (because of its large mass) while that in
the system might not necessarily be reversible. But we can take dQrevsurr = −dQsys
since the heat gained by the surroundings has to be supplied by the system. The
dQsys need not be reversible in this problem. We now can write

dSsys − dQsys
T

≥ 0 (4.87)

or rearranging to obtain the important formula

dSsys ≥ dQsys
T

[equal for reversible, larger for irreversible]. (4.88)

The equality sign applies only if the process is actually reversible. As an example,
consider the (irreversible!) free expansion studied in Example 4.11. In that case,
dQsurr = 0 while we found that dSsys > 0.
Consider what happens to a system undergoing a spontaneous transition because

some constraint has been relaxed or removed. We can use the First Law (which
holds for reversible or irreversible transitions) to write

dS ≥ dU + p dV

T
. (4.89)

If the transition occurs at constant volume we can write

T dS ≥ dU constant volume. (4.90)

Similarly

T dS ≥ dH constant pressure. (4.91)
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These can also be expressed as

dSU ,V ≥ 0, dUS,V ≤ 0 (4.92)

dSH , p ≥ 0, dHS, p ≤ 0 (4.93)

where the subscripts indicate which variables are to be held constant. In words, if
the internal energy and the volume are constrained to be fixed in the transition, the
entropy of the system will increase in the transition. The other three inequalities
can be expressed similarly.

4.8 Gibbs energy

There is another thermodynamic state function widely used in applications to
atmospheric science, the Gibbs energy (sometimes called the Gibbs free energy
or just the free energy). It proves to be useful for processes which occur at constant
pressure and constant temperature. We can use the Gibbs energy to help us in
deciding the direction of a chemical reaction and in determining the equilibrium
phases or concentrations of chemical species in equilibrium. The Gibbs energy
is particularly useful for open systems (those in which mass can enter or leave
the system) and for systems in which the internal composition might change
due to chemical reactions. We will take up some of these cases later in this
chapter.
The Gibbs energy can be defined as

G = H − TS [definition of Gibbs energy] (4.94)

whereH is enthalpy, T temperature and S is entropy. The differential ofG can then
be written:

dG = dH − TdS − SdT . (4.95)

Substituting for dH :

dG = dQ + Vdp− TdS − SdT . (4.96)

Along a reversible path we can take dQ = TdS which leads to

dG = Vdp− SdT [differential for Gibbs energy]. (4.97)

This last expression (which combines the First and Second Laws) tells us that G
is a natural function of T and p, G(T , p). Hence, in a change in which the mass,
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pressure and temperature are held fixed, the Gibbs energy will not change. This
actually happens in a phase transition. For example, consider a chamber with a
movable piston held at fixed temperature. Let the chamber contain a liquid with
its own vapor in the volume above it. If the piston is withdrawn isothermally
and quasi-statically some of the liquid will evaporate into the volume above the
liquid surface. The pressure is just the vapor pressure and is constant since it
depends only on the (fixed) temperature. We should note that the pressure in the
liquid is the same as the pressure in the vapor (we ignore gravity here). Different
positions of the piston (leading to different volumes of the vapor) correspond to
the same temperature and the same pressure (in both liquid and vapor). Along
this locus of points in the state space (say the V–p diagram) for this composite
system the Gibbs energy is constant. We will return to the two-phase problem in
Chapter 5.
Returning to the general problem we see from (4.97):

(
∂G

∂p

)
T ,M

= V ,

(
∂G

∂T

)
p,M

= −S (4.98)

As indicated in an earlier chapter, the reactions of trace gases in the atmosphere
occur at constant pressure and temperature. In this case the atmosphere which
contains orders ofmagnitudemore neutral backgroundmolecules (nitrogen, oxygen
and argon) than the (usually trace) reactants acts as a massive thermal and pressure
buffer holding the temperature and pressure constant. Hence, the reactions among
trace gases in the atmosphere occur at fixed pressure (altitude) and temperature
(that of the background gas). In these cases where T and p are held constant only
the concentration of the species is allowed to change. This is the perfect setup for
use of the Gibbs energy.

4.8.1 Gibbs energy for an ideal gas

Begin with the definition of G

G = H − TS. (4.99)

Write H = McpT and the expression for entropy:

S = Mcp ln

(
T

T0

(
p

p0

)−κ
)

(4.100)
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where κ = R/cp as before. Then

G(T , p) = McpT − McpT ln

(
T

T0

(
p

p0

)−κ
)

= McpT

(
1− ln

T

T0

)
+ MRT ln

p

p0
. (4.101)

The specificGibbs energy isG normalized by themass, sometimes denoted g(T , p):

g(T , p) = cpT

(
1− ln

T

T0

)
+ RT ln

p

p0
[ideal gases]. (4.102)

Another form that is useful especially in chemistry is the molar Gibbs energy.
Instead of specifying the specific Gibbs energy as per unit mass it may be more
convenient to express it as a per mole quantity. In the expression for G note that
for heating at constant pressure:

d−Q = νcp�T = Mcp�T (4.103)

or

νcp = Mcp (4.104)

where cp is in J kg−1 K−1, M is in kg, ν is the number of moles, and cp is in
J mol−1 K−1.Also recall thatR∗ is the universal gas constant (8.3145 Jmol−1 K−1).
Then

G(T , p) = νcpT

(
1− ln

T

T0

)
+ νR∗T ln p

p0
(4.105)

and using G(T , p) = G(T , p)/ν we have

G(T , p) = cpT

(
1− ln

T

T0

)
+ R∗T ln p

p0
[molar form]. (4.106)

In these expressions, κ is the same dimensionless number since R/cp = R∗/cp.
A composite system consisting of several distinct subsystems of ideal gases

i = 1, . . . , n leads to an expression for the Gibbs energy:

G =
n∑
i=1

νi Gi(Ti, pi)

(
=

n∑
i=1

Migi(Ti, pi)

)
(4.107)
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4.8.2 Equilibrium criteria for the Gibbs energy

As with entropy and internal energy, there is a condition for equilibrium for the
Gibbs energy and it is often more useful than the others:

dS ≥ dH − Vdp

T
= dG + TdS + SdT − Vdp

T
(4.108)

which after dividing each side by dS simplifies to

0 ≥ dG + S dT − V dp. (4.109)

Now for a process at constant temperature and pressure,

dGT , p ≤ 0 [equilibrium criterion for Gibbs energy]. (4.110)

This last is an important result, since so many processes take place at constant
temperature and pressure. The inequalities derived earlier are somewhat less useful
since in applications it is more difficult to control H , S or U . The last equation
states that in a spontaneous process the (possibly composite) system will adjust
its coordinates in such a way as to lower the value of the system’s Gibbs energy;
in this sense it behaves like a potential energy function in mechanics where a
system tends toward minimum potential energy (see Figure 4.5). Equilibrium will
establish itself at the minimum of G(T , p), much as it did in the last chapter for a
maximum of S(U ,V ) only this time we have a function whose dependent variables
are more under our control (or more to the point those found in naturally occurring
circumstances).

G
ib

bs
 F

re
e 

E
ne

rg
y

spontaneous
process!

By spontaneous
transition A     O

system comes to 
equilibrium

non-spontaneous
process!

System needs an external
source of energy to perform

O     B transition 

A
B

O

equilibrium

State of system
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Figure 4.5 In a spontaneous transition the Gibbs energy is a minimum.
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4.9 Multiple components

In all the thermodynamic functions we have studied so far we have ignored the fact
that the chemical composition of the system might change. In fact, the functions of
state might be summarized by:

U = U (S,V , ν1, . . . , νn) (4.111)

H = H (S, p, ν1, . . . , νn) (4.112)

G = G(T , p, ν1, . . . , νn) (4.113)

S = S(U ,V , ν1, . . . , νn) (4.114)

where ν1, . . . , νK indicate the number of moles of each chemical species in the
system. These molar indicators are thermodynamic coordinates. We can write

dG =
(

∂G

∂p

)
T ,ν1,...

dp+
(

∂G

∂T

)
p,ν1,...

dT +
(

∂G

∂ν1

)
p,T ,ν2,...

dν1 + · · · . (4.115)

We can write more compactly

dG = Vdp− SdT + G1 dν1 + · · · + Gn dνn (4.116)

where the Gi are the molar Gibbs energies for the individual components in the
mixture.1 Note that a similar expression (but with differentials of their natural
variables serving as coefficients) holds for dU and dH with the same values of Gi.

(
∂G

∂ν1

)
p,T ,ν2,...

= G1, etc. (4.117)

expresses how much the composite Gibbs energy changes per mole of species 1
being added to the system. As with other intensive parameters in subsystems in
contact (such as T1 and T2 when the subsystems 1 and 2 are in diathermal contact,
or p1 and p2 when the pressures are allowed to be unconstrained) the specific Gibbs
energies Gi will tend toward equality when the number of moles of the different
species are allowed to vary (e.g., by chemical reactions or phase changes).
We can obtain some insight into this equalizing of theGi by considering a system

at constant pressure and temperature in which there are two chemical species, A
and B. We have the reaction:

A� B. (4.118)

1 TheGi are denotedµi in the chemical literature and are called the chemical potentials of the system components.
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The number of moles of B being created, δνB = −δνA. And since

dG =
(

∂G

∂νA

)
T ,p
dνA +

(
∂G

∂νB

)
T ,p
dνB = (GA − GB) dνA. (4.119)

We find that at equilibrium where dG = 0:

GA = GB. (4.120)

The species A and B might be different phases of the same substance. We again
find the equality of the two molar Gibbs energies for each phase when equilibrium
is established. We will find this to be of great utility in the next chapter.
Next consider a system composed of two subsystems of equal volume, one is

filled with νA moles of ideal gas species A the other with νB moles of B. Further,
suppose the two gases have the same pressure p and temperature T . Now suppose
the two subsystems are brought into material contact with the volume being the
sum of the original volumes, the pressures and temperatures also being the same.
What is the final Gibbs energy? What are the final enthalpy, internal energy, and
entropy?
The initial Gibbs energy is:

Ginit = (νA + νB)G (p, T ) (4.121)

where we have used the same specific Gibbs energy G(p, T ) for each of the ideal
gases A and B. Once the gases are mixed into the larger volume, the total pressure
will be the same, but the partial pressures will be only half as much since they
occupy twice the volume but at the same temperature. Hence,

Gfinal = (νA + νB)G
(p
2
, T
)
. (4.122)

Taking the difference and using the formula (4.101) we get

�G = Gfinal − Ginit = −(νA + νB)R
∗T ln 2 < 0. (4.123)

This illustrates that the spontaneous process of mixing two ideal gases leads to
a decrease in the Gibbs energy.
For the internal energy and enthalpy, the job is easy. The change of the internal

energy is

�U = νA�UA + νB�UB

= (νA + νB)cV�T

= 0, (4.124)
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since �T = 0. The same holds for enthalpy with the substitution cV → cp.
As expected, during the mixing of ideal gases the Gibbs energy decreases, while

the enthalpy and internal energies do not change.
To calculate the entropy change we choose a reversible isothermal path. We use

�G = �H − S�T − T�S (4.125)

with �H = �T = 0. Hence,

�S = −�G/T = (MARA + MBRB) ln 2 > 0. (4.126)

The mixing of two ideal gases causes an increase of the entropy as we learned
earlier.
Suppose now that the gases A and B are identical, MA = MB = M, RA =

RB = R, νA = νB = ν. Then, from (4.126) we get the increase of the entropy after
mixing:

�S = 2MR ln 2 ≡ 2νR∗ ln 2. (4.127)

Does this make sense? In the beginning each subvolume contains the same number
of moles of identical gases. What changes after the mixing of the gases? Nothing.
Then the change in entropy should be zero. So we get two different answers for
the same problem. This has become known as the Gibbs Paradox. The reason
this paradox arises is that in classical physics we cannot consider the mixing of
two identical gases as a limiting case of the mixing of two different gases. If we
start our consideration for different gases, they have always to be different. It is
impossible to get the answer for the entropy change of the mixing of two identical
gases simply by equating the masses and the gas constants in equation (4.126).
In classical physics the exchange of coordinates between two identical particles
(gas molecules in our case) corresponds to a new microscopic state of the system
(two gases in the cylinder), although nothing changes with such an exchange at
the macroscopic level. This paradox does not exist in quantum theory, where the
exchange of two identical particles does not correspond to a new microscopic state
of the system. Therefore, when two identical gases are mixed, the entropy does not
change.

Notes
Aside from the books already mentioned in earlier chapters, a beautiful treatment
of thermodynamics from an axiomatic point of view is given by Callen (1985).
Thermodynamics and its applications in engineering has a long history. A good
introductory level engineering book is that by Çengal and Boles (2002). Both of
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Emanuel’s books (1994, 2005) as well as the book by Curry and Webster (1999)
discuss the thermodynamics of convection phenomena.

Notation and abbreviations for Chapter 4
cv, cp specific heats, the overbar indicates quantities expressed per

mole (Jmol−1K−1)
dQrev infinitesimal absorption of heat, subscript indicating that the

change be reversible (J)
dSU ,V infinitesimal change in entropy during which U and V are

held constant (J K−1)
F force (N)
g Gibbs energy per kilogram (J kg−1)
G Gibbs energy per mole or molar Gibbs energy (Jmol−1)
G Gibbs energy (J)
H enthalpy (J)
κ = R/cp (dimensionless)
M bulk mass (kg)
µi chemical potential of species i, same as Gi (Jmol−1)
ν, νA, νB number of moles, number of moles of species A, B
p pressure (Pa)
p(V ) pressure as a function of volume; expression for a curve in

the (p,V ) plane
R gas constant for a particular gas (J kg−1 K−1)
s entropy per unit mass (lower case indicates per unit mass)

(J K−1 kg−1)
S, SA, SB entropy, entropy of state A, state B (JK−1)
Ssys, Ssurr, Suniverse entropy for the system, surroundings, universe (sys+surr)
θ potential temperature (K)
U internal energy (J)
UA,UB internal energy at states A, B (J)
WA→B,QA→B work done by the system, heat taken into the system in

going from state A to state B (J)

Problems
4.1 A parcel is lifted adiabatically from z = 0 to z = H , what is its change in entropy?
4.2 Compute the change in entropy for an ideal dry gas of mass M which is heated at

constant volume from T1 to T2. TakeM = 1 kg, T1 = 300K and T2 = 310K.
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4.3 A parcel is lifted isothermally from pressure p0 to p1. Find its change in potential
temperature. Take p0 = 1000 hPa and p1 = 500 hPa, T0 = 300K.

4.4 A 1 kg parcel at 500 hPa and 250K is heated with 500 J of radiation heating. What
is the change in its enthalpy? What is the change in its entropy? Its potential
temperature?

4.5 Aquantity 18 g of water is (a) heated from 273K to 373K, (b) evaporated to gas form,
and (c) heated to 473K. All steps are performed at constant pressure. Compute the
change in entropy for steps (a), (b), and (c). Note: the heat capacity for water vapor is
≈ 2 kJK−1 kg−1.

Use these data in the next two problems: 2 kg of an ideal gas (dry air) is at temperature
300K, p = 1000 hPa.

Step 1: the volume is increased adiabatically until it is doubled.
Step 2: the pressure is held constant and the volume is decreased to its original value.
Step 3: the volume is held constant and the temperature is increased until the original

state is recovered.

4.6 (a) Sketch the process (steps 1, 2 and 3) in the V–p plane.
(b) What are the volume and temperature at the end of step 1?
(c) What is the change of enthalpy�H , internal energy�U , and entropy�S, during

step 1?
(d) How much work is done by the system in step 1?

4.7 Continuing Problem 4.6.

(a) How much work is performed in step 2?
(b) What is the total amount of work in all three steps?
(c) What is the entropy change �S in step 2?
(d) What are the total changes in U ,H , S during all three steps?

4.8 A dry air parcel has a mass of 1 kg. It undergoes a process that is depicted in the V–p
plane in Figure 4.6. Calculate the change of entropy, enthalpy and internal energy for
this air parcel.

p 

V1 

p1 

2p1

2V1 

Final state(p1,2V1)

Initial state(2p1,V1)

Figure 4.6 Diagram for Problem 4.8.
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V

p

A

Figure 4.7 Diagram for Problem 4.9.

4.9 Find the change of internal energy and enthalpy for the cyclic process shown in
Figure 4.7. Starting from point A describe how the temperature changes during this
cyclic process.

4.10 Show that the work performed by a system during a reversible isothermal cycle is
always zero.

4.11 Show that for the Carnot cycle of an ideal gas holds (4.74)

Vb
Va

= Vc
Vd
.

Hint: Divide one of the four equations for work done along the different legs of the
cycle by another one.

4.12 A tropical storm can be approximated as a Carnot cycle. Air is heated nearly
isothermally as it flows along the sea surface (typically 27 ◦C). The air is lifted
adiabatically in the eye wall to a height above the tropopause where it begins to
cool due to loss of infrared radiation to space. The temperature where this occurs
is about −73 ◦C. Finally the air descends to the surface adiabatically. Calculate the
thermodynamic efficiency of this “heat engine.”2

4.13 Show that the work done in a (reversible) Carnot cycle is the product of the entropy
difference between the two adiabats and the temperature difference between the two
isotherms (see Figure 4.4). The result holds for any system, not just an ideal gas.

4.14 Air is expanded isothermally at 300K from a pressure of 1000 hPa to 800 hPa. What
is the change in specific Gibbs energy?

2 Kerry Emanuel (2005) explains this simple model at beginner’s level in Chapter 10 of his book Devine Wind.



5

Air and water

In nature water presents itself in solid, liquid and gaseous phases. Energy transfers
during transformations among these phases have important consequences in
weather and climate. The system of redistribution of water on the planet constitutes
the hydrological cycle which is central to weather and climate research and
operations. Water is also an important solvent in the oceans, soils and in cloud
droplets. The presence of tiny particles in the air can influence the formation of
cloud drops and thereby change the Earth’s radiation balance between absorbed
and emitted and/or reflected radiation. These and other effects lead us into the
fascinating role of water in the environment. Of course, thermodynamics is an
indispensable tool in unraveling this very challenging puzzle.

5.1 Vapor pressure

Westart with a discussion of the equilibriumgas pressure in a chamber in diathermal
contact with a reservoir at a fixed temperature, T0. The chamber is to have a volume
that is adjustable, as shown in Figure 5.1. In the following let the chamber have no
air present – only the gas from evaporation of the liquid.We are to choose a volume
V such that there is some liquid present at the bottomof the chamber (we say here the
bottom of the chamber, but otherwise we ignore gravity). There are gas molecules
constantly striking the liquid from above and sticking. The rate at which particles
enter the liquid phase will be proportional to the number density of molecules in
the gas phase (recall from our discussion of kinetic theory that the flux of molecules
per unit perpendicular area crossing a plane is 14n0v where v is mean speed of the
vapor molecules (see Chapter 2)). Molecules in the liquid phase must have at least
a certain minimum vertical component of velocity inside the condensed phase to
escape the liquid surface (they have to overcome the potential energy necessary
to leave the surface). If we wait for the equilibrium to establish itself, the rate of
molecules leaving the liquid surface going into the volume above will exactly equal

99
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VAPOR 

VAPOR 

LIQUID B to C

A to B 

  

TEMPERATURE
  RESERVOIR 

Figure 5.1 Quasi-static compression of a vapor at constant temperature. In A→
B, there is no liquid present. At point B, liquid begins to form on the base of the
chamber. In B→ C, there is liquid in equilibrium with the vapor.

the rate of molecules arriving and sticking. If the rate of departures should exceed
the rate of sticking arrivals, the number density of gas molecules n0 would steadily
increase until the rates equalize.
If the volume of the chamber is decreased slightly, the equilibrium will have

to be re-established. The steady state equality of arrival and departure rates can
only be maintained for the same number density in the gas phase as before since
the temperature is held fixed. In decreasing the volume we must condense a net
amount of vapor molecules into the liquid phase under these conditions. As the
excess number of sticking molecules falls into a potential energy well when they
enter the liquid their velocities in the liquid increase (picture a slowly moving
marble rolling off the table’s edge, where its kinetic energy suddenly changes from
near zero to a large value). This excess kinetic energy of the molecules entering
the liquid is quickly shared with the other water molecules in the liquid, slightly
raising its temperature. This tiny excess temperature over that of the reservoir in
contact with the system is quickly wiped out (with a heat (enthalpy) transfer to
the reservoir), maintaining the isothermal constraint. As the volume is decreased,
there is another form of energy being added to the system, because during the
compression, work is being performed on the system by the piston (maintaining
constant pressure).
Consider the situation in aV–p diagram (Figure 5.2).Wewish to trace an isotherm

for this system. We start at point Awhere all the matter in the chamber is in the gas
phase.We compress the gas isothermally until we reach point Bwhere liquid begins
to condense on the floor of the chamber (no droplets, please, because surface tension
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critical isotherm
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Figure 5.2 Pressure versus volume diagram for a mixture of liquid and vapor. We
start at point A where the system is all vapor, and compress isothermally to point
B, where liquid begins to appear. In going from B to C a mixture of liquid and
vapor is present.Along this second stage the isotherm is also an isobar. The portion
of the curve to the left of C represents the liquid phase. The critical isotherm is
shown by the bold line. T1 < T2 < T3 < . . . < T7. The dashed line bounds the
area where the liquid and its vapor are in equilibrium.

of the curved droplet surfaces would complicate the energetics here; but also no
gravity in this experiment – the water could congregate on the ceiling for all we
care here). As we isothermally and quasi-statically compress further, the pressure
remains constant asmorematter is converted fromgas to liquid phase. Heat released
from the condensation and from the work performed during the compression must
be transferred from the chamber to the reservoir in order to maintain the same
temperature. The change in internal energy is composed of two contributions, the
work done by the piston on the gas and the heat associated with the matter being
converted from vapor to liquid. The change in enthalpy of the system does not
depend on volume, so its change only involves the condensation contribution. The
change in enthalpy in moving along from B to C in Figure 5.2 is

�H = Q = −(�M�) L (5.1)

where �M� is the (positive) amount of matter condensed in the process and L =
�Hvap is called the enthalpy of vaporization (latent heat of evaporation in old
fashioned terminology). For water at 0 ◦C, L = 2.500× 106 J kg−1, and it is nearly
independent of T (error < 1%, over the range of interest in atmospheric science).
When the volume is reduced to such an extent that we have only liquid in the

chamber, the further decrease in volume requires a very large increase in pressure,
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because liquids are almost incompressible (see the segment of the curve C→ D of
the isotherm).
If we plot isotherms corresponding to higher temperatures (T1 < T2 < T3 . . .),

we see that the length of the horizontal portion of the isotherm decreases. This
means that with increasing temperature the volume interval for which the liquid
and vapor can coexist in equilibrium decreases. This happens until we reach the
so-called critical isotherm, where this interval shrinks to a point. The temperature
corresponding to this isotherm is called the critical temperature. At the critical
temperature Tc, ∂2p/∂V 2 = 0, an inflection point. The isotherms with temperature
well above the critical temperature are hyperbolae, because the substance at very
high temperatures behaves like an ideal gas.

5.2 Saturation vapor pressure

The equilibrium pressure of water vapor above a flat surface of liquid water in a
chamber such as shown in Figure 5.1 is called the saturation vapor pressure. It is
independent of the shape of the volume in the cylinder (since it only depends on the
number density ns of the vapor). The saturation vapor pressure (usually denoted es)
is however a very strong function of temperature T . This is intuitively reasonable
since an increase in temperature will increase the proportion of liquid molecules
having velocities above the threshold to depart from the surface. More departures
will require more arrival rates to maintain equilibrium. This in turn will require a
larger number density which is proportional to the vapor pressure. Note that the
flux of molecules moving down perpendicularly is 14nsv (see Chapter 2).
Figure 5.3 shows a graph of the saturation vapor pressure of water over a flat

liquid surface versus the temperature in degrees Celsius. Many aspects of weather
and climate depend on this very rapid increase with temperature. As a rough but
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Figure 5.3 Saturation vapor pressure for water over a flat liquid surface versus
temperature in degrees Celsius.
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useful rule of thumb, the saturation vapor pressure doubles for every 10 ◦C increase
in temperature (at least in the range of interest for atmospheric science). Even so,
at moderate temperatures the saturation vapor pressure is very small compared to
atmospheric pressure near the surface (usually 5 to 30 hPa compared to 1000 hPa).
Does the presence of dry air affect the saturation vapor pressure ofwater? Perhaps

the added pressure of the air on the liquid surface squeezes more water molecules
into the vapor phase. But on the contrary, some air dissolves in the liquid and thereby
might hinder the flux of molecules out of the liquid surface. Both effects are present
but together their impact is less than 1% of the saturation vapor pressure.

5.3 Van derWaals equation

Aswe learned earlier, the approximation of an ideal gasworkswell if we can neglect
the intermolecular forces. This is virtually always the case for themajor constituents
of air at Earth-like conditions. But as a gas nears its critical temperature and the
liquid or solid state can coexist with the gas phase, the departure from ideality is
important. As we see from Figure 5.2 the ideal gas equation of state describes the
behavior of real gases in limiting cases of high temperatures and low pressures.
Isotherms for an ideal gas are rectangular hyperbolae (p ∝ 1/V ). A small pressure
decrease leads to a large increase in volume (B to A in Figure 5.2). However, the
ideal gas equation of state is no longer a good approximation when the temperature
of the gas is below its critical point, and the volume is in the range where the
isotherms become horizontal (see the flat segment C to B in Figure 5.2); i.e., there
is a mixture of liquid and gas in equilibrium together.
A very useful equation that describes the behavior of many substances over a

wide range of temperatures and pressures was derived by van der Waals. The van
der Waals equation for 1 mol of gas is:(

p+ a

v2

)
(v − b) = R∗T [van der Waals equation] (5.2)

where a and b are constants (different for different substances) and v is the volume
per mole of the gas (i.e., the reduced volume or the specific volume). The term b
in (5.2) is due to the finite size of the molecules, while the term a/v2 is due to the
effect of the attractive molecular forces. For a = b = 0, the van der Vaals equation
reduces to the Ideal Gas Law (5.2).
Usually the van der Waals equation is written in the form

p = R∗T
v − b

− a

v2
. (5.3)

Figure 5.4 shows an example of isotherms calculated using the van der Waals
equation. If we compare Figures 5.2 and 5.4, we see that van der Waals isotherms
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Figure 5.4 Van der Waals isotherms. The isotherm with the inflection point is the
critical isotherm. The equilibrium vapor pressure e is such that the shaded areas
are equal.

reproduce many features of real gas behavior. As shown in Figure 5.4 for large v

and low p there is a large increase in volumewith a small decrease in pressure. For a
liquid (small v and high p) there is a small decrease in volume with a large increase
in pressure. There is a critical isotherm with temperature T = Tc indicating a point
of inflection (∂2p/∂v2 = 0). The isotherms with temperatures higher than Tc are
very similar to those in Figure 5.2. However, the isotherms with temperature less
than Tc look very different: they are not horizontal in the region where two phases,
water and vapor, coexist. Consider one particular isotherm ABCDEFG derived
from the van der Waals equation. Let us compress the gas until saturation occurs
at point F on the isotherm. Then with a further decrease of the volume there is no
increase in pressure, which corresponds to the horizontal stretch FB. Instead, the
van der Waals isotherm shows an increase in pressure (part of the diagram FE).
Along this branch of the curve the vapor is supersaturated. Vapor can theoretically
exist for these values, but if a small impurity is present such as a dust particle, or a
scratch on the wall, the vapor will begin to condense on this site and the systemwill
collapse to the flat horizontal line BF in Figure 5.4. In other words this state of the
vapor is unstable: any disturbance causes it to migrate to a stable condition which
contains two subsystems, vapor and liquid. So, if we plot the van derWaals isotherm
for a given temperature, we will not find the flat portion (BDF) which we know
should be there (from experiment). We have to put it in “by hand.” But how do we
decide the proper pressure value at which to insert this flat portion? The rule (first
discovered by Maxwell) is that the areas bounded by the curves BCDB and DEFD
have to be equal. Let us sketch a proof. Consider the cycle FEDCBDF in Figure 5.4
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(a “figure 8” on its side). From the First Lawwe know that for an isothermal process
the work done during a closed cycle is equal to the amount of heat absorbed by the
system,�W = �Q, since the change in internal energy is zero for a cyclic process.
We also know that the loop integral

∮
dQrev/T = 0 (our process is contrived to be

reversible). For an isothermal process we can take temperature out of the integral
and get Qloop = 0. Since Qloop = 0, we also have Wloop = 0. If the horizontal
line were not such that the areas are equal, our imaginary (but realizable) process
would violate the laws of thermodynamics (either

∮
dU �= 0 or

∮
dS �= 0 or both).

An excellent discussion of unstable states (supersaturated, etc.) can be found
in advanced books, especially the discussion in Callen (1985), where the case
is illustrated with the van der Waals system.1 The criterion for stability can be
expressed in terms of the concavity or convexity of the thermodynamic functions:

∂2S

∂U 2
≥ 0,

∂2S

∂V 2
≥ 0 [stability criterion] (5.4)

or for the Gibbs energy:

∂2G

∂T 2
≤ 0,

∂2G

∂p2
≤ 0 [stability criterion]. (5.5)

If the graphs for S(U ,V ,M) andG(T , p,M) have the wrong sign of concavity the
branch of the curve where the criteria fail will be unstable.

5.4 Multiple phase systems

We proceed with the case of water in both its liquid and vapor forms in equilibrium
in a container. This is a one-component (only one chemical species is present)
system with two phases (liquid and gas) in equilibrium. Experience tells us that
the two phases can coexist in equilibrium in this configuration. In fact, we have
seen that for a given mass of the substance there is a range of values of volume for
which the equilibrium exists with transfers of mass from one phase to the other as
the volume is changed (at constant pressure and temperature). This is the horizontal
line CB in Figure 5.2. Let the temperature and pressures be T0 and p0 along CB. In
the T–p plane this line is a single point (T0, p0), see Figure 5.5. If we were to make
an infinitesimal change in the temperature reservoir to T0 + �T (see Figure 5.6),
then we would move to a higher horizontal line in Figure 5.2, thereby operating at

1 Callen gives an expression for the entropy of a van derWaals gas: S(u, v) = νR∗ ln
(
(v − b) (u + a/v)c

)+ νs0
where c is the molar heat capacity at constant pressure. For water vapor, a = 0.544 Pam6, b = 30.5×10−6 m3,
and c = 3.1.
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Figure 5.5 A point in the T–p plane in which liquid and vapor are in equilibrium.
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Figure 5.6 As the temperature is increased from T0 to T0 + �T , the saturation
vapor pressure will increase from p0 to p0 + �p.

(p0 + �p, T0 + �T ). As we change from one flat line in the V–p plane, we trace
out a new curve in the T–p plane. Let us call it pequil(T ).
Along this curve, p = pequil(T ), the two phases can exist in equilibrium. In fact,

if T and p lie on the curve (i.e., p = pequil(T )) then the volume can be varied
isothermally and isobarically causing mass to transfer from one phase to the other
until one of the phases is exhausted. The point in Figure 5.5 lies between points B
and b in Figure 5.7. The variation can be thought of as into or out of the T–p plane
along the V (volume) axis.
The upshot of all this is that when the two phases are together in equilibrium

there will be a unique curve in the T–p plane. This line is of great interest to us.
For example its slope tells us how much the saturation vapor pressure will increase
for a small change in the temperature.
Water can form ice as its solid phase. It turns out that a single-component system

such as pure water can coexist in all three phases simultaneously only at a single
point in the phase diagram called the triple point. The triple point for water is
273.16K at a pressure of 6.11 hPa. At pressures below 6.11 hPa ice and vapor can
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Figure 5.7 A schematic phase diagram in the T–p plane of the phases of water.
Below the line ABC the phase is vapor. To the left of ABD the phase is solid.
Above DBC the phase is liquid. These lines are called phase boundaries since
along them two phases can coexist. The point B is the so-called triple point since
all three phases can coexist at this point. The dashed line ab indicates atmospheric
pressure. The boiling point is at b.

coexist, but no liquid water will exist in equilibrium. There are many other phases
of water in its different crystalline forms, and these are important in high pressure
situations well outside the range encountered in atmospheric applications.

5.5 Phase boundaries

Consider a point representing a state in the T–p plane.At such an arbitrary point the
Gibbs energy for each of the subsystem phases will have given valuesMlgl(T , p)
and Mggg(T , p), where Ml and Mg are the masses of the liquid and gaseous
subsystems and gl(T , p) and gg(T , p) are the specific Gibbs energies for each (by
use of the term specific we mean that each is per unit mass). The Gibbs energy
for the whole system is the sum of the mass weighted specific Gibbs energies.
Note that when the two phases coexist in equilibrium, the pressure, temperature
and specific Gibbs energies of each phase are homogeneous throughout (e.g., the
specific Gibbs energy of the liquid equals that of the vapor). Only the density differs
from one phase to the other. To show this, suppose we are on a phase boundary in
the T–p plane (the curve of equilibrium states described in the last section), and we
change the volume of the system slightly, �V . In that transition, the total system
Gibbs energy, G(T , p) does not change since p, T , and M do not change. This
means that

�Mlgl(T , p) + �Mggg(T , p) = 0 (5.6)

where we have made use of the fact that the specific Gibbs energies do not change
becausep andT arefixed.Now in the last equationwecannote that�Ml = −�Mg
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because the mass has to be conserved. This leads to the interesting and useful
conclusion that along a phase boundary,

gl(T , p) = gg(T , p) [along a phase boundary]. (5.7)

In the T–p phase plane different regions represent different phases of this two-
phase system. A phase boundary exists along which the liquid and gaseous phases
can coexist in equilibrium. We have shown above that the specific Gibbs energies
for each individual phase are equal along the phase boundary in the T–p plane.
This result will allow us to calculate the slope of the phase boundary in the next
section.

Gibbs phase rule In the last two sections we discussed multiple phases and in
particular the case of water and its three phases. In general there might be more than
one component as well (for example, a mixture with different phases for each). The
intensive variables in the problem are the temperature and the pressure (common and
equal for all the components). We also know that when the system is in equilibrium,
the specific Gibbs energies for a given component Gi(T , p) will be equal for the
phases of that component. In looking back at the water problem we see that there are
regions in the T–p diagram where both T and p can be varied independently. These
are regions where there is a single phase present. The lines in the diagram (Figure 5.7)
represent a locus of points where two phases are present in equilibrium. Finally, the
triple point is the single point where three phases are present in equilibrium. This is
the situation when there is only one component present (water).
The number of degrees of freedom denoted here as F (different from the same name

used in kinetic theory) refers to the number of ways one of the intensive variables
(T , p,G1,G2, . . . ,Gc, where C is the number of components) can be varied
independently. For example, in the regions away from phase boundaries in Figure 5.7
both T and p may be varied independently (two degrees of freedom), but on a phase
boundary, only one of these variables is independent since the phase boundary is
defined by a function, p = p(T ) (one degree of freedom). At the triple point the
number of degrees of freedom is zero.
It is possible to derive a formula for the number of degrees of freedom for a

multi-component, multi-phase system and it is worth presenting here. First note that
the number of molar concentration variables is C, but only C − 1 are independent,
since we are interested only in mole fractions. The number of phases is P. So the total
number of these intensive variables is P(C − 1). But there are some relations between
these variables because some of the Gibbs energies are related to one another. For
each individual component the Gibbs energies of the phases have to be equal. For
each component there are P − 1 relations. (For example, if there are two phases there
is only one relation, say G1 = G2, etc.) This reduces the number of independent
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intensive variables by C(P − 1). We still have the pressure and temperature that are
independent to add. Thus we obtain

F = P(C − 1) − C(P − 1) + 2 (5.8)

leading to the Gibbs phase rule:

F = C − P + 2 [number of degrees of freedom: Gibbs phase rule]. (5.9)

We see that for a single-component system with one phase, F = 2 (the regions
between phase boundaries in Figure 5.7). When there are two phases present (on a
phase boundary line), F = 1. When all three phases are present, F = 0, the triple
point.
Other systems of interest include the case of water with a dissolved solute such as

salt. This would be a two-component system with two phases (the liquid solution and
the saturated vapor in equilibrium with it above). This case will be discussed later.

5.6 Clausius–Clapeyron equation

Having established that the specific Gibbs energies for liquid and gaseous phases
are the same along the phase boundary, we can now proceed to calculate the slope
of the phase boundary in the T–p plane. This slope is the rate of change of the
vapor pressure with respect to temperature as the system is allowed to move along
the phase boundary. This slope measures the rate at which the saturation vapor
pressure increases for incremental changes in temperature – an important quantity
in meteorology.
First consider such a reversible change of the composite system (gas and liquid

in equilibrium) along the phase boundary. We have:

�gl(T , p) = �gg(T , p). (5.10)

Then (using infinitesimal notation instead of �)

−sl dT + vl dp = −sg dT + vg dp (5.11)

where the small letters s and v refer to specific entropy and volumes respectively,
and henceforth we denote the saturation vapor pressure as es. Rearranging:

des
dT

= sg − sl
vg − vl

. (5.12)

First, notice that vg � vl (e.g., for one gram mole of vapor 22.4 × 103 cm3

versus 18 cm3 of water) so that vl can be neglected. The specific volume of an
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ideal gas is RT/p, where R is the gas constant for the particular species (here water
vapor). The difference of specific entropies can be calculated. This difference is the
change in specific entropy as we convert a unit mass of liquid into gas form at a
fixed temperature: �Hvap/T = L/T , where L is the enthalpy of vaporization (per
kilogram). We arrive at the Clausius–Clapeyron equation:

des
dT

= Les
RT 2

[Clausius–Clapeyron equation]. (5.13)

Before proceeding to integrate this equation to find an expression for es(T ), it
should be noted that the procedure just employed is very general and can be applied
to many other problems. While we will not pursue it here, it is perhaps clear that
the equilibrium we speak of could be that of chemical species instead of phases,
or it could be a combination of both. In physical chemistry texts the technique of
equilibrium boundaries utilizing the Gibbs energy can be found to lead to such
diverse rules as the temperature dependence of reaction rate coefficients.

5.7 Integration of the Clausius–Clapeyron equation

To proceed we divide each side of the equation by es and multiply through by dT .
The left-hand side will be a function only of es and the right-hand side will be only
a function of T . This allows us to integrate:

d ln es = L

R

dT

T 2
(5.14)

⇒ ln
es
es(0)

= L

R

(
1

T0
− 1

T

)
. (5.15)

Next we choose the lower limit to be 273.2K so that es(0) = 6.11 hPa. The value
6.11 hPahas to come fromobservations – thermodynamics cannot tell us the value of
such a constant. After all, this integration constant should be different for different
substances (e.g., compare this value to the vapor pressure of mercury at 20 ◦C
which is 0.16 Pa). Inserting the other numerical values leads to:

ln
es

6.11 hPa
= Lvap

Rw

(
1

273.2
− 1

T

)
= 19.83− 5417

T
(5.16)

where we have inserted the numerical values for R = Rw and L = Lvap. This
equation can also be rearranged to give the handy formula:

es = 2.497× 109 e−5417/T (hPa) [integrated form of the
Clausius–Clapeyron equation]. (5.17)
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Figure 5.8 Saturation vapor pressure over ice (dashed line) and liquid water
(solid line). The curves were computed with the Clausius–Clapeyron equation
with Lvap = 2.5× 106 J kg−1 and Lsublime = 2.83× 106 J kg−1.

The resulting graph is shown in Figure 5.8. If we consider the vapor to be in
equilibrium with an ice surface we must use Lsublime = 2.83× 106 J kg−1 and the
result of this is shown in Figure 5.8 as the dashed line. Note that below T = 273 K
the saturation vapor pressure is larger over liquid than over ice. This means that if
there is an ice surface in the chamber, the ice surface will not be in equilibriumwith
the vapor in the chamber, which is at the saturation value for a liquid surface. The
upshot is that the ice volume will grow in size at the expense of the liquid mass.
Eventually the vapor pressure in such a chamber will become that of the saturation
vapor pressure over ice. This effect is important in a cloud at temperatures below
freezing (0 ◦C) in which ice crystals are embedded in a field of supercooled water
droplets. The term supercooled is applied since water droplets can be below the
freezing point (0 ◦C)without actually freezing.Wewill see later that the presence of
an impurity in the droplet, such as silver chloride, can cause the droplet to freeze at
slightly higher temperatures. The point at which all the supercooled droplets freeze
is −40 ◦C.

Example 5.1: comparing vapor pressure over ice and liquid water A plot of the
saturation vapor pressure over a flat liquid water surface is shown in Figure 5.8.
If we consider the vapor to be in equilibrium with an ice surface we must use
Lsublime = 2.834× 106 J kg−1. Then the vapor pressure over ice is approximately

ln

(
eices

6.11 hPa

)
= 22.50− 6148

T
. (5.18)

The corresponding formula for vapor pressure over a liquid surface is

ln

(
ewaters

6.11 hPa

)
= 19.83− 5417

T
. (5.19)
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where the temperature in both formulas 2 is in kelvins and the vapor pressure is in
hPa. More accurate formulas can be derived by taking into account the temperature
dependence of Lsublime, etc.
These are shown in Figure 5.8 with the vapor pressure over liquid as the solid

line and over the solid surface as the dashed line. Note that below T = 273K, if
there is a piece of ice in the chamber, it will grow in size since the evaporation rate
from the ice will be less than the evaporation rate from a flat liquid surface. �

Another effect which is important in some applications is the difference in
saturation vapor pressures for different isotopes of water, H2O18 versus H2O16.
Both of these isotopes are radiologically stable (they do not decay) and both are
found in nature. The heavier isotope makes up only about 0.20% of oxygen atoms.
The vibration frequencies of the water molecules are affected slightly by the small
amount of the heavier isotope. This leads to a very small change in the saturation
vapor pressure ofwater havingmore or less of the heavy isotopepresent in the liquid.
This small effect has a temperature dependence and it leads to slightly different
evaporation rates over warm versus cool ocean waters. This leads to a different
concentration of the isotope ratio in the water vapor over these different types of
oceanwater. The ratio of the heavy isotopic water to the lighter one can bemeasured
in ice cores and in othermaterial.The application is in paleoclimatologywhere snow
deposited on polar ice fields leaves in its layering a record of temperature signatures
of past climates. This is a very active area of current research – not just for the water
isotopes but for those of many other elements.

5.8 Mixing air and water

When there is a mixture of air and water vapor the effective molecular weight of
the gas changes slightly.We can use Dalton’s Law (Section 2.5) to find the effective
value of the gas constant, Reff . First we find the effective value of the molecular
weight when some water vapor is present. The result is 3

2 Emanuel (1994) contains extended discussions of these relations.
3 The algebra required begins here and continues on the next page.

1

Meff
= 1

Mv + Md

(Mv

Mw
+ Md

Md

)

= Md/Md
Mv + Md

(
1+ Mv/Md

Mw/Md

)

= 1

Md

(
1

1+ Mv/Md

)(
1+ Mv/Md

Mw/Md

)
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1

Meff
≈ 1

Md
(1+ 0.60w) (5.21)

where w, the mixing ratio, is given by the ratio of the mass of water vapor to the
mass of dry air in a parcel:

w = Mv

Md
. (5.22)

Entering the calculation was the ratio of molecular weights of water to air:

Mw
Md

= 18.02

28.97
= 0.622. (5.23)

The mixing ratio w is usually given in units of grams of water vapor per kilogram
of dry air (of course, in equations such as those just above it would be in
(kg vapor) (kg air)−1).
The effective value of the gas constant is then

Reff = Md
Meff

Rd = 28.97

Meff
287 = 8314

Meff
. (5.24)

The results above allow us to write the equation of state for the moist air as

p = ρReffT = ρRd(1+ 0.60w)T = ρRdTv (5.25)

where Rd = 287 J kg−1 K−1 and

Tv ≡ (1+ 0.6w)T [virtual temperature] (5.26)

is called the virtual temperature. Note that the virtual temperature is always larger
than the actual temperature, but that they seldom differ by more than 1K (w is
seldom greater than 4×10−2 (kg vapor) (kg dry air)−1.
The use of virtual temperature allows the meteorologist (whose interest is

buoyancy) to correct the density to lower values when water vapor is present while
retaining the simplicity of the IdealGasLaw for dry air (Rd = 287 J kg−1 K−1).This

Footnote 3 continued

= 1

Md

(
1

1+ w

)(
1+ w

0.622

)

≈ 1

Md
(1− w + w2 + · · · )(1+ 1.607w)

≈ 1

Md
(1+ 0.60w). (5.20)
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works to a very good approximation in practical situations. Remember that water
vapor has a lower molecular weight but each water vapor molecule at temperature
T has the same effect on pressure as an air molecule. Thus if there is a mixture of
water vapor and air where the total pressure is the same, the density will be lower
than for the same volume of dry air at the same temperature and pressure.
The saturation vapor mixing ratio is denoted ws and it is a strong function of

temperature. Keep in mind that the saturation vapor mixing ratio is also a function
of the air pressure (equivalent to altitude) because it is the ratio of water mass to
air mass.
The relative humidity is given by

r = w

ws
[relative humidity]. (5.27)

Or in terms of percent:

RH(%) = w

ws
× 100. (5.28)

The dew point temperature, TD, is the temperature at which

w = ws(TD) [dew point]. (5.29)

In other words, for a given value of w, it is the temperature for which that value of
mixing ratio, w, is equal to the saturation mixing ratio, ws. We reach the dew point
by cooling at constant pressure to the temperature where w in a parcel reaches its
saturation value.
To find the relationship between the partial pressure due to vapor and the partial

pressure of the dry air in a parcel, we write:

e = MvRw T/V (5.30)

p = MdRd T/V . (5.31)

Taking the ratio and rearranging:

e

p
= Mv

Md

Md
Mw

(5.32)

or

w = ε
e

p
[mixing ratio in terms of vapor and air pressure] (5.33)

where

ε = Mw
Md

= 0.622 (5.34)
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And of course the formula holds for the saturation case as well

ws = ε
es
p

[saturation mixing ratio]. (5.35)

Strictly speaking, p above is pdry which is not patmo = e + pdry, but usually the
difference is negligible.
We can also write

w = ws(TD) = ε
6.11(hPa)

p
exp

(
L

Rw

(
1

273.2
− 1

TD

))
(5.36)

and since we are to lower the temperature to TD isobarically we can say

e = es(TD) = 6.11(hPa) exp

(
L

Rw

(
1

273.2
− 1

TD

))
. (5.37)

Then if either w or e are known we can find TD by solving one of these equations
for TD.

Example 5.2 Water vapor is mostly distributed in the boundary layer of the
atmosphere (lowest 1–2 km). Assume the atmosphere is isothermal at 300K and
that the surface humidity is 95%. If all the vapor is distributed uniformly in the
first 1.5 km, howmuch water lies above a given square meter of surface in kgm−2?
Also express the result in mm equivalent of liquid water.
Answer: First compute the saturated water vapor pressure from the Clausius–
Clapeyron equation: es = 36 hPa. Then the saturation mixing ratio is given by
ws = (0.622) × (0.036) (kg water) (kg air)−1= 0.022(kg water) (kg air)−1. Thus,
the water vapor mixing ratio is 95% of this, 0.021 (kg vapor) (kg air)−1. The mass
of air in the 1.5 km column is 1500m3× 1.2 kgm−3 = 1800 kg. Multiplying yields
38 kg of water vapor in the 1m2 column. The equivalent depth of liquid water is
Mwater/(ρliq water × 1m2) = 38mm. �

Example 5.3: dry line This is a fairly sharp boundary often found in the area east of
the Rocky Mountains running north–south. The boundary separates dry air on the
west from moist air on the east. The dry air can come from winds from the south
(Mexico) or dry air descending from the Rockies. To the east the air may be moist
because of southerly flow from the Gulf of Mexico. Reductions of dew point of as
much as 18 ◦C can be found in going from east to west across the dry line. If the air
column is pushed eastwards the heavier dry air can wedge under the lighter moist
air and sometimes lead to cloudiness or even rain. �

Another measure of moisture encountered in atmospheric science is the specific
humidity, q. It is the number of grams of water vapor per unit mass of air plus
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water vapor (usually expressed in kilograms). In applications, q is numerically
close enough to the mixing ratio w that one seldom needs to distinguish between
them.

Example 5.4 Compare q and w if the pressure is 800 hPa and q= 0.010 (kg vapor)
(kg moist air)−1. We can write (using p = pd + e):

w = 0.622
e

p− e
≈ 0.622

e

p

(
1+ e

p

)
= q
(
1+ q

0.622

)
= 1.016 q. (5.38)

Note that the pressure of 800 hPa really did not matter. �

Example 5.5 Moistening the tropical boundary layer (temperature 300K). Suppose
the air above the sea surface is still (i.e., ignore advection) and absolutely dry.
Suppose evaporation takes place steadily at a rate of 1m yr−1. How long does it
take the boundary layer to come to 80% humidity?
Answer: The evaporation rate is 1m yr−1. Then

dM
dt

= ρliqV /A t = 103 kg yr−1 m−2. (5.39)

At 300K and 80%RH, the amount of water vapor above 1m2 in the boundary layer
(1.5 km) is 32 kg. Hence,

t = 32 kg

103 kg yr−1
= 0.032 yr = 12 days. (5.40)

�

Example 5.6 Can it saturate in time? Suppose a dry parcel is introduced to the
tropical boundary layer at 30 ◦N. It flows along the surface in the trade winds until
it reaches the Equator. Does it have time to saturate?
Answer: Let the trades flow toward the southwest at 10m s−1. The meridional
distance to the Equator is 30×100 km = 3 × 106 m. Along a diagonal at 45◦ this
is enhanced to 4.24×106 m. The time required for this passage is approximately
4×106 s= 46 days.According to the previous example this appears to be sufficient
time for the parcel to saturate. �

Example 5.7 The temperature is 20 ◦C and the vapor pressure is 10.0 Pa. What is
the dew point temperature?
Answer: Solve (5.37) for TD:

TD =
(

1

273.2
− Rw

L
ln
( e

6.11 hPa

))−1
= 280.2K. (5.41)

�



5.9 Wet-bulb temperature, LCL 117

P
re

ss
ur

e

TD Tw T

Temperature
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5.9 Wet-bulb temperature, LCL

The thermodynamic state of an air parcel is determined by its temperature, pressure
and mixing ratio. However, in some applications it is not convenient to use the
mixing ratio. For example, the mixing ratio is not easily measured directly. There
is another indicator of atmospheric moisture called the wet-bulb temperature (Tw)
which can be measured more directly. The wet-bulb temperature lies between the
dew point temperature and the air temperature (see Figure 5.9).
Before introducing the wet-bulb temperature, let us turn again to the dew point

temperature which is also a measure of moisture in the air. Recall that it is the
temperature to which air must be cooled at constant pressure in order to become
saturated with respect to a plane surface of water. As we perform the cooling we
must keep the mixing ratio of the air fixed. At this temperature the actual mixing
ratio becomes equal to the saturation mixing ratio:

w(TD) = 0.622es(TD)/p. (5.42)

At temperatures higher than the dew point the air contains some moisture, but
less than the saturation value. As the temperature is decreased to the dew point
condensation occurs. Since at the dewpoint themixing ratio is equal to the saturation
mixing ratio, it is evident that the dew point temperature is always lower than or
equal to the air temperature. If the two are close together, the relative humidity is
high. If the dew point is far below the air temperature, the relative humidity is low.
The dewpoint is a good indicator of human discomfort.When temperatures are high
it is more comfortable with a low TD rather than with a high dew point temperature
because of the higher relative humidity. When the relative humidity is high the
rate of evaporation from a moist surface is low (it is actually proportional to 100
minus the relative humidity in percent). Meteorologists often refer to the difference
between temperature and dew point, which is called the dew point depression.
The frost point is defined similarly to the dew point. The frost point is the

temperature to which air must be cooled at constant pressure in order to become
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saturated with respect to a plane surface of ice. Note that themixing ratio is constant
during a constant pressure cooling of a parcel.
The dew point temperature is difficult to measure directly. It is easy to measure

thewet-bulb temperature. This is the temperature of a wet surface (nominally a wet
cloth wrapped around the bulb of a thermometer) that is immersed in the ambient
air. The wet surface evaporates moisture into the surrounding (typically less than
saturated) air and in so doing the temperature of the wet surface is lowered (as
perspiration into dry air cools the skin). Thewet surface will come to an equilibrium
temperature after a short time if the air near the wet surface is continually ventilated
with the dryer ambient air. This equilibrium temperature of the wet cloth is called
the wet-bulb temperature. If the surrounding air is fully saturated, there will be no
net cooling since the rate of evaporationwill just equal the rate of condensation onto
the wet surface, leaving the wet-bulb temperature to be the same as the dew point
temperature. For unsaturated air the wet-bulb temperature always falls between the
dew point temperature and the dry-bulb temperature (the difference between the
dry-bulb and wet-bulb temperatures is called thewet-bulb depression). Note that an
evaporating cloud droplet or raindrop has a temperature at thewet-bulb temperature.
The wet-bulb temperature can be measured with a sling psychrometer, which

consists of a thermometerwithwet gauze covering its bulb. This hand-held device is
swung around froma short chain tomaintain the proximity of fresh ambient air at the
wet surface.Without the swinging, stagnant saturated air would accumulate around
thewet bulb and raise its temperature to an erroneous level.Watermolecules leaving
the wet surface diffuse away from the bulb through the thin boundary layer of air
surrounding it. At the same time heat is being conducted from the warmer ambient
air towards the coolerwet surface through the same thin boundary layer. Equilibrium
is established between the enthalpy flux due to evaporation carried by out-flowing
molecules and the in-flowing enthalpy flux.Aformula can be derived for the relative
humidity given the wet-bulb and dry-bulb temperatures (seeWet-bulb derivation in
the box below). For practical use the relationship is commonly expressed in tables.
It is interesting that the geometrical configuration of the wet cloth surrounding the
bulb does not matter because those factors cancel. More discussion of the wet-bulb
temperature can be found in Exercises 7.8 and 7.9 in Chapter 7.
The saturation mixing ratio depends on temperature and air pressure, thus it

is a function of height. When a parcel is lifted adiabatically, its temperature and
pressure both decrease. The temperature dependence of the parcel is linear with
height (we will see in the next chapter that it is 10K km−1). Hence, as the air rises
1 km the temperature will fall about 10K. The saturation vapor pressure becomes
half its surface value because of this decrease (remember the rule of thumb about
the doubling of vapor pressure for every 10 ◦C). The mixing ratiow0 stays the same
for this ascent, while the air pressure p(z) and the vapor pressure e(z) in the parcel
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each fall about 12% (using a scale height H of the atmosphere of about 8 km):

e(z) = p(z)w0
0.622

, p(z) = p0e
−z/H , w = w0 = constant, e−1/8 = 0.882. (5.43)

So the vapor pressure goes down by≈12%while the saturation vapor pressure goes
down by 50%. This shows that the saturation vapor pressure is decreasing much
faster than the actual vapor pressure in the parcel. As this continues (the same
percentages for each kilometer of ascent) the curves will cross and condensation
will occur. The level at which an initially unsaturated parcel reaches its saturation
level while being lifted adiabatically is called the lifting condensation level (LCL).
If we know the temperature, pressure and mixing ratio of an air parcel, we can find
the LCL, where condensation starts to occur along the ascent.
If we know the mixing ratio, we can easily find the dew point and wet-bulb

temperature and vice versa. Figure 5.10 shows the LCL for a parcel at initial
temperature T , pressure p, and dew point TD. It is located at the intersection
of the line with constant potential temperature (the unsaturated parcel ascends
dry adiabatically) and the line of constant saturation mixing ratio starting at the
dew point temperature (this is because the mixing ratio is fixed at its initial value
during this noncondensing part of the ascent). The physical significance of these
parameters will be more clear when we start to work with thermodynamic diagrams
in Chapter 7.

Wet-bulb derivation In the preceding we indicated that the geometrical factors
cancel in the wet-bulb depression. To show this we can derive the relationship
between the relative humidity and the wet-bulb depression. For simplicity we take the
bulb to be a sphere of radius R0, but in the end it does not matter what the geometrical
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Figure 5.11 Water vapor molecules diffuse away from the wet surface as heat is
conducted towards the wet surface. When these fluxes match, the temperature at the
wet surface will be the wet-bulb temperature.

shape is. There are two fluxes from the sphere that have to be computed: (1) the flux
of water vapor molecules leaving the sphere due to evaporation toward less moist air
far away; (2) the heat conducted to the sphere because of the warmer air far away
(Figure 5.11).
The water vapor molecules diffuse away with a flux Fw(r) where r is the distance

from the center of the sphere, r ≥ R0. The flux at any value of r passing through a
surrounding sphere is

Fw(r) = −D4πr2 dnw
dr

(5.44)

where D is the diffusion coefficient for this process (known from tables), nw(r) is the
number density of vapor molecules at radius r. This flux must be independent of r
since otherwise there would be a source of flux other than the wet bulb’s surface.
We can then set Fw(r) = F0 = constant. This allows us to integrate each side from
R0 to∞ after dividing through by 4πr2D. This produces:

n∞ − nR0 = − F0
4πR0D

. (5.45)

We can recognize that
nR0 = nsat(Tw) (5.46)

where nsat(Tw) is the saturation number density for T = Tw. If we divide through by
nsat(TD) we have

RH− nR0
nsat(TD)

= −F0
4πR0Dnsat(TD)

(5.47)
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where RH = n∞/nsat(TD) is the relative humidity away from the wet bulb. So far we
do not know the value of F0 in the above formula. Another measurement is required.
We must now turn to condition (2), the heat conduction. Heat flows from infinity
toward the wet bulb by heat conduction. The flux of heat crossing a spherical surface
of radius r is

H (r) = 4πr2κH
dT

dr
= H0 = constant (5.48)

where κH is the (available from tables) thermal conductivity coefficient and the same
argument is used as above for the constancy of the flux passing through spheres of
different radii.
As above we can integrate after dividing through by the factor 4πr2κH. We get:

TD − Tw = H0
4πR0κH

. (5.49)

There is one other condition, that the flux of heat has to be related to the flux of
vapor molecules. Each molecule of water vapor leaving to infinity cools the wet bulb
by � = L/NA where L is the enthalpy of vaporization per mole of water vapor and NA
is Avogadro’s number. This says that

H0 = �F0. (5.50)

Now we can substitute for H0 and divide the two equations above to obtain:

RH = nsat(Tw)

nsat(TD)
− κH

�D

(TD − Tw)

nsat(TD)
. (5.51)

Using the psychrometer we measure both TD and Tw. We can then calculate nsat(TD)

and nsat(Tw) from the Clausius–Clapeyron relation. The only unknown above is RH,
which can now be calculated. The computation is tedious, hence, the tables. Note that
the geometric factors 4πR0 cancelled out. It can be shown that no matter what the
geometrical shape of the web bulb, these geometrical quantities will cancel out and
the wet-bulb temperature is independent of the shape of the bulb. So why swing
the psychrometer around? The reason is to have fresh environmental air within a
millimeter or two of the wet bulb to insure that the moist air at infinity is
representative and not contaminated by the wet bulb’s evaporation.

5.10 Equilibrium vapor pressure over a curved surface

So far our discussion of the saturation vapor pressure has been restricted to that
over a plane surface of water. However, in atmospheric physics we also encounter
situations where the surface is curved. This is the case, for example, in cloud droplet
formation. Cloud droplets have approximately spherical shape, which means that
growth of a droplet implies an increase of the surface area of the drop. Increasing
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surface area of a liquid requires work (consider blowing a soap bubble). Growth of a
droplet then requires consideration of surface tension. Thus to find the equilibrium
vapor pressure over a droplet we have to include surface tension in the energy
balance. The energy required for an increase of surface area dA is σ dA, where σ

is the surface tension (surface energy per unit area), in Jm−2 (the value for water
is 0.0761 Jm−2 at 0 ◦C). The energy required to create a spherical drop4 of radius
a is σ4πa2.
Consider the formation of a cloud droplet from pure water vapor (no aerosols

or other impurities present). Such a process is called homogeneous nucleation as
opposed to heterogeneous nucleation, when small aerosol particles take part in the
droplet formation. Suppose that initially, at t = t1, we have water vapor of massM
at partial pressure e and temperature T . The Gibbs energy of the system, Ginitial, is

Ginitial = Mgv (5.52)

where gv is the specific (per unit mass) Gibbs energy of the water vapor. It depends
on the vapor pressure and the temperature. Suppose that at some later time, t = t2,
an embryonic droplet starts to form. It grows by occasional sticking collisions by
water vapor molecules and at some moment develops a radius a and mass Mw.
The spherical surface area of the droplet is A = 4πa2. The total mass is conserved,
so ifMv is the mass of water vapor remaining after condensation, then

Mv + Mw = M. (5.53)

The total Gibbs energy of the system at time t2, Gfinal, is

Gfinal = gvMv + gwMw + σA. (5.54)

The first term on the right-hand side of (5.54) is the Gibbs energy of the water
vapor, the second is the Gibbs energy of the liquid, and the last term is due to
surface tension.
The change of the Gibbs energy due to the droplet formation can be found by

subtracting (5.52) from (5.54) and taking into account (5.53):

Gfinal − Ginitial = (gw − gv)Mw + σA. (5.55)

The next step is to find the differencegw−gv.Weknow that at a constant temperature
(in our case the temperature is fixed) the change in the Gibbs energy is dg = v dp,

4 The example of a soap bubble is helpful. Soapy water has a higher surface tension coefficient than pure water
so the surface tension is very important. Also one must remember that the bubble has twice the surface area
because there is an inside surface as well as an outside surface, in contrast to the water droplet.
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Figure 5.13 Schematic diagram illustrating the notation for equilibrium vapor
pressure over a droplet, e, and that over a flat surface, es.

where v is the specific volume (v = (density)−1). Then, for the vapor we have
dgv = vv de, for the liquid dgw = vw de, and the difference is equal to

d(gv − gw) = (vv − vw)de ≈ vv de (5.56)

since vv � vw. Substituting specific volume vv from the Ideal Gas Law, we obtain

d(gv − gw) = RwT
de

e
= RwTd(ln e) (5.57)

and, after the integration,

gv − gw = RwT ln e + constant. (5.58)

We can find the constant of integration by taking into account that in equilibrium
(see Figure 5.13), along the phase boundary where e = es(T ), gw = gv (see (5.7)).
Then,

gv − gw = RwT ln

(
e

es

)
. (5.59)

Substituting (5.59) into (5.55) gives

Gfinal − Ginitial = −RwT ln
(
e

es

)
Mw + σA. (5.60)

The mass of a spherical water droplet with radius a and density ρw is Mw =
4
3πρwa3, and the surface area is A = 4πa2. Then the change in the Gibbs energy
due to the droplet formation, �G = Gfinal − Ginitial, is:

�G = −4
3
πa3ρwRwT ln

(
e

es

)
+ 4πa2σ . (5.61)

From (5.61) we see that in the subsaturated air, when e < es, ln (e/es) is negative,
and �G is always positive (see Figure 5.14). From Section 4.8.2 we know that
equilibrium occurs when the minimum of the Gibbs energy is achieved; or, in other
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Figure 5.14 The change of Gibbs energy due to the formation of a water droplet
as a function of the radius of the droplet.

words, the system tends spontaneously toward its equilibrium state by having the
Gibbs energy diminish more and more until it reaches its minimum. We conclude
that there are no favorable conditions for cloud droplet (a > 0) formation in
unsaturated air.
The situation is different when the air is supersaturated, which means that e > es

and ln (e/es) is positive (see Figure 5.14). In this case �G increases as the radius
a increases, then it reaches a maximum at some radius, and then decreases with the
further increase of a. If the cloud droplet has a radius less than the critical radius a∗,
it will disappear by evaporation. If, however, the cloud droplet reaches the critical
radius a∗, then it will continue to grow. We can find an expression for the critical
radius by equating the derivative ∂G/∂a to zero. The result is

a∗ = 2σ

ρwRwT ln (e/es)
(5.62)

which is called Kelvin’s formula. It allows one to find the radius a∗ of a droplet
which is in equilibrium with air with the vapor pressure e. This equilibrium state
is unstable. This becomes evident if we consider a slight growth of the droplet.
This growth might be due to the condensation of water vapor in the vicinity of the
droplet, which means that the relative humidity decreases just above the surface.
Since the air in the vicinity of the droplet becomes drier, there is a diffusive flux of
moist air toward the droplet, and the condensation process continues, leading to the
further growth of the droplet. On the other hand, if the droplet evaporates slightly,
the relative humidity just above the droplet surface increases, the water vapor starts
to diffuse from the droplet, and the droplet will continue to evaporate to maintain
the relative humidity corresponding to radius a∗.
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We can rewrite (5.62) in order to determine the equilibrium vapor pressure e over
a droplet with radius a,

e = es exp

(
2σ

ρwRwTa

)
= ese

b/a (5.63)

where the parameter b is defined by

b = 2σ

ρwRwT
. (5.64)

If we substitute σ = 0.076 Jm−2, ρw = 1000 kgm−3, and Rw = 461.5 J kg−1 K−1,
we obtain

b = 3.30× 10−7

T
(5.65)

(in meters). At 273K, b = 1.21 nm (typically b � a). Formula (5.63) shows that
the equilibrium vapor pressure over a spherical droplet is not equal to the saturation
vapor pressure as determined over a plane surface of water. This happens because
of the surface tension. If the radius of the droplet goes to infinity, a → ∞, which
corresponds to a plane surface, we obtain the result for a flat surface e = es (see
Figure 5.13).

Example 5.8 Water droplets are in equilibrium with surrounding vapor at a
temperature of 2 ◦C. Calculate the vapor pressure and relative humidity over the
droplet with radius 0.008 µm.
Answer: The saturation vapor pressure at 2 ◦C is: es = 2.497× 109 exp(−5417/
275.2) (hPa) = 7.06 hPa. From (5.63) we obtain e = 7.06× exp(3.3× 10−7/
(275.2× 0.008× 10−6)) = 8.2 hPa. RH = 116%. A supersaturation of 16% is
required for the creation of a cloud droplet with radius 0.008µm by homogeneous
nucleation at 2 ◦C. �

To obtain the relative humidity, divide both sides of (5.63) by es:

e

es
= eb/a. (5.66)

This relationship is illustrated in Figure 5.15 for a temperature of 5 ◦ C.As shown
in the figure, the formation of a droplet with radius 0.01µmrequires supersaturation
of 112%.At the same time, in real clouds the relative humidity rarely exceeds 101%.
As we see from Figure 5.15, 1.0% supersaturation is required to form a droplet with
radius larger than 0.1µm. Large droplets in a cloud simply cannot form by random
collisions of molecules on their surfaces. From the above discussion it follows
that the process of homogeneous nucleation is unlikely. In nature cloud droplets
form by heterogeneous nucleation on atmospheric aerosols. Consider then how the
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Figure 5.15 The relative humidity as a function of droplet radius. The curve is
plotted for a temperature of 5 ◦C.This graph shows the relative humidity necessary
to form a droplet of the size indicated on the abscissa.

equilibriumvapor pressure over the droplet changes if the droplet contains dissolved
electrolytes (usually from aerosols, e.g. sea salt). We will consider hygroscopic
particles (those that are soluble in water). The most common of these are sodium
chloride (NaCl) and ammonium sulfate ((NH4)2SO4) which dissolve when water
condenses onto them. In this case a water droplet can be treated as a solution with
the water as a solvent and the salt as a solute.

Chemistry refresher: Raoult’s Law The ratio of the equilibrium vapor pressure
over a solution, e′, to the equilibrium vapor pressure over pure solvent, e, is equal to
the mole fraction of the solvent in the solution, f , e′/e = f . The presence of salt in
solution always lowers the vapor pressure.

Consider a cloud droplet that contains nsalt molecules of salt and nw molecules
of water per unit volume. If e′ is the equilibrium vapor pressure over the solution
(see Figure 5.16) then, according to Raoult’s Law,

e′

e
= nw
nw + nsalt

= 1

1+ nsalt/nw
(5.67)
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Figure 5.16 Illustration of the notation. Left: saturation vapor pressure e′ over a
solution droplet. Center: saturation vapor pressure e over a pure water droplet.
Right: saturation vapor pressure over a flat surface es.

where e is the equilibrium vapor over a droplet composed of pure solvent. The
second expression comes after dividing numerator and denominator by nw. If we
take into account that for a dilute solution nsalt � nw and expand the denominator
in (5.67) in a geometric series,5 we find (retaining only the linear term),

e′

e
= 1− nsalt

nw
. (5.68)

In (5.68) the effect of dissociation of the ions is not yet taken into account. If the
salt dissociates into i ions, say Na+ and Cl− giving i = 2, then the number of moles
of solute individuals in the droplet, νsalt, is

νsalt = i
Msalt

Msalt
(5.69)

where Msalt and Msalt are the mass and molecular weight of the salt respectively
(be sure to use kg per mole here for the molecular weight). The degree of ionic
dissociation i ≈ 2 for sodium chloride and i ≈ 3 for ammonium sulfate. The
number of moles of water with molecular weight Mw in the massMw is

νw = Mw

Mw
= 4

3

πa3ρw
Mw

(5.70)

where a is the radius of the droplet.6 The ratio of moles is equal to the ratio of
number densities:

nsalt
nw

= νsalt

νw
= 3iMsaltMw
4πa3ρwMsalt

. (5.71)

After substituting (5.71) into (5.68) we obtain

e′

e
= 1− c

a3
(5.72)

5 The geometric series for 1
1+ε

= 1− ε + ε2 − · · · , where |ε| < 1.
6 We assume that dissolving the salt particle does not change the volume of the droplet.
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where we have introduced a new parameter to simplify the notation

c = 3iMsaltMw/4πρwMsalt. (5.73)

After substituting ρw = 1000 kgm−3, Mw = 18 gmol−1 we obtain

c ≈ 4.3× 10−6iMsalt

Msalt
(m3). (5.74)

Combining Kelvin’s formula (5.66) and (5.72) we obtain the formula for
equilibrium vapor pressure of a solution droplet:

e′

es
=
(
1− c

a3

)
eb/a. (5.75)

To better understand this formula consider a limiting case. We again let the radius
of the droplet go to infinity, a → ∞. From (5.75) we obtain the known result: the
equilibrium vapor pressure over the plane surface of water (a = ∞) is equal to the
saturation vapor pressure, e′ = es.
Consider nowadropletwith a radius a � b. Then one can expand the exponential

function in (5.75) in a Taylor series 7 and get

e′

es
= 1+ b/a − c/a3. (5.76)

The second term on the right-hand side of (5.76) is responsible for the surface
tension, the third term is due to the presence of the salt in the droplet. A graphical
illustration of formula (5.76) is given in Figure 5.17 for 10−19 kg of sodiumchloride.
The curve showing the dependence of relative humidity on radius of the solution
droplet is called the Köhler curve. The dashed curve corresponds to homogeneous
nucleation (5.63) with no salt present. These two curves differ considerably for
small values of the radius of the solution droplet. The most important result is that
with an embedded soluble salt nucleus in the droplet a much lower supersaturation
is required for the droplet to be in equilibrium with its environment than in the case
of a pure water droplet of the same size. For example, with supersaturation of just
0.1% a droplet with a radius slightly larger than 0.1µm can be formed.With a very
small radius the droplet can be in equilibrium with the surrounding air even with a
relative humidity less than 100%. This is possible only because of the presence of
hygroscopic particles. With relative humidity 90% a solution droplet with radius
0.05µmcan form if there are 10−19 kg of sodium chloride (not shown in the graph).
For a small droplet radius, the Köhler curve increases monotonically until it

reaches a maximum at radius a = a′, and then it decreases monotonically. Consider

7 ex ≈ 1+ x, for |x| � 1.
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Figure 5.17 Relative humidity with which a solution droplet formed on 10−19 kg
of NaCl is in equilibrium with water vapor as a function of the droplet radius. The
temperature is 5 ◦C.

a droplet with a radius less than a′. If the relative humidity increases, such a particle
grows to adjust to the new equilibrium conditions. The equilibrium is stable, since
slight fluctuations in condensation or evaporation do not lead to further growing or
shrinking of the droplet. If the droplet grows slightly by condensation, the relative
humidity increases, the diffusive flux is directed away from the droplet and the
droplet evaporates to return to equilibrium. With slight evaporation, the relative
humidity in the vicinity decreases, which causes diffusive flux toward the droplet,
and the droplet again returns to equilibrium with the surrounding air. Such droplets
with radius less than a′ are called haze particles.
The situation is different if the droplet reaches the radius a′. Now the equilibrium

is unstable. With any further growth of the droplet the relative humidity decreases
and the droplet continues to grow. This is one mechanism for cloud droplet
formation.

Example 5.9 How big is a salt particle whose mass is 10−19 kg? Using the density
of 2165 kgm−3, we can calculate that a spherical particle of this mass would have
a radius of 0.022µm. How many molecules are in this particle? The number
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of moles is M/MNaCl = 10−19× 1000/58.44 kgmol−1 = 0.017 ×10−16 mol.
The number of molecules is Avogadro’s number times the number of moles:
1.03×106 molecules. �

5.11 Isobaric mixing of air parcels

When two parcels of dry air at the same pressure (altitude) are brought into contact
and mixed, the final temperature is

Tf = M1T1 + M2T2
M1 + M2

. (5.77)

If the mixing ratios of the parcels are w1 and w2, we can arrive at the same kind of
linear relationship

wf = M1w1 + M2w2

M1 + M2
. (5.78)

It is possible that although the combinations (w1, T1) and (w2, T2) are neither one
individually saturated, the mixed air parcel (wf , Tf ) is saturated. Two clear moist
air parcels can come into contact with a foggy result.

Example 5.10 Suppose two parcels of equal volumes and pressures, but differing
temperatures (273K and 293K) come into contact near the ground (p = 1000 hPa).
Let each have relative humidity 90%. We can use

p = M1

V
RT1 = M2

V
RT2. (5.79)

Then M1

M2
= T2
T1
. (5.80)

The final temperatures are:

Tf = 2T2T1
T1 + T2

= 283K. (5.81)

We can compute the initial mixing ratios:

w1 = 0.622× 0.9× 6.11/1000 = 0.0034, w2 = 0.0131. (5.82)

The final mixing ratio is
wf = 0.0083. (5.83)

But the saturation mixing ratio at Tf is

2.497× 108 e−5417/283 × 0.622/1000 = 0.0076. (5.84)



Notation and abbreviations 131

We find that the final mixing ratio is above the saturation value for the final
temperature, hence we have supercooled water vapor and therefore fog.
The final temperature will actually be slightly above Tf because some heating

will occur during the condensation. �

Notes
More advanced treatments of water and air can be found in Bohren and Albrecht
(1998), Irebarne and Godson (1981), and Curry and Webster (1999). Discussions
of cloud drops, etc., can be found in Fleagle and Businger (1980), Rogers and Yau
(1989), Houze (1993) and Emanuel (1994).

Notation and abbreviations for Chapter 5
a droplet radius (m)
a∗ critical droplet radius (m)
e, es vapor pressure, saturation vapor pressure (Pa)
e′ vapor pressure over a solution (Pa)
ε = Mw/Md = 0.622 (dimensionless)
gl , gg specific Gibbs energy for liquid, gas (J kg−1)
gv, gw specific Gibbs energy for vapor, liquid water (J kg−1)
G Gibbs energy (J)
h specific enthalpy (J kg−1)
H (r) flux of heat crossing the surface of a sphere (J s−1)
κH thermal conductivity coefficient (JmK−1 s−1)
L = �Hvap the enthalpy (latent heat) of evaporation (J kg−1)
LCL lifting condensation level
Mv,Md,Me gram molecular weight of vapor, dry air and effective

(gmol−1)
Ml,Mg bulk mass of liquid, gas (kg)
ns number density of vapor molecules at saturation

(moleculesm−3)
nsat number density of vapor molecules at saturation

(moleculesm−3)
nw number density of water molecules in vapor

(moleculesm−3)
n0 number density (moleculesm−3)
NA Avogadro’s number (molecules mol−1)
q specific humidity (kg water vapor/kg of moist air)
r relative humidity
Rw the gas constant for water vapor (Table 1.1)
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Reff effective gas constant for a mixture of species
(J kg−1 K−1)

R∗ universal gas constant (Jmol−1 K−1)
sl, sg specific entropy for liquid, gas (J K−1 kg−1))
S entropy (JK−1)
σ surface tension (Jm−2)
T Kelvin temperature (K)
TD dew point temperature (K)
Tv virtual temperature (K)
Tw wet-bulb temperature (K)
θ potential temperature (K)
v mean molecular speed (m s−1)
vl , vg specific volume for liquid, gas (m3 kg−1)
w mixing ratio (kg water vapor per kg of dry air)
ws saturation mixing ratio (kg water vapor per kg of dry air)

Problems
5.1 A kilogram of water is vaporized at 0 ◦C and at 1000 hPa atmospheric pressure. (a)

Calculate the change in enthalpy of the water substance in the transition and (b) the
change of entropy for the process.

5.2 What is the virtual temperature for a kilogram of air at T = 283K, relative humidity
50% at 1000 hPa?

5.3 The normal temperature of human blood is 37.2 ◦C. If a person is lifted in a balloon
the air pressure decreases. There will be a pressure (altitude) where the blood begins
to boil. What is that pressure in hPa? At about how many meters is that above sea
level?

5.4 It is a muggy night at the old ball park. The temperature is 30 ◦C and the humidity
is 85%. What is the change in density (%) of the air from a dry night at the same
temperature and pressure (1000 hPa)?

5.5 Assume the atmosphere is isothermal at 303K (very tropical), which gives a scale
height of H = 8.87 km. The surface humidity is 80%. The vapor is distributed
uniformly in the first 1.5 km, and the air is dry above that. For simplicity take the
air pressure to be uniform in this lowest 1.5 km. How much water (in vapor form) lies
above a given square meter of surface (kgm−2)? Express the result in mm equivalent
of liquid water. Compare to the situation when the temperature is 273K.

5.6 A system consists of dry air mixed with water vapor at a temperature of 20 ◦C. The
pressure of the mixture is 990 hPa. The relative humidity is 50%.

(a) What is the saturation vapor pressure?
(b) What is the partial pressure of the water vapor?
(c) What is the density of the mixture. Compare it with the density of dry air at the

same T and p.
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(d) What are w and ws?
(e) If the system (parcel) is lifted adiabatically to 500 hPa, which is conserved

e or w?

5.7 Calculate the equilibrium vapor pressure over spherical droplets with radii 0.01, 0.1,
1, 10 µm at temperature 273 K. Plot the relative humidity (with respect to a flat water
surface) as a function of radius.

5.8 What supersaturation is needed for the droplets with radius 0.5 µm to be in the
equilibrium with water vapor at temperature of 10 ◦C?

5.9 An ammonium sulfate ((NH4)2SO4) particle of mass 10−20 kg of radius 0.07µm
is present in the air at temperature 0 ◦C. Find the relative humidity necessary for
heterogeneous nucleation.

5.10 Find the expression for the critical value (maximumof theKöhler curve) of the droplet
radius and relative humidity. Calculate these values for a droplet containing 10−16 kg
of NaCl at 0◦C.
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Profiles of the atmosphere

The properties of the atmosphere that vary with altitude include the pressure,
temperature and the composition of constituents such as water vapor. This chapter
provides some insight into these dependencies with simple derivations that hold
under idealized conditions. The stage will be set for the following chapter which
provides methods for analyzing the conditions at the time of observation.

6.1 Pressure versus height

Atmospheric pressure drops off dramatically with height above the surface. This is
indicated by the graph in Figure 6.1 which shows the dependence of pressure on
altitude for the US Standard Atmosphere.1

By balancing the vertical components of force on a slab of air at an arbitrary
height z it is possible to derive a formula for the average pressure as a function
of height, p(z). Consider a column of air with cross-section 1m2. In the column

200 400 600 800 1000
p(hPa)

2
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6

8

10

12

14
z(km) US Standard Atmosphere

Figure 6.1 Dependence of pressure p (hPa) on altitude z (km) for the US Standard
Atmosphere.

1 The US StandardAtmosphere is a model of the atmospheric profile of various properties. It is used primarily in
aviation and satellite drag calculations. It attempts to give a global average of conditions. More can be learned
about it on the internet.

134
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(d    )g

p(z + dz)A

p(z)A

dz

Figure 6.2 Diagram of a column of air of cross-section area A with a slab of
thickness dz at height z. The pressure and gravitational forces on the slab are
indicated.

we picture a thin horizontal slab of air whose bottom surface is located at height z
above sea level and whose thickness is dz (see Figure 6.2). The mass of material in
the slab is (density times volume): dM = ρAdz, where A = 1m2 is the horizontal
cross-sectional area of the slab. The weight of the slab of gas is (dM)g = (ρAdz)g.
Beneath the slab is a pressure force pushing upwards: p(z)A. Above the slab is a

pressure force pressing downwards,

p(z + dz)A ≈
(
p(z) + dp

dz
dz

)
A. (6.1)

Equating the net pressure force on the slab to the gravitational force,

dp

dz
dz A = −ρg dz A. (6.2)

After cancellations we obtain the hydrostatic equation:

dp

dz
= −ρg [hydrostatic equation]. (6.3)

We can use the Ideal Gas Law to write:

dp

dz
= − p(z)g

RT (z)
(6.4)

where we indicate explicitly that both temperature and pressure are functions of
altitude z. In the last step we used the ideal gas equation of state. The hydrostatic
equation has many uses, but it is particularly useful if the dependence of T on z is
known. This may often be the case, at least approximately. If it is true we can write:

dp

p
= − g dz

RT (z)
. (6.5)
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Then integrating each side from the surface up to level z leads to:∫ p(z)
p0

dp

p
= −g

R

∫ z
0

dz′

T (z′)
(6.6)

ln
p

p0
= −g

R

∫ z
0

dz′

T (z′)
(6.7)

where we have indicated the “dummy” integration variable by z′ to distinguish it
from the upper limit of the integral. Finally,

p(z) = p0 exp

(
−g
R

∫ z
0

dz′

T (z′)

)
. (6.8)

If the integrals can be performed, we have an analytical expression for p(z). Even
if the z dependence of T is known only graphically or in tabular form, the integral
can be performed numerically.

Example 6.1 In Example 2.16 we found that a ball of mass m bouncing elastically
on the floor gives an average force on the floor of mg. We can also derive the
hydrostatic equation for a ball bouncing on the floor, but reflecting back elastically
on a ceiling only a short distance above. Let the ball leave the floor with vertical
velocity v0 and when it gets to the ceiling h, its velocity will be v1. The rate of
momentum transfer to the ceiling is 2mv1/T , where T is the time for a round trip
ceiling to floor and back.We can show thatT = 4h/(v0+v1). The average pressures
exerted by the reflecting ball at the ceiling ph and at the floor p0 are

ph = mv1(v0 + v1)

2hA
, p0 = mv0(v0 + v1)

2hA
, (6.9)

where A is the area on the surface of the floor or ceiling, and the difference in the
pressures is

p0 − ph = m

2hA
(v0 − v1)(v0 + v1) = m

2hA
(v20 − v21) = m

2hA
2gh. (6.10)

We then have

p0 − ph = mgh

Ah
= mgh

volume
= ρgh. (6.11)

Finally, �p/�z = −ρg. Of course, we are to picture a large number of balls
(molecules) bouncing up and down so as to make a steady pressure. �

Example 6.2: constant density case Consider the case of constant density as a
function of height. This profile is more like the ocean than the atmosphere. Taking
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z = 0 to be at the bottom of the fluid, we can integrate the hydrostatic equation
directly from 0 to the top of the fluid H :∫ 0

p0
dp = −ρ0g

∫ H
0
dz (6.12)

p0 = ρ0gH . (6.13)

Integrating from 0 to z we find that

p(z) = ρ0gH
(
1− z

H

)
. (6.14)

The pressure is zero at the top of the fluid and it increases linearly with depth below
the surface until the bottom (z = 0) is reached. �

Example 6.3: pressure in the oceanWhat is the pressure at 5 km below the surface
in the ocean?
Answer: The density of water is 103 kgm−3. Now ρgh = 5 × 107 Pa ≈ 500 atm.
For reference, it might be noted that 1 atm of pressure is equivalent to that at about
10 m depth of water. �

Example 6.4: isothermal atmosphere Take the temperature to be constant (T = T0)
with respect to z. Then we can integrate:

dp

p
= − g

RT0
dz (6.15)

and after integration from z = 0 to z:

p(z) = p0e
−z/H (6.16)

where p0 is the pressure at z = 0 and the scale height H is given by

H = RT0
g
. (6.17)

Note the straightforward physical interpretation: large temperatures lead to large
scale heights (swelling); large g leads to smaller scale heights. Moreover, larger R
(smaller molecular weight) leads to larger H . �

It turns out that taking the scale height H to be a constant is a rather
good approximation to the pressure dependence on altitude, as can be seen in
Figure 6.3wherein a calculated profile (dashed) is superimposed on theUSStandard
Atmosphere values. In the calculation a value of H = 7.89 km was used along with
pz=0 = 1013 hPa. This model fit to the empirical result is very good considering
that the temperature is very altitude dependent for the US Standard Atmosphere as
shown in Figure 6.4.
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Figure 6.3 The pressure versus altitude curve with a computed profile (dashed)
superimposed. The calculationwas conductedwith the constant value ofH = 7.89
km and a value of pz=0 = 1013 hPa (to agree with the StandardAtmosphere at the
surface).

220 240 260 280 300
T(K)

z (km) US Standard Atmosphere

2

4

6

8

10

12

14

Figure 6.4 The temperature versus altitude curve for theUSStandardAtmosphere.
The altitude of the discontinuity in slope at about 11 km is called the tropopause.

6.2 Slope of the dry adiabat

Consider next the dry adiabat. This is the temperature dependence of a parcel of
dry air as it is displaced upwards 2 under adiabatic conditions (no heating due to the
temperature differential with the environment). For a small vertical displacement
of the parcel we can write the change in enthalpy for the parcel (treated as a
thermodynamic system undergoing a reversible transformation):

dH = Mcp dT = V dp

= MRT

p
dp. (6.18)

2 Some external means must cause the displacement such as buoyancy or the rise of air due to upslope wind.
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Dividing each side byM dz,

cp
dT

dz
= RT

p

dp

dz
, (6.19)

and using the hydrostatic equation (dp/dz = −ρg) and ρ = p/RT we obtain:

cp
dT

dz
= RT

p
(−ρg) = −g. (6.20)

Finally,

dT

dz

∣∣∣∣
dry adiabat

= − g

cp
[dry adiabatic lapse rate]. (6.21)

This very simple and elegant result does not depend on the actual temperature
profile of the atmosphere. We can evaluate this formula to find:

− dT

dz

∣∣∣∣
dry adiabat

= �d = 10K km−1 (6.22)

Note that the adiabatic lapse rate �d is defined to be a positive number. Figure 6.5
shows the temperature and size of a parcel being lifted adiabatically from the surface
to 10 km.

Example 6.5: dry adiabatic atmosphere Consider the pressure profile of an
atmosphere whose vertical dependence of temperature is that of a dry adiabat. This

200 K

10 km

0 km T

z

300K

Figure 6.5 Illustration of the size of a parcel as it is lifted adiabatically. The volume
of the spherical parcel was calculated from (3.43).
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is an atmosphere that is thoroughly mixed in the vertical dimension. (For example,
the turbulent boundary layer which occupies the lowest 1 to 2 km of the air column.
We will show this later.) Its temperature falls off linearly as dT/dz = −g/cp. For
these conditions θ is the same throughout. Such an atmospheric profile is called
isentropic. We have the hydrostatic equation

dp

dz
= − p

RT
g (6.23)

and Poisson’s equation

T = θ

(
p

p0

)κ

. (6.24)

We take θ to be a constant in Poisson’s equation. Thus,

dp

dz
= − pg

θR

pκ
0

pκ
(6.25)

pκ−1

pκ
0
dp = − g

θR
dz. (6.26)

Integrating from (p = p0, z = 0) to (p = p, z = z):(
p

p0

)κ

= 1− κgz

θR
(6.27)

and finally,

p(z) = p0

(
1− gz

θcp

)1/κ
(6.28)

where in the last we used κ = R/cp.
Note that the formula fails when z > θcp/g ≈ 30 km.
The isentropic (θ = constant) profile is often observed in the daytime boundary

layer and up to the LCLwhere the air is well mixed vertically. Above this level the
lapse rate is smaller because of warming due to condensation of water vapor in the
parcel into droplets. �

When does the hydrostatic approximation not work? This can happen in unusual
circumstances, but first consider typical conditions. If the force of gravity is not
balancedby the vertical gradient of the pressurefield, the parcelmust be accelerating
vertically. Suppose the imbalance is 1% or an acceleration of ≈ 0.1m s−2. After
only 10 s a parcel starting at rest would have a vertical velocity of 1m s−1, a
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very rare occurrence except in a thunderstorm. Vertical velocities are typically
of the order of 0.01m s−1, which suggests that large imbalances are very rare.
Arguments can also be constructed from three-dimensional considerations that at
synoptic scales (scales that match the typical observing stations on a weather map,
a few hundred kilometers) one finds that horizontal motions are typically on the
order of 1 to 10m s−1 and vertical motions are of the order of centimeters per
second. These arguments can be found in the first few chapters of most dynamics
books.

6.3 Geopotential height and thickness

The mechanical potential energy per unit mass of a parcel (called the gravitational
geopotential) is�(z)= gzwhere z is its height above some reference level (typically
sea level).3 We can write for the change in potential from one level to another:

�above − �below = (zabove − zbelow)g. (6.29)

This is the amount of work performed in lifting a 1 kg parcel from zbelow to zabove
(not counting buoyancy forces, just gravity). The geopotential can be turned around
slightly to be considered a function of the pressure level of the parcel. So instead
of �(z) we can think of �(p). This is just the gravitational potential energy per
unit mass of a parcel at pressure level p. Now the change in gravitational potential
energy in going from one pressure level to another is

�above − �below = (zpabove − zpbelow)g (6.30)

where zpabove and zpbelow are the elevations above the reference level for which the
pressures are pabove and pbelow. The geopotential height, Zp, is defined to be the
height in meters of the pressure level for a given value of the potential energy per
unit mass:

Zp = �(p)/g. (6.31)

The geopotential height, Zp1(x, y), is the elevation of the surface for a given
pressure p = p1. The height of this constant pressure surface is a function of x and
y (longitude and latitude) over the Earth’s surface. All meteorologists are familiar
with the 500 hPa height field, since it is so important in weather forecasting.

Example 6.6: height field of an isothermal atmosphere Suppose the temperature is
everywhere T0. What is the 500 hPa height field?

3 If z were large enough we would have to take into account the z dependence of g = g(z) (due to the weakening
of the gravitational force with distance from the Earth’s center) and use

∫ z g(z) dz, but this is seldom important
in studies of weather and climate of the troposphere.
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Answer: For an isothermal atmosphere we have

p = p0e
−z/H (6.32)

or after taking natural logs of each side,

z = H ln
p0
p
. (6.33)

For a temperature of 300K, the scale heightH = RdT0/g is 8786m. If the reference
pressure is fixed at 1000 hPa, using ln 2 = 0.693, we have Z500 = 6090m.
Note that because it is much colder at the poles, the 500 hPa height field is

lower at the poles (T ≈ 250K) than at the Equator (TEquator ≈ 300K), or about
5000m versus 6000m. Roughly speaking, the height field scales inversely to T ,
but remember this is for an isothermal atmosphere.
In our solution we also had to specify the surface pressure. If there is more

atmospheric mass above one position on the Earth (as measured by surface
pressure), this will lift the geopotential height field. So the height field is determined
by the amount of mass above the reference surface (this sets the surface pressure)
at a point and the thermal structure of the air above that point. Keep in mind that
the surface pressure (proportional to the mass above the site) varies no more than a
few percent from time to time. It falls as much as 8% or 9% in the eye of the most
intense (hurricane strength) tropical storms. �

The vertically averaged temperature in a layer can be defined as

T =
∫ pabove
pbelow

T d ln p∫ pabove
pbelow

d ln p
(6.34)

where d ln p = dp/p. (Note that dz ∝ −dp/p at least locally according to the
hydrostatic equation.) This justifies the use of d ln p as our integration increment.
After applying the hydrostatic equation we find:

T = g
∫ zbelow
zabove

dz

R ln(pabove/pbelow)
= g

R
· zbelow − zabove
ln(pabove/pbelow)

. (6.35)

Finally,

zabove − zbelow = RT

g
ln
pbelow
pabove

= H ln
pbelow
pabove

[thickness] (6.36)

and for dry air H = 29.3T is the (local) scale height. The quantity �z = zabove −
zbelow is called the thickness of the layer lying between the two pressure surfaces.
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Clearly the thickness is a measure of the local vertically averaged temperature of
the layer.

Example 6.7 How thick is the 500 to 600 hPa layer when the average temperature
is 280K?
Answer:

�z ≈ 1500m. (6.37)

�

Example 6.8 The1000 hPa to500 hPa thickness is oftenused inweather discussions
to describe the average temperature in the lower part of the troposphere. What is
the average temperature for a sea level temperature of 295K and a lapse rate of
6K km−1?
Answer: Use T = (1/�z)

∫ �z
0 (T0 − �z) dz and (6.36). Then the temperature

T = 278K. The thickness is ≈ 5647m. �

It is important to notice that thickness is a measure of temperature. Cold layers
are thin, warm layers thick, in direct proportion to the average Kelvin temperature
in the layer.

6.4 Archimedes’ Principle

In a fluid such as the atmosphere a low density parcel embedded in a denser
environment will rise. Consider a fluid of uniform density. Figure 6.6 shows an
arbitrary volume isolated inside a box of fluid of uniform density (picture a thin
film enclosing a portion of the same uniform fluid). The fluid including the enclosed
parcel is at rest. Therefore, all components of the forces acting on the enclosed
interior portion (parcel) must sum vectorially to zero. We need only consider

reVg

Figure 6.6 Diagram of an irregular volume in a fluid. The weight of the mass in
the volume is ρeVg, where ρe is the density of the fluid, V is the volume and g is
the acceleration due to gravity. The pressure forces of surrounding fluid indicated
by the arrows pointing inward exactly balance the downward pointing force due
to gravity. But if a fluid of lower density, say ρ, is substituted in the same irregular
volume, there will be a net upwards force on this mass.



144 Profiles of the atmosphere

the vertical components, since the horizontal components balance without any
gravitational contribution. The weight of the interior volume indicated by the
downward pointing vector (see Figure 6.6) has magnitude Mg = ρeVg. The
subscript e indicates the density of the uniformfluid (the environment).The pressure
forces exerted by the surrounding fluid must add up vectorially to a vector pointing
upwards with magnitudeMg. Now suppose the isolated volume is carved out and
refilled with matter of a different density, say ρ. The force exerted on this volume
(parcel) is upwards and of magnitude ρeVg, but the weight of the parcel is only
ρVg. There is thus a net upward force of

F = (ρe − ρ)Vg. (6.38)

If the density of the parcel ρ is less than the environmental density, the force
will be upwards. This is the buoyancy force on the parcel and the formula is
called Archimedes’ Principle. Often we want to know the force per unit mass or
acceleration. We can use Newton’s Second Law (F = Ma where a is the vertical
acceleration):

a = ρe − ρ

ρ
g [Archimedes’ Principle]. (6.39)

We may use p = pe and for an ideal gas ρ = p/RT ; hence

a =
(
1

Te
− 1

T

)
T g (6.40)

and simplifying

a =
(
T − Te
Te

)
g [acceleration by buoyancy]. (6.41)

Note that if T > Te, the force is upward; and if T < Te, the force is downward.
(Proof that warm air rises as we learned in elementary school!)

Example 6.9 Consider a thunderstorm shaft. Let the temperature inside the shaft
near the surface be 5K warmer than that outside ≈ 300K. Then the vertical
acceleration of a parcel in the shaft is approximately 0.163m s−2. If the acceleration
is constant the velocity after time t is v = at and the altitude is z = 1

2at
2. The parcel

reaches 4 km in about 3.7 min at which time it has a vertical velocity of 36m s−1.
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Of course, this analysis is very simplified because the effects of latent heat release
are ignored. In addition it was assumed that the differential temperature between
the interior of the parcel and the environment remained constant during the ascent.
In ensuing sections we will see how these effects are taken into account. �

6.5 Stability

Aslab of air (parcel) sits at rest in an environment with a certain temperature profile.
The forces are balanced on the parcel.What happens if the parcel is nudged upwards
or downwards by a tiny amount?Do the forces in the newposition balance or do they
impart a restoring force or perhaps a repelling force? First consider a parcel at point
A in Figure 6.7. Note that a straight line segment slanted upwards into the upper
left quadrant direction passes through the point at A. This straight line segment is a
dry adiabat passing throughA. If a parcel is lifted adiabatically atA, it moves along
this adiabat and it finds itself warmer than the environmental curve which lies to
its left. In this case the parcel, being warmer than the environment, will experience
a buoyant force upwards. Hence, a parcel at point A under a small perturbation
upwards will experience a net buoyant force to continue going upward. If the same
parcel is nudged downwards fromA it will experience a downward buoyant force.
We say the point A is unstable with respect to dry convection.
Next consider the point C.An analysis similar to the above shows that the point C

is stable with respect to infinitesimal perturbations. The point B is neutral. In fact,
we can quickly see that all points between the surface andB along the environmental
curve are unstable. We say this is an unstable layer. Similarly, the points above B
on the curve as shown form a stable layer.

A

B

C

z

T

ENVIRONMENTAL
TEMPERATURE

DRY ADIABAT
SLOPE

Figure 6.7 A sounding curve of the atmosphere: temperature T versus height z.
Also indicated are straight line segments representing dry adiabats passing through
the points A (unstable), B (neutral) and C (stable).
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Obviously, the key to these analyses is the local slope of the environmental profile
compared to the slope of a dry adiabat. Clearly∣∣∣∣−dTdz

∣∣∣∣ = lapse rate > �d → unstable (6.42)∣∣∣∣−dTdz
∣∣∣∣ = lapse rate = �d → neutral (6.43)∣∣∣∣−dTdz
∣∣∣∣ = lapse rate < �d → stable. (6.44)

The vertical derivative of the potential temperature (see Section 3.3.3), dθ/dz,
provides an even simpler rule. The derivative of θ with respect to z can be calculated
from its definition, θ = T (p/p0)−κ (with κ = Rd/cp):

dθ

dz
= ∂θ

∂T

dT

dz
+ ∂θ

∂p

dp

dz

= θ

T

dT

dz
− T

(
p0
p

)κ
κ

p

dp

dz
. (6.45)

The hydrostatic equation can be used to simplify the second term:

dθ

dz
= θ

T

dT

dz
+ θ

p

R

cp
ρg

= θ

T

(
dT

dz
+ g

cp

)

= θ

T

(
dT

dz
+ �d

)
. (6.46)

This gives

dθ

dz
= θ

T
(�d − �e) [derivative of potential temperature]. (6.47)

In the last equationwe introduced the local environmental lapse rate:�e = −dT/dz.
This last expression immediately tells us that

dθ

dz
> 0 → stable (6.48)

dθ

dz
= 0 → neutral (6.49)

dθ

dz
< 0 → unstable. (6.50)
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Figure 6.8 Schematic of three soundings on a θ–z diagram. The one with dθ/dz >
0 is stable; the neutral sounding has dθ/dz = 0; the unstable one has dθ/dz < 0.

In the θ versus z diagram, the dry adiabats are vertical lines (Figure 6.8). If θ is
increasing with altitude, the layer is stable. If θ is decreasing with altitude, the
layer is unstable. We will talk more about stability in Chapter 7, when we work
with thermodynamic diagrams.

6.6 Vertical oscillations

Consider a level z0 in a stable layer of the atmosphere such as point C in Figure 6.7.
Since the layer is stable, a parcel displaced upwardswill experience a restoring force
tending to push it back to the point z0. Similarly a downwards displacement below
z0 will result in an upwards restoring force. The acceleration a of a parcel slightly
displaced along a dry adiabat at this point is given by Archimedes’ Principle:

a = −(Te(z) − Ta(z))
g

T0
(6.51)

where Te(z) is the environmental temperature profile or sounding; Ta(z) is the local
adiabat passing through the curve Te(z) at height z0 (this is point C in Figure 6.7);
T0 is the value of the environmental temperature at the point of intersection, z0,
T0 ≡ Te(z0). Both environmental and adiabatic curves cross at this point. Recall
that dTe/dz = −�e and dTa/dz = −�d. Then the environmental and adiabatic
temperatures near the point z0 can be written as:

Te(z) ≈ T0 − �e(z − z0) (6.52)

Ta(z) = T0 − �d(z − z0) (6.53)

where we have used the approximate sign (≈) to indicate that we are using only
the tangent to the environmental curve; of course, the adiabatic lapse rate curve is
a straight line, so the approximation is not necessary in the second equation. For
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notational convenience let x = z − z0. Then we can equate the acceleration to the
second time derivative of x:

d2x

dt2
= −(�d − �e)

g

T0
x

= −ω2 x (6.54)

where

ω2 = (�d − �e)
g

T0
. (6.55)

This is the familiar harmonic oscillator equation, whose solution is

x(t) = A sinωt + B cosωt (6.56)

where A and B are constants depending on the initial conditions,4 and (in units
rad s−1)

ω =
√
g
(�d − �e)

T0
(6.57)

This frequency is called the Brunt–Väisälä frequency. The frequency in cycles per
second (Hz), f = ω/2π , is

f = 1

2π

√
(�d − �e)

T0
g. (6.58)

Physics refresher: oscillator notation The angular frequency of a linear oscillator
is denoted by ω. Its units are radians per second. The corresponding frequency f is
given by ω/2π in units of cycles per second or hertz. The period of the oscillation is
P = 1/f = 2π/ω.
When the atmosphere is stable (�d > �e) a parcel will oscillate; if the atmosphere

is unstable, then ω2 < 0 and the trigonometric functions become a mixture of
exponentials at least one of which is growing in time. To see this go back to the
differential equation for the oscillator (6.54) and instead of −ω2 insert λ2 > 0. Then
the solutions become Aeλt + Be−λt . (You can insert this in the differential equation to
satisfy yourself.) This means that instead of oscillating, the parcel “runs away.”
Another important observation is that for small amplitude oscillations (when the linear
formula is valid) the frequency is independent of the amplitude of the displacement.

4 We usually are not interested in the initial conditions of the oscillation, but rather the (angular) frequency, ω.
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An alternative expression for ω in terms of the potential temperature is often
useful. Referring to the last subsection we find:

ω2 = g

θ

dθ

dz
[square of the Brunt–Väisälä frequency]. (6.59)

This particular representation shows explicitly that if dθ/dz is positive (stable
atmospheric layer), then the quantity ω is a real number and the oscillations will
occur. If the slope is negative, then the frequency becomes an imaginary number,
which means that the parcel’s displacement will grow exponentially in time, either
up or down depending on the initial perturbation. Of course in the real atmosphere
the parcel does not accelerate all the way to infinity, but instead its motion is limited
by the failure of our linear analysiswhich assumed small deviations.Unstable layers
lead to overturning and mixing of the parcels within the layer.

Example 6.10 Suppose the environmental lapse rate is 0K km−1 (isothermal
atmosphere) and T0= 300K, then what is the oscillation frequency?
Answer:

f = 1

2π

√
�d

T0
g = 0.0029 s−1 (6.60)

which corresponds to a period of 5.7min. �

It is typical of atmospheric vertical oscillations that the characteristic time is of
the order of a few minutes.

6.7 Where is the LCL?

In this section we derive an approximate formula that shows that the LCL (lifting
condensation level, see Section 5.9) is determined as a function of the temperature
and mixing ratio, T0 and w0, of a parcel at the surface. Consider what happens to
the saturation vapor pressure for this parcel.As the parcel rises its temperature falls
from its surface value,

Ta(z) = T0 − �dz (6.61)

where Ta(z) is used to denote the temperature of the parcel as it rises adiabatically
to altitude z above the surface. The saturation vapor pressure only depends on the
temperature inside the parcel. We can use the integrated form of the Clausius–
Clapeyron equation (5.15) to evaluate the saturation vapor pressure es(Ta(z)) in the
parcel as a function of altitude (along the dry adiabat):

es(Ta(z)) = es(T0) exp

(
− L

Rw

(
1

Ta(z)
− 1

T0

))
(6.62)
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where Rw = 461.5 J kg−1 K−1 is the gas constant for water vapor, and L is the
enthalpy of vaporization (latent heat) for water (L = 2.500× 106 J kg−1). We can
simplify the last equation by noting that

1

Ta(z)
− 1

T0
≈ �d

T 20
z (6.63)

which leads to:

es(z) = es(T0)e
−z/Hw , where Hw = RwT 20

L�d
. (6.64)

As the parcel is lifted adiabatically (by some external mechanism) its mixing
ratio, w =w0, will remain fixed since it is a conservative quantity. The external
air pressure can be written as an exponential function, p0e−z/H , to a good
approximation, where H is the atmospheric scale height. As a parcel rises
adiabatically its internal pressure will adjust to that of the external pressure at
each altitude z. Since w0 = εe(z)/p(z) we can obtain a formula for the vertical
dependence of the actual vapor pressure e(z) in the parcel

e(z) = w0 p(z)

ε
= 1.608w0 p0 e

−z/H (6.65)

where the atmospheric scale height, H , can be taken to be RdT0/g with T0 the
temperature near the surface. The value of Hw (≈ 1.7 km) is much smaller than
typical values of H . An example is shown in Figure 6.9 where H was taken to
be 8.3 km. At the surface e(z) � es(z), but the gap narrows as the parcel is lifted
adiabatically. The value of e(z)will catch upwith es(z) as z increases. The saturation
mixing ratio changes as the parcel rises, as shown in Figure 6.10.
Consider the T–z diagram shown in Figure 6.11 to see how the temperature

of the parcel decreases linearly with altitude as it rises. At the same time the
temperature versus height for ws = constant also decreases but more slowly. The
intersection of the two curves is the LCL. This latest view is the one usually shown
in thermodynamic diagrams which are the subject of the next chapter.
By equating the forms for es(T (z)) to that of e(z) we find a formula for zLCL

zLCL = ln (es(T0)ε/w0p0)

1/Hw − 1/H
. (6.66)

We can simplify this further by noting that the argument of the logarithm reduces
to ws/w0 = 1/r where r is the relative humidity at the reference level (surface or
sea level):

zLCL = ln(1/r)/(1/Hw − 1/H ). (6.67)
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Figure 6.9 An example of how the saturation vapor pressure shrinks faster than the
vapor pressure in a parcel rising from z = 0. The initial mixing ratio is 0.007 kg/kg
and the initial saturation mixing ratio is 0.015 kg/kg. The initial temperature is
20 ◦C. The scale height of the atmosphere is taken to be 8.3 km and the scale
height for the saturation vapor pressure is 1.66 km. Where the curves cross is the
lifting condensation level (LCL).
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Figure 6.10 Illustration of how the mixing ratio (w(z)) and the saturation mixing
ratio (ws(z)) change as the parcel is lifted from z = 0. Note that w(z) = w0
is a constant of the motion, but ws(z) decreases. Where the curves cross is the
lifting condensation level (LCL). The values of the parameters are the same as in
Figure 6.9.

This formula allows us to find an approximate value for the LCL for a given
value of w0 and T0.

Example 6.11: profile of water vapor in the atmosphereConsider the profile of es(z)
in (6.64). Let us imagine that the water vapor in the atmosphere is saturated.We can
use the results above to compute the ratio of es(T (z)) to the saturation value at the
surface, es(T (0)). Let the relative humidity be 100% all the way up. The profile is
shown in Figure 6.12 for the parameter values of the previous figures. Note that the
scale height for the (saturated) water vapor is ≈ 1.66 km, which is a typical height
of the atmospheric boundary layer. This is essentially the explanation of why water
vapor is confined to the lowest few kilometers of the atmosphere. �
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Figure 6.11 The vertical ascent of a parcel from z = 0 as a function of tempera-
ture. The curve labeled (T − T0)/�d is the temperature of the parcel during
dry adiabatic ascent; T0 is the temperature at the surface. The curve labeled
ws(T , p(z)) = constant is the saturation mixing ratio. Where the curves cross
is the lifting condensation level (LCL).
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Figure 6.12 The ratio es(T (z))/es(T (0)) for water vapor embedded in an atmos-
phere with temperature profile T (0) − �dz. The scale height in this example is
Hw = RwT 20 /L�d ≈ 1.66 km. The values of the parameters are the same as in
Figure 6.11.

6.8 Slope of a moist adiabat

As was discussed in the previous section, an air parcel lifted adiabatically
experiences a decrease in temperature at the dry adiabatic rate until the vapor in the
parcel becomes saturated, defining the LCL. As the parcel continues to rise, water
vapor will be converted to droplets with an accompanying warming of the parcel.
This assumes the presence of condensation nuclei as discussed in Chapter 5. This
is virtually always the case (but the number density of condensation nuclei differs
significantly from place to place especially from above land surfaces to above
ocean surfaces). This additional heating from condensation causes the temperature
to decrease at a lower rate (as a function of altitude) compared to the dry adiabatic
process. The slope of the moist adiabat can be found using arguments similar to
those in the previous section.
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The change in enthalpy for a parcel of mass M and volume V undergoing a
small vertical displacement is given by

dH ≈ Mcp dT = dQ + V dp (6.68)

where we use the approximate sign because we are neglecting some small terms.
For example, we do not include the contributions from water vapor in the parcel
Mvcvp as well as that of the liquid water droplets. The composite parcel rises with
no heating from the outside such that dQ = 0, but if we treat the dry air as the
only constituent of our system, there will be heating as water vapor is converted
to droplets. We can write dQ = −ML dws. Note that this is a positive number for
rising air since dws < 0 (ws decreases for the rising parcel). This last is because the
saturation mixing ratio decreases with altitude as temperatures are lowered along
the lift. Taking into account the hydrostatic equation (6.3) and dividing both sides
of the equation (6.68) byM, we rewrite (6.68) as

cp dT = −L dws − g dz (6.69)

or, after dividing both sides by cp dz,

dT

dz
= − L

cp

dws
dz

− g

cp
. (6.70)

Identifying �m = −dT/dz and �d = g/cp leads to

�m = �d + L

cp

dws
dz
. (6.71)

The second term on the right-hand side has two parts since ws = ws(T , p) =
εes(T )/p. Expanding the derivative:

dws
dz

= ∂ws

∂T

dT

dz
+ ∂ws

∂p

dp

dz
. (6.72)

Next, insert the hydrostatic expression for dp/dz, using the dry air density. Then
evaluate the partial derivative of ws(T , p):

dws
dz

= ∂ws

∂T
(−�m) + εes

p2
pg

RdT
. (6.73)

Now evaluate ∂ws/∂T using the Clausius–Clapeyron equation (which introduces
Rw, the gas constant for water vapor):

dws
dz

= ε

p

Les
RwT 2

(−�m) + ε
es
p

g

RdT

= wsL

RwT 2
(−�m) + ws

g

RdT
. (6.74)
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Figure 6.13 Relative slope of a dry adiabat (lapse rate �d) and that of a moist
adiabat (lapse rate �m) started from the same point on a T–p diagram.

Then inserting this into (6.71) and rearranging, we have

�m = �d

(
1+ Lws/RdT

1+ L2ws/cpRwT 2

)
. (6.75)

This rather cumbersome formula cannot be simplified further. The numerator in
large parentheses is of the order of 1.3 and the denominator is of the order of 2.8
when typical numbers are inserted. This means that the moist adiabatic lapse rate is
less than the dry adiabatic lapse rate (Figure 6.13).5 This is hardly a surprise since
the parcel is heated as it rises at saturation because of the condensation.

6.9 Lifting moist air

As we have just learned, an adiabatically rising parcel containing some moisture
will eventually reach its condensation level. Above this point, with further lifting,
water droplets form and grow at the expense of vapor in the parcel. As vapor is
condensed, the parcel of air is heated, causing temperature changes along thevertical
path, and thereby altering (actually increasing) the buoyancy of the parcel. If the
water droplets are lost due to precipitation, it is referred to as a pseudo-adiabatic
process. The prefix pseudo indicates that this process is irreversible (because of the
precipitation) and cannot strictly be considered as an adiabatic process. Another
possibility is that an ascending air parcel retains the water droplets after they are
formed. Such a process is called amoist adiabatic process. Temperature differences
between the inside of the parcel and that outside are approximately preserved
because the molecular thermal conduction (and even the eddy transport) is too
slow. Consistent with the other approximations we have adopted, the changes in
the parcel’s thermodynamic coordinates in a lifting process can be taken to be

5 More detailed derivations retaining the contributions due to liquid and vapor can be found in the book by Bohren
andAlbrecht (1998) and that by Irebarne and Godson (1981). These complications add greatly to the tedium of
the derivation, but the approximate result is in sufficient agreement to warrant omitting them here.
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reversible and adiabatic.The actual difference between the pseudo-adiabatic and the
moist adiabatic processes is negligible for a wide range of problems in atmospheric
science. In this book we will not distinguish between pseudo-adiabatic and moist
adiabatic processes. The path of a saturated air parcel will be called amoist adiabat.
It has already been shown that the path of a dry air parcel can be conveniently

described in terms of the potential temperature, which is constant during a dry
adiabatic process and, consequently, serves as a perfect tracer of adiabatic motion
for a dry air parcel.We call it a tracer since we could label the parcel with its (fixed)
potential temperature and follow it around. In this section we will introduce a new
variable that is conserved during both dry and moist adiabatic processes, and can
be used to trace a moist air parcel.
We start with the definition of entropy as applied to an ideal gas. Suppose the

parcel is saturated. In an infinitesimal lift a tiny (positive) mass of water (per
kilogram of air) equal to−dws is condensed. The (positive) change in entropy for a
moist air parcel with massM is then−ML dws/T . On the other hand, the change
in entropy for a dry parcel of ideal gas isMcp dθ/θ (see the discussion surrounding
equation (4.34)). We can equate these two expressions for the infinitesimal entropy
change, and after cancelling the common mass factor we have:

−L dws
T

= cp dθ

θ
. (6.76)

To a good approximation6

dws
T

≈ d
(ws
T

)
. (6.78)

Then we have:

cp
dθ

θ
= −L d

(ws
T

)
. (6.79)

Upon integrating each side:

−Lws(T , p)
T

= cp ln θ(T , p) + constant (6.80)

6 To show this consider the quantity

d (ws/T ) = ws

T

(
dws
ws

− dT

T

)
. (6.77)

We can use the Clausius–Clapeyron equation to show that the first term in parentheses is much larger than the
second term (recall that for every 10K of increase in temperature there is a doubling of vapor pressure; then
dws/ws ∼ 1, and dT/T ∼ 10/300. Compare: 1� 10/300). We may then substitute d(ws/T ) for dws/T to a
good approximation.
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where θ(T , p) = T (p0/p)κ . This last relationship (6.80) forms an implicit
functional relationship that defines a curve in the T–P plane. The relationship
can also be written

θ(T , p) = θe e
−Lws(T ,p)/cpT = T

(
p0
p

)κ

(6.81)

The coefficient in front of the exponential, θe, is called the equivalent potential
temperature. The equivalent potential temperature is conserved along the path of a
moist parcel.
For a dry adiabat θdry(T ) = constant, but for the moist adiabat, dθ/dT > 0. If

we solve for θe from (6.81), we obtain

θe = θ(T , p)e
Lws(T ,p)
cpT . (6.82)

To see the physical significance of θe let us lift the parcel until all its water is
condensed out (this means p → 0 or z → ∞). In this limit ws → 0 in (6.82) and
the equivalent potential temperature θe becomes equal to the potential temperature
θ . In other words, to find an equivalent potential temperature, one should lift the air
parcel until all moisture is condensed and precipitates out, then compress the dry
parcel adiabatically downwards until it reaches 1000mb.The temperature the parcel
attains at the 1000 hPa level is the equivalent potential temperature θe. The whole
process is supposed to occur without exchanging heat with the environment. Note
that θe is a unique label that can be attached to any air parcel, given its values of
T ,w and p at a particular level.
If the parcel is initially saturated and has temperatureT0 at level p0, the equivalent

potential temperature θe can be calculated by substituting its temperature T0, its
potential temperature θ(T0, p0), and the saturation mixing ratio ws(T0) into (6.82).
If the parcel is initially unsaturated, then the temperature, potential temperature,
and saturation mixing ratio are to be calculated at the lifting condensation level
(LCL). Since the mixing ratio w is equal to the saturation mixing ratio ws at the
LCL, the formula for equivalent potential temperature for an unsaturated parcel
becomes

θe = θ(TLCL, pLCL) e
Lw/cp TLCL . (6.83)

We emphasize again that the equivalent potential temperature is conserved during
both dry and moist adiabatic processes, while potential temperature is conserved
only during dry adiabatic processes. This is the reason for using θe: it can serve
as a good tracer for a moving air mass. Imagine, for example, a moist flow that
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passes over a mountain. If air in the flow is initially unsaturated, it could be
lifted by convection on the upslope side of the mountain to the LCL, where the
condensation process starts. During the lifting moisture is removed by raining
out on the upslope side. Then as the air descends back to the surface on the
lee side of the mountain, it will be much warmer and drier than on the upslope
side. This is the origin of the Chinook wind (more on this in Chapter 7). So, the
temperature, potential temperature, and mixing ratio vary during both ascent and
descent of air parcels. At the same time, the equivalent potential temperature is
the same at the starting and ending points; it is conserved during this complicated
process.
There is yet another good tracer of moist air: the so-called wet-bulb potential

temperature. The wet-bulb potential temperature, θw, is the temperature an air
parcel would have if cooled from its initial state adiabatically to saturation,
and then brought to 1000 hPa by a moist adiabatic process. This algorithm of
finding the wet-bulb potential temperature depends on whether or not the parcel is
initially saturated. If the parcel is initially saturated, it should be carried along a
moist adiabat to the 1000 hPa pressure level. If the parcel is initially unsaturated,
it should be lifted first to the LCL and then taken moist adiabatically to the
1000 hPa level. When descending, an air parcel may need additional water vapor
to maintain saturation. The wet-bulb potential temperature, like the equivalent
potential temperature, is conserved during both dry and moist adiabatic processes.
So, in the case of the Chinook wind it is the same on the upslope and lee sides of the
mountain.
The last useful characteristic of moist air that we introduce in this section

is the saturation equivalent potential temperature θs. Consider an unsaturated
parcel. The saturation equivalent potential temperature is the equivalent potential
temperature the parcel would have if it started out completely saturated. The
saturation equivalent potential temperature θs can be defined as:

θs = θeLws(T ,p)/cpT . (6.84)

It is important to understand the difference between (6.82) and (6.84). θ and ws
in (6.82) are the potential temperature and saturation mixing ratio of saturated
air at temperature T , whereas the same variables in (6.84) are calculated at the
temperature T of unsaturated air. The saturation equivalent potential temperature is
not conserved during an unsaturated process. For saturated air, θe is equal to θs. The
reason we introduce θs is that it is a useful characteristic of air flow when analyzing
air stability (we will discuss it briefly in Chapter 7).
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6.10 Moist static energy

We can find a very simple form for the enthalpy of moist air,

H = MdcpT + LMw + MwcpwT (6.85)

where the second term represents the contribution due to the enthalpy of
vaporization, and the third is the enthalpy of the vapor. If thewaterwere to condense,
the second term would contribute to raising the temperature. Neglecting the third
term (which is very small compared to the others) the specific enthalpy can be
written

h = cpT + Lws (6.86)

where we have neglected the mass of water vapor compared to that of the dry air.
If we consider a parcel of air being lifted, there is actually another term due

to the gravitational potential energy per unit mass gz, where g is the gravitational
acceleration and z is the elevation above some reference level. Kinetic energy could
also be added but we neglect it here. The sum of enthalpy and gravitational potential
energy is conserved along a vertical path. This sum is called themoist static energy.
The term static is used because we neglected kinetic energy. As the parcel is lifted,
the moist static energy (call it hmse) is conserved. Note that below the LCL this
means that

dhmse
dz

= 0, → dT

dz
= − g

cp
, (6.87)

which is the dry adiabatic lapse rate. Above the LCL we can obtain further
information about the moist lapse rate. For example, the formula for the slope
for the moist adiabat (6.75) can be derived from it.7

6.11 Profiles of well-mixed layers

Very often a layer of finite thickness is caused to be well mixed by turbulent
processes (stirring). For example, in the first kilometer or two above the ground
the air is turbulent due to mechanically driven eddies that are induced by the larger
scale air flows interacting with the surface features. If the atmospheric profile is
stable, buildings, trees and other protuberances above a flat boundary will cause
irregularities of the air flow.Moreover, if the air is unstable, convective irregularities
will add to the mechanical turbulence. This kind of turbulent, well-mixed layer may

7 See Bohren and Albrecht (1998).
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persist up to a few kilometers where it gently changes to the more orderly larger
scale flow. The layers above this boundary layer are called the free atmosphere.
In a mixed layer as a whole we do not have a strict thermal equilibrium.

That is to say the layer will not reach a uniform temperature as a function of
height. The mechanical stirring overrides the tendency for the layer to come to a
uniform temperature due to thermal conduction (due tomolecular or eddie transport
processes). The reason for this is that as parcels rise their temperatures are lowered
because of adiabatic expansion. Observations show that for suchwell-mixed layers,
especially near the ground and on gusty days, the temperature profile approaches
the dry adiabatic lapse rate.An example is the layer between 850 hPa and 1000 hPa
shown in Figure 7.13.

6.11.1 Well-mixed temperature profile

Aheuristic proof of the adiabatic lapse rate in a well-mixed layer can be constructed
by assuming that the atmosphere is subdivided into horizontal layers, each labeled
by an index, i. Now suppose a piece of one of the lower layers is carried to a higher
layer and in turn the same amount of mass from the upper layer is carried below by
the mechanical stirring mechanism.As the parcel from below is lifted adiabatically
and then brought into contact with the layer above, it will be in thermal contact with
other parcels in that horizontal layer. The lifted parcel and the others in the upper
level will reach a temperature (isobaricmixing) between the original environmental
temperature of the layer and that of the adiabatically lifted parcel. The adjustment
to equilibrium in this upper horizontal layer represents an increase in entropy of
that layer which can be treated as a thermodynamic system. The collection of all
the layers can be thought of as a collection of thermodynamic systems which we
allow to interact in this peculiar way. Each time a parcel is lifted or lowered and
brought into contact with a layer at a different pressure level, the entropy of that
system increases and furthermore the entropy of the entire collection increases. As
themixing proceeds in this way, each step preserving themass at an individual level
and preserving the total enthalpy of the system, the system will come to a profile
in which further mixing will no longer increase the entropy of the collection. This
final state must be the one in which the entropy is homogeneous throughout. This
is the state with constant potential temperature (recall S = Mcp ln θ ) and this is
the adiabatic profile.

Mathematical derivation We can make our argument more compelling by using an
analytical approach. First, take the entropy of the whole system of layers to be
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S =
∑
i

Micp ln θi. (6.88)

We wish to preserve the total enthalpy of the composite system:

H =
∑
i

MicpTi =
∑
i

Micp(θi − �dzi). (6.89)

We would like to find the extremum of S subject to the constraint that H be held
constant. A convenient way to do it is through the use of a Lagrange multiplier, λ
(almost all calculus books nowadays discuss this technique). We proceed by
writing

W (θ1, . . . , θn) =
∑
i

Micp ln θi − λ
∑
i

Micp(θi − �dzi) (6.90)

and set the partial derivatives to zero:

∂W

∂θj
= 0,

∂W

∂λ
= 0. (6.91)

This procedure finds the set of θi (i = 1, . . . , n) that will make S extreme. We find

θi = 1

λ
, λ = e−(S/Mcp)z . (6.92)

In other words θi does not depend on i or z; it is a constant.
Of course, it must be kept in mind that the mathematical proof does not ease the

assumptions we made about adiabatic lifting and lowering and the assumptions about
horizontal (constant pressure) exchanges of heat between the parcel being moved and
its environment at the same level (pressure). On the other hand, the fact that such a
simple argument reproduces the profile seen in nature so regularly suggests that our
assumptions are reasonable.

6.11.2 Water vapor in a well-mixed layer

Wehave remarked in earlier chapters that themixing ratio,w, is a conservedquantity
under vertical motions below the LCL. We can go through the same argument as
above to show that the mixing ratio of water (or that of any other inert chemical
species) should become uniform in the layer. Basically, when we bring a parcel into
a layer in which the background is different from the mixing ratio in the parcel, the
two will mix in such a way that the new mixing ratio will lie between that of the
parcel and that of the whole layer in proportion to the masses. This mixing in an
individual layer will increase the entropy of that layer. Each exchange of parcels
will cause an increase in the entropy of the entire composite system until further
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exchanges do not increase the entropy. This final configuration will occur when the
entire layer or composite of layers is at a uniform mixing ratio, w.
A uniform value of w in a layer exhibits a characteristic shape of the dew point

temperature in a thermodynamic diagram. It turns out the dew point curve will lie
exactly parallel to one of the saturation lines on the chart.

Ocean mixing There are layers in the ocean in which the mixing theory given above
for the atmosphere works. The most important analogous conserved quantity in the
ocean is the salinity. This quantity, along with potential temperature, is uniform in
the deepest layers of the ocean where enough time has elapsed since their isolation
to leave these water masses well mixed.

Notes
Many of the subjects in this chapter are covered in dynamics books such as Holton
(1992). The thermodynamic details are discussed in more detail by Bohren and
Albrecht (1998) and Irebarne and Godson (1981).

Notation and abbreviations for Chapter 6
A horizontal area of a slab (m2)
g acceleration due to gravity (9.81m s−2)
�d,�m,�e lapse rate, −dT/dz of dry air ascending adiabatically, of moist

adiabat, of the environment (Km−1)
h height above a reference level
H scale height
Hw a scale height for water vapor (m)
κ = R/cp (dimensionless)
L = �Hvap enthalpy of vaporization (latent heat) (J kg−1)
ω, f angular frequency (rad−1), frequency (Hz)
p, p(z), p0 pressure, as a function of z, at a reference level (hPa)
�(z),�1,�2 geopotential height as a function of height, at two levels (meters,

on charts often in decameters, dm)
ρ, ρ0, ρe density, at a reference level, of the environment (kgm−3)
T , T (z), T0 temperature, as a function of z, at a reference level (K)
Te(z), Ta(z) temperature of the environment, of an adiabat (K)
T vertical average temperature in a layer of air (K)
θ , θe, θs, θw potential temperature (K), equivalent potential, saturation

equivalent potential, wet-bulb potential
w,ws mixing ratio, saturation mixing ratio (kg water vapor per kg dry

air)
z,�z vertical distance, increment of it (m)
Zp potential energy per unit mass due to gravity (m)
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Problems
6.1 Suppose the temperature of the atmosphere has the dependence T = T0e−z/z0 . Find

an expression for the pressure p(z).
6.2 A 1m3 parcel of moist air (r= 75%, T = 303K, p= 1000 hPa) is embedded in

surrounding dry air. What is the vertical acceleration of this parcel?
6.3 Suppose a parcel has a vertical acceleration of 0.12m s−2 (see previous problem). If

it starts at rest at the surface, what is its vertical velocity after 5 s, 10 s, 30 s? How
long does it take to reach the top of the boundary layer (≈ 2 km)?

6.4 At a certain level of the (dry) atmosphere z, the temperature is 303K and the local lapse
rate is 12K km−1. Is this layer stable? Suppose a 1m3 parcel is displaced upwards by
0.5 km adiabatically. What is its acceleration due to buoyancy? How will the answer
change if the parcel is displaced isothermally?

6.5 Suppose the atmosphere has its temperature equal to 300K and pressure 1000 hPa at
z = 0. The temperature profile falls linearly with a lapse rate of 6K km−1 up to 10 km.
Above 10 km the temperature is constant. What is the pressure as a function of z?

6.6 Use the results of Problem 6.1 to compute the potential temperature as a function of
height z.

6.7 Find the dry lapse rate near the surface for Mars. The mean radius of Mars RMars=
3.40×106 m is 0.530 × REarth; mass of Mars = 0.107MEarth; universal gravitational
constant G= 6.67× 10−11Nm2 kg−2; for CO2, cp ≈ 0.76 kJ kg−1 K−1.

6.8 Suppose an atmospheric profile is given by T (p) = a + b ln p/p0, 0 < p ≤ p0. Find
an expression for the geopotential height Z(p) as a function of pressure, p.

6.9 What is the thickness of the 1000 to 900 hPa layer if the mean temperature is 300K?
6.10 What is the acceleration of a dry air parcel whose temperature is 300K embedded in

an environment of 285K?
6.11 Compute the Brunt–Väisälä frequency for dry air in a layer where dθ/dz = 1K km−1,

θ = 300K. Give the answer in Hz as well. Compute the period of the oscillations.
6.12 Consider the differential equation:

d2x

dT 2
= −ω2x.

Show that
x = A cosωt + B sinωt

is a solution for constant values of A and B.
6.13 Relating the last problem to buoyant oscillations of a dry air parcel, find the coefficients

A and B for two situations, using dθ/dz =1K km−1 and θ ≈ 300K: (a) x(0) = 10m,
v(0) = 0m s−1; (b) x(0) = 0m, v(0) = 1m s−1.
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Thermodynamic charts

Atmospheric scientists make use of a variety of charts in their analysis of weather
conditions. In the previous chapter we learned to identifywhether a parcel located at
a particular altitude is stable under small perturbations. The stability is determined
by the local slope of the environmental curve compared to that of an adiabat passing
through the same point. The diagram used in those studies was the temperature
versus the altitude. On such a diagram a plot of the observed environmental
temperature versus altitude could be compared with plots of hypothetical adiabatic
trajectories of parcels. We learned that comparing the local slopes could reveal the
stability of air located at a point (altitude) on the environmental curve.
While the temperature and the altitude are convenient for determining the local

stability, the temperature and the logarithm of the pressure are more appropriate
coordinates for computing energetic quantities of interest without giving up the
convenient stability rules. Since the atmosphere is very nearly in hydrostatic
equilibrium, the altitude, temperature and log pressure are closely related through
the hydrostatic equation, dp/p = −(g/RT )dz. Using ln p0/p (p0 is a standard
pressure, usually 1000 hPa) as the vertical coordinate instead of altitude will allow
us to relate the energetics of a parcel’s movements in an unstable environment.
To see how T versus ln p is related to thermodynamic diagrams used earlier in

this book, consider a closed loop integral enclosing an area in this plane:∮
T d ln p =

∮
T

p
dp = 1

R

∮
v dp (7.1)

where v = 1/ρ is the specific volume of a parcel. We can write

v dp = −p dv + d(pv) (7.2)

so that ∮
v dp = −

∮
p dv + 0 (7.3)

163
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since
∮
d(pv) = 0. This means the area enclosed by the loop integral in the T versus

ln p plane is proportional to the negative of the work done by the gas in the parcel
in traversing the loop. This means the area is proportional to the work on the gas
by the environment. This provides a connection to the thermodynamic diagrams
we are familiar with. We will see the physical significance and applicability of this
connection in the next section.

7.1 Areas and energy

Consider a parcel perched at an unstable equilibrium point (altitude) in the
atmosphere. A slight upwards nudge will cause the parcel to accelerate upwards
because of the increasing (from zero) buoyant force. As the parcel rises away from
its previous but precarious equilibrium level it will gain kinetic energy and lose
buoyant potential energy. We can obtain a formula for the kinetic energy of the
parcel as a function of distance above the initial level. We consider only adiabatic
motion, wherein the air parcel moves without heat exchange with the surrounding
environmental air.
According to Archimedes’ Principle, the upward force per unit mass (equal to

acceleration) on the parcel is

F

M = −(ρa(z) − ρe(z))

ρa(z)
g (7.4)

where M is the mass of the parcel, ρa(z) is the density of the air in the parcel
as it moves vertically along an adiabatic path, and ρe(z) is the density of the
environmental air just outside the parcel at level z. Note that for displacements
for which ρa is less than ρe there will be an upwards (positive) buoyant force on
the parcel. The work done per unit mass on the parcel by the buoyancy force in
moving the parcel from z0 to z is

∫ z
z0

(F/M) dz, which is also the change in the
kinetic energy per unit mass of the parcel in this displacement. In other words,
the positive buoyancy force causes the parcel to increase speed as it moves in
the vertical direction. Using K to denote the kinetic energy per unit mass, we
obtain

K(z) − K(z0) = −
∫ z
z0

(ρa(z) − ρe(z))
g

ρa(z)
dz

=
∫ z
z0

(Ta − Te)
g

Te
dz. (7.5)
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Substituting the hydrostatic equation, dp/dz = −ρ g, and the ideal gas equation of
state, p = ρ RT , yields:

K(z) − K(z0) = −R
∫ p
p0

(Ta − Te)d(ln p). (7.6)

The result is that the kinetic energy of a parcel is proportional to the area in the
closed loop defined by doubly intersecting environmental and adiabatic curves in
a T–ln p diagram:

K = −R
∮
T d ln p. (7.7)

It is worth remembering that the above derivation is valid for both dry and moist
adiabatic processes. As the parcel rises adiabatically, its kinetic energy goes up, if
there is a positive area enclosed by the parcel’s path and environmental curve.
The same fact is, of course, true for the v–p diagram. The change of kinetic

energy per unit mass in v–p variables is

K(z) − K(z0) = −
∫ p
p0

(va − ve) dp

= −
∮

v dp

=
∮
p dv, (7.8)

where we have substituted v = va − ve.
We have seen that the v–p and T–ln p diagrams have the area-energy property:

the area enclosed by the environmental curve on the left and an adiabatic (parcel)
curve on the right is proportional to the kinetic energy per unit mass assumed by a
parcel being forced upwards by buoyancy in such an unstable atmospheric profile.
Figure 7.1 shows a diagram of an environmental sounding curve with a dry

adiabat leaving the surface and rejoining the sounding at a higher level in the
atmosphere. Theoretically, a parcel leaving the surface along the dry adiabat will
have a kinetic energy on reaching the environmental curve proportional to the
shaded area bounded by the two curves.
Of course, the idea of frictionless motion of the parcel is highly idealized.

Exchange of momentum transmitted by small eddies between the parcel and its
environment tend to slow the parcel and alter its motion from the ideal conditions
of frictionless motion. This entrainment process also exchanges other properties
such as chemical composition and enthalpy. Nevertheless, the idealized kinetic
energy parameter has proven useful in diagnosing and predicting the consequences
of unstable situations.
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Figure 7.1 Schematic diagram of a sounding (left border of the shaded area) along
with a dry adiabat rising from the surface (right border of the shaded area). The
shaded area is proportional to the kinetic energy acquired by a parcel in rising from
the surface to the intersection of the two curves.

We will return to energetic considerations after introducing the skew T diagram
and passing through a series of chart exercises designed to build familiarity with
the charts.

7.2 Skew T diagram

While in the previous section we saw that the T–ln p diagram has the very useful
area-energy property, experience has shown that a related diagram is even more
useful while preserving the area-energy property.While several such diagrams have
been proposed over the years and discussions of them can be found on the internet,
by far the most widely used is the skew T–log p chart which we will refer to simply
as the skew T chart. Use of the diagram saves time, avoids tedious calculations,
and provides an easy visual means of summarizing the vertical structure of the
atmospheric thermal, stability, energetic and moisture characteristics.
Data from a radiosonde (an instrumented balloon launched every 12 hours at a

network of thousands of locations over the globe) are plotted on the diagram to
form the sounding or environmental curve. The main parameters derived from
the radiosonde are the pressure, temperature, humidity, altitude and horizontal
components of wind velocity.
The skewT diagramdiffers from theT–ln p diagram in that the abscissa is rotated

about the origin (T0 ≈ −50◦C, ln 1000) by about 45◦ downwards in a clockwise
direction as illustrated in Figure 7.2.
The resulting coordinate plane (or diagram or chart) (Figure 7.3) is shown in

the form used by practicing meteorologists and researchers. The abscissa X on this
diagram is proportional to (T + β ln (p0/p)), where β is an adjustable coefficient
set once and for all for convenience (for the usual skew T chart, the value is
close to unity making the angle of rotation 45◦). The ordinate Y is proportional to
ln (p0/p) which is very nearly proportional to the altitude, making interpretation
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Figure 7.2 In the skew T diagram the T -axis is rotated about 45◦ clockwise. The
original isotherms were vertical while the rotated ones are tilted as shown. The
isobars are horizontal before and after the rotation (only the abscissa is rotated).
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Figure 7.3 Illustration of a skew T– log p diagram. The isolines are labeled.
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of this coordinate easier. To be sure that this pair of coordinates is viable from the
point of view of energetics, consider taking an integral around a closed loop in the
plane: ∮

X dY =
∮ (

T + β ln

(
p0
p

))
dp

p

=
∮
T
dp

p
− β

∮
ln

(
p

p0

)
dp

p︸ ︷︷ ︸
=0

. (7.9)

This tells us that a closed loop in a skew T diagram has the same value as that
same loop in a T–ln p (unskewed) diagram. The larger the area enclosed the more
energy will be involved in a related closed loop process. The closed loop process
can then be related to the conversion of buoyant potential energy into kinetic energy
of convection as we discussed in the last section.
In the skew T diagram the lines of constant pressure (isobars) are horizontal

while the isotherms are no longer vertical but are tilted to the right. Examination
of Figure 7.3 shows many lines besides the isobars and the isotherms. Let us take
one curve at a time.

Dry adiabatWe can obtain an equation for the dry adiabat by taking the logarithm of
Poisson’s equation,

ln T = ln θ + κ ln(p/p0). (7.10)

This relationship shows that the dry adiabats are not exactly straight lines on a skew
T diagram. Hence, the dry adiabats are slightly curved (solid) lines which run from
the lower right to the upper left of the diagram and are nearly perpendicular to
the isotherms. The 45◦ angle between the skewed isotherms and isobars and the
resulting 90◦ angle between isotherms and adiabats makes it easier for the observer
to see the difference between the sounding and the adiabats. This property has led
to the wide adoption of the skew T diagram. The pressure is in hPa (same as mb),
the temperature is in degrees Celsius. The dry adiabats are labeled by the potential
temperature associated with them.

Saturation mixing ratio These lines are drawn on the skew T diagram as dashed lines
running toward the upper right. The units are g kg−1, which indicate the amount of
water in grams per kilogram of air at saturation at the particular temperature and
pressure. The value for each saturation mixing ratio line is shown on the bottom of
the diagram (on some charts on the internet it might be shown on the upper right).

Moist adiabat These are shown as dashed lines running toward the upper left. They
can be computed from the information in the previous chapter, but this is unnecessary
since the charts already provide the relationship. More about these below.
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Figure 7.4 Example of a sounding on a skew T– log p diagram.

The thermodynamic state of a parcel of air can be represented as a point in the
diagram. For example, a parcel having temperature −10◦C and pressure 600 hPa
is seen to have potential temperature ≈30◦C. To specify the parcel’s properties
completelyweneed to know itswater vapor content,w in g kg−1. Supposeour parcel
which is located at 600 hPa and−10◦C contains water vapor with a mixing ratio of
0.5 g kg−1. These three quantities p, T ,w are sufficient to define the thermodynamic
state of the parcel. One could equally well specify p, θ , and RH since one triplet
can be found from the other.
Next consider the sounding plotted in Figure 7.4. There are two sounding curves

plotted on the chart: the temperature plot and the dew point plot. Both profiles
are based on radiosonde measurements. The temperature line is always to the
right of the dew point line. One can read the values of potential temperature,
equivalent potential temperature, saturation mixing ratio, and actual mixing ratio
of an air parcel situated at any particular pressure and temperature. A parcel of
air can be moved hypothetically in different directions on the chart. As it moves
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its thermodynamic coordinates change. For example, consider a parcel on the
environmental temperature curve at 400 hPa; a horizontal move (OA) is an isobaric
change (this might result from cooling due to radiation). Amove along an isotherm
(OB) shows how the parcel’s properties change under an isothermal displacement.A
move along a dry adiabat (OC) indicates the changes that a parcel would experience
if it were lifted adiabatically to a different pressure level. As a parcel is lifted dry
adiabatically, the chart shows that the temperature of such a parcel decreases (it
crosses isotherms of decreasing temperatures). This cooling is again a graphical
expression of Poisson’s equation. To introduce skew T charts, let us walk through
some chart exercises.

7.3 Chart exercises1

Exercise 1 An air parcel has a temperature of 253K at the 600 hPa pressure level.

(a) Find its potential temperature and saturationmixing ratio using both skew T–log p chart
and formulas.
Answer: (Figure 7.5) On the skew T diagram that we use (see Figure 7.5), the
temperature is in degrees Celsius; for that reason we first have to convert Kelvins
to degrees Celsius (T = −20◦C). Find the point on the diagram where the abscissa is
equal to −20◦C and the ordinate is equal to 600 hPa (point A). To find the potential
temperature of the parcel, follow a dry adiabat to the intersection with the 1000 hPa
level (point B). Read the temperature at point B. This is the potential temperature of
the parcel which is equal to 293K. To find the saturation mixing ratio, from point A
follow the line with constant saturationmixing ratio to the intersection with the abscissa
(dashed line). Read the value of saturation mixing ratio (1.3 g kg−1).
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Figure 7.5 Diagram for Exercise 1.

1 In these exercises we use reduced accuracy, TSTP ∼= 273K and pSTP ∼= 1000 hPa as STP except when TSTP
appears in the integrated Clausius–Clapeyron equation.
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Using formulas, (i) find the potential temperature from Poisson’s equation, (ii)
find the saturation mixing ratio from the integrated form of the Clausius–Clapeyron
equation (5.17) and formula (5.35).

(b) Move the parcel along the dry adiabat (dry adiabatically) to the 850 hPa level. What is
the new temperature of the parcel? What is the new saturation mixing ratio? What is
the parcel’s potential temperature at 850 hPa?
Answer: From point A follow the dry adiabat to a pressure level of 850 hPa (point
C). To find the temperature, follow the isotherm from point C to the intersection with
the abscissa. Read the temperature (T = 7◦C). To find the saturation mixing ratio,
from point C follow the line of constant saturation mixing ratio to the intersection
with the abscissa. Read the value of saturation mixing ratio (7 g kg−1). The parcel’s
potential temperature at the 850 hPa level is the same as at 600 hPa, since the descent
was conducted dry adiabatically with conservation of potential temperature.

Exercise 2 An air parcel has a temperature of 298K at 1000 hPa level. Its mixing
ratio is 14 g kg−1. Find the relative humidity using the chart and formulas.
Answer: Find the point on Figure 7.6 with abscissa 25◦C and ordinate 1000 hPa
corresponding to the initial conditions of the parcel (point A).
We know the mixing ratio, hence, to find the relative humidity we have to find

the saturation mixing ratio (see Exercise 1). The saturation mixing ratio at point A
is 20 g kg−1. Thus the relative humidity is

RH = 14 g kg−1

20 g kg−1
× 100% = 70%.

Using the formulas, the temperature of the parcel is known, therefore from the
Clausius–Clapeyron equation we find the saturation pressure to be 32 hPa. Then,
calculate the saturation mixing ratio from formula (5.35). Finally, find the relative
humidity from (5.28).

Exercise 3 Using the same initial conditions as in Exercise 2, find the dew point
of the parcel using both chart and formulas.
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Figure 7.6 Diagram for Exercises 2 and 3.
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Answer: By definition, the dew point is the temperature to which an air parcel must
be cooled at the same pressure level in order for it to be saturated. In our case the
parcel is unsaturated, its mixing ratio being less than the saturationmixing ratio. So,
to find the dew point move to the left from the initial condition of the parcel (point
A) along the isobar corresponding to the 1000 hPa level. Stop at the intersection
of the isobar with the line of constant saturation mixing ratio corresponding to
14 g kg−1 (point B). This shift along the isobar corresponds to cooling the parcel at
the same pressure level until its mixing ratio becomes equal to its saturation mixing
ratio. Therefore, the temperature (the abscissa) at point B is the dew point. For this
problem TD = 19 ◦C. It is important to understand that the dew point and mixing
ratio of the parcel reflect equivalent information: if you know the dew point, you
can find the mixing ratio at the same temperature and pressure, and vice versa. Now
let us calculate the dew point using formulas instead of diagrams. To find the dew
point, we have to equate the saturation mixing ratio to the actual mixing ratio of
the parcel:

ws(TD) = w, (7.11)

0.622× 2.497× 109 hPa exp(−5417/TD)

1000 hPa
= 0.014. (7.12)

This gives us the dew point temperature TD = 19 ◦C.

Exercise 4 An air parcel is lifted adiabatically from the 1000 hPa level where
the parcel has a temperature of 20◦C and dew point 6◦C. Find the LCL (lifting
condensation level). What are the temperature and potential temperature of the
parcel at this level?
Answer: Find the parcel’s initial location on Figure 7.7 corresponding to 20 ◦C
abscissa and 1000 hPa ordinate (point A). The saturation mixing ratio at 20◦C is
14.5 g kg−1. Since we know the dew point, we can easily find the actual mixing
ratio: the magnitude of the saturation mixing ratio at the dew point (6◦C at the
1000 hPa level, point B) is the actual mixing ratio, which is equal to 5.7 g kg−1 in
our case. Since the actual mixing ratio is less than the saturation mixing ratio, the
air parcel is unsaturated. Therefore, the parcel, when lifted adiabatically, follows a
dry adiabatic line passing through pointA. During ascent the potential temperature
is constant, as well as the mixing ratio of the parcel (there is no condensation and
latent heat release). At the same time, the saturation mixing ratio decreases since
the temperature decreases. So, at some pressure level the saturation mixing ratio
and the actual mixing ratio become equal to each other, which means that adiabatic
lifting eventually leads to saturation and condensation. The level at which the air in
the parcel has cooled by adiabatic expansion sufficiently to become saturated is the
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Figure 7.7 Diagram for Exercises 4 and 5.

LCL. The LCL can be found at the intersection of the dry adiabat starting from the
initial parcel’s temperature and pressure (AC on the graph) and constant saturation
mixing ratio line starting from the dew point (BC). In our case the LCL (point C) is
at 810 hPa. The temperature at this level is 3◦C. The potential temperature is 293K
at the LCL. The potential temperature is conserved during the lifting; it is the same
as that at the 1000 hPa level.
We can calculate the LCL without using charts, but this is more difficult. We

have to find at what pressure level the dry adiabat that started at point A intersects
with the line of constant saturation mixing ratio that started from point B. We can,
for example, express temperature in terms of potential temperature and pressure
using Poisson’s equation and substitute it into the Clausius–Clapeyron equation.As
a result, we have to solve a transcendental equation for pressure. Charts are quicker.

Exercise 5 Continue Exercise 4. If the parcel is lifted adiabatically to the 450 hPa
level, what is its final temperature?
Answer: At 810 hPa the parcel has been saturated. So, its further lifting is along a
moist adiabat. Follow the moist adiabat starting from point C to the 450 hPa level.
The temperature at this point is −29◦C.
Exercise 6 An air parcel at the 800 hPa level with temperature −10◦C is saturated
(mixing ratio 2.2 g kg−1). Compute the equivalent potential temperature θe using
both the skew T–log p chart and the formula for θe.
Answer: Lift the parcel from its initial location (point A on Figure 7.8) along the
moist adiabat to infinity (approximately 200 hPa on the graph, moist and dry
adiabats are nearly parallel to each other at this and higher levels). All vapor that
the parcel initially contained has condensed. Then move the parcel back to the
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Figure 7.8 Diagram for Exercises 6 and 7.

1000 hPa level (point B) along the dry adiabat. The temperature at point B is the
equivalent potential temperature (286K).
From formula (6.82) we get

θe = 263K×
(
1000

800

)0.286
× exp

(
2.5× 106 J kg−1 × 2.2× 10−3

1004 J kg−1K−1 × 263K

)
= 286K.

(7.13)

Exercise 7 Continue Exercise 6. Lift the parcel to the 425 hPa level. How much
water is condensed during the ascent?
Answer: Bring the parcel from pointA to the 425 hPa level along the moist adiabat
(point C). The ascent is along the moist adiabat since the parcel was saturated at
the initial temperature and pressure. At point C the saturation mixing ratio is equal
to 0.10 g kg−1. Hence, the amount of water condensed out during the ascent is
2.2 g kg−1− 0.1 g kg−1 = 2.1 g kg−1.
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Figure 7.9 Diagram for Exercise 8.

Exercise 8 Air at 800 hPa has a temperature of 10◦C and a dew point of 0 ◦C.
Determine the wet-bulb temperature and the wet-bulb potential temperature.
Answer: The wet-bulb temperature, by definition, is the temperature an air parcel
would have if cooled adiabatically to saturation at constant pressure by evaporation
of water into it. To find the wet-bulb temperature on Figure 7.9 you have to perform
the following steps. (1) Find the lifting condensation level (see Exercise 4). It is at
690 hPa (point C). (2) Draw a moist adiabat starting at C down to the intersection
with the 800 hPa isobar (point D). Read the magnitude of the temperature at point
D, which is the wet-bulb temperature (5◦C). The wet-bulb potential temperature
can be found by extrapolating the moist adiabat line starting at the LCL (point C)
to the 1000 hPa level (288K).

Exercise 9 The relative humidity of the air at the 950 hPa pressure level is 47%.
Plot the relative positions of temperature, dew point and wet-bulb temperature on
the chart.
Answer: The RH = 47% means that air is unsaturated. Therefore, the dew point
(point B on Figure 7.10) is to the left of the temperature (point A) at the 950 isobar
level. The wet-bulb temperature is always higher than the dew point. This happens
because the dew point is the result of cooling to saturation at constant pressure with
constant mixing ratio. Instead, the wet-bulb temperature characterizes cooling to
saturation of the air parcel by evaporating water into the parcel, which raises the
actual mixing ratio as the cooling proceeds. So, the wet-bulb temperature (point C)
is between the dew point and the actual temperature.

Exercise 10: Chinook wind The Chinook wind is the warm dry wind that is the
result of wind descending eastwards from the Rocky Mountains (Figure 7.11).
Chinook winds can cause large temperature changes occurring only over a few
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Figure 7.10 Diagram for Exercise 9.
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moist air

warm,
dry air

Figure 7.11 Exercise 10, illustration of the Chinook wind.

hours. “Chinook” is a Native American word that means “snow-eater,” reflecting
the warming effect, which could be accompanied by substantial melting. It is called
Föhn in Europe. Let the air have a temperature of 10◦C and 5 g kg−1 mixing ratio
at pressure 950 hPa at the upslope (western) side of the mountain. When passing
over the top of the mountain at the 600 hPa level, assume that 80% of the moisture
is precipitated out. The air returns to the 950 hPa level on the eastern side of the
mountain after being heated by the condensation. Compare the temperature, relative
humidity, potential temperature and wet-bulb potential temperatures on both sides
of the mountain at the 950 hPa level.
Answer: Find the initial location of the parcel on the chart (pointAon Figure 7.12).
At this point the saturation mixing ratio is equal to 8 g kg−1. Since we know the
mixing ratio of the parcel at point A, we can find the relative humidity RH =
62%. The potential temperature at point A is 287K (see Exercise 1). The parcel is
unsaturated at point A. Thus, when lifting, it follows a dry adiabat until it reaches
the LCL (see Exercise 4). The LCL is at the 860 hPa level. The intersection of
the dry adiabat starting at point A and the line of constant saturation mixing ratio
of 5 g kg−1 is at point L. To find the wet-bulb potential temperature (see Exercise 8),
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Figure 7.12 Diagram for Exercise 10.

draw a moist adiabat starting from L back to the 1000 hPa level. Read the abscissa,
which yields 9◦C. With further uplifting, the parcel follows the moist adiabat to
the top of the mountain at the 600 hPa level (point B). At this point the parcel
has saturation mixing ratio equal to 1.6 g kg−1. Now we can find the amount of
water condensed out during the ascent to the top of the mountain. It is equal to the
difference between mixing ratios at points A and B, 5 g kg−1− 1.6 g kg−1 = 3.4
g kg−1. We know that 80% of this moisture, which is 2.7 g kg−1, is precipitated
out. Therefore, there is 3.4 g kg−1− 2.7 g kg−1 = 0.7 g kg−1 of liquid water at the
top of the mountain. When descending on the other side of the mountain, the air
parcel follows the moist adiabat again since it is saturated. When descending, the
parcel warms and expands, so water evaporates. Eventually, at some level, all the
liquid water evaporates, the parcel is no longer saturated and its further descent is
along a dry adiabat. How can we can find this “threshold” pressure level when the
parcel reaches its new saturation mixing ratio corresponding to the evaporation of
all liquid water? We know that at the top of the mountain there is 1.6 g of liquid
water per kilogram of dry air. We also know that after the precipitation there is
still 0.7 g of liquid water per kilogram of dry air. Hence, the new saturation mixing
ratio, when all liquid water evaporates, is 1.6 g kg−1+ 0.7 g kg−1 = 2.3 g kg−1.
The parcel intersects the line with 2.3 g kg−1 saturation mixing ratio at the 660 hPa
level (point C). This is the “threshold” pressure level because thereafter the parcel
becomes unsaturated and follows its dry adiabat to the 950 hPa level (point D).
The parcel’s new temperature at point D is 17◦C, which is 7 ◦C warmer than in the
beginning. During dry adiabatic descent the mixing ratio is constant, so at point D
the parcel has the samemixing ratio as at point C,which is 2.3 g kg−1.The saturation
mixing ratio at point D is 12.6 g kg−1. Therefore, the relative humidity of the air
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on the other side of the mountain is 18% (compare with 62% at the beginning).
The potential temperature at point D is 294K (compare with 287K at pointA). The
wet-bulb temperature is again 9 ◦C; it is conserved during the process.

7.4 Stability problem: example sounding

Figure 7.13 shows a typical sounding. In this example the air near the surface
is unsaturated since the dew point is less than the air temperature. When lifted,
the air follows a dry adiabat until it reaches the LCL as depicted in the graph.
Further uplifting is along a moist adiabat (indicated by the dashed line). The first
intersection of this moist adiabat with the sounding curve occurs at the level of free
convection (LFC on the graph). If a parcel is lifted to a height lower than the LFC,
it returns toward the surface because it experiences negative buoyancy since it is
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Figure 7.13 Illustration of a hypothetical sounding. Solid curves correspond to air
temperature and dew point sounding, the dashed curve shows the actual path of a
parcel lifting from the surface.
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always cooler than the environment along its path. If, however, the parcel reaches
the LFC, it becomes warmer than its surroundings. So, the LFC is the level where
the parcel becomes positively buoyant. The positive buoyancy carries the parcel up
to the level of neutral buoyancy (LNB), where the parcel’s path intersects with the
(measured) temperature sounding.
In Chapter 6 we discussed stability criteria for an unsaturated parcel. Let us apply

these to different layers of the sounding. By layer we mean a thin slab of air along
the sounding across which there is an approximately constant lapse rate. Consider
the stability of layers depicted on Figure 7.13 (Figure 7.14 enlarges the part of the
chart we are interested in).
Layer AB is stable since its lapse rate is less than the dry adiabatic lapse rate.

Layer BC is a layer exhibiting a slight inversion. An inversion occurs in a layer
when the temperature increases with height – such a layer is obviously stable. The
layer CD is also stable, its lapse rate being less than the dry adiabatic lapse rate.
The layer DE is neutral; it is parallel to the dry adiabat, so temperature decreases
at the same rate as with a dry adiabatic process.
Now consider the case when the temperature decreases with height at a rate less

than the dry adiabatic lapse rate but greater than the moist adiabatic lapse rate,
�d > � > �m (for example, layer AB). An air parcel in layer AB is negatively
buoyant if lifted a short distance but could become positively buoyant if an
imposed vertical motion is strong enough to bring this parcel to its level of
free convection (LFC). For example, the air might be pushed up a mountainside
or lifted by mechanically induced overturning (turbulence). Such a situation is
called conditional instability. The layer is stable when air is unsaturated, but could
become unstable with externally imposed vertical motion. We can test the layer for
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Figure 7.14 The enlarged area of interest of the sounding shown in Figure 7.13.
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conditional instability by calculating the vertical gradient of saturation equivalent
potential temperature dθs/dz, rather than by calculating the lapse rate. In the case of
conditional instability dθs/dz < 0. Indeed, one can see from the graph (Figure 7.14)
that θs(A)> θs(B). If � = �m (A and B are on the same moist adiabat), then θs(A)
= θs(B), and dθs/dz = 0.
To summarize, if the temperature in the particular layer decreases at a rate greater

than the dry adiabatic lapse rate, this layer is unstable in any case for both saturated
and unsaturated parcels. If the temperature decreases at a rate less than the moist
adiabatic lapse rate, this layer is absolutely stable; the saturation equivalent potential
temperature increases with height in this case. The formulas below list the stability
criteria:

� > �d or
dθ

dz
< 0 absolutely unstable, (7.14)

�d > � > �m or
dθs
dz

< 0 conditionally unstable, (7.15)

� < �m or
dθs
dz

> 0 absolutely stable. (7.16)

There is another type of instability calledpotential instability. Potential instability
occurs when the layer is lifted as a whole, for example by convection associated
with a moving front or with a flow passing over a mountain. When moving, the
saturation conditions and, consequently, paths are different for the bottom and
top of the layer, which can change the initial temperature gradient. Consider the
inverted layer BC on the same sounding (Figure 7.15). The reason we chose an
inversion layer is that the effect we want to demonstrate is more pronounced in this
case. Imagine that an uplifting flow moves this layer as a whole 200 hPa higher.
What happens? The bottom of the layer (point B) is almost saturated initially.
Therefore, when lifted, it quickly reaches its LCL (labeled as LCLB on the graph)
and follows a moist adiabat thereafter (point B1). The situation at the top of the
layer (point C) is different. At the beginning, air at the top of the layer has a low
relative humidity, its dew point is far to the left of its temperature. When uplifted,
the air at point C reaches its LCL (labeled LCLC on the graph) and then follows
a moist adiabat (point C1). Now consider the lapse rate of the B1C1 layer. It is
larger than the dry adiabatic lapse rate. So, the absolutely stable layer BC becomes
unstable when uplifted. This is the case of potential instability. The criterion
for this instability is a negative gradient of the equivalent potential temperature
in the layer, dθe/dz < 0. Indeed, the equivalent potential temperature remains
constant during the lifting everywhere: both above and below the LCL. When the
air reaches the LCL, the equivalent potential temperature becomes equal to the
saturation equivalent potential temperature, θe = θs. After that, from the criterion
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Figure 7.15 Illustration of potential instability. The stable layer BC becomes
unstable after uplifting.

for conditional instability (7.15) we obtain dθe/dz < 0 for potential instability. One
can see from Figure 7.15 that θe(B) > θe(C). This is a common occurrence in the
southeastern USA as warm moist air is advected from the south, overriding drier
air advected from the west. If lifting occurs, such a configuration can lead to severe
weather conditions.

7.5 Convective available potential energy (CAPE)

In previous sections we analyzed the stability of the displacement of a small parcel
in terms of temperature lapse rate. In this section we will continue to analyze
stability, but in terms of energy.We have already shown that when there is a positive
area in the closed loop between environmental and adiabatic curves on a T–ln p
diagram or, in other words, if a parcel (after a nudge) is positively buoyant, the
parcel’s kinetic energy increases. Consider a parcel being initially unsaturated in
a conditionally unstable atmosphere. We denote the parcel’s initial location by A
in the example of a temperature sounding shown in Figure 7.13. When lifted, the
parcel first follows a dry adiabat until it reaches the LCL. With further lifting, it
follows a moist adiabat. If the upward motion is strong enough to bring the parcel
to its LFC, the parcel becomes positively buoyant. Figure 7.16 shows the same
sounding as Figure 7.13. The positive area (shaded dark on Figure 7.16) between
the parcel’s path and the sounding bounded by the LFC and the LNB is called
the convective available potential energy (CAPE). CAPE represents the maximum
kinetic energy that a positively buoyant parcel can acquire by ascending without
exchanging momentum (eddy friction), heat and moisture with its environment.
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Figure 7.16 The same sounding as in Figure 7.13. Dark and light gray areas
represent convective available potential energy (CAPE) and convective inhibition
energy (CIN) correspondingly.

We can calculate the ideal change of kinetic energy per unit mass due to positive
buoyancy by integrating (7.5) from LFC to LNB. The amount of kinetic energy
released in this situation is

CAPE = �K =
∫ zLNB
zLFC

g
Ta − Te
Te

dz. (7.17)

CAPE is a useful measure of thunderstorm severity, since it allows us to estimate
the value ofmaximumpossible vertical velocity. Indeed, if a parcel has zero vertical
velocity at the LFC, then from (7.17)

wmax = √
2CAPE. (7.18)

In this consideration we have neglected the effect of water condensation, which
reduces buoyancy slightly. Values of CAPE greater than 1000 J kg−1 imply the
possibility of strong convection. Even if the final vertical velocity is less than the
maximum value, the energy is still dissipated in turbulence within the cloud.
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Let us return now to Figure 7.13. Before the parcel starting at point A reaches
its LFC, it has to overcome a potential energy barrier between the LCL and the
LFC, where a parcel is cooler than its environment and negative buoyancy tends
to return the parcel toward the surface. This negative area between the parcel’s
path and environment bounded by the LCL and the LFC is called the convective
inhibition energy (CIN). It is shown as the light gray area in Figure 7.16. CIN
controls whether convection actually occurs. It is a measure of how much energy
is required to overcome the negative buoyancy and allow convection. To find CIN
we have to integrate (7.5) from the LCL to the LFC, namely

CIN =
∫ zLFC
zLCL

g
Ta − Te
Te

dz. (7.19)

If the CIN is greater than 100 J kg−1, a significant source of lifting is needed to bring
the parcel to its LFC in order to create favorable conditions for deep convection.
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Figure 7.17 The same sounding as in Figure 7.13. For a parcel originating at point
B, CAPE is zero.
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Figure 7.18 Illustration of a hypothetical sounding.

If we, for example, are interested in the CAPE of an air parcel starting at point B
rather than at point A on the same sounding diagram (Figure 7.17), then the CAPE
is zero. The path of the parcel starting at point B is shown by a dashed line on
Figure 7.17. This parcel is always cooler than its local environment. It is important
to note that the value of CAPE depends on the initial parcel location.
Consider the sounding shown in Figure 7.18. A parcel starting from the surface

will experience negative buoyancy. The area corresponding to the CIN is shown
in light gray in Figure 7.19, which simply enlarges the part of Figure 7.18 we are
interested in. The area shaded in darker gray corresponds to the CAPE. To become
positively buoyant, a parcel started from the surface (point A on the graph) has
to overcome this “light gray” area. Imagine now that we expect the surface to be
warmed in the next couple of hours. Then, instead of pointA, the parcel starts from
pointA1 (Figure 7.20). It does not experience negative buoyancy any longer; its LFC
coincides with its LCL, and these are excellent conditions for severe thunderstorm
activity. If, on the contrary, we expect the surface to be cooled (Figure 7.21, point
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Figure 7.19 The same sounding as in Figure 7.18. CAPE and CIN for the parcel
started from the surface (pointA) are shown in dark and light gray correspondingly.
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Figure 7.20 The same sounding as in Figure 7.18. Illustration of a hypothetical
surface warming. For the parcel originating at point A1, there is no CIN.

A2), then the situation is reversed. CIN becomes larger, and CAPE is smaller than
the previous situation. This means that the conditions for a thunderstorm are no
longer favorable.
Fortunately for the forecaster, the values of many of the parameters discussed

above (CAPE, CIN, etc.) are printed right on the skew T charts that are published at
many sites on the internet. Hence, no tedious computations of areas are necessary
by the user.
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Figure 7.21 The same sounding as in Figure 7.18. Illustration of a hypothetical
surface cooling. For the parcel originated from pointA2, CAPE decreases, but CIN
increases in comparison with the parcel started fromA.

Notation and abbreviations for Chapter 7
CAPE convective available potential energy (J kg−1)
CIN convective inhibition energy (J kg−1)
F ,F/M force, per unit mass (N kg−1)
h, u specific enthalpy, internal energy (J kg−1)
K kinetic energy (J)
Levap latent heat of evaporation (J kg−1)
R gas constant (J K−1 kg−1)
ρa parcel density for adiabatic change (kgm−3)
ρe environmental density (kgm−3)
Va,Ve volumes of a parcel along an adiabat and of the environment (m3)
w,ws mixing ratio, saturated (g water vapor per kg dry air)
X , Y abscissa, ordinate

Problems
7.1 Refer to the sounding in Figure 7.22.

(a) Estimate the mixing ratio at the surface.
(b) Estimate the saturation mixing ratio at the surface. What is the relative humidity at

the surface?
(c) What is the dew point?
(d) What is the pressure level at the LCL?
(e) What is the wet-bulb temperature at the surface?
(f) Is CIN > 0?
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Figure 7.22 A sounding from Lake Charles, LA, at 00Z, June 1, 2007. Taken from
the University of Wyoming website.

(g) Is there a large CAPE?
(h) What is the mixing ratio at 800 hPa?
(i) What is the saturation mixing ratio at 800 hPa?

7.2 Refer to the sounding in Figure 7.23.
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Figure 7.23 A sounding from Bismarck, ND, at 00Z, January 1, 2007. Taken from
the University of Wyoming website.
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(a) Where is the tropopause?
(b) Describe the air mass over Bismarck on this day.
(c) Describe the humidity as a function of altitude.
(d) Are there any temperature inversions as a function of altitude?
(e) Is there any CAPE or CIN? Stable?

7.3 Refer to the sounding in Figure 7.24.

(a) Where is the tropopause?
(b) Describe the air mass over Bismarck on this day.
(c) Describe the humidity as a function of altitude.
(d) Are there any temperature inversions as a function of altitude?
(e) Is there any CAPE or CIN? Stable?
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Figure 7.24 A sounding from Bismarck, ND, at 00Z, August 1, 2007. Taken from
the University of Wyoming website.
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Figure 7.25 A blank skew T chart for Problem 7.4. Taken from the University of
Wyoming website.

7.4 The air at 1000 hPa and 11◦C has dew point −0.5 ◦C (see Figure 7.25).
(a) Find the mixing ratio, relative humidity, and the potential temperature using both

the skew T chart and formulas.
(b) Find the lifting condensation level using the chart.
(c) Find the equivalent potential temperature using the chart.
(d) What are the mixing ratio and the potential temperature if the parcel rises to

900 hPa?
(e) What is the equivalent potential temperature if the parcel rises to 600 hPa?

7.5 Consider a parcel ofmoist air that rises from the surfacewherep = 1000 hPa to 400 hPa.
Assume all of the condensed water is precipitated out during the ascent. The parcel then
descends (unsaturated) back to the surface. If the initial temperature is 20◦C and its
initial dew point is 0◦C, find the following (use Figure 7.26).
(a) How much water is condensed during the ascent?
(b) The temperature of the parcel and its dew point temperature when it returns to the

surface (1000 hPa).
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Figure 7.26 A blank skew T chart for Problem 7.5. Taken from the University of
Wyoming website.
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Thermochemistry

Applications of thermodynamics form the heart of physical chemistry. With the
First Law of Thermodynamics we can find some elementary applications of
thermodynamics to processes relevant to the atmosphere. As an example, consider
the elementary reaction

CO2(g) + H2(g) → CO(g) + H2O(g) (8.1)

where the g in parentheses indicates that the chemical species is in the gaseous state
(the solid phase is indicated by s, liquid by l and aqueous solution by aq).
At the molecular level a molecule of CO2 strikes an H2 molecule and the

rearrangement collision occurs with a certain probability depending on velocities,
spatial orientation of the colliders, etc. The rate at which a reaction proceeds in
a system is the product of the likelihood of a collision between the important
parties and the probability of rearrangement, given the collision. Sometimes a CO
molecule bumps into an H2O molecule and the reverse reaction occurs. That the
reaction might go both ways is indicated by the equation

CO2(g) + H2(g) � CO(g) + H2O(g). (8.2)

Once equilibrium is established (rate of reactions proceeding to the right equals
the rate of those going to the left) in a suitable enclosure, we can consider the matter
involved to be a thermodynamic system which can be treated by the methods of
equilibrium thermodynamics. The number of moles of the species νCO2, νH2, νCO
and νH2O become thermodynamic coordinates or functions along with those we are
already acquainted with,M, p,V ,U ,H , S,G, and T . In fact, we want to know how
these coordinates (equilibrium concentrations) vary as a function of the temperature
if the pressure is held constant. Fixed pressure is the usual condition for gas phase
reactions in the atmosphere since they can be taken as occurring in a small parcel or
volume element, whose pressure inside quickly adjusts to that outside (which in our
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case depends on altitude). In the real atmosphere there are many chemical species
in various states of equilibrium. The task of the atmospheric chemist is often to sort
out which reactions are important, what the sources of the various species are, what
is the feasibility and energetics of chemical reactions and how fast the reactions
proceed.

8.1 Standard enthalpy of formation

Consider a general chemical reaction

aA+ bB → cC+ d D, (8.3)

where A and B are called the reactants, C and D are the products, and a, b, c and d
are integers (sometimes rational numbers) inserted to balance the equation.
Suppose the ingredients on the left-hand side of the equation (the reactants) are

placed in a closed container that is impermeable to matter crossing its bounding
surface. Furthermore, let the reaction (8.3) proceed from left to right at constant
pressure. If no heat is allowed to enter or leave the system during the (irreversible)
process, the final temperature will be different from that before the reaction began.
If the temperature of the system goes up, we say the reaction is exothermic. If the
temperature goes down, it is endothermic. Chemists have found a convenient way
of characterizing the energetics of such reactions. Suppose the reaction goes from
left to right to completion (no reactants remaining), then the heat required to restore
the system to its original temperature at constant pressure is its change in enthalpy
during the irreversible process, �H .
In order to find the heat of reaction for a particular chemical process it is

necessary to start with the so-called standard enthalpy of formation of the individual
compounds. These are based upon the enthalpy needed to form the compound from
the state of the individual atomic species most commonly found in nature. For
example, the convention for the element oxygen is to start with the gaseous form
O2, not O. Similarly the base state according to the convention for nitrogen is N2
and for hydrogen it is H2. For argon it is the atomic formAr and for carbon it is C.
The standard enthalpy of chemical reaction, when reactants in their standard state

are converted to products in their standard states, is equal to the difference between
standard enthalpy of formation of products and reactants:

�H
◦ = [c�H ◦

(C) + d�H
◦
(D)] − [a�H ◦

(A) + b�H
◦
(B)]

= [products] − [reactants]. (8.4)

The overbar indicates that 1 mol of the substance is considered, the superscript ◦
refers to the standard state,which is at 1 atmand25 ◦Cby convention (seeTable 8.1).
If �H

◦
is negative, heat is released and the reaction is exothermic. Exothermic
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Table 8.1 Standard enthalpies of formation for selected
compounds (�H

◦
in units of kJmol−1)

The symbol in parentheses after the compound indicates whether
its physical state is liquid, solid or gas. All values relate to 298K.

CO2(g) −393.51 CO(g) −110.53
CH4(g) −74.81 H(g) +217.97
H2O(g) −241.82 H2O(l) −285.83
O2(g) 0 O(g) +249.17
O3(g) +142.7 OH(g) +38.96
HNO3(g) −135.09 NO2(g) +33.19
NO(g) +90.25

reactions can proceed spontaneously in the atmosphere. If the opposite is true,
�H

◦
is positive, the reaction is endothermic, and an external source of energy is

needed for the reaction to proceed.
The exothermic reactions can be significant for the thermal budget of the

atmosphere. The classical example is the reaction leading to the formation of ozone.
The heat released in this process dominates the form of the temperature profile in
the stratosphere.

Example 8.1 The main mechanism of ozone formation in the stratosphere is the
recombination of atomic oxygen:

O+ O2 +M → O3 +M, (8.5)

where M is a molecule in the background gas which is needed to carry off the
excess momentum in a two-bodies-to-one molecular collision. Find how much
heat is released by this reaction.
Answer: To find how much heat is liberated, we need to calculate the enthalpy of
the reaction:

�H
◦= [�H ◦

(O3) + �H
◦
(M)] − [�H ◦

(O) + �H
◦
(O2) + �H

◦
(M)]. (8.6)

Since �H
◦
(O2) = 0,

�H
◦ = �H

◦
(O3) − �H

◦
(O). (8.7)

From Table 8.1,�H
◦ = 142.7 kJ mol−1− 249.17 kJ mol−1 =−106.4 kJ mol−1.

The minus sign indicates that this is an exothermic reaction. Therefore, with the
reaction of ozone formation (8.5) 106.4 kJ per mole is liberated. This liberated heat
warms the stratospheric air and raises its temperature which reaches a maximum
at about 50 km altitude. Note that the concentration of O in (8.5) is determined by
the photodissociation of O2, O3 and other species. �
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Example 8.2 Suppose we wanted to know the change in enthalpy for the reaction:

CO2 + H2 → CO+ H2O. (8.8)

We form

�H
◦ = �H

◦
(CO) + �H

◦
(H2O) − �H

◦
(CO2) − �H

◦
(H2)

= +(−110.53) + (−241.82) − (−393.51) − (0.0) (kJmol−1)
= 41.16 kJmol−1.

�H
◦
is positive, whichmeans that this reaction is endothermic, and heat is absorbed

during the process. �

8.2 Photochemistry

Further examples of endothermic reactions include the photochemical reactions.
In this case the additional source of energy necessary for the endothermic
reaction to proceed is solar radiation which can break the chemical bonds of
atmospheric species. In this bookwewill consider only one photochemical process:
photodissociation.1

Physics refresher Solar radiation consists of electromagnetic waves.
Electromagnetic radiation has a dual wave-particle nature. This means that
electromagnetic radiation exhibits both wave-like and particle-like properties. In its
wave form electromagnetic radiation can be thought of as a group of superimposed
waves sometimes referred to as an ensemble propagating in vacuum with the speed of
light c = 2.998× 108 m s−1 independent of wavelength. Each wave in this ensemble
can be treated as a simple sinusoidal function (see Figure 8.1) with a certain
wavelength, frequency, and amplitude. The wavelength, λ, is the distance between
two successive peaks of the wave. The units of λ are meters. The frequency of a wave,
f , is the number of cycles that pass an observer in a second. The unit of frequency is
the hertz (1Hz is one oscillation per second). The product of wavelength and
frequency for an individual wave is equal to the speed of light (speed is distance
divided by time): c = λ × f . From this equation one can see that waves with higher
frequencies have shorter wavelengths, and waves with lower frequencies have longer
wavelengths.
When radiation interacts with atoms or molecules, it can be absorbed or emitted

only by certain discrete amounts of energy. In other words, electromagnetic radiation
is quantized. The waves may be thought of as a beam of particles called photons
carrying discrete amounts or packages of energy. The energy of a photon of

1 Interested readers are referred to Basic Physical Chemistry for the Atmospheric Sciences by Peter V. Hobbs
(2000) for more information on photochemical reactions.
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Figure 8.2 Electromagnetic spectrum.

frequency f is

E = hf (8.9)

where h is Planck’s constant, h = 6.62× 10−34 J s. If we express f in terms of λ we
obtain

E = hc

λ
. (8.10)

Hence, the shorter wavelength (higher frequency) photons are more energetic. The
electromagnetic spectrum from radio waves to gamma rays is illustrated in
Figure 8.2. The most energetic photons are gamma rays. As one moves vertically
down the spectrum from gamma rays towards radio waves, the energy decreases and



196 Thermochemistry

so does the frequency, while the wavelength increases. A narrow band of the spectrum
corresponds to the visible light. Photons in the visible range (approximately
400–700 nm) can be detected by a human eye. Ultraviolet radiation has shorter
wavelength (higher frequency) than the visible part of the spectrum.

To describe the radiation penetrating the atmosphere it is useful to introduce the
idea of an energy flux. The energy flux (energy passing per unit area perpendicular
to the beam, per unit time) is given by

F = energy flux = n0hcf (8.11)

where n0 is the number of photons per unit volume (number density as in a gas).
The energy flux of solar photons at the top of the atmosphere is 1370 W m−2.
This parameter is called the solar constant. Solar photons propagating through the
atmosphere can be absorbed and/or scattered by atmospheric constituents. Consider
the attenuation of a photon flux at wavelength λ due to photon absorption assuming
normal incidence for simplicity (the sun is at zenith, directly overhead (Figure 8.3)).
We denote a photon energy flux at wavelength λ as Fλ; its dimension is energy per
unit area, per unit time, and per unit wavelength. If at the top of the atmosphere the
flux per unit wavelength is Fλ(top), the flux at height z, Fλ(z), is described by

Fλ(z) = Fλ(top) exp(−τ(z)) [attenuation of a vertical solar beam]. (8.12)

Fλ(top)

Fλ(z)z

z = 0

z

Figure 8.3 Schematic diagram of a solar beam coming from directly overhead
with attenuation of the beam’s intensity indicated by shading.
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This equation follows from the radiative transfer theory. 2 The coefficient τ in
the exponent is called the optical depth:

τ = σ

∫ ∞

z
N (z)dz [optical depth]. (8.13)

The optical depth τ is proportional to the vertically integrated column density∫∞
z N (z)dz where N is a concentration of atmospheric species absorbing at λ. The
integration from z to ∞ reflects the path the photons travel from the top of the
atmosphere to height z. The coefficient of proportionality σ is called the absorption
cross-section. This parameter describes the ability of a particular gaseous species
to absorb photons; it is measured in m2 (often in the literature as cm2). Absorption
cross-sections can be measured in the laboratory. When the optical depth gets
close to unity, the flux is attenuated by a factor of roughly three (e ≈ 2.7). For
example, for λ between 240 and 300 nm (ultraviolet range) τ reaches unity due to
the absorption by ozone approximately at heights of 30–38 km. This means that
the solar photons in this range are absorbed by ozone in the stratosphere and do not
reach the troposphere. At shorter wavelengths, between 175 and 200 nm, radiation
is absorbed by oxygen at heights of 40–80 km. At wavelengths greater than 310
nm, most photons penetrate into the troposphere and reach the surface. If the sun
has zenith angle � �= 0, then cos� has to be added in the formula for the flux
attenuation (Figure 8.4):

Fλ(z) = Fλ(top) exp(−τ(z)/ cos�) [attenuation at zenith angle �]. (8.14)

The larger the zenith angle, the stronger the attenuation at a given height z.
The photons in the ultraviolet and visible ranges are energetic enough to break

molecules apart. This process is called photodissociation. Photodissociation plays
a very important role in the troposphere and the stratosphere. For example, a key
reaction in the troposphere is the photodissociation of ozone by ultraviolet radiation:

O3 + hf → O2 + O (8.15)

where the notation hf denotes a photon with frequency f . This notation emphasizes
that the energy carried by the photon is the frequency times Planck’s constant. The
formation of tropospheric ozone is due to photodissociation of NO2:

NO2 + hf → NO+ O. (8.16)

2 A beam is attenuated in a distance interval dz by an amount proportional to the incoming beam’s flux and to
the amount of attenuating material in the interval. The result is dFλ = −AFλ dz where A is proportional to the
amount of attenuating material per unit volume. Integration of this equation leads to exponential decay along
the path, known as Beer’s Law.
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Figure 8.4 Schematic diagram of a solar beam coming from the upper right and
passing through a slab of matter with thickness dz. The path length in the slab is
dz/ cos�, where � is the solar zenith angle.

The atomic oxygen then leads to the formation of ozone by recombination with O2:

O+ O2 +M → O3 +M. (8.17)

The formation of the ozone layer is also caused by photodissociation. In the
stratosphere, ultraviolet radiation with λ ≤ 240 nm photodissociates molecular
oxygen O2 creating atomic oxygen:

O2 + hf → O+ O. (8.18)

Ozone is then formed by recombination of atomic and molecular oxygen (reaction
(8.17)).

Example 8.3 Consider the photodissociation of an oxygen molecule that creates
two ground state oxygen atoms:

O2 + hf → O+ O. (8.19)

What photon energy is required for this reaction to proceed? What part of the
electromagnetic spectrum corresponds to this energy?
Answer: First let us examine the standard enthalpy of this reaction:

�H
◦ = 2× 249.17− NA hf = 498.34 kJ mol−1 − NA hf (8.20)

where NA isAvogadro’s number. To find the minimum energy of a photon required
to break one O2 molecule we have to equate the standard enthalpy of this reaction
to zero. Only photons with energy hf greater than this minimum energy are able to
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break an O2 molecule apart: hf ≥ 498.34/NA kJ. This inequality gives the value
of the smallest frequency required: f ≥ 498.34 × 103/(6.022 × 1023 × 6.62 ×
10−34) = 12.49×1014 Hz, or the largestwavelength.λ ≤ 0.24×10−6 m = 240 nm.
Therefore, radiation with λ ≤ 240 nm, which corresponds to the ultraviolet part of
the spectrum, is needed for the reaction (8.19) to proceed. �

We can find the energy of a photon necessary for a certain reaction to proceed
without examination of the enthalpy, if we know the energy of dissociation of a
chemical bond.

Example 8.4 During the daytime an important source of NO in the stratosphere is
the dissociation of NO2 molecules:

NO2 + hf → NO+ O. (8.21)

Find the maximum wavelength of electromagnetic radiation required for this
reaction, if the energy of dissociation of an NO2 molecule is 5.05×10−19J. Energy
of dissociation is often given in electronvolts:3

1 electronvolt (eV) = 1.6× 10−19J (8.22)

or

5.05× 10−19J = 3.16 eV (8.23)

(this reaction is also important in polluted urban air, since it is a source of
tropospheric ozone).
Answer: Photons with energy hf ≥ 5.05 × 10−19 J are needed to dissociate an
NO2 molecule. Then, f ≥ 5.05× 10−19/(6.62× 10−34) = 7.6× 1014 Hz. Finally,
λ ≤ 2.998×108/7.62×1014 = 0.39×10−6m = 390 nm, which is at the boundary
between the visible and ultraviolet parts of the spectrum. �

8.3 Gibbs energy for chemical reactions

Earlier we showed how to find the enthalpy for phase changes and chemical
reactions by manipulating values taken from standard tables. In this section we

3 The unit electronvolt (eV) is the energy an electron has after being accelerated across a potential difference of
1 volt. This is the preferred unit in atomic and nuclear physics. The binding energy of an electron in the ground
state of a hydrogen atom is 13.6 eV.
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will work with the Gibbs energy, which is useful in determining the feasibility
of a chemical reaction and the abundances of species in chemical equilibrium
situations. Using enthalpy to determine whether a reaction will proceed is limited,
since enthalpy depends on entropy S and pressure p as well as the concentrations of
the various species present. If we are to examinewhether a reactionwill proceed, we
will find it hard to hold the entropy constant, especially in nature. On the other hand,
the Gibbs energy is useful when the temperature and pressure are held constant.
This is often the case in the atmosphere when the reaction occurs between trace
gases at a certain altitude (pressure) and the temperature is constant because the
reagents are buffered thermally by the surrounding background gas molecules.
The standard Gibbs energy is introduced similarly to the standard enthalpy of

the reaction. The standard Gibbs energy of a chemical compound, �G
◦
, is the

change of the Gibbs energy when 1 mol of a compound is formed (the overbar
is an indication of 1 mol being considered). Conventionally, the standard Gibbs
energy of compounds in their most stable form is taken to be zero. The superscript
◦ indicates the standard state, which is at 1 atm and 25 ◦C.
For the general chemical reaction

aA+ bB → cC+ d D (8.24)

the standard Gibbs energy is the difference between the Gibbs energies of products
and reactants:

�G
◦ = [c�G

◦
(C) + d �G

◦
(D)] − [a�G

◦
(A) + b�G

◦
(B)]. (8.25)

In Chapter 4we learned that if temperature and pressure are held constant, then as
the system tends spontaneously to its equilibrium, its Gibbs energy will decrease to
a minimum. Applying this equilibrium criterion to chemical systems, we conclude
that if �G

◦
of the reaction is negative, the reactants in their standard state are

are converted to the products in their standard state. If, on the other hand, �G
◦
is

positive, then an additional source of energy is needed for the reaction to proceed.

Example 8.5 Calculate the standard Gibbs energy of formation at 25 ◦C and 1 atm
for the reaction:

HO2 + NO → NO2 + OH. (8.26)

Can it proceed spontaneously?
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Table 8.2 Standard Gibbs energy for
selected compounds (�G

◦
in units

kJmol−1), all values relate to the
standard conditions 298K and 1 atm
of pressure

H2O −228.6 O3 +163.2
OH +34.23 HO2 18.41
HNO3 −74.79 NO3 +115.9
NO2 +51.30 NO +86.6

Answer: The standard Gibbs energy of this reaction (Table 8.2)

�G
◦ = �G

◦
(NO2) + �G

◦
(OH) − �G

◦
(HO2) − G

◦
(NO)

= (51.3+ 34.23− 18.41− 86.6) kJ mol−1 = −19.5 kJ mol−1.

Since �G
◦
is negative, the reaction (8.26) can proceed spontaneously. Note that

there is no information about how long the reaction will take to complete. �

Example 8.6 Suppose we are looking for some effective mechanism of OH
production in the atmosphere. We suggest that the recombination of H2O and O2
can work as a source for OH:

H2O+ O2 → HO2 + OH. (8.27)

Before we start the laboratory experiments to check our idea, we can calculate the
Gibbs energy of this reaction:

�G
◦ = �G

◦
(HO2) + �G

◦
(OH) − �G

◦
(H2O). (8.28)

After substituting the numbers from Table 8.2, we get �G
◦ = 281.3 kJ mol−1.

The positive value of standard Gibbs energy means that the suggested mechanism
for OH formation is thermodynamically impossible in the atmosphere. �

8.4 Elementary kinetics

We have seen how to estimate the energetics and feasibility of chemical reactions
proceeding oneway or the other using themethods of equilibrium thermodynamics.
But equilibrium thermodynamics cannot tell us how rapidly a reactionwill proceed.
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This is the business of chemical kineticswhich considers the details of themolecular
collision and the intermediate complexes that can form during the event. For
example, kinetics can provide a means of computing the characteristic time of
the decay of the reactants in the atmosphere. One should keep in mind that negative
Gibbs energy change for a reaction (thermodynamically favorable conditions) does
not always mean that the reaction will proceed fast enough to be observed.

8.4.1 Reaction rate

A reaction rate can be defined intuitively as the rate at which the products of
the reaction are formed, which is the same as the rate at which the reactants are
consumed. As an example, consider a bimolecular reaction with molecules C and
D as products and A and B as reactants:

A+ B → C + D. (8.29)

The rate of this reaction (the rate of loss of A or B and the rate of increase of C
and D) is

−d[A]
dt

= −d[B]
dt

= d[C]
dt

= d[D]
dt

= k[A][B], (8.30)

where [X] denotes the concentration of species X expressed in molecules cm−3 and
k is the reaction rate coefficient. The units of k depend on the order of the reaction:
for the bimolecular reaction (8.30) k is in cm3 s−1. The reaction rate coefficient k is
unique for a given reaction at each given temperature. The temperature dependence
k(T ) is described by the Arrhenius equation:

k(T ) = A exp

(−Eact
R∗T

)
[rate coefficient with activation energy]. (8.31)

Eact is called the activation energy. A large value of Eact usually implies a strong
temperature dependence of the reaction rate coefficient. The constant A (not to be
confusedwith the identity of the speciesAin (8.29)) before the exponential function
is related to the frequency of molecular collisions and the probability for molecules
to have an orientation in space favorable for a reaction. The dependence of A on
temperature is usually weak compared to that of the exponential factor.
The idea of activation energy is shown schematically in Figure 8.5.The horizontal

axis represents the reaction coordinate for the reactants. The reaction coordinate
can be thought of as the distance between the molecules A and B in the reaction
(8.29). The vertical axis is the potential energy of the reaction.�H

◦
is the standard

enthalpy of formation for this reaction. Note that �H
◦
is negative, so the reaction

is exothermic.
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Figure 8.5 Schematic graph of energy change for an exothermic reaction.
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Figure 8.6 Velocity distribution of molecules at two different temperatures. The
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kinetic energy equal to Eact.

For the products C and D to be formed by this reaction, the reactants A and B
must have enough kinetic energy to overcome the energy barrier Eact. It should
be noted that many reactions in the real atmosphere do not proceed because the
activation barrier is too large. For example, C+ O2 → CO2 does not take place in
the atmosphere because of the large barrier.
Equation (8.59) implies that reactions proceed faster at higher temperatures.4

This can be explained with the help of kinetic theory. It follows from (2.26) that the
higher the temperature of the gas, the greater the fraction of molecules that have
kinetic energies that exceed a certain given energy. Figure 8.6 shows the velocity
distribution for two temperatures. At higher temperatures more molecules have
velocities higher than the threshold velocity v∗ corresponding to the kinetic energy
1
2m0v

∗2 which is equal to Eact. This means that increasing the temperature of the
gas increases the probability that molecules will overcome the barrier Eact and that
the products will be formed at a higher rate.

4 For some reactions the activation energy is actually negative (no barrier). The rate of these reactions decreases
with increasing temperature.
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8.4.2 Concept of chemical lifetime

Consider the case of a first-order reaction, when one element, A, decomposes into
two elements, C and D:

A→ C+ D. (8.32)

The rate of decrease of the concentration of element A is proportional to its
concentration:

d[A]

dt
= −k[A] = −d[C]

dt
= −d[D]

dt
, (8.33)

where k is the reaction rate coefficient. After rearranging the terms in (8.33) we
have

d[A]
[A] = −k dt (8.34)

and

ln [A] = −k t + constant. (8.35)

If at the initial time t = t0 the concentration of A is equal to [A]0, then

[A] = [A]0 e
−k t . (8.36)

This equation shows that the concentration of A decays exponentially with
characteristic time tc = 1/k. The time tc required for the concentration of A to
decrease by a factor of e from its initial value is called the chemical lifetime. The
larger the reaction rate coefficient k, the shorter the lifetime tc.

Example 8.7: half life The characteristic time for a unimolecular decay is tc. What
is the half life, i.e., what is the time after which half the concentration remains?
We have

[A] = [A]0 e−t/tc . (8.37)

Then

1

2
= e−t1/2/tc ⇒ − ln 2 = −t1/2/tc ⇒ t1/2 = ln 2 tc = 0.6931 tc. (8.38)

�

Consider next the bimolecular reaction:

A+ B → C + D. (8.39)
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The rate of loss of A is given by

−d[A]
dt

= −d[B]
dt

= d[C]
dt

= d[D]
dt

= k[A][B], (8.40)

where k is the constant for this bimolecular reaction (8.39). An important case is
when the concentration [B] is much larger than [A], then [B] can be considered a
constant, say [B0] in the last equation. For example, gasAmight be a trace gas such
as atomic oxygen O, and gas B might be a background gas such as O2 or N2 (see
e.g., (8.17)). This leads to

[A] ≈ [A]0 e
−k[B0]t (8.41)

and the lifetime of A is:

tc = 1

k[B0]. (8.42)

For a photochemical reaction

A+ hf → C+ D (8.43)

the decay of the concentration of molecule A is given by

d[A]

dt
= −J [A] (8.44)

where J is the photodissociation coefficient expressed in s−1. The photodissociation
coefficient J in the interval�λ at height z is determined by the flux of photons with
wavelength λ at height z, Fλ(z), and the absorption cross-section 5 of molecules
absorbing near λ, σ(λ). Note that Fλ(z) is the number of photons per unit area, per
unit time, per unit wavelength (units of photonsm−3 s−1):

Fλ(z) = Fλ(top) exp(−τ(z)/ cos�)

(a discussion of Fλ(z) can be found in Section 8.2). Integrating over a band of
wavelengths �λ (we assume each photon striking a molecule dissociates it), the
photodissociation coefficient for that wavelength band is

J (z) =
∫

�λ

σ(λ)Fλ(z)dλ. (8.45)

One can see from (8.44) that the photochemical lifetime is the inverse J :

tc = 1/J . (8.46)

5 Atypical value of σ(λ) for the photoabsorption in the visiblewavelength range byNO2 is 5×10−5 nm2 (Seinfeld
and Pandis, 1998).
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The concept of lifetime is useful in many atmospheric problems. Myriads of
atmospheric constituents undergo chemical reactions and photochemical processes
caused by solar radiation. In addition, chemical species are advected by transport
processes in the atmosphere. Separation of processes with different time scales can
simplify the problem significantly. In some cases this is the only way to analyze the
variability in the very complicated world of atmospheric constituents. Suppose we
know that the photochemical lifetime of a certain constituent is much smaller than
the characteristic time of atmospheric transport at a given height. This is the case,
for example, for stratospheric ozone: at altitudes higher than 30 km the chemical
lifetimeof ozone is several orders ofmagnitude smaller than the transport time scale.
This allows us to neglect the effect of transport in the first order of approximation
when analyzing ozone variability. Now consider methane in the stratosphere. In
this case the photochemical lifetime is several orders of magnitude larger than
the characteristic time for transport processes. Then we can treat methane as in
photochemical equilibrium,whichmeans thatwe can neglect the change ofmethane
concentration due to photochemical processes. The fact that methane variability is
mainly determined by transport makes it a good tracer of atmospheric masses in
the stratosphere.

Example 8.8 Consider the reaction of nitric oxide and ozone,

NO+ O3 → NO2 + O2. (8.47)

Assuming that this reaction is the lonemechanism of NO depletion, find the lifetime
of NO at temperature 250K (typical of z = 30 km in the atmosphere).
Answer: The change of NO concentration due to this reaction can be described by
the equation:

d

dt
[NO] = −k1[NO][O3] (8.48)

where k1 = 1.8× 10−12 exp(−1370/T ) cm3 s−1. The concentration of O3 can be
considered as a constant since it is much larger than that of NO. If [NO]0 is the
concentration of NO at the initial time, then we have

[NO] = [NO]0 e
−k1[O3]t . (8.49)

The lifetime tc = 1/k1[O3]. With k1 ≈ 7.5 × 10−15 cm3 s−1 at T = 250 K and
concentration of O3 equal to 3× 1012 cm−3 at 30 km, we obtain tc ≈ 40 s. �

8.5 Equilibrium constant

Consider a generic two-bodies-to-two-bodies reaction:

A+ B → C + D. (8.50)
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As the reaction proceeds the products of this reaction (C and D) become sufficiently
dense in number that they will begin to react and formA and B through the reverse
reaction:

C + D → A+ B. (8.51)

When eventually the rate of the forward reaction (8.50) is the same as the rate of
the reverse reaction (8.51), the system is in chemical equilibrium.We can combine
(8.50) and (8.51) and write

A+ B � C + D. (8.52)

If we were trying to find the rate for which the reaction (8.52) proceeds from the
point of view of the individual gas molecules, we would say the rate of increase of
the concentration of C is given by

d

dt
[C] = kab[A][B]− kcd [C][D]

= d

dt
[D]

= − d

dt
[A]

= − d

dt
[B] (8.53)

where kab and kcd are the reaction rate coefficients for forward and reverse reactions
respectively. The equation simply states that the rate of buildup of C is the sum of
the rates of reactive collisions of A and B minus the reverse process in which
C and D react. The first term must be proportional to the respective number
densities and similarly for the second (loss) term. Since for every creation of a
C molecule there must be a B molecule, these rates of formation must be equal
to each other and equal to the negative of the rates of formation of the A and B
molecules.
In equilibrium the rates of change of the species are zero. This means

d

dt
[C] = 0 equilibrium (8.54)

or

K = [C][D]
[A][B] = kab

kcd
. (8.55)

The constant K is called the equilibrium constant for the reaction. If K is known,
we can determine the ratios of concentrations of the product and reactant gases in
equilibrium.
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For the case of a general reaction

aA+ bB → cC+ d D, (8.56)

the equilibrium constant is (as derived in physical chemistry texts):

K = [C]c[D]d
[A]a[B]b (8.57)

The rule can be generalized to cases where more than two species are on each side
of the equation.
It is seen from (8.57) that when the inverse reaction rate is very small, which

means that products dominate over reactants, K is large. Small K means there will
be a relatively large concentration of the reactant species.
The equilibrium constant depends on collision dynamics and in principle

should have a strong temperature dependence, since the intermolecular relative
velocity will be an important factor in the rearrangements. To find the temperature
dependence of the equilibrium constant, let us write the reaction rate coefficients
for the forward and reverse reactions (8.52). Using the Arrhenius equation (8.59)
the reaction rate coefficient for the forward reaction, k1, is

k1(T ) = A1 exp

(−Eact
R∗T

)
. (8.58)

The reaction rate coefficient for the reverse reaction, k2, is

k2(T ) = A2 exp

(
−Eact + �H

◦

R∗T

)
. (8.59)

The equilibrium constant

K(T ) = k2
k1

∝ exp

(
−�H

◦

R∗T

)
(8.60)

Hence, knowing the standard enthalpy associated with a reaction provides
information about the equilibrium concentrations of the species.

Example 8.9 Consider the recombination of OH and O:

OH+ O → O2 + H. (8.61)

Write the expression for the equilibrium constant. By using formula (8.60) find out
whether the products will dominate over reactants at high or low temperatures.
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Answer: In order for the reaction to proceed, an OH molecule has to bump into an
O atom in the same tiny volume. The rate of growth term must be proportional to
[OH][O]. The equilibrium constant is

K = [O2][H]
[OH][O] . (8.62)

To find the temperature at which the forward reaction will be favored we need to
find the standard enthalpy:

�H
◦ = �H

◦
(O2) + �H

◦
(H) − �H

◦
(OH) − �H

◦
(O)

= (0+ 217.97− 38.96− 249.17) kJ mol−1

= −70.2 kJ mol−1. (8.63)

Since �H
◦
is negative, from (8.60) we have that the equilibrium constant K is

larger with lower temperature. This explains why the products of reaction (8.61)
will dominate over reactants at the lower temperatures. �

The next step is to find the connection between the equilibrium constant and
the Gibbs energy. The equilibrium of the chemical reaction implies that at a given
temperature there exist partial pressures of the gases involved in the reaction with
which the rate of the forward reaction is equal to the rate of the reverse reaction. Let
us express the equilibrium constant in terms of partial pressures of each constituent.
Using the Ideal Gas Law for the molar concentrations we obtain:

K = (pC/R∗T )c(pD/R∗T )d

(pA/R∗T )a(pB/R∗T )b
= pcCp

d
D

paAp
b
B

(R∗T )�, (8.64)

where the pi are partial pressures and� = (a+b)− (c+d). We can rewrite (8.64)
in the form:

K = Kp(R
∗T )�, (8.65)

where

Kp = pcCp
d
D

paAp
b
B

[equilibrium constant for ideal gases]. (8.66)

Kp is used as an equilibrium constant for chemical reactions involving species in
the gaseous state.
For a reversible transformation at constant temperature the change of Gibbs

energy is (see (4.97))

dG = Vdp. (8.67)
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For 1 mol of ideal gas

dG = R∗T
p
dp. (8.68)

(Note that the molar Gibbs energy G is also called the chemical potential.) By
integrating this equation from the standard pressure level of 1 atm to some arbitrary
pressure level p holding T constant we obtain

G − G
◦
T = R∗T ln p, (8.69)

where p is in atm. In this formulaG is theGibbs energy at pressure p and temperature
T and G

◦
T is the Gibbs energy at 1 atm and temperature T .

Using (8.69) we can write the change of Gibbs energy for the general chemical
reaction

�G = [c�G(C) + d�G(D)] − [a�G(A) + b�G(B)] (8.70)

in the form

�G = [c�G◦
T (C) + d�G

◦
T (D) − a�G

◦
T (A) − b�G

◦
T (B)]

+ cR∗T ln pC + dR∗T ln pD − aR∗T ln pA − bR∗T ln pB

= �G
◦
T + R∗T ln (pC)c(pD)d

(pA)a(pB)b
. (8.71)

The argument of the logarithmic function in the last formula is the equilibrium
constant Kp (see (8.66)). Therefore,

�G = �G
◦
T + R∗T lnKp. (8.72)

At equilibrium�G = 0, and the change of Gibbs energy at a pressure of 1 atm and
arbitrary temperature T , �G

◦
T , is related to the equilibrium constant at pressure p

and temperature T , Kp, by the simple relation:

�G
◦
T = −R∗T lnKp. (8.73)

The equation (8.73) tells us that if �G
◦
T is positive, Kp should be less than unity,

which means that at equilibrium the concentrations of the reactants will exceed
those of the products. If, on the other hand, �G

◦
T is negative and, moreover, is

large, then Kp is large and the products will dominatein the equilibrium.
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For standard conditions at a pressure of 1 atm and a temperature of 25 ◦C we
obtain, in joules,

�G
◦ = −R∗ × T0 × lnKp = −2478.9× lnKp (8.74)

The change in Gibbs energy �G is especially useful because it simultaneously
takes into account both the First and Second Laws of Thermodynamics. It does so
in such a way that if the temperature and pressure are held constant (and they often
are in atmospheric problems) we have a function which can be applied much more
broadly.

Example 8.10 Consider the reaction of recombination of NO2 and O3:

NO2 + O3 � NO3 + O2. (8.75)

Do the reactants or products dominate for the forward reaction at 1 atm and 25 ◦C?
Answer: We have to find the change of the Gibbs energy for this reaction.

�G
◦ = (115.9+ 0− 51.3− 163.2) kJ mol−1 = −98.6 kJ mol−1. (8.76)

From (8.74) we obtain Kp = 1.9×1017.With such a large value of Kp the products
will dominate for the forward reaction at equilibrium. �

8.6 Solutions

Chemistry refresher A solution is a homogeneous mixture of several components.
Consider a two-component solution. One component has a mole fraction ηw (the ratio
of the number of moles of a component to the total number of moles), and the other
component has mole fraction η. The component with a greater mole fraction, let it be
ηw, is called the solvent. The solvent determines the state of matter of the solution
(gas, liquid or solid). The component with the smaller mole fraction, η, is called the
solute. In Chapter 5 we considered a cloud droplet as an example of a solution with
water as a solvent and the salt as a solute. A solution of a salt in a solvent such as
water is saturated when the rates of dissolving and crystallization are equal. In this
case there could be some substance in the crystalline form present in the composite
system. For example, there might be a salt crystal inside a cloud droplet. The amount
of dissolved material (solute) in the saturated solution is called its solubility, which
might depend strongly on temperature and weakly on pressure. We are interested in
the effect of the dissolved solute on the vapor pressure of the solvent.

Raoult’s Law Consider a solution that is in chemical equilibrium. The vapor
pressure of each component of the solution is approximately
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pi = ppurei ηi (8.77)

where ppurei is the vapor pressure of a pure ith component and ηi is the mole fraction of
an ith component of the solution. The solution is called ideal when both solvent and
solute obey Raoult’s Law. Raoult’s Law applies when the components of the solution
are present in high concentrations. We used Raoult’s Law when we considered the
equilibrium vapor pressure over a droplet containing dissolved electrolytes.
For solutions at low concentrations the vapor pressure of the solute obeys Henry’s

Law. According to Henry’s Law, the vapor pressure of a solute, p, is a product of the
mole fraction of the solute, η, and an empirical tabulated constant, KH, expressed in
units of pressure:

p = KH η. (8.78)

Generally, the value of KH increases with increasing temperature. Thus, at the same
pressure the mole fraction of a solute decreases with increasing temperature.
When the atmospheric pressure decreases, the partial pressure of a gas decreases,

and the molar solubility of a gas decreases. For example, high in the mountains the
atmospheric pressure is low; as a result the solubility of oxygen in human blood
decreases, which can cause respiration problems. At the opposite end, the higher the
pressure, the higher the solubility of gases. You might say the gas is “squeezed” into
the solution.

Example 8.11 Calculate the molar solubility of nitrogen dissolved in 1 l of water
at 25 ◦C and atmospheric pressure of 1 atm. Henry’s Law constant for nitrogen at
25 ◦C is 8.68× 109 Pa. The percentage by volume of N2 in dry air is 78.1.
Answer: The partial pressure of N2 at 1 atm is pN2 = 0.781 × 1 atm = 7.91 ×
104 Pa. From Henry’s Law ηN2 = pN2/KH = (7.91 × 104 Pa)/(8.68 × 109 Pa) =
9.1 × 10−6. The mole fraction of nitrogen ηN2 = νN2/(νN2 + νH2O) ≈ νN2/νH2O

since νN2 � νH2O. The number of moles of H2O in 1 l is (1000/18)mol. Then,
νN2 = (9.1 × 10−6 × 1000/18) mol = 5.05 × 10−4 mol. The molar solubility of
nitrogen is 5.05× 10−4 mol l−1. �
Example 8.12 Calculate the molar solubility of CO2 in moles per liter dissolved
in water at 25 ◦C and CO2 pressure of 2.4 atm (pressure used to carbonate soda).
Henry’s Law constant for CO2 at 25 ◦C is 1.67× 108 Pa.
Answer: 2.4 atm = 2.43× 105 Pa. The mole fraction of CO2 according to Henry’s
Law is ηCO2 = pCO2/KH = (2.43 × 105 Pa)/(1.67 × 108 Pa). Since there is
(1000/18)mol of H2O in 1 l, the molar solubility of CO2 is (2.43 × 105 Pa ×
1000/18mol l−1)/(1.67×108 Pa) = 8.1×10−2 mol l−1.When one opens a bottle
of soda, the pressure decreases; as a result the solubility of CO2 decreases, and the
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(a) (b)

pure solvent solution

vaporvapor
es e9

Figure 8.7 Notation. (a) Pure solvent in equilibrium with its vapor at pressure es.
(b) Solution in equilibrium with the solvent’s vapor at pressure e′.

bubbles of CO2 emerge from the solution. At higher temperature the solubility of
CO2 decreases since Henry’s constant increases (soda from a fridge sparkles less
than soda held at room temperature). �

8.6.1 Molar Gibbs energy of an ideal solution

In this sectionwewill find out how theGibbs energy of a pure solvent changeswhen
a small amount of solute is added. We will consider liquids that are at equilibrium
with their vapors. This means that the Gibbs energy of the vapor is equal to the
Gibbs energy of the liquid. Let us denote the equilibrium vapor pressure over a
pure solvent as es, and the equilibrium vapor pressure over the solution as e′ (see
Figure 8.7). From (8.69) the molar Gibbs energy (the Gibbs energy per mole) of
vapor at pressure es is

G = G
◦
T + R∗T ln es (8.79)

where es is in atm, G is the molar Gibbs energy6 at pressure p and temperature T
andG

◦
T is the molar Gibbs energy at 1 atm and temperature T . Since at equilibrium

the molar Gibbs energy of a liquid is equal to that of the vapor, Gvapor = Gliquid,
the Gibbs energy of a pure solvent, denoted as Gw, is

Gw = G
◦
T + R∗T ln es. (8.80)

When a solute is added, the molar Gibbs energy of the solvent, G′, which is at
equilibrium with its vapor at pressure e′, is

G′ = G
◦
T + R∗T ln e′. (8.81)

6 The molar Gibbs energy is often called the chemical potential.
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Subtracting (8.80) from (8.81), we obtain the difference between the molar Gibbs
energy of the solvent in the solution and the pure solvent:

G′ − Gw = R∗T ln e
′

es
. (8.82)

From Raoult’s Law, e′/es = ηw, where ηw is the mole fraction of solvent (e.g.
water) in the solution. Then,

G′ − Gw = R∗T ln ηw. (8.83)

We will consider a dilute solution, when the mole fraction of the solute, η, is much
smaller than that of the solvent, η � ηw. Since η + ηw = 1, we rewrite (8.83) as

G′ − Gw = R∗T ln (1− η). (8.84)

Taking into account that for η � 1, the logarithmic function can be written as
ln(1− η) ≈ −η, we obtain

Gw − G′ = R∗T η. (8.85)

We will use (8.85) in the next section to find the temperature at which the solution
boils and freezes.

8.6.2 The elevation of the boiling point and the lowering of the freezing point
of a solution

When some solute is dissolved in a pure solvent, the boiling and freezing points of
the solution are not the same as for the pure solvent. We will show that the change
is proportional to the amount of solute. We will consider nonvolatile solutes (for
example, a salt). In this case the vapor of the solute is a pure gas.

Example 8.13 Show that the addition of a dissolved solute in a solution will elevate
the boiling point compared to the boiling point of pure solvent.
Answer: The boiling point is the temperature at which the saturated vapor pressure
of a liquid is the same as the atmospheric pressure. We consider two cases.
Case 1: equilibrium between a pure solvent and its vapor (see Figure 8.8a). The

pure solvent boils at temperature T0. The vapor pressure is 1 atm. At equilibrium,
the molar Gibbs energies of the pure solvent, denoted below as Gw, and its vapor,
denoted as Gv, are equal to each other:

Gv(T0, p) = Gw(T0, p). (8.86)
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pure solvent

vapor vapor

(a) (b)

Gv(T, p)

G�(T, p)solutionGw(T0, p)

Gv(T0, p)

Figure 8.8 Notation. (a) Molar Gibbs energy for the vapor over the pure solvent,
Gv(T0, p), andmolarGibbs energy for the pure solvent,Gw(T0, p). (b)MolarGibbs
energy of solvent vapor over the solution, Gv(T , p), and molar Gibbs energy of
the solvent, G

′
(T , p).

Case 2: there is an amount η of nonvolatile solute in the solvent. The solution is
at equilibrium with the solvent’s vapor (see Figure 8.8b). The vapor pressure at the
boiling point is 1 atm, the same as in case 1, but the boiling point differs. Assume
that the solution boils at a temperature T = T0 + �T where �T � T0. From
(8.85) the molar Gibbs energy of the solvent in the solution is G′ = Gw − R∗Tη.
At equilibrium, the molar Gibbs energy of the solvent in the solution, G′, is equal
to the molar Gibbs energy of the vapor, Gv:

Gv(T0 + �T , p) = G′(T0 + �T , p) (8.87)

or

Gv(T0 + �T , p) = Gw(T0 + �T , p) − R∗Tη. (8.88)

Since �T � T0 we can expand both sides of (8.88) in Taylor’s series retaining
only the linear term:

Gv(T0 + �T , p) = Gv(T0, p) + ∂Gv
∂T

∣∣
(T0,p) �T , (8.89)

Gw(T0 + �T , p) = Gw(T0, p) + ∂Gw
∂T

∣∣
(T0,p) �T . (8.90)

Substituting these expansions in (8.88) and taking into account (8.86), we obtain

R∗T0η =
(

∂Gw
∂T

∣∣
(T0,p) − ∂Gv

∂T

∣∣
(T0,p)

)
�T . (8.91)

Here we also replaced Tη by T0η since η has a small value proportional to �T .
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As shown in Section 4.8, the temperature derivative of the Gibbs energy at a
constant pressure is minus the entropy. So,

∂Gw
∂T

∣∣
(T0,p) = −sw (8.92)

and

∂Gv
∂T

∣∣
(T0,p) = −sv (8.93)

where sw is the entropy of 1 mol of the solvent and sv is the entropy of 1 mol of
the solvent’s vapor. Then, from (8.91) we obtain

R∗T0η = (sv − sw)�T (8.94)

and

�T = R∗T0η
sv − sw

. (8.95)

Multiplying and dividing the right-hand side of the last equation by T0 and taking
into account that (sv − sw)T0 is the amount of heat required to evaporate 1 mol of
the solvent at the boiling point, in other words (sv − sw)T0 = �vapH

◦
, we obtain

the final formula for the elevation of the boiling point �T :

�T = R∗T 20 η
�vapH

◦ (8.96)

Since�T is positive, the boiling point of the solution is higher than that of the pure
solvent. The change in the boiling point is proportional to the amount of solute
η. �

Example 8.14 What is the change in the boiling temperature of 1 l of water with
15 g of NaCl dissolved in it?
Answer: Themolecular weight of NaCl is 58.44 gmol−1. Substituting in (8.96) η =
(15/58.44)/(1000/18),R∗ = 8.31 J K−1 mol−1, T0 = 373K,�vapH

◦ = 40.656
kJ mol−1, we obtain �T = 0.13 K. �

Example 8.15 Calculate the change in the freezing point of the solution.
Answer: We assume that only pure solvent is frozen, while the solute remains in
the solution. Then the calculation of the freezing point of the solution is similar to
the calculation of the boiling point except we have fusion instead of vaporization.
�fusH

◦
is the heat released when 1 mol of the solvent is frozen at a temperature T0;
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this heat is negative. Substituting �fusH
◦
in (8.96), we find that the freezing point

of a solution is lower than that of the pure solvent. The difference �T is:

�T = − R∗T 20 η
|�fusH

◦| . (8.97)

The decrease in the freezing point is proportional to the amount of solute. �

Example 8.16 What is the change in the freezing temperature of 1 l of water with
15 g of NaCl dissolved in it?
Answer: |�fusH

◦| for water is 6.008 kJ mol−1, T0= 273K, η = (15/58.44)/
(1000/18), R∗ = 8.31 J K−1 mol−1. According to (8.97) the change in freezing
temperature �T = −0.48 K. �

Notes
There are excellent books on physical chemistry, for example Atkins (1994).
The book by Houston (2001) gives a readable account of the kinetic theory of
gases and reaction kinetics. The book by Hobbs (2000) on physical chemistry for
the atmospheric sciences is at about the same level as this book and it delves
much more into the subject of reactions in the atmosphere. A more thorough
discussion of chemical equilibrium is contained in Denbigh (1981). The book on
atmospheric physics and chemistry by Seinfeld and Pandis (1998) is the most
comprehensive. Books on the more general subject of atmospheric chemistry
include those by Brimblecombe (1986) and Warneck (1999). A comprehensive
book on the chemistry of themiddle atmosphere is byBrasseur andSolomon (2005).
Finlayson-Pitts and Pitts (2000) cover both the upper and lower atmosphere and
include many useful tables.

Notation and abbreviations for Chapter 8
c speed of light in vacuum (m s−1)
�G

◦
change in Gibbs energy per mole, at standard conditions
(kJmol−1)

�H
◦

change in enthalpy per mole, at standard conditions (kJmol−1)
Eact activation energy (J)
E energy (J)
η mixing ratio
f frequency of electromagnetic wave (Hz)
F energy flux (Jm−2 s−1)
Fλ(z) flux of electromagnetic energy at wavelength λ, elevation z

(Jm−2 s−1 m−1)
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g, l, aq gaseous, liquid, aqueous phase
h Planck’s constant (J s)
H

◦
standard enthalpy (kJmol−1)

J photodissociation coefficient (s−1)
k reaction coefficient
K ,Kp equilibrium constant
KH Henry’s Law constant
λ wavelength of an electromagnetic wave (m)
n0 number density of photons (photons m−3)
N (z) concentration of absorbers at level z (moleculesm−3)
R∗ universal gas constant (Jmol−1 K−1)
σ(λ) absorption cross-section (m2)
tc lifetime (s)
t1/2 half life (s)
τ optical depth (dimensionless)
� zenith angle
v∗ threshold velocity to exceed an activation barrier (m s−1)
[X ] concentration of X (molecules cm−3)
[X ]0 concentration of X at t = 0

Problems
8.1 Compute the standard enthalpy of reaction for the following reactions:

CO+ O2 → CO2 + O

O+ O3 → 2O2.

Are these reactions exothermic or endothermic?
8.2 Calculate the standard Gibbs energy for the reaction:

NO3 + H2O → HNO3 + OH.

Can this reaction proceed spontaneously?
8.3 Consider the reaction

2NO → N2 + O2.

Determine whether high or low temperatures are favorable for the forward and reverse
reactions. (Hint: Use formula (8.60).)

8.4 The reaction of HNO3 dissociation is

HNO3 + hf → OH+ NO2.

By examination of the standard enthalpy find out what photon energy is required for
this reaction to proceed (use Table 8.1).
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8.5 Calculate the equilibrium constant at 298K for the reaction

NO+ O3 → NO2 + O2.

Are the reactants or products favored for this reaction at equilibrium at 298K? Do you
need to raise or lower the temperature to have more products at the equilibrium?

8.6 Find the expression for the equilibrium constant for the reaction

A+ B � AB,

in terms of reaction coefficients, if the coefficient for the forward reaction is k1, and
the coefficient for the reverse reaction is k2.

8.7 Estimate the molar solubility of oxygen in water at 25 ◦C and 1 atm. Henry’s constant
for oxygen is 4.4× 109 Pa. The percentage by volume of O2 in dry air is 20.95%.

8.8 Estimate by how much the amount of nitrogen in a diver’s blood will change when
the diver is rising from a depth of 80 m. An adult human male has an average blood
volume of about 5 l. Use Henry’s Law constant for nitrogen at 25 ◦C, KH = 8.68×109
Pa. (Fast rising, i.e., a rapid decrease in pressure and thus nitrogen solubility, can cause
the formation of nitrogen bubbles in the bloodstream which often leads to death.)

8.9 Show that the difference between the vapor pressure of a solution at a given temperature
T and the vapor pressure of a pure solvent at the same temperature is

�p = − R∗Tη

vv − v

where η is a mole fraction of a nonvolatile solute, v is the volume of 1 mol of a solvent,
vv is the volume of 1 mol of vapor.Hint: Suggest that the solution is in equilibriumwith
the vapor at pressure e′ = es + �p where es is the equilibrium vapor pressure for the
pure solvent and�p is small. The fact that�p is small allows you to expand the Gibbs
energy in Taylor’s series and retain only the linear term (similar to the calculation of
the boiling point of a solution).
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The thermodynamic equation

In this chapter we derive two of the fundamental equations of atmospheric science,
the equation of continuity and the thermodynamic equation. The equation of
continuity expresses the conservation of mass in the form of a partial differential
equation, the form needed to implement it in numerical simulations or forecasts.
The thermodynamic equation expresses the combined First and Second Laws of
Thermodynamics into a similar form. But before we come to these important
formulasweneed someexperiencewith scalar andvector fields.Muchof the chapter
is concerned with elementary vector analysis which should have been covered in
the prerequisite calculus course. Hence, some students can skip over the review
sections, but we advise all students to refresh their memories. All this machinery is
to prepare for the next step in an education in atmospheric sciences: dynamics.

Vector refresher A three-dimensional vector, denoted in boldface, a, is a
mathematical object which has both length and direction. In two-space it can be
represented by an arrow as in Figure 9.1. It takes three numbers to represent a
3-vector, two angles and a length, (θ ,φ; |a|). Alternatively, it can be represented by its
three components along the three Cartesian coordinate axes, (ax, ay, az). Note that the
vector is an abstract object in space independent of the choice of coordinate system,
but the three numbers needed to specify it may individually depend on the coordinate
system chosen by the analyst to describe the vector. For example, it is conventional in
meteorology to set up a Cartesian coordinate system with the origin at a point on the
Earth’s surface, the x-axis increasing in the eastward direction and the y-axis
increasing in the northward direction.

Multiplication by a scalar Let α be a scalar, i.e., a number which is independent of
our choice of coordinate system, a be a vector. Then multiplication of a vector by a
scalar is written as b = αa. The direction of b is the same as that of a and the length is
|α||a|. In other words the two angles designating the direction of b and a are the

220
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a

ax

ay

Figure 9.1 The vector a in two dimensions.

same, but the length is stretched. If α is negative, the direction of the vector is
reversed. In the case of Cartesian component representation, all three components are
multiplied by α : (αax,αay,αaz).

Adding vectors The sum of two vectors is a vector c = a + b whose components
are defined by adding the Cartesian components of the addends:

(cx, cy, cz) = (ax + bx, ay + by, az + bz). (9.1)

Clearly a + b = b+ a. The sum of the two vectors can also be understood
geometrically by joining the tail of one vector to the head of the other and the line
joining the first tail to the second head is the vector sum.

Cartesian unit vectors A unit vector is a vector which has unit length. It is very
convenient and common to use unit vectors which point along the three Cartesian
axes:

i = (1, 0, 0) (9.2)

j = (0, 1, 0) (9.3)

k = (0, 0, 1). (9.4)

This notation allows us to expand a vector into its Cartesian components

a = axi + ayj+ azk, or alternatively (ax, ay, az). (9.5)

The length of a is given by

|a| =
√
a2x + a2y + a2z . (9.6)

Note that the length of a vector is independent of the coordinate system chosen.

Wind in meteorology is usually denoted by v = ui+vj+wk. Thus a wind blowing
to the east is ui; if u > 0 it is called a westerly. A wind blowing to the north is vj;
if v > 0 it is called southerly. Rising air (a vertical wind) is denoted wk. Note that
the components are referred to a Cartesian coordinate system whose origin is at the
surface of the Earth at a fixed location. Wind speed is given by

√
u2 + v2 + w2.

Example 9.1 Find the length of the vector a = 2i + 3j− 4k.
Answer: |a| = √22 + 32 + (−4)2 = √

29. �
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Example 9.2 Find the sum of the vectors a = 2i + 3j− 4k, b = −4i + 3j+ 2k.
Answer: a + b = −2i + 6j− 2k. �

It is sometimes useful to use a curvilinear coordinate system such as cylindrical
coordinates to describe phenomena in the atmosphere. We use the unit vectors
pointing along the cylindrical coordinate directions (dependent on the point):
r̂, n̂θ , k̂. A vector a can be written as:

a = ar r̂ + aθ n̂θ + az k̂. (9.7)

Example 9.3 Apurely cyclonicwindblows counterclockwise (northernhemisphere)
about a center of action. At a distance r from the center the wind can be denoted as
vθ (r, θ)n̂θ . �

Example 9.4 A point on a rotating disk with axis at the disk’s center has velocity
rωn̂θ , where ω is angular velocity in rad s−1 and r is the axis of rotation. �

Vector refresher: dot product The dot or scalar product of two vectors results in a
scalar. Even though the components of the two vectors forming the scalar product
depend on the choice of coordinate system, the scalar product does not:

a · b = |a||b| cos(θa,b) (9.8)

where θa,b is the angle between the two vectors as shown in Figure 9.2. Note that
since cos θa,b is an even function of its argument, the order of the vectors in the
product makes no difference: a · b = b · a.
An alternative way to define the dot product a · b is

a · b = axbx + ayby + azbz . (9.9)

It can be shown that the two definitions are equivalent. Using the second definition,

b

a

θa,b 

Figure 9.2 Illustration of the vectors a and b in a dot product.
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we can show that c · (a + b) = c · a + c · b.
It is also clear that i · i = 1, i · j = 0, etc.

Example 9.5 Find a · b where a = 2i + 3j− 4k, b = −4i + 3j+ 2k.
Answer: a · b = (2) × (−4) + 3× 3+ (−4) × (2) = −7. �

Example 9.6 What is the angle between a and b?
Answer: cos θ = a · b/|a||b| = −7/ 29; arccos (−7/ 29) = 1.815. �

Cross product The vector or cross product is indicated by the notation

c = a × b. (9.10)

The vector c is perpendicular to the plane defined by a and b (see Figure 9.3). The
right hand rule is used to determine its direction (point the right index finger along
the first vector in the product, then sweep it toward the second vector’s direction; the
thumb points in the direction of the vector product). Its length is given by

|c| = |a||b| sin(θa,b). (9.11)

By the right hand rule we see:

a × b = −b× a. (9.12)

A useful form for the cross product a × b is

c

b

a
θa,b 

Figure 9.3 Illustration of the vectors c = a × b in a cross product. c is
perpendicular to the plane formed by a and b.
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a × b =
∣∣∣∣∣∣

i j k
ax ay az
bx by bz

∣∣∣∣∣∣ . (9.13)

Math refresher: 3× 3 determinant Recall that it can be expanded along any row
or column. In the representation of the cross product:∣∣∣∣∣∣

i j k
ax ay az
bx by bz

∣∣∣∣∣∣ = i(aybz − azby) − j(axbz − azbx) + k(axby − aybx).

Recall the alternating signs of the unit vectors as one expands along the top row. Note
that if two rows (vectors) of a determinant are proportional, the determinant vanishes.
This is simply the statement that sin(θa,b) = 0.

Vector refresher: the box product This is defined by:

a · (b× c) = c · (a × b) = b · (c× a). (9.14)

A useful form for the box product is

c · (a × b) =
∣∣∣∣∣∣
cx cy cz
ax ay az
bx by bz

∣∣∣∣∣∣ . (9.15)

The three vectors a, b and c form a rectangular parallelepiped. The box product is the
volume of that geometrical figure. The rules of determinants can be useful here. For
example, cyclic permutation of the rows leads to an equivalent determinant.
Interchanging adjacent rows flips the sign. It is useful to know that the three vectors

a

b c

Figure 9.4 Sketch of the parallelepiped formed by the vectors a, b and c. The
magnitude of the box product a · b× c is the volume of the parallelepiped.
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of a box product can be identified as the three edges of a solid parallelepiped. The box
product is the volume of the parallelepiped (see Figure 9.4). Note that

k · (i × j) = 1. (9.16)

9.1 Scalar and vector fields

A scalar field is a function defined on the three-dimensional space coordinates and
possibly along the time axis. An example is the temperature field T (x, y, z; t) ≡
T (r, t), where the position vector r is defined by

r ≡ x i + y j+ z k (9.17)

and i, j, k are unit vectors pointing along the x, y and z axes (see Figure 9.5). A
small increment in r is denoted as 1

dr = dx i + dy j+ dz k. (9.18)

y

x

z
r

x

y

z

Figure 9.5 Schematic diagram of a position vector r whose components are x, y and z.

1 Here we replace the small values�x, δx, etc., with infinitesimals dx, etc., with the approximate sign≈ replaced
by the equality sign=. This means that in this notation second-order quantities such as (dx)2 are neglected (set
to zero) when additive to first-order terms.While this operational shortcut might cause some to cringe, it should
not disturb the flow of our story.
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x

y

z

r

dr

r+dr

Figure 9.6 Schematic diagram of a position vector r and an increment of it dr.

Consider the estimation of the temperature field at the point r+ dr (Figure 9.6),
given that we know its value at the point r, namely T (r):

T (r + dr) = T (x + dx, y + dy, z + dz).

We may use the first two terms of the Taylor expansion:

T (x + dx, y + dy, z + dz) = T (x, y, z) + ∂T

∂x
dx + ∂T

∂y
dy + ∂T

∂z
dz. (9.19)

We can also write this as a dot product:

T (r + dr) = T (r) + dr · ∇T (r). (9.20)

After substituting dT = T (r + dr) − T (r), we obtain

dT = dr · ∇T [differential of a scalar field]. (9.21)

The vector ∇T (r) is called the gradient of T. We will use the modern notation ∇T
to denote the gradient (in some older texts it is denoted grad T ).

∇T = ∂T

∂x
i + ∂T

∂y
j+ ∂T

∂z
k [gradient of a scalar field]. (9.22)

The gradient is a vector field. At each point in space r it has an associated length
and direction.
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If you want to know the rate of change of the field in a particular direction, say
along the direction defined by the unit vector, n, it can be found by defining2 the
vector increment dr to be n ds where ds is an infinitesimal distance and n defines
the direction along which the increment is to be taken. Using (9.21) we can write

dT

ds
= n · ∇T [derivative in the direction n]. (9.23)

This derivative taken along the direction of the specified unit vectorn is called the
directional derivative, and is often given the notation ∂T/∂n as the rate of change of
T along a certain direction, defined by the unit vector n. The conventional notation
for the directional derivative is:

∂T

∂n
= n · ∇T [directional derivative]. (9.24)

If n lies in the tangent plane to an isothermal (still thinking of the scalar field as
temperature) surface, the directional derivative vanishes since there is no change in
any direction lying in this plane. This means that the component (projection) of the
gradient vector tangent to the isothermal surface vanishes. The gradient vector is
perpendicular to isothermal surfaces (in general so-called level surfaces). This can
be seen for a fixed gradient vector ∇T . Just vary the unit vector in all directions.
The lengths of n and∇T are fixed, so the maximum occurs when the angle between
n and ∇T is zero (cos θn,∇T = 1), in other words when n is parallel to ∇T .
Example 9.7 Consider the field

T (x, y) = T0 cos 2πx cosπy. (9.25)

Find the gradient as a function of x and y.
Answer:

∇T (x, y) = −πT0 (2 sin 2πx cosπyi + cos 2πx sin πyj) . (9.26)

See the contour map in Figure 9.7. �

Example 9.8 Find the directional derivative of the field in the last example in the
direction n = (1/

√
2)(i + j) (this is a unit vector in the x–y plane directed 45◦

above the x-axis).
Answer: Take the dot product of n with the gradient:

n · ∇T = −πT0√
2

(2 sin 2πx cosπy + cos 2πx sin πy) . �

2 Remember that the reader has the power to choose dr, its tiny length and direction.
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Figure 9.7 Contour map of a field T (r) = cos 2πx cosπy showing constant T
lines.Arrows indicate direction of the gradient vector evaluated at the points where
the arrows originate.

p(x – dx/2,y, z) dy dz p(x + dx/2,y, z) dy dz 

x + dx/2x – dx/2

Figure 9.8 Asmall rectangular parallelepiped of sidewidths dx, dy, dz, indicating
the pressure forces on the sides perpendicular to the x-axis.

9.2 Pressure gradient force

The gradient of the pressure field ∇p(r, t) is very important in meteorology.
Consider a parcel of air contained in the rectangular parallelepiped dx dy dz, and
whose center is located at the point r. This volume element is embedded in a
surrounding pressure field p(r) = p(x, y, z). Let us compute the x component of
the net force on the volume element. As indicated in Figure 9.8, the left-most face
experiences a force due to the external field to the right:

F left facex = p(x − 1
2 dx, y, z) dy dz, (9.27)
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the right-most face experiences a force to the left

F right facex = −p(x + 1
2 dx, y, z) dy dz. (9.28)

The net force on the volume element is

dFnetx = − (p(x + 1
2 dx, y, z) − p(x − 1

2 dx, y, z)
)
dy dz

= −∂p

∂x
dx dy dz = −∂p

∂x
dV (9.29)

where dV is the volume of the infinitesimal material element. Newton’s Second
Law (force is mass times acceleration) tells us that

(dM)ax = dFnetx (9.30)

where ax is the x component of acceleration and dM is the mass contained in the
parcel. We can divide each side by dV and obtain

ρax = −∂p

∂x
(9.31)

where ρ is the density of the air in the parcel. Put in more conventional form we
have:

ax = − 1
ρ

∂p

∂x
. (9.32)

If we evaluate the y and z components in a similar fashion we can summarize the
result in vector form

a = − 1
ρ
∇p [pressure gradient force/mass]. (9.33)

The force per unitmass a as given here is called the pressure gradient force.We have
encountered its vertical component earlier in establishing the hydrostatic equation.
Above the atmospheric boundary layer its horizontal components are very nearly
balanced by the Coriolis force in midlatitudes (called geostrophic balance).

Example 9.9: horizontal acceleration of a parcel in the tropics Suppose a parcel
whose density is 0.7 kgm−3 is embedded in a field of pressure with a gradient
10 hPa over 1000 km. What is the acceleration of the parcel (ignoring the Coriolis
force) and what is its increase in speed from rest in passing over 1000 km?
Answer: The acceleration is toward low pressure and is given by a = 1.43 ×
10−3m s−2. v = √

2ax = 53 m s−1. �
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9.3 Surface integrals and flux

Consider the vector field of velocity of a fluid, v(r), at an instant of time (disregard
time dependence for now). The fluid is moving locally along line segments
tangential to the local velocity vector v(r). The trajectories of individual parcels
follow the flow lines in steady flow (∂v/∂t = 0) but differ in unsteady flow
(∂v/∂t �= 0). An imaginary surface is placed in the fluid flow (say a penetrable
screen) as indicated in Figure 9.9. Let an element of the surface be denoted by dS
where dS is the magnitude of the (vector) area element and the direction of dS is the
local perpendicular to the surface area element. In a closed surface, by convention,
the vector points outwards; otherwise, it has to be specified according to context.
First imagine a parallel flow that is uniform over its cross-section in a pipe in the x

direction. Then v(r) = v0 i. Suppose the surface S is a perpendicular cross-section
of the pipe. Then S = Si. How much mass passes through S per unit time? First
consider the “front” of fluid passing through S at time t. At time t + dt the front
advances by a distance v0dt. The amount of volume swept out by this front in the
time dt is just v0S dt = v · S dt as in Figure 9.9. If the density of the fluid is ρ, we
can convert this to a mass flux

dM = ρv · S dt (9.34)

or

dM
dt

= ρv · S. (9.35)

vdt

S

Figure 9.9 Advance of a material surface through a cylindrical pipe during the
time dt. The flow is taken to be of uniform velocity v over the cross-section.
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S

v
vdt

Figure 9.10 Illustration of a flow through a surface at an angle to the normal. The
volume of fluid swept out in the time dt is |S||v|dt cos θS,v = S · v dt.

dS

ρv
S

Figure 9.11 Portion of a surface S depicting an area element on a surface dS
through which fluid of density ρ is passing at velocity v.

If the surface were tilted with respect to the y–z plane the amount of mass per unit
time passing through it would be the same (see Figure 9.10). The only thing that
matters is the projection of S onto the velocity v. If the surface were curved we
would have to generalize to (see Figure 9.11)

dM
dt

=
∫ ∫

S
ρv · dS. (9.36)

The amount of mass flux passing through the area element dS is

mass flux = ρv · dS [flux of mass through an area element]. (9.37)
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a r

r + dr

Figure 9.12 The annulus is the shaded area. Its circumference is 2πr and its width
is dr. The area of the annulus is 2πr dr.

The mass flux density is

mass flux density = ρv · n (9.38)

where n is a unit vector parallel to the infinitesimal area vector dS (i.e., n = dS/dS).

Example 9.10: fluid flow in a pipe Viscous flow in a pipe is slower near the walls
than along the centerline of the pipe. A simple steady flow solution for an
incompressible fluid is given by

u(r) = u0

(
1− r2

a2

)
(9.39)

where r is the cylindrical-coordinate distance perpendicular to the centerline and
a is the radius of the pipe. u0 is the velocity at the center of the cross-section.
What is the flux of mass through a plane parallel to the centerline of the pipe?
Answer: First form an annulus (a ring) (see Figure 9.12) in the cross-section. The
area of the ring is 2πr dr. The mass flux through the ring is ρu(r)2πr dr. The total
flux is

F =
∫ a
0

ρu(r)2πr dr = 1

2
πρu0a

2. (9.40)

�

9.4 Conduction of heat

TheFourier Lawof heat conduction states that the amount of heat (enthalpy) flowing
across a unit perpendicular area (the vector enthalpy flux q) is proportional to the
gradient of the temperature field, ∇T . The Fourier Law works well in solids since



9.4 Conduction of heat 233

the transfer is from one molecule to its neighbor in a medium where there is no
relative macroscopic motion from one location in the solid to another.
In liquids or gases the story can be much more complicated because these

macroscopicmotions are permitted. Buoyancy for examplemight cause differential
forces moving lighter (usually warmer) material upwards leaving the more dense
fluid behind. This results in a net transfer of heat upwards in the medium at
the macroscopic level. While the actual transfer of heat takes place from one
infinitesimal element to another via molecular collisions (a relatively slow process
when considered at macroscopic scales), the macroscopic motions can move heat
around much more rapidly than pure molecular transfers at the smaller scale from
one infinitesimal element to another building up to the macroscopic scale.
The transfer of heat by winds or currents is called thermal advection. In

atmospheric applications the transfer is dominated by advection by large eddies
(fluctuating or irregular departures typical in turbulence from the larger scale flows).
For example, in the morning boundary layer where turbulence is common, the air
at the surface which has been heated by the rising sun can be buoyed in parcels to
heights of a kilometer or two (where its rise might be limited by increased stability
at those levels). The eddies necessarily bring warm air in a parcel into contact with
cooler air at the same level with an ensuing large thermal gradient at boundaries
separating warmer and cooler parcels and ultimately enthalpy is transferred at the
molecular level:

q = −κH∇T (r) (9.41)

where q is a heat flux density and κH is a coefficient known as the thermal
conductivity (it varies from one substance to another and can be found in tables).
Heat flows from warm toward cool regions in the direction opposite the gradient
vector. The amount of heat transferred bymolecular processes per unit time flowing
through a surface S (flux), FS, is

FS =
∫ ∫

S
q · dS = −

∫ ∫
S

κH(∇T (r)) · dS. (9.42)

Example 9.11 Steady heat flows along a rod with circular cross-section (area A)
and length L with its left and right ends attached to reservoirs of temperatures TL
and TR. Let x = 0 at the left end and x = L at the right end of the rod. The flux of
heat F(x) at the point x is

F(x) = −AκH
dT

dx
. (9.43)

But the flux of heat must be constant at any point along the rod otherwise heat
energy would accumulate at some point. Then F(x) = F0. We can now integrate
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x

T

TR

TL

0 L

T(x)

Figure 9.13 Temperature dependence along a rod of length L, held at temperature
TL at x = 0 and TR at x = L.

the last equation from 0 to L to find:

F0L = −AκH(TR − TL). (9.44)

This allows us to evaluate F0:

F0 = AκH
TL − TR

L
(9.45)

and we find the x dependence of T (x) by integrating from 0 to x:

T (x) = TL + F0
AκH

x = TL +
(
TR − TL

L

)
x. (9.46)

See Figure 9.13. It is interesting that the curve does not depend on κH or A. �

9.5 Two-dimensional divergence

We begin our study of divergence in two dimensions (in the x–y plane). We are
examining an important property of a vector field such as the two-dimensional
velocity V(x, y). Is there more fluid flowing out of a small fixed area in the plane
than is coming in? The two-dimensional divergence is relevant in meteorological
applications. For example, at a box (fixed in space) surrounding a low pressure
area at the surface, air spirals in counterclockwise in the northern hemisphere
(cyclonically) towards the center of the low. In the x–y plane (the surface) there is a
net flow of air into the box. What happens to it? (After all, mass is conserved.) The
answer is it goes up in the z direction. When air goes up we know what happens: it
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(x0, y –   ) dy 
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Figure 9.14 A two-dimensional rectangular box centered at the point (x0, y0) in a
constant z plane illustrating the flux issuing from the box.

rains (assuming moisture is available, etc.). Hence we care about the net flow into
or out of fixed horizontal boxes at different levels in the atmosphere.3

There is a mathematical way of expressing the net flow into or out of a two-
dimensional (2D) box. Let us focus our question on a small region in space
consisting of a rectangle of sides dx and dy whose center is at (x0, y0). We can
evaluate the flux passing through each of the four edges and add them up to find out
whether there is a net flux issuing from the box. To obtain the flux coming through
the right hand edge (see Figure 9.14) we need to take

V(x0 + 1
2 dx, y) · idy = Vx(x0 + 1

2 dx, y) dy. (9.47)

The flux going out of the left vertical edge is similar:

V(x0 − 1
2 dx, y) · (−i)dy = −Vx(x0 − 1

2 dx, y)dy. (9.48)

When we add these left and right edge flux contributions together we obtain

net flux out the left and right edges = ∂Vx
∂x

dx dy. (9.49)

3 Note that the air in the box might have simply become more dense during the net inflow, but we implicitly made
the approximation that the air is very nearly incompressible.
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It is easy to see that the net flux passing through the upper and lower edges is
just

net flux out from the upper and lower edges = ∂Vy
∂y

dx dy. (9.50)

If we add up the fluxes from all four edges we obtain:

total flux leaving the box =
(

∂Vx
∂x

+ ∂Vy
∂y

)
dx dy. (9.51)

The divergence of the 2D vector fieldV(x, y) is defined to be the limit as the box
shrinks to zero of the emerging flux divided by the area of the box. We can express
it in Cartesian coordinates using our results from above:

div2(V) = ∂Vx
∂x

+ ∂Vy
∂y

[2D divergence] (9.52)

where we have employed the subscript 2 to make it clear that we are dealing with
two dimensions only. But the definition holds more generally for any infinitesimal
loop (rectangular, parallelogram, circle, etc.) around the tiny shrinking area:

div2(V) = lim
�A→0

1

�A

∮
V · (k × dr)

= lim
�A→0

1

�A

∮
(V × k) · dr. (9.53)

In the last step we made use of the rule for triple vector box products: a · (b× c) =
(a × b) · c.
Example 9.12: easterly flow rate increasing Suppose v(x) = λxi, λ > 0. The
divergence of v(x) is div2(v) = λ. This is a divergent flow since more fluid is
leaving a tiny box (fixed in space anywhere in the flow) on the east side per unit
time than is entering on the west side (per unit box area and time). �

Example 9.13: divergence expressed in polar coordinates Following Figure 9.15
we use a loop around an area element in polar coordinates. The four sides are (1)
r → r+ dr, θ . (2) At the outer radius r+ dr, let θ → θ + dθ . (3) Now decrease r:
at θ + dθ , r + dr → r. (4) Now back to the starting point, at r, θ + dθ → θ .
The two angle-changing sides yield for the emerging (radial) fluxes (steps 1

and 3):

net radial fluxes = Vr(r + dr, θ)(r + dr) dθ − Vr(r, θ)r dθ

= ∂(rVr)

∂r
dθ dr. (9.54)
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(r + dr )du
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Figure 9.15 View in polar coordinates of the box described in Example 9.13.

Next consider the angular fluxes (steps 2 and 4):

net angular fluxes = −Vθ (r, θ) dr + Vθ (r, θ + dθ) dr

= ∂Vθ

∂θ
dr dθ . (9.55)

The area of the little element is r dθ dr. Upon dividing through by this area and
taking the limit as it shrinks to zero we have:

div2(V) = 1

r

∂(rVr)

∂r
+ 1

r

∂Vθ

∂θ
. (9.56)

�

Example 9.14: rigidly rotating fluid This is similar to a rotating disk. The velocity
field is V = vθ n̂θ = rωn̂θ where n̂θ is a unit vector perpendicular to r̂ fixed at the
point (r, θ ) and pointing in the direction of increasing θ (see (9.7)).We can compute
div2(V) = 0. Note that Vr = 0 in this case. This is a general result in the case of
V = f (r)n̂θ . �

9.6 Three-dimensional divergence

The generalization to the three-dimensional divergence is straightforward. This
time the tiny box in the plane becomes a 3D box fixed in the space. Consider a
closed surface S. The velocity flux emanating from the enclosed volume is

emerging flux =
∫∫

S
© v(r) · dS. (9.57)

Now let the enclosed volume become very small. For the Cartesian coordinate case
take it to be a rectangular parallelepiped whose sides are of lengths dx, dy, dz. Its
volume is therefore the product, (dV )S = dx dy dzwhere the subscriptS is used to
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indicate the surface surrounding the infinitesimal volume element. The divergence
of the velocity field is defined to be the emerging flux per unit volume:

div(v(r)) ≡ lim
(dV )S→0

1

(dV )S

∫∫
S

© v(r′) · dS′. (9.58)

This definition of the divergence is actually independent of the shape of the volume
for reasonably well-behaved functions v(r). We take it here to be a rectangular
parallelepiped for convenience. Note that the divergence is a scalar field defined
over the space whose points are designated by r.
While this appears to be a useful concept, so far it seems to be a rather difficult

thing to compute. Next we will find a convenient way to compute the divergence.
In rectangular coordinates we take the surface to be the rectangular parallelepiped
mentioned before.
The integration over the six faces of the box is so similar to the two-dimensional

case that we need not repeat it here. The result is

emerging flux =
(

∂vx

∂x
+ ∂vy

∂y
+ ∂vz

∂z

)
dx dy dz. (9.59)

The divergence is then:

div3 v = ∂vx

∂x
+ ∂vy

∂y
+ ∂vz

∂z
(9.60)

From our earlier notation with the ∇ operator, we can write

∇ · v = ∂vx

∂x
+ ∂vy

∂y
+ ∂vz

∂z

=
(
i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z

)
· (vxi + vyj+ vzk

)
. (9.61)

Example 9.15: divergence of the product of scalar and vector We can find the
divergence of a product of a scalar field and a vector field by expanding the
individual terms into their Cartesian [x, y, z] components. Let G(r) be a scalar
field and a(r) be a vector field:

∇ · (G(r)a(r)) = G(r)∇ · a(r) + a(r) · ∇G(r). (9.62)

�
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9.7 Divergence theorem

Consider a macroscopic volume V surrounded by a closed surface S in which a
vector field A(r) is defined. Let the flux out of the volume be

flux out =
∫∫

S
© A · dS. (9.63)

Now subdivide the volume into boxes each one of which is small enough that we
can use the approximation

(∇ · A )i ≈
(
1

V

∫∫
©A · dS

)
i
. (9.64)

Note that flux flowing out of the sides of one little box flows into the sides of its
neighbor. If we form the sum∑

i

(∇ · A)i (dV )i ≈
∫∫∫

V
∇ · A dV . (9.65)

But since the flux leaving the whole volume is just the algebraic sum of the fluxes
leaving the tiny boxes

flux out ≈
∑
i

(∫∫
©A · dS

)
i

=
∫∫

S
©A · dS. (9.66)

We have at last the divergence theorem:∫∫
S

©A · dS =
∫∫∫

V
∇ · A dV . (9.67)

The divergence theorem is very useful in that it says we can apply the micro-
definition essentially to macroscopic volumes. We simply integrate the divergence
for micro-volumes up to obtain the flux issuing from the macroscopic volume.
While the mathematical expression for the divergence in Cartesian coordinates
is very useful for computation from analytical formulas, we often find that in
meteorological applications the integral forms are easier to apply. For example
in the 2D case we can integrate around a box on a weather map and divide by its
area to obtain a good approximation to the divergence.

Example 9.16 A cylinder of radius R of air has density profile ρ(z). It is rigidly
rising at w0 m s−1. What is the flux of mass passing through a level at z = z0?
Answer: Mass flux = ρ(z) · w0 · πR2. Just for fun take R= 1 km; ρ = ρ0e−z/H ,
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ρ0 = 1.2 kgm−3, H = 104 m; and finally w0 = 0.01m s−1. Then at z = 0, we
have 3.77×104 kg s−1. At z = H/2 this becomes 2.29 ×104 kg s−1. �

9.8 Continuity equation

Consider the divergence of the product ρ(r)v(r). According to the definition of the
divergence this is the flux ofmass per unit time issuing from an infinitesimal volume
per unit volume. If the box from which the mass is issuing is fixed in space (and
there are no sources of mass inside), the mass inside the box has to be changing:

loss of mass/time = −dM
dt

=
∫∫
©(ρv) · dS (9.68)

whereM is the mass inside the fixed box. Dividing by the volume of the box and
letting it shrink to zero, we obtain:

−∂ρ

∂t
= ∇ · (ρv). (9.69)

The minus sign takes into account that the flux out of the box represents a negative
rate of change of mass in the box. Note that we used the partial derivative in the
last formula because we are referring to a fixed position for our box. Rearranging
we have the Eulerian form of the equation of continuity:

∂ρ

∂t
+ ∇ · (ρv) = 0 [Euler form of the equation of continuity]. (9.70)

By expanding the divergence of the product we can write it in another form:

∂ρ

∂t
+ v · ∇ρ + ρ∇ · v = 0. (9.71)

This last equation has a very special meaning if we regroup the first two terms

Dρ

Dt
= −ρ∇ · v [Lagrangian form of the equation of continuity] (9.72)

where the differential operator

D

Dt
≡ ∂

∂t
+ v · ∇ [material derivative] (9.73)

is called the material derivative, and we will return to it in the next section.
An alternative and perhaps a more physical derivation of the continuity equation

(in two dimensions for simplicity) can be conducted as follows. Consider a small
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Figure 9.16 Schematic view of a box element in motion at velocity v. The box
might extend its width or height during the motion, but mass must be conserved.

rectangular box with sides dx and dy, whose area is dx dy. The mass density of
material in the box is ρ giving the mass in the box as M = ρ dx dy = constant
since mass will be conserved along the path of the box. The box might be distorted
due to the differential motions of the fluid (e.g., shear). We can write:

dM
dt

= d

dt
{ρ(x, y, t) · (xR(t) − xL(t))(yU(t) − yL(t))} (9.74)

where xR(t) represents the location of the right hand edge of the box as it moves,
xL(t) similarly represents the location of the left hand edge (see Figure 9.16). The
same notation goes for the upper and lower edges of the box. Note that xR(t)might
be moving at a different speed from xL(t) and therefore the box might be stretched
or squeezed in that direction. As we take the derivative through the expression we
obtain

dM
dt

= dρ

dt
dx dy + ρ du dy + ρ dx dv = 0 (9.75)

where by du we mean (dx/dt)(R)− (dx/dt)(L), and by dv we mean (dy/dt)(U)−
(dy/dt)(L). In the last equation we have to recognize that the derivative of ρ is
along the motion, as was the derivative of the mass. After dividing through by the
area dx dy and taking the limit:

dρ

dt
+ ρ

du

dx
+ ρ

dv

dy
= 0. (9.76)
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Now with the fancy notation:

Dρ

Dt
+ ρ div2(V) = 0. (9.77)

In the last equation we used the material derivative for the rate of change of ρ since
it is taken along the motion. Note that this is the same statement as in (9.72). The
generalization to three dimensions is straightforward.

9.9 Material derivative

As a parcel moves, its temperature or some other property might change along the
path of the parcel. On the other hand, some properties are conserved along the
path, for example, the potential temperature in adiabatic flows. The rate of change
of a field along the fluid’s motion is an important point of view to take because
many physical laws are most easily expressed in this form. For example, the rate
of change of the momentum in reaction to an imposed force is to be taken along
the path of the parcel (Newton’s Second Law).
Take a small rectangular parallelepiped of dimension dx, dy, dz. Let the center

of the figuremovewith the local velocity of the fluid inwhich it is embedded, v(r, t).
The velocity field v(r, t) might be changing in both space and time. Consider the
temperature T (r, t) as an example. If we know the value of the temperature at a
certain point (r, t), say T (r, t), what canwe say about its value at neighboring points
in space-time? The total differential can be used to make an estimate. We can write
the total differential for the temperature field as

dT = ∂T

∂t
dt + ∂T

∂x
dx + ∂T

∂y
dy + ∂T

∂z
dz

= ∂T

∂t
dt + dr · ∇T . (9.78)

This is the change in the temperature due to a displacement from point r to r+ dr
and from t to t + dt.
Now divide through by dt

dT

dt
= ∂T

∂t
+ dr
dt

· ∇T . (9.79)

In general dr can be in any direction, but in this special case it should be the
displacement dr that occurs due to the motion of the fluid during the time dt. In
other words, dr = v(r, t) dt where v(r, t) is the velocity of the fluid motion field
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evaluated at (r, t). After this crucial substitution we can write:

dT

dt
= ∂T

∂t
+ v · ∇T . (9.80)

Stated again, this is the explicit recognition that the small increment dr which is
associated with the time interval dt is identified with the motion of the fluid, namely
it is the spatial increment that is advanced by the fluid itself during the time dt.
We again encounter the important combination of derivatives which we termed the
material derivative,

D

Dt
≡ ∂

∂t
+ v · ∇. (9.81)

The change of the temperature field along the motion, DT/Dt, is composed of two
terms: the first term, ∂T/∂t, represents the local change of the temperature in a
certain volume fixed in space (a weather station for example); the second term,
v · ∇T , is due to the advection of hotter or colder air into this fixed volume by the
wind.

9.10 Thermodynamic equation

Consider the heating of a moving parcel. We apply the First Law of
Thermodynamics to an individual parcel. We can write

dH = dQ + V dp (9.82)

where we have used dQ to indicate the amount of diabatic heating 4 of the parcel
in time dt. The rate of change of the enthalpy of the parcel as it moves along its
path is given by the material derivative:

DH

Dt
= DQ

Dt
+ V

Dp

Dt
(9.83)

where DQ/Dt is the rate of diabatic heating of the parcel (J s−1). Since the air can
be treated as an ideal gas we may write dH = cpM dT :

cpMDT

Dt
= DQ

Dt
+ V

Dp

Dt
. (9.84)

This is an expression for the First Law of Thermodynamics for a fluid in motion.
The thermodynamic equation follows from (9.84) by dividing through by M, the

4 The diabatic heating includes solar and terrestrial infrared absorption heating as well as heating due to
condensation.
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mass of the parcel (since mass is conserved along the path):

cp
DT

Dt
= DQM

Dt
+ 1

ρ

Dp

Dt
[thermodynamic equation] (9.85)

where DQM/Dt indicates the heating rate per unit mass of air; it is called the
diabatic heating rate (per unit mass). The left-hand side of the thermodynamic
equation is the heating rate of a parcel along its path. The heating rate is proportional
to the rate of change of the temperature. The right-hand side of the equation tells
us what contributes to that heating rate. First is the heating per unit mass of the
parcel by such actions as radiative heating or condensation heating, collectively
called DQM/Dt. The second term contributes to the rate of temperature change
because of compression or expansion of the parcel as it moves along its path from
one pressure to another.

Example 9.17 Suppose a 1 kg parcel of air moves horizontally along an isobaric
surface and is heated by radiation by 4Wkg−1. What is the rate of change of
temperature of the parcel?
Answer: Note that the derivative Dp/Dt vanishes because the parcel moves along
an isobaric surface. Then we can find the rate of change of temperature from
(4Wkg−1)/(1004 J kg−1 K−1) ≈ 0.004K s−1. �

Example 9.18 In the previous example suppose the parcel is moving eastward
along the horizontal isobaric surface at a velocity of 3m s−1 and that the eastward
component of the gradient of temperature is given by 1.5K km−1.What is the local
(fixed position) rate of change of temperature?
Answer: We need to write the material derivative:

∂T

∂t
+ v · ∇T = 0.004K s−1.

We seek the value of ∂T/∂t. The horizontal velocity is v = 3 i (m s−1) and ∇T =
0.0015 i (Km−1). Hence, ∂T/∂t = (0.004− 0.0045)K s−1. �

Example 9.19 What is the rate of change (along its path) of temperature of a
parcel of density ρ = 1.0 kgm−3 which is rising such that Dp/Dt = −0.3 Pa s−1?
Assume the diabatic heating rate is zero.
Answer: We can calculateDT/Dt = −0.3 Pa s−1/(1.0 kgm−3× 1004 JK−1 kg−1)
≈ −0.0003K s−1. �

Example 9.20 Continuing the previous example, what is the local (fixed position)
rate of change of the temperature, assuming the environmental lapse rate is
10K km−1?
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Answer: First we need to estimate the vertical velocity, w. Assuming hydrostatic
balance we can calculate

Dp

Dt
≈ dp

dz

dz

dt
and dp/dz = −ρg; hence, w ≈ 0.03m s−1. Now proceed with

∂T

∂z
= −0.010Km−1.

Thus,
v · ∇T = −0.0003K s−1.

Finally, we can combine the two and find that ∂T/∂t = 0. This is because we chose
the adiabatic lapse rate as our vertical gradient. The reader should think of the
consequences of a lapse rate that is greater or less than the adiabatic lapse rate. �

9.11 Potential temperature form

The thermodynamic equation can also be expressed in terms of the potential
temperature by starting with the Second Law of Thermodynamics:

s = cp ln θ , or in differential form Tds = cp
T

θ
dθ = dQM. (9.86)

Using the material derivative we find

cp
T

θ

Dθ

Dt
= DQM

Dt
[potential temperature form of the thermodynamic equation].

(9.87)

This form is equivalent to the form (9.85) and it shows more directly the influence
of both the First and Second Laws of Thermodynamics. It is left as an exercise for
the reader to show the equivalence of the two (Problem 9.13).

9.12 Contributions to DQM/Dt

DQM/Dt is a material derivative, which means the rate of change is taken along
the motion of the infinitesimal volume element. Local heating of an infinitesimal
volume element can be due to several sources. We list a few of them here.

Heating by conductionAt themolecular level the heat exchange from one infinitesimal
volume element to its neighbors with differing temperature is given by the divergence
of the heat flux ∇ · h(r, t). This gives the cooling rate per unit volume of the moving
element. To obtain the cooling rate per unit mass, one must divide by density ρ(r, t).

Heating by phase changeAs a moist parcel moves it might experience a temperature
change and this could lead to condensation (or evaporation) onto droplets. The release
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of enthalpy is given by L dMvap = MairL dws, wherews(T ) is the saturation mixing
ratio of the volume element containing Mair of air. Hence, the heating rate per unit
mass is simply −L dws (note that dws is negative for condensation).

Heating by radiation In this case we have a certain radiation flux density of energy
F(r, t). The heating rate per unit volume is−∇ ·F(r, t). And the heating rate per unit
mass is −(1/ρ)∇ · F(r, t).

To summarize we have

DQM
Dt

= − 1
ρ
∇ · h(r) − L

Dws

Dt
− 1

ρ
∇ · F(r, t). (9.88)

Sometimes a frictional heating term is included as well. Generally in applications
such as numerical weather forecasting and climate modeling, the first term above
is small compared to the others and is neglected.

Notes
This chapter is really an introduction to dynamics. Most dynamics books cover
these subjects and many do so in more detail, see for example, Holton (1992).

Notation and abbreviations for Chapter 9
a, b etc. arbitrary vectors
a, ax these are used for vector acceleration and its x

component
ax, ay, az the Cartesian components of vector a
A a vector field
div2V divergence of vector field V in two dimensions
D/Dt material derivative
DQM/Dt the rate of heating of a moving parcel per unit mass

(J s−1 kg−1)
∇ · F(r, t) divergence of the vector field F(r, t)
∇T = (∂T/∂x)i + · · · gradient of T
i, j, k the Cartesian unit vectors
κH thermal conductivity (J K−1 m−1 s−1)
L enthalpy of evaporation (latent heat) (J kg−1)
n unit vector
nθ unit vector in the theta direction (polar coordinates)
∂T/∂n directional derivative of T
r = xi + yj+ zk position vector
r̂ unit vector in the r direction (polar coordinates)
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ρ density (kgm−3)
S, dS surface, surface element vector
v three-dimensional velocity vector field (m s−1)
V upper case usually indicates two-dimensional velocity

Problems
9.1 By writing out the components, prove that

d

dt
(a · b) = da

dt
· b+ a · db

dt
.

9.2 Ahorizontal wind is blowing from southwest to northeast at 30◦ north of east. Express
it in terms of i, j, k.

9.3 Find a unit vector 45◦ north of east. Find a unit vector perpendicular to this one in the
x–y plane.

9.4 The vectors 2i+ 3j, 4i− k determine a plane. Find a unit vector perpendicular to this
plane.

9.5 A parcel moves along a path:

y = y0 + α sinωt

x = x0 + α cosωt + γ t.

If γ = 0, what is the curve that describes the motion? Describe the motion when
γ > 0. What is the position vector as a function of time?What is the velocity vector?

9.6 A certain pressure field varies spatially as

p(x, y, z) = p0 + A sin
3

R
x cos

π

2L
y e−z/H .

How many maxima are there at the surface (z = 0) and at the center of the channel
(y = 0) as one goes around the circle (x goes from 0 to 2πR)? What is the total
differential of the pressure? What is the pressure gradient?

9.7 The wind has the form v = (v0/r�) nθ , nθ = − sin θ i + cos θ j. What are u, v? What
is the divergence of this wind, div2(v)?

9.8 A certain surface pressure field is given by

p(x, y) = a(x − x0)
4 + b(y − y0)

2, a, b > 0.

Describe this pressure surface near (x0, y0).What is the pressure gradient as a function
of x and y? What is the directional derivative in the direction 45◦ north of east?

9.9 The 500 hPa level is given by

Z500 = 5500+ 50 sin(φ − ωt) cos
πy

2L
, −L ≤ y ≤ L

where the vertical heights are inmeters and the longitudinal distances are in kilometers.
L is about 30◦ of latitude. Suppose ω = 2π radians per month. Describe this
disturbance.
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9.10 Suppose the diabatic heating rate for a parcel is 10Wkg−1 and the wind is blowing
at an angle of 60◦ north of east at 10m s−1. Also suppose the temperature gradient is
0.1K km−1 and directed due east.Youmay assume the horizontal gradient of pressure
is zero. Find the rate of change of temperature along the motion and find the local rate
of change of the temperature at a fixed point.

9.11 Sinking air. Suppose the atmospheric profile is isothermal. A parcel is descending at
2 cm s−1 and the diabatic heating rate is zero.What is the rate of temperature increase
along themotion; at a fixed altitude? (Use reasonable values for parameters not given.)

9.12 Dry air is blowing from west to east at a speed of u = 12m s−1. The temperature
gradient is ∇T = 2.0× 10−6 (Km−1) i. The air is being heated diabatically at a rate
1.1× 10−5 K kg−1 s−1. The air moves along an isobaric surface.
(a) Write an expression for the rate of change of the temperature of the air along its

path in terms of the heating rates (thermodynamic equation).
(b) Based upon (a) evaluate the material derivative.
(c) The air is passing over a fixed station. Find the rate of change of the temperature

at the station.
9.13 Show that the two forms (9.85, 9.87) of the thermodynamic equation are equivalent

by using θ = T (p/p0)−κ .
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Units and numerical values of constants

The units used in atmospheric science are the Standard International (SI) units.
These are essentially the MKS units. The units of length are meters, abbreviated
m; those for mass are the kilogram, abbreviated kg; and for time the unit is the
second, abbreviated s. The units for velocity then are m s−1. The unit of force is
the newton (1 kgm s−2, abbreviated N). Tables A1–A3 show the SI units for some
basic physical quantities commonly used in atmospheric science.
The unit of pressure is the pascal (1 Nm−2 = 1 Pa). This is of special importance

in meteorology. In particular, atmospheric scientists like the millibar (abbreviated
mb), but in keepingwith SI units more andmoremeteorologists use the hectopascal
(abbreviated hPa; 1 hPa = 100 Pa = 1mb). The kilopascal (1 kPa = 10 hPa) is the
formal SI unit and some authors prefer it. One atmosphere (abbreviated 1 atm) of
pressure is

1 atm = 1.013 bar

= 1013.25mb

= 1013.25 hPa

= 101.325 kPa

= 101325 Pa

= 1.01325× 105 Pa (A1)

and 1mb = 1 hectopascal = 100 Pa. Sometimes one encounters pressure in inches
of mercury (in Hg) or millimeters of mercury (mmHg); 1 atm = 760.000mmHg
= 29.9213 inHg.
The dimensions of a quantity such as density, ρ, can be constructed from the

fundamental dimensions of length, mass, time and temperature, denoted by the
letters L,M , T , θ respectively. The dimensions of density, indicated with square
brackets [ρ], are ML−3. In the SI system its units are kgm−3. Many quantities are
pure numbers and have no dimension; examples include arguments of functions
such as sine or log. The radian is really not a unit in the sense used here.

249
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Table A1 Useful numerical values

Universal
gravitational constant (G) 6.673×10−11Nm2 kg−2
universal gas constant (R∗) 8.3145 JK−1 mol−1
Avogadro’s number (NA) [gram mole] 6.022 ×1023 moleculesmol−1
Boltzmann’s constant (kB) 1.381 ×10−23 J K−1molecule−1
proton rest mass 1.673 ×10−27 kg
electron rest mass 9.109 ×10−31 kg
Planet Earth
equatorial radius 6378 km
polar radius 6357 km
mass of earth 5.983×1024 kg
rotation period (24 h) 8.640×104s
acceleration of gravity (at about 45 ◦N) 9.8067m s−2
solar constant 1370 Wm−2

Dry air
gas constant (Rd) 287.0 JK−1kg−1
molecular weight (Md) 28.97 gmol−1
speed of sound at 0 ◦ C, 1000 hPa 331.3m s−1
density at 0 ◦C and 1000 hPa 1.276 kgm−3
specific heat at constant pressure (cp) 1004 JK−1 kg−1
specific heat at constant volume (cv) 717 JK−1 kg−1

Water substance
molecular weight (Mw) 18.015 gmol−1
gas constant for water vapor (Rw) 461.5 JK−1kg−1
density of liquid water at 0 ◦C 1.000×103 kgm−3
latent heat of vaporization at 0 ◦C 2.500×106 J kg−1

STP T = 273.16K, p = 1013.25 hPa

Table A2 Selected physical quantities and their units

Quantity Unit Abbreviation

mass kilogram kg
length meter m
time second s
force newton N
pressure pascal Pa = Nm−2 = 0.01 hPa
energy joule J
temperature degree Celsius ◦C
temperature degree Kelvin K
speed m s−1
density kgm−3
specific heat J kg−1 K−1
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Table A3 Selected conversions to
SI units

Quantity Conversion

energy/heat 4.186 J= 1 cal
1 kWh= 3.6×106 J

pressure 1 atm= 760mm Hg
1 atm= 29.9213 in Hg

distance 1m= 3.281 ft
temperature T (K) = T (◦C) + 273.16

Each side of an equation must have the same dimensions. This principle can
often be used to find errors in a problem solution.
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Notation and abbreviations

atm pressure unit, one atmosphere (Chapter 1)
a, b, etc. arbitrary vectors (Chapter 9)
a, ax vector acceleration and its x component (Chapter 9)
a Bohr radius (Chapter 2)
a droplet radius (m) (Chapter 5)
a, b empirical coefficients used in van der Waals equation of state

(Chapter 5)
a∗ critical droplet radius (m) (Chapter 5)
ax, ay, az the Cartesian components of vector a (Chapter 9)
A a vector field (Chapter 9)
A horizontal area of a slab (m2) (Chapter 6)
c speed of light in vacuum (m s−1) (Chapter 8)
cv, cp specific heats (heat capacity per kg) at constant volume, pressure

(J kg−1 K−1) (Chapter 3)
cv, cp molar specific heats (Jmol−1 K−1) (Chapter 3)
cv, cp,G overbar indicates quantities expressed per mole (Chapter 4)
CAPE convective available potential energy (J kg−1) (Chapter 7)
CIN convective inhibition energy (J kg−1) (Chapter 7)
Cv,Cp heat capacities at constant volume, pressure (J K−1) (Chapter 3)
div2V divergence of vector field V in two dimensions (Chapter 9)
dH/dt rate of heating (Chapter 9)
dH/dt, dQ/dt time rate of change of enthalpy, heating rate (J s−1) (Chapter 3)
(dH )p change in enthalpy at constant pressure (J) (Chapter 3)
dQrev infinitesimal absorption of heat, subscript indicating that the

change is reversible (J) (Chapter 4)
dQM/dt rate of heating per unit mass (J kg−1 s−1) (Chapter 9)
d̄Q, d̄W differentials for heat, work, bar emphasizes path dependence (J)

(Chapter 3)
dSU ,V infinitesimal change in entropy during which U and V are held

constant (J K−1) (Chapter 4)

252
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D/Dt material derivative (Chapter 9)
�fH

◦
(X ) standard heat of fusion of substance X (Jmol−1) (Chapter 3)

�G
◦

change in Gibbs energy per mole, at standard conditions
(kJmol−1) (Chapter 8)

�V change in volume (m3) (Chapter 3)
�vapH

◦
(X ) standard heat of vaporization of substance X , overbar indicates

1 mol of substance, superscript o indicates at standard
conditions (usually 25◦C) (J mol−1) (Chapter 3)

�x displacement in x (Chapter 3)
�H

◦
change in enthalpy per mole, at standard conditions (kJmol−1)
(Chapter 8)

�t time interval (s) (Chapter 2)
e, es vapor pressure, saturation vapor pressure (Pa) (Chapter 5)
e′ vapor pressure over a solution (Pa) (Chapter 5)
Eact activation energy (J) (Chapter 8)
E energy (J) (Chapter 8)
ε ε = Mw/Md = 0.622 (dimensionless) (Chapter 5)
η mixing ratio (Chapter 8)
f frequency of electromagnetic wave (Hz) (Chapter 8)
f number of degrees of freedom of a molecule (Chapter 3)
fx partial derivative with respect to x (Chapter 3)
F force (N) (Chapters 2, 3)
F energy flux (J s−1) (Chapter 8)
Fλ(z) flux of electromagnetic energy at wavelength λ, elevation z

(J s−1 m−1) (Chapter 8)
F ,F/M force, per unit mass (N kg−1) (Chapter 7)
F force (N) (Chapter 4)
g, l, aq gaseous, liquid, aqueous phase (Chapter 8)
g acceleration due to gravity (9.81m s−2) (Chapter 6)
g Gibbs energy per kilogram (J kg−1) (Chapter 4)
g, gz, g0 acceleration due to gravity, its value as a function of altitude, its

value at the surface (m s−2) (Chapter 1)
gl, gg specific Gibbs energy for liquid, gas (J kg−1) (Chapter 5)
gv, gw specific Gibbs energy for vapor, liquid water (J kg−1) (Chapter 5)
G gravitational constant (Chapter 1, Table A1)
G Gibbs energy (J) (Chapters 4, 8)
G Gibbs energy per mole (Jmol−1) (Chapter 4)
γ ratio of specific heats cp/cv (dimensionless) (Chapter 3)
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�d,�m,�e lapse rate, −dT/dz of dry air ascending adiabatically, of moist
adiabat, of the environment (Km−1) (Chapter 6)

∇T ∇T = (∂T/∂x)i + · · · , gradient of T (Chapter 9)
h height (Chapter 1)
h height above a reference level (Chapter 6)
h specific enthalpy (J kg−1) (Chapter 5)
h Planck’s constant (J s) (Chapters 2, 8)
h, u specific enthalpy, internal energy (J kg−1) (Chapter 7)
h0 initial height (Chapter 2)
H enthalpy (J) (Chapters 3, 4)
H scale height (Chapter 6)
H (r) flux of heat crossing the surface of a sphere (J s−1) (Chapter 5)
Ha scale height of the atmosphere (Chapter 3)
Hw a scale height for water vapor (m or km) (Chapter 6)
H

◦
standard enthalpy (kJmol−1) (Chapter 8)

i, j, k the Cartesian unit vectors (Chapter 9)
J photodissociation coefficient (s−1) (Chapter 8)
k reaction coefficient (Chapter 8)
kB Boltzmann’s constant (Chapters 1, 2, 3, Table A1)
K ,Kp equilibrium constant (Chapter 8)
KH constant in Henry’s Law (Chapter 8)
K kinetic energy (J) (Chapter 7)
κ = R/cp (dimensionless) (Chapters 3, 4, 6) (0.286 for dry air)
κH thermal conductivity coefficient (Jm−1 s−1 K−1) (Chapters 3, 5, 9)
LCL lifting condensation level (Chapter 5)
L dimension length (m) (Chapter 1)
L enthalpy of evaporation (latent heat) (Chapter 9)
L length of box edge (m) (Chapter 2)
λ mean free path (m) (Chapter 2)
λ wavelength of an electromagnetic wave (m) (Chapter 8)
L = �Hvap the enthalpy (latent heat) of evaporation (J kg−1) (Chapters 5, 6)
Levap latent heat of evaporation (J kg−1) (Chapter 7)
mb pressure unit, one millibar = 1 hPa (Chapter 1)
me electron mass (kg) (Chapter 2)
m0 mass of a molecule (kg) (Chapter 2)
M dimension mass (kg) (Chapter 1)
Meff effective molecular weight (gmol−1) (Chapter 2)
MG gram molecular weight of a gas (gmol−1) (Chapter 2)
Mv,Md,Me gram molecular weight of vapor, dry air and effective (gmol−1)

(Chapter 5)
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M mass (kg) (Chapters 2, 3, 4)
M mass of an object or system (Chapter 1)
ME mass of the Earth (Chapter 1)
Ml,Mg bulk mass of liquid, gas (kg) (Chapter 5)
n unit vector (Chapter 9)
nθ unit vector in the theta direction (polar coordinates) (Chapter 9)
ns number density of vapor molecules at saturation (moleculesm−3)

(Chapter 5)
nsat number density of vapor molecules at saturation (moleculesm−3)

(Chapter 5)
nw number density of water molecules in vapor (moleculesm−3)

(Chapter 5)
n0(z) molecular density as function of height (moleculesm−3)

(Chapter 2)
n0 number density of photons (photons/m−3) (Chapter 8)
n0 number density (moleculesm−3) (Chapters 3, 5)
N newtons (Chapter 2)
N total number of molecules (Chapter 2)
NA Avogadro’s number (molecules mol−1) (Chapters 1, 2, 5, TableA1)
N (z) concentration of absorbers at level z (absorbers m−3) (Chapter 8)
ν, νA, νB number of moles, number of moles of species A, B (Chapters 3, 4)
ω, f angular frequency (rad s−1), frequency (cycles s−1 ≡ Hz)

(Chapter 6)
p pressure (Pa) (all chapters)
p, pG pressure, partial pressure for gas G (Chapter 2)
p, p(z), p0 pressure, as a function of z, at a reference level (hPa) (Chapter 6)
p(V ) pressure as a function of volume; expression for a curve in the p–V

plane (Chapter 4)
Pa unit of pressure, 1 Pa = Nm−2 (Chapter 1)
P(z) probability density function (Chapter 2)
P(vx, vy, vz) joint probability density function for velocity components

(Chapter 2)
�(z),�1,�2 geopotential height as a function of height, at two levels (meters,

on charts often in decameters, dm) (Chapter 6)
q specific humidity (kg water vapor/kg of moist air) (Chapter 5)
r r = xi + yj+ zk position vector (Chapter 9)
r unit vector in the r direction (polar coordinates) (Chapter 9)
r relative humidity (Chapter 5)
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r0 effective molecular radius (m) (Chapter 2)
R gas constant for a particular gas (J kg−1 K−1)
Rd gas constant for dry air (J kg−1 K−1) (Chapter 2, Table A1)
Reff effective gas constant for a mixture of species (J kg−1 K−1)

(Chapters 2, 5)
Rw the gas constant for water vapor (Chapters 2, 5, Table A1)
R∗ universal gas constant (Jmol−1 K−1) (Table 1.1)
ρ density (kgm−3) (all chapters)
ρ, ρ0, ρe density, at a reference level, of the environment (kgm−3)

(Chapter 6)
ρa, ρe density for adiabat and environment (kgm−3) (Chapter 7)
s entropy per unit mass (lower case indicates per unit mass)

(J K−1 kg−1) (Chapter 4)
sl, sg specific entropy for liquid, gas (J K−1 kg−1) (Chapter 5)
SI Standard International system of units (Chapter 1)
S, dS surface, surface element vector (Chapter 9)
S entropy (JK−1) (Chapter 5)
S, SA, SB entropy, entropy of state A, state B (JK−1) (Chapter 4)
Ssys, Ssurr, Suniverse entropy for the system, surroundings, universe (sys+surr)

(Chapter 4)
σ standard deviation (Chapter 2)
σ surface tension (Jm−2) (Chapter 5)
σ 2 variance (Chapter 2)
σ(λ) absorption cross-section (m2) (Chapter 8)
σc collision cross-section (m2, nm2) (Chapter 2)
t0, tc both stand for lifetime (s) (Chapter 8)
t1/2 half life (s) (Chapter 8)
T Kelvin temperature (K) (Chapters 2, 3, 5)
TC temperature measured in degrees Celsius (◦C) (Chapter 5)
TD dew point temperature (K) (Chapter 5)
Tv virtual temperature (K) (Chapter 5)
Tw wet-bulb temperature (K) (Chapter 5)
T dimension time, also period of a repeating process, and

temperature (Chapter 1)
Temp temperature dimension (Chapter 1)
T , T (z), T0 temperature, as a function of z, at a reference level (K)

(Chapter 6)
Te(z), Ta(z) temperature of environment, of an adiabat (K) (Chapter 6)
T vertical average temperature in a layer of air (K) (Chapter 6)
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θ potential temperature (K) (all chapters)
θe equivalent potential temperature (K) (Chapter 5)
θw wet-bulb potential temperature (K) (Chapter 5)
θs saturation equivalent potential temperature (K) (Chapter 5)
� zenith angle (Chapter 8)
τ optical depth (dimensionless) (Chapter 8)
(u, v,w) the velocity components (vx, vy, vz) (Chapter 2)
U internal energy (J) (all chapters)
UA,UB internal energy at states A, B (J) (Chapter 4)
v three-dimensional velocity vector field (m s−1) (Chapter 9)
v speed (m s−1), sometimes with a subscript indicating velocity

component along a coordinate axis (e.g., vx) (Chapter 1)
vesc escape velocity (km s−1) (Chapter 2)
vl, vg specific volume for liquid, gas (m3 kg−1) (Chapter 5)
v∗ threshold velocity to exceed an activation barrier (m s−1)

(Chapter 8)
v mean speed (m s−1) (Chapter 2)
v mean molecular speed (m s−1) (Chapter 5)
v2 mean square velocity (m2 s−2) (Chapter 2)
v2x mean square of x component of velocity (m2 s−2) (Chapter 2)
V upper case usually indicates two-dimensional velocity

(Chapter 9)
V volume of a system (m3) (Chapters 1, 3)
V volume (m3) (Chapter 3)
Va,Ve volumes of a parcel along an adiabat and of the environment

(m3) (Chapter 7)
VA,VB initial and final volumes (Chapter 3)
w,ws mixing ratio, saturated (kg water vapor per kg dry air)

(Chapters 5, 6, 7)
WA→B,QA→B work done by the system, heat taken into the system in going

from state A to state B (J) (Chapter 4)
WV1→V2 work in going from V1 to V2 (Chapter 3)
W ,Q work done by the system, heat taken into the system (Chapter 3)
[X ] concentration of X (Chapter 8)
[X ]0 concentration of X at t = 0 (Chapter 8)
z elevation (m) (Chapter 2)
z,�z vertical distance, increment of it (m) (Chapter 6)
Zp altitude of pressure level p (m) (Chapter 6)
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Answers for selected problems

Chapter 1
1.1 26 428 ft for H = 8 km.
1.2 0.0013.
1.3 819 hPa (using H = 8 km, 1 mile =1.6 km).
1.4 (a) 40 200 km, (b) 111.7 kmdeg−1, (c) 96.7 km deg−1.
1.5 50 000 km2. 43 000 km2.
1.8 11.2 km s−1.
1.9 2
√
2h/g.

Chapter 2
2.1 1.29, 1.25, 1.2 kgm−3.
2.2 0.80 kgm−3.
2.3 212 hPa.
2.4 12.7N.
2.5 2.69×1025 moleculesm−3.
2.6 Rd = 2.87 hPaK−1 m3 kg−1.
2.7 Differentiate P(v) with respect to v and set it to zero. See Table 2.2.
2.8 462, 493, 413, 1846 ms−1.
2.9 630 Pa. 1 kgm−1. Pressurewithmoisture = 78646 Pa.Density ofmoistmix=

1 kgm−3. Density of dry air at same temperature and pressure: 1.003 kgm−3.
2.10 1.6×108 J.
2.11 4.3×107 J.
2.12 n0 = 2.69× 1025 moleculesm−3, H = 8000m, N = 2.15×1029 molecules.
2.13 zλ=H = H ln(n0σcH ).
2.14 (gp0/RT0)

∫∞
0 ze−z/Hdz = gp0H 2/RT0.

2.15 1
2Nm0v

2 = 3
2NkBT , see Problem 2.12 for N .

2.16 fyellow = c/λ = 6.0 × 1014 s−1. fcoll = n0σcv ≈ 6.5 × 109 s−1. An excited
atom might suffer tens of collisions before it relaxes to the lower energy
level.
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Chapter 3
3.1 (d) p0e−1/2/2H .
3.2 (a) ρR. (b) and (c) Let 1/T ≡ x, then take the partial with respect to x.
3.3 κT = 1/p; to get κθ use pV γ = p0V

γ

0 ; result 1/γ p.
3.4 β = 1/T .
3.6 195.8 kJ.
3.7 T = 205.1K. �T = −67.9K. Therefore, �U = 48.7 J = W , since Q = 0.
3.8 (a) 10 kJ, (b) 7.17 kJ, (c) dU + V dp → dU .
3.9 (a) 59.7 kJ, (b) 59.7 kJ.
3.10 1.202 kgm−3. Q = −7500 J. Use the mass of the dry air only as an

approximation. �T = 8.7K.
3.11 T600 = 248.7K. �U = Mcv�T , �H = −21.4 kJ.
3.12 0.02K kg−1 s−1, 20 J kg−1 s−1, �U per unit time = 14.3 J kg−1 s−1.
3.13 (a) 12 ,500 kg. (b) Mass of an “air” molecule= 0.029/NA = 4.82× 10−26 kg.

N = 2.6× 1029 molecules. (c) 1.3×1044.
3.14 vsound = √

RT for isothermal;
√

γRT , γ = 1.40 for adiabatic compression
waves.

3.15 θ = T0 (p0/p)0.286.

Chapter 4
4.1 Zero if reversible.
4.2 23.5 JK−1.
4.3 �θ = 65.8K.
4.4 �H = 500 J. �T = 0.5K. �S = 2 JK−1.
4.5 (a) (�S)a = 23.5 JK−1, (b) (�S)b = 120.6 JK−1, (c) (�S)c = 8.6 JK−1.
4.6 (b) V2 = 3.44m3, T2 = 227K, (c) �H = −146.7 kJ, �U = −104.7 kJ,

(d) W = 104.7 kJ.
4.7 (a) p2 = 37877 Pa, W2 = −65.2 kJ, (b) W1 = 104.7 kJ, W2 = −65.2 kJ,

Wtot = 39.5 kJ, (c) T3 = 113.6K, (�S)2 = 1.39 kJK−1.
4.8 Use the isotherm joining the beginning and end points. �S = 199 JK−1.

�U = �H = 0.
4.9 Both zero for the cycle, if it is reversible. Tmax is at the point A. Tmin is at the

opposite point on the circle.
4.10 Sliding up and down an isotherm in the T − S diagram encloses no area.
4.14 −19.2 kJ.
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Chapter 5
5.1 (a) 2.5× 106 J, (b) 9.15 JK−1.
5.2 283.6K.
5.3 es = 65 hPa,z = 22 km × ln(1000/66.75) = 21.7 km.
5.4 1.4%.
5.5 3.8 cm.
5.6 (a) 23.6 hPa, (b) 11.8 hPa, (c) 1.171 kgm−1, (d) w = 0.0074 kg kg−1, ws =

0.0149 kg kg−1, (e) w.
5.7 (0.01, 6.80 hPa, 112.8%), (0.10, 6.10 hPa, 101.2%), (1.0, 6.03 hPa, 100.1%),

(10, 6.025 hPa, 100.0%).
5.8 eb/a = 1.002.
5.9 101.4%.
5.10 Radius at the maximum of the Köhler curve a′ = √3B/b; RH =(

1+ 2b1.5/31.5B0.5
)× 100%; a′ = 6µm, RH = 100%.

Chapter 6
6.1 p(z) = p0exp

(−(gz0/RT0)e(z/ z0−1)
)
.

6.2 0.12 m s−2.
6.3 0.6 m s−1, 1.2 m s−1, 3.6 m s−1, 3 min.
6.4 Adiabatically 0.03 m s−2, isothermally 0.02 m s−2.
6.5 If p0 = 1000 hPa, T0 = 300 K, � = 6 K km−1, z10 = 10 km, T1 =

T0 − �z10 = 240 K, then

p(z) =



p0
(
T0−�z
T0

)g/R�

, z < z10

p0
(
T1
T0

)g/R�

e−g(z−z10)/RT1 , z > z10.

6.6 � = T0 exp
(−z/ z0 + κgz0(ez/z0−1)/RT0

)
.

6.7 � ≈ 5 K km−1.
6.8 Z(p) = −R a

g ln
p
p0

− R b
2gp0

(ln p
p0

)2.
6.9 926 m.
6.10 0.516 m s−2.
6.11 ω = 5.7× 10−3 rad s−1, f = 9.1× 10−4 Hz, T = 18 min.
6.13 (a) A = 10 m, B = 0, (b) A = 0, B = 175 m.

Chapter 7
7.1 (a) 16 g kg−1, (b) 22 g kg−1, RH = 73%, (c) 20 ◦C, (d) 940 hPa, (e) 23 ◦C,

(f) yes, (g) yes, (h) 8.5 g kg−1, (i) 12 g kg−1.
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7.2 (a) 270 hPa, (b) cold and dry, (c) very low to 400 hPa, above that T − TD ≈
10 ◦C, (d) between 950 and 910 hPa, 750 and 700 hPa, above 200 hPa, (e) no,
yes.

7.3 (a) 150 hPa, (b) unstable, (c) moderate below 700 hPa, dry above, (d) at
650 hPa, (e) large CAPE, no CIN, unstable.

7.4 (a) w = 3.6g kg−1, RH = 45%, θ = 284K, (b) 840 hPa, (c) θe = 294K,
(d) the same as in (a), (e) the same as in (c).

7.5 (a) 3.5 g kg−1, (b) T = 30 ◦C, TD = −30 ◦C. Note: the numbers here are
unrealistic but easy to work with on the charts.

Chapter 8
8.1 −33.81 kJ mol−1, −391.9 kJ mol−1; both exothermic.
8.2 H

◦ = 72.14 kJ mol−1, no.
8.3 Low temperatures for forward, high for reverse (this is how NO is formed in

combustion).
8.4 3.4× 10−19 J = 2.1 eV.
8.5 6× 1034, Lower the temperature.
8.6 k1/k2.
8.7 2.68× 10−4 mol l−1.
8.8 2.5× 10−2 mol.

Chapter 9
9.1 d(axbx)/dt + d(ayby)/dt = bx dax/dt + ax dbx/dt + · · · .
9.2 |v| cos 30◦i + |v| sin 30◦j = |v|

√
3
2 i + |v|12 j.

9.3
√
2
2 (i + j),

√
2
2 (i − j).

9.4 −0.239 i + 0.160 j− 0.958 k.
9.5 Circle with radius α centered at (x0, y0). Point on the rim of a rolling wheel.

r = (x0 + α cosωt + γ t)i + (y0 + α sinωt)j

v = (γ − ωα sinωt)i + ωα cosωtj.

9.6 Three maxima.

dp = 3

R
A cos

3x

R
cos

πy

2L
e−z/H dx − π

2L
A sin

3x

R
sin

πy

2L
e−z/H dy

− A

H
sin

3x

R
cos

πy

2L
e−z/H dz.

To get the gradient replace (dx, dy, dz) by (i, j, k).
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9.7 u = −yv0/r�+1, v = xv0/r� + 1. div2(v) = 0, since vr = 0, vθ has no θ

dependence.
9.8 Elliptically shaped bowl. ∇p = 4a(x − x0)3 i + 2b(y − y0)j, ∂p/∂n =√

2
2 (4a(x − x0)3 + 2b(y − y0)).

9.9 This is a wave that travels west to east and takes one month to circle the globe.
9.10 0.01K s−1, ∂T/∂t = 0.009K s−1.
9.11 Warming: 0.00020Km−1, same at fixed altitude, since dT/dz = 0.
9.12 (b) 1.1× 10−5 K s−1, (c) −1.3× 10−5 K s−1.



Bibliography

Atkins, P., 1994. Physical Chemistry, New York: W. H. Freeman.
Atkins, P. and J. de Paula, 2002. Atkins’Physical Chemistry, seventh edition, Oxford:

Oxford university Press.
Bohren, C. F. and B. A. Albrecht, 1998. Atmospheric Thermodynamics, New York:

Oxford University Press.
Brasseur, G. and S. Solomon, 2005. Aeronomy of the Middle Atmosphere, Dordrecht:

D. Reidel.
Brimblecombe, P., 1986. Air Composition and Chemistry, Cambridge: Cambridge

University Press.
Callen, H. B., 1985. Thermodynamics and an Introduction to Thermostatistics,

New York: Wiley.
Çengal, Y. A. and M. A. Boles, 2002. Thermodynamics: An Engineering Approach,

New York: McGraw-Hill.
Curry, J. A. and P. J. Webster, 1999. Thermodynamics of Atmospheres & Oceans,

San Diego, CA: Academic Press.
Denbigh, K., 1981. The Principles of Chemical Equilibrium, New York: Cambridge

University Press.
Emanuel, K. A., 1994. Atmospheric Convection, New York: Oxford University Press.
Emanuel, K. A., 2005. Devine Wind, New York: Oxford University Press.
Fermi, E., 1956. Thermodynamics, New York: Dover.
Finlayson-Pitts, B. J. and J. N. Pitts, 2000. Chemistry of the Upper and Lower

Atmosphere, San Diego, CA: Academic Press.
Fleagle, R. G. and J. A. Businger, 1980. An Introduction to Atmospheric Physics, San

Diego, CA: Academic Press.
Giancoli, D. C., 2004. Physics: Principles with Applications, sixth edition, Englewood

Cliffs, NJ: Prentice Hall.
Guggenheim, E. A., 1959. Thermodynamics: An Advanced Treatment for Chemists and

Physicists, Amsterdam: North-Holland.
Halliday, D., R. Resnick and J. Walker, 2004. Fundamentals of Physics, seventh edition,

New York: Wiley.
Hobbs, P., 2000. Basic Physical Chemistry for the Atmospheric Sciences, second edition,

Cambridge: Cambridge University Press.
Holton, J. R., 1992. An Introduction to Dynamical Meteorology, New York:

Academic Press.

263



264 Bibliography

Houston, P. L., 2001. Chemical Kinetics and Reaction Dynamics, New York:
McGraw-Hill.

Houze, R. A., Jr., 1993. Cloud Dynamics, New York: Academic Press.
Irebarne, J. V. and W. L. Godson, 1981. Atmospheric Thermodynamics, Boston,

MA: Kluwer.
Present, R. D., 1958. Kinetic Theory of Gases, New York: McGraw-Hill.
Reiss, H., 1965. Methods of Thermodynamics, Mineola, NY: Dover.
Rogers, R. R. and M. K. Yau, 1989. A Short Course in Cloud Physics, Oxford: Pergamon.
Sears, F. W., 1953. An Introduction to Thermodynamics, the Kinetic Theory of Gases and

Statistical Mechanics, Reading, MA: Addison-Wesley.
Sears, F. W. and M. W. Zemanski, 1984. University Physics, sixth edition, Reading, MA:

Addison-Wesley.
Seinfeld, J. S. and S. N. Pandis, 1998. Atmospheric Chemistry and Physics, New York:

Wiley Interscience.
Stewart, J., 1995. Calculus, third edition, Pacific Grove, CA: Brooks/Cole.
Stull, R. B., 1988. An Introduction to Boundary Layer Meteorology, Dordrecht: Kluwer.
Stull, R. B., 2000. Meteorology for Scientists and Engineers, Pacific Grove, CA:

Brooks/Cole.
Taylor, F. W., 2005. Elementary Climate Physics, Oxford: Oxford University Press.
US Air Weather Service Manual (AWSM 105-124).
Vardavas, I. M. and F. W. Taylor, 2007. Radiation and Climate, Oxford: Oxford

University Press.
Wallace, J. M. and P. V. Hobbs, 2006. Atmospheric Science: An Introductory Survey,

second edition, Amsterdam: Elsevier.
Warneck, P., 1999. Chemistry of the Natural Atmosphere, second edition, International

Geophysics Series, San Diego, CA: Academic Press.
Whitten, K. W., R. E. Davis and L. Peck, 1996. General Chemistry, Orlando, FL:

Saunders College Publishing.
Wills, A. P., 1958. Vector Analysis with an Introduction to Tensor Analysis, New York:

Dover.
Zemansky, M. W., 1968. Heat and Thermodynamics, New York: McGraw-Hill.



Index

activation energy, 202
additivity principle, 78
adiabat, 11
adiabatic, 57
air, 28
Archimedes’ Principle, 144
Arrhenius equation, 202
atm, 2
atomic number, 36
Avogadro’s number, 36

Boltzmann’s constant, 21
box product, 224
Brunt–Väisälä frequency, 148
bulk, 7
buoyancy force, 144

CAPE, 181
Carnot cycle, 84
Cartesian components, 221
Central Limit Theorem, 30
chemical potential, 93
CIN, 183
Clausius–Clapeyron equation, 110
closed system, 15
coefficient of expansion, 67
collision cross-section, 22
collision frequency, 23
component, 8
composite system, 78
compressibility, 66
conditional instability, 179
conservative force, 73
conservative property, 58
continuity equation, 240
convective available potential energy (CAPE), 181
convective inhibition energy (CIN), 183
coordinates, 7
critical isotherm, 102
cross product, 223
cyclonic wind, 222
cylindrical coordinates, 222
cylindrical pipe, 230

degrees of freedom, 52
density, 2
determinant, 224
dew point temperature, 114
diabatic, 75, 244
diathermal, 9
differential, 63
dimensions, 2
directional derivative, 227
divergence, 234, 236
divergence theorem, 239
dot product, 222
dynamics, 1, 220

efficiency, 85
effusion, 35
endothermic, 192, 194
enthalpy, 44, 61, 64
entropy, 74
equation of continuity, 220, 240
equation of state, 21
equilibration, 30
equilibrium constant, 207
equilibrium state, 7
equivalent potential temperature, 156
escape velocity, 19
exothermic, 192
exponential function, 15
extensive variable, 13

flux, 230, 231
Fourier’s Law, 232
free atmosphere, 159
free convection, level of (LFC), 178
free expansion, 77, 88
function of state, 54

geopotential, 141
geopotential height, 141
Gibbs energy, 89
gradient, 226
gravitational geopotential, 141
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harmonic oscillator, 148
haze, 129
heat, 48
heat transfer, 10
heating, 48
heating by radiation, 246
hectopascal, 2
Henry’s Law, 212
heterogeneous nucleation, 122
homogeneous nucleation, 122
hydrological cycle, 99
hydrostatic equation, 135, 146
hygroscopic, 126

ideal gas, 21, 70
inflection point, 102
integrating factor, 70, 72
integration constant, 110
intensive variable, 13
internal energy, 44, 51
internal energy of an ideal gas, 53
internally uniform property, 7
inversion, 179
irreversible change, 47
irreversible process, 12
isochoric, 50
isolated system, 11
isotherm, 10
isothermal path, 76
isotope, 36
isotropic, 32

joint distribution, 32

Kelvin, 26
kilogram, 2
kilopascal, 2

Lagrange multiplier, 160
latent heat, 63
LCL, 119
level surface, 227
LFC, 178
lifting condensation level, LCL, 119
Loschmidt number, 22

macroscopic, 7
mass flux density , 232
material derivative, 240, 242
maximum work, 47
Maxwell–Boltzmann distribution, 32
mean free path, 22
mean squared value, 29
mean value, 29
millibar, 2
mixing ratio, 113
mode, 30
moist, 156
moist adiabat, 155
moist static energy, 158
mol, 7

molar Gibbs energy, 91
mole, 7
molecular weight, 36
most probable velocity, 30

neutral buoyancy, level of (LNB), 179
Newton, 2, 5
Newton’s Second Law, 144

partial pressure, 39
pascal, 2
perfect differential, 70
photochemical reactions, 194
photodissociation, 194
physical chemistry, 191
Poisson’s equation, 58, 59
polar coordinates, 236
position vector, 225
potential energy, 6
potential instability, 180
potential temperature, 58, 75
pressure, 20
pressure gradient force, 228, 229
probability density function, pdf, 30
products, 192
pseudo-adiabatic process, 154

quasi-static process, 12

radiation, heating by, 246
random variable, 29
Raoult’s Law, 211
reactants, 9, 192
reaction rate coefficient, 202
realizations, 29
rectangular parallelepiped, 224
reduced volume, 103
relative humidity, 114
reservoir, 9
reversible adiabatic process, 75
reversible process, 12
reversible work, 47
root mean square, 28
rotating fluid, 237

saturated, 9
saturation equivalent potential temperature, 157
saturation vapor mixing ratio, 114
saturation vapor pressure, 102
scalar field, 225
scalar product, 222
scale height, 19, 24, 137
SI units, 2
sling psychrometer, 118
slope of dry adiabat, 138
sounding, 147
specific entropy, 75, 109
specific Gibbs energy, 91
specific heat capacity, 50
specific humidity, 115
specific volume, 103
stable layer, 145
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stable, stability, 145
standard conditions, 38
standard enthalpy for fusion, 64
standard enthalpy for vaporization, 64
standard enthalpy of formation, 192
Standard International units, 2
state of a system, 44
STP, 3, 38
supercooled, 111
supersaturated, 104
surface integral, 230
surface tension, 122
surroundings, 9, 77

temperature, 26
thermal advection, 233
thermal conductivity, 233
thermal energy, 48
thermodynamic coordinates, 7
thermodynamic equation, 220, 243
thermodynamic potential, 81

thermodynamic system, 7
thickness, 142
tracer, 155
triple point, 106

unit vector, 221
universal constant, 3, 21
universal gas constant, 3, 38
universe, 77
unstable, 145

vaporization, 64
variance, 29
vector addition, 221
vector field, 226
virtual temperature, 113
viscous flow, 232

weight, 5
wet-bulb potential temperature, 157
work, 13, 45
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