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Preface

The topic of lattice quantum spin systems (or ‘spin systems’ for short) is a fas-
cinating branch of theoretical physics and one of great pedigree, although many
important questions still remain to be answered. The ‘spins’ are atomic-sized mag-
nets that are localised to points on a lattice and they interact via the laws of quantum
mechanics. This intrinsic quantum mechanical nature and the large (usually effec-
tively infinite) number of spins leads to striking results which can be quite different
from classical results and are often unexpected and indeed counter-intuitive.

Spin systems constitute the basic models of quantum magnetic insulators and so
are relevant to a whole host of magnetic materials. Furthermore, they are important
as prototypical models of quantum systems because they are conceptually simple
and yet still demonstrate surprisingly rich physics. Low dimensional systems, in
2D and especially 1D, have been particularly fruitful because their simplicity has
enabled exact solutions to be found which still contain many highly non-trivial fea-
tures. Spin systems often demonstrate phase transitions and so we can use them to
study the interplay of thermal and quantum fluctuations in driving such transitions.
Of course there are many cases in which we can find no exact solution and in these
cases they can be used as a testing ground for approximate methods of modern-day
quantum mechanics. These quantum systems thus provide a great variety of inter-
esting and difficult challenges to the mathematician or physical scientist.

This book was prompted by a series of talks given by one of the authors (JBP) at
a summer school in Jyväskylä, Finland. These talks provided a detailed view of how
one goes about solving the basic problems involved in treating and understanding
spins systems at zero temperature. It was this level of detail, missing from other texts
in the area, that prompted the other author (DJJF) to suggest that these lectures be
brought together with supplementary material in order to provide a detailed guide
which might be of use, perhaps to a graduate student starting work in this area.

The book is organised into chapters that deal firstly with the nature of quantum
mechanical spins and their interactions. The following chapters then give a detailed
guide to the solution of the Heisenberg and XY models at zero temperature using
the Bethe Ansatz and the Jordan-Wigner transformation, respectively. Approximate
methods are then considered from Chap. 7 onwards, dealing with spin-wave the-
ory and numerical methods (such as exact diagonalisations and Monte Carlo). The
coupled cluster method (CCM), a powerful technique that has only recently been
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viii Preface

applied to spin systems is described in some detail. The final chapter describes other
work, some of it very recent, to show some of the directions in which study of these
systems has developed.

The aim of the text is to provide a straightforward and practical account of all
of the steps involved in applying many of the methods used for spins systems,
especially where this relates to exact solutions for infinite numbers of spins at zero
temperature. In this way, we hope to provide the reader with insight into the subtle
nature of quantum spin problems.

Manchester, UK John B. Parkinson
January 2010 Damian J.J. Farnell
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Chapter 1
Introduction

Abstract This chapter introduces the concept of atomic magnets and how they
combine to form systems which have macroscopic magnetic properties. Since the
magnetic moment of a single atom is closely associated with its angular momen-
tum or spin, it is necessary to study spins in order to understand macroscopic mag-
netism. At the atomic level, the properties of atoms are described in terms of quan-
tum mechanics and hence we need to study quantum spins and their interactions
(quantum spin systems). The nature of the exchange interaction is discussed, and
we distinguish between ferromagnetic and antiferromagnetic coupling. Finally we
summarise the contents of subsequent chapters.

Quantum spin systems are normally first encountered when studying magnetism.
A magnet displays its familiar properties, for example attraction of metallic objects,
because it is made up of atoms some or all of which are themselves tiny magnets.
They produce the observed effects when all or most of these atomic magnets align in
the same direction so that the net effect is the sum of all the individual magnets and
is thus of macroscopic scale. In order for these atomic magnets to align there must
be a force between them. One possibility for this force is the normal magnetic dipole
interaction which can produce a tendency for two magnetic dipoles to align either
parallel or antiparallel or indeed at an arbitrary angle, dependent upon their relative
positions. This is a long range interaction extending over many atomic spacings.
However it turns out that the magnetic dipole interaction is too weak to explain the
phenomenon of room-temperature magnetism. If this were the only possible interac-
tion, magnetism on a macroscopic scale would only occur at very low temperatures,
within a few degrees of absolute zero, where thermal fluctuations are very weak and
not strong enough to disrupt the delicate ordering.

In fact all magnetic materials that are of practical consequence have their atomic
magnets aligned by means of the exchange interaction. This is a direct consequence
of the Pauli exclusion principle and is basically due to the electric forces between
electrons in the atoms rather than magnetic forces. Since forces of electrical origin
are much stronger than those of magnetic origin at an atomic scale this explains why
the exchange interaction is powerful enough to permit macroscopic scale magnetism
even at room temperature. The exchange interaction has a much simpler form than
the magnetic dipole interaction. In addition it is very short range, being dependent

Parkinson, J.B., Farnell, D.J.J.: Introduction. Lect. Notes Phys. 816, 1–5 (2010)
DOI 10.1007/978-3-642-13290-2_1 c© Springer-Verlag Berlin Heidelberg 2010



2 1 Introduction

on overlap of atomic wave functions. These two facts make it rather easier to handle
than a magnetic dipole interaction.

The magnetic moment of an atom is often due, at least partly, to the motion of
the electrons around the nucleus. In a classical picture we can imagine the electrons
“orbiting” the nucleus rather like a planet or asteroid orbiting the sun. Since the
electron has an electric charge this effectively creates a minute current loop around
the nucleus and by the well known laws of electromagnetism this current loop has an
associated magnetic dipole. All atoms except hydrogen have more than one electron
and often the magnetic dipoles of the electrons cancel out so that most atoms do
not possess a net magnetic dipole. Again thinking classically, the electron orbiting
the nucleus also has an angular momentum, so we expect and find that the magnetic
dipole of an atom, where it exists, is associated with the angular momentum of the
atom. In fact the study of microscopic behaviour of magnetic materials is often a
study of how the angular momenta of the atoms interact rather than the magnetic
moments and that will be the case in this book.

Detailed calculation of the exchange interaction is possible in many cases. In
practice the form can often be expressed as

E = αS1 .S2 + βSz
1 Sz

2 (1.1)

where E is the energy of interaction between two atoms with angular momentum S1
and S2. Here we use the symbol S for the vector angular momentum for reasons that
will become clear shortly.

The special case α = J , β = 0 is called the isotropic Heisenberg interaction.
The special case α = 0, β = J is called the Ising interaction. In either case if J
is negative the lowest energy is obtained when the angular momentum vectors are
parallel. For the Heisenberg case there is no favoured axis of alignment, but for the
Ising case the favoured alignment is along the z-axis. If J is positive then the lowest
energy is obtained when the vectors are antiparallel rather than parallel.

Both special cases and the more general case have been extensively studied.
Since the Ising interaction is simpler mathematically than the Heisenberg, results
in 1D (i.e. one dimension) are usually fairly simple, but in 2D extremely important
and non-trivial results have been obtained, in particular the Onsager solution [1].
Because the mathematical formalism used for this is very different to that used in
this book it is not given here.

We use the word model to mean a system containing many atoms interacting
with each other, usually by means of nearest-neighbour interaction only. Virtually
no exact results are known for the 3D Ising model although there are extensive
numerical studies. In the Heisenberg case, many important and again non-trivial
exact results are known in 1D, whereas in 2D and 3D the results are almost entirely
numerical.

When the interaction favours parallel alignment of the magnetic atoms the result
is a ferromagnet. Antiparallel alignment gives rise to antiferromagnets, which do
not have a net macroscopic magnetic moment. Nevertheless, at the microscopic
level these materials are probably more interesting than ferromagnets and their study
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has contributed greatly to our understanding of magnetism, especially the quantum
mechanical properties. Some properties of antiferromagnets do manifest themselves
on a macroscopic scale, for example the magnetic contribution to the thermal prop-
erties such as the specific heat.

If the interaction is not restricted to nearest-neighbours, or there is more than one
type of magnetic atom present in the material, then other types of magnetism can
occur. A ferrimagnet is one in which some atoms are aligned in one direction and
others in the opposite direction, but there is a mismatch in the total magnetic moment
in the two directions so that there is a net macroscopic moment. Spiral ordering can
also occur in which the atoms do not align all along one axis, but the direction
rotates as one moves through the material. Often, but not always, this results in a
non-zero macroscopic magnetic moment. Ferrimagnets and spiral magnets will not
be covered in this book.

In this book we shall consider spin systems. These are systems that consist of two
or more particles each of which has an angular momentum and associated magnetic
moment. As a result, study of these systems is effectively a study of certain types
of magnetic materials. Usually the magnetic particles are atoms or ions of transition
metals such as Mn, Ni or Fe or rare-earths such as Ce or Nd. The book by Mattis [2]
has an excellent account of the history of magnetism.

Because this is such a vast topic we immediately restrict our attention to insu-
lating materials, i.e. we shall not consider metallic magnets. We take the particles
to be interacting by Heisenberg exchange which is electrical in origin and is nor-
mally much stronger than a magnetic interaction. The exchange interaction is in
fact between the angular momenta of the particles but since their magnetic moment
is proportional to the angular momentum it superficially appears as an interaction
between the magnetic moments, albeit of a much simpler form than the magnetic
dipole interaction.

We shall mainly consider the quantum case although there are many interesting
classical results which we shall include in some places.

Heisenberg in 1925 [3] and Schrödinger in 1926 [4–6] established the basis of
modern quantum mechanics. Their formalisms are somewhat different although
equivalent. The Schrödinger formalism emphasises the explicit form of the wave
function as obtained from the Schrödinger equation whereas the Heisenberg formal-
ism expresses the wave function as a vector which represents a linear combination
of basis states. The former is very successful in particular in atomic physics and in
problems in which particles move in a potential well with or without the presence
of electric and magnetic fields.

One area in which the Heisenberg formalism is especially useful is in the descrip-
tion of angular momentum. For the orbital angular momentum of single particles
this can be done in the Schrödinger formalism, but for interacting particles, espe-
cially many-body systems, it is much more convenient to use the Heisenberg for-
malism. Indeed, for the intrinsic angular momentum of elementary particles, the
spin, it is not possible to obtain a specific wave function. For baryons such as
the neutron and proton this is because the internal structure in terms of quarks is
rather complicated and in any case the quarks themselves have a spin, while the
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leptons such as the electron are believed to be point particles with no internal
structure.

Most of the magnetism observed in practice is due to electrons. It may be asso-
ciated with either the orbital angular momentum or the spin. For simplicity we shall
refer to the angular momenta in all cases as spin even when it is wholly or partly
due to orbital motion. The constant of proportionality between the magnetic moment
and the angular momentum is different in the two cases and we write

µ = gβS

where µ is the magnetic moment, S is the spin measured in units of h̄, β = eh̄

2m
is the

elementary unit of magnetic moment associated with unit spin, the Bohr magneton,
and g is the gyromagnetic ratio which is 1 for orbital angular momentum, 2 for
intrinsic spin and has an effective intermediate value when both are present.

We shall deal mainly with the ground state of the system and the elementary
excitations from this. This implies T = 0 or T → 0 and does not allow non-zero
T for which much more detailed knowledge of the full eigenstates is needed. The
exception to this is the 1D chain with S = 1

2 where the extra information needed is
available through the Bethe ansatz.

We shall consider all dimensionalities: 0D, 1D, 2D and 3D. 0D refers to finite-
sized clusters or chains for which exact results can often be obtained. These are
becoming of more interest in their own right but they can also shed light on the
behaviour in higher dimensionalities. 1D (i.e. infinite chains) is the dimension in
which dramatic exact quantum results for S = 1

2 have been obtained.
Numerical results include the Density Matrix Renormalisation Group (DMRG)

[7], which has been superbly successful in 1D where exact results are not avail-
able, e.g. for S > 1

2 . Many other numerical techniques exist, which are particularly
important for 2D and 3D where it has proved difficult to use the DMRG. We shall
describe one of these, the coupled cluster method, in detail in Chap. 10.

We shall mainly consider antiferromagnetic coupling with exchange interaction
J > 0. For ferromagnetic coupling with negative J it is usually straightforward to
write down the ground state in both quantum and classical cases. The elementary
excitations are also usually simple to obtain, often in the form of spin waves or
bound pairs of spin waves. The antiferromagnetic problem is much more difficult
and also more interesting and shows much greater differences between the classical
and quantum systems as is known from the analysis of the S = 1

2 chain. We shall
restrict our discussion mainly to systems with only nearest-neighbour exchange,
although next-nearest-neighbour exchange is considered briefly in the final chapter.
However, we shall allow the exchange to be anisotropic, and we shall also consider
the effect of an applied magnetic field in some places.

Another interesting feature of antiferromagnetic systems is the possibility of
frustration. This occurs when the system contains nearest-neighbour paths with odd
numbers of atoms. The simplest example is a cluster of three atoms, each of which
is nearest neighbour to both of the others. Since the antiferromagnetic exchange
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favours antiparallel alignment of nearest neighbours and this is not possible for all
neighbours we use the term frustration. This can also happen in larger finite-sized
clusters such as a five atom ring, a tetrahedron or an octahedron. It does not hap-
pen in 1D for nearest-neighbour-only exchange but it occurs in 2D, for example in
triangular and Kagome lattices and in 3D, for example in the HCP lattice.

Again we emphasise that this is not intended to be a comprehensive account of
spin systems which would be a formidable undertaking. Rather it is intended to
fulfil two roles. Firstly we present an introduction to spin systems which should
be of use to newcomers to the area, particularly graduate students. We then give a
fairly detailed description of the S = 1

2 chain which, because it has yielded so many
exact results of a highly non-trivial and counter-intuitive nature, can reasonably
be described as one of the crowning glories of many-body physics. Secondly we
consider some of the most important approximate methods including an important
modern technique, the coupled cluster method, and finally look at other work on
these systems.

Lastly, we mention that there are, of course, numerous other books on magnetism
and spin systems [2, 8–14]. As well as the the very comprehensive account given
in Mattis [2], an excellent introductory text is the book by Caspers [8]. The present
book differs from Caspers, partly in the choice of topics but also in the attempt to
give complete details of the mathematics of some of the important results.
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Chapter 2
Spin Models

Abstract Assuming only a basic knowledge of quantum mechanics, we develop
the quantum mechanics of angular momentum, distinguishing between orbital and
intrinsic angular momentum or spin. Suitable basis states are introduced, as are the
fundamental operators which act upon these. We consider the situation of just two
spins interacting via an exchange interaction. This leads us to introduce other spin
operators and evaluate their commutators. We discuss what happens when there are
large numbers of interacting spins. Finally we introduce the infinite linear (i.e. one-
dimensional) chain of spin-1/2 atoms. Some preliminary classical results for this
model are given as background for the full quantum treatment which will be studied
in detail in the following chapters.

2.1 Spin Angular Momentum

In this section we give a brief summary of some of the important results about
angular momentum [1] which are needed for a study of quantum spin systems.

There are two types of angular momentum which occur in nature. The first of
these, in its classical form, is familiar from very early days and arises from motion,
often circular, relative to some axis. This is called orbital angular momentum.

In quantum mechanics we usually first come across orbital angular momentum
when we study the eigenstates of the Schrödinger equation (SE) for the hydrogen
atom. The angular parts of these, using spherical polar coordinates, have the form

Y�,m(θ, φ) = C�,m Pm
� (θ)e

imφ ,

wherePm
� are polynomials in cos θ and/or sin θ of degree � – the associated Legendre

polynomials and C�,m is a normalisation constant.
These angular parts of the eigenstates of the time-independent SE have another

significance. They are also eigenstates of the angular momentum operators. For a
particle with momentum p and position vector r then the classical angular momen-
tum relative to an axis through the origin and perpendicular to the plane of motion
is L = r × p, and in quantum mechanics the angular momentum operator has the
same form

Parkinson, J.B., Farnell, D.J.J.: Spin Models. Lect. Notes Phys. 816, 7–19 (2010)
DOI 10.1007/978-3-642-13290-2_2 c© Springer-Verlag Berlin Heidelberg 2010
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L̂ = r̂ × p̂

where ˆ denotes an operator. These operators have the commutators
[
L̂ x , L̂ y

]
=

i h̄ L̂ z together with cyclic permutations.
Two of the most useful operators are L̂ z and L̂2 = (L̂ x )2 + (L̂ y)2 + (L̂ z)2. This

is because the Y�,m are eigenstates of both of these simultaneously. It is always pos-
sible to find states which are simultaneous eigenstates of two operators provided the
operators commute and we can easily show that [L̂ z, L̂2] = 0. The corresponding
eigenvalues are given by

L̂ zY�,m = mh̄Y�,m; L̂2Y�,m = �(�+ 1)h̄2Y�,m .

There are two other operators which have useful properties. These are defined as

L̂+ ≡ L̂ x + i L̂ y and L̂− ≡ L̂ x − i L y .

From these definitions it follows that

[L̂−, L̂+] = 2h̄Lz

and it can also be shown that

L̂+Y�,m = 0 if m = �.

However, if m < � then

L̂ z(L̂+Y�,m) = (m + 1)h̄(L+Y�,m) ,

L̂2(L̂+Y�,m) = �(�+ 1)h̄2(L̂+Y�,m) .

This means that L+Y�,m is also an eigenstate of L̂ z and L̂2. It has the same
eigenvalue of L̂2 as Y�,m , but an eigenvalue of L̂ z which is increased by one unit of h̄.
Clearly L̂+ converts Y�,m into Y�,m+1, to within a multiplicative constant, and it
is called the raising operator. Similarly L̂− converts Y�,m into Y�,m−1 to within a
multiplicative constant and is a lowering operator. That is L̂+Y�,m = AY�,m+1 and
L̂−Y�,m = BY�,m−1.

The second type sort of angular momentum which occurs in nature is the intrinsic
spin of elementary particles. This is a fundamental property of a particle. It is often
thought of as due to internal spinning of a particle, hence the name, but this is not
correct since, for example, an electron has spin angular momentum but is believed
to be a point particle with no internal structure.

The spin angular momentum has most of the properties of orbital angular
momentum, but also some special properties. For the present we shall use Ŝ for spin
angular momentum instead of L̂. Again we can use the eigenstates of Ŝz and Ŝ2 with
the same quantum numbers � and m such that
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Ŝz |�,m〉 = mh̄|�,m〉
Ŝ2|�,m〉 = �(�+ 1)h̄2|�,m〉

Clearly the spin eigenstate |�,m〉 behaves here just like the orbital eigenstate Y�,m ,
but there are two fundamental differences.

1. |�,m〉 does not have an explicit form in terms of θ and φ like Y�,m .
2. � may now be an integer, as before, or an integer + 1

2 , sometimes called a ‘half-
integer’.

The values of m still differ by unity and still take all values between −� and +�
but if � is an integer + 1

2 then so are the m.
For example 1 If � = 3

2 then the possible values of m are − 3
2 ,− 1

2 ,
1
2 , and 3

2 .
For example 2 If � = 1

2 then m can be − 1
2 or 1

2 .

We also have the operators Ŝ+ and Ŝ− corresponding to L̂+ and L̂− and with the
same properties as before, namely

Ŝ+|�,m〉 = 0 for m = �

while for m < �

Ŝz(Ŝ+|�,m〉) = (m + 1)h̄(Ŝ+|�,m〉)
Ŝ2(Ŝ+|�,m〉) = �(�+ 1)h̄2(S+|�,m〉) .

Again there are similar results for Ŝ−|�,m〉.
For the orbital angular momentum of an electron in a H-atom, states with differ-

ent � are possible, each of which has several possible values of m. For spin angular
momentum the value of � is fixed (it is a fundamental property of the particle) e.g.
� = 1

2 for electron � = 1 for some mesons etc. The only difference between eigen-
states is the value of m.

In magnetic materials the magnetic moment of an atom may be due to a com-
bination of spin and orbital angular momentum. The actual magnetic moment is
a simple but non-trivial function of the two types, usually described in terms of
the ‘Landé g-factor’ of the atom or ion which varies between 1 (for pure orbital
angular momentum) and 2 (for pure spin angular momentum). However we shall
always take the angular momentum to have a fixed value of � (i.e. the ‘magnitude’)
but allow m (i.e. the ‘orientation’) to vary. For this reason we usually refer to the
angular momentum of a magnetic atom as a spin and use the symbol Ŝ, even when it
is a combination of both types.

Single Spin- 1
2

For a single spin- 1
2 the value of � is 1

2 . The value of m may be + 1
2 or − 1

2 , so

there are two eigenstates of Ŝz :

|�,m〉 = | 1
2 ,

1
2 〉 or | 1

2 ,− 1
2 〉.

Alternative abbreviated notations for these which we use are



10 2 Spin Models

| 1
2 ,

1
2 〉 ≡ | 1

2 〉 ≡ |+〉
| 1
2 ,− 1

2 〉 ≡ | − 1
2 〉 ≡ |−〉 .

These two eigenstates form a complete set for a single spin 1
2 so an arbitrary state

may be written

ψ = α|+〉 + β|−〉.
The eigenstates are normalized and orthogonal:

〈+|+〉 = 〈−|−〉 = 1

〈+|−〉 = 0 .

From now on we shall omit the ˆ symbol on operators and also work in units in
which h̄ has the value 1. Hence

Sz |+〉 = 1
2 h̄|+〉 = 1

2 |+〉
Sz |−〉 = − 1

2 h̄|−〉 = − 1
2 |+〉

Also

S+|+〉 = 0 S−|−〉 = 0
S+|−〉 = |+〉 S−|+〉 = |−〉

Single Spin-1 This follows a similar pattern with � = 1 and m = 1, 0,−1. Again
we use a simplified notation:

|1, 1〉 ≡ |1〉 ≡ |+〉
|1, 0〉 ≡ |0〉

|1,−1〉 ≡ | − 1〉 ≡ |−〉
and the effect of the spin operators is

S+|−〉 = √
2|0〉 S+|0〉 = √

2|+〉 S+|+〉 = 0
S−|−〉 = 0 S−|0〉 = √

2|−〉 S−|+〉 = √
2|0〉

Sz |−〉 = − |−〉 Sz |0〉 = 0 Sz |+〉 = |+〉.
There are similar results for higher spins.

2.2 Coupled Spins

When spins interact with each other new phenomena can arise such as large scale
ferromagnetism or antiferromagnetism. If we study this behaviour using quantum
mechanics then some results are very similar to what one would expect from a
classical point of view. However, some results are quite different and this is what
makes the study of interacting spin systems so fascinating.
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The quantum treatment involves quite a lot of mathematics. In fact advanced
treatments use some very sophisticated methods, but in this introductory text these
will be kept to a minimum.

Much of our understanding comes from a study of exactly solvable models.
These are rather specialised but because they can be solved exactly they can be
studied in great depth. In 1D we shall consider in later chapters two models in
particular:

1. the Heisenberg chain – studied using the ‘Bethe Ansatz’ and
2. the XY chain – studied using the ‘Jordan-Wigner transformation’.

In the rest of this chapter we look at what happens when small numbers of spins
interact with each other, in particular the similarities and differences between the
classical and quantum mechanical cases. Simple results for much larger systems will
be introduced, setting the stage for the more complicated infinite quantum systems
discussed in later chapters.

2.3 Two Interacting Spin-1
2’s

Suppose we have just two atoms, each with spin- 1
2 , interacting with an isotropic

exchange interaction J (Heisenberg Exchange). The Hamiltonian is

H = J S1 · S2 (2.1)

Classically the energy of the system depends on the angle between the spins since

S1 · S2 = S1S2 cos θ.

S1 and S2 are both 1
2 so the energy is

Eclass = 1

4
J cos θ,

and since −1 ≤ cos θ ≤ 1 all energies are possible between + 1
4 J and − 1

4 J .
Quantum mechanically we need to find all the energy eigenstates of the system.

First we write down a complete orthonormal set of states for the system. Then we
write H as a matrix using this basis and finally diagonalise to find the eigenstates.

Using subscript 1 for the first spin, then a basis for the first spin consists of the
two eigenstates of Sz

1, namely |+〉1 and |−〉1. Similarly |+〉2 and |−〉2 form a basis
for the second spin. A basis for the pair is then

{| + +〉, | + −〉, | − +〉, | − −〉} (2.2)

where | + +〉 means |+〉1 |+〉2 etc. Hence the matrix for H will be size 4 × 4.
It is useful to rewrite the Hamiltonian (2.1) as follows
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H = J S1 · S2

= J (Sz
1 Sz

2 + Sx
1 Sx

2 + Sy
1 Sy

2 )

= J

(
Sz

1 Sz
2 + 1

2
S+

1 S−
2 + 1

2
S−

1 S+
2

)
(2.3)

This is easily shown as follows:

S+
1 S−

2 = (Sx
1 + i Sy

1 )(S
x
2 − i Sy

2 )

= Sx
1 Sx

2 + Sy
1 Sy

2 + i(Sy
1 Sx

2 − Sx
1 Sy

2 )

and S−
1 S+

2 = Sx
1 Sx

2 + Sy
1 Sy

2 − i(Sy
1 Sx

2 − Sx
1 Sy

2 )

so S+
1 S−

2 + S−
1 S+

2 = 2(Sx
1 Sx

2 + Sy
1 Sy

2 ).

Now consider the effect of the Hamiltonian (2.3) operating on each member of
the basis (2.2), noting the following points

1. All operators on different atoms commute e.g. [Sx
1 , Sy

2 ] = 0.
2. S1 operators act only on the first spin, and have no effect on the second

e.g. S+
1 | − −〉 = | + −〉,

and likewise S2 operators act only on the second spin.
First consider Sz

1 Sz
2 operating on each basis state:

Sz
1 Sz

2| + +〉 = 1

2
· 1

2
| + +〉 = 1

4
| + +〉

Sz
1 Sz

2| + −〉 = −1

4
| + −〉

Sz
1 Sz

2| − +〉 = −1

4
| − +〉

Sz
1 Sz

2| − −〉 = +1

4
| − −〉.

Now consider S+
1 S−

2 and S−
1 S+

2 operating on each basis state, noting that
S+

1 | + +〉 = 0 since S+
1 acts on |+〉1 etc.:

S+
1 S−

2 | + −〉 = 0

S+
1 S−

2 | − +〉 = | + −〉
S+

1 S−
2 | − −〉 = 0

S−
1 S+

2 | + +〉 = 0

S−
1 S+

2 | + −〉 = | − +〉
S−

1 S+
2 | − +〉 = S−

1 S+
2 | − −〉 = 0
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Using these together with (2.3) we get

H| + +〉 = 1

4
J | + +〉

H| + −〉 = −1

4
J | + −〉 + 1

2
J | − +〉

H| − +〉 = −1

4
J | − +〉 + 1

2
J | + −〉

H| − −〉 = 1

4
J | − −〉,

which means that in matrix form, labelling the rows with the basis states

H = J

⎛
⎜⎜⎝

1
4 0 0 0
0 − 1

4
1
2 0

0 1
2 − 1

4 0
0 0 0 1

4

⎞
⎟⎟⎠

| + +〉
| + −〉
| − +〉
| − −〉

The eigenvalues of this matrix are easily obtained (omitting J for clarity in the
working)

∣∣∣∣∣∣∣∣

1
4 − E 0 0 0

0 − 1
4 − E 1

2 0
0 1

2 − 1
4 − E 0

0 0 0 1
4 − E

∣∣∣∣∣∣∣∣
= 0

(
1

4
− E

)2 ∣∣∣∣
− 1

4 − E 1
2

1
2 − 1

4 − E

∣∣∣∣ = 0

(
1

4
− E

)2
[(

1

4
+ E

)2

− 1

4

]
= 0

(
1

4
− E

)2 [(1

4
+ E

)
+ 1

2

] [(
1

4
+ E

)
− 1

2

]
= 0

giving E = 1
4 ,

1
4 ,

1
4 ,− 3

4 .

Thus, after restoring J , the eigenvalues are E = J

4
(3 times) and −3J

4
. The first

three of these form a triplet and the last one a singlet.
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The maximum eigenvalue here,
J

4
, is the same as in the classical case, but the

minimum eigenvalue, −3J

4
, is much lower. This is clearly a new quantum effect.

Now let us consider the corresponding eigenstates. Since the three eigenvalues( J
4

)
are degenerate the choice of corresponding eigenvectors is somewhat arbitrary.

It is easy to verify that the following is a suitable orthonormal set.

ψ1 ≡

⎛
⎜⎜⎝

1
0
0
0

⎞
⎟⎟⎠ ψ2 ≡

⎛
⎜⎜⎜⎝

0
1√
2

1√
2

0

⎞
⎟⎟⎟⎠ ψ3 ≡

⎛
⎜⎜⎝

0
0
0
1

⎞
⎟⎟⎠ ψ4 ≡

⎛
⎜⎜⎜⎝

0
1√
2

− 1√
2

0

⎞
⎟⎟⎟⎠

the first three having eigenvalue J
4 and ψ4 having eigenvalue − 3J

4 .

2.4 Commutators and Quantum Numbers

The commutation relations between the operators Sz , S+ and S− follow from those
between Sx , Sy and Sz . From the definitions of S+ ≡ Sx + i Sy and S− ≡ Sx − i Sy

we have

[Sz, S+] = [Sz, Sx ] + i[Sz, Sy]
= i h̄Sy + i(−i h̄Sx )

= h̄S+ = S+ (putting h̄ = 1 again).

Similarly [Sz, S−] = −S−,
and [S−, S+] = −i[Sy, Sx ] + i[Sx , Sy] = −2Sz .

For the interacting pair of spins the operator

Sz
T = Sz

1 + Sz
2

gives the z-component of total angular momentum of the pair.
Clearly [Sz

T , Sz
1 Sz

2] = 0 since only Sz
1 and Sz

2 are involved. Also

[Sz
T , S+

1 S−
2 ] = [Sz

1, S+
1 S−

2 ] + [Sz
2, S+

1 S−
2 ]

= [Sz
1, S+

1 ]S−
2 + S+

1 [Sz
2, S−

2 ]
= S+

1 S−
2 + S+

1 (−S−
2 ) = 0,

and similarly [Sz
T , S−

1 S+
2 ] = 0.

This means that Sz
T commutes with each term in Hamiltonian (2.3), so Sz

T is a
good quantum number. In fact the basis states have the property
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Sz
T | + +〉 =

(
1

2
+ 1

2

)
| + +〉 = | + +〉

Sz
T | + −〉 =

(
1

2
− 1

2

)
| + −〉 = 0

Sz
T | − +〉 = 0

Sz
T | − −〉 = −| − −〉

so the eigenstates ψ1, ψ2, ψ3 and ψ4 have the properties that

Sz
Tψ1 = ψ1, Sz

Tψ2 = 0, Sz
Tψ3 = −ψ3 and Sz

Tψ4 = 0.

ψ2 andψ4 have eigenvalue 0 of Sz
T whileψ1 has eigenvalue 1 andψ3 eigenvalue −1.

For Heisenberg exchange we also have one additional property. The Hamiltonian
(2.3) is

H = JS1 · S2

which is obviously isotropic and does not distinguish between x, y, z. Since we
know that [Sz

T ,H] = 0 it follows that [Sx
T ,H] = 0 and [Sy

T ,H] = 0 also.
If two operators commute it is possible to find states which are eigenstates of

both simultaneously. Since [Sx
T , Sz

T ] 	= 0 we can find states which are eigenstates
of H and also of Sz

T as we have done and we could find (different) states which are
eigenstates of H and also of Sx

T . However it is not possible to find states which are
eigenstates of both Sx

T and Sz
T .

The total spin angular momentum is given by

ST = S1 + S2

so S2
T = (S1 + S2)

2 = Sx2

T + Sy2

T + Sz2

T .

Since H commutes with all of Sx
T , Sy

T and Sz
T it follows that [S2

T ,H] = 0 also. The
eigenstates {ψ1, ψ2, ψ3, ψ4} are simultaneously eigenstates of H, Sz

T and S2
T .

It may be easily verified that the corresponding eigenvalues of the operator S2
T

are given by

S2
Tψ1 = 2ψ1

S2
Tψ2 = 2ψ2

S2
Tψ3 = 2ψ3

S2
Tψ4 = 0.

Hence the three triplet states ψ1, ψ2, ψ3 have total angular momentum
quantum number � = 1, i.e. S2

Tψ1 = �(�+ 1)ψ1 with � = 1, while the singlet state
ψ4 has � = 0.
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2.5 Physical Picture

A simple physical picture of this situation is as follows. Combining two spin- 1
2

atoms, we can form either a ‘spin-1’ configuration or a ‘spin-0’ configuration. The
‘spin-1’ configuration can have 3 possible ‘orientations’, i.e. values of z component,
giving

state explicit form ‘picture’ ST Sz
T E

ψ1 | + +〉 ↑↑ 1 1 J/4
ψ2

1√
2
(| + −〉 + | − +〉) →→ 1 0 J/4 triplet

ψ3 | − −〉 ↓↓ 1 −1 J/4
ψ4

1√
2
(| + −〉 − | − +〉) ↑↓ 0 0 −3J/4 singlet

The three triplet states have the two spins parallel. This is called a ferromagnetic
arrangement since the magnetic moments will also be parallel.

The singlet ψ4 is a ‘spin-0’ configuration which has no ‘orientation’. This state
has antiparallel spins and is an antiferromagnetic arrangement.

It follows that if J is positive then the ground state is antiferromagnetic, but if
J is negative then the ground state is ferromagnetic. This agrees with the classical
picture, but the actual values of the energy are not the same as in the classical case.

2.6 Infinite Arrays of Spins

A magnetic crystal consists of a large number, N , of magnetic atoms in a regular
array. Each atom has a ‘spin’ and associated magnetic moment. If the spins (and
moments) are all aligned in the same direction we have a ferromagnet with a large
net magnetic moment. Other possible configurations in the absence of a magnetic
field are

disordered (random alignment) −→ paramagnet

alternating up and down −→ antiferromagnet

If a small magnetic field is applied to a paramagnet then the ordering will still be
largely random but with a tendency to align in the opposite direction to the applied
field.

The most important case in practice is the limit N → ∞, called the thermody-
namic limit. At any non-zero temperature, thermal fluctuations will tend to reduce
the perfect alignment in a ferromagnet or antiferromagnet. However, there may still
be a net alignment up to some critical temperature TC above which the system is
paramagnetic. This critical temperature is called the Curie temperature for a ferro-
magnet, and the Néel temperature, usually written as TN , for an antiferromagnet
(Fig. 2.1).
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Mz
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Antiferromagnet

T sub

Fig. 2.1 Magnetisation of a ferromagnet and sublattice magnetisation of an antiferromagnet as a
function of temperature. Note that the total magnetisation 〈Mz〉 is always zero for the antiferro-
magnet

In one dimension (1D) and two dimensions (2D) the critical temperature TC or
TN is zero, i.e. 〈Mz〉 = 0 or 〈Mz

sub〉 = 0 for T > 0, where Mz = g βSz
T is the

magnetisation, but at T = 0 we may still have ferromagnetic or antiferromagnetic
ordering. In addition in 2D there occurs a more subtle type of ordering at non-zero
temperatures known as the Kosterlitz–Thouless transition [2].

As we discussed earlier, the reason why atoms try to align parallel (or anti-
parallel) is because of the interaction between them. Although this could be a mag-
netic dipole interaction, in practice it is usually an exchange interaction which is
quantum mechanical in origin and derives from the electric Coulomb force between
electrons and hence is much stronger than the magnetic dipole interaction.

Depending on the types of atom involved and the environment in which they exist
the exchange interaction may have different forms. Examples are:

a. Heisenberg J S1 · S2 (as before)
b. Ising J Sz

1 Sz
2

c. Anisotropic (a combination of the above)

J [ΔSz
1 Sz

2 + (Sx
1 Sx

2 + Sy
1 Sy

2 )]

d. Biquadratic J (S1 · S2)
2

In addition there may be other terms in the Hamiltonian which are not inter-
actions, but involve individual spins e.g. crystal field terms, typically of the form
A(Sz

1)
2, or external magnetic field terms of the form H Sz

1.
A magnetic crystal consists of a large array with many (N ) atoms. However, the

exchange interaction is normally very short range. A simple approximation, but one
that is accurate for many crystals, is to assume that only nearest-neighbours in the
array interact. The simplest types of array are

3D Simple cubic. A interacts with B, C and D but not with E or F.
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A

C

D E

F

B

2D Square. A interacts with B but not with C.

A

C

B

1D Chain. A interacts with B but not with C.

A CB

The differences between quantum mechanical and classical behaviour are most
marked for low values of spin and for low dimensions. For these reasons, and also
because it is the most tractable mathematically, we shall study first the 1D chain of
spin- 1

2 atoms interacting with nearest neighbour Heisenberg exchange.

2.7 1D Heisenberg Chain with S = 1
2 and Nearest-Neighbour

Interaction

Since this is a 1D system the ferromagnetic or antiferromagnetic ordering only
occurs at zero temperature but as well as being simpler to handle than non-zero
T it is arguably more interesting.

The details of how this chain is treated quantum mechanically is the subject of
the next chapters. Here we simply set the stage by giving some simple classical
results.

The mathematics is simplified if we use periodic boundary conditions. This
means that the ends of the chain are joined so that the N ’th atom is a nearest-
neighbour of the first as well as of the (N −1)’th. Of course the chain is not actually
curved to achieve this: it is purely a mathematical device which ensures that there
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are no ‘ends’ to worry about. In any case, we shall take the limit N → ∞, so any
curvature would tend to zero.

The Hamiltonian for the system is

H = J [S1 · S2 + S2 · S3 + . . .+ SN · S1]

= J
N∑

i=1

Si · Si+1 where i + N ≡ i (2.4)

Since the interaction is nearest-neighbour only, the classical solution of (2.4) is
very similar to the case of just two spins.

If J < 0 the lowest energy of a pair of spins occurs when they are aligned paral-
lel, i.e. in the same direction. This can be achieved for every pair simultaneously if
all the spins point in the same direction:

. . . ↑ ↑ ↑ ↑ ↑ ↑ . . .

which is clearly a ferromagnetic arrangement. In this case the energy is
E = N J S2 = 1

4 N J which is negative.
If J > 0 the lowest energy of a pair is when they are antiparallel. Provided N is

even this can be achieved for all pairs on the chain by alternating:

· · · ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ · · ·
N−1 N 1 2 3 4

which is an antiferromagnetic arrangement. The energy is E = −N J S2 = − 1
4 N J .

Since each nearest-neighbour pair has its minimum energy configuration this
arrangement minimises the overall energy and any other arrangement of the atoms
would have higher energy.

Notice that rotation of all the spins by same amount does not affect the classical
energy, i.e.

. . . ↗ ↗ ↗ ↗ ↗ . . . or . . . → → → → → . . .

have the same energy as . . . ↑ ↑ ↑ ↑ ↑ . . . for the ferromagnetic arrangement.
Similarly the antiferromagnetic arrangement can be rotated without changing the
overall (classical) energy.
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Chapter 3
Quantum Treatment of the Spin-1

2 Chain

Abstract For the spin-1/2 linear chain the simplest state is the fully aligned state,
which is the ground state if the interaction is ferromagnetic. The ground state energy
is easily calculated. The elementary excitations are states in which the spin of one
atom is reversed, although the actual states are linear combinations of many of these
states. Again the energies can be calculated exactly. For antiferromagnetic coupling
these states, along with the aligned state, are still eigenstates albeit of much higher
in energy than the actual ground state. Much information can also be obtained from
a detailed study of the states with two reversals. Using these results it is possible
to gradually increase the number of such reversals and still obtain exact eigenstates.
This is the fundamental idea of the Bethe Ansatz, which is described in detail. When
exactly half the atoms are reversed then the true antiferromagnetic ground state is
obtained.

3.1 General Remarks

In the previous chapter we obtained some results using a classical treatment of
the spin chain with the Hamiltonian Eq. (2.4). In this chapter we give a quantum
mechanical treatment and obtain many more results, some of which have classical
analogues which were not given there.

As a first step we construct a basis for the N spin- 1
2 atoms. For a single atom a

basis consists of the two states {|+〉, |−〉}. For the complete chain a basis would be
all states of form

| + + − − + − − + − − − − + + . . . 〉
1 2 3 4 5

where the spin of each atom may be + or −. Clearly the number of states in the basis
is 2N which is very large. We can now proceed to find the eigenstates of Eq. (2.4)
using this basis.

First rewrite Eq. (2.4) as

H = J
N∑

i=1

[
Sz

i Sz
i+1 + 1

2

(
S+

i S−
i+1 + S−

i S+
i+1

)]
. (3.1)

Parkinson, J.B., Farnell, D.J.J.: Quantum Treatment of the Spin-1/2 Chain. Lect. Notes Phys. 816,
21–38 (2010)
DOI 10.1007/978-3-642-13290-2_3 c© Springer-Verlag Berlin Heidelberg 2010
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As before, we define the total z component as

Sz
T =

∑
j

Sz
j .

Now clearly [Sz
T , Sz

i Sz
i+1] = 0 since only Sz operators are involved.

Also [Sz
T , S+

i S−
i+1] = S+

i [Sz
T , S−

i+1] + [Sz
T , S+

i ]S−
i+1

= S+
i [Sz

i+1, S−
i+1] + [Sz

i , S+
i ]S−

i+1

= S+
i (−S−

i+1)+ S+
i S−

i+1 = 0

and similarly [Sz
T , S−

i S+
i+1] = 0. Hence Sz

T commutes with each term in H so

[Sz
T ,H] = 0 .

This result is the same as in the two spin case and again we can choose the eigen-
states of H to be eigenstates of Sz

T also.
Also, just as in the two spin case, because the Heisenberg exchange interaction

is isotropic, it follows that if we define Sx
T and Sy

T similarly, each of these will also
commute with H. (This will not be true for other types of interaction.) Therefore
the square of the total angular momentum (or spin)

S2
T ≡ Sx2

T + Sy2

T + Sz2

T

also commutes with H. For example [S2
T ,H] = 0.

Hence for the Heisenberg Hamiltonian we can choose the eigenstates of H to
be simultaneously eigenstates of S2

T and any one of Sz
T , Sx

T or Sy
T . They cannot

be eigenstates of all four operators since none of Sz
T , Sx

T or Sy
T commutes with

each other. In practice we always choose them to be simultaneous eigenstates of S2
T

and Sz
T .

3.2 Aligned State

There is only one state in the basis with Sz
T = N 1

2 namely the aligned state

|A〉 ≡ | + + + · · · + ++〉

which has all spins up. It follows that this must be an eigenstate of H. (H commutes
with Sz

T so there is no coupling to states with different Sz
T ). In fact we can see this

clearly by calculating
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H|A〉 = J
∑

i

[
Sz

i Sz
i+1 + 1

2

(
S+

i S−
i+1 + S−

i S+
i+1

)] |A〉 (3.2)

First note that Sz
i |A〉 = 1

2 |A〉 since the i th atom is |+〉, and so Sz
i Sz

i+1|A〉 = 1
4 |A〉.

Also S+
i |A〉 = 0 since the i th atom is in the state |+〉 and S+

i+1|A〉 = 0 since the
(i+1)th atom is also in the state |+〉. Therefore, S+

i S−
i+1|A〉 = 0 and S−

i S+
i+1|A〉= 0.

Thus,

H|A〉 = J
∑

i

[
1

4
|A〉 + 0|A〉

]
= J N

4
|A〉.

This proves that the aligned state |A〉 is an eigenstate of H with eigenvalue N J
4 . It is

useful to define EA ≡ N J
4 , the energy eigenvalue of the aligned state.

If J is negative this is the actual ground state, and since all the atoms are paral-
lel (‘up’) it is ferromagnetic. The eigenvalue EA is the ground state energy of the
system and it is exactly the same as in the classical case. It is important to notice
that the ground state is highly degenerate. The same arguments show that the state
with all atoms ‘down’ is also an eigenstate with eigenvalue EA. In fact there is an
eigenstate with this eigenvalue for every value of Sz

T , and this corresponds to the
rotation without change of energy that we saw in the classical case.

If J is positive then |A〉 is actually the state of highest energy. It is still a valid
eigenstate but obviously not the ground state. In fact as we shall see later the ground
state is very complicated but is truly antiferromagnetic.

3.3 Single Deviation States

Now consider states with Sz
T = N

2 − 1, i.e. one deviation from the aligned state. In
the basis there are N states with a single spin in the |−〉 state. These are

| − + + + + . . .+ +〉 ≡ |1〉
| + − + + + . . .+ +〉 ≡ |2〉
| + + − + + . . .+ +〉 ≡ |3〉 etc.

When we change a spin from |+〉 to |−〉 the value of Sz for that spin changes from
+ 1

2 to − 1
2 , so the change is −1. Hence each of the above states has Sz

T = N
2 − 1.

There are no other states in the basis with this value of Sz
T .

Consider one of these states

| j〉 ≡ | + + + . . .+ − + . . .+ +〉
↑

j th site
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and act upon it by terms in H given by Eq. (3.1).

Sz
i Sz

i+1| j〉 = 1

4
| j〉 if j 	= i, i + 1

= −1

4
| j〉 if j = i, i + 1 .

In
∑

i

Sz
i Sz

i+1 there are two terms in which i = j or i + 1 = j , all the others (N − 2

of these) satisfy the first condition. Hence

∑
i

Sz
i Sz

i+1| j〉 =
[
(N − 2)

1

4
+ 2

(
−1

4

)]
| j〉 =

(
N

4
− 1

)
| j〉.

Now consider the effect of operator S+
i S−

i+1 on | j〉.

S+
i S−

i+1| j〉 = 0 unless i = j since only the j th spin is ‘down’

If i = j then

S+
j S−

j+1| j〉 = S+
j S−

j+1| + + . . .+ −
j

+ . . .+〉

= S−
j+1| + + . . .+ +

j
+ . . .+〉

= | + + . . .+ + −
j+1

. . .+〉 = | j + 1〉.

Therefore
∑

i S+
i S−

i+1| j〉 = | j + 1〉.
Similarly

∑
i

S−
i S+

i+1| j〉 = | j − 1〉. (Coming from the term with i + 1 = j)

Hence, using Eq. (3.1)

H| j〉 = J

[(
N

4
− 1

)
| j〉 + 1

2
| j − 1〉 + 1

2
| j + 1〉

]

= EA| j〉 + J

[
1

2
| j − 1〉 + 1

2
| j + 1〉 − | j〉

]
. (3.3)

A true eigenstate state of H is constructed as a linear combination of the | j〉 by
putting
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ψ =
∑

j

f j | j〉 (3.4)

where the f j are coefficients. The Schrödinger equation is

Hψ = Eψ

and therefore ∑
j

f jH| j〉 = E
∑

j

f j | j〉

∑
j

f j EA| j〉 +
∑

j

f j J

[
1

2
| j − 1〉 + 1

2
| j + 1〉 − | j〉

]
= E

∑
j

f j | j〉.

Now operate on the left by 〈�|. Since the basis is orthonormal

〈�| j〉 = δ�j etc.

and therefore

J

[
1

2
f�+1 + 1

2
f�−1 − f�

]
= (E − EA) f� = ε f�, (3.5)

where ε = E − EA is the energy difference between this state and the aligned state.
This is a simple difference equation for the f�. The solutions have the form of

plane waves

f� = ckeik� (ck constant) (3.6)

as can be seen by substituting in Eq. (3.5):

J

[
1

2
ckeik(�+1) + 1

2
ckeik(�−1) − ckeik�

]
= εkckeik�

where εk is the value of ε associated with k. Dividing by ckeik�

J

[
1

2
eik + 1

2
e−ik − 1

]
= εk

and so εk = J (cos k − 1). (3.7)

Clearly we have solutions of (3.5) with the form (3.6) for any value of k. However,
site � + N is the same as site � because of the periodic boundary conditions, and
therefore

f�+N = f�.
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Using (3.6) ckeik(�+N ) = ckeik�

so eikN = 1 = ei2πλ where λ is an integer.
It follows that k is given by

k = λ
2π

N
with 0 ≤ λ ≤ N − 1 .

There are N different eigenstates of this form corresponding to the N possible values
of λ.

In summary we have found that eigenstates with Sz
T = N

2 − 1 (i.e. with 1 net
deviation from the aligned state) have the form

ψk = ck

∑
�

eik�|�〉 where k = λ
2π

N

with λ an integer, and the corresponding eigenvalue is εk = J (cos k − 1). ck is
an arbitrary constant. Normalising the eigenstates by putting 〈ψk |ψk〉 = 1 gives

ck = 1√
N

.

If J is negative then the ground state is the aligned ferromagnetic state and these
states are the elementary excitations and are called ‘spin-waves’ or ‘magnons’. The
excitation energy εk is given by

εk = − J (1 − cos k)

and since J is negative

εk = |J |(1 − cos k) which is shown in Fig. 3.1

The parameter k is often called a wave-vector even though in 1D it is a ‘one-
component vector’, effectively a scalar.

εk

|J|

2

0 π 2π k

Fig. 3.1 Spectrum of elementary excitations (spin waves) of the 1D spin- 1
2 chain with ferromag-

netic isotropic nearest-neighbour Heisenberg exchange
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3.4 Two Deviation States

Now consider states with Sz
T = N

2 − 2, i.e. two deviations from the aligned state.
As we shall see the eigenstates have the form of two spin waves which interact with
each other. Sometimes the interaction is small and the energies of the spin waves are
only slightly perturbed from those of free spin waves, together with small shifts in
the k-vectors. In other cases the interaction is strong leading to a new type of state
known as a bound state.

In the basis there are N (N−1)
2 states with two ‘−’ spins. For example

|−
1
−
2

+ + + + · · · +〉 ≡ |12〉

| · · · + −
j1

+ + + · · · + −
j2

+ . . . 〉 ≡ | j1 j2〉

Clearly | j1 j2〉 ≡ | j2 j1〉 so to avoid overcounting we insist that j2 > j1. Note
j2 	= j1 since if we try to lower Sz for a spin- 1

2 which is already in a ‘−’ state we
get 0 :

S−
j1
|+〉 = |−〉

(S−
j1
)2|+〉 = S−

j1
|−〉 = 0.

Now act on the basis states with the terms in H.
Firstly consider Sz

i Sz
i+1| j1 j2〉 :

a. Sz
i Sz

i+1| j1 j2〉 = 1
4 | j1 j2〉 provided j1 	= i, i + 1 and j2 	= i, i + 1,

i.e. neither of i nor i + 1 is ‘−’.

b. Sz
i Sz

i+1| j1 j2〉 = − 1
4 | j1 j2〉 if i = j1 and i + 1 	= j2 or

if i 	= j1 and i + 1 = j2, i.e. one of i , i + 1 is ‘−’ but not both.

c. Sz
i Sz

i+1| j1 j2〉 = 1
4 | j1 j2〉 if i = j1 and i + 1 = j2, i.e. both i and i + 1 are

‘−’.

There are thus two distinct cases after summing over i :

(a) j1, j2 adjacent i.e. j2 = j1 + 1 e.g. | + + · · · + − − + . . . 〉 then

∑
i

Sz
i Sz

i+1| j1 j1 + 1〉

=
[
(N − 3)

1

4
+ 2

(
−1

4

)
+ 1

(
1

4

)]
| j1 j1 + 1〉



28 3 Quantum Treatment of the Spin- 1
2 Chain

where the first term comes from the case with i, i + 1 both ‘+’, the second from the
case with one ‘+’ and the other ‘−’ and the third term from the case with both ‘−’.
Hence

∑
i

Sz
i Sz

i+1| j1 j1 + 1〉 =
(

N

4
− 1

)
| j1 j1 + 1〉.

(b) j2 not adjacent to j1 | + + − + + · · · + + − ++〉

∑
i

Sz
i Sz

i+1| j1 j2〉

=
[
(N − 4)

1

4
+ 4

(
−1

4

)]
| j1 j2〉 =

(
N

4
− 2

)
| j1 j2〉.

Now consider

S+
i S−

i+1| j1 j2〉

This will be 0 unless i = j1 or j2. It will also be 0 if i + 1 = j1 or j2.
Again after summing over i there are two distinct cases:

(a) j1, j2 adjacent

∑
i

S+
i S−

i+1| j1 j1 + 1〉 = | j1 j1 + 2〉,

only one term in the sum giving a non-zero result.

(b) j1, j2 not adjacent

∑
i

S+
i S−

i+1| j1 j2〉 = | j1 + 1, j2〉 + | j1 j2 + 1〉,

thus two terms giving non-zero results.
Similarly

∑
i

S−
i S+

i+1| j1 j2〉 = | j1 − 1, j1 + 1〉 if j2 = j1 + 1

= | j1 − 1, j2〉 + | j1, j2 − 1〉 otherwise.
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Hence, if j2 	= j1 + 1 (and j1 	= 1, j2 	= N , due to periodic boundary conditions)
then

H| j1 j2〉 = J
(N

4
− 2

)
| j1 j2〉

+ J

2

(
| j1 − 1, j2〉 + | j1 + 1, j2〉 + | j1, j2 − 1〉 + | j1, j2 + 1〉

)
,

while, if j2 = j1 + 1 (or j1 = 1 and j2 = N , again due to periodic boundary
conditions) then

H| j1 j1 + 1〉 = J
(N

4
− 1

)
| j1 j1 + 1〉 + J

2

(
| j1 − 1, j1 + 1〉 + | j1, j1 + 2〉

)
.

The actual eigenstate is a linear combination of the form

ψ =
∑
j1 j2

f j1 j2 | j1 j2〉 j2 > j1 ,

so the Schrödinger equation Hψ = Eψ gives

N−1∑
j1=1

N∑
j2= j1+1

f j1 j2H| j1 j2〉 =
∑

j1

∑
j2

f j1 j2 E | j1 j2〉.

Multiplying on the left by 〈�1�2| and using

〈�1�2| j1 j2〉 = δ�1 j1δ�2 j2

〈�1�2| j1 − 1 j2〉 = δ�1 j1−1δ�2 j2 etc.

gives eventually two equations

(EA − E − 2J ) f�1�2 + J

2

(
f�1−1�2 + f�1+1�2 + f�1�2−1 + f�1�2+1

)
= 0 (3.8)

provided �2 	= �1 + 1, and

(EA − E − J ) f�1�1+1 + J

2

(
f�1−1�1+1 + f�1�1+2

)
= 0 . (3.9)

Equation (3.9) acts as a sort of ‘boundary condition’ to (3.8). It differs from (3.8)
in that there are only two ‘incorrect’ bonds (i.e. of the form +− or −+ rather than
++) instead of four giving J instead of 2J in the first term. Furthermore, terms
where the lowering operator acts twice at the same site are missing, as these cannot

occur for spin−1

2
.
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Again these are difference equations and we can easily find a solution of (3.8) of
the form

f�1,�2 = eik1�1eik2�2 (3.10)

Proof After substituting (3.10) into (3.8) and then dividing by eik1�1eik2�2 we get

(−ε − 2J )+ J

2

(
e−ik1 + eik1 + e−ik2 + eik2

)
= 0

where ε ≡ E − EA. Therefore

ε = J (cos k1 + cos k2 − 2) (3.11)

Provided this is satisfied then f�1,�2 as given is a solution. Note that this solution
has an energy ε which consists of sum of two energies of same form as for a single
deviation state εk = J (cos k − 1). However, as we shall see, the values of k1, k2 are
not the same as the values which occur in εk .

We must still satisfy the ‘boundary condition’ Eq. (3.9). For a given value of ε
given by (3.11), then clearly both

f�1,�2 = eik1�1eik2�2

and

f ′
�1,�2

= eik2�1eik1�2

satisfy (3.8). The most general solution of (3.8) is thus

f�1,�2 = c1eik1�1eik2�2 + c2eik2�1eik1�2 . (3.12)

Only the ratio of c1 and c2 is important as the absolute values can be determined
by normalisation. Put c1

c2
= eiφ (we allow φ to be complex so there is no loss of

generality here) and then write

f�1,�2 = C
(
eik1�1eik2�2eiφ/2 + eik1�2eik2�1e−iφ/2

)
(3.13)

where C is an overall normalisation constant.
Substituting this into (3.9), then, after dividing by Ceik1�1eik2�1e−iφ/2, we get

(−ε− J )
(
eik2eiφ + eik1

)
+ J

2

(
e−ik1eik2eiφ + e−ik2eik1 + ei2k2eiφ + ei2k1

)
= 0.

It is convenient to introduce x1 = eik1 , x2 = eik2 , and y = eiφ so that
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(−ε − J )(x2y + x1)+ J

2

(
x2

2 y + x2
1 + x−1

1 x2y + x1x−1
2

)
= 0 . (3.14)

Now use the earlier result that

ε = J (cos k1 + cos k2 − 2)

so − ε − J = J (1 − cos k1 − cos k2)

= J

(
1 − x1

2
− x−1

1

2
− x2

2
− x−1

2

2

)
.

Substituting into (3.14) and cancelling J gives

Py + Q = 0 (3.15)

where

P =
(

1 − x1

2
− x−1

1

2
− x2

2
− x−1

2

2

)
x2 + 1

2
x2

2 + 1

2
x−1

1 x2

= x2 − x1x2

2
− 1

2
.

Q is the same except that x1 ↔ x2,

so Q = x1 − x1x2

2
− 1

2
.

From (3.15) y = − Q

P

so
y + 1

y − 1
=

(
− Q

P + 1
)

(
− Q

P − 1
) = Q − P

Q + P
.

Now Q − P = x1 − x2

and Q + P = x1 + x2 − x1x2 − 1

which can be rewritten as :

Q − P = x1 − x2 = 1

2

[
(1 − x2)(1 + x1)− (1 − x1)(1 + x2)

]

and

Q + P = x1 + x2 − x1x2 − 1 = − (1 − x1)(1 − x2).
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Therefore

y + 1

y − 1
= 1

2

[
(1 − x2)(1 + x1)− (1 − x1)(1 + x2)

−(1 − x1)(1 − x2)

]

2

(
y + 1

y − 1

)
=

(
x1 + 1

x1 − 1

)
−
(

x2 + 1

x2 − 1

)
.

Now note that i

(
x1 + 1

x1 − 1

)
= i

(
eik1 + 1

eik1 − 1

)
= cot

k1

2
.

Similarly i

(
x2 + 1

x2 − 1

)
= cot

k2

2
and i

(
y + 1

y − 1

)
= cot

φ

2
,

so that finally

2 cot
φ

2
= cot

k1

2
− cot

k2

2
. (3.16)

This equation is an important relation between the k’s and φ. However it does not
tell us the allowed values of k1 and k2. For this we need other equations, which come
from the periodic boundary conditions.

Clearly f�1+N ,�2+N = f�1,�2 and from (3.10) this implies

eik1 N eik2 N = 1

so (k1 + k2)N = λ2π where λ is an integer,

and therefore k1 + k2 = λ
2π

N
. (3.17)

k1 + k1 is the total wavevector, and the fact that this has to be an integer multiple of
2π/N merely reflects the translational symmetry.

More interestingly, however, we also have

f�2,�1+N = f�1,�2

since the (�1 + N )’th site is the same as the �1’th site and our convention is that the
second subscript is always greater than the first. Now (3.12) gives

eik1�2eik2(�1+N )eiφ/2+eik2�2eik1(�1+N )e−iφ/2 = eik1�1eik2�2eiφ/2+eik2�1eik1�2e−iφ/2.

For this to be true for all �1, �2, the coefficients of eik1�1eik2�2 and also of eik2�1eik1�2

must be the same on both sides. The first of these gives

eik1 N e−iφ/2 = eiφ/2

∴ ei(k1 N−φ) = 1

∴ k1N − φ = λ12π where λ1 is an integer.
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and so k1 = λ1
2π

N
+ φ

N
. (3.18)

Similarly the second gives

k2 = λ2
2π

N
− φ

N
where λ2 is an integer. (3.19)

Note that the sum of (3.18) and (3.19) is (3.17), so that only two of these are strictly
needed.

Conclusion The eigenstates with two deviations from the fully aligned state have
the form:

ψ =
∑
�1�2

f�1,�2 |�1�2〉 (�2 > �1) (3.20)

f�1,�2 = C
(
eik1�1eik2�2eiφ/2 + eik2�1eik1�2e−iφ/2

)
(3.21)

where k1, k2 and φ satisfy the three equations

2 cotφ/2 = cot
k1

2
− cot

k2

2
(3.22)

k1 = λ1
2π

N
+ φ

N
(3.23)

k2 = λ2
2π

N
− φ

N
, (3.24)

and the energy of this eigenstate is

ε = J (cos k1 + cos k2 − 2).

It is important to note here that k1 and k2 are not integer multiples of 2π
N and so

the energy is not the same as for two single deviation states. In fact k1 and k2 may
not even be real, since φ does not have to be real.

3.4.1 Form of the States

There are two types of two-deviation states as follows.

a. Class C These occur when |λ1 − λ2| ≥ 2. It can be shown that in this case the φ
are real, and therefore k1, k2 are also real.
Since the k1, k2 are real the magnitude of each of the two terms in f�1,�2 is always
1, independent of the values of �1, �2. We say that the state consists of two ‘free’
deviations, or two ‘free’ spin waves or two ‘free’ magnons. Note they are ‘free’
but they still interact with each other and this causes the shift in k1, k2 from the
values allowed for isolated spin waves. In other words they are not independent.
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For a given value of total wavevector k = k1 + k2, the energy can be written as

ε = −J [2 − cos k1 − cos(k − k1)].

Choosing the ferromagnetic case with J = −|J |, this can be written as

ε = |J |
[
2 − 2 cos

k

2
cos

(
k1 − k

2

)]
.

k1 can take values in the range 0 ≤ k1 ≤ 2π so the second cosine can effectively
have any value between −1 and +1. This means that these states with two ‘free’
magnons have energies for a given k bounded by |J |(2 − 2 cos k

2 ) below and
|J |(2 + 2 cos k

2 ) above. This is indicated in Fig. 3.2 by the curves marked P and
Q. As N → ∞ these states form a continuum.

b. Class A/B These occur for λ1 = λ2 and |λ1 − λ2| = 1, although there is no
significant difference between these two cases. It can be shown that in these cases
the φ and therefore k1, k2 are complex in such a way that k2 = k∗

1 .
Now the magnitude of the terms in f�1,�2 does depend on �1 and �2. In fact one
of the terms in (3.12) diverges as |�2 − �1| → ∞. This is unphysical and the
coefficient of this term must be chosen to be zero. The other term then tends to
0 as |�2 − �1| → ∞, which means that the two deviations are more likely to be
found close to each other than further apart. For this reason such a state is called
a bound state of the two deviations or of two spin waves. The two deviations
form a complex which can then travel freely along the chain. Another term used
to describe this state is a ‘2-string’.
Again it can be shown that energy of the bound state lies above that of two ‘free’
states with the same total k if J > 0, i.e. the antiferromagnetic case, but below
them if J < 0, the ferromagnetic case.
The spectrum of the bound states can be obtained by writing

f�1,�2 = c1ei k
2 (�1+�2)e−g(�2−�1). (3.25)

where k is the total wave-vector and g is a positive real constant. Comparing
with the earlier form, Eq. (3.12), the second term has been omitted by choosing
c2 = 0 since if �1 and �2 are interchanged the term with g would diverge as
�2 − �1 → ∞, as mentioned earlier. The earlier form, Eq. (3.12), is valid for any
value of N whereas this form, Eq. (3.25), is an approximation valid for large N
as it requires �2 − �1 << N . Because of the exponential decay this is valid for
the bound states.
Substituting (3.25) into Eqs. (3.8) and (3.9) gives

(EA − E − 2J )+ J

2

(
e−i k

2 e−g + ei k
2 eg + e−i k

2 eg + ei k
2 e−g

)
= 0 (3.26)
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and

(EA − E − J )+ J

2

(
ei k

2 e−g + e−i k
2 e−g

)
= 0 (3.27)

which together yield

e−g = 1

2

(
ei k

2 + e−i k
2

)
= cos

k

2
. (3.28)

Finally substituting back into (3.27) gives

E − EA = − J

2
(1 − cos k)

This curve has the same form as the free magnon but with a coefficient which is
half that of the free magnon. It is indicated by curve R in Fig. 3.2.

We see from (3.12) and (3.25) that for c2 = 0, ei k
2 (l1+l2)e−g(l2−l1) ≡ eik1l1eik2l2 ,

so that k1 = k/2 − ig and k2 = k/2 + ig. Hence this special solution is also the
same as (3.23) and (3.24) provided

k1 = λ1
2π

N
+ φ

N
= k

2
− ig,

ε
|J|

S

Q

P

R

2

4

0 π/2 π k = k1 + k2

Fig. 3.2 Spectrum of two-deviation states in a 1D spin- 1
2 chain with ferromagnetic isotropic

nearest-neighbour Heisenberg exchange. P, Q are the top and bottom of the continuum of two
‘free’-magnon states. R is the single branch of two-magnon bound states and S is the single spin-
wave spectrum
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and k2 = λ2
2π

N
− φ

N
= k

2
+ ig,

which requires φ = (λ2 − λ1)π − igN .

3.5 Three Deviation States

Now consider states with Sz
T = N

2 − 3, i.e. three deviations from the aligned state.
If we have three deviations then similar equations can be written down for the coef-
ficients f�1�2�3 as were written for the two-deviation coefficients f�1�2 . Again there
is one basic equation for the case where none of �1, �2, �3 are neighbours. This has
a solution of the form

f�1�2�3 = eik1�1eik2�2eik3�3

with ε = −J (3 − cos k1 − cos k2 − cos k3). Clearly this is the same energy as
three free magnons with wave vectors k1, k2, k3, although, just as for the case of
two deviations, these wave vectors will not be the same as for free magnons. For
the same value of ε any permutation of k1, k2, k3 will be a solution, so we expect in
general

f�1�2�3 = A1ei(k1�1+k2�2+k3�3) + A2ei(k2�1+k3�2+k1�3)

+A3ei(k3�1+k1�2+k2�3) + B1ei(k1�1+k3�2+k2�3) (3.29)

+B2ei(k3�1+k2�2+k1�3) + B3ei(k2�1+k1�2+k3�3)

The ratio of the coefficients are determined by ‘boundary condition’ equations when
two or three of �1, �2, �3 are neighbours. These equations are somewhat lengthy and
are not given here. Again it is useful to introduce phase factors and write Ap =
CeiΦp/2 and Bp = Ce−iΦp/2 for p = 1, 2, 3.

3.5.1 Bethe Ansatz for SZ
T = N

2 − 3

Bethe [1] suggested (The German word ‘ansatz’ has no exact equivalent in English
but roughly means ‘starting point’), and subsequently proved, that the phase factors
Φp should have the form of a sum of ‘2-body’ phase factors of the sort we saw
earlier. Specifically that

Φ1 = φ12 + φ13 + φ23
Φ2 = φ23 + φ21 + φ31
Φ3 = φ31 + φ32 + φ12

⎫⎬
⎭

Note that the ordering of the
subscripts here is the same as the ordering
of the k’s in the corresponding term.

where the φi j satisfy the same equations as before, namely
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2 cot
φi j

2
= cot

ki

2
− cot

k j

2
. (3.30)

These equations ensure that φ j i = −φi j and hence the phases of Bp are the
negative of those of Ap.

Periodic boundary conditions applied to f�1�2�3 require

Nk1 = 2πλ1 + φ12 + φ13
Nk2 = 2πλ2 + φ21 + φ23
Nk3 = 2πλ3 + φ31 + φ32

⎫
⎬
⎭

where λ1, λ2, λ3 are integers.
Again we find that if |λi − λ j | ≥ 2 for all i, j then the solutions have three real

values of ki . These are states with three ‘free’ spin waves. If some |λi − λ j | = 0
or 1 then we get bound states or mixtures of bound and ‘free’. A state may consist
either of 1 ‘free’ and 1 bound pair of deviations in which case one k is real and the
other two complex or of a single bound state of 3 deviations in which case all the
k are complex. The form of the bound state of 3 deviations is a generalisation of
Eq. (3.25) but will not be given here.

3.6 States with an Arbitrary Number of Deviations

In general we may have r deviations from the fully aligned state, i.e. SZ
T = N

2 − r .
Bethe showed that for r deviations the solution would be a generalised version of the
three-deviation form Eq. (3.29). In particular there are now r values of ki , denoted
k1, k2, . . . , kr .

There will be M = r ! permutations of these which we label P1 . . . PM . Let the
i th k in the pth permutation be k p

i , then

f�1...�r =
M∑

p=1

Ap ei(k p
1 �1+k p

2 �2...k
p
r �r )

Note that the summation here is over the M permutations. The Bethe ansatz now
requires

Ap = C exp

⎡
⎣

r∑
i=1

r∑
j=i+1

φ
p
i j

⎤
⎦

where φ p
i j = ± φi j , the negative sign occurring if the order of ki , k j in the pth

permutation is reversed. For example, referring back to the three-deviation case,
Φ2 = φ23 − φ12 − φ13. In addition Eq. (3.30) still applies.
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This form of f�1...�r is clearly rather complicated, but in practice we do not need
to use it (for some things!). Normally, the actual equations we work with are the
following:

the energy equation ε = J
r∑

i=1

(cos ki − 1) (3.31)

and the two equations relating k and φ

Nki = 2πλi +
∑
j 	=i

φi j (3.32)

2 cot
φi j

2
= cot

ki

2
− cot

k j

2
. (3.33)

These are the equations that form the Bethe Ansatz and were first written down
by Bethe in 1931 [1]. Bethe showed that they are correct for the S = 1

2 Heisenberg
model. They do not apply for S > 1

2 .
The fact that the Bethe Ansatz works for S = 1

2 means that it is an example of
what is called an integrable system. The S > 1

2 systems are not integrable. Unfortu-
nately there is no general way of predicting which systems are integrable. Each case
has to be demonstrated directly.

Clearly integrable systems are special cases and in general most systems are
not integrable. Nevertheless since many exact results are available for integrable
systems they are extremely important and they have greatly increased our under-
standing of many-body systems.

Reference

1. Bethe, H.A.: Z. Phys. 71, 205–226 (1931) 36, 38



Chapter 4
The Antiferromagnetic Ground State

Abstract This chapter gives the mathematical details of the calculation of the
ground state energy of the spin-1/2 linear chain with antiferromagnetic nearest
neighbour exchange. Although the form of the ground-state wave function had been
given by Bethe using the Bethe Ansatz, as described in the previous chapter, it was
several years before Hulthén was able to use it to calculate the ground-state energy.
The procedure involves setting up an integral equation for a function f . Although f
does not have a simple physical significance, the complete wave function is made up
of a superposition of phase-shifted plane waves with wave vector k. f is related to
the rate of change of the density of the distribution k. Once the fundamental integral
equation has been derived it is solved by Fourier transform. Finally the solution f
is used to find the antiferromagnetic ground-state energy.

4.1 The Fundamental Integral Equation

Although Bethe had given the wave functions in 1931 they were in a rather difficult
formal form, involving sums over permutations. The first really useful result based
on Bethe’s work was by Hulthén in 1938 [1].

As we saw for two spins, if J is −ve, then the ground state is ferromagnetic and
completely aligned. This state is also very simple from a quantum mechanical point
of view as the eigenstate is one of the basis states. However, for J +ve the ground
state is antiferromagnetic and even for two spins is more complicated.

When we considered states with two deviation from the aligned state in the N
atom chain we found two types of states

a. 2 ‘free’ deviations
b. bound pair.

If J is positive the bound states lie above the free ones in energy, so the lowest
state is the class C type for which k1, k2 and φ12 are all real. These are states for
which |λ1 − λ2| ≥ 2. For r deviations the same result applies. The lowest states are
those for which all the ki and φi j are real. Again these are class C type and have
|λi − λ j | ≥ 2 for all i, j .

Parkinson, J.B., Farnell, D.J.J.: The Antiferromagnetic Ground State. Lect. Notes Phys. 816, 39–47
(2010)
DOI 10.1007/978-3-642-13290-2_4 c© Springer-Verlag Berlin Heidelberg 2010



40 4 The Antiferromagnetic Ground State

The classical antiferromagnetic ground state is (choosing the direction of align-
ment of the spins to be parallel and antiparallel to the z-axis)

. . .+ − + − + − + − + − . . .

which is a state with N
2 atoms reversed. The corresponding quantum mechanical

state, known as the Néel state,

| + − + − . . . 〉
is a basis state but is not an eigenstate. Nevertheless the true ground state will not
be orthogonal to this state and since it is a state with SZ

T = 0, i.e. r = N
2 , then the

ground state will have Sz
T = 0 and r = N

2 also.
The equations we need to solve are

ki = λi
2π

N
+ 1

N

∑
j 	=i

φi j (λi integer) (4.1)

and

2 cot
φi j

2
= cot

ki

2
− cot

k j

2
(4.2)

Clearly λi + N is equivalent to λi (since adding N to λi merely increases ki by 2π ).
Hence we can restrict λi to be an integer in the range 0 ≤ λi ≤ N − 1 without
loss of generality. The antiferromagnetic ground state has r = N

2 , i.e. N
2 values of

λi , and is class C so we require |λi − λ j | ≥ 2 for all i, j . There are two possible
choices:

{λi } = {0, 2, 4, . . . , N − 2}
OR {λi } = {1, 3, 5, . . . , N − 1}

The first of these has λ1 = 0 and it can be shown that this gives a state in which
ST = 1 with SZ

T = 0, while the second choice gives a state with ST = 0 and
SZ

T = 0. The second of these is the correct one since the first is degenerate with
other states with ST = 1 and SZ

T = ±1 which lie higher in energy.
Now because the λi are uniformly spaced, we can introduce a new variable

xi = 2i − 1

N
= λi

N
,

which becomes a continuous variable in the limit N → ∞, running from 0 to 1.
Likewise we can regard the ki as forming a continuous set, i.e.

xi ≡ λi

N
−→

N→∞ x ki −→
N→∞ k(x) 0 ≤ x ≤ 1 .
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In Eq. (4.2) we have k j as well as ki . k j is associated with λ j and we introduce

y j ≡ λ j

N
−→

N→∞ y k j −→
N→∞ k(y) 0 ≤ y ≤ 1,

so that Eq. (4.2) becomes

2 cot
1

2
φ(x, y) = cot

k(x)

2
− cot

k(y)

2
(4.3)

and we shall restrict φ to lie in the range −π ≤ φ ≤ π . Note that the y here is not
the same as the y in the previous chapter.

Equation (4.1) becomes

k(x) = 2πx + 1

2

∫ 1

0
φ(x, y)dy (4.4)

(the factor 1
2 comes because the λ j are separated by 2). Note that the range of k(x)

is 0 ≤ k(x) ≤ 2π , unlike that of φ. It can be shown that if x < y then k(x) < k(y)
as one would expect from Eq. (4.4) provided the integral is well-behaved.

These are the integral equations solved by Huthén. The treatment given here is
based on that of Mattis [2] with important extra details. First make the substitutions

cot
k(x)

2
= ξ(x)

cot
k(y)

2
= η(y),

so that 2 cot 1
2 φ(x, y) = ξ(x)− η(y).

When x = y, cot 1
2φ = 0, so φ = ±π and at this point the value of φ jumps

from −π to π . For this reason we divide the integral in (4.4) into two sections:

k(x) = 2πx + 1

2

∫ x

0
φ(x, y)dy + 1

2

∫ 1

x
φ(x, y)dy (4.5)

In the first integral y < x therefore k(y) < k(x). This implies, as shown in
Fig. 4.1, and recalling that 0 ≤ k(x), k(y) ≤ 2π , that cot k(y)

2 > cot k(x)
2 and

therefore

cot
φ

2
= 1

2

[
cot

k(x)

2
− cot

k(y)

2

]
< 0.

As shown in Fig. 4.1, if cot φ2 < 0 and −π ≤ φ ≤ π we must have φ < 0.
Similarly in the second integral we have φ > 0.
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cot
k
2

0 π 2π k

(a)

cot
φ
2

−π 0 π φ

(b)

Fig. 4.1 (a) Plot of cot k
2 versus k showing that if k(y) < k(x) then cot k(y)

2 > cot k(x)
2 . (b) Plot of

cot φ2 versus φ showing that cot φ2 has the same sign as φ

Now differentiate (4.5) with respect to x

dk

dx
= 2π + 1

2
φ1(x, x)+ 1

2

∫ x

0

∂φ

∂x
dy

− 1

2
φ2(x, x)+ 1

2

∫ 1

x

∂φ

∂x
dy

where φ1(x, x) = lim
y→x−φ(x, y) in the first integral in Eq. (4.5)

= −π
and φ2(x, x) = lim

y→x+φ(x, y) in the second integral in Eq. (4.5)

= +π

so

dk

dx
= 2π + 1

2
(−π)− 1

2
(π)+ 1

2

∫ x

0

∂φ

∂x
dy + 1

2

∫ 1

x

∂φ

∂x
dy

= π + 1

2

∫ 1

0

∂φ

∂x
dy.

Next we introduce the functions

f (ξ) = −dx

dξ
; f (η) = −dy

dη

then

∂φ

∂x
= ∂φ

∂ξ

dξ

dx
= − 1

f (ξ)

∂φ

∂ξ
.
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But φ = 2 cot−1
[

1

2
(ξ − η)

]
,

therefore
∂φ

∂ξ
= 2

−1

1 + 1
4 (ξ − η)2

1

2
.

Also dy = dy

dη
dη = − f (η) dη,

therefore
dk

dx
= π + 1

2

∫ (
− 1

f (ξ)

)
(−1)

1 + 1
4 (ξ − η)2

(− f (η) dη)

= π − 1

2 f (ξ)

∫
f (η)dη

1 + 1
4 (ξ − η)2

.

This is now an integral over η instead of y. As y goes from 0 to 1, k(y) goes from
0 to 2π (not proved here but can be shown from (4.4)) so cot k(y)

2 goes from +∞
to −∞. Therefore

dk

dx
= π + 1

2 f (ξ)

∫ ∞

−∞
f (η) dη

1 + 1
4 (ξ − η)2

.

Finally
dk

dx
= dk

dξ

dξ

dx
= − 1

f (ξ)

dk

dξ

and since ξ = cot
k(x)

2
, k(x) = 2 cot−1 ξ and

dk

dξ
= −2

1 + ξ2
.

Therefore

2

1 + ξ2

1

f (ξ)
= π + 1

2 f (ξ)

∫ ∞

−∞
f (η)dη

1 + 1
4 (ξ − η)2

i.e. f (ξ) = 2

π(1 + ξ2)
− 1

2π

∫ ∞

−∞
f (η)dη

1 + 1
4 (ξ − η)2

. (4.6)

This is the fundamental integral equation for f (ξ) (see, Mattis [2] 5.168).

4.2 Solution of the Fundamental Integral Equation

Linear integral equations in which the kernel is a function of (ξ − η) only, can be
solved by the Fourier Transform. We define

F(q) =
∫ ∞

−∞
f (θ)eiqθdθ
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with inverse

f (θ) = 1

2π

∫ ∞

−∞
F(q)e−iqθdq.

Substituting in Eq. (4.6) gives

1

2π

∫ ∞

−∞
F(q)e−iqξdq = 2

π(1 + ξ2)

− 1

2π

∫ ∞

−∞

(
1

2π

∫ ∞

−∞
F(q)e−iqηdq

)
dη

1 + 1
4 (ξ − η)2

.

Now

∫ ∞

−∞
e−iqηdη

1 + 1
4 (ξ − η)2

= e−iqξ
∫ ∞

−∞
eiq(ξ−η)dη

1 + 1
4 (ξ − η)2

.

so substituting z = 1

2
(ξ − η), with dη = − 2dz, gives

= 2e−iqξ
∫ ∞

−∞
e2iqzdz

1 + z2

= 2e−iqξπe−2q .

Therefore

1

2π

∫ ∞

−∞
F(q)e−iqξdq = 2

π(1 + ξ2)
− 1

2π

∫ ∞

−∞
F(q)eiqξ e−2qdq.

Multiply both sides by eiq ′ξ and integrate
∫∞
−∞ dξ

F(q ′) = 2

π

∫ ∞

−∞
eiq ′ξdξ

(1 + ξ2)
− e−2q ′

F(q ′)

(1 + e−2q ′
)F(q ′) = 2

π
πe−q ′

therefore F(q ′) = 1

cosh q ′

i.e. F(q) = sech(q).
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Finally

f (ξ) = 1

2π

∫ ∞

−∞
sech(q)e−iqξdq = 1

2
sech

(
πξ

2

)
.

4.3 The Ground State Energy

We can now calculate the ground state energy of the infinite chain. For a finite chain
with N atoms we have seen that the ground state energy is given by

ε = J
∑

i

(cos ki − 1) .

In the limit N → ∞ we again make the changes

ki → k(x) and
N/2∑
i=1

−→ N

2

∫ 1

0
dx

so that

ε = J
N

2

∫ 1

0
[cos k(x)− 1] dx .

Also cos k(x)− 1 = −2 sin2 k

2

= − 2

cosec2 k
2

= −2

1 + cot2 k
2

= −2

1 + ξ2

while dx = dx

dξ
dξ = − f (ξ)dξ.

Therefore

ε = − J N

2

∫ ∞

−∞
2 f (ξ)dξ

1 + ξ2

= −J N
∫ ∞

−∞

(
1

2π

∫ ∞

−∞
F(q)e−iqξdq

)
dξ

(1 + ξ2)

Doing the ξ integral
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= −J N
1

2π

∫ ∞

−∞
F(q)πe−|q|dq

= − J N

2

∫ ∞

−∞
2

(eq + e−q)
e−|q|dq

= −J N2
∫ ∞

0

e−q

eq + e−q
dq

= −J N ln 2 (using the substitution z = e−q .)

Therefore

E = ε + EA = − J N ln 2 + J N

4
(4.7)

= − 0.443147J to six decimal places. (4.8)

This is a very famous result due to Hulthén and Bethe. It is one of the outstanding
achievements of modern theoretical physics.

As well as this exact result for the ground state energy of the spin- 1
2 chain with

isotropic Heisenberg exchange, the Bethe Ansatz [3] has been used to obtain many
other results for spin- 1

2 chains. Some of these are as follows:

a. It may be extended to the case of anisotropic exchange. Firstly to the X X Z -
model in which Sx Sx and Sy Sy terms are equal but the Sz Sz terms are different,
by Orbach [4] and Walker [5] and later to the more general XY Z -model in which
all three terms are different, by Baxter [6].

b. For the X X Z -model the correlation functions behave as
∣∣∣
〈
Sz

i Sz
i+R

〉∣∣∣ = const. as R → ∞

for the anisotropic model (Δ > 1) and

∣∣∣
〈
Sz

i Sz
i+R

〉∣∣∣ ∝ 1

R
as R → ∞

for the isotropic model (Δ = 1) showing that there is no long range order for
Δ = 1. These and other important results for the correlation function of this
model were obtained by a completely different method, the inverse scattering
method, by Bogoliubov et al. [7]

c. It was extended to include the effects of a magnetic field by Griffiths [8]
d. Results for the elementary excitations (antiferromagnetic magnons) can be found

as described in the next chapter.
e. The thermodynamics, i.e. the properties at non-zero temperature, have been stud-

ied by Yang and Yang [9–11], Takahashi and Suzuki [12], Gaudin [13] and
Klümper [14]
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Chapter 5
Antiferromagnetic Spin Waves

Abstract The ground state of the antiferromagnetic spin-1/2 linear chain is a made
up of a linear combination of basis states with exactly half (N/2) the spins reversed.
The elementary excitations from the ground state have N/2 ± 1 spins reversed. To
calculate the energies of these states, des Cloiseaux and Pearson used a modified
version of the same method that Hulthén had used for the ground state energy. The
modifications are quite significant and involve some rather different mathematical
techniques. These are described in this chapter. The result is not a single branch of
excitations as a function of the total wave vector, but rather a continuum of states.
The lower boundary of this continuum has a simple sine-wave form, which is similar
to that obtained using conventional antiferromagnetic spin-wave theory (covered in
a later chapter). We finish this chapter with a discussion of the somewhat unexpected
behaviour of the excitation spectrum when an external magnetic field is present.

5.1 The Basic Formalism

Bethe [1] gave the wave functions for the 1D S = 1
2 Heisenberg chain in 1931

and the ground state energy was evaluated by Hulthén in 1938 [2]. In 1962 Des
Cloiseaux and Pearson [3] obtained the exited states or elementary excitations, the
antiferromagnetic spin waves. In this chapter we follow their treatment closely with
some extra details. Note that the treatment given here determines the energies of the
elementary excitations exactly. In Chap. 8 an approximate theory of the same exci-
tations is given which is applicable much more generally than the S = 1

2 Heisenberg
chain.

The lowest-lying excited states (the elementary excitations) have ST = 1 and
Sz

T = 0,±1. Once again, within the Sz
T = 1 subspace the lowest lying states are

class C: states which are all or partly bound, with complex values of ki , lie higher
in energy.

For a state with Sz
T = 1 we require

N

2
− 1 deviations from the fully aligned

state, and hence
N

2
− 1 values of ki , with corresponding values of λi . For class C

we require that the λi are separated by at 2 or more and are chosen from the integers

Parkinson, J.B., Farnell, D.J.J.: Antiferromagnetic Spin Waves. Lect. Notes Phys. 816, 49–59
(2010)
DOI 10.1007/978-3-642-13290-2_5 c© Springer-Verlag Berlin Heidelberg 2010
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1, 2, 3, . . . , N − 2, N − 1. λi must not be chosen to be zero since this gives the
Sz

T = 1 component of a multiplet with ST > 1.
There are clearly many ways to do this. One way is to choose

λ = 1, 3, 5, . . . , Λ,Λ+ 4,Λ+ 6, . . . , N − 3, N − 1 (5.1)

where Λ is an odd integer. Here we have a single gap of size 4. Alternatively we
may have two gaps of size 3

λ = 1, 3, 5, . . . , Λ1,Λ1 + 3,Λ1 + 5, . . . , Λ2,Λ2 + 3,Λ2 + 5, . . . , N − 3, N − 1
(5.2)

where Λ1 is an odd integer and Λ2 ≥ Λ1 + 3 is an even integer. One could also
have ‘gaps’ at the beginning

λ = 3, 5, 7, . . . , N − 5, N − 3, N − 1 (5.3)

or

λ = 2, 4, 6, . . . , Λ2,Λ2 + 3,Λ2 + 5, . . . , N − 3, N − 1 (5.4)

or similar ‘gaps’ at the end.

λ = 1, 3, 5, 7, . . . , N − 5, N − 3 (5.5)

or

λ = 1, 3, 5, . . . , Λ1,Λ1 + 3,Λ1 + 5, . . . , N − 4, N − 2 (5.6)

These latter four can be regarded as special cases of Eq. (5.1) and Eq. (5.2), but in
fact they are important as we shall see.

All these possibilities lead to a large number of states, forming a continuum in the
limit N → ∞. The lowest states for a given k were determined by Des Cloiseaux
and Pearson [3] by studying numerically finite size chains with N ≤ 16. They found
that for −π < k < 0 or equivalently π < k < 2π the choice that gives the lowest
energy is given by Eq. (5.4), while for 0 < k < π the correct choice is Eq. (5.6). We
shall follow des Cloiseaux and Pearson and present the calculation for −π < k < 0.

Two other preliminaries are necessary. Firstly it is convenient to work in the
Sz

T = 0 subspace. As noted before an ST = 1 state with Sz
T = 0 has an extra λ = 0

added since there need to be N
2 deviations, and this corresponds to an extra ki = 0.

Hence, writing Λ2 = 2n, the set of λ is

λ = 0, 2, 4, 6, . . . , 2n, 2n + 3, . . . , N − 3, N − 1 (5.7)

Secondly the total wave-vector
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k =
N/2∑
i=1

ki =
N/2∑
i=1

⎛
⎝2π

N
λi +

N/2∑′

j=1

φi j

⎞
⎠ = 2π

N

N/2∑
i=1

λi

since for every φi j in this sum there is an equal and opposite φ j i . The prime on the
second summation indicates j 	= i .

Using 1 + 3 + 5 + · · · + (N − 3)+ (N − 1) = N2

4 and noting that the set of λ
in Eq. (5.7) differs from this by the first n terms being reduced by 1 we have

k = 2π

N

(
N 2

4
− n

)
= 2π

N
(−n) mod 2π,

which is strictly only true if N is a multiple of 4 but this is not a significant restriction
in the limit N → ∞. Thus

n = N |k|/2π. (5.8)

As in the previous chapter, we now pass to the continuum limit by writing xi = 2i−1
N ,

which becomes a continuous variable in the limit N → ∞, running from 0 to 1.
Note that xi 	= λi

N now as the λ are not evenly spaced. In fact the λ satisfy

λi = 2i − 2

N
= xi

N
− 1

N
for i ≤ n, (5.9)

λi = 2i − 1

N
= xi

N
for i > n. (5.10)

In the large N limit we define

xi ≡ 2i − 1

N
−→

N→∞ x; λi

N
−→

N→∞ λ(x); ki −→
N→∞ k(x); 0 ≤ x ≤ 1

The i ≤ n in Eq. (5.9) becomes x <
|k|
π

and i > n in Eq. (5.10) becomes x >
|k|
π

and these two equations can be written together as

λ(x) = x −
(

1

N

)
Θ

( |k|
π

− x

)
(5.11)

where Θ is the step function.
The calculation given here differs from that in the previous chapter only in the

choice of the λi . The other equations from the Bethe method are unchanged, namely

2 cot
1

2
φ(x, y) = cot

k(x)

2
− cot

k(y)

2
, (5.12)

k(x) = 2πλ(x)+ 1

2

∫ 1

0
φ(x, y) dy, (5.13)

and
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ε = − J N

2

∫ 1

0
[1 − cos k(x)] dx, (5.14)

and again we take −π ≤ φ ≤ π .
Substituting for λ(x) from Eq. (5.11) gives

k(x) = 2π

[
x −

(
1

N

)
Θ

( |k|
π

− x

)]
+ 1

2

∫ 1

0
φ(x, y) dy, (5.15)

and splitting the integral into two parts for the same reason as before

k(x) = 2π

[
x −

(
1

N

)
Θ

( |k|
π

− x

)]

+1

2

∫ x

0
φ(x, y) dy + 1

2

∫ 1

x
φ(x, y) dy. (5.16)

Now differentiate with respect to x and note that d
dx θ

( |k|
π

− x
)

= −δ
( |k|
π

− x
)
.

dk

dx
= 2π

[
1 + 1

N
δ

( |k|
π

− x

)]
+ 1

2
φ1(x, x)+ 1

2

∫ x

0

∂φ

∂x
dy

− 1

2
φ2(x, x)+ 1

2

∫ 1

x

∂φ

∂x
dy

where

φ1(x, x) = lim
y→x−φ(x, y) = − π,

and

φ2(x, x) = lim
y→x+φ(x, y) = + π as before.

Thus, putting x0 = |k|
π

,

dk

dx
= 2π

[
1 + 1

N
δ(x0 − x)

]
+ 1

2
(−π)− 1

2
(π)+ 1

2

∫ x

0

∂φ

∂x
dy + 1

2

∫ 1

x

∂φ

∂x
dy

= π + 2π

N
δ(x0 − x)+ 1

2

∫ 1

0

∂φ

∂x
dy .

Using the substitutions
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cot
k(x)

2
= ξ(x)

cot
k(y)

2
= η(y),

so that 2 cot 1
2 φ(x, y) = ξ(x)− η(y), and defining

f (ξ) = −dx

dξ
; f (η) = −dy

dη

then

∂φ

∂x
= ∂φ

∂ξ

dξ

dx
= − 1

f (ξ)

∂φ

∂ξ
.

But

φ = cot−1
[

1

2
(ξ − η)

]
,

therefore

∂φ

∂ξ
= −1

1 + 1
4 (ξ − η)2

1

2
.

Also

dy = dy

dη
dη = − f (η) dη,

∴ dk

dx
= π + 2π

N
δ(x0 − x)+ 1

2

∫ (
− 1

f (ξ)

)
(−1)(− f (η) dη)

1 + 1
4 (ξ − η)2

= π + 2π

N
δ(x0 − x)− 1

2 f (ξ)

∫
f (η)dη

1 + 1
4 (ξ − η)2

.

This is now an integral over η instead of y. As y goes from 0 to 1, k(y) goes from
0 to 2π (not strictly proved here but can be shown from (5.15)) so cot k(y)

2 goes from
+∞ to −∞.

Putting ξ0 = cot
k(x0)

2
and using the standard relation for change of variable

δ(x0 − x) = δ(ξ0 − ξ)
dξ

dx
= δ(ξ0 − ξ)

−1

f (ξ)
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and noting that δ(ξ0 − ξ) −1
f (ξ) = δ(ξ − ξ0)

1
f (ξ) since f (ξ) = − f (−ξ), gives

dk

dx
= π + 2π

N f (ξ)
δ(ξ − ξ0)− 1

2 f (ξ)

∫ ∞

−∞
f (η) dη

1 + 1
4 (ξ − η)2

.

Finally
dk

dx
= dk

dξ

dξ

dx
= − 1

f (ξ)

dk

dξ

and since ξ = cot
k(x)

2
, k(x) = 2 cot−1 ξ and

dk

dξ
= −2

1 + ξ2
.

Therefore

2

1 + ξ2

1

f (ξ)
= π + 2π

N f (ξ)
δ(ξ − ξ0)− 1

2 f (ξ)

∫ ∞

−∞
f (η)dη

1 + 1
4 (ξ − η)2

(5.17)

i.e. f (ξ) = 2

π(1 + ξ2)
+ 1

2π

∫ ∞

−∞
f (η)dη

1 + 1
4 (ξ − η)2

− 2

N
δ(ξ − ξ0) . (5.18)

Notice that the only difference between this equation and the corresponding f (ξ)
in the ground state calculation of the previous chapter is the extra delta function at
the end. This comes from the choice of λ in Eqs. (5.9) and (5.10).

The method of solution of this equation is the same as in the previous chapter,
using the Fourier Transform. We define

F(q) =
∫ ∞

−∞
f (θ)eiqθdθ

with inverse

f (θ) = 1

2π

∫ ∞

−∞
F(q)e−iqθdq.

Substituting in Eq. (5.18) gives

1

2π

∫ ∞

−∞
F(q)e−iqξdq = 2

π(1 + ξ2)
− 2

N
δ(ξ − ξ0)

+ 1

2π

∫ ∞

−∞
dη

1 + 1
4 (ξ − η)2

1

2π

∫ ∞

−∞
F(q)e−iqηdq .

Now

∫ ∞

−∞
e−iqηdη

1 + 1
4 (ξ − η)2

= e−iqξ
∫ ∞

−∞
eiq(ξ−η)dη

1 + 1
4 (ξ − η)2

.

so substituting z = 1

2
(ξ − η), with dη = − 2dz, gives
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= −2e−iqξ
∫ ∞

−∞
e2iqzdz

1 + z2

= −2e−iqξπe−2q .

Therefore

1

2π

∫ ∞

−∞
F(q)e−iqξdq = 2

π(1 + ξ2)
− 2

N
δ(ξ − ξ0)− 1

2π

∫ ∞

−∞
F(q)eiqξ e−2qdq .

Multiply both sides by eiq ′ξ and integrate
∫∞
−∞ dξ

F(q ′) = 2

π

∫ ∞

−∞
eiq ′ξdξ

(1 + ξ2)
− e−2q ′F(q ′) − 2

N
eiq ′ξ0

(1 + e−2q ′
)F(q ′) = 2

π
πe−q ′ − 2

N
eiq ′ξ0

therefore

F(q ′) = 1

cosh q ′ − 2eiq ′ξ0

N (1 + e−2q ′
)

As before the energy relative to the aligned state is

ε = − J N

2

∫ ∞

−∞
2 f (ξ)dξ

1 + ξ2
(5.19)

= −J N
1

2π

∫ ∞

−∞
F(q)πe−|q|dq

= − J N

2

∫ ∞

−∞
2

(eq + e−q)
e−|q|dq + J

∫ ∞

−∞
e−|q|eiqξ0

1 + e−2q
dq

= −J N2
∫ ∞

0

e−q

eq + e−q
dq + J

2

∫ ∞

−∞
eiqξ0 sech q dq

= −J N ln 2 + Jπ

2
sech(πξ0/2) (5.20)

Clearly the first term is the ground state energy and the second is the additional
energy of the elementary excitations above the ground state.

Finally we need to relate ξ0 to the wave-vector k. If we ignore terms of order
1

N
in Eq. (5.15) we obtain the corresponding equation from the previous chapter. The

relation between x and k(x) in this calculation differs only to order
1

N
from that in

the previous so we can use the result obtained there:
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−dx

dξ
= f (ξ) = 1

2
sech

(
πξ

2

)

When x = 0, k(x) = 0 so ξ = cot k(x)
2 = +∞.

Hence

∫ x0

0
dx = −

∫ ξ0

∞
1

2
sech

(
πξ

2

)
dξ = 1

π

[
cot−1 sinh

(
πξ

2

)]ξ0
∞

∴ x0 = 1

π
cot−1

[
sinh

(
πξ0

2

)]
.

To order
1

N
, πx0 = k so

cot(k) = sinh

(
πξ0

2

)

and

sech

(
πξ0

2

)
= 1√

1 + sinh2(
πξ0
2 )

= 1√
1 + cot2(k)

= 1√
cosec2(k)

= sin k

Substituting into Eq. (5.20) gives

ε = − J N ln 2 + Jπ

2
sin k (5.21)

This is the energy relative to the aligned state so the excitation energy, the energy
above the ground state is

Ek = Jπ

2
sin k (5.22)

This is the exact result obtained by Des Cloiseaux and Pearson [3] for the energy
of the antiferromagnetic spin-waves or magnons in the spin- 1

2 chain with isotropic
Heisenberg exchange.

It should be noted that the particular choice of λ given by Eqs. (5.9) and (5.10) is
not the only possible one for class C states with N/2−1 deviations from the aligned
state, i.e. with Sz

T = 1. Des Cloiseaux and Pearson showed numerically that it gives
the lowest state for any particular k. The other choices lead to a continuum of states,
bounded above by Emax

k = Jπ sin k
2 [4]. The energies of the class C states are

shown in Fig. 5.1. One should also remember that there are numerous states which
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ε
|J |

B

A

π
2

π

0 π/2 π k

Fig. 5.1 Elementary excitation energies in a 1D spin- 1
2 chain with antiferromagnetic isotropic

nearest-neighbour Heisenberg exchange. There is a continuum of states from the lower boundary
B to the upper boundary A. The states on the lower boundary B are the antiferromagnetic spin
waves

are not pure class C but have one or more bound multiplets and which lie in general
at higher energy than the class C states.

Nevertheless the des Cloiseaux and Pearson result is extremely important and in
fact the response to a probe, for example by neutron scattering, is strongest at this
lower boundary [5, 6].

5.2 Magnetic Field Behaviour

Finally in this chapter we discuss the elementary excitations in the presence of a
magnetic field H applied in the z-direction. In this case the Hamiltonian for the
chain becomes

H = J
N∑

i=1

Si .Si+1 − gβH
N∑

i=1

Sz
i (5.23)

where g is the Landé g-factor mentioned in Chap. 1 and β is the Bohr magneton,
the magnetic dipole moment associated with one unit of angular momentum.

For antiferromagnetic coupling, J > 0, the classical ground state consists of two
sublattices, exactly as in the zero field case, but now the orientation of the spins on
one sublattice is at an angle θ to the z-axis and on the other sublattice at an angle
−θ . In fact the ground state is the same as for an interacting pair of spins for which

H = JS1 · S2 − 1

2
g β H(Sz

1 + Sz
2)

= J S2 cos 2θ − g β H S cos θ (5.24)

and minimising with respect to θ gives
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J S22 sin 2θ − gβH S sin θ = 0

from which cos θ = H

K
where K = 4J S

gβ

and so Sz = S cos θ = H

2K
.

Clearly the largest value of Sz is 1
2 and this is reached when H = K . That this is

the classical ground state for the whole system follows from the fact that this choice
gives the minimum energy for every pair separately.

It should be pointed out that the magnetic fields needed in practice to produce
values of θ significantly less than 90◦, the zero-field value, are much too high to
be realised experimentally, so for the present this remains a theoretical exercise.
However, it is of interest because it is a striking example of the difference between
classical and quantum behaviour.

The existence of two sublattices implies that the underlying periodicity of the
system is 2a, rather than a, the lattice spacing, which we shall take to be unity. The
Brillouin zone (BZ) should then have a periodicity in k-space of 2π

2a = π . This
is precisely the periodicity observed in the elementary excitations described in the
previous section, in the absence of a magnetic field.

The quantum treatment of the elementary excitations was first carried out by
Ishimura and Shiba [7], see also [8], using the same Bethe Ansatz method as is used
for the elementary excitations in zero field, but with a modified choice of the λ. The
result is that the periodicity in k-space of the BZ is quite different from the classical
periodicity. In fact the periodicity changes smoothly from π at H = 0 where the
magnetisation per site 〈Sz〉 = 0, to 0 at H = K where 〈Sz〉 = 1

2 . The spectrum is
shown for various values of the magnetisation in Fig. 5.2. Note that the periodicity
for the fully aligned state is actually 2π rather than zero and the behaviour when

k

E/J

∏/2 ∏0

∏/4

0

0.1

0.25

0.35

∏/2

Fig. 5.2 The spectrum of elementary excitations for an antiferromagnetic spin 1/2 chain in a mag-
netic field. The curves are labelled by the magnetisation per site 〈Sz〉, which is zero in zero field
and 1

2 for fields H ≥ K where all the spins are aligned parallel to the field
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the number of reversed atoms is small, of order 1/N , i.e. when 〈Sz〉 → 1
2 , has to be

handled differently.
This clearly indicates that the underlying magnetic structure does not have a peri-

odicity of 2a in real space like the classical structure. A simple model [9] which fits
the data quite well is one in which there are no sublattices as such but rather the spins
all align parallel or antiparallel to the z-axis. Then as the magnetic field increases
the antiparallel spins become fewer in number but regularly spaced, resulting in a
steadily increasing periodicity in real space. This periodicity varies with the mag-
netisation in a way that precisely matches the observed variation of the periodicity
of the BZ in k-space.
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Chapter 6
The XY Model

Abstract The XY Model is another linear chain of spin-1/2 atoms but with a differ-
ent type of exchange interaction in which only the x-components and y-components
of the spins are involved, and with unequal weights. This system has interesting
and unusual features and it is exactly soluble i.e. integrable. However the mathe-
matical techniques involved here are not based on the Bethe Ansatz, but instead
use a Jordan-Wigner transformation. The first step is to introduce new operators
which are fermion operators, unlike the spin operators considered previously. The
Jordan-Wigner transformation then involves combining these fermion operators into
new ‘quasiparticle’ operators that are still fermions. The ground state is then a state
in which all eigenstates of these operators are occupied up to the ‘Fermi surface’. It
is then possible to calculate the ground state energy of this system.

6.1 Introduction

This is again a 1D system (i.e. chain) with periodic boundary conditions and nearest-
neighbour only interactions. However the form of the interaction is different. The
Hamiltonian is

H = J
∑

j

[
(1 + γ )Sx

j Sx
j+1 + (1 − γ )Sy

j Sy
j+1

]
. (6.1)

Again we consider only the case S = 1
2 since only this value has an exact solution.

The XY model is interesting since the exact solution uses a method which is very
different to the Bethe Ansatz. This involves a transformation from spin variables
(i.e. angular momentum operators) to fermion operators. The method is called the
Jordan-Wigner transformation and was first introduced in 1928 [1] for use in early
work on second quantisation. It was applied to the XY model in a famous paper by
Lieb et al. [2].

Because the procedure is somewhat lengthy it is divided here into sections.

Parkinson, J.B., Farnell, D.J.J.: The XY Model. Lect. Notes Phys. 816, 61–75 (2010)
DOI 10.1007/978-3-642-13290-2_6 c© Springer-Verlag Berlin Heidelberg 2010
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6.2 Change from Spin Operators to Fermion Operators

The spin operators for a single site i satisfy

S+
i |−〉 = |+〉 S+

i |+〉 = 0 (6.2)

S−
i |−〉 = 0 S−

i |+〉 = |−〉 (6.3)

Sz
i |−〉 = −1

2
|−〉 Sz

i |+〉 = 1

2
|+〉 (6.4)

Therefore

(S−
i S+

i + S+
i S−

i )|+〉 = S+
i |−〉 = |+〉

and

(S−
i S+

i + S+
i S−

i )|−〉 = S−
i |+〉 = |−〉

so clearly

S−
i S+

i + S+
i S−

i = 1. (6.5)

Also

S−2
i = S+2

i = 0. (6.6)

These results apply to a single site i . Any 2 spin operators referring to different
sites will commute, e.g.

[S−
i , S+

j ] ≡ S−
i S+

j − S+
j S−

i = 0. (i 	= j)

Therefore, for i 	= j ,

S−
i S+

j + S+
j S−

i = 2S−
i S+

j (6.7)

S−
i S−

j + S−
j S−

i = 2S−
i S−

j (6.8)

S+
i S+

j + S+
j S+

i = 2S+
i S+

j . (6.9)

Now introduce a pair of fermion operators ci and c+
i for each site. Since they are

fermions they anticommute, even when referring to different sites,

{
ci , c

+
j

}
≡ ci c

+
j + c+

j ci = δi j (6.10)
{
ci , c j

} = 0 (6.11){
c+

i , c
+
j

}
= 0 (6.12)

For a single site (6.5) and (6.6) would be satisfied by putting S−
i = ci and

S+
i = c+

i . Unfortunately, this is incorrect for different sites as (6.7), (6.8), and
(6.9) do not agree with (6.10), (6.11) and (6.12), respectively. For example
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{
S−

i , S+
j

}
= 2S−

i S+
j 	= 0. (i 	= j)

Jordan and Wigner showed that the spin operators S−
i and S+

i can be represented
exactly in terms of the fermions ci etc by writing

S−
1 = c1 S+

1 = c+
1

S−
2 = [exp(iπc+

1 c1)]c2 S+
2 = c+

2 exp(−iπc+
1 c1) (6.13)

S−
i = Qi ci i ≥ 1 S+

i = c+
i Q+

i i ≥ 1

where Qi = exp

[
iπ

i−1∑
l=1

c+
l cl

]
.

To prove that the spin operators written using (6.13) commute when on different
sites requires first that we prove a number of relations and introduce new operators
ni and Ti as well as Qi .

Let |+〉 and |−〉 be a basis for the i th site. The fermion operators act on these as
follows

c+
i |+〉 = 0 c+

i |−〉 = |+〉
ci |+〉 = |−〉 ci |−〉 = 0

For any given site, if we know effect of an operator on |+〉 and |−〉, then we know
everything we need about that operator, since any state is a linear combination of
|+〉 and |−〉. Conversely, if two operators Âi and B̂i have the same effect on |+〉
and on |−〉 then they are equal.

Now define the operator

ni ≡ c+
i ci

so clearly n+
i = ni and

ni |+〉 = c+
i ci |+〉 = c+

i |−〉 = |+〉 (6.14)

and

ni |−〉 = c+
i ci |−〉 = 0. (6.15)

We say that ni is the number operator, which ‘counts’ the value of the z-
component of the angular momentum relative to state |−〉, since ni |−〉 = 0|−〉 and
ni |+〉 = 1|+〉.

Now define

Ti ≡ eiπc+
i ci = eiπni .

Clearly

Ti |+〉 = eiπni |+〉 = eiπ1|+〉 = − |+〉
Ti |−〉 = eiπni |−〉 = e0|−〉 = |−〉
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which tells us all we need to know about Ti .
Similarly T +

i = e−iπni so

T +
i |+〉 = e−iπni |+〉 = e−iπ1|+〉 = − |+〉

T +
i |−〉 = e−iπni |−〉 = e0|−〉 = |−〉

and since the effect of T +
i is the same as that of Ti on each of the two basis states

we can put

T +
i = Ti . (6.16)

Also T 2
i |+〉 = |+〉 and T 2

i |−〉 = |−〉 and therefore we can replace T 2
i by 1, i.e.

T 2
i = 1. (6.17)

Finally note that

ni n j = c+
i ci c

+
j c j i 	= j

= −c+
i c+

j ci c j

= +c+
j c+

i ci c j

= −c+
j c+

i c j ci

= +c+
j c j c

+
i ci = n j ni (i 	= j)

and since this is trivially true for i = j also we have shown that [ni , n j ] = 0 for
all i, j . It follows immediately that [Ti , Tj ] = 0 for all i, j . Note that these are
commutators, not anticommutators.

Now Qi = exp

[
iπ

i−1∑
l=1

nl

]
and since all nl commute

Qi = exp
i−1∑
l=1

(iπnl) =
i−1∏
l=1

eiπnl =
i−1∏
l=1

Tl

and

Q+
i = exp

i−1∑
l=1

(−iπnl) =
i−1∏
l=1

e−iπnl =
i−1∏
l=1

T +
l =

i−1∏
l=1

Tl = Qi

(recall that eA+B = eAeB provided A and B commute.)
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Now consider [ci , n j ] for i 	= j

ci n j = ci c
+
j c j = −c+

j ci c j

= +c+
j c j ci = n j ci

therefore [ci , n j ] = 0 for i 	= j and likewise [ci , Tj ] = [c+
i , Tj ] = 0 for i 	= j .

However

ci Ti |+〉 = −ci |+〉 = −|−〉 (6.18)

Ti ci |+〉 = Ti |−〉 = |−〉 (6.19)

ci Ti |−〉 = ci |−〉 = 0 (6.20)

Ti ci |−〉 = 0 (6.21)

therefore

(ci Ti + Ti ci )|+〉 = 0 (ci Ti − Ti ci )|+〉 = −2|−〉
(ci Ti + Ti ci )|−〉 = 0 (ci Ti − Ti ci )|−〉 = 0

so {ci , Ti } = 0 but [ci , Ti ] 	= 0.

Similarly
{
c+

i , Ti
} = 0 but [c+

i , Ti ] 	= 0.
Also

[ci , Qi ] =
[

ci ,

i−1∏
l=1

Tl

]
= 0 since l 	= i

and similarly [c+
i , Qi ] = 0.

Finally we need to show that spin operators on different sites commute when
written in terms of the fermion operators as given in Eq. (6.13). We shall give the
proof for one case only, namely [S−

i , S+
j ] where j > i .

S−
i S+

j = Qi ci c
+
j Q+

j = ci Qi Q j c
+
j

= ci

i−1∏
l=1

Tl

j−1∏
m=1

Tm c+
j

= ci

j−1∏
l=i

Tl c+
j since T 2

n = 1

= ci c
+
j

j−1∏
l=i

Tl since l 	= j
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Similarly

S+
j S−

i = c+
j Q+

j Qi ci = c+
j Q j Qi ci

= c+
j

j−1∏
l=i

Tl ci

= c+
j Ti ci

j−1∏
l=i+1

Tl

= −c+
j ci Ti

j−1∏
l=i+1

Tl

= ci c
+
j

j−1∏
l=i

Tl = S−
i S+

j

Hence [S−
i , S+

j ] = 0.
Other cases are similar.
Although this transformation looks complicated, the result on the Hamiltonian

(6.1) is rather simple. First we rewrite (6.1)

Sx
j Sx

j+1 = 1

2
(S+

j + S−
j )

1

2
(S+

j+1 + S−
j+1)

= 1

4
(S+

j S+
j+1 + S−

j S−
j+1)+ 1

4
(S−

j S+
j+1 + S+

j S−
j+1)

Sy
j Sy

j+1 = 1

2i
(S+

j − S−
j )

1

2i
(S+

j+1 − S−
j+1)

= −1

4
(S+

j S+
j+1 + S−

j S−
j+1)+ 1

4
(S−

j S+
j+1 + S+

j S−
j+1)

Thus

H = J
N∑

j=1

[
(1 + γ )Sx

j Sx
j+1 + (1 − γ )Sy

j Sy
j+1

]

= J

2

N∑
j=1

[
(S−

j S+
j+1 + S+

j S−
j+1)+ γ (S+

j S+
j+1 + S−

j S−
j+1)

]
(6.22)

This form shows why the treatment of the XY -model is so different to that of the
isotropic Heisenberg model. The terms with γ in (6.22) connect states with different
Sz

T so this is clearly not a constant of the motion, i.e. the eigenstates are not combi-
nations of basis states which all have the same Sz

T . The only exception to this is, of
course, the case γ = 0, which is sometimes known as the ‘XX-model’.
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Now change to fermion operators

S−
j S+

j+1 = Q j c j c
+
j+1Q j+1

= c j Tj c
+
j+1

But from (6.18) and (6.20) we have c j Tj |+〉 = −|−〉 and c j Tj |−〉 = 0.
Comparing this with c j |+〉 = |−〉 and c j |−〉 = 0 we see that c j Tj = −c j so

S−
j S+

j+1 = −c j c
+
j+1 = c+

j+1c j . A similar treatment of the other three terms in Eq.
(6.22) leads to the following set

S−
j S+

j+1 = c+
j+1c j (6.23)

S+
j S−

j+1 = c+
j c j+1 (6.24)

S+
j S+

j+1 = c+
j c+

j+1 (6.25)

S−
j S−

j+1 = c j+1c j (6.26)

(Note the ordering of these operators).
There is a problem at the end however. For j = N we get terms of the form

S+
N S−

1 = QN c+
N c1 	= c+

N c1

This occurs because the transformation to fermion operators Eq. (6.13), involves
a phase factor Qi which does not satisfy periodic boundary conditions. Thus

H = J

2

N∑
j=1

[(c+
j+1c j + c+

j c j+1)+ γ (c+
j c+

j+1 + c j+1c j )]

− J

2
[(c+

1 cN + c+
N c1)+ γ (c+

N c+
1 + c1cN )]

J

2
QN [(cN c+

1 + c+
N c1)+ γ (c+

N c+
1 + cN c1)]

Because the last two terms do not involve a sum over sites, we expect that in the
limit N → ∞ they can be neglected. In fact, Lieb et al. [2] show how to treat them
correctly and their result confirms that it is valid to neglect them in this limit. Thus
we can write

H = J

2

N∑
j=1

[(c+
j+1c j + c+

j c j+1)+ γ (c+
j c+

j+1 + c j+1c j )]. (6.27)

Again note that the ordering of the operators is important here.
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6.3 Fourier Transform

Equation (6.27) is a quadratic Hamiltonian involving only fermion operators. The
first step in diagonalising it is to make use of the translational invariance by intro-
ducing Fourier transformed operators dk and d+

k

dk = 1√
N

N∑
j=1

e−ik j c j (6.28)

d+
k = 1√

N

N∑
j=1

eik j c+
j (6.29)

with k = λ 2π
N where λ is an integer such that λ = (− N

2 + 1
)
, . . .

( N
2

)
.

Clearly −π < k ≤ π .
The reverse transform is

c j = 1√
N

∑
k

eik j dk (6.30)

c+
j = 1√

N

∑
k

e−ik j d+
k . (6.31)

Using the properties of the c’s we can easily show that the d’s are fermions
also, i.e.

{
dk1 , dk2

} =
{
d+

k1
, d+

k2

}
= 0

{
dk1 , d

+
k2

}
= δk1k2

(In showing these we need to use
∑

j

ei(k1−k2) j = Nδk1k2 , etc.)

Now rewrite each term in H in terms of these:

∑
j

c+
j+1c j =

∑
j

1

N

∑
k1

∑
k2

e−ik1( j+1)eik2 j d+
k1

dk2

= 1

N

∑
k1

∑
k2

e−ik1 Nδk1k2d+
k1

dk2

=
∑

k

e−ikd+
k dk,
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and similarly

∑
j

c+
j c j+1 =

∑
k

eikd+
k dk,

∑
j

c+
j c+

j+1 =
∑

k

eikd+
k d+

−k,

∑
j

c j+1c j =
∑

k

eikdkd−k .

so

H = J
∑

k

[
cos k(d+

k dk)+ γ
eik

2
(d+

k d+
−k + dkd−k)

]
(6.32)

This use of the translational invariance has partially diagonalised the Hamil-
tonian. There is now no coupling between states with different |k|. It remains to
diagonalise the coupled k and −k terms. This is done by introducing new fermion
operators which are linear combinations of k and −k operators. A linear combi-
nation of this kind is called a Bogoliubov transformation [3], although a similar
transformation was done earlier by Holstein and Primakoff [4] in connection with
spin waves in a ferromagnet with dipole–dipole interactions and a magnetic field as
well as exchange interactions. We shall also refer to these operators as quasiparticle
operators.

6.4 Quasiparticle Operators

Clearly operators dk and d−k are linked in (6.32) so instead of summing
−π < k < π we combine the k and −k terms and sum 0 ≤ k < π

H = J
π∑

k=0

[
cos k(d+

k dk + d+
−kd−k)

+ γ

{
eik

2
(d+

k d+
−k + dkd−k)+ e−ik

2
(d+

−kd+
k + d−kdk)

}]

and since d+
−kd+

k = −d+
k d+

−k and d−kdk = −dkd−k

H = J
π∑

k=0

[
cos k(d+

k dk + d+
−kd−k)+ γ {i sin k(d+

k d+
−k + dkd−k)}

]
(6.33)

There are basically two fermion operators in this expression, namely dk and d−k

together with their Hermitian adjoints. To diagonalise it we look for two different
linear combinations, ηk and η−k , of dk and d−k which are also fermions and such
that the Hamiltonian has the form
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H =
π∑

k=0

[
Λ1kη

+
k ηk +Λ2kη

+
−kη−k + Xk

]
. (6.34)

where Xk is a constant.
In fact the linear combinations we require are not between dk and d−k but

between dk and d+
−k . The first one is

ηk = Akdk + Bkd+
−k . (6.35)

For the second one, instead of a linear combination of dk and d+
−k , it is convenient

to take a linear combination of d+
k and d−k

η−k = Ckd−k + Dkd+
k . (6.36)

Since η−k and η+
−k occur together in (6.34) this is permissible.

In order for these ηk to be also fermion operators, i.e. for the transformation to
be canonical, we require that

{ηk, ηk} = {η+
k , η

+
k } = 0 (6.37)

{η−k, η−k} = {η+
−k, η

+
−k} = 0 (6.38)

{ηk, η
+
−k} = {η−k, η

+
k } = 0 (6.39)

{ηk, η
+
k } = {η−k, η

+
−k} = 1 (6.40)

{ηk, η−k} = {η+
k , η

+
−k} = 0 (6.41)

(6.37) and (6.38) are automatically satisfied, e.g.

{ηk, ηk} = 2η2
k = 2(Akdk + Bkd+

−k)(Akdk + Bkd+
−k)

= 2{A2
kd2

k + Ak Bk(dkd+
−k + d+

−kdk)+ B2
k (d

+
−k)

2}
= 0

using d2
k = (d+

−k)
2 = 0 and {dk, d

+
−k} = 0.

(6.39) is also automatically satisfied, e.g.

{ηk, η
+
−k} = (Akdk + Bkd+

−k)(C
∗
k d+

−k + D∗
k dk)+ (C∗

k d+
−k + D∗

k dk)(Akdk + Bkd+
−k)

= AkC∗
k (dkd+

−k + d+
−kdk)+ Ak D∗

k (dkdk + dkdk)

+ BkC∗
k (d

+
−kd+

−k + d+
−kd+

−k)+ Bk D∗
k (d

+
−kdk + dkd+

−k) = 0

since all the brackets in the second line are anticommutators which equal zero.
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Equation (6.40) requires

{ηk, η
+
k } = (Akdk + Bkd+

−k)(A
∗
kd+

k + B∗
k d−k)+ (A∗

kd+
k + B∗

k d−k)(Akdk + Bkd+
−k)

= |Ak |2(dkd+
k + d+

k dk)+ Ak B∗
k (dkd−k + d−kdk)

+ Bk A∗
k(d

+
−kd+

k + d+
k d+

−k)+ |Bk |2(d+
−kd−k + d−kd+

−k)

= |Ak |2 + |Bk |2 = 1 (6.42)

and similarly

|Ck |2 + |Dk |2 = 1 (6.43)

Finally (6.41) gives

{ηk, η−k} = (Akdk + Bkd+
−k)(Ckd−k + Dkd+

k )+ (Ckd−k + Dkd+
k )(Akdk +Bkd+

−k)

= AkCk(dkd−k + d−kdk)+ Ak Dk(dkd+
k + d+

k dk)

+ BkCk(d
+
−kd−k + d−kd+

−k)+ Bk Dk(d
+
−kd+

k + d+
k d+

−k)

= Ak Dk + BkCk = 0 (6.44)

together with its complex conjugate.

6.5 Quasiparticle Energies

With the Hamiltonian now written in the form (6.34) then the corresponding quasi-
particle energies are Λ1k for ηk and Λ2k for η−k , the first of which satisfies

[ηk,H] = Λ1kηk . (6.45)

Note the commutator in this equation even though the ηk are fermions like the dk .
The dk satisfy the following commutation relations:

[dk, d
+
k1

dk1 ] = δkk1dk (6.46)

[dk, d
+
k1

d+
−k1

] = (δkk1 − δk,−k1)d
+
−k (6.47)

[dk, dk1d−k1 ] = 0 (6.48)

Hence

[dk,H] = J
∑
k1

cos k δkk1 dk + Jγ

2

∑
k1

eik (δkk1 − δk,−k1

)
d+
−k

= J cos k dk + J iγ sin k d+
−k (6.49)

This shows clearly the coupling between dk and d+
−k .
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For d+
−k the commutation relations are

[
d+
−k, d

+
k1

dk1

]
= − δk,−k1d+

−k (6.50)
[
d+
−k, d

+
k1

d+
−k1

]
= 0 (6.51)

[
d+
−k, dk1d−k1

] = (
δk,−k1 − δkk1

)
dk (6.52)

leading to

[d+
−k,H] = J

∑
k1

cos k1(−δk,−k1)d
+
−k + Jγ

2

∑
k1

eik1(δk,−k1 − δkk1)dk

= − J cos kd+
−k − J iγ sin kdk . (6.53)

Using (6.49) and (6.53) gives

[ηk,H] = Ak(J cos kdk + J iγ sin kd+
−k)+Bk(−J cos kd+

−k − J iγ sin kdk) (6.54)

and from (6.45)

[ηk,H] = Λ1k(Akdk + Bkd+
−k). (6.55)

Comparing the coefficients of dk and d+
−k in these two equations we obtain simulta-

neous equations for Ak and Bk

Λ1k Ak = Ak J cos k − Bk J iγ sin k (6.56)

Λ1k Bk = Ak J iγ sin k − Bk J cos k (6.57)

which have a non trivial solution if
∣∣∣∣∣
Λ1k − J cos k J iγ sin k
−J iγ sin k Λk + J cos k

∣∣∣∣∣ = 0

Λ2
1k − J 2 cos2 k − J 2γ 2 sin2 k = 0

Λ2
1k = J 2(cos2 k + γ 2 sin2 k) (6.58)

i.e.

Λ1k = ±J Lk where Lk = +
√
(cos2 k + γ 2 sin2 k). (6.59)

A Plot Lk vs k is shown in Fig. 6.1 for three values of γ .
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Lk 1

−π 0 π
k

γ =0

γ =1

γ=0.7

Fig. 6.1 Plot of Lk = Λ1k/J vs. k for three different values of the anisotropy γ

6.6 Ground State Energy of the XY-Model

The fermion operators corresponding to these eigenvalues have the form

ηk = Akdk + Bkd+
−k (6.60)

with

η+
k = A∗

kd+
k + B∗

k d−k (6.61)

From (6.57) and (6.58)

Bk = J iγ sin k

Λ1k + J cos k
Ak (6.62)

Clearly the ratio
Bk

Ak
is different for the two choices of Λ1k .

The corresponding solution for k → −k, obtained from [η−k,H], gives
Λ2k = ± J Lk , the same as Λ1k , and two corresponding solutions for η−k .

Putting

η−k = Ckd−k + Dkd+
k (6.63)

gives

Dk = −J iγ sin k

Λ2k + J cos k
Ck (6.64)

and again the ratio
Dk

Ck
is different for the two choices of Λ2k .

Note that η†
−k has same form as ηk but with Ak → D∗

k and Bk → C∗
k . This

means that there are not four different terms in the Hamiltonian corresponding to
two different ηk and two different η−k but only two linearly independent terms.
The choice of two linearly independent terms from the four solutions is arbitrary.
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The different choices give Hamiltonians which have a similar form but differ by an
additive constant.

The conventional choice is to take Λ2k = Λ1k = + J Lk , together with the
corresponding choice of ratios Bk

Ak
and Dk

ck
from (6.62) and (6.64).

This choice has the result that the excitations from the ground state have positive
energy so that the ground state is the state with zero excitations. If |φ〉 is the ground
state, whose detailed form is not given here, then

η+
k ηk |φ〉 = η+

−kη−k |φ〉 = 0 for all k.

Using Eq. (6.34) the total energy of the ground state is

EG =
π∑

k=0

Xk (6.65)

and with the Xk determined by the condition that (6.34) and (6.33) are equal:

EG = −J
π∑

k=0

Lk(|Dk |2 + |Bk |2) .

Using Eqs. (6.42), (6.43), (6.62), and (6.64) this becomes

= − J
π∑

k=0

(Lk − cos k)

= − J
π∑

k=0

Lk

In deriving this result we have also used (Lk +cos k)2+γ 2 sin2 k = 2Lk(Lk +cos k).

Changing to an integral by replacing
π∑

k=0

= N

2π

∫ π

0
dk

EG

N
= − J

2π

∫ π

0
dk

[
cos2 k + γ 2 sin2 k

] 1
2

which is an elliptic integral. Note that the positive root is required here.
Important special cases are

γ = 0 ‘XX model’ EG
N J = − 1

π
,

γ = 1 Ising case EG
N J = − 1

2 .
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Note that the ground state |φ〉 is a state for which ηk |φ〉 = 0 for all k. However the
ηk are obviously not destruction operators with respect to the aligned state |0〉 since
if they were then the aligned state would be the ground state. Another way of saying
this is that the fermion operators ηk are the destruction operators of ‘quasiparticles’
unlike the original fermi operators ck which correspond to spin reversals. In fact |φ〉
is a linear combination of states with any even number from 0 to N of reversed spins
with respect to |0〉. Only even numbers occur because the Hamiltonian Eq. (6.22)
only connects states differing by two reversals. On average, however, N

2 spins will
be reversed at any one time.

Some of the reasons why LSM’s result is so important are as follows:

a. It gives an explicit simple form for the ground state energy.
b. Using the properties of the ηk , LSM were able to calculate the correlations for

the XY-model. They showed that for γ = 0 (isotropic case)

〈Sz
i Sz

i+R〉 −→
R→∞

1

π2 R2

〈Sx
i Sx

i+R〉 = 〈Sy
i Sy

i+R〉 −→
R→∞

const.

R
1
2

so that there is no long range order for γ = 0.
The case γ 	= 0 is more complicated but they showed that there is long range
order which they were able to calculate.

c. The thermodynamics, i.e. non-zero temperature, properties can also be calculated
since the system consists of non-interacting fermi quasiparticles. In particular
LSM were able to calculate the free energy per spin as a function of T .

d. Correlation functions in the presence of a magnetic field have also been calcu-
lated [5, 6].
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Chapter 7
Spin-Wave Theory

Abstract All of the techniques described in the previous chapters are exact meth-
ods which work only for particular, but important, special cases. In this chapter we
describe a much more general method, due originally to Anderson, which is widely
used to obtain results for many different systems. It is referred to as ‘spin-wave
theory’ as it gives results for the energies of the elementary excitations or spin
waves. The method works for both ferromagnets and antiferromagnets, it works in
2D and 3D as well as 1D, and it works for arbitrary spin – not just for spin-1/2. The
ferromagnetic version is rather simple and the results are usually exact. The antifer-
romagnetic version is more complicated and the results are approximate. However,
these results are still in reasonable correspondence with exact results, where these
are known, and the best of other approximate methods.

7.1 Introduction

The special mathematical techniques introduced for S = 1
2 chains, namely the Bethe

Ansatz for Heisenberg coupling and the Jordan-Wigner transformation for the XY -
model, do not work for higher S or higher dimensions. Spin-wave theory is a much
more general method of studying spin-models introduced by Anderson (1952) [1]
for ferromagnets and later applied by Oguchi (1963) [2] to antiferromagnets.

Spin-wave (SW) theory is not (in general) exact. However, it has many useful
features, some of which are

a. It is rather simple.
b. It works for many Hamiltonians and in any number of dimensions.
c. It gives approximate results for non-zero temperature.
d. It works for arbitrary S.
e. It gives a good physical picture of the excitations.

The basic idea of spin-wave theory is to replace the spin operators by bosons. As
we have seen, spin operators behave like fermions on a given site, but like bosons
where different sites are concerned. Hence we need to find a way of handling the
spin operators on a given site in terms of bosons.

Parkinson, J.B., Farnell, D.J.J.: Spin-Wave Theory. Lect. Notes Phys. 816, 77–88 (2010)
DOI 10.1007/978-3-642-13290-2_7 c© Springer-Verlag Berlin Heidelberg 2010
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Recall that for S = 1
2 and a single site

S+|−〉 = |+〉 S+|+〉 = 0

S−|−〉 = 0 S−|+〉 = |−〉
Sz |−〉 = −1

2
|−〉 Sz |+〉 = 1

2
|+〉

and all other spin operators can be written in terms of these.
For a general spin S and a single site the corresponding basis is again the eigen-

states of Sz written as |m〉 where the 2S + 1 values of m are

m = −S,−S + 1, . . . , S

and the states |m〉 are orthogonal and normalised (i.e. orthonormal). We refer to
S − m as the number of deviations from the state |S〉, the state of maximum Sz .

The corresponding operators and eigenvalues are

S+|m〉 = √
(S − m)(S + m + 1)|m + 1〉 (7.1)

S−|m〉 = √
(S − m + 1)(S + m)|m − 1〉 (7.2)

Sz |m〉 = m|m〉. (7.3)

Special cases for m = ± S are S+|S〉 = 0 and S−| − S〉 = 0.
We now introduce boson operators for a single site which reproduce most of the

above properties. There are various ways of doing this but we shall only consider
the most useful and widely used, called the Holstein-Primakoff transformation.

Let a+, a be boson creation and destruction operators. We now interpret the num-
ber of bosons as the number of deviations from the state |S〉. State |m〉 has (S − m)
deviations and the number operator for bosons is n̂ ≡ a+a so

n̂|m〉 = a+a|m〉 = (S − m)|m〉. (7.4)

Clearly we can represent the operator Sz as

Sz = S − n̂ (7.5)

since Sz |m〉 = (S − n̂)|m〉 = [S − (S − m)]|m〉 = m|m〉. Note that (7.3) is
now satisfied.

We now have to represent the S+ and S− operators in terms of the bosons. This
is done as follows:

S+ = (2S)
1
2

√
1 − n̂

2S
a (7.6)

S− = a+(2S)
1
2

√
1 − n̂

2S
(7.7)

Proof Clearly a|m〉 is a state with one less deviation, i.e.
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a |m〉 = Am |m + 1〉

(recall that less deviations mean higher SZ ).
The Hermitian conjugate of this is

〈m| a+ = A∗
m〈m + 1|

and the inner product of these gives

〈m| a+a |m〉 = |Am |2〈m + 1|m + 1〉

and therefore (S − m)〈m|m〉 = |Am |2〈m + 1|m + 1〉.
Since the states |m〉 are othonormal, 〈m|m〉 = 〈m + 1|m + 1〉 = 1,

and so, choosing Am to be real, Am = √
S − m.

Similarly

a+|m〉 = Bm |m − 1〉

with Bm = √
S − m.

We can now show that choices (7.6) and (7.7) satisfy (7.1) and (7.2). Using (7.6)

S+|m〉 = (2S)
1
2

√
1 − n̂

2S
a|m〉

= (2S)
1
2
√

S − m

√
1 − n̂

2S
|m + 1〉

= (2S)
1
2
√

S − m

√
1 − (S − m − 1)

2S
|m + 1〉

= √
S − m

√
2S − S + m + 1|m + 1〉

= √
(S − m)(S + m + 1)|m + 1〉

which agrees with (7.1). By a similar argument (7.2) is satisfied by (7.7).
Note that the Holstein-Primakoff transformation [(7.5), (7.6), and (7.7)] is exact

as far as the states |S〉, |S − 1〉 . . . | − S〉 are concerned. However, in principle it is
possible to have more than S bosons, i.e. a state of the form

|ψ〉 = (a+)k |S〉 where k > m.

These states are unphysical and they can never be reached if we use the exact trans-
formation. However, we shall now approximate the transformation and this allows
coupling to the unphysical states. The approximation will only be valid provided the
admixture of the unphysical states is ‘small’ in some sense.

Mathematically it is very difficult to handle a transformation involving square
roots. The approximation we shall use is based on the assumption that the states of
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interest all have small probabilities of having deviations on any particular site and
a negligible probability of having two or more deviations on the same site. This is
equivalent to saying

a. The total number of deviations ND is � N , i.e. 〈n̂〉 � 1.
b. Bound states in which deviations cluster together cannot be treated accurately.

With this assumption we approximate the square root as
either

√
1 − n̂

2S
≈ 1 ‘simple SW theory’

or √
1 − n̂

2S
≈ 1 − n̂

4S
‘interacting SW theory’

Interacting spin-wave theory (which is not covered in this book) can deal with
small perturbations to spin-waves obtained using simple spin-wave theory, but it
cannot deal with bound states.

For simple SW theory we now obtain a very simple result

S+ ≈ (2S)
1
2 a

S− ≈ (2S)
1
2 a+ (7.8)

Sz = S − a+a

with the usual boson commutation relation [a, a+] = 1. Note that (7.8) refers to a
single site. For different sites all operators commute so that

[ai , a j ] = [a+
i , a

+
j ] = 0

[ai , a
+
j ] = δi j

7.2 Ferromagnetic Spin-Wave Theory

Consider first the Heisenberg model with nearest neighbour ferromagnetic coupling

H = J

2

∑
j

∑
ρ

S j · S j+ρ

where J < 0, j runs over all sites, ρ runs over all ν neighbours. The ground state
(both classical and quantum mechanical) will be a state with all atoms aligned.
Usually we take this to be the state in which all atoms are in the | + S〉 state.
(Other degenerate ground states can be easily constructed from this state by using
the lowering operator for the whole system

∑
i S−

i ). Writing
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S j .S j+ρ = SZ
j SZ

j+ρ + 1

2
(S+

j S−
j+ρ + S−

j S+
j+ρ)

and using (7.8) we get

H ≈ J Nν

2
S2 − J S

2

∑
j

∑
ρ

(a+
j a j + a+

j+ρa j+ρ)

+ J S

2

∑
j

∑
ρ

(a+
j a j+ρ + a+

j+ρa j )

+ J

2

∑
j

∑
ρ

a+
j a j a

+
j+ρa j+ρ.

The last term here involves four boson operators. For consistency with our previous
approximation we must neglect this term.

The first term is the energy of the ground state (all N spins up) |SSSS....S〉.
Put EF = J NνS2

2
(recall that for the ferromagnet J is negative here), so that

H ≈ EF − J S

2

∑
j

∑
ρ

[a+
j a j + a+

j+ρa j+ρ − a+
j a j+ρ − a+

j+ρa].

This quadratic (or bilinear) Hamiltonian is very easy to diagonalise using a Fourier
transform. Define new boson operators

αk = 1√
N

∑
j

eik j a j

α+
k = 1√

N

∑
j

e−ik j a+
j

a j = 1√
N

∑
k

e−ik jαk

a+
j = 1√

N

∑
k

eik jα+
k

with [αk1 , α
+
k2

] = δk1k2 .
In 3D k is a vector. For example for the simple cubic lattice,

k = (λx , λy, λz)
2π

n
,

with λx,y,z = 0, 1, 2, . . . , n − 1, where n = N
1
3 . (Assuming that the number of

atoms in each direction n is the same for each of the three perpendicular directions)
Using this
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H = EF − J S

2

∑
k

∑
ρ

(1 + 1 − e−ikρ − eikρ)α+
k αk

= EF +
∑

k

εkα
+
k αk

where

εk = −J S
∑
ρ

(1 − cos kρ)

These are the energies, relative to the fully aligned ground state, of the ferromag-
netic spin-waves.

In 1D k is a scalar given by k = λ
2π

N
, with λ = 0, 1, 2, . . . N − 1. The

energy is

εk = −J S[2 − cos k − cos(−k)]
= −2J S(1 − cos k)

so for S = 1
2

εk = − J (1 − cos k)

which are precisely the energies obtained earlier for the 1-deviation states. The
difference now is that we can excite any number of bosons and they will always
have energy εk . Previously, when 2-deviation states were treated exactly we found
both ‘free’ spin-waves and bound states. In this approximation the corrections to the
‘free’ state are omitted, and the bound states are not obtained at all.

7.3 Antiferromagnetic Spin-Wave Theory

The SW approximation is in some ways more interesting when applied to antifer-
romagnets. Classically these tend to align with neighbouring atoms antiparallel. We
shall consider only bipartite lattices which can be divided into two sublattices, such
that all the nearest neighbours of any atom lie on the opposite sublattice, e.g. chain,
square, honeycomb, simple cubic, b.c.c., etc. (Non-bipartite lattices are normally
frustrated, and the study of such lattices is much more complex and not considered
here.) For these lattices the classical ground state has all atoms on one sublattice
(sublattice A) pointing up (say) and all on sublattice B down.

We can construct a similar state in quantum mechanics, called the Néel state, in
which atoms on sublattice A are ‘up’, i.e. in the | + S〉 state, and those on sublattice
B are ‘down’, i.e. in the | − S〉 state. This state however is not an eigenstate and so
is clearly not the true ground state. Nevertheless we can use it as an approximate
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ground state, then use SW theory to find the elementary excitations. Finally we can
use these to go back and find suitable corrections to the Néel state.

If the total number of deviations from the Néel state is ‘small’, i.e. if the aver-
age value of Sz does not differ greatly from +S or −S for sites on each sublattice
respectively, then for sublattice A we can use same transformation as before

S+ ≈ (2S)
1
2 a; S− ≈ (2S)

1
2 a+; SZ = S − a+a

(recall that 〈a+a〉 ≡ 〈n̂〉, is ‘small’).
For sublattice B however, we must use deviations from the | − S〉 state. The

number of deviations is (S + m), e.g. if S = 6 and m = −2 then the number of
deviations from −S is 4, i.e. S + m. Clearly in this case more deviations correspond
to higher Sz . The boson creation operators must therefore lead to states of higher m.
We use the notation b+ and b for the creation and destruction operators on the B
sublattice.

Since the operator for the number of deviations is b+b we must have

b+b = S + Sz

so

Sz = − S + b+b (7.9)

Likewise a deviation, created by b+, will now correspond to increasing Sz by
one. Hence

S+ ≈ (2S)
1
2 b+; (7.10)

and

S− ≈ (2S)
1
2 b. (7.11)

Equations (7.9), (7.10), and (7.11) for the B sublattice correspond to (7.8) for the A
sublattice.

Let us use subscript j for the ‘up’ sublattice A and � for the ‘down’ sublattice B.
( j + ρ is a nearest neighbour of j and so will be on the ‘down’ sublattice). We can
regard the lattice as consisting of Nu ‘unit cells’, each of which contains 2 atoms,
and a sum over one sublattice is equivalent to a sum over the unit cells. Clearly
Nu = N/2.

The Hamiltonian now becomes

H ≈ EN + J S

2

(
2
∑

j

∑
ρ

)[
a+

j a j + b+
j+ρb+

j+ρ + a+
j b+

j+ρ + a j b j+ρ
]

(7.12)
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where EN = − J N S2ν

2
(J is positive now) is the energy of the Néel state (i.e. the

expectation value of H in the Néel state). The extra factor of 2 is needed since the
sum over j is a sum over one sublattice only. Again we have neglected products of
four operators.

Now Fourier transform, introducing

ck = 1√
Nu

∑
j

eik j a j etc.

(similar to the αk in the ferromagnetic case) and also

dk = 1√
Nu

∑
�

e−ik�b� etc.

The allowed values of k in 1D are now

k = λ
2π

Nu
with λ = 0, 1, . . . , Nu − 1 = 0, 1, . . . ,

N

2
− 1.

If the lattice spacing in 1D is d , then the actual wavevector q of the original
lattice is in units of 1/d, i.e. q = k/d. Because the unit cell of the sublattice is
now 2d the wavevectors in this spin-wave approximation are in units of 1/(2d),
i.e. q = k/(2d). This means that for the largest value of k, which is 2π , the largest
value of q is π/d. In effect the Brillouin zone is now half the size of the original.

In 2D and 3D the effect is similar but complicated by the fact that the symmetry
of the sublattice is in general different to that of the atomic lattice. For example a
simple cubic lattice has two f.c.c. sublattices so the Brillouin zone of the sublattice
is not related in such a simple way to that of the original lattice.

After Fourier transforming the result is

H = EN + J S
∑

k

∑
ρ

[
c+

k ck + d+
k dk + eikρc+

k d+
k + e−ikρckdk

]
.

We define γk = 1
ν

∑
ρ eikρ (= cos k in 1D). Therefore

H = EN + J Sν
∑

k

[
c+

k ck + d+
k dk + γk(c

+
k d+

k + ckdk)
]

(7.13)

This form is reminiscent of theH we obtained in XY model. Note however that these
are bosons not fermions. Also clearly k is a ‘constant of the motion’ here: there is
no coupling of different k’s or coupling of k and −k, unlike in the XY -model.

The eigenvectors will involve linear combinations of ck and d+
k . As we noted in

the chapter on the XY -model this was first done by Holstein and Primakoff but it is
usually known as a Bogoliubov transformation.
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Introduce two new Bose operators αk and βk :

αk = ukck + vkd+
k

βk = ukdk + vkc+
k

where uk and vk are constants which can be taken to be real without loss of gener-
ality, so that

α+
k = ukc+

k + vkdk

β+
k = ukd+

k + vkck

From now on the subscript k will be omitted. Note that both c and d+ increase the
z-component of angular motion by one unit and thus so does α whereas c+ and d
decrease it by one unit and thus so does β.

These operators are required to have the usual Bose commutation relations,
namely

[α, α+] = [β, β+] = 1

with all other pairs of operators from the set {α, α+, β, β+} commuting.
We can easily show, using the Bose properties of c and d, that all these commu-

tation relation are satisfied provided that

u2 − v2 = 1 (7.14)

e.g.

[α, α+] = (uc + vd+)(uc+ + vd)− (uc+ + vd)(uc + vd+)
= u2[c, c+] − v2[d, d+] = u2 − v2 = 1

and

[α, β] = (uc + vd+)(ud + vc+)− (ud + vc+)(uc + vd+)
= u2(cd−dc)+ v2(d+c+−c+d+)+uv(d+d + cc+−dd+− cc+)
= 0 + 0 + uv

([c, c+] − [d, d+]) = uv(1 − 1) = 0

Now consider the operator which gives the total number of excitations of the two
types

α+α + β+β = (uc+ + vd)(uc + vd+)+ (ud+ + vc)(ud + vc+)
= (u2 + v2)(c+c + d+d)+ 2uv(c+d+ + cd)+ 2v2.

We choose the ratio of coefficients to match the ratio in Eq. (7.13), namely
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2uv

u2 + v2
= γ (7.15)

From Eqs.(7.14) and (7.15) it follows that

u

v
= 1 ± s

γ
(7.16)

where s = + √
1 − γ 2. Clearly s2 = 1 − γ 2 and γ 2 = 1 − s2.

If
u

v
= 1 + s

γ
and u2 − v2 = 1 then

v2
[
(1 + s)2

γ 2
− 1

]
= 1

v2

γ 2
[1 + 2s + s2 − γ 2] = 1

v2[1 + 2s + s2 + s2 − 1] = 1 − s2

2v2s(1 + s) = (1 − s)(1 + s)

∴ 2v2 = 1 − s

s

and so

u2 + v2 = 2v2 + 1 = 1

s
. (7.17)

Similarly the choice
u

v
= 1 − s

γ
leads to

u2 + v2 = − 1

s
. (7.18)

However, as we shall see shortly, this second choice is unphysical and will be dis-
carded.

Hence

(c+c + d+d)+ γk(c
+d+ + cd) = 1

(u2 + v2)
(α+α + β+β − 2v2)

and so the Hamiltonian (7.13) can be written

H = EN + J Sν
∑

k

[
1

(u2 + v2)
(α+α + β+β)− 1 + s

]
. (7.19)

Finally we write
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H = EA +
∑

k

εk(α
+α + β+β) (7.20)

where the energy of the excitations is

εk = J Sν
1

(u2 + v2)
= J Sνs = J Sν

√
1 − γ 2

k (7.21)

and

EA = EN − J Sν
∑

k

(1 − s) = − J N S(S + 1)ν

2
+ J Sν

∑
k

√
1 − γ 2

k (7.22)

We can now see that choosing the negative sign for u2 + v2 as in (7.18) rather
than the positive sign as in (7.17) would lead to negative excitation energies εk , and
since the excitations are bosons we could obtain an arbitrarily low energy for the
system by creating an arbitrary number of them.

The antiferromagnetic spin-waves we have obtained are doubly degenerate with

energy J Sν
√

1 − γ 2
k . The true result is triply degenerate since ST = 1 and there are

three degenerate states with Sz
T = + 1, 0,−1. The operator αk decreases Sz

T by
one unit, while βk increases it by one unit. There is no operator in spin-wave theory
which creates an excitation with no change in Sz

T .
In the 1D case with S = 1

2 case the exact result for the energy of the excitations
is known to be

εk = Jπ

2
sin k.

while the spin-wave result, using γk = cos k, S = 1
2 , ν = 2, has

εk = J
√

1 − cos2 k = J sin k

i.e. of correct form but without the π
2 factor. We also know that in the 1D, S = 1

2
case the ‘spin-wave spectrum’ is not a true branch, but rather the lower boundary of
a continuum of states.

Nevertheless, even though the 1D, S = 1
2 case should be the most difficult since

it shows the most extreme quantum effects, the results are rather good. For higher S
and higher dimension the spin-wave results are even more satisfactory.

We can use our results (7.20), (7.21), and (7.22) to obtain an estimate of how
different the energy of the true ground state is from that of the Néel state. The
energy of the ground state is the value of (7.20) with α+

k αk and β+
k βk put to zero,

since these operators count the number of excited bosons (spin-waves). This gives
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EA = EN − N Jν

2
S + J Sν

∑
k

√
1 − γ 2

k .

The sum over k can be converted to an integral which has the value 2
π

× 1
2 in 1D and

can be evaluated numerically in higher D. (The factor of 1
2 comes from the fact that

the summation over k runs over N
2 terms.) In 1D, for S = 1

2 , the result is

EA

N
= − 0.75J + J

π
(or − 0.431690J to 6 decimal places)

while the exact result is known to be −0.443147J (to 6 decimal places) which is in
quite good agreement. (Note that the energy of the Néel state itself is EN

N = −0.25,
which is much less accurate!).

One can also calculate 〈Sz
j 〉 in the ground state in the SW approximation since

Sz
j = S − a+

j a j (for the up sublattice). This is done using the inverse Fourier

transform
∑

j 〈a+
j a j 〉 = ∑

k〈c+
k ck〉, the inverse of the Bogoliubov transformation

ck = uαk − vβ+
k and the fact that 〈α+

k αk〉 = 〈β+
k βk〉 = 0 in the SW ground state.

Putting 〈δSz
i 〉 = S − 〈Sz

i 〉, then for S = 1
2 the results are

〈δSi 〉
3D (simple cubic) 0.078
2D (square) 0.20
1D ∞

The result for 1D is clearly unphysical, and is associated with the fact that there is
no long-range order. However for 2D and 3D the results are in quite good agreement
with much more sophisticated calculations.
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Chapter 8
Numerical Finite-Size Calculations

Abstract Numerical methods have been used extensively for studies of quantum
spin systems. In subsequent chapters we shall describe some of these methods,
which make use of sophisticated approximation techniques developed in many areas
of quantum many-body theory. However, in this chapter we first look a very simple
numerical method that does not involve any theory other than the assumption that
the properties of small systems change smoothly as the size of the system increases
to the limit of infinite numbers of atoms. The technique is to take a small finite-
sized system with N atoms, where N can be any number from 2 upwards. For
these small systems, every basis state can be written down explicitly and all the
matrix elements of the Hamiltonian in the basis can be calculated. The matrix is
then diagonalised numerically and hence the eigenstates and eigenvalues calculated.
Usually the largest N is of the order of 20 for full diagonalisation and 40 for partial
diagonalisation. Clearly the ground state energy and the energies of the elemen-
tary excitations are obtained directly. Also the partition function can be constructed
directly for full diagonalisation because all the eigenvalues are known. This opens
the way to study of the non-zero temperature properties of these systems.

8.1 Introduction

In previous chapters we considered two exact 1D methods:

1. The Bethe Ansatz applied to the S = 1
2 Heisenberg chain.

2. The method of Jordan and Wigner applied to the S = 1
2 XY chain.

These exactly solvable systems are known as integrable systems. They com-
prise only a few very specialised systems, which are nevertheless extremely impor-
tant because much more detailed information is available for them than for other
systems.

We have also considered one approximate method, namely spin-wave theory,
especially for antiferromagnets which is valid in all dimensions. Spin-wave theory
is useful in practice but is not easy to improve in a systematic way.

In this section we describe another approximate method which applies very
generally and which is systematic. This method is useful for estimating the ground

Parkinson, J.B., Farnell, D.J.J.: Numerical Finite-Size Calculations. Lect. Notes Phys. 816, 89–97
(2010)
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90 8 Numerical Finite-Size Calculations

state properties, i.e. for systems with T = 0. It also works well for medium and high
T , but is least accurate for low T (	= 0). Again we shall mainly consider antiferro-
magnets.

We shall describe the essential features of the method. However, because it has
been very widely used it is only possible here to give one or two examples of its
application which we hope will give an indication of its power.

Suppose we wish to find the ground state energy for a system of N atoms where
N → ∞. As noted above, most systems are not integrable, examples being

a. Systems with S ≥ 1.
b. Systems with interactions which are not nearest-neighbour.
c. Systems with other types of interaction between spins such

as biquadratic (Si · S j )
2.

d. Systems with dimension higher than 1.

For many of these cases a powerful method is to calculate results numerically for
small systems, typically N � 40, for several different values of N and then try to
extrapolate N → ∞.

The pioneering work was done by Bonner and Fisher (1964) [1] who considered
the 1D (chains and rings) XXZ model with S = 1

2 and a magnetic field.

H = −2J
∑

j

Δ
[
Sz

j S
z
j+1 + (Sx

j Sx
j+1 + Sy

j Sy
j+1)

]
− B

∑
j

Sz
j . (8.1)

(Note the factor of 2 compared to earlier chapters.) This is a system which can
be dealt with by Bethe Ansatz (BA) and so the accuracy of some of the numerical
results, such as the ground state energy, can be checked directly with the exact result.
Other properties of the ground state, such as correlations between different spins,
which cannot be easily obtained by the BA can now be estimated numerically. Also
results for non-zero T can be found. Mostly it has been used for 1D systems as it
is more difficult to treat 2D systems that are large enough to make extrapolations
meaningful. However, for some systems accurate results in 2D for the ground state
have been found and some of these are discussed in the final chapter. For the same
reason there are virtually no results in 3D.

8.2 A Simple Example

The method involves direct diagonalisation of the full Hamiltonian for a short chain
(open ends) or ring (periodic boundary conditions). We illustrate the method for the
Heisenberg Hamiltonian, i.e. (8.1) with Δ = 1 and B = 0, for a ring of N = 4,
S = 1

2 atoms. We also put J = 1 for simplicity. Hence

H = 2
∑

j

S j · S j+1 = 2
∑

j

[
Sz

j S
z
j+1 + 1

2
(S−

j S+
j+1 + S+

j S−
j )

]
(8.2)
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Here Sz
T = ∑

j Sz
j is a good quantum number. A complete set of basis states

has 2N = 16 states, which in the usual notation where plus denotes + 1
2 , and minus

denotes − 1
2 are

| + + + + > Sz
T = 2

| + + + − >

| + + − + >

| + − + + >

| − + + + >

⎫⎪⎪⎬
⎪⎪⎭

Sz
T = 1

| + + − − >

| + − − + >

| − − + + >

| − + + − >

| + − + − >

| − + − + >

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

Sz
T = 0

The remaining basis states for Sz
T = −1 and Sz

T = −2, follow the same pattern.
We now calculate the effect of operating with H on each of the basis states, e.g.

H| + + − + > = 1
2 | + − + + > + 1

2 | + + + − >,

H| + + − − > = 1
2 | + − + − > + 1

2 | − + − + >,

H| + − + − > = −| + − + − > + 1
2 | − + + − >

1
2 | + + − − > + 1

2 | + − − + >
1
2 | − − + + >,

and eventually we obtain the following representation of H

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0 1

2 0 1
2

1
2 0 1

2 0
0 1

2 0 1
2

1
2 0 1

2 0
0 0 0 0 1

2
1
2

0 0 0 0 1
2

1
2

0 0 0 0 1
2

1
2

0 0 0 0 1
2

1
2

1
2

1
2

1
2

1
2 −1 0

1
2

1
2

1
2

1
2 0 −1

0 1
2 0 1

2
1
2 0 1

2 0
0 1

2 0 1
2

1
2 0 1

2 0
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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where blank regions contain only 0s. Note the block-diagonalisation due to Sz
T being

a good quantum number.
Clearly this matrix can now be easily diagonalised numerically to find all the

eigenvalues, the lowest of which is the ground state energy.
The system also has translational symmetry because of the periodic boundary

conditions. This means that we can Fourier transform in terms of wavevectors k.
For this small system these can be written directly as a new basis, which for the
Sz

T = 0 subspace has the form

φ1 = 1√
2
(| + − + − > +| − + − + >) k = 0

φ2 = 1√
2
(| + − + − > −| − + − + >) k = π

φ3 = 1
2 (| + + − − > +| − + + − > +| − − + + > +| + − − + >) k = 0

φ4 = 1
2 (| + + − − > +i | − + + − > −| − − + + > −i | + − − + >) k = π

2

φ5 = 1
2 (| + + − − > −| − + + − > +| − − + + > −| + − − + >) k = π

φ6 = 1
2 (| + + − − > −i | − + + − > −| − − + + > +i | + − − + >) k = 3π

2

with similar states for the Sz
T = ±1 subspace. (The Sz

T = ±2 subspaces only have
one state in so this is automatically a k = 0 state.)

Note that these states are of the form

φ = 1√
NT

∑
j

eik j (T ) jψ

where ψ is one of original basis states, T translates by 1 unit and NT is the number
of distinct states which are related to ψ by translation. This greatly reduces the size
of the matrix to be diagonalised. One can also make use of the reflection symmetry
to create a basis whose states have only real coefficients, e.g. (φ4+φ6) and i(φ4−φ6)

instead of φ4 and φ6, which enables the Hamiltonian matrix have purely real entries
and thus be easier to handle numerically. The ground state wave function is given
by “φ = (

√
2φ1 − φ3)/

√
3, which gives an overall ground-state energy eigenvalue

of −4.”

8.3 Results in 1D

In Table 8.1 and Fig. 8.1 we show the results that Bonner and Fisher obtained for the
ground state energy per atom of the Heisenberg antiferromagnetic chain using this
method. (Note the factor of 2 in Eq. (8.1).) As can be seen the results extrapolate

very accurately as straight lines when plotted as a function of
1

N 2
rather than

1

N
.

Also note the separate lines for chains with odd and even numbers of atoms, both of
which converge to the exact value of 1

2 − 2 ln 2 as N → ∞.
Clearly the results in this case where the exact result is known are very good,

and for other 1D systems which are not exactly soluble the results are generally
excellent.
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Table 8.1 Finite-size results for the ground-state energy of spin-half Heisenberg chains of
(odd/even) length N with periodic boundary conditions (note the factor of 2 compared to earlier
results of Bethe Ansatz)

N Even N Odd

4 −1.00000 3 −0.50000
6 −0.93425 5 −0.74721
8 −0.91277 7 −0.81577

10 −0.90309 9 −0.84384
12 −0.8979 11 −0.85799
∞ −0.88629 ∞ −0.88629

Fig. 8.1 Bonner and Fisher’s [1] original figure for the ground state energy of the linear Heisenberg
antiferromagnetic chain. (Antiferromagnetic ground-state energies versus 1/N (circles) and versus
(1/N )2 (squares) for pure Heisenberg rings (γ = 1).) (Reprinted with permission from Bonner and
Fisher [1]. Copyright 1964 by the American Physical Society)

Because all the eigenvalues can be calculated for small systems of size N it is
quite straightforward to calculate the partition function:

ZN =
∑

i

e−βEi ,

and from this we can calculate any other thermodynamic quantity such as specific
heat. Bonner and Fisher’s result is shown in Fig. 8.2. As can be seen the convergence
is good for T � 1.

At the time of Bonner and Fisher’s paper there were very few T 	= 0 results
available, even for S = 1

2 . Later work by Yang and Yang (1966) [2–4] and Takahashi
(1971) [5] enabled some of these quantities to be calculated exactly using the Bethe
Ansatz for the S = 1

2 chains. The numerical method is much more general, however,
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Fig. 8.2 Bonner and Fisher’s [1] original figure for the specific heat of the linear Heisenberg anti-
ferromagnetic chain. (Variation of specific heat with temperature for antiferromagnetic Heisenberg
chains: finite N, solid lines; estimated limit N = ∞, dashed line.) ( Reprinted with permission
from Bonner and Fisher [1]. Copyright 1964 by the American Physical Society)

and works well for many of the systems mentioned at the beginning of this chapter,
e.g. S ≥ 1, for which the Bethe Ansatz method is not applicable.

Another important result which was confirmed by this method is the existence of
an energy gap between the ground state and the first excited state of linear chains
with an isotropic Heisenberg interaction. This gap is known to be zero, i.e. there
is no gap, in the limit N → ∞ for S = 1

2 . However, in 1982 Haldane [6, 7]
predicted that for S = 1 (and any other integer value of S) the gap would be non-
zero. Haldane’s method involved a transformation of the chain of separate atoms
into a continuum limit and then using field theoretical methods. He was not able to
prove the result exactly and initially people were surprised and somewhat sceptical.

However numerical results by Botet and Jullien (1983) [8], using the above tech-
niques rapidly produced evidence that the result was correct. Figure 8.3 is from
Parkinson and Bonner (1985) [9] and gives results for longer chains. If the gap for
S = 1 were zero then the points would have to lie on a curve similar to the one
shown with dots and dashes, which seems unlikely.

Much later, in 1993, the value of the gap in energy was obtained to very great
accuracy by the density matrix renormalisation group method (DMRG) by White
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Fig. 8.3 Plot of the energy gap of the linear Heisenberg antiferromagnetic chain for different S

and Huse [10] and the value is 0.4105(1) in units of the exchange J . The DMRG is
another quite different numerical technique which works extremely well in 1D but
is not easy to extend to 2D.

This non-zero gap for integer spin S is evidence of a completely different type
of ground state which is disordered and has correlations which decay exponentially.
The systems with S = integer + 1

2 including the Bethe Ansatz soluble case S = 1
2

are believed to have ordered ground states in which correlations decay algebraically.

8.4 Results in 2D

As mentioned earlier, the method can be used in 2D. For a square lattice one can
choose small square sections containing N atoms and with periodic boundary con-
ditions. If the square section has sides parallel to the axes of the square then the
number of suitable square sections is five, namely 2 × 2, 3 × 3, 4 × 4, 5 × 5 and
6 × 6. 6 × 6 would have N = 36, and which is almost at the limit of what can be
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1610

824

Fig. 8.4 Square sections of an infinite square lattice with N = 2, 4, 8, 10, 16 which would tile the
entire lattice if repeated indefinitely

handled numerically for the ground state, e.g., via the Lanczos method. However,
an ingenious way around this, introduced by Oitmaa and Betts (1977) [11], is to use
square sections with periodic boundary conditions where the edges of the square are
not parallel to the axes. This is shown in Fig. 8.4 for sections with N = 2, 4, 8, 10
and 16. Similar constructions are also available for N = 18, 20, etc. Using these
one can plot the ground state energy and other quantities as a function of 1/N or
1/N 2 just as for 1D systems.

The limiting factor in all of these calculations is the very rapid growth in the
size of the basis as N increases. For S = 1

2 systems the number of basis states
is 2N so for N = 20, 220 = 1048576. For S = 1 number of states is 3N etc.
The matrices are somewhat smaller than this because of translational symmetry and
reflection symmetry in 1D and also rotational symmetry in 2D. Nevertheless, the
largest values of N that can be fully diagonalised in 1D are approximately of order
20 for S = 1

2 , 14 for S = 1 and 10 for S = 3
2 . In 2D the maximum N are slightly

greater because there is more symmetry but, of course, it is
√

N which determines
the size of the section in 2D and this is much smaller. Larger systems may be con-
sidered for partial diagonalisation, e.g., for the ground state and low-lying excited
states. Indeed, results of numerical finite-size calculations for the ground states of
2D antiferromagnets (referred to also as “exact diagnalisations”) are presented in
the final chapter of this book. It is clear that in 3D lattices one cannot use large
enough sections for the method to be useful at the moment.
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Chapter 9
Other Approximate Methods

Abstract Exact diagonalisations of the type presented in the previous chapter are
typically limited to relatively small numbers of lattice sites. In this chapter approx-
imate methods that may be applied to larger systems are discussed. The variational
method is discussed as one method of simulating the properties of quantum spin
systems, although an exact enumeration of the basis states in a given sector becomes
prohibitive in terms of computational cost for larger lattices. Monte Carlo simulation
allows us to treat larger lattices using the variational method. This discussion leads
on to a more general description of the quantum Monte Carlo simulation of quantum
spin systems. Finally, the topics of perturbation theory and of series expansions are
explored. Series expansions obey the linked cluster theorem and so yield results
valid in the infinite-lattice limit from the outset. The spin-half Heisenberg model
on the linear chain is used as a test-case for all of these methods. We show that
even simple applications of these methods give improved results for the ground-state
energy compared to the classical result.

9.1 Introduction

The finite-size calculations, described in the previous chapter, are only one way of
obtaining results numerically. The coupled-cluster method, described in detail in the
next chapter is also a numerical method which deals directly with the infinite lattice.
In this chapter we mention the variational method and its stochastic version, the
Variational Monte Carlo method, the Green Function Monte Carlo method and also
perturbation theory/series expansions. Some of these, e.g., series expansions, deal
directly with the infinite lattice, although others such as Monte Carlo are generally
applied to a finite lattice and the results then extrapolated in the infinite-lattice limit.

9.2 Variational Method

The variational method, widely used in theoretical physics, can also be applied
to 2D and 3D quantum spin systems in a simple and straightforward manner. An
important point to note about the variational method is that the approximate bra

Parkinson, J.B., Farnell, D.J.J.: Other Approximate Methods. Lect. Notes Phys. 816, 99–108 (2010)
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and ket states are Hermitian conjugates of each other (unlike in the coupled cluster
method described later) so that the calculated ground-state energy is a strict upper
bound on the true value. If the result depends upon some parameter in the wave
function then minimising with respect to this parameter, i.e. varying it to find the
minimum, can lead to a good approximation to the true value. The ground state
wave function is less reliably obtained as some important features may have been
neglected in the initial trial wave function.

For example, in an antiferromagnetic spin system we usually know that the
ground state is a state with total spin equal to 0. The true ground state must consist
of a linear combination of states in the set {I } which is the set of all Ising states for
which Sz

T ≡ ∑
i Sz

i = 0. Thus the ground state wave function is

|Ψ 〉 =
∑

I

cI |I 〉. (9.1)

The ground-state energy is given by the Schrödinger equation as normal

H |Ψ 〉 = Eg|Ψ 〉

and applying 〈Ψ | on the left gives

Eg = 〈Ψ |H |Ψ 〉
〈Ψ |Ψ 〉

or

Eg =
∑

I1,I2 c∗
I1

cI2〈I1|H |I2〉∑
I |cI |2 . (9.2)

Now we make an approximation to the coefficients in such a way that there is one
or more parameters in the coefficients which can be varied.

An example is the choice for a spin-half system given by

cI = ui j (p
↑
i p↓

j + p↓
i p↑

j ), (9.3)

where the indices i and j run over all lattice sites. p↑ and p↓ are projection operators
for the ‘up’ and ‘down’ states of the spins, where

p↑| ↑〉 = 1| ↑〉 p↑| ↓〉 = 0| ↓〉
p↓| ↑〉 = 0| ↑〉 p↓| ↓〉 = 1| ↓〉.

In terms of the normal spin operators
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p↑ ≡ 1

2
+ Sz : p↓ ≡ 1

2
− Sz,

and the {ui j } are parameters.
Note that it is slightly easier to deal with the equivalent spin system after a unitary

rotation of the local axes of the spin by 180◦ on one sublattice. This changes the
Hamiltonian slightly, but crucially means that the cI coefficients must be positive
from the Marshall-Peierls sign rule. An example is the choice for a spin-half system
(after rotation of the local spin axes) given by

cI = ui j (p
↑
i p↑

j + p↓
i p↓

j ), (9.4)

where the indices i and j run over all lattice sites.
A possible choice of these parameters is the ‘two-site’ approximation known as

the Jastrow Ansatz, in which the ui j are all zero if i and j are not nearest neighbours.
A simple version of this is to set ui j equal to some number α when i and j are
nearest-neighbours and to zero in all other cases. There is now a single parameter,
α, to be adjusted in the final result.

For small enough lattices, we enumerate all of the states in the Ising basis
either by hand (or for larger lattices computationally), and so we are able to cal-
culate all of the contributions to the ground-state energy of Eq. (9.2). We obtain
a value for the ground-state energy in terms of α and then minimise with respect
to it. Hence, we obtain a ‘variational’ value for the ground-state energy. Because
the ground-state energy thus found is an upper bound of the ‘true’ value, this
is very useful both as an estimate of the ground-state energy in itself and also
as a test for other approximate methods. If another approximate method pro-
duces a ground-state energy higher than the simple variational estimate then it is
unsatisfactory.

Finally, we may find estimates of other ground-state expectation values easily
as we have direct access to the (approximate) wave function written in terms of
expansion coefficients with respect to the Ising basis.

9.3 Variational Monte Carlo Method

However, we may not be able to enumerate all Ising states in the basis even using
very intensive computational approaches (and in the relevant ground-state subspace)
for very large lattices, i.e., those of very many spins. This is particularly true for
2D and 3D lattices and for higher spin quantum number. In this case we use a
method called Monte Carlo simulation in order to carry out the enumeration of
states approximately. Clearly, not all states are equal in their contribution to the
ground-state energy and this method allows us to choose those states that are ‘most
important.’ Furthermore, the error of the estimate of ground-state expectation values
decreases in a statistically well-understood manner with the length of the simulation.
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We begin the Monte Carlo treatment of the variational problem by rewriting the
ground-state energy of Eq. (9.2) in the following form:

Eg =
∑

I1,I2 c∗
I1

cI2〈I1|H |I2〉∑
I |cI |2

=
∑

I1 |cI1 |2
∑

I2
cI2
cI1

〈I1|H |I2〉∑
I |cI |2

⇒ Eg =
∑

I

P(I )EL(I ). (9.5)

P(I ) is interpreted as a probability for the state I and is given by

P(I ) = |cI |2/
∑

J

|cJ |2.

(The index J represents a sum over all Ising basis states, though it will disappear as
we shall see shortly). The local energy with respect to the state I is given by

EL(I ) =
∑

I2

cI2

cI
〈I |H |I2〉.

We start from a given state in the relevant ground-state Ising basis and we define an
acceptance probability A(I → I ′) from state I to state I ′ given by

A(I → I ′) = min

[
1,

P(I ′)K (I )
P(I )K (I ′)

]
, (9.6)

where K (I ) indicates the number of states accessible from state I via the ‘off-
diagonal’ terms in the Hamiltonian. (The denominator

∑
J |cJ |2 in both P(I ) and

and P(I ′) is identical and so cancels in Eq. (9.6).) We choose a state I ′ to be one
of these K (I ′) states and now use the Metropolis algorithm in order to decide if we
should accept this new state I ′ or if we should stay with the old one, I . We generate
a random number η from a uniform distribution in the range 0 to 1 and we test if our
acceptance probability A(I → I ′) is greater than η. If it is then we accept the new
state and otherwise we retain the original state. It is this element of randomness or
chance that leads to the name of the method (i.e., Monte Carlo) for obvious reasons.

We now repeat the process for the new state I ′ in order to form yet another state
I ′′, and so on. As is common in Monte Carlo simulations we repeat this process
many times and we form an average of the local energies (and ‘local’ estimates of
all other ground-state expectation values similarly) as we go along. Again, we note
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that the ground-state energy again forms an upper bound on the ‘true’ ground-state
energy, but within the limits of the error bars due to the Monte Carlo simulation
in this case. The estimate of the ground-state energy may be minimized compu-
tationally for the variational Monte Carlo estimate presented here. This is simple
to achieve in practice and a robust estimate of the ground-state energy may be
formed in a straightforward manner for the nearest-neighbour two-spin approxi-
mation. This process becomes more difficult as we include longer-range correla-
tions and higher-order terms in the approximation for the cI coefficients. How-
ever, we would expect the accuracy of the results to increase also as we add in
more such terms and, again, we would obtain an upper bound on the ground-state
energy.

It is interesting to apply the variational Monte Carlo (VMC) method to the
spin-half one-dimensional antiferromagnetic (J>0) Heisenberg model on a chain
of finite length, which can be solved by the exact diagonalisation method as
described above. For example, we obtain an estimate of the ground state energy
of EG/N = −0.423729(3)J (α = 1.773) for the Heisenberg model on a chain
of N = 20 sites with periodic boundary conditions. Note that α is the strength of
the nearest-neighbour correlations in ui j in Eq. (9.4) and that M = 1010 Monte
Carlo iterations were used in this simulation. This result lies above and is rea-
sonably close to the exact diagonalisation result of EG/N = − 0.445219J for
the N = 20 chain with periodic boundary conditions, which is itself not too far
from the exact Bethe ansatz result of EG/N = 1/4 − ln 2 (= −0.443147) in
the infinite-lattice limit. Indeed, we see that 89% of the correlation energy of the
N = 20 Heisenberg chain has been captured by using this simple two-body nearest-
neighbour Ansatz. Furthermore, this result also illustrates the fact mentioned earlier
that variational methods provide an upper bound on the ground-state energy of a
system because the ket and bra states are always Hermitian conjugates of each
other. We may also apply VMC to much larger lattices than exact diagonalisations
because the computational cost needed to carry out VMC is much lower. However,
caution should be used when interpreting the results of variational studies because
they might actually provide quite a poor approximation to the ‘true’ ground-state
wave function while still yielding deceptively good results for the ground-state
energy.

Despite this, however, it is true to say that variational methods have an impor-
tant role to play in understanding quantum spin systems, especially in providing
upper bounds on the ground-state energy which can then be compared with results
of other approximate methods. In the next chapter we shall describe a method
called the coupled cluster method (CCM) that allows us to systematically refine the
approximation level to include higher order terms in the wave function. The CCM
is strictly speaking a bi-variational method, and since the bra and ket states are not
explicitly constrained to be Hermitian conjugates of each other, it does not yield an
upper bound to the energy. However, this negative aspect is offset by many positive
aspects, not-the-least that one may obtain results for the infinite lattice (N → ∞)
from the outset.



104 9 Other Approximate Methods

9.4 The Green Function Monte Carlo Method

There are many forms of Monte Carlo in science [1–6] and its use is ubiquitous.
Thus, even in the fairly restricted area of quantum spin systems, the variational
Monte Carlo method is only one of a number of approaches that use Monte Carlo
techniques. Another example, used for calculating zero temperature properties, is
the Green function Monte Carlo method. This provides an estimate of the true
ground-state energy and other properties directly and so there is no need to minimise
the ground-state energy with respect to any parameters of the wave function.

It uses ‘power iteration’ of the Hamiltonian in which one repeatedly operates
with the Hamiltonian on an initial starting state |I0〉 (in the relevant ground-state

subspace). For a large number M of operations H M |I0〉 M→∞−→ K |Ψ 〉, where K is
a constant and |Ψ 〉 is the eigenstate of H which has the eigenvalue with the largest
magnitude, normally the ground-state. This method is frequently used in exact diag-
onalizations of finite-sized systems in order to isolate the ground-state wave function
and its energy. Often the Lanczos technique can also be used to drastically reduce
the number of iterations compared to the direct ‘power” iteration method.

However, for the Green function Monte Carlo, this property of power or direct
iteration turns out to be quite useful. This is because each time we apply the Hamil-
tonian new Ising states in the approximate wave function are created. The Green
function method represents these states by a set of ‘walkers’ where each walker has
transition probabilities A(I → I ′) to go from state I to state I ′ and associated local
energies. The estimate of the ground-state energy is given by the average of the local
energies over all walkers for a given number of iterations M . Again, each move is
accepted or rejected randomly and so we obtain a ‘random walk’ for each of the
individual walkers through the set of basis states.

For Green function Monte Carlo, however, we also need to know the signs of
the expansion coefficients cI beforehand in order to ensure that the transition prob-
abilities are always positive; if we utilize signs that are wrong then we will sample
the underlying probability distributions incorrectly and so our estimates will also
be incorrect. Fortunately, there exist a number of such rules for the signs of the
expansion coefficients, the most famous of which is the Marshall-Peierls sign rule
[7] for the Heisenberg model for bipartite lattices. Bipartite lattices are those lat-
tices such as that linear chain, square and cubic latices that can be decomposed into
two neighbouring sublattices. The estimates of the ground-state properties of lat-
tice quantum spin systems thus obtained using Green function Monte Carlo present
the most important of the approximate methods for 2D (and to lesser extent 3D)
unfrustrated systems. However, the application of Monte Carlo is severely limited
by the presence of the ‘sign problem’ for frustrated spin systems. Frustration is an
effect in which different terms in the Hamiltonian compete. Classically, this means
that the ground-state energy per bond is lower than that of a comparative unfrus-
trated system. By contrast, perhaps the best evidence of frustration occurs in the
analogous quantum system is that no such sign rule can be created. Examples of
frustrated systems are the triangular lattice antiferromagnet and the J1–J2 model
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with antiferromagnetic nearest- and next-nearest-neighbour terms of bond strengths
J1 and J2, respectively. Some of these systems will be considered in more depth
later on. However, we note that variational Monte Carlo may still be applied for
those cases in which no sign rule exists. Furthermore, a more sophisticated Monte
Carlo approach called fixed-node Monte Carlo may be employed in these cases also.
However, a description of this method lies beyond the scope of this text.

9.5 Perturbation Theory

There are many other approximate methods which have been applied to quantum
spin systems. We finish by briefly mentioning one of these, the perturbation method.

The basic idea here is to divide H into two parts and treat one part as a perturba-
tion, even if it is not very small. For example, a system with anisotropic exchange,
called the ‘XXZ-Model’, in any number of dimensions has Hamiltonian

H = J

2

∑
i

∑
ρ

[
Sz

i Sz
i+ρ + γ

(
Sx

i Sx
i+ρ + Sy

i Sy
i+ρ

)]

where ρ runs over all nearest neighbours on the opposite sublattice and γ is the
anisotropy parameter. Writing this as

H = H0 + H1

where

H0 = J

2

∑
i

∑
ρ

Sz
i Sz

i+ρ

and

H1 = J

2
γ
∑

i

∑
ρ

(Sx
i Sx

i+ρ + Sy
i Sy

i+ρ)

H0 is a simple Ising model and its exact ground state is the antiferromagnetic
Néel state. Clearly for small values of γ , H1 is small and can be treated as a pertur-
bation. Hence, using perturbation theory, one can calculate corrections to the ground
state energy. One can also calculate correlations. The method has the advantage that
it works for all S and all dimensions including 3D.

As an illustration, we calculate the first few orders of the (Rayleigh-Schrödinger)
perturbation series for the energy EG = E0 +γ E1 +γ 2E2 +· · · for the S = 1

2 case
explicitly. It is useful to rotate the the axes by 180◦ on one sublattice so that notion-
ally the classical Néel (unperturbed) state |0〉 has all spins pointing upwards, and this
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has the effect that H0 = − J
2

∑
i
∑
ρ Sz

i Sz
i+ρ and H1 = − J

4 γ
∑

i
∑
ρ(S

+
i S+

i+ρ +
S−

i S−
i+ρ). The zeroth-order term in the series for the energy is now simply:

E0 = 〈0|H0|0〉 = −NnJ

8
,

where n is the number of nearest neighbours (1D: n = 2; 2D: n = 4; and, 3D:
n = 6).

The first-order correction is given by E1 = 〈0|H1|0〉. H1 acting on |0〉 produces
pairs of nearest-neighbour down spins for each lattice site i . Denoting one such state
as |i, i + ρ〉 and noting that

〈0|i, i + ρ〉 = 0

we see immediately that

E1 = 0. (9.7)

The second-order term in the series for the energy is given by

E2 = 1

2

∑
i

∑
ρ

|〈i, i + ρ|H1|0〉|2
(E0 − E (i,i+ρ)0 )

, (9.8)

where the factor of 1
2 is to avoid over-counting, and where

E (i,i+ρ)0 = 〈i, i + ρ|H0|i, i + ρ〉 = (E0 + J ) in 1D

= (E0 + 3J ) in 2D

= (E0 + 5J ) in 3D.

Furthermore, 〈i, i + ρ|H1|0〉 = Jγ /2, so

E2 = Nn

2
× (J/2)2

(E0 − E0 − J )
= − N J

4
in 1D

= Nn

2
× (J/2)2

(E0 − E0 − 3J )
= − N J

6
in 2D

= Nn

2
× (J/2)2

(E0 − E0 − 5J )
= − 3N J

20
in 3D.

Thus, to second-order for the 1D chain we obtain EG/N = − J
4 (1+γ 2). Although

perturbation theory assumes small γ , the result for γ = 1, EG/N = − J
2 , is nearer

to the exact result of −0.443147J (to 6 decimal places) than the zeroth-order value
of E0/N = − J

4 , although it is still some distance away from the exact result.
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Clearly, better accuracy can be obtained by including additional terms in the
series, although this process becomes increasingly difficult to do analytically.
Numerical computational techniques can, however, determine the series to high
orders in γ .

Some of the earliest results were obtained by Bullock (1965) [8] and later ones by
Singh (1989) [9]. For the antiferromagnetic ground state energy in 2D with S = 1

2 ,
Singh obtained the result

4EG

J
= −2 − 2

3γ
2 + 0.00370370γ 4

− 0.00632628γ 6 − 0.00330085γ 8 − 0.00124740γ 10 + . . . .

As noted above, even though the basic premise of perturbation theory is that H1
(and thus γ ) is small, this series can give a reasonable estimate of the ground state
energy even for the Heisenberg model with isotropic exchange, i.e. γ = 1.

Even with the use of powerful computers only a finite number of terms in the
series can be calculated. A method of improving the results is to approximate the
missing higher order terms using Padé approximants. This works well for many
cases, although sometimes it is necessary to apply a transformation to avoid unphys-
ical singularities. Using this approach (often also referred to as “series expansions”
[10]), excellent results for the Heisenberg antiferromagnet have been achieved.
Results of series expansions are discussed in the final chapter of this book.

Every numerical method has its own particular strengths and weaknesses. For
example, for small systems, exact diagonalisations provide ‘exact’ results as the
name suggests, and so are in some sense incontrovertible, which is a strong advan-
tage of the method. However, the method is restricted to lattices with relatively small
numbers of sites, N ∼ 40 especially in 2D and 3D, even with the aid of high-
performance computing. The DMRG method [11–14] provides essentially exact
results for quasi-1D lattices, but has had only limited success in 2D.

As described above, another important method is the quantum Monte Carlo
method (see, e.g., Refs. [4, 5]). In principle, this method gives results in which the
accuracy is limited only by the amount of computational power available because
the accuracy of the results increases in a statistically well-understood manner with
the length of the Monte Carlo simulation. However, the method suffers from the
‘sign-problem’ and cannot be easily applied to ‘frustrated’ quantum spin systems.

Clearly there is a wide range of approximate techniques, each with advantages
and disadvantages. In the following chapter we shall give a detailed account of a
technique called the coupled cluster method (CCM) which has been applied to quan-
tum spin systems only fairly recently. This is a technique related to that of cumulant
series expansions and has important ‘linked-cluster’ properties. This method also
gives results in the infinite-lattice limit (N → ∞) from the outset, although it does
not automatically provide an upper bound on the energy of the ground state or any
other state.
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Chapter 10
The Coupled Cluster Method

Abstract Another powerful method of quantum many theory that obeys the linked-
cluster theorem, and so provides results for the infinite lattice from the outset, is the
Coupled Cluster Method (CCM). It has previously been applied to a wide range of
quantum systems. We show here how it can be applied to quantum spin systems.
The CCM formalism is described in detail. Crucial to understanding the CCM is
the role of the model state upon which clusters of spin-raising operators act in order
to form the basis states. Various approximation schemes may be used in order to
calculate expectation values in practical calculations, examples being the LSUBm
and SUBm approximation schemes. The LSUB2 and SUB2 approximations are pre-
sented in detail. Results for the LSUB2 approximation for the spin-half Heisenberg
model on the linear chain are shown to be improved when compared to those of
classical theory. We demonstrate how the CCM may be applied in order to study the
ground- and excited-state properties of the anisotropic (XXZ) Heisenberg model on
the square lattice. The CCM is shown is to provide an accurate and coherent picture
for this model.

10.1 Introduction

In this chapter we consider another method that gives accurate results in the infinite
lattice limit, especially for spin systems of two spatial dimensions, known as the
coupled cluster method (CCM) [1]. The CCM is a well-known and widely applied
method of quantum many-body theory. It allows us to calculate expectation values
for the infinite lattice, which is a clear advantage to the method.

However, an aspect of the method is that one must often make an approxima-
tion within the bra- and ket-state wave functions, even though we obtain results in
the infinite-lattice limit from the outset. The manner in which we construct these
approximations is discussed below. Only lower orders of approximation than series
expansions are possible, although the CCM contains many more diagrams than
series expansions at “corresponding” levels of approximation. Furthermore, one
does not necessarily obtain an upper bound on the ground-state energy using the
CCM and no rules exist for extrapolation. Despite this, however, it is remarkable

Parkinson, J.B., Farnell, D.J.J.: The Coupled Cluster Method. Lect. Notes Phys. 816, 109–134
(2010)
DOI 10.1007/978-3-642-13290-2_10 c© Springer-Verlag Berlin Heidelberg 2010
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that the CCM still has been shown to provide consistently accurate results for a
variety of quantum problems and for a wide range of expectation values (see final
chapter). The CCM has been also applied with much success to quantum spin sys-
tems [2–10]. and it may be applied in the presence of even very strong frustration.
Recent advances in the method have concentrated in applying it to high orders of
approximation via computational methods [6–9].

10.2 The CCM Formalism

The first step in the coupled cluster method is to select an appropriate model state
|Φ〉. This state should be ideally be (i) simple and (ii) a reasonable starting approx-
imation to the true ground state. The model state is assumed to act as a vacuum
state so that a complete basis for any state can be constructed by operating on it by
creation operators c+

i . These creation operators act at a single lattice site i and a
general state is obtained by operating on the model state with a linear combination
of products of creation operators. We shall denote a product of creation operators,
acting in general at several different sites, as C+

I .
The central idea underpinning the CCM is to obtain better and better approxima-

tions to the true ground state |Ψ 〉 by modifying the wave function in a systematic
way, namely, by building in more and more of the true correlations with respect to
the model state. Clearly there must be an operator P such that

|Ψ 〉 = P|Φ〉. (10.1)

However, rather than try to calculate P directly, we choose to introduce a new oper-
ator S where P = eS and attempt to calculate S instead. At first sight this seems an
additional complication but the reason for it is as follows. By using this form it can
be shown that any approximation we make by truncating S has the property that the
equivalent diagrammatic perturbation theory approximation involves a summation
only over linked diagrams. This is important since the Goldstone theorem states that
only linked diagrams should be included if the calculated extensive property is to
scale linearly with N , the size of the system.

It can be shown that the operator P and also the operator S consist of a sum of
terms, where each term is itself a product of creation operators only, with respect to
the model state. In the context of the Heisenberg model on a bipartite lattice such
as the linear chain or square lattice, a creation operator is a spin-raising operator for
sites where the spin is down or a spin lowering operator for sites where the spin is
up. These creation operators are all mutually commuting. Hence, we write S as

S =
∑
I 	=0

SI C
+
I , (10.2)

where C+
I is a product of creation operators with associated (ket-state) correlation

coefficient SI .
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For the exact ground state |Ψ 〉
H|Ψ 〉 = Eg|Ψ 〉 and 〈Ψ̃ |H = Eg〈Ψ̃ |, (10.3)

where Eg is the exact ground state energy and 〈Ψ̃ | is the Hermitian conjugate of
|Ψ 〉. However, since we are writing

|Ψ 〉 = P|Φ〉 = eS|Φ〉, (10.4)

and in most cases, S is an approximation to the true S, |Ψ 〉 is an approximate ground
state. It is obtained typically by truncating the otherwise infinite series of terms in S.
Furthermore, we do not assume that the approximate 〈Ψ̃ | is the Hermitian conjugate
of the approximate |Ψ 〉. In fact, we shall construct 〈Ψ̃ | using a new auxiliary oper-
ator S̃ which is constructed from destruction operators only. S̃ is not the Hermitian
conjugate of S and has to be obtained separately. The basic formulas are

|Ψ 〉 = eS|Φ〉 S =
∑
I 	=0

SI C
+
I , (10.5)

〈Ψ̃ | = 〈Φ|S̃e−S S̃ = 1 +
∑
I 	=0

S̃I C
−
I . (10.6)

This method of treating the bra state, using a linear operator S̃, is known as the
normal coupled cluster method (NCCM). An alternative treatment is known as the
Extended coupled cluster method (ECCM) in which the bra state is calculated using
an exponentiated operator. The reader is referred to [11] for further details.

As mentioned earlier, the model or reference state |Φ〉 plays the role of a vac-
uum state with respect to the {C+

I }, i.e. their Hermitian conjugates {C−
I }, have the

property that C−
I |Φ〉 = 0, ∀ I 	= 0. We define that C+

0 ≡ C−
0 ≡ 1 to be the identity

operator. Furthermore, the set {C+
I } is complete and consists of all possible products

of creation operators on multiple sites.
Also as mentioned earlier, the correlation operator S is composed entirely of

the creation operators {C+
I }, and these operators, acting on the model state, create

other states in the relevant basis which are then mixed in to the model state to form
an approximation to the ‘true’ ground state. Note that although the Hermiticity of
the true ground state is lost, i.e. 〈Ψ̃ |† 	= |Ψ 〉/〈Ψ |Ψ 〉, we can still impose the
normalisation conditions 〈Ψ̃ |Ψ 〉 = 〈Φ|Ψ 〉 = 〈Φ|Φ〉 ≡ 1. The coefficients {SI }
and {S̃I } are known as the ket- and bra-state correlation coefficients, respectively.

In general we need both |Ψ 〉 and 〈Ψ̃ | (and hence need both {SI } and {S̃I })
in order to find the ground-state expectation value of any operator, although the
ground-state energy Eg is a special case which only requires knowledge of the {SI }.

For an arbitrary operator A the expectation value is given by,

Ā ≡ 〈Ψ̃ |A|Ψ 〉 = 〈Φ|S̃e−S AeS|Φ〉 = Ā
(
{SI , S̃I }

)
. (10.7)
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The similarity transform of the operator A, occurring here and denoted by Â, may
be written as a series of nested commutators:

Â ≡ e−S AeS = A + [A, S] + 1

2! [[A, S], S] + · · · (10.8)

In this expression each commutation reduces the number of destruction operators by
one. As these commutations are nested within each other, the series will terminate at
finite order provided that the operator A contains only a finite number of destruction
operators. (There is no limit on the number of creation operators in A). N.B. we use
the notation ˆ for a similarity transformed operator; we use the notation ¯ for an
expectation value and the symbol ˜ for the bra-state, its correlation operator S̃ and
the corresponding coefficients {S̃I }.

Using (10.3) and (10.4)

HeS|Φ〉 = EgeS|Φ〉 (10.9)

∴ e−SHeS|Φ〉 = Eg|Φ〉 (10.10)

i.e. Ĥ|Φ〉 = Eg|Φ〉 (10.11)

from which it immediately follows, using the normalisation 〈Φ|Φ〉 = 1, that

Eg = 〈Φ|Ĥ|Φ〉 (10.12)

From (10.10) C−
I e−SHeS|Φ〉 = EgC−

I |Φ〉 = 0 since any destruction operator
C−

I acting on the vacuum state |Φ〉 gives zero. Thus finally

〈Φ|C−
I e−SHeS|Φ〉 = 〈Φ|C−

I Ĥ|Φ〉 = 0. (10.13)

By choosing different CI in Eq. (10.13) one obtains a coupled set of non-linear
multinomial equations for the correlation coefficients {SI }.

Also, using (10.3) and (10.6),

〈Φ|S̃e−SH = Eg〈Φ|S̃e−S

〈Φ|S̃e−SHC+
I = Eg〈Φ|S̃e−SC+

I

〈Φ|S̃e−SHC+
I eS|Φ〉 = Eg〈Φ|S̃e−SC+

I eS|Φ〉
= 〈Φ|S̃e−SC+

I HeS|Φ〉 using (10.9)

∴ 〈Φ|S̃e−S[H,C+
I ]eS|Φ〉 = 0 (10.14)

By choosing different C+
I in this equation one obtains a coupled set of linear multi-

nomial equations for the correlation coefficients {SI }.
For many purposes these three Eqs. (10.12), (10.13) and (10.14), together with

(10.4), (10.5) and (10.6) form the essential core of the CCM method.
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It is important to realise that, unlike conventional variational methods, this bi-
variational formulation does not lead to an upper bound for Eg when the series in
S and S̃ of Eqs. (10.5) and (10.6) are truncated. This is due to the lack of exact
Hermiticity when such approximations are made.

The nested commutator expansion of the similarity-transformed Hamiltonian is
given by

Ĥ ≡ e−SHeS = H + [H, S] + 1

2! [[H, S], S] + · · · . (10.15)

This equation and the fact that all of the individual components of S in the sum
in Eq. (10.5) commute with one another together imply that each element of S in
Eq. (10.5) is linked directly to the Hamiltonian in each of the terms in Eq. (10.15).
Equation (10.15) is therefore of linked-cluster type. As noted above, each of these
equations is of finite length when expanded because the otherwise infinite series in
Eq. (10.15) must always terminate at a finite order, provided only that each term in
H contains a finite number of single-body destruction operators. Hence, the CCM
parametrisation naturally leads to a workable scheme that can be carried out by hand
for low orders of approximation or implemented computationally for higher orders
of approximation. We stress that the similarity transformation lies at the heart of
the CCM. This is in contrast to the unitary transformation that is at the heart of the
standard variational formulation in which the bra state 〈Ψ̃ | is simply taken as the
explicit Hermitian conjugate of |Ψ 〉.

For the case of spin-lattice problems of the type considered here, the model state
is usually the Néel state. Furthermore, it is useful to carry out a local rotation of
the local spin axes at the ‘up’ sites so that these spins are all notionally pointing
‘down’. This is purely a mathematical device; there is no physical rotation of the
spins themselves but rather of the local axes we use to measure them. However,
this does ensure that all the ‘creation’ operators with respect to the model state are
now spin-raising operators of the form s+

k and the operators C+
I become products

of these spin-raising operators only. This is very useful from a formal point of view
because we treat all spins in exactly the same way regardless of whether they are on
one sublattice or another.

We note that the CCM formalism would be exact if all possible multi-spin cluster
correlations for S and S̃ were included. In any real application this is usually impos-
sible to achieve. We remark again that it is therefore necessary to approximate the
ground-state wave function. Indeed, we are able to construct approximation schemes
within S and S̃ in which the number and/or type of clusters retained is restricted. The
three most commonly employed schemes are:

(1) the SUBn scheme, in which all correlations involving only n or fewer spins are
retained, but no further restriction is made concerning their spatial separation
on the lattice;

(2) the SUBn-m sub-approximation, in which all SUBn correlations spanning a
range of no more than m adjacent lattice sites are retained; and
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(3) the localised LSUBm scheme, in which all multi-spin correlations over all dis-
tinct locales on the lattice defined by m or fewer contiguous sites are retained.
The problem of solving for these types of approximation schemes using analyt-
ical and computational approaches is discussed below.

All of these approximation schemes follow the ‘rule’ that defines a true quantum
many-body theory, namely, that we may increase the level of approximation in a
systemic and well-controlled manner. Furthermore, we can also attempt to extrap-
olation our ‘raw’ SUBn, SUBn-m, and LSUBm results in the limits n,m → ∞.
However, by contrast to exact diagonalisations and quantum Monte Carlo in which
finite-sized lattice results are extrapolated in the infinite lattice limit using well-
defined extrapolation procedures, no such equivalent extrapolation schemes exist as
yet for the CCM. We are therefore forced to use ‘heuristic’ or ‘ad hoc’ schemes
in order to extrapolate our results. An example of an ‘heuristic’ extrapolation
scheme of LSUBm data for the ground state energy is a polynomial fit given by
y = a + bm−2 + cm−4. A similar polynomial fit for the sublattice magnetisation
is y = a + bm−1 + cm−2, although a power-law fit, i.e., y = a + bm−ν , is also
often used in this case. The lack of an upper bound on the ground-state energy
(due to the fact that bra and ket states are not explicitly constrained to be Her-
mitian conjugates) is not the biggest problem in practice. Indeed, the CCM often
does provide an upper bound for those cases in which the model state is believed
to be a reasonable “starting point.” In fact, the biggest limitation of the CCM in
practice is the lack of concrete “rules” for extrapolation of LSUBm results and the
(sometimes) rather small number of LSUBm results to extrapolate with – even with
intensive computer methods. However, it is remarkable that, despite these potential
limitations, the CCM often does provide accurate results compared to results of
exact studies and the best of other approximate methods. This is demonstrated later
on in this chapter and also in the next.

The NCCM may also be used to investigate excited states. In order to do this
we introduce a third excited-state operator Xe (in addition to the CCM ground-state
ket- and bra-state operators, S and S̃). This operator is again a linear combination of
the C+

I with associated coefficients {X e
I }

Xe =
∑
I 	=0

X e
I C+

I . (10.16)

We see readily that Xe commutes with S as it contains only the set {C+
I } of multi-

spin creation operators. However, the specific clusters used in the set {C+
I } may

differ from those used in the ground-state parametrisation in Eqs. (10.5) and (10.6)
if the excited state has different quantum numbers than the ground state. An excited-
state wave function, |Ψe〉, is determined by applying Xe to the ket-state wave func-
tion of Eq. (10.5) such that

|Ψe〉 = Xe eS|Φ〉. (10.17)
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The energy Ee of the excited state is given by the Schrödinger equation, where

H|Ψe〉 = Ee|Ψe〉. (10.18)

We may apply Xe to the CCM ground-state Schrödinger equation such that
XeH|Ψ 〉 = Eg Xe|Ψ 〉. This expression, in turn, leads to

Ee|Ψe〉 − Eg Xe|Ψ 〉 ≡ H|Ψe〉 − XeH|Ψ 〉
⇒ Ee XeeS|Φ〉 − Eg XeeS|Φ〉 = HXeeS|Φ〉 − XeHeS|Φ〉

or εe Xe|Φ〉 = e−S[H, Xe]eS|Φ〉, (10.19)

where εe ≡ Ee−Eg is the excitation energy and we note that [Xe, eS] = 0. Equation
(10.17) implies that 〈Φ|Ψe〉 = 0. Thus, we find by applying 〈Φ|C−

I to Eq. (10.19)
that,

εeX e
I = 〈Φ|C−

I e−S[H, Xe]eS|Φ〉,∀ I 	= 0, (10.20)

which is a generalised set of eigenvalue equations with eigenvalues εe and corre-
sponding eigenvectors X e

I , for the excited states.
Again, we note that it is sometimes possible to solve these sets of equations

by hand for low orders of approximation. However, it rapidly becomes clear
that analytical determination of the CCM equations for higher orders of approx-
imation is impractical and it is therefore necessary to employ computer alge-
braic techniques both to determine and to solve the equations. Once the bra- and
ket-state equations have been determined they are readily solved using standard
techniques for the solution of coupled polynomial equations (e.g., the Newton-
Raphson method). The excited-state eigenvalue equations may be also determined
and solved computationally thereafter. A full description of the details in applying
the CCM to high orders of approximation is given for the ground state in Bishop
et al. [7]. We have seen above that we are able to increase the level of approxi-
mation for the the SUBn, SUBm-m and LSUBm approximation schemes in in the
ground state in a systematic way. This holds true also for the excited states. Thus,
excited-state energies may again be extrapolated to the ‘exact limit’ n,m → ∞
using a variety of ‘heuristic’ approaches.

10.3 The XXZ-Model

In this chapter we shall use lower case sz , etc., for spin operators to avoid confusion
with the capital S and S̃ which are the CCM correlation operators.

The spin-half XXZ antiferromagnetic model on the square lattice has a
Hamiltonian given by

H =
∑
〈i, j〉

[sx
i sx

j + sy
i s y

j +Δsz
i sz

j ] = 1

2

∑
〈i, j〉

[s+
i s−

j + s−
i s+

j + 2Δsz
i sz

j ], (10.21)
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where the sum on 〈i, j〉 counts all nearest-neighbour pairs once. The Néel state,
with all ‘down’ spins on one sublattice and all ‘up’ spins on the other, is the ground
state in the (trivial) Ising limit Δ → ∞. As Δ decreases the ground state remains
Néel-like until a phase transition occurs at (or near to) Δ = 1. By Néel-like we
mean that there is a substantial positive expectation value of 〈sz〉 for spins on one
sublattice and an equal and opposite expectation value for those spins on the other.
Even at Δ = 1 (i.e., the Heisenberg model), approximately 61% to 62% of the
classical ordering remains in the quantum system. For −1 < Δ < 1 the ground
state is co-planar, with zero expectation value for 〈sz〉; the atoms are aligned in the
xy-plane. For Δ < −1 the system is ferromagnetic and the exact ground state has
all atoms aligned in the z-direction.

This Néel state is the obvious choice for |Φ〉 in the regionΔ > 1 which is known
as the Néel-like region. It is convenient to carry out a transformation of the local spin
axes at each site on one of the sublattices by performing a rotation of the up-pointing
spins by 180◦ about the y-axis, such that

x → − x, y → y, z → − z (10.22)

and the spin components transform as

sx → − sx , sy → sy, sz → −sz (10.23)

and so

s+ = sx + is y → − s− and s− = sx − is y → − s+. (10.24)

The effect of this transformation is that every spin, whichever sublattice it is on,
is now (notionally) pointing ‘down’ in the Néel state, i.e. with sz = − 1

2 . This
makes the process of determining the CCM equations easier as each site may now
be treated equally. The Hamiltonian of Eq. (10.21) in these local coordinates now
becomes

H = −1

2

∑
〈i, j〉

[s+
i s+

j + s−
i s−

j + 2Δsz
i sz

j ]. (10.25)

The transformation is canonical and does not alter the commutation relations
between the spin operators on a given site. (All spin operators referring to different
sites commute). Furthermore, it does not alter the values of the ground-state expec-
tation values or the the excited state energies or spectra. Apart from this ‘down’
spin state with sz = − 1

2 , there is only one ‘other’ state at each site in this new
basis, namely, the ‘up’ state with sz = + 1

2 . The creation operators used in the CCM
ket-state correlation operator S are now clearly always the spin-raising operators s+.
A C+

I is a product of these spin-raising operators acting at different sites. (Note that
the creation operator cannot act more than once at a given site for a spin- 1

2 atom,
although this restriction would not apply for s > 1

2 .) An example for s = 1
2 might

be C+
I = s+

i s+
j s+

k s+
l in which i, j, k, l are different sites on the lattice.
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The transformation is purely a mathematical device, there is no physical rotation
of the spins. When considering which other states can be mixed in with the Néel
state to form an approximation to the true ground state we must take into account
any physical properties we know it must satisfy. In particular, for the Hamiltonian
Eq. (10.21) the total z-component of the spins sz

T = ∑
i sz

i is a conserved quantity.
Since the Néel state has sz

T = 0 we can only mix in states with the same Sz
T and this

means that C+
I must contain an equal number of spin reversals on each sublattice.

Clearly there must be an even number of spin-raising operators, half from each
sublattice.

The results presented below are based on the non-localised SUB2 approximation
scheme and the localised LSUBm scheme. In the latter we include all fundamen-
tal configurations, C+

I = s+
k1
, s+

k2
, · · · s+

kn
, where the number of contiguous sites

is ≤ m. Fundamental configurations are those which are distinct under the point
and space group symmetries of both the lattice and the Hamiltonian. The numbers,
NF and NFe , of such fundamental configurations for the ground and excited states,
respectively, are also further restricted by the use of conservation laws, in particular
conservation of sz

T , as mentioned above. As well as sz
T = 0 for the ground state we

have sz
T = ±1 for the elementary excited states.

10.3.1 The LSUB2 Approximation for the Spin-Half,
Square-Lattice XXZ-Model for the z-Aligned Model State

In the LSUB2 approximation we allow two creation operators and they must be on
nearest neighbour sites. The only possible C+

I , other than C+
0 , are terms of the form

s+
l s+

l+ρ1
where l is any lattice site and ρ1 is a vector connecting nearest neighbours.

The form of the S operator is thus

S = b1

2

N∑
l

∑
ρ1

s+
l s+

l+ρ1
, (10.26)

where l runs over all lattice sites and ρ1 runs over all nearest-neighbour sites to l.
Note that b1 is the sole ket-state correlation coefficient in the LSUB2 approximation
scheme.

We now calculate the similarity transforms of the operators in the Hamiltonian,
e−Ssαk eS for α = z,+,−. The commutation relations for the spin operators are
given by [s±

l , s
z
k ] = ∓s±

k δl,k and [s+
l , s

−
k ] = 2sz

kδl,k . Furthermore, the similarity
transform may be expanded as a series of nested commutators, given by Eq. (10.8).
Hence, we obtain the following explicit forms for these similarity transformed oper-
ators

ŝi
+ = s+

i

ŝi
z = sz

i + b1

∑
ρ1

s+
i s+

i+ρ1
(10.27)

ŝi
− = s−

i − 2b1

∑
ρ1

sz
i s+

i+ρ1
− b2

1

∑
ρ1,ρ2

s+
i s+

i+ρ1
s+
i+ρ2

.
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In each case the otherwise infinite series of operators in the expansion of the sim-
ilarity transform has terminated to finite order. All of Eq. (10.27) are valid for
arbitrary spin, but since we are considering only spin-half systems here for which
(s+

i )
2|Φ〉 = 0 for any lattice site, the term in the third equation in the summations

over ρ1 and ρ2 for which ρ1 = ρ2 will be zero. Clearly the similarity transformed
version of the Hamiltonian is

Ĥ = − 1

2

∑
〈i, j〉

[ŝ+
i ŝ+

j + ŝ−
i ŝ−

j + 2Δŝz
i ŝz

j ]. (10.28)

Note that the sum over 〈i, j〉 is equivalent to a sum over all sites i and over all
nearest neighbours ρ0, together with a factor of 1

2 to avoid overcounting, so

Ĥ = − 1

4

∑
i

∑
ρ0

[ŝ+
i ŝ+

i+ρ0
+ ŝ−

i ŝ−
i+ρ0

+ 2Δŝz
i ŝz

i+ρ0
]. (10.29)

Substituting the expressions for the spin operators in Eq. (10.27) into the above
expression, gives

Ĥ = −1

4

∑
i

∑
ρ0

[s+
i s+

i+ρ0
+ {s−

i − 2b1

∑
ρ1

sz
i s+

i+ρ1
− b2

1

∑
ρ1,ρ2

s+
i s+

i+ρ1
s+
i+ρ2

} ×

{s−
i+ρ0

− 2b1

∑
ρ3

sz
i+ρ0

s+
i+ρ0+ρ3

− b2
1

∑
ρ3,ρ4

s+
i+ρ0

s+
i+ρ0+ρ3

s+
i+ρ0+ρ4

} +

2Δ{sz
i + b1

∑
ρ1

s+
i s+

i+ρ1
} × {sz

i+ρ0
+ b1

∑
ρ2

s+
i+ρ0

s+
i+ρ0+ρ2

}]. (10.30)

When this Ĥ is now used in Eq. (10.13) with C−
I = s−

m s−
m+ρ to determine the coef-

ficient b1, only terms with net two spin-raising operators are needed. When used
in Eq. (10.12) for the ground state energy Eg only terms with net zero spin-raising
operators are needed. In addition, when calculating the bra state coefficient using
Eq. (10.14) terms with net two lowering operators will be needed. Keeping only the
terms in Eq. (10.29) with these forms leads to the following simplified expression

Ĥ ≈ Ĥ−2 + Ĥ0 + Ĥ2

where

Ĥ−2 = − 1

4

∑
i

∑
ρ0

s−
i s−

i+ρ0

is the part with net two spin lowering operators,
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Ĥ0 = − 1

4

∑
i

∑
ρ0

[
−2b1

∑
ρ3

s−
i sz

i+ρ0
s+
i+ρ0+ρ3

− 2b1

∑
ρ1

sz
i s+

i+ρ1
s−
i+ρ0

+ 2Δsz
i sz

i+ρ0

]

(10.31)
is the part with net zero spin-raising operators, and

Ĥ2 = − 1

4

∑
i

∑
ρ0

[
s+
i s+

i+ρ0
+ 4b2

1

∑
ρ1,ρ3

sz
i s+

i+ρ1
sz
i+ρ0

s+
i+ρ0+ρ3

− b2
1

∑
ρ3,ρ4

s−
i s+

i+ρ0
s+
i+ρ0+ρ3

s+
i+ρ0+ρ4

− b2
1

∑
ρ1,ρ2

s+
i s+

i+ρ1
s+
i+ρ2

s−
i+ρ0

+ 2Δb1

∑
ρ2

sz
i s+

i+ρ0
s+
i+ρ0+ρ2

+ 2Δb1

∑
ρ1

s+
i s+

i+ρ1
sz
i+ρ0

]
(10.32)

is the part with net two spin-raising operators.
First consider Eq. (10.12) for the ground-state energy

Eg = 〈Φ|Ĥ|Φ〉 = 〈Φ|Ĥ0|Φ〉.

Using the commutator [s−
i , s

+
i+ρ0+ρ3

] = − 2sz
i δi, i+ρ0+ρ3 gives

Ĥ0 = − 1

4

∑
i

∑
ρ0

[
−2b1

∑
ρ3

sz
i+ρ0

s+
i+ρ0+ρ3

s−
i + 4b1sz

i+ρ0
sz
i

−2b1

∑
ρ1

sz
i s+

i+ρ1
s−
i+ρ0

+ 2Δsz
i sz

i+ρ0

]
, (10.33)

and when this acts on |Φ〉 the terms with a spin lowering operator on the right will
give zero. Hence

Ĥ0|Φ〉 = − 1

4

∑
i

∑
ρ0

[
4b1sz

i sz
i+ρ0

+ 2Δsz
i sz

i+ρ0

]
|Φ〉 (10.34)

= − 1

16

∑
i

∑
ρ0

(4b1 + 2Δ)|Φ〉 . (10.35)

since sz
i |Φ〉 = − 1

2 |Φ〉 for all i .
Using Eq. (10.12), the ground-state energy is

Eg

N
= − n

8
(Δ+ 2b1). (10.36)

where n is the number of nearest neighbours.
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Equation (10.36) shows that the ground-state energy is size-extensive (i.e., it
scales linearly with N ), as required by the Goldstone theorem which is obeyed by
the NCCM. In fact it is easy to show that any other non-trivial choice for S, not just
the LSUB2 approximation, will always yield expression (10.36) for the ground-state
energy, although the calculation of b1 will be different. The task is therefore to find
b1. If we could include all possible spin correlations in S then we would obtain an
exact result for b1 and hence the ground-state energy. This is of course impossible
except for trivial cases so there will normally need to be an approximation like the
ones described here.

In this LSUB2 approximation b1 is the only non-zero coefficient in S and it is
determined using Ĥ2 in Eq. (10.13), with C−

I = s−
m s−

m+ρ

〈Φ|C−
I Ĥ|Φ〉 = 〈Φ|C−

I Ĥ2|Φ〉 = 0 . (10.37)

since C−
I has two lowering operators. The details of the calculation are given in the

appendix where it is shown that Eq. (10.37) yields

(n + 1)b2
1 + 2(n − 1)Δb1 − 1 = 0. (10.38)

Equations (10.36) and (10.38) are the basic equations in the LSUB2 approxima-
tion for the linear chain with n = 2, the square lattice with n = 4 and the cubic
lattices. Similar results can be obtained for any other bipartite lattice with nearest-
neighbour interactions.

For the linear chain these equations become

Eg

N
= − 1

4
(Δ+ 2b1) with 3b2

1 + 2Δb1 − 1 = 0, (10.39)

so that

b1 = 1

3
(
√
�2 + 3 −�) and

Eg

N
= −�

12
−

√
�2 + 3

6
. (10.40)

This gives a value for ground-state energy the isotropic Heisenberg model (Δ = 1)
of Eg

N = − 5
12 (≡ −0.416667) (to 6 decimal places), which compares to the exact

result of Eg
N = −0.443147J (again to 6 decimal places). This is an improvement on

energy of the (classical) model state, which is Eg
N = − 1

4 .
However, we shall consider only the square lattice with n = 4 from now on, for
which

Eg

N
= − 1

2
(Δ+ 2b1) with 5b2

1 + 6Δb1 − 1 = 0, (10.41)

so that
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b1 = 1

5
(
√

9Δ2 + 5 − 3Δ) and
Eg

N
= Δ

10
− 1

5

√
9Δ2 + 5 . (10.42)

This expression gives the correct result in the Ising limit Δ → ∞. These results
for the ground-state energy as a function of Δ in the LSUB2 approximation are
included in both Figs. 10.1 and 10.2.

Fig. 10.1 CCM SUB2-m and SUB2 results using the z-aligned Néel model state for the ground-
state energy of the spin-half square-lattice XXZ-Model. (Note that SUB2-2 and LSUB2 are equiv-
alent approximations)

Fig. 10.2 CCM LSUBm results for the ground-state energy of the spin-half square-lattice XXZ-
Model compared to quantum Monte Carlo results of Barnes et al. [12]

A similar calculation, based on Eq. (10.14) although not using it directly, gives
the following equation for b̃1. Again details are given in the appendix.

b̃1[(n + 1)2b1 + 2(n − 1)Δ] − 1 = 0. (10.43)
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For the square lattice with n = 4 this becomes

10b1b̃1 + 6Δb̃1 − 1 = 0, (10.44)

which gives b̃1 = 1
2 (9Δ

2 + 5)−1/2.
Finally, we note that once the values for the bra- and ket-state correlation coef-

ficients have been determined (at a given level of approximation) then we can also
evaluate various expectation values. An important example is the sublattice mag-
netisation given by

M ≡ 2

N
〈Ψ̃ |

N∑
i

(−1)i sz
i |Ψ 〉, (10.45)

in terms of the original unrotated spin coordinates. After rotation of the local spin
axes

M = − 2

N
〈Ψ̃ |

N∑
i

sz
i |Ψ 〉 = − 2

N
〈Φ|S̃e−S

( N∑
i

sz
i

)
eS|Φ〉, (10.46)

in terms of the ‘rotated’ spin coordinates. For the square lattice in the LSUB2
approximation this is given by

MLSUB2 = 1 − 8b1b̃1,

= 1

5

[
1 + 12Δ√

9Δ2 + 5

]
. (10.47)

This result is shown in Fig. 10.3.

10.3.2 The SUB2 Approximation for the Spin-Half, Square-Lattice
XXZ-Model of the z-Aligned Model State

The LSUB2 approximation is the simplest possible, including in S terms with just
two spin flips which have to be on adjacent sites. Of course the exponentiation of
the S operator, eS, results in multiple applications of this and so the approximate
ground state calculated in the previous section includes contributions from states
with arbitrarily large numbers of flips at widely separated sites.

The SUB2 approximation is a generalisation of this in which all possible two-
spin-flip terms are included in S. These can now be at any two sites although, of
course one must be on one sublattice and the other on the other sublattice. The
SUB2 ket-state operator S is given by
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Fig. 10.3 CCM LSUBm results using the z-aligned Néel model states for the sublattice magneti-
sation of the spin-half square-lattice XXZ-Model

S = 1/2
N∑
i

∑
r

br s+
i s+

i+r , (10.48)

where the index i runs over all sites on the lattice chain. The index r runs over all
lattice vectors which connect one sublattice to the other and br is the corresponding
SUB2 ket-state correlation coefficient for this vector. The similarity transformed
versions of the operators are

s̃+
l = s+

l

s̃z
l = sz

l +
∑

r

br s+
l s+

l+r (10.49)

s̃−
l = s−

l − 2
∑

r

br sz
l s+

l+r −
∑

r1, r2︸ ︷︷ ︸
r1 	=r2

br1br2s+
l s+

l+r1
s+
l+r2

.

Again we note that (s+
i )

2|Φ〉 = 0 for any lattice site (which is true only for spin-half
systems). Hence, we see that r1 	= r2 in the above equations. We now substitute
these expressions into Eq. (10.25) in order to obtain H̃, and we then use Eq. (10.13)
in order to obtain the following equation for the correlation coefficients {br }
∑
ρ

{
(1+ 2Δb1 + 2b2

1)δρ,r − 2(Δ+ 2b1)br +
∑

s

br−s−ρ1bs+ρ+ρ1

}
= 0, (10.50)

where ρ runs over all nearest-neighbour vectors on the square lattice and ρ1 is
any one of them. Equation (10.50) may now be solved using a sublattice Fourier
transform, given by
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�(q) =
∑

r

eir.qbr , (10.51)

where the sum over r is a sum over the position vectors of one sublattice only. A
convenient way to achieve this for the two-dimensional square lattice is to require
that rx + ry is an odd integer number. This expression has an inverse given by

br =
∫ π

−π

∫ π

−π
dqydqx

(2π)2
cos(rxqx ) cos(ryqy)�(q). (10.52)

The SUB2 Eqs. (10.50) and (10.51) lead to the following expression [5] for �(q)

�(q) = K

γ (q)

[
1 ±

√
1 − k2γ 2(q)

]
, (10.53)

K = Δ+ 2b1, k2 = (1 + 2Δb1 + 2b2
1)/K 2 and

γ (q) = 1

n

∑
ρ

eiρ.q
(

≡ 1

2
{cos(qx )+ cos(qy)} for the square lattice

)
(10.54)

(Note that we choose the negative solution in Eq. (10.53) such that the result is
correct in the trivial limit Δ → ∞.) Equations (10.52), (10.53) and (10.54) lead to
a self-consistency requirement on the variable b1 and they may be solved iteratively
at a given value of Δ. Indeed, we know that all correlation coefficients must tend to
zero (namely, for SUB2: br → 0, ∀ r ) as Δ → ∞ and we track this solution for
large Δ by reducing Δ in small successive steps. We find that the discriminant in
Eq. (10.53) becomes negative at a critical point, Δc ≈ 0.7985. This is an indication
that the CCM critical point corresponds to a quantum phase transition in the system,
although in this simple approximation scheme it is some way from the known phase
transition at Δ = 1.

We may also solve the SUB2-m equations directly using computational tech-
niques. (Note that the SUB2-2 and LSUB2 approximations are equivalent.) Indeed,
we study the limit points of these coupled non-linear equations may be obtained with
respect to Δ. We again track our solution from the limit Δ → ∞ to (and beyond)
the limit point and Fig. 10.1 shows our results. In particular, we note that we have
two distinct branches, although only the upper branch is a ‘physical’ solution. We
have already remarked that the CCM does not necessarily always provide an upper
bound on the ground-state energy, although this is often the case for the ‘physical’
solution. An example of this is seen by the ‘unphysical’ lower branch in Fig. 10.1.
However, the solution of the CCM equations will often naturally converge to the
physical solution, provided we have a reasonable starting point for the CCM corre-
lation coefficients and our model state is also reasonable. However, by tracking from
a point at which we are sure of (in this case, from the limit Δ → ∞), we ensure
that our solution is indeed the correct one. This approach is also used for LSUBm
approximations.
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We see in Fig. 10.1 that the two branches collapse onto the same line (namely,
that of the full SUB2 solution) as we increase the level of SUB2-m approxima-
tion with respect to m. Indeed, we may plot the positions of the SUB2-m limit
points against 1/m2 and we note that these data points are found to be both highly
linear and they tend to the critical value, Δc, of the full SUB2 equations in the
limit m → ∞. Again, we note that the LSUBm and SUBm-m a approximations
also show similar branches (namely, one ‘physical’ and one ‘unphysical’ branch)
which appear to converge as one increases the magnitude of the truncation index,
m, although results for the ‘unphysical’ branches are not presented here for the
LSUBm approximation. This is a strong indication that our LSUBm and SUBm-m
critical points are also reflections of phase transitions in the real system. We expect
that our extrapolated LSUBm and SUBm-m critical points should tend to the exact
solution.

10.3.3 High-Order CCM Calculations Using a Computational
Approach

We now consider the localised LSUBm and SUBm-m approximation schemes for
larger values of m than m = 2. Recall that LSUBm allows all possible terms in S
in which spin flips all occur within a locale of size m. For spin-half the maximum
number of spin-raising operators in one term is m, but for general spin quantum
number, s, it is 2sm. SUBm-n is a scheme in which one allows a maximum of m
spin-raising operators in any one term and restricts them to all lie within a locale
of size n. This locale is defined by those configurations that contain m contiguous
sites. For spin-half systems, SUBm-m is the same as LSUBm and this is the only
type considered here. These schemes are more complicated and cannot usually be
treated analytically as we were able to do for LSUB2 and SUB2. Consequently,
computational techniques are used both to determine the CCM equations and then
to solve them numerically.

There are two methods of doing this. Firstly, one may use computer algebraic
methods to calculate the similarity transformed versions of the individual spin oper-
ators and hence the similarity transformed version of the Hamiltonian, which may
involve further commutations of the spin operators. This approach has the advantage
of flexibility and can be applied to any Hamiltonian in principle. Often, however, this
method is somewhat cumbersome and slow.

A second method is to first cast the CCM ket-state correlation operator into a
form given by

S =
N∑
i1

Si1s+
i1

+
∑
i1,i2

Si1,i2s+
i1

s+
i2

+ · · · (10.55)

with respect to a model state in which all spins point in the downwards
z-direction. Here the Si1,··· ,il represent the CCM ket-state correlation coefficients
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as in Eq. (10.5). We now define new operators given by

Fk =
∑

l

∑
i2,··· ,il

lSk,i2,··· ,il s
+
i2

· · · s+
il

Gk,m =
∑
l>1

∑
i3,··· ,il

l(l − 1)Sk,m,i3,··· ,il s
+
i3

· · · s+
il

(10.56)

for the spin-half quantum spin systems. (For s > 1/2 additional terms are needed).
For the spin-half system the similarity transformed operators can be written

s̃+
k = s+

k

s̃z
k = sz

k + Fks+
k

s̃−
k = s−

k − 2Fksz − (Fk)
2s+

k . (10.57)

These expressions can now be substituted analytically into the (similarity trans-
formed) Hamiltonian and the commutations evaluated by hand. The Hamiltonian
is then written in terms of these new operators of Eq. (10.56), which are themselves
made up purely of spin-raising operators.

This second method requires more direct effort in setting up the Hamiltonian
in terms of these new operators, compared to the first method in which computer
algebraic techniques are used to take care of this aspect. However, once this is
accomplished, the problem of finding the ket-state equations reduces to pattern
matching of our target fundamental configurations to those terms in the Hamilto-
nian. This form is well suited to a computational implementation because no further
commutations or re-ordering of terms in the Hamiltonian is necessary. The bra-state
equations may also be directly determined once the ground-state energy and CCM
ket-state equations have been determined.

Results for the ground-state energy of the spin-half square-lattice XXZ-Model
are shown in Fig. 10.2 and for the spin-half Heisenberg model (Δ = 1) in
Table 10.1. We note that good correspondence with the results of quantum Monte
Carlo (QMC) [12] are observed. The extrapolated value for the CCM ground-state
energy of Eg/N = −0.6696 compares well with results of QMC [13] that give
Eg/N = −0.669437(5). We see clearly from Fig. 10.2 that the results based on the
(z-aligned) model state rapidly converge with increasing level of LSUBm approx-
imation in the region Δ ≥ 1. CCM results compare well to results of QMC [12]
for Δ ≥ 1 based on this model state. Results for the sublattice magnetisation using
the LSUBm approximation are shown in Fig. 10.3 and for the spin-half Heisenberg
model (Δ = 1) in Table 10.1. We see again that LSUBm results converge rapidly
with increasing level of approximation in the region Δ ≥ 1. We see that the extrap-
olated CCM result of M = 0.614 again compares well to QMC results [13] of
M = 0.6140(6). Results for the CCM critical points are also shown in Table 10.1.
We see that the values for the critical points, Δc, extrapolate [7] to a value close to
Δ = 1, at (or near to) which point a quantum phase transition is believed to occur.
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Table 10.1 CCM results [7] for the isotropic (Δ = 1) spin-half square-lattice Heisenberg antifer-
romagnet compared to results of other methods. The numbers of fundamental configurations in the
ground-state and excited-state CCM wave functions for the z-aligned Néel model state are given
by N z

f and N z
fe

, respectively. Results for the critical points of the z-aligned Néel model state are
indicated by Δc. (We note LSUB2 never terminates and so there is no value for Δc, and this is
indicated by the symbol ‘–’.) Details of extrapolation procedures are presented in [7]. CCM results
for the spin-stiffness ρ are from [10]. Results for the magnetic susceptibility χ are determined via

χ = d M L

dλ . Those results that have not, as yet, been determined at a given level of approximation
have been left blank
Method Eg/N M εe ρ χ N z

f N z
fe

Δc

LSUB2 −0.64833 0.841 1.407 0.2310 0.0860 1 1 –
SUB2 −0.65083 0.827 1.178 ∞ ∞ 0.799
LSUB4 −0.66366 0.765 0.852 0.2310 0.0792 7 6 0.577
LSUB6 −0.66700 0.727 0.610 0.2176 0.0765 75 91 0.763
LSUB8 −0.66817 0.705 0.473 0.2097 0.0750 1,273 2,011 0.843
LSUB10 −0.668700 0.345 0.0739 29,605 51,012
LSUB12 −0.668978 0.339 766,220
Extrapolated CCM −0.66960 0.614 0.00 0.1812 0.070 ∞ ∞ 1.03

Finally, results for the spin stiffness of the spin-half square-lattice Heisenberg model
may be determined [10], and these results are also shown in Table 10.1. Again,
the extrapolated value ρ = 0.1812 from Krüger et al. [10] compares well to the
corresponding result of QMC [14] of ρ = 0.199.

10.3.4 Excitation Spectrum of the Spin-Half Square-Lattice
XXZ-Model for the z-Aligned Model State

We now consider the excitation spectrum. We shall use the SUB2 approximation for
the ground state, whereas for the excitation operator we assume

X =
∑

i

ai s
+
i . (10.58)

Substitution of the expressions in Eqs. (10.48) and (10.58) for the ground- and
excited-state operators, respectively, leads to the following expression [5] for the
excited-state correlation coefficients

1

2
nKak − 1

2

∑
ρ,r

br ak+r+ρ = εeak . (10.59)

This equation may also be solved by Fourier transform techniques in a similar man-
ner presented above for the SUB2 calculation for the ground state. The result of this
treatment is an expression for the excitation spectra is given by
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ε(q) = 1

2
nK

√
1 − k2γ 2(q), (10.60)

where b1 is obtained from the SUB2 ket-state equations and K and k are defined
by Eq. (10.54). We solve the SUB2 equations as normal at a particular value of
Δ and then b1 is substituted into Eq. (10.60) above and hence we obtain values
for the excitation spectra as a function of the wave vector Eq. (10.60). Note that
the excitation spectra becomes ‘soft’ (i.e. ε(q) → 0) at the CCM SUB2 critical
point at Δc ≈ 0.7985 as mentioned earlier. Results for the spectra are presented in
Fig. 10.4). We see that the CCM results are in good agreement with those results
of linear spin-wave theory at Δ = 1. The spectra are plotted for kx = ky and for
ky = 0, and we see that the CCM excitation spectrum is identical in shape to those
results of SWT with a multiplicative factor of 1.1672. This agrees well with results
of quantum Monte Carlo [15] that also predict a curve identical to SWT with mul-
tiplicative a factor of 1.21±0.03. Our results in thus in good agreement with SWT
and QMC and this is further evidence that the CCM critical point is an indication
of the quantum phase transition at Δ = 1 in the ‘real’ system. Furthermore, the
excitation spectra at this point is given by ε(q) = 1

2nK
√

1 − γ 2(q). This leads to
a value for the spin-wave velocity vs of 1

2nK , which in turn yields a value [5] of
vs ≈ 2.335 for the square-lattice case.

Finally, it is worth mentioning that the excitation energy may be determined
directly from Eq. (10.20) in ‘real space’ without recourse to Fourier transform
methods, although computational techniques are again necessary except for the
simplest of cases. For the sake of consistency, we normally retain the same level
of localised approximation for the ground and excited states. Results are presented
for the XXZ-Model in Fig. 10.5 and for the Heisenberg model in Table 10.1. For
the latter we see that the CCM results converge rapidly with LSUBm approximation
level. Indeed, extrapolated results predict that the excitation is gapless at Δ = 1,

Fig. 10.4 Excitation spectra for the Heisenberg model determined at the critical point at Δc = 0.8
for the CCM results and at Δ = 1 for the spin-wave theory results. The spectra plotted on the
left are for kx = ky and those on the right are for ky = 0. This agrees well with results of
quantum Monte Carlo [15] that also predict a curve identical to SWT with a multiplicative factor
of 1.21±0.03, respectively
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Fig. 10.5 CCM LSUBm results using the z-aligned Néel model state for the excited-state energy of
the spin-half square-lattice XXZ-Model compared to linear spin-wave theory of Barnes et al. [12]

as is believed to be the case for the Heisenberg model from the results of other
approximate calculations.

10.4 The Lattice Magnetisation

The lattice magnetisation is a quantity that yields an overall response of a partic-
ular quantum spin system as a whole to the externally applied magnetic field. The
lattice magnetisation gives the average ordering of the spins in the direction of the
externally applied magnetic field and it is defined by the equation

M L ≡ − 2

N
〈Ψ̃ |

N∑
i

sz
i |Ψ 〉, (10.61)

in terms of the original unrotated spin coordinates. In terms of the rotated spin coor-
dinates, an additional factor of (−1)i is also included in Eq. (10.61). The relevant
Hamiltonian for the Heisenberg model is defined by

H =
∑
〈i, j〉

si · s j − λ
∑

i

sz
i , (10.62)

where the indices i and j again run over all nearest-neighbouring lattice sites on
the square lattice, although counting each bond once only, and λ indicates the
strength of the external field. We must also take into account the fact that spins
in the model state are explicitly allowed to cant at an angle θ to the negative and
positive x-axes for the difference sublattices. This angle is treated a parameter that
we treat variationally in order to obtain the best results for the energy. The total
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Fig. 10.6 Results for the lattice magnetisation of the spin-half square-lattice Heisenberg model in
the presence of an external magnetic field of strength λ compared to results of quantum Monte
Carlo [16] for N = 64 × 64 and classical results

lattice magnetisation may be determined directly in a similar manner as presented
above for the sublattice magnetisation. The results for the spin-half square-lattice
Heisenberg model are shown in Fig. 10.6. As for the ground and excited-state ener-
gies and the sublattice magnetisations, we obtain results that converge rapidly with
increasing levels of LSUBm approximation and that compare well to the results
of QMC for N = 64 × 64. The magnetic susceptibility may also be determined

via χ = d M L

dλ and results are shown in Table 10.1. The extrapolated CCM val-
ues of χ = 0.070 for λ → 0 again compares reasonably well to the result of
QMC [17] of χ = 0.0669(7). The zero-field uniform susceptibility (λ → 0), the
ground state energy, the sublattice magnetisation, the spin stiffness, and the spin-
wave velocity constitute the fundamental parameter set that determines the low-
energy physics of magnetic systems. The CCM is thus able to provide a compre-
hensive and accurate picture of the properties of spin-half square-lattice Heisenberg
model.

Appendix – Details of the Calculation of the Coefficients b1 and
b̃1 in the LSUB2 Approximation

The first step in simplifying the expression for Ĥ2 is to move all s− and sz operators
to the right, using the commutation relations, noting that i and i +ρ0 are on different
sublattices and cannot be equal, whereas i and i +ρ0+ρ1 are on the same sublattice,
etc.
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Ĥ2 = − 1

4

∑
i

∑
ρ0

[
s+
i s+

i+ρ0
+ 4b2

1

∑
ρ1, ρ3

s+
i+ρ1

s+
i+ρ0+ρ3

sz
i sz

i+ρ0

+ 4b2
1

∑
ρ1

s+
i+ρ1

s+
i sz

i+ρ0
− b2

1

∑
ρ3, ρ4

s+
i+ρ0

s+
i+ρ0+ρ3

s+
i+ρ0+ρ4

s−
i

+ 2b2
1

∑
ρ3

s+
i+ρ0

s+
i+ρ0+ρ3

sz
i + 2b2

1

∑
ρ4

s+
i+ρ0

s+
i+ρ0+ρ4

sz
i + 2b2

1s+
i s+

i+ρ0

− b2
1

∑
ρ1, ρ2

s+
i s+

i+ρ1
s+
i+ρ2

s−
i+ρ0

+ 2Δb1

∑
ρ2

s+
i+ρ0

s+
i+ρ0+ρ2

sz
i

+2Δb1s+
i s+

i+ρ0
+ 2Δb1

∑
ρ1

s+
i s+

i+ρ1
sz
i+ρ0

]

The terms with s− on the right will give zero when acting on |Φ〉 so after simpli-
fying the subscripts

Ĥ2|Φ〉 = − 1

4

∑
i

∑
ρ0

[
s+
i s+

i+ρ0
+ 4b2

1

∑
ρ1, ρ3

s+
i+ρ1

s+
i+ρ0+ρ3

sz
i sz

i+ρ0

+ 4b2
1

∑
ρ1

s+
i+ρ1

s+
i sz

i+ρ0
+ 4b2

1

∑
ρ1

s+
i+ρ0

s+
i+ρ0+ρ1

sz
i

+ 2b2
1s+

i s+
i+ρ0

+ 2Δb1

∑
ρ2

s+
i+ρ0

s+
i+ρ0+ρ2

sz
i

+ 2Δb1s+
i s+

i+ρ0
+ 2Δb1

∑
ρ1

s+
i s+

i+ρ1
sz
i+ρ0

]
|Φ〉 .

Also sz
i |Φ〉 = − 1

2 |Φ〉 for all i so

Ĥ2|Φ〉 = − 1

4

∑
i

∑
ρ0

[
s+
i s+

i+ρ0
+ b2

1

∑
ρ1, ρ3

s+
i+ρ1

s+
i+ρ0+ρ3

− 2b2
1

∑
ρ1

s+
i+ρ1

s+
i − 2b2

1

∑
ρ1

s+
i+ρ0

s+
i+ρ0+ρ1

+ 2b2
1s+

i s+
i+ρ0

−Δb1

∑
ρ2

s+
i+ρ0

s+
i+ρ0+ρ2

+ 2Δb1s+
i s+

i+ρ0
−Δb1

∑
ρ1

s+
i s+

i+ρ1

]
|Φ〉 .

(10.63)

This is now substituted into Eq. (10.37) which is evaluated making use of the
following
1.

〈Φ|s−
i s+

j |Φ〉 = 〈Φ|(−2sz
i )|Φ〉δi j = 〈Φ|Φ〉δi j = δi j ,
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2. In the following we assume that m 	= m′. Typically m and m′ are on different
sublattices although not necessarily nearest neighbours.

〈Φ|s−
l s−

l ′ s+
m s+

m′ |Φ〉 = 〈Φ|s−
l s+

m s−
l ′ s+

m′ |Φ〉 + 〈Φ|s−
l (−2sz

m)s
+
m′ |Φ〉δ(l ′ − m)

= 〈Φ|s−
l s+

m s+
m′s

−
l ′ |Φ〉 + 〈Φ|s−

l s+
m (−2sz

m′)|Φ〉δ(l ′ − m′)+ 〈Φ|s−
l s+

m′ |Φ〉δ(l ′ − m)

= 〈Φ|s−
l s+

m |Φ〉δ(l ′ − m′)+ 〈Φ|s−
l s+

m′ |Φ〉δ(l ′ − m)

= δ(l − m)δ(l ′ − m′)+ δ(l − m′)δ(l ′ − m)

where δ(i − j) ≡ δi− j, 0 = δi j .
In particular we the following two special cases of this result

〈Φ|s−
l s−

l+ρ′s+
m s+

m+ρ |Φ〉 = δ(l − m)δ(l + ρ′ − m − ρ)+δ(l − m − ρ)δ(l + ρ′ − m)

= δ(l − m)δ(ρ′ − ρ)+ δ(l − m − ρ)δ(ρ + ρ′)

and

〈Φ|s−
l s−

l+ρ′s
+
m+ρ0+ρ3

s+
m+ρ |Φ〉 = δ(l − m − ρ0 − ρ3)δ(l + ρ′ − m − ρ)+

δ(l − m − ρ)δ(l + ρ′ − m − ρ0 − ρ3)

= δ(l − m)δ(ρ0 + ρ3 + ρ′ − ρ)+
δ(l − m − ρ)δ(ρ + ρ′ − ρ0 − ρ3)

3.

∑
ρ1

δ(ρ + ρ1) = 1

since there is just one ρ1 equal to −ρ.

4. For the linear chain, the square lattice and the simple cubic
∑

ρ1,ρ2,ρ3

δ(ρ + ρ1 + ρ2 + ρ3) = 3n − 3

where n is the number of nearest neighbours, this being the number of ways that
ρ1 + ρ2 + ρ3 can be made equal to −ρ.

In (10.37) we need

〈Φ|C−
I Ĥ2|Φ〉 = 〈Φ|s−

m s−
m+ρĤ2|Φ〉

and using the above results and (10.63)

= − 1

4
[2 + 2b2

1(3n − 3)− 4b2
1n − 4b2

1n + 4b2
1

−Δb12n + 4Δb1 −Δb12n] = 0

= − 1

2
[1 − (n + 1)b2

1 + 2(1 − n)Δb1] = 0
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which yields Eq. (10.38):

(n + 1)b2
1 + 2(n − 1)Δb1 − 1 = 0.

We now turn to the bra state and recall that it is not, in general, the Hermitian
conjugate of the ket state. In the LSUB2 approximation, which keeps only nearest-
neighbour correlations, the operator S̃ has the form

S̃ = 1 + b̃1

2

N∑
l

∑
ρ′

s−
l s−

l+ρ′, (10.64)

where the index l runs over all sites on the lattice, ρ′ runs over all nearest-neighbour
sites, and b̃1 is the sole bra-state correlation coefficient. b̃1 can be determined using
Eq. (10.14) with C+

I = s+
m s+

m+ρ . However, it is much quicker to use a shortcut,
which we show here only for the LSUB2 version.

First note that ŝi
+ = s+

i so that Ĉ+
I = C+

I and Eq. (10.14) becomes

〈Φ| S̃[Ĥ,C+
I ] |Φ〉 = 0

〈Φ| S̃[Ĥ, s+
m s+

m+ρ] |Φ〉 = 0

∴ b1

∑
m

∑
ρ

〈Φ| S̃[Ĥ, s+
m s+

m+ρ] |Φ〉 = 0

∴ 〈Φ| S̃[Ĥ, S] |Φ〉 = 0 (10.65)

since S = b1
∑

m
∑
ρ s+

m s+
m+ρ .

Now consider

∂H̄
∂b1

= ∂

∂b1
〈Φ|S̃e−SHeS|Φ〉

= 〈Φ|
{

S̃

(
−e−S ∂S

∂b1

)
HeS + e−SH

(
eS ∂S

∂b1

)}
|Φ〉

since b1 occurs only in S and not in S̃ or H.

Also since S = b1
∑

m
∑
ρ s+

m s+
m+ρ , it follows that

∂S

∂b1
= 1

b1
S so

∂H̄
∂b1

= 1

b1
〈Φ| S̃[Ĥ, S] |Φ〉 = 0

because of Eq. (10.65). Thus it is sufficient to evaluate H̄ and differentiate with
respect to b1.
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We can now proceed to calculate

H̄ = 〈Φ|S̃Ĥ|Φ〉

= 〈Φ|Ĥ0|Φ〉 + b̃1

2

∑
l

∑
ρ′

〈Φ|s−
l s−

l+ρ′Ĥ2|Φ〉

The first term is Eg evaluated earlier:

〈Φ|Ĥ0|Φ〉 = − Nn

8
(Δ+ 2b1)

while the term inside the summation in the second term was evaluated in determin-
ing b1 and is given by (using m and ρ instead of l and ρ′)

〈Φ|s−
m s−

m+ρĤ2|Φ〉 = − 1

2
[1 − (n + 1)b2

1 − 2(n − 1)Δb1].

Thus, carrying out the summations,

H̄ = − Nn

8
(Δ+ 2b1)− b̃1Nn

4
[1 − (n + 1)b2

1 − 2(n − 1)Δb1].

Differentiating with respect to b1 and setting this equal to 0 yields Eq. (10.43).

−1 + b̃1[(n + 1)2b1 + 2(n − 1)Δ] = 0.
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Chapter 11
Quantum Magnetism

Abstract Many quantum spin systems of spin quantum number s > 1/2 or in
spatial dimensions greater than 1D cannot be solved exactly. One source of this
“lack of integrability” comes from the competition between different bonds, as in
quantum frustration. We begin this final chapter by considering the application of
approximate methods to one-dimensional models such as the spin-half J1–J2 model,
and the spin-one Heisenberg and biquadratic models. The properties of the spin-half
Heisenberg model for Archimedean lattices such as the square (unfrustrated) lattice,
and the triangular and Kagomé (frustrated) lattices are listed for a variety of approx-
imate techniques. The phenomenon of “order-from-disorder” is investigated in the
context of the triangular lattice antiferromagnet in the presence of an external field.
Finally, the properties of the square-lattice J1–J2 model and the Shastry-Sutherland
model are studied. The chapter shows how the application of a range of approximate
techniques, in addition to the few isolated exact results, can provide a comprehen-
sive and compelling description of the ground-state properties of a wide range of
quantum spin systems.

11.1 Introduction

In previous chapters we saw that the spin-half one-dimensional Heisenberg model
may be solved exactly by using the Bethe Ansatz and that the Néel order of the
classical ground state is removed by quantum fluctuations. However, there are other
ways in which the classical ordering may be replaced by states of quantum order
that have no classical counterpart or by quantum disorder.

One possible situation in which this can happen is in frustrated systems [1]. The
term ‘frustration’ indicates that different bonds in the Hamiltonian compete against
each other. A simple example is a triangle of spins with antiferromagnetic exchange
interactions. The spins wish to align antiparallel to their neighbours but this is not
possible for all bonds (connected pairs of atoms) simultaneously. Classically, this
means that the energies for these different bonds are higher than for their corre-
sponding unfrustrated counterparts.

Bipartite lattices (such as the square lattice) with nearest neighbour antiferromag-
netic exchange interactions are unfrustrated since in the classical Néel ground state

Parkinson, J.B., Farnell, D.J.J.: Quantum Magnetism. Lect. Notes Phys. 816, 135–152 (2010)
DOI 10.1007/978-3-642-13290-2_11 c© Springer-Verlag Berlin Heidelberg 2010
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each spin is aligned antiparallel to all its neighbours, and the energy associated with
each bond is −J S2. (Bipartite lattices are those lattices that may be divided into two
interpenetrating sublattices in which nearest neighbours to sites on one sublattice are
always on the other sublattice and vice versa.) By contrast, the classical ground state
of the spin-half Heisenberg model on the frustrated triangular lattice has spins at an
angle of 120◦ to each other. The classical energy of a single antiferromagnetic bond
in the Hamiltonian is now − 1

2 J S2, i.e. exactly half of its unfrustrated counterpart
on a bipartite lattice.

The field of quantum magnetism has been strongly influenced recently by the
discovery of many new low-dimensional magnetic materials. These new materials
go from zero dimensions, such as magnetic clusters and molecules, to magnetic
materials with underlying three-dimensional crystallographic lattices. In this final
chapter, we discuss how the application of the approximate modern-day techniques
of quantum many-body theory may be used predict and understand these systems,
especially where they exhibit either ‘novel’ ground states that have classical coun-
terpart or quantum disorder. The interested reader is referred to [2] for a review of
the field of quantum magnetism.

11.2 One-Dimensional Models

The subject of one-dimensional magnetism is interesting because the elementary
excitations are constrained to interact strongly because of the low-dimensional
nature of lattice. Furthermore, as we have seen, one-dimensional systems are some-
times amenable to exact solution by using methods such as the Bethe Ansatz and
the Jordan-Wigner transformation. Indeed, much of this book has been concerned
with one-dimensional systems and how they may be treated using a variety of
exact and approximate techniques. We shall describe three further one-dimensional
models of particular interest that are not generally amenable to exact solution at
all points. These are (1) the spin-half chain with nearest-neighbour exchange J1
and next nearest exchange J2, which is frustrated for J2 > 0, (2) the spin-one
chain with nearest-neighbour antiferromagnetic Heisenberg exchange, and (3) the
spin-one chain with nearest-neighbour exchange J1 and also a nearest-neighbour
biquadratic exchange J2. These systems demonstrate fascinating physics that often
has no classical counterpart. There are many other one-dimensional systems that
also have interesting physics and are realisable experimentally, such as spin ‘ladder’
systems and other ‘quasi-1D’ systems, and other models with more than two-body
spin exchange. We shall not describe these here nor attempt to give a complete list
and the interested reader is referred to Refs. [2–5] for reviews of one-dimensional
quantum spin systems.

11.2.1 The Spin-Half J1– J2 Model on the Linear Chain

We now consider a spin-half model on the one-dimensional linear chain with peri-
odic boundary conditions with both nearest- and next-nearest-neighbour bonds of
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strength J1 and J2, respectively. This system is known as the spin-half J1–J2 model
[6–19]. Much interest in this model was rekindled by the discovery of the spin-
Peierls material CuGeO3, although it is relevant to many other magnetic materials
also. The Hamiltonian for this model is given by

H = J1

2

∑
i,ρ1

si · si+ρ1 + J2

2

∑
i,ρ2

si · si+ρ2, (11.1)

where the index i runs over sites on the lattice counting, ρ1 runs over all nearest-
neighbours to i , and ρ2 runs over all next-nearest-neighbours to i . It is also conve-
nient to write the bonds strengths as J1 = J cos(ω) and J2 = J sin(ω), and then
choose J = 1 for simplicity. The ground-state properties of this system have been
studied using methods such as exact diagonalizations [8, 15], the density matrix
renormalisation group (DMRG) [9–13, 18], CCM [16–19], and field-theoretical
approaches [13] (see Refs. [13, 14] for a general review). DMRG results [9–13, 18]
provide the most accurate results for this model. Indeed, the DMRG generally pro-
vides (in the absence of exact results) the benchmark for one-dimensional systems
to which other methods are compared. QMC results can also be extremely accurate
in those cases in which it is applicable, in particular in the absence of frustration.

For the J1–J2 model in the region J2/J1 > 0, the nearest-neighbour (J1) and
next-nearest-neighbour interactions (J2) compete and so they are ‘frustrated.’ At the
Majumdar-Ghosh point J2/J1 = 1

2 it is straightforward to prove [6, 7] that there
are two degenerate exact dimer-singlet product ground states, one of which (with
appropriate normalisation) is given by

|Ψ 〉 = {| ↓1↑2〉 − | ↑1↓2〉} ⊗ {| ↓3↑4〉 − | ↑3↓4〉} ⊗ · · ·
⊗{| ↓N−1↑N 〉 − | ↑N−1↓N 〉}. (11.2)

Another valid ground state is that of Eq. (11.2) with all sites translated by one unit.
We note that each two-site ‘dimer’ state {| ↓i↑i+1〉−| ↑i↓i+1〉} is simply the ground
state of the N = 2 antiferromagnetic Heisenberg system presented in Chap. 2. The
effect of frustration is to break the symmetry of the lattice via the spontaneous cre-
ation of this product state of dimers for the extended system, namely, for N → ∞.
This is a purely quantum result that has no classical counterpart and so is notewor-
thy. An energy gap to the first excited state exists and is of magnitude 0.234J1 (from
[4] p. 107).

The phase diagram of this system is shown in Fig. 11.1. The system is ferro-
magnetically ordered in the region −π ≤ ω ≤ −π

2 . Furthermore, we have the
unfrustrated Heisenberg antiferromagnet, where the exact solution is provided by
the Bethe Ansatz at J2/J1 = 0 (i.e., ω = 0). Indeed, this (gapless) phase extends
over the entire region −π

2 ≤ ω ≤ 0 in which next-nearest-neighbour bonds do
not compete with their nearest-neighbour counterparts. We remark that the system
is still gapless up until the point J2/J1 = 0.2411(1), at which point the model
exhibits a transition to the two-fold degenerate gapped dimerized phase with an
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Fig. 11.1 The phase diagram of the spin-half J1–J2 model on the linear chain. There is a transition
to a two-fold degenerate gapped ground state at Point A. The dimerised state is the exact ground
state at the Majumdar-Ghosh Point B

exponential decay of the correlation function 〈si · s j 〉 [8–11, 13, 14]. There is a Lif-
shitz point for J2/J1 ≈ 0.5206 at which point incommensurate spiral correlations
occur. From DMRG studies [13], the excitation energy gap persists well into the
region J2/J1 > 1/2. Finally, a gapless spiral phase probably occurs in the region
π
2 ≤ ω <∼ 2.9. At a point very close to J2/J1 = −0.25 (i.e., ω ≈ 2.9), there is a
transition to the ferromagnetic ground state.

11.2.2 The s = 1 Heisenberg Model on the Linear Chain

By contrast with the s = 1/2 Heisenberg model on the linear chain, no exact
solution for the equivalent spin-one one-dimensional Heisenberg model has as
yet been found. However, extremely accurate DMRG calculations have been per-
formed [20] for this model giving a value for the ground-state energy of Eg/N =
−1.401484038971(4). Exact diagonalisations using the SpinPack Code of Joerg
Schulenburg [21] (extrapolated using the rule: Eg = a + bN−2) yield a value for
the ground-state energy that agrees with DMRG to six decimal places, whereas,
for example, the extrapolated CCM results [22] were found to yield a value of
Eg/N = −1.403737. We remark again that DMRG generally provides the most
accurate results in 1D. In 1983, Haldane [23, 24] postulated that this system might
contain a gap, and exact diagonalisations were the first independent calculations to
confirm the presence of this gap. However, it was DMRG calculations that con-
clusively showed that there is an excitation energy gap of magnitude 0.41050(2)
in this system. (Modern-day exact diagonalisations again using the SpinPack code
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[21] now yield a value that agrees with this value to five decimal places.) Hence,
the spin-one anisotropic Heisenberg model on the linear chain is in the ‘Haldane
phase,’ in which the amount of long-range Néel-ordering is zero and the excitation
spectrum is gapped. We remark that this is in stark contrast to the spin-half model
which is gapless for the quantum system and also to its classical counterpart which
is Néel-ordered. Furthermore, we note that conventional spin-wave theory predicts
that the excitation energy of the Heisenberg model on the infinite linear chain for
both the spin-half and spin-one cases is gapless. This is therefore a model for which
the application of SWT of the sort presented in this book fails. This result for the
disordered state of the s = 1 antiferromagnet reflects a more general property
of integer-s chains that demonstrate only short-range, exponentially decaying AF
correlations. For the spin-one XXZ-Model, the phase transition from the Néel-like
phase occurs for a value of anisotropy Δ = 1.167 ± 0.007 [25], which is again in
contrast to the spin-half system for which a transition to a gapless co-planar regime
occurs at exactly Δ = 1. We refer the interested reader to [2] (Chap. 1) for further
information regarding the spin-one Heisenberg model on the linear chain.

11.2.3 The s = 1 Heisenberg-Biquadratic Model on the Linear
Chain

We now consider a chain of spins with s = 1 and nearest neighbour interactions of
a more complicated type. The Hamiltonian has the form

H = 1

2

∑
i,ρ1

[J1 si · si+ρ1 + J2 (si · si+ρ1)
2]. (11.3)

Again we write the bonds strengths as J1 = J cos(ω) and J2 = J sin(ω), and then
choose J = 1.

Clearly the model in the previous section is an important particular case of this
Hamiltonian in which ω = 0. The first term is the normal isotropic Heisenberg
exchange interaction and has a bilinear form. The second term has a biquadratic
form and so the model is known as the Bilinear-Biquadratic model, or Heisenberg-
Biquadratic model.

The phase diagram can be presented in a form similar to that given earlier and
is shown in Fig. 11.2. The system is integrable using the Bethe Ansatz at the points
marked T, at ω = −π/4 [26, 27], and S, at ω = π/4 [28, 29]. The exact ground state
energy is also known at the point marked B, at ω = −π/2 [30–34], where there is an
exact mapping of some states onto a spin-half chain with anisotropic exchange. The
exact ground state is also known at A, ω = tan−1(1/3) [35, 36] and has a dimerised
form similar to the Majumdar-Ghosh state mentioned earlier.

The point H, at ω = 0 is the s = 1 linear chain Heisenberg model discussed in the
previous section, which was predicted by Haldane, on the basis of a field-theoretical
calculation, to have a gap. Numerical work has subsequently strongly supported this
prediction.
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J1

J2
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H

T

B

Ferro
ω

Fig. 11.2 The zero-temperature phase diagram of the spin-1 Bilinear-Biquadratic model on the
linear chain. The various marked points, referred to in the text, correspond to values of ω at which
exact results are known

The nature of the states for other values of ω, for which exact results are not
known, has been discussed by Chubukov [37, 38] and by Fáth and Sólyom [39, 40]
and early numerical work was carried out by Xiang and Gehring [41]. The system
is believed to be gapless for π/4 ≥ ω ≥ π/2 and to have a gap for most of the
remaining non-ferromagnetic regime, although the form of the states is different for
−3π/4 > ω > −π/4 and −π/4 > ω > π/4.

11.3 The s = 1/2 Heisenberg Model for Archimedean Lattices

Two-dimensional magnetism is a fascinating subject because the physics is driven
by the often complex nature of the underlying crystallographic lattice, the number
and range of bonds in this lattice, and spin quantum numbers of atoms localised to
the sites on the lattice. There are very few exact results for quantum spin systems
on two-dimensional lattices so the application of approximate methods is crucial to
their understanding.

These systems display a wide variety of behaviour from semi-classical Néel
ordering, two-dimensional quantum ‘spirals’ to valence-bond crystals/solids and
spin liquids. Exact diagonalisations of systems with finite N are a very useful tool,
and often expectation values may be reliably extrapolated in the limit of N → ∞.
However, consideration of the excited states as a function of total s also gives impor-
tant information regarding the ordering of the ground state because the lowest lying
energies in each sector of total s should scale as s(s + 1) for Néel-ordered systems.
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The interested reader is referred to Ref. [2] (Chap. 2) and [1] (Chap. 5) for more
details of two-dimensional quantum magnetism.

Key also to understanding two-dimensional problems is the concept of the unit
cell and the Bravais lattice. The unit cell contains a number of sites at specific
positions (given by the ‘primitive’ lattice vectors) that are replicated at all possible
multiples of the Bravais lattice vectors. Thus, for example, we have a single site in
the unit cell for the linear chain, say, at position (0, 0) and a single Bravais lattice
vector â = (1, 0)T . The lattice is formed by translating the single site in the unit
cell by all integer multiples of â. Two-dimensional lattices have two Bravais lattice
vectors. For example the square lattice has a single site in the unit cell and the lattice
vectors are â = (1, 0)T and b̂ = (0, 1)T . The triangular lattice is given by vectors
â = (1, 0)T and b̂ = (1/2,

√
3/2)T and so on for other lattices.

Of special interest in two spatial dimensions are the Archimedean lattices in
which the distance between all nearest-neighbour lattice sites is equal to one. The
Archimedean lattices may be divided into two broad classes, namely, those that
are geometrically frustrated and those that are not. Figure 11.4 illustrates a num-
ber of common Archimedean lattices. Lattices (a)–(c) in Fig. 11.3 are the square,
honeycomb, and CAVO lattices, and these lattices are all bipartite because we may

Fig. 11.3 Archimedean Lattices: (a) Square; (b) Honeycomb; (c) CAVO; (d) SrCu(BO3)2; (e)
Triangle; (f) Maple Leaf; and (g) Kagomé
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divide their sites into two sublattices such that all nearest neighbours of a site on
one sublattice lie on the other sublattice. Bipartite lattices are not frustrated. The
CAVO lattice shown in Fig. 11.3c is the underlying lattice for the magnetic material
CaV4O9.

Results for the ground-state energy of these lattices are shown in Table 11.1.
Since they are not frustrated quantum Monte Carlo (QMC) techniques can be used
without difficulty. In general, in those cases in which it may be applied, QMC
provides the most accurate results and so they are the benchmark to which other
methods are compared. However, good agreement is observed for the ground-state
energy between all approximate methods for the results presented in Table 11.1 for
the bipartite lattices (a)–(c). The lowest lying energies in each sector of total spin
s also scale as s(s + 1), thus indicating that each of these lattices has a Néel-like
ordering. The order parameter (with a factor of 1/2 compared to results in Chap. 11)
is also shown in Table 11.1 and the results indicate that the amount of Néel ordering
is reduced compared to the classical case. Again, good correspondence between the
different approximate methods is observed. Finally, we remark that the excitation
energy gap is believed to be zero for all of the spin-half bipartite Archimedean
lattices. A review of the properties of the spin-half square-lattice antiferromagnet,
for example, is given in [42].

By contrast, lattices (d)–(g) all exhibit frustration. Results for the ground-state
energies are shown in Table 11.2. In these cases, no exact sign rule has yet been
found and so the application of QMC is severely limited. However, once again good
correspondence between the results of the different approximate methods is seen.
For lattices (d)–(f), namely, SrCuBO (the underlying lattice of SrCu(B0)3), the trian-
gular and maple-leaf lattices, it is found that the ground state has Néel-like ordering,
indicated by the fact that the lowest lying energies with total spin s scale as s(s +1),
as indicated above (see [2], Chap. 2). Note that classically nearest-neighbours align
at angles of 120◦ to each for the Heisenberg antiferromagnet on the triangular lattice.
There are two sublattices for the SrCuBO lattice, three sublattices for the triangular
lattice, and six sublattices for the maple-leaf lattice. Again, results of approximate
methods for the sublattice magnetisation shown in Table 11.2 indicate that these
systems are semi-classically ordered, albeit by an reduced amount compared to the
classical system due to quantum fluctuations. A review of the triangular lattice anti-
ferromagnets and relevant magnetic materials is given in [62]. The SrCuBO lattice
(d) shown in Fig. 11.3 is a special case of the Shastry-Sutherland model discussed
below.

The Kagomé-lattice antiferromagnet of lattice (g) in Fig. 11.3 is also interesting
because classically it has an infinite number of ground states. Furthermore, consid-
eration of the lowest lying energies in each sector of total s show that these do not
scale as s(s +1) thus indicating this it is not Néel-ordered. This is also supported by
results for the sublattice magnetisation, which is believed to be zero in the infinite
lattice limit (N → ∞). The Kagomé-lattice antiferromagnet is related to the broader
topic of ‘spin ice’ materials that exhibit non-zero entropies even at zero temperature
[1]. The energy gap to the first excited state is again believed to be zero for lattices
(d)–(g).



11.3 The s = 1/2 Heisenberg Model for Archimedean Lattices 143

Ta
bl

e
11

.1
A

pp
ro

xi
m

at
e

re
su

lts
fo

r
gr

ou
nd

-s
ta

te
en

er
gi

es
E

g
pe

r
bo

nd
an

d
th

e
su

bl
at

tic
e

m
ag

ne
tis

at
io

n
M
(=

〈sz 〉)
of

th
e

(u
nf

ru
st

ra
te

d)
sp

in
-h

al
f

H
ei

se
nb

er
g

an
tif

er
ro

m
ag

ne
tf

or
th

e
sq

ua
re

(a
),

ho
ne

yc
om

b
(b

)
an

d
C

A
V

O
(c

)
la

tti
ce

s

L
at

tic
e

Q
M

C
SW

T
C

SE
E

D
C

C
M

Sq
ua

re
(a

)
E

g
bo

nd
−0
.3

34
71

9(
3)

[4
3]

−0
.3

34
99

5
[4

4,
45

]
−0
.3

34
65
(5
)

[4
6]

−0
.3

35
0

−0
.3

34
8

M
0.

30
70

(3
)

[4
3]

0.
30

69
[4

4,
45

]
0.

30
7(

1)
[4

6]
0.

31
73

0.
30

7

H
on

ey
(b

)
E

g
bo

nd
−0
.3

63
0

[4
7]

−0
.3

65
92

9
[4

8]
−0
.3

62
9

[4
9]

−0
.3

63
2

−0
.3

63
15

5
[5

0]

M
0.

23
5

[4
7]

0.
24

18
[4

8]
0.

26
6

[4
9]

0.
27

88
0.

27
40

66
[5

0]

C
A

V
O

(c
)

E
g

bo
nd

−0
.3

63
0

[5
1]

−0
.3

58
8

[5
2]

−0
.3

62
9

[5
3]

−0
.3

68
2

−0
.3

68
88

[5
4]

M
0.

17
8(

8)
[5

1]
0.

21
2

[5
2]

−
0.

23
03

0.
20

4
[5

4]
N

um
be

rs
in

br
ac

ke
ts

in
di

ca
te

th
e

er
ro

r.
Q

M
C

=
qu

an
tu

m
M

on
te

C
ar

lo
;S

W
T

=
sp

in
-w

av
e

th
eo

ry
;C

SE
=

cu
m

ul
an

ts
er

ie
s

ex
pa

ns
io

n;
E

D
=

ex
ac

td
ia

go
na

lis
at

io
ns

;a
nd

C
C

M
=

co
up

le
d

cl
us

te
r

m
et

ho
d.

A
ll

E
D

re
su

lts
al

lt
ak

en
fr

om
[2

],
C

ha
p.

2.
C

C
M

re
su

lts
fo

r
th

e
sq

ua
re

la
tti

ce
ta

ke
n

fr
om

C
ha

p.
11

(w
ith

a
fa

ct
or

of
1/

2
fo

r
M

).



144 11 Quantum Magnetism

Ta
bl

e
11

.2
A

pp
ro

xi
m

at
e

re
su

lts
fo

r
gr

ou
nd

-s
ta

te
en

er
gi

es
pe

r
bo

nd
an

d
su

bl
at

tic
e

m
ag

ne
tis

at
io

ns
M

(=
〈sz 〉)

of
th

e
(f

ru
st

ra
te

d)
sp

in
-h

al
f

H
ei

se
nb

er
g

an
tif

er
ro

-
m

ag
ne

tf
or

th
e

Sr
C

uB
O

(d
),

tr
ia

ng
ul

ar
(e

),
m

ap
le

-l
ea

f
(f

),
an

d
K

ag
om

é
(g

)
la

tti
ce

s

L
at

tic
e

SW
T

/S
B

M
F

C
SE

E
D

C
C

M

Sr
C

u(
B

O
3
) 2

(d
)

E
g

bo
nd

−0
.2

31
[5

5]
−0
.2

31
[5

6]
−0
.2

31
0

−0
.2

31
1

M
0.

20
3

[5
5]

0.
20

0
[5

6]
0.

22
80

0.
21

1

T
ri

an
gl

e
(e

)
E

g
bo

nd
−0
.1

82
3

[5
7]

−0
.1

84
2

[5
8]

−0
.1

84
2

−0
.1

84
14

7
[5

0]

M
0.

23
87

[5
7]

0.
20

[5
8]

0.
19

3
0.

18
93

31
[5

0]

M
ap

le
L

ea
f

(f
)

E
g

bo
nd

−0
.2

04
86

[5
9]

−
−0
.2

17
1

−0
.2

11
5

M
0.

15
4

[5
9]

−
0.

08
60

0.
06

3

K
ag

om
é

(g
)

E
g

bo
nd

−0
.2

35
3

[6
0]

−
−0
.2

17
2

−0
.2

12
6

[6
1]

M
−

−
∼

0
C

on
si

st
en

tw
ith

0
[6

1]
SW

T
/S

B
M

F=
sp

in
-w

av
e

th
eo

ry
/S

ch
w

in
ge

r-
B

os
on

m
ea

n–
fie

ld
;C

SE
=

cu
m

ul
an

ts
er

ie
s

ex
pa

ns
io

n;
E

D
=

ex
ac

td
ia

go
na

lis
at

io
ns

;a
nd

C
C

M
=

co
up

le
d

cl
us

te
r

m
et

ho
d.

A
ll

E
D

re
su

lts
al

lt
ak

en
fr

om
[2

],
C

ha
p.

2.
C

C
M

re
su

lts
fo

r
th

e
m

ap
le

-l
ea

f
la

tti
ce

ca
lc

ul
at

ed
by

th
e

au
th

or
s.



11.4 Spin Plateaux 145

Thus we see that the application of a range of techniques can help greatly in
understanding the basic properties of a range of frustrated and unfrustrated quantum
spin systems in two spatial dimensions.

11.4 Spin Plateaux

Another interesting topic in the field of quantum magnetism is that of ‘spin plateaux’
in which the total lattice magnetisation remains constant over a range of values of
of an externally applied magnetic field. For finite-sized systems, changes from one
plateau to the next may be due to transitions between different quantum states as the
external magnetic field is increased. However, it is found that that spin plateau can
also occur in certain cases in the infinite-lattice limit (N → ∞).

An example of this is given by the spin-half (Archimedean) triangular-lattice
Heisenberg antiferromagnet in the presence of an external magnetic field. The rele-
vant Hamiltonian is

H = J

2

∑
i,ρ

si · si+ρ − λ
∑

i

sz
i , (11.4)

where the index i runs over all lattice sites on the triangular lattice and ρ runs over
all nearest-neighbours to i . J is the exchange constant which we take to be +1 for
simplicity and λ = gβH where H is the strength of the applied external magnetic
field. Again for simplicity we work with units in which gβ is unity so that λ is
equivalent to H .

As we have seen above, the quantum ground state at λ = 0 is semi-classically
ordered, although the order is reduced by quantum fluctuations from the classical
value. The classical behaviour is that the nearest-neighbour spins align at angles of
120◦ to each other for this Heisenberg antiferromagnet on the (tripartite) triangular
lattice at λ = 0. In the presence of an externally applied magnetic field (λ > 0),
the classical picture indicates that the spins will cant at various angles and that at a
‘saturation’ value of λ = λs (≡ 4.5) all spins align with the field. The magnetisation
saturates to a maximum value M = Ms = Ns, where s is the spin magnitude, at
this point.

In contrast to the behaviour of the square-lattice antiferromagnet in an exter-
nal magnetic field discussed in Chap. 10, the quantum behaviour of the spin-half
triangular-lattice antiferromagnet [63–73] is very different to that of the classical
model. In particular, a magnetisation plateau is observed at M/Ms = 1

3 over a
significant region of λ, as shown in Fig. 11.4. The range of this plateau has been
estimated by spin-wave theory [68, 69] to be given by 1.248 < λ < 2.145, by exact
diagonalisations [63, 66, 67] to be given by 1.38 < λ < 2.16 and by the CCM [74]
to be 1.37 < λ < 2.15 and these results are shown in the figure. We note again
that application of the QMC method (which gives very accurate results for bipartite
lattices) to the case of the triangular is severely limited by the ‘sign problem’ due to
frustration.
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Fig. 11.4 Results for the total lattice magnetisation M as a fraction of the maximum magnetisation
Ms of the spin-half triangular-lattice Heisenberg antiferromagnet in the presence of an external
magnetic field of strength λ. CCM results are compared to those results of exact diagonalisations
obtained using Joerg Schulenburg’s SpinPack code. The arrows illustrate the actual spin directions

Note that the plateau state (uud) is collinear (i.e. all spins are aligned parallel
or antiparallel to the direction of the magnetic field). This plateau is an illustration
of the phenomenon of ‘order from disorder’ in which quantum fluctuations tend to
favour collinear states. Furthermore, it is a purely quantum effect because no such
plateau exists for the classical system.

Finally, recent experimental evidence [75] for the magnetic material Cs2CuBr4
suggests that a series of plateaux might exist at values of M/Ms equal to 1/3, 1/2, 5/9
and 2/3. This might be due to unit cells of differing size for the different plateaux. At
present theory has only predicted the first of these at 1/3. However, the topic of these
possible higher plateau is beyond the scope of this book, and the interested reader is
referred to [2] (Chap. 2) for more information regarding spin plateaux generally.

11.5 The Spin-Half J1– J2 Model on the Square Lattice

We have seen already that the addition of frustrating next-nearest-neighbour bonds
to the Heisenberg antiferromagnet with purely nearest-neighbour interactions can
lead to a dimerised ground state for the spin-half linear-chain J1–J2 model. How-
ever, we may also consider what the effects of frustrating next-nearest-neighbour
terms are for the equivalent square-lattice model and we can see if they again lead
to interesting behaviour. Recent interest in this model comes also from studies of
various layered magnetic materials, such as Li2VOSiO4, Li2VOGeO4, VOMoO4,
and BaCdVO(PO4)2.

The relevant Hamiltonian for this model is again given by Eq. (11.1), although i
runs over all sites on the square lattice in this case. ρ1 again runs over all nearest-
neighbours to i (along the sides of the squares) and ρ2 runs over all next-nearest-
neighbours (along the diagonals of the squares), and we again write the bond
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strengths as J1 = cos(ω) and J2 = sin(ω). Amongst the most useful appoximate
methods that have been used to simulate the properties of this systems are the CCM
[76–80], series expansions [81–85], exact diagonalisations [86–90], and hierarchical
mean-field calculations [91]. However, other approximate methods have also been
used and the interested reader is referred to [90] for a recent review.

It is found that the system is ferromagnetically ordered in the region −π ≤ ω ≤
−π

2 . At ω = 0 (J2 = 0) we have the unfrustrated Heisenberg antiferromagnet which
is Néel ordered as discussed above. This Néel-ordered phase extends over the entire
region −π

2 ≤ ω ≤ 0 in which next-nearest-neighbour bonds do not compete with
their nearest-neighbour counterparts. The system remains Néel ordered up until the
point J2/J1 ≈ 0.4. Unlike the one-dimensional J1–J2 system, there is no equivalent
spiral phase in 2D for large J2/J1.

For J2/J1 � 0.6, CCM, mean-field, series expansion and exact diagonalisation
(ED) results all indicate that the system is Néel ordered over next-nearest neighbours
and this ordering is one in which spins form stripes (either on the columns or rows).
Furthermore, there is an intermediate regime for 0.6 � J2/J1 � 0.4 between the
two types of nearest- and next-nearest-neighbour Néel ordering. Series expansion
and ED suggest that there is a spin gap in this region. The nature of the ground state
in this intermediate regime has been postulated to be a valence-bond crystal formed
of dimers or 4-site ‘plaquettes’ [81, 83, 91] or a resonating valence bond state [92,
93]. Results for the divergence or enhancement of the generalized susceptibilities
obtained by CCM and ED [80] approaching the intermediate regime from the Néel
phase are particularly suggestive of ground states that break translational symmetry.
These calculations do not suggest a spatially homogeneous spin-liquid state without
any long-range order. However, it is fair to say that the behaviour of the spin-half
J1–J2 model on the square lattice is still not completely well-understood in this
intermediate regime and that a general consensus as to the nature of the ground state
has yet to emerge. At or very close to J2/J1 = −0.5 (i.e., ω ≈ 2.68), there is a
transition from the striped state to the ferromagnetic ground state (possibly with a
brief intermediate phase).

11.6 The Shastry-Sutherland Antiferromagnet

There is another model for an underlying square lattice also with frustrating next-
nearest-neighbour bonds that demonstrates dimer order more conclusively and it
is called the Shastry-Sutherland antiferromagnet [94]. The Shastry-Sutherland anti-
ferromagnet is a spin-half Heisenberg model on an underlying square lattice with
antiferromagnetic nearest-neighbour bonds J1 and with one antiferromagnetic next-
nearest-neighbour diagonal bond J2 in every second square (plaquette), as shown in
Fig. 11.5. Interest in this model has been renewed by the discovery of the magnetic
material SrCu(BO3)2 [55] that can be understood in terms of the Shastry-Sutherland
model. The ground state of this model in the limit of small frustration J2/J1 � 1
and large frustration J2/J1 � 1 is well understood.

At the point J2/J1 = 1 it is equivalent to the Archimedean lattice (d) denoted
SrCu(BO3)2 in Fig. 11.3, and Table 11.2 indicates that there is strong evidence
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Fig. 11.5 The nearest-neighbour bonds (solid lines) of strength J1 and the next-nearest-neighbour
diagonal bonds (dashed lines) of strength J2 for the Shastry-Sutherland model. The geometric unit
cell is shown by the square with the grey dotted lines

that it is Néel-ordered at this point. This model has been treated previously by
Schwinger boson mean-field theory [55], exact diagonalization of small lattices
[95, 96], series expansions [56, 97–99], the renormalization group [99], a gauge-
theoretical approach [100], and the CCM [102, 103]. A recent review can be found
in [101]. We know from these studies that the physics of the quantum model is
similar to that of its classical counterpart for small J2 < J1, i.e., we have semi-
classical Néel long-range order.

Furthermore, for large J2, just as in the case of the one-dimensional J1–J2 model,
this model has a simple exact dimer-singlet product ground state [94] given by dimer
singlets on the diagonal bonds indicated by the dashed lines in Fig. 11.5. However,
for the Shastry-Sutherland model it is remarkable that this simple dimer product
ground state is the exact ground state over a wide range of J2/J1(> J2/J1|c),
where J2/J1|c is believed to be ≈ (1.465 ± 0.025). This is associated with the
fact that, in contrast to the one-dimensional J1–J2 model, the dimer-singlet product
ground state does not break the translational symmetry of the underlying lattice. The
ground-state energy per site of this dimer-singlet product state state is Edimer/N =
−3J2/8.

The ground-state phase at intermediate values, 1 � J2/J1 � 2, is still a matter of
discussion. However, the classical ground state in the limit of intermediate to large
values of J2/J1 is a two-dimensional ‘spiral’ and this state can be used a starting
point for the application of the CCM to this model [102, 103]. CCM results for
this model suggest strongly that no intermediate regime exists between the Néel
regime for J2/J1 < J2/J1|c and that of the exact dimer product state. Hence, they
suggest that this transition is direct and furthermore that it is most likely of first
order.
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11.7 Conclusions

In this book, we have presented methods of treating quantum spin systems via exact
and approximate methods. We have seen that exact solutions are usually only avail-
able for unfrustrated spin-half systems with nearest-neighbour interactions in one-
dimension. In principle exact solutions provide all of the information that is needed
about the system in question, although it may be difficult to extract this information
in practice.

However, various isolated exact solutions also occur for other systems, such as
the Majumdar-Ghosh point for the (frustrated) spin-half one-dimensional J1–J2
model at J2/J1 = 0.5, the spin-one biquadratic model, and the two-dimensional
Shastry-Sutherland model with large next-nearest-neighbour exchange interactions.
These are exceptions, however, and exact solutions are rare for systems of quantum
spin number s ≥ 1/2, lattices of higher spatial dimensionality, and frustrated spin
systems. Consequently approximate methods are necessary in order to understand
the properties and behaviour of the majority of spin systems for which exact results
do not exist.

For one-dimensional and quasi-one-dimensional systems, the method of choice
is the DMRG method, which provides results of high accuracy. For higher dimen-
sions the QMC method provides excellent results in those cases for which it can
be applied, namely, in the absence of frustration. Exact diagonalisation (ED) is an
extremely useful tool in understanding the basic properties of spin systems (espe-
cially in 2D), and it may be applied in the presence of large frustration. However,
it is limited by the size of lattice that one may consider, typically up to a maxi-
mum of about 40 sites for spin-half systems, even using intensive computational
methods. Because it may be applied only to smaller lattices, its accuracy is less
than QMC.

Two other approximate methods that have proven very useful are cumulant series
expansions and the CCM. Both methods provide results in the presence of frus-
tration and for lattices of arbitrary spatial dimensionality. Although their accuracy
tends to be slightly less than results of QMC, they may be applied to high orders of
approximation via computational approaches. Indeed, computational methods are
crucial to the application of all of these methods to high accuracy. Spin-wave theory
is another method that also often provides excellent and complementary results. We
have seen how a general consensus may be formed about the basic behaviour of a
quantum spin model by applying of a broad range of approximate techniques, as for
the Archimedean lattices. This is particularly important for those cases where the
QMC or DMRG methods do less well, i.e., in the presence of frustration and for
higher spatial dimensions, respectively.

Finally, we see also that the basic building blocks of unit cell, Bravais lattice,
and bonds/interactions in the Hamiltonian placed on the lattice gives us a broad
canvas to work with. For example, we may form models that interpolate between
different lattices (and even different spatial dimensions) by varying the strengths
of various bonds that have been carefully placed with respect to the underlying
lattice. Hence, the number of possible such quantum spin systems is enormous.
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Furthermore, the development in the number and complexity of these theoretical
models is often driven by the magnetic materials studied in experiment.

Many interesting quantum phenomena that have no classical counterpart also
may occur; ranging from spin plateau, valence-bond crystals, and spin liquids. We
believe that the field of quantum spin systems will continue to provide many inter-
esting challenges and new surprises well into the future.
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