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Preface

This book had its origin in a graduate course in statistical mechanics given by
Professor W. C. Schieve in the Ilya Prigogine Center for Statistical Mechanics at
the University of Texas in Austin.

The emphasis is quantum non-equilibrium statistical mechanics, which makes
the content rather unique and advanced in comparison to other texts. This was
motivated by work taking place at the Austin Center, particularly the interaction
with Radu Balescu of the Free University of Brussels (where Professor Schieve
spent a good deal of time on various occasions). Two Ph.D. candidate theses at
Austin, those of Kenneth Hawker and John Middleton, are basic to Chapters 3
and 4, where the master equations and quantum kinetic equations are discussed.
The theme there is the dominant and fundamental one of quantum irreversibil-
ity. The particular emphasis throughout this book is that of open systems, i.e.
quantum systems in interaction with reservoirs and not isolated. A particularly
influential work is the book of Professor A. McLennan of Lehigh University,
under whose influence Professor Schieve first learned non-equilibrium statistical
mechanics.

An account of relatively recent developments, based on the addition in the
Schrödinger equation of stochastic fluctuations of the wave function, is given in
Chapter 13. These methods have been developed to account for the collapse of the
wave function in the process of measurement, but they are deeply connected as
well with models for irreversible evolution.

The first six chapters of the present work set forth the theme of our book, par-
ticularly extending the entropy principle that was first introduced by Boltzmann,
classically. These, with equilibrium quantum applications (Chapters 7, 8, 9 and
possibly also Chapters 14 and 15), represent a one-semester advanced course on
the subject.

xi



xii Preface

As frequently pointed out in the text, quantum mechanics introduces special
problems to statistical mechanics. Even in Chapter 1, written by the coauthor of this
work, Professor Lawrence P. Horwitz of Tel Aviv, the idea of a density operator is
required which is not a probability distribution, as in the classical case. The idea of
the density operator lies at the very foundations of the quantum theory, providing
a description of a quantum state in the most general way. Statistical mechanics
requires this full generality. We give a proof of the Gleason theorem, stating that
in a Hilbert space of three or more real dimensions, a general quantum state has a
representation as a density operator, based on an elegant construction of C. Piron.
This structure gives the quantum H theorem, a content which is essentially different
from the classical one. This makes the subject surely interesting and important, but
difficult.

Quantum entanglements are quite like magic, so to speak. It is necessary and
important to see these modern developments; they are described in Chapter 15.
This is one chapter that might be used in the extension of the course to a second
semester. One- and two-time Green’s functions, introduced by Kadanoff and Baym,
might be included in the extended treatment, since they are popular but difficult.
This is included in Chapter 16 with an application in Chapter 19.

An extension to special relativity is described in Chapter 10. This is a new deriva-
tion of a many-body covariant kinetic theory. The Boltzmann-like kinetic equation
outlined here was derived in collaboration by the authors. The covariant picture is
an event dynamics controlled by an abstract time variable first introduced by both
Feynman and Stueckelberg and obtains a covariant scalar many-body wave func-
tion parameterized by the new time variable. The results of this event picture are
outlined in Chapter 10.

Another arena of activity utilizing quantum kinetic equations for open systems
is the extensive development in quantum optics. This has been a personal interest
of one of the authors (WCS). This interest was a result of a Humboldt Founda-
tion grant to the Max Planck Institute in Munich and later to Ulm, under the
direction of Professors Herbert Walther, Marlon Scully and Wolfgang Schleich.
The particular area of interest is described in the results outlined in Chapter 11.
This material can be included as an introduction to quantum optics in an extended
two-semester course.

The idea of spontaneous decay in a quantum system goes back to Gamov
in quantum mechanics. This irreversible process seems intrinsic, introducing the
notion of the Gel’fand triplet and rigged Hilbert spaces states. The coauthor (LPH)
has made personal contributions to this fundamental change in the wave function
picture. It is very appropriate to include an extensive discussion of this, which is
the content of Chapter 17, describing, among other things, the Wigner–Weisskopf
method and the Lax–Phillips approach to enlarging the scope of quantum wave



Preface xiii

functions. All of this requires a more advanced mathematical approach than the
earlier discussions in this book. However, it is necessary that a well-grounded
student of quantum mechanics know these things, as well as acquire the mathe-
matical tools, and therefore it is very appropriate here in a discussion of quantum
statistical mechanics.

Chapter 18 is in many ways an extension of Chapter 17. It is an outline of what
has been called extended statistical mechanics. Ilya Prigogine and his colleagues
in Brussels and Austin, in the past few years, have attempted to formulate many-
body dynamics which is intrinsically irreversible. In the classical case this may
be termed the complex Liouville eigenvalue method. As an example, the Pauli
equation is derived again by these nonperturbative methods. This is not an open-
system dynamics but rather, like the previous Chapter 17 discussion, one of closed
isolated dynamics. This effort is not finished, and the interested student may look
upon this as an introductory challenge.

The final chapter of this book is in many ways a diversion, a topic for personal
pleasure. The remarkable objects of our universe known as black holes apparently
exist in abundance. These super macroscopic objects obey a simple equilibrium
thermodynamics, as first pointed out by Bekenstein and Hawking. Remarkably,
the area of a black hole has a similarity to thermodynamic entropy. More remark-
able, the S-matrix quantum field theoretic calculation of Hawking showed that the
baryon emission of a black hole follows a Planck formula. Hawking introduced a
superscattering operator which is analogous to the extended dynamical theory of
Chapter 18.

To complete these comments, we would like to thank Florence Schieve for sup-
port and encouragement over these last years of effort on this work. She not only
gave passive help but also typed into the computer several drafts of the book as well
as communicating with the coauthor and the editorial staff of the publisher. The
second coauthor wishes also to thank his wife Ruth for her patience, understanding,
and support during the writing of some difficult chapters.

We also acknowledge the help of Annie Harding of the Center here in Austin.
Three colleagues at the University of Texas—Tomio Petrosky, George Sudarshan
and Arno Bohm—also made valuable technical comments. WCS also thanks the
graduate students who, over many years of graduate classes, made enlightened
comments on early manuscripts.

We recognize the singular role of Ilya Prigogine in creating an environment in
Brussels and Austin in which the study of non-equilibrium statistical mechanics
was our primary goal and enthusiasm.

Finally, WCS thanks the Alexander von Humboldt Foundation for making pos-
sible extended visits to the Max Planck Institute of Quantum Optics in Garching
and later in Ulm. LPH thanks the Center for Statistical Mechanics and Complex
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Systems at the University of Texas at Austin for making possible many visits over
the years that formed the basis for his collaboration with Professor Schieve, and the
Institute for Advanced Study at Princeton, particularly Professor Stephen L. Adler,
for hospitality during a series of visits in which, among other things, he learned of
the theory of stochastic evolution, and which brought him into proximity with the
University of Texas at Austin.



1

Foundations of quantum statistical mechanics

1.1 The density operator and probability

Statistical mechanics is concerned with the construction of methods for computing
the expected value of observables important for characterizing the properties of
physical systems, generally containing many degrees of freedom. Starting with a
formally complete detailed description for these many degrees of freedom, proba-
bility theory is used to obtain effective procedures. Quantum statistical mechanics
makes use of two types of probability theory. One of these is the set of natural
probabilities associated with the quantum theory which emerges from its structure
as a Hilbert space. For example, the Born probability is associated with the square
of a wave function. The second is the essentially classical probability associated
with an ensemble of separate systems, each with an a priori probability assigned
by the frequency of occurrence in the ensemble. The quantity which describes both
types of probability in an efficient, convenient way is the density operator.

As an example which illustrates many of the basic ideas, consider a beam of
particles with spin 1

2 . We shall repeat the resulting definitions later in complete
generality.

The spin states of these particles are represented by two-dimensional spinors
which we denote by the Dirac kets |σ z〉 for σ z = ±1, corresponding to the z
component of the spin σ of the particle. If we perform a filtering measurement to
select a particle of spin σ ′ with spin σ ′z = ±1 in the z direction, the outcome of the
measurement on a beam of particles with spin σ z is

∣∣〈σ ′z | σ z
〉∣∣2 = δσ ′z ,σ z .

This result can be written as

∣∣〈σ ′z | σ z
〉∣∣2 = TrPz

(
σ ′

)
Pz (σ ) ,

1
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where the projection operator Pz (σ ) = |σ z 〉〈 σ z| represents the state of the
beam of particles with spin σ of definite value σ z, and the projection opera-
tor Pz

(
σ ′

)
represents the experimental question of which value, ±1, this set of

particles has.
If we measure instead a different component of spin and, for example, ask for the

fraction of particles in the ensemble with spin in the±x direction, the measurement
is represented by a projection operator Px (σ ) = |σ x 〉〈 σ x |, with σ x = ±1. In terms
of the eigenvectors of σ z ,

|σ x = ±1〉 = 1√
2
(|+1〉 ± |−1〉) .

It is true (for any of the values of σ x and σ z) that

|〈σ x | σ z〉|2 = 1

2
.

We can write this result as

|〈σ x | σ z〉|2 = Tr (Px (σ ) Pz (σ )) .

Let us now consider a beam of spin 1
2 particles with a fraction γ+ with spin up

and γ− with spin down in the z direction
(
γ+ + γ− = 1

)
. The probability to find

spin up as the outcome of the experiment is

P+ =
∣∣〈σ ′z = +1 | σ z = +1

〉∣∣2 γ+ + ∣∣〈σ ′z = +1 | σ z = −1
〉∣∣2 γ−

= γ+,

since the second term vanishes. If γ+ = 1
2 , the result is indistinguishable from the

probability to find a spin ± 1
2 in the x direction in a beam of particles with definite

spin in the z direction.
We can write the result of the second example as

P+ = γ+Tr
(
P

(
σ ′z = +1

)
P (σ z = +1)

)+ γ−Tr
(
P

(
σ ′z = +1

)
P (σ z = −1)

)
= Tr

(
ρP

(
σ ′z = +1

))
for

ρ ≡ γ+P (σ z = +1)+ γ−P (σ z = −1) .

The operator ρ is called the density operator, representing a state consisting of a
mixture of components with spin up and spin down in the ensemble of possibilities.
We see that, with a slight generalization of the procedure used above with ρz → ρ0,
no matter what direction 0 we test in the experiment, the outcome P0 (a linear
combination of γ+, γ− with coefficients less than unity) can never reach unity if
γ+ or γ− is not unity. In the first example, where we have a beam with definite
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σ z , the state is represented by a vector, and the measurement of the spin in the z-
direction can yield probability one. For a general choice of γ±, there is no vector
that can represent the state. In the first case the state is called pure, and it can
be represented by a projection into a one-dimensional subspace (in the previous
example, Pσ z = |σ z 〉〈 σ z|). This is equivalent to specifying the vector, up to a
phase, corresponding to the one-dimensional subspace. In the second case, it is
called mixed and does not correspond to a vector in the Hilbert space.

It is clear from the discussion of these examples that the a priori probabilities γ±
are essentially classical, reflecting the composition of the beam that was prepared
in the macroscopic laboratory.

Although a density operator ρ of the type that we have defined in this exam-
ple appears to be a somewhat artificial construction, it is actually a fundamental
structure in quantum statistical mechanics (Dirac, 1958). It enables one to study a
complex system in the framework of an ensemble and in fact occurs on the most
fundamental level of the axioms of the quantum theory.

It was shown by Birkhoff and von Neumann (1936) that both quantum mechan-
ics and classical mechanics can be formulated as the description of a set of
questions for which the answer, as a result of experiment, is “yes” or “no.” Such a
set, which includes the empty set φ (questions that are absurd, e.g. the statement
that the system does not exist) and the trivial set I (the set of all sets, e.g. the state-
ment that the system exists), and is closed with respect to intersections and unions,
is called a lattice. A lattice that satisfies the distributive law

a ∩ (b ∪ c) = (a ∩ b) ∪ (a ∩ c) ,

where ∪ represents the union and ∩ the intersection, is called Boolean. These oper-
ations have the physical meaning of “or” (the symbol ∪), in which one or the other
of the propositions is true, and “and” (the symbol ∩), for which both must be true
for the answer of the compound measurement to be “yes.” An example of such a
lattice may be constructed in terms of two-dimensional closed regions on a piece
of paper. This is discussed again in the appendix to this chapter.

Both classical and quantum theories may be associated with lattices in terms,
respectively, of the occupancy of cells in phase space or states in the subspaces of
the Hilbert space. The questions a correspond, in the first case, to the phase space
cells (with answer corresponding to occupancy) and in the second to the projec-
tion operators Pα associated with a subspace Mα, with the answer corresponding
to the values ±1 which a projection operator can have. These values correspond
to evaluating the projection operator on vectors which lie within or outside the
subspace.

Birkhoff and von Neumann asserted that the fundamental difference between
classical and quantum mechanics is that the lattices corresponding to classical
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mechanics are Boolean, and those corresponding to quantum mechanics are not.
The non-Boolean structure of the quantum lattice is associated with the lack of
commutativity of the projection operators associated with different subspaces:

a ∩ (b ∪ c) �= (a ∩ b) ∪ (a ∩ c) . (1.1)

This is a fundamental difference between classical and quantum statistics.
Let us illustrate this point by a simple example, again using the spin 1

2 system.
Each of the Pauli spin matrices has eigenvalues±1 and is therefore associated with
a set of projection operators of the form

Pi = 1

2
(1± σ i )

for i = x, y, z. Let us consider three closed linear subspaces associated with the
projections into the subspaces with the σ i positive, i.e. with the Pi defined as above
with positive signs. We call these subspaces Mx , My, Mz; they correspond to
propositions which are not compatible, i.e. the corresponding projection operators
do not commute. We shall show explicitly, for this simple example, that

Mz ∩
(
Mx ∪ My

) �= (Mz ∩ Mx) ∪
(
Mz ∩ My

)
,

that is, this set of propositions is not Boolean. The construction is interesting in
that it illustrates the special structure of the topology of Hilbert spaces as well as
the notion of the non-Boolean lattice.

We start by constructing the union of the manifolds Mx and My by their joint
linear span. Taking the standard definition of the Pauli matrices,

σ x =
(

0 1
1 0

)
, σ y =

(
0 −i
i 0

)
, σ z =

(
1 0
0 −1

)
,

the projection operators into the subspaces with positive eigenvalues are

Px = 1

2
(1+ σ x) = 1

2

(
1 1
1 1

)
Py = 1

2

(
1+ σ y

) = 1

2

(
1 −i
i 1

)
Pz = 1

2
(1+ σ z) = 1

2

(
1 0
0 0

)
.

The corresponding eigenvectors are given by projecting a generic vector v into the
respective subspaces. For

v =
(
v1

v2

)
,
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using the result just given,

Pxv = 1

2
(v1 + v2)

(
1
1

)
,

so that Mx is represented by the linear span of the normalized eigenvector:

vx = 1√
2

(
1
1

)
.

Similarly,

Pyv = 1

2
(v1 − iv2)

(
1
i

)
,

so that the corresponding (normalized) eigenvector is

vy = 1√
2

(
1
i

)
.

Finally,

Pzv = v1

(
1
0

)
,

so the corresponding eigenvector is

vz =
(

1
0

)
.

The union of the subspaces Mx and My is the closed linear span of vectors in both
subspaces. By taking the combination vx + ivy , it is easy to see that the vector vz

(and hence the subspace Mz) is contained in Mx ∪My. To construct the distributed
operation

(Mz ∩ Mx) ∪
(
Mz ∩ My

)
,

we must use the construction for which the projection operator corresponding to
the intersection of two noncompatible subspaces is generated by an alternating
succession of projections into the two subspaces (Jauch, 1968). The products Pz Px

and Pz Py are, it so happens, idempotents up to coefficients less than one, i.e.

Pz Px = 1

2

(
1 1
0 0

)
(Pz Px)

2 = 1

4

(
1 1
0 0

)
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and

Pz Py = 1

2

(
1 −i
0 0

)
(
Pz Py

)2 = 1

4

(
1 −i
0 0

)
,

which implies that both (Pz Px)
n and

(
Pz Py

)n
go to zero as n →∞. Therefore,

Mz ∩ Mx = Mz ∩ My = 0.

Clearly,

Mz ∩
(
Mx ∪ My

) �= (Mz ∩ Mx) ∪
(
Mz ∩ My

)
.

Although Pz Px and Pz Py are not zero (the two corresponding vectors are not
orthogonal), the closed subspace that is common is empty. One can think of this
geometrically in terms of two lines that have some projection on the other, but
the intersection of the two lines is just a point of zero measure. Physically, this
implies that we cannot have a definite statement of the joint values of σ z and σ x or
σ y. The noncommutativity of the associated projections is essential; if they were
commutative, the product of projections would be a projection, and the products
would not converge to zero. It is clear from this example that compatible subspaces
would satisfy Boolean distributivity.

We shall later discuss the Wigner function, which appears to provide joint distri-
butions over noncommutative variables such as q and p; however, these functions
are not probabilities, since, although they are the coefficients of what might be
called the Weyl basis for the operator algebra of the quantum theory which appear
in expectation values, they are not positive (Wigner, 1936).

1.2 The Gleason theorem and consequences

The axioms of quantum mechanics are implicitly developed in the fundamental
work of Dirac (1958). Let us focus here on probability. Given Pi (i = 1, ...), a
sequence of projections Pi Pk = 0 for i �= k, then the probability measure w

w : P → [0, 1]
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satisfies

(a) ∪i w (Pi ) = w

(∑
i

Pi

)
(1.2)

(b) w (φ) = 0, w (I ) = 1

(φ is the zero projection)

(c) w (P) = w (F) = 1 → w (P ∩ F) = 1

Piron (1976) added another axiom, namely that partially ordered (by inclusion)
sets of the non-Boolean lattice of the quantum theory form Boolean sublattices,
and with this he was able to show a converse result, i.e. that such partially ordered
lattices can be embedded in a Hilbert space (or a family of Hilbert spaces if there
are superselection rules), thus inducing the full structure of the quantum theory.

Along with the sets of “yes-no” questions that form the basic elements a of
the quantum lattice, one may assume a function w (a) with values between zero
and unity, with the interpretation of a probability measure, which has the so-called
sigma additivity property

w (a ∪ b) = w (a)+ w (b) (1.3)

when a and b have no intersection, i.e. a ∩ b = φ. This idea is consistent with the
notion of probability for the “yes” answer for a and b. Gleason (1957) showed that
for any Hilbert space of three or more real dimensions, there is a density operator,
self-adjoint and positive, ρ, such that

w (a) = TrρPa, (1.4)

where Pa is the projection operator into a subspace corresponding to the question
a. This existence theorem is one of the most powerful and important theorems
in the foundations of the statistical quantum theory. The function w (a) is called
a state, a notion completely consistent with Dirac’s definition of a state in the
quantum theory, i.e. for any a, this function provides the probability of its truth
and therefore corresponds to maximum knowledge.

The original proof of Gleason is rather long and involved, but Piron has given a
simple and elegant proof, which is given here in an appendix to this chapter for the
mature student.

The density operator (often called “density matrix”) has the properties

Trρ = 1 (1.5)

Trρ2 ≤ 1.

The first follows from the fact that the sum over all disjoint a of w (a) is the total
probability measure on the set of all questions (and the sum over all disjoint Pa is
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the unit operator). The second follows from the first; all eigenvalues of ρ are real
and positive with values less than or equal to unity. With these properties, one can
prove that the spectrum of ρ must be completely discrete.

Mackey (1963) has given a converse theorem. If the function w (a) can reach the
value unity on a one-dimensional subspace of the Hilbert space, the corresponding
density operator is just a projection into this one-dimensional subspace and can
be put into correspondence (up to a phase) with the vector of the Hilbert space
generating this one-dimensional subspace. Such a state is called pure. A state which
cannot reach the value of unity on any one-dimensional subspace is called mixed.

The proof is very simple. Let P0 be the projection onto a one-dimensional sub-
space generated by the vector φ0, and let us use the representation, taking into
account the discrete spectrum of ρ,

ρ =
∑

i

γ i

∣∣ψ i

〉 〈
ψ i

∣∣ . (1.6)

Here we use the Dirac ket
∣∣ψ i

〉
to signify an element of the Hilbert space. Then if

TrρP0 = 1, it follows that

Trρ (1− P0) = 0,

or

Tr
∑

i

γ i

〈
ψ i

∣∣ (1− P0)
∣∣ψ i

〉 = Tr
∑

i

γ i

∥∥(1− P0)
∣∣ψ i

〉∥∥2 = 0,

where ‖χ〉 ‖2is defined as 〈χ | χ〉, the norm of the vector |χ〉. Since the γ i are
positive, this implies that

(1− P0)
∣∣ψ i

〉 = 0

for all of the
∣∣ψ i

〉
, i.e., ∣∣ψ i

〉 = λi

∣∣φ0

〉
for all i. Substituting into Eq. (1.6), we see that in this case we must have

ρ =
∑

i

γ i |λi |2
∣∣φ0

〉 〈
φ0

∣∣ .
Furthermore, if the

∣∣ψ i

〉
and

∣∣φ0

〉
are normalized, |λi |2 = 1. Then, by Eq. (1.5) and

Eq. (1.6) (for the
∣∣ψ i

〉
orthogonal), one sees that the sum of the γ i is unity; hence

ρ = ∣∣φ0

〉 〈
φ0

∣∣ ,
which is the projection operator into the subspace generated by

∣∣φ0

〉
. This theorem

therefore identifies the pure states with vectors of the Hilbert space, and it is for this
reason that one often calls the vectors of the Hilbert space “states.” Every vector in
the Hilbert space corresponds to a pure state.
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If w1 and w2 are two different states, then

w = λ1w1 + λ2w2

with λ1 + λ2 = 1 and with λ1, λ2 positive also is a state; the set of states form a
convex set (Jauch, 1968). Such a state is called a mixture. A state which cannot be
represented in terms of two others is called pure; the pure states are the extremal
subset of a convex set. These definitions are, of course, consistent with Mackey’s
result.

1.3 Calculation of averages of observables

Let us now consider an observable represented by a self-adjoint operator A on the
Hilbert space with a spectrum of discrete eigenvalues ak . Such an operator can be
represented as a sum over projections into its eigenstates, i.e.

A =
∑

k

ak Pk, (1.7)

where, if Pk =
∣∣φk

〉 〈
φk

∣∣ and the
∣∣φk

〉
form a normalized orthogonal set, we clearly

have

A
∣∣φk

〉 = ak

∣∣φk

〉
.

The expectation of this operator in some pure state represented by
∣∣ψ i

〉
is then〈

ψ i

∣∣ A
∣∣ψ i

〉 =∑
k

ak
〈
ψ i

∣∣ Pk

∣∣ψ i

〉
(1.8)

=
∑

k

ak

∣∣〈ψ i | φk

〉∣∣2 ,
with the usual quantum interpretation that

∣∣〈ψ i | φk

〉∣∣2 is the quantum mechani-
cal probability that a system in the state described by

∣∣φk

〉
is found in the state∣∣ψ i

〉
. The weighting of the eigenvalues of A by this probability then gives the

expected value of this observable in the state described by
∣∣ψ i

〉
. Suppose now that

we prepare a system which contains subsystems in the states
∣∣ψ i

〉
according to the

a priori probability distribution γ i . This can be arranged by preparing a system
with the number of subsystems in each state

∣∣ψ i

〉
proportional to the γ i . This is an

ensemble. We emphasize here that this step, as in our previous example, is entirely
classical. We build an ensemble of subsystems with a priori probabilities based on
their frequency of occurrence, a completely classical notion of probability, i.e. the
frequency interpretation.

The overall expectation of the value of the observable A is then given by the
sum over all of the expected values in each of the quantum states, with coefficients
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equal to the classical probabilities of the occurrence of each quantum state in the
ensemble, i.e.

〈A〉 =
∑

i

γ i

〈
ψ i

∣∣ A
∣∣ψ i

〉
.

This result is obtained directly by computing

〈A〉 = TrρA, (1.9)

where

ρ =
∑

i

γ i

∣∣ψ,

〉 〈
ψ i

∣∣ . (1.10)

Viewing this in a slightly different way, we see that

〈A〉 =
∑

k

akTr (ρPk) , (1.11)

where

Tr (ρPk) =
∑

i

γ i

〈
ψ i

∣∣ Pk

∣∣ψ i

〉
(1.12)

=
∑

i

γ i

∣∣〈ψ i | φk

〉∣∣2
is the probability of finding the system in the subspace associated with Pk . This
probability is composed of two types of expectation: the quantum probability to
find the Pk in each state ψ i , and the classical probability for the occurrence of the
state ψ i (determined by the relative number of subsystems in that state).

The results that we have given can easily be extended to the most general case
of an observable with both discrete and continuous spectra without change in the
formal structure, although as we shall see later, there are special technical aspects
that arise in the continuous case (for example, in scattering theory). To see this,
we use the spectral representation theory of von Neumann. It was shown by von
Neumann (1955) that every self-adjoint operator A, corresponding to a physical
observable, has a spectral representation of the form

A =
∫

a d E (a) , (1.13)

where a takes on a continuous set of values (the real line), and the self-adjoint set
of operators E (a) is called a “spectral family.” It satisfies the property

E (a) E (b) = E (min (a, b)) , (1.14)
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with E (−∞) = 0 and E (∞) = I . It easily follows from these properties that

d E (a) d E (b) =
{

d E (a) , if a = b;
0, otherwise

(1.15)

where a and b now refer to names given to infinitesimal intervals along the line
(i.e. for �a small, d E (a) = E (a +�a)− E (a)). The integral Eq. (1.13) is con-
sidered to be of Stieltjes–Lebesgue type, in the sense that if the weight function
〈ψ |d E (a)|ψ〉 = d ‖E (a) |ψ〉‖2 has a jump discontinuity at some point a0, the
integral is evaluated as the difference between the values of ‖E (a) |ψ〉‖2 above
and below the point a0. If, in particular, d ‖E (a) |ψ〉‖2 is zero in the neighbor-
hood of the point a0 (except at the point itself), so that the jump is isolated, one
obtains a contribution to any expectation value of A just from the point a = a0 (in
this neighborhood). The coefficient, since E (a)2 = E (a), is 〈ψ | E (a0 + ε) −
E (a0 − ε) |ψ〉, where ε is infinitesimal. The operator E (a0 + ε) − E (a0 − ε)

may then be identified with one of the discrete projection operators appearing
in Eq. (1.7). Hence, the representation Eq. (1.11) includes both discrete and
continuous spectra. In Eq. (1.8) one then uses〈

ψ i

∣∣ A
∣∣ψ i

〉 = ∫
ad

∥∥E (a)
∣∣ψ i

〉∥∥2
,

and Eq. (1.9) remains valid quite generally.
We now turn to time evolution, which is the central issue of this book. The

quantum states ψ i from which the density operator is constructed evolve under
Schrödinger evolution as

i h̄
∂

∂t

∣∣ψ i

〉 = H
∣∣ψ i

〉
. (1.16)

It follows simply that for ρ of the form of Eq. (1.10), acting with the time derivative
on both factors

∣∣ψ i

〉
and

〈
ψ i

∣∣, using Eq. (1.16) and its conjugate, we see that

dρ

dt
= i h̄ (ρH − Hρ) = i h̄ [ρ, H ] , (1.17)

a time evolution similar to the evolution of a Heisenberg operator but with opposite
sign.

Eq. (1.17) forms the basis for the description of the dynamical evolution of
a system in statistical mechanics, the analog of the classical Liouville equation
(Tolman, 1938). Since the Schrödinger equation is reversible in time, this evolu-
tion is reversible (Farquahar, 1964). Under such an evolution, a pure state remains
pure, and a mixed state does not change its character (this follows from the fact that
the change in time of Trρ2, given by 2i h̄Tr(ρ [ρ, H ]), vanishes). We shall discuss
in later chapters evolution given by, for instance, master equations, the Pauli equa-
tion and the Lindblad equation, describing irreversible processes. Such equations
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can describe the evolution of a density matrix for a pure state into a density matrix
corresponding to a mixed state. (For this more general evolution, Tr(ρρ̇) does not
vanish.)

Although, as we have previously emphasized, the density operator might appear
to be a somewhat artificial construction, combining both classical and quantum
probability notions to achieve an overall expectation value, it actually arises on
the most fundamental level of the quantum theory. Methods for the construc-
tion and study of this operator and its time evolution are the essential goal of
the techniques of statistical mechanics; the theory is constructed on this basic
foundation.

Good general references to the topics of this chapter are the books of Tolman
(1938), Dirac (1958), Farquahar (1964), Landau and Lifshitz (1970), Balescu
(1975), Dvurecenskij (1993), and Huang (1987). Extensive pertinent references
are given at the ends of later chapters.

Appendix 1A: Gleason theorem

The Gleason theorem (Gleason, 1957) is concerned with the calculation of the
probability w of obtaining the answer “yes” as a result of carrying out an exper-
iment which is an ideal measurement of the first kind on a system in some
given state. In working out the proof of this theorem, we shall follow closely the
presentation given by C. Piron (1976).

To study and prove the result, we shall need some definitions already implicit in
previous sections.

The logical propositions of the quantum theory correspond to equivalence
classes of questions {β} which are realized in terms of measurements. A ques-
tion β is called a measurement of the first kind if, every time the answer is
“yes,” the proposition b, corresponding to the equivalence class defined by {β},
is true immediately after the measurement. (Measurement will be taken up again
in Chapter 13.)

A question β is said to be ideal if every proposition b defined by such a β,

which is true beforehand, is again true afterwards when the response of the system
is “yes.”

We shall assume that the probability w is the same for every question β defining
the proposition b, for β (or β ,̃ its complement) is an ideal measurement of the
first kind. We may then denote this probability by w (p, b), where p is the initial
state in which the experiment is carried out, and b is the proposition defined by the
equivalence class {β} .

The Gleason theorem applies to the construction of the function w in the
framework of a Hilbert space, on which the operators of the quantum theory are



Appendix 1A: Gleason theorem 13

represented. The closed subspaces of a Hilbert space, with their associated projec-
tion operators, form a set subject to the operations of intersection and union, and
contain the empty set and the set of all subsets, i.e. a structure called a lattice, iso-
morphic to the lattice of propositions (Birkhoff and von Neumann, 1936; Birkhoff,
1961; Piron, 1976), as mentioned earlier. For an irreducible proposition system,
in which there is only one minimal proposition (no superselection rules), every
self-adjoint operator corresponds to an observable. Let P (H) be such a Hilbert
realization.

We now state the Gleason theorem (Gleason, 1957) (see Piron, 1976, for the
general case of a family of Hilbert spaces, for which there is a nontrivial set of
minimal propositions):

Theorem: Given a propositional system L = P (H), where H is a Hilbert space
(of dimension ≥ 3) over the reals, complex numbers or quaternions, there exists
a unique function w (p, b) defined on the atoms p (corresponding to the one-
dimensional subspaces of H) and the propositions b of L which satisfies (as in
Eq. (1.2) and Eq. (1.3))

(1) 0 ≤ w (p, b) ≤ 1 (1A.1)

(2) p ⊂ b ⇔ w (p, b) = 1

(3) b ⊥ c ⇒ w (p, b)+ w (p, c) = w (p, b ∪ c) .

We begin the proof by noting that there is a vector f p in H , associated with the
atom p, satisfying 〈

f p | f p
〉 = ∥∥ f p

∥∥2 = 1.

Each proposition b in P (H) can be represented by a projection operator Q into a
linear closed subspace of H . Then

w (p, b) = 〈
f p |Q| f p

〉
satisfies the conditions of the theorem.

Our principal task is then to show uniqueness. If there were another function
w (p, b) satisfying these conditions, it would have to have a different value on
some pair p, b. For such functions, there would be another proposition q (an atom)
for which, in this case, w (p, q) has a different value. However, if the function were
unique, the value would necessarily be the same. Such a q can be constructed as
follows. Note that [(

p ∪ b′
) ∩ b

] ∪ (
p′ ∩ b

) = b

and that, since p and p′ are orthogonal,[(
p ∪ b′

) ∩ b
] ⊥ p′ ∩ b.
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However, w
(
p, p′ ∩ b

) = 0, so

q = (
p ∪ b′

) ∩ b (1A.2)

for an atom. The other function would, by construction, have a different value
for w (p, q). We choose the two vectors f p and fq in such a way that

〈
f p | fq

〉
is real. We may then consider just three vectors associated with the atoms p, q,
i.e. f p, fq and a vector (real) orthogonal to these. The restriction of w (p, b) to
the three-dimensional real Hilbert subspace generated by f p, fq and a third vector
orthogonal to these still satisfies the conditions of the theorem. To complete the
proof, it is then sufficient to prove the uniqueness of w in the case of the real three-
dimensional Hilbert space

(
R3

)
. This construction, therefore, has the minimum

dimension necessary to carry out a proof of uniqueness.
To carry out the proof, let us assume p in w (p, b) to be fixed. The lattice of

subspaces of R3 is then the points and lines of the projective plane realized as the
intersection of R3 with the tangent plane at p to the unit sphere. In the same way
as the complex plane is mapped onto the unit sphere including the point at infinity,
we are considering the plane as a (projective) representation of the sphere of unit
vectors in R3. (It may be helpful for the reader to draw his own diagrams for the
construction described here.)

We seek a unique function w(q), where we drop reference to p, now fixed,
defined at the points q of the plane which has the value 1 at p and 0 at the point(s)
at infinity.

If q lies on some arbitrary line L in the plane, then w (q) takes on a maximal
value at a point q0 where the line pq0 is perpendicular to the line L . This follows
from the fact that if q is a point on L , and q ′ is its orthogonal complement on
L , q ∪ q ′ on the line is just q0. Hence, by (3) of Eq. (1A.1),

w (q)+ w
(
q ′
) = w (q0)

or w (q0) ≥ w (q) .

We now note that w (q) decreases along the line L . To see this, consider a point
at q and a line Lq perpendicular to pq. Move along this line to q1; we know by the
foregoing argument that

w (q) ≥ w (q1) .

Now erect a line at q1 perpendicular to pq1 and move to a point on this new line, r.
Clearly,

w (q1) ≥ w (r) .

Now put another line at this point r , and connect it back to Lq at the point q2. Since

w (r) ≥ w (q2)
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along Lq , it follows that

w (q) ≥ w (q1) ≥ w (q2) , (1A.3)

forming a decreasing sequence.
We prove now the first lemma of four leading to the uniqueness of the func-

tion w (p, q). The method we follow is to prove each lemma making some crucial
assumptions, and each succeeding lemma proves those assumptions. In the fourth
lemma the proof is complete.

Lemma 1: If the value of w (p, q) depends only on the angle θ between the rays
p and q, then it is unique and given by

w (q) = cos2 θ. (1A.4)

To prove this lemma, we work as before in the plane tangent to R3 at the point p
and erect another point q at a “distance” λ (corresponding to the square of the actual
distance), say, below p. We then erect another point q ′ at an equal distance λ from
p, labeling the midpoint of the line qq ′ by q1. By the rules of ordinary geometry,
the line pq1 is orthogonal to the line qq ′; it is the closest point on that line to p. It
then follows from our previous arguments (q ′ is the orthogonal complement of q
on this line) that

w
(
q ′
)+ w (q) = w (q1) .

But the angles q ′q1 and q1q are equal, and by the assumptions of our lemma, it
then follows that

2w (q) = w (q1) .

There is a line Lq , perpendicular to pq at a point r , passing through q ′, and a right
triangle that can be constructed from r to the apex q2 to q, with the line rpq as
hypotenuse. To satisfy Pythagoras’s theorem, we see that the distance pr is 1

λ
. pq2

is unity (this line is orthogonal to qp). The distance qq2 is 1+ λ, and the distance
rq2 is 1+ 1

λ
. Finally, q ′r is λ− 1

λ
. Now we denote the total length of q ′q as 2y (this

line is bisected by q1). Again, by Pythagoras, the length of qr is 1 + λ + 1 + 1
λ
.

Adding this to q ′r , which is λ − 1
λ
, we find the simple result that 4y = 2 (1+ λ).

Finally, using the fact that pq has length (squared) λ, the length of pq1, which we
call z, is

z = λ− y = λ− 1

2
(1+ λ) = 1

2
(λ− 1) .

We now rewrite the relation previously obtained, 2w (q) = w (q1), as

2w (λ) = w

(
1

2
(λ− 1)

)
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for λ > 1. Since by our construction, r ⊥ q,

w (λ)+ w

(
1

λ

)
= w (p) = 1,

we have that

1− w (λ) = w

(
1

λ

)
.

If we now define

x = (1+ λ)−1 = cos2 θ,

the rest of the demonstration follows by simple algebra.
Since λ = 1

x − 1, by defining

f (x) = w (λ) = w

(
1− x

x

)
,

one easily finds that

2 f (x) = f (2x) (1A.5)

for 0 ≤ x ≤ 1
2 (i.e. λ > 1), and for a second relation,

1− f (x) = f (1− x) . (1A.6)

To see this, set y = 2
λ+1 = 2x ; then, using the definition,

f (y) = w

(
1− y

y

)
= w

(
1

2
(λ− 1)

)
= 2w (λ) ,

it follows that f (y) = f (2x) = 2 f (x) .
The second relation follows from the fact that

f (1− x) = w

(
x

1− x

)
= w

(
1

λ

)
,

so that 1− f (x) = f (1− x), for 0 ≤ x ≤ 1.
The identification f (x) = x with x = cos2 θ for some θ satisfies both these

relations and satisfies the statement of the lemma. To see that this solution is the
only solution which increases, we may expand both sides of the equation 2 f (x) =
f (2x) in Taylor series about x = 0. The condition f (0) = 0 follows from the
requirement that w → 0 at∞; it follows that all derivatives equal to or higher than
second order must vanish, and the function must therefore be linear. Substituting
f (x) = αx into the second relation, Eq. (1A.6), we see that 1 − αx = α (1− x)
so that α must be unity. The solution is therefore unique.

We now prove one of the assumptions of Lemma 1.
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Lemma 2: If w (q) is continuous, then its value depends only on the angle between
the rays p and q.

The remaining two lemmas (lemmas 3 and 4) prove continuity.
To prove this lemma, let q and r be two points on the projective plane situated at

the same distance from p. To prove that w (q) = w (r), we start by proving that for
any q0 ∈ qp sufficiently close to q, the signs of w (q0)−w (r) and λ−λ0, where λ

and λ0 are the distances pq and pq0 respectively, are the same. If λ > λ0, we can
join q0 to r by a sequence q0, q1, q2, ... of sequentially perpendicular steps, since
at each step λ1 ≥ λ0, λ2 ≥ λ1, ... up to r , which reaches λ, by construction (note
that we started with λ0 < λ). Then

w (q0) ≥ w (q1) ≥ w (q2) ≥ ... ≥ w (r) , (1A.7)

since the lengths increase at every step. But we can take q0 arbitrarily close to q.
The same set of inequalities can be established in the other direction, starting with
a point r0 on pr , and hence w (q) = w (r); i.e. the value of w (q) depends only on
the distance between p and q (the angle).

Lemma 3: If w (q) is continuous at some point q0, then it is continuous at every
point.

We first show that if w (q) is continuous at q0, it is continuous at each point q1

orthogonal to q0. Then q0 and q1 lie symmetrically on both sides of the point of
a line from p perpendicular to q0q1. Denote an ε neighborhood of q0 by U , and
take a point q ′ on the line q0q1 in U ; further, consider the point q on the line q0q1

orthogonal to q ′. As we have done before, we use the relations

w (q)+ w
(
q ′
) = w (q0)+ w (q1)

w (r0)+ w (r1) = w
(
r ′
)+ w (q0) ,

where r0, r1 and r ′ are defined in a similar way on a line passing at some angle
through q, for which q and r ′ are orthogonal and r0 ∈ U and r1 are orthogonal. It
follows from these relations that

|w (r1)− w (q1)| =
∣∣w (q0)− w (r0)+ w

(
r ′
)− w

(
q ′
)∣∣

= ∣∣w (q0)− w (r0)+ w
(
r ′
)− w (q0)+ w (q0)− w

(
q ′
)∣∣

≤ |w (q0)− w (r0)| +
∣∣w (

r ′
)− w (q0)

∣∣+ ∣∣w (q0)− w
(
q ′
)∣∣

≤ 3ε,

where we have used the bounding inequalities between the relation between the
w (q)’s and the distances. Our construction, furthermore, requires r ′, q ′ ∈ Uq0 .

The subset r0 � r1 ∈ U then forms an ε neighborhood of q1 and is therefore
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continuous at q1. We finally note that there always exists a point q⊥ perpendicular
to two arbitrary points q ′, r ′.

Lemma 4: The function w (q) is continuous at some point q0.

On a line L through p, w (q) is a decreasing function of λ (distance from p).
A decreasing bounded function is continuous almost everywhere. Hence w (q)
is continuous on L at some point q0. Finally, if w (q2) − w (q1) < ε, then
|w (q)− w (q0)| < ε at every point in the triangle formed by rr ′q1 (all points
in this triangle are farther away from p than the distance λ at q2, in the ε

neighborhood of q0 ).
This completes the lemmas for the proof of the Gleason theorem, in general.

References

Balescu, R. (1975). Equilibrium and Non-equilibrium Statistical Mechanics (New York,
John Wiley), revised 1999 as Matter out of Equilibrium (London, Imperial College
Press).

Birkhoff, G. (1961). Lattice Theory (Providence, American Mathematical Society).
Birkhoff, G. and von Neumann, J. (1936). Ann. Math. 37, 823.
Dirac, P. A. M. (1958). Quantum Mechanics, 4th edn. (London, Oxford University Press).
Dvurecenskij, A. (1993). Gleason’s Theorem and Its Applications (Dordrecht, Kluwer).
Farquahar, I. E. (1964). Ergodic Theory in Statistical Mechanics (London, Interscience).
Gleason, A. M. (1957). J. Math. Mech. 6, 885.
Huang, K. (1987). Statistical Mechanics, 2nd edn. (New York, John Wiley).
Jauch, J. M. (1968). Foundations of Quantum Mechanics (Reading, Addison-Wesley).
Landau, L. D. and Lifshitz, E. M. (1970). Statistical Mechanics (Reading,

Addison-Wesley).
Mackey, G. W. (1963). Mathematical Foundations of Quantum Mechanics (Reading,

Benjamin).
Piron, C. (1976). Foundations of Quantum Physics (Reading, Benjamin).
Tolman, R. C. (1938). The Principles of Statistical Mechanics (London, Oxford).
von Neumann, J. (1955). Mathematical Foundations of Quantum Mechanics (Princeton,

Princeton University Press).
Wigner, E. (1936). Phys. Rev. 40, 749.



2

Elementary examples

2.1 Introduction

Now we will turn to some elementary and familiar examples of quantum mechanics
to remind us of matters which will be used in the subsequent discussions. The focus
will be the harmonic oscillator and also the two-level atom and spin 1

2 systems
(Dirac, 1958; Louisell, 1973; Cohen-Tannoudji et al., 1977; Jordan, 1986; Liboff,
1998).

2.2 Harmonic oscillator

The Hamiltonian operator is

Ĥ = 1

2

(
p̂2 + ω2q̂2

) = Ĥ †. (2.1)

The classical equations of motion are

dq

dt
= ∂H

∂p
= p (2.2)

dp

dt
= −∂H

∂q
= −ω2q.

In quantum mechanics, [
q̂, p̂

] = i h̄. (2.3)

The “hat” denotes operator.
The time-dependent Heisenberg equations are of the same form as the classical

counterpart:

dq̂(t)

dt
= p̂(t) (2.4)

d p̂ (t)

dt
= −ω2q̂ (t) .

19
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This is generally true in one dimension, where we have

dq̂ (t)

dt
= 1

i

[
q̂ (t), Ĥ

(
p̂ (t), q̂ (t)

)] = ∂ Ĥ (t)

∂ p̂ (t)
d p̂ (t)

dt
= 1

i

[
p̂ (t), Ĥ

(
p̂ (t), q̂ (t)

)] = −∂H (t)

∂q̂ (t)
,

where Ĥ
(
p̂ (t), q̂ (t)

)
is the Heisenberg Hamiltonian operator. This, of course, is

the classical correspondence rule

{A, B} → 1

h̄i
[A, B]

[
q̂ (t), p̂ (t)

] = i h̄,

where the Heisenberg operators q̂ (t), p̂ (t) are related to the Schrödinger q̂, p̂ by

q̂ (t) = U † (t, 0) q̂U (t, 0) (2.5)

p̂ (t) = U † (t, 0) p̂U (t, 0) .

Here U (t) = exp
(
−i Ĥ t

)
, h̄ = 1. Utilizing this, we obtain the solutions to Eq.

(2.4):

q̂ (t) = q̂ cosωt + p̂

ω
sinωt (2.6)

p̂ (t) = −ωq̂ sinωt + p̂ cosωt.

These operator equations have exactly the same form as the solutions to the
classical equations. For this reason, this is one of the few cases in which an
exact Heisenberg operator solution may be obtained. It is easily shown that the
time-dependent commutation laws follow.

The Schrödinger equation is

i
∂

∂t
|ψ (t)〉 = Ĥ |ψ (t)〉 . (2.7)

In this “picture” the operators, Ĥ etc., are time independent. From this the von
Neumann equation for ρ̂ (t) is obtained (see the previous chapter):

ı̂
dρ̂

dt
=

[
Ĥ , ρ̂

]
(2.8)

Keep in mind that we are working in the Schrödinger picture. For the harmonic
oscillator,

ψ (t) = exp (−i Ht) |ψ (0)〉 = U (t, 0) |ψ (0)〉
= −i

[
cos Ĥ t + i sin Ĥ (t)

]
|ψ (0)〉 . (2.9)
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To reduce this further, let us introduce the well-known creation (a†) and annihila-
tion (a) operators. (Both are non-Hermitian.)

â = 1√
2ω

(
ωq̂ + i p̂

)
(2.10)

â† = 1√
2ω

(
ωq̂ − i p̂

)
(2.11)

From the commutation law, Eq. (2.3), we obtain[
â, â†

] = 1. (2.12)

Also important are [
â, â†â

] = â (2.13)[
â†, â†â

] = −â†.

In this representation,

Ĥ = h̄ω

(
â†â + 1

2

)
. (2.14)

These relations are true in the Heisenberg as well as the Schrödinger picture.
Now, for the harmonic oscillator,

U (t, 0) = exp
(−iωâ†ât

)
exp

(−iωt

2

)
.

Let us introduce the number representation

N̂ |n〉 = n |n〉 , (2.15)

equivalent to the energy representation

Ĥ |E〉 = E |E〉

N̂ = â†â = N̂ †.

From Eq. (2.13),

aN − Na = a (2.16)

a†N − Na† = a†.
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With these raising and lowering operators, we may construct a complete set of
states (Dirac, 1958). For normalized states we have

N̂ |n〉 = n |n〉 n integer and positive (2.17)

< n | n′ > = δnn′

â † |n〉 = √n + 1 |n + 1〉
â |n〉 = √n |n − 1〉
a |0〉 = 0

|n〉 = â†n |0〉√
n!

and completeness
∞∑

n=0

|n〉 〈n| = I.

The energy is

En = ω

(
n + 1

2

)
.

In the number states, the harmonic oscillator von Neumann equation is

i ρ̇nn′ = (En − En′) ρnn′

= ω
(
n − n′

)
ρnn′ .

The solution is simply

ρnn′ (t) = exp− (
iω

(
n − n′

)
t
)
ρnn′(0). (2.18)

The diagonal and off-diagonal elements are uncoupled. Diagonal elements are
constant, and the off-diagonal elements oscillate, and∑

n

ρnn (t) =
∑

n

ρnn (0) = 1. (2.19)

In the so-called random phase approximation, we replace ρnn′ (t) by its average
over n − n′. Then the oscillations cancel, and ρ̄nn′ (t) = ρnn′ (0) is time indepen-
dent. The comments made are also true for any exact diagonal representation, not
just the harmonic oscillator being discussed here. We may write the coordinate
representation un (q). From

a |0〉 = 0 = (q + i p) |0〉,
we have (

ωq ′ + d

dq ′

)
u0

(
q ′
) = 0, (2.20)
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whose normalized solution is the Gaussian

u0 (q) ≡< q | 0 >=
(ω

π

) 1
4

exp

(−ωq2

2

)
. (2.21)

The time-dependent solution is

u0 (q, t) = exp
(
−i

ω

2
t
)

u0 (q) .

It is easily seen that the ground state is a minimum uncertainty state �q�p = 1
2 h̄.

Let us now consider the coherent state representation. We introduce the non-
Hermitian eigenvalue problem,

a |α〉 = α |α〉 . (2.22)

The eigenvalues are not real, nor are they orthogonal.
To solve this, we use the completeness of the number representation |α〉 =

∞∑
n=0

cn (α) |n〉 . Next, we form

a |α〉 =
∞∑

n=1

cn (α)
√

n |n − 1〉 =
∞∑

n=0

αcn (α) |n〉 (2.23)

and shift indices n → n + 1. Take the scalar product with |m〉. We obtain the
recursion relation

cn+1 (α)
√

n + 1 = αcn (α) . (2.24)

This gives

cn (α) = αn

√
n!c0.

Thus,

|α〉 = c0

∞∑
n=0

αn

√
n! |n〉 .

It is easy to show

| 〈n | α〉 |2=
α2n exp

(
−α2

2

)
n! ,

a Poisson distribution. From this 〈n〉 = α∗α, and〈
(n − 〈n〉)2

〉 1
2

〈n〉 = 1

|α| =
1

〈n〉 1
2

.
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We take 〈α | α〉 = 1 and obtain

〈α | α〉 = |c0|2 exp |α|2 ,
so

|α〉 = exp

(− |α|2)
2

expαâ† exp
(−α∗â

) |0〉 , (2.25)

taking α to be complex. The completeness relation is∫
d2α |α〉 〈α| = 1 =

∞∑
0

|n〉 〈n| , (2.26)

where d2α = rdrdθ, and the non-orthogonality is seen by

|〈β | α〉|2 = exp
(− |α − β|2) . (2.27)

The expansion in terms of coherent states is not unique (Nussenzweig, 1973).
They are overcomplete and non-orthogonal. In spite of this, one may expand an
arbitrary vector in Hilbert space in terms of them. If we assume that the expansion
is an entire function, f (αα∗), of the complex α plane, then the representation is
unique.

We may show

〈q〉 =
√

1

2ω

(
α + α∗

)
(2.28)

〈p〉 = i

√
ω

2

(
α∗ − α

)
〈
q2

〉 = 1

2ω

(
α∗2 + α2 + 2α∗α + 1

)
(2.29)〈

p2
〉 = −ω

2

(
α∗2 + α2 − 2α∗α − 1

)
.

Thus, �p�q = 1
2 , since (�q)2 = 1

2ω and (�p)2 = ω
2 . All the coherent states are

minimum uncertainty. They are quasi-classical. We may obtain 〈q | α〉 to verify
this. It is the generalized Gaussian

〈q | α〉 =
(ω

π

) 1
4

exp

[−ω

2

(
q − 〈

q̂
〉)2 + i

〈
p̂
〉
q + iu

]
, (2.30)

where u is an arbitrary phase and as above,

〈�q〉2 = 1

2ω

〈�p〉2 = ω

2
.
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Now we introduce the first example met here of a phase space distribution func-
tion, P(αα∗, t), of Glauber (1963) and Sudarshan (1963). Here the “phase space”
is α, α∗. Now ∫

d2αP
(
αα∗, t

) = 1. (2.31)

P (αα∗) is a “diagonal” representation of the density operator in coherent states

ρ =
∫

d2αP
(
αα∗

) |α〉 〈α| .
It has the important property

tr ρ̂ Ô = 〈
O

(
â, â†

)〉 = ∫
d2αOcl

(
αa∗

)
P

(
αα∗

)
. (2.32)

Quantum averages are calculated quasi-classically. There is a correspondence
rule, the normal ordering rule. In Ô the â is placed to the right of the â†. For
instance, by commutation, aa† → a†a+1. Phase space distribution functions, such
as the Wigner function, will be discussed in greater detail in subsequent chapters.
We must remark P (αα∗, t) ≯ 0. It is real and normalizable. Let

P
(
αα∗, t

) = trρ (t) δ
(
α∗ − a†

)
δ (α − a) . (2.33)

This is a somewhat sophisticated statement because of the operator δ functions. Uti-
lizing this definition and the von Neumann equation, we may write for the harmonic
oscillator

i
∂P

∂t
= Tr

[
ρ (t)

[
δ
(
α† − a∗

)
δ (α − a) , ωa†a

]]
.

We will evaluate this in the appendix to this chapter. We obtain a Fokker–Planck
equation for P (αα∗, t) (Gardiner, 1991).

∂P (αα∗, t)

∂t
= iω

[
α
∂P

∂α
− α∗

∂P

∂α∗

]
. (2.34)

It is a first-order partial differential equation in t, α, α∗. The general solution may
be obtained from the characteristic equations

dt = dα

−iωα
= dα∗

iωα∗
, (2.35)

which are the “Hamilton equations” of the α, α∗ “phase space.” The solution is

α (t) = α0 exp (−iωt) (2.36)

α∗ (t) = α∗0 exp (iωt) .
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The general solution is an arbitrary function f (α (t) , α∗ (t)). If the initial value is
Gaussian in α, i.e.

P
(
α, α∗, 0

) = N exp
(− |α − α0|2

)
,

then

P
(
α, α∗, t

) = N exp
(− |α (t)− α0|2

)
.

For

P
(
αα∗,t

) = δ2 (α (t)− α0) ,

the coherent state propagates in time as exp iωt . This was first seen by Schrödinger
(1926).

Let us consider an extension of the harmonic oscillator by including a damp-
ing term. A particularly simple example is the phase damped oscillator with the
interaction

V = �a†a + �†a†a (2.37)

(Walls and Milburn, 1985; Gardiner, 1991). The von Neumann equation may be
written

ρ̇ = −iω
[
a†a, ρ

]+ 1

2
K

(
N̄ + 1

)
2a†aρa†a − (

a†a
)2

ρ − ρ
(
a†a

)2
. (2.38)

This is the Lindblad form and is discussed in detail in Chapters 4, 5 and 6. Here
N̄ = 1

exp( ω
kT )−1

, and K is a damping constant. In the number representation,

〈n |ρ̇|m〉 =
{
−iω (n − m)− 1

2
K

(
2N̄ + 1

)
(n − m)2

}
〈n |ρ|m〉 .

The diagonal and off-diagonal elements 〈n |ρ|m〉 are still uncoupled. The solution
is immediate:

〈n |ρ (t)|m〉 = exp (−iω (n − m) t) exp−
[
(2N̄ + 1)K (n − m)2 t

2

]
〈n |ρ (0)|m〉 .

The off-diagonal elements decay as (n − m)2 K
(
2N̄ + 1

)
to the constant diagonal

initial state 〈n |ρ (0)|m〉. More will be said of this in the discussion of decoherence
in Chapter 12.
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To obtain the equation for P (α), we use the operator correspondence discussed
in the appendix:

aρ → αP
(
αα∗

)
(2.39)

a†ρ →
(
α∗ − ∂

∂α

)
P

(
αα∗

)
ρa →

(
α − ∂

∂α∗

)
P

(
αα∗

)
ρa† → α∗P

(
αα∗

)
to obtain the Fokker–Planck equation,

∂P

∂t
=

{
1

2
K

(
∂

∂α
α + ∂

∂α∗
α∗

)
− iω

(
∂

∂α
α − ∂

∂α∗
α∗

)
+ K N̄

∂2

∂α∂α∗

}
P.

(2.40)

By introducing α = x + iy (Scully and Zubairy, 1997), we find the average:

〈α (t)〉 = α (0) exp

[
−

(
K

2

)
− iω

]
t. (2.41)

In the coherent state, we obtain a classical damped oscillator solution.
P (αα∗, t) need not be positive. If it is, then the state of the system is classical,

P (αα∗) being a true probability distribution. P (αα∗) may exist for nonclassical or
truly quantum states. However, if α = x+ iy, we obtain a Fokker–Planck equation
in x, y with positive diffusion coefficient, so P (αa∗, t) > 0.

2.3 Spin one-half and two-level atoms

The spin of the electron is

S = 1

2
h̄σ Let h̄ = 1 (2.42)

(Cohen-Tannoudji et al., 1977). σ obeys mS = − e
2μσ , and ms is the spin magnetic

moment. σ j has the properties [
σ i , σ j

]
− = 2iσ k (2.43)

i, j = 1, 2, 3.

These are angular momentum commutation laws for half integer l. Now
σ 2

i = 1, so

σ iσ j = iσ k . (2.44)
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We define (analogous to a in Eq. (2.10))

σ± = 1

2
(σ 1 ± σ 2) (2.45)

σ+ = σ
†
−.

They are not themselves Hermitian. Now we find the commutation laws,[
σ±, σ 1

]
− = ±σ 3 (2.46)[

σ±, σ 2
]
− = iσ 3[

σ±, σ 3
]
− = ∓σ 2[

σ+, σ−
]
− = σ 3,

as well as anti-commutation laws,[
σ±, σ 1

]
+ = 1 (2.47)[

σ±, σ 2
]
+ = ±i[

σ±, σ 3
]
+ = 0[

σ+, σ−
]
+ = 1

and

σ 2
1. = σ 2

2 = σ 2
3 σ 2 = 3 (2.48)

σ 2
+ = σ 2

− = 0.

For spin 1
2 and the general properties of angular momentum, the wave function

for the basis states
∣∣ 1

2

〉
,
∣∣− 1

2

〉
are

α ≡ (
1
0

)
β ≡ (

0
1

)
(2.49)

≡ |+1〉 ≡ |−1〉 .
The α state is spin positive (ms = +1) along the “3” direction, and β spin down
(ms = −1). Generally,

|ψ〉 = aα + bβ = a |+1〉 + b |−1〉
a2 + b2 = 1.

In this representation,

σ 1 =
(

0 1
1 0

)
, σ 2 =

(
0 −i
i 0

)
, σ 3 =

(
1 0
0 −1

)
, (2.50)
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the familiar Pauli matrices. Continuing, we find

σ+ =
(

0 1
0 0

)
, σ− =

(
0 0
1 0

)
. (2.51)

Finally, σ 3 has obvious eigenvalues, ±1, and σ 1, σ 2 raise and lower states:

σ 1 |±1〉 = |∓1〉 (2.52)

σ 2 |±1〉 = ±i |∓1〉
and we also have

σ+ |+1〉 = 0 (2.53)

σ+ |−1〉 = |+1〉
σ− |+1〉 = |−1〉
σ− |−〉 = 0.

σ+ defines the |+1〉 “vacuum,” and σ− the |−1〉 “vacuum.” Recall that σ and I
form a complete set of 2×2 matrices. Because of this completeness, we may write
any 2× 2 density matrix in these terms, i.e.

ρ = 1

2
[a0 I + r · σ ] . (2.54)

The coefficients may be written

a0 = Trρ

ri = Trρσ i .

The above operators have been written in the Schrödinger picture. If ρ2 = ρ, it is
a pure state. If

ρ =
( 1

2 0
0 1

2

)
,

then ρ2 = ρ

2 , and in this case, we have a mixture. We find 〈si 〉 = 0. The spin is
unpolarized, since all directions are equivalent. A pure polarization state is

ρ (θ, φ) =
(

cos2 θ
2 sin θ

2 cos θ
2 exp (−iθ)

sin θ
2 cos θ

2 exp (iθ) sin2 θ
2

)
.

Here 〈s〉 = 1
2μ,μ being a classical vector whose polar angles are θ, φ. Remember

that the mixture state is not a unique state |ψ〉 .
The unperturbed spin Hamiltonian is

H = h̄ω

2
σ z, (2.55)
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so

U (t, 0) = exp
(
−i

ω

2
σ zt

)
. (2.56)

The Heisenberg equations are

dσ z (t)

dt
= 0 (2.57)

dσ+ (t)

dt
= iω

2
σ+ (t)

dσ−
dt

= − iω

2
σ− (t) .

Now let us turn to the quantum dynamics of the two-level system, or one of spin
(Nussenzweig, 1973). We have

|ψ (t)〉 = a (t) |+1〉 + b (t) |−1〉 , (2.58)

and the density matrix is again

ρ (t) = |ψ (t)〉 〈ψ (t)| →
(

a2 ab∗

a∗b b2

)
. (2.59)

We will choose a semi-phenomenological Hamiltonian including damping:

H = H0 + V =
(

E+ 0
0 E−

)
+

(
0 V+−

V+− 0

)
(2.60)

V+− = V ∗
−+, E+ − E− = ω0.

If

V̂ = −ex̂ · E(r1t), (2.61)

E (r1t) being the classical electric field, then the dipole moment is μ+− = e 〈x+−〉,
and V++ = V−− = 0. The polarization is 〈P〉 = μ+−

(
ρ+− + ρ∗+−

)
.

We introduce now a phenomenological damping term � and write

idρ

dt
= [H, ρ]− + −i

2
[�, ρ]+ , (2.62)

where � =
(

γ+ 0
0 γ−

)
. This, of course, leads to exponential decay in time

∣∣ψ+ (t)
〉 = ∣∣ψ+ (0)

〉
exp

(
−i

(
ω − i

γ+
2

)
t
)
.

It has its origins most simply in the Weisskopf–Wigner theory of spontaneous
emission, which will be discussed in detail in later chapters (Weisskopf and
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Wigner, 1930). Without damping, we may give Eq. (2.62) a geometric interpre-
tation. Using Eq. (2.54) we have

ρ = 1

2

(
ρ0 + r3 r1 − ir2

r1 + ir2 ρ0 − r3

)
. (2.63)

Therefore,

ρ0 = Trρ = 1 = |a|2 + |b|2

r1 = ab∗ + a∗b (2.64)

r2 = i
(
ab∗ − a∗b

)
r3 = |a|2 − |b|2 ,

and now Eq. (2.60) is in terms of the Pauli matrix representation:

H = 1

2
(V1σ 1 + V2σ 2 + ω0σ 3) , (2.65)

and V+− ≡ 1
2 (V1 − V2). Utilizing

[
σ 1,σ 2

] = 2iσ 3, the von Neumann equation is

ρ̇ = 0 (2.66)

ṙ1 = V2r3 − ω0r2

ṙ2 = ω0r1 − V1r3

ṙ3 = V1r2 − V2r1.

For a pure state, the vector r has unit length. We may write

dr
dt
= ω × r, (2.67)

where

ω1 = V1 (2.68)

ω2 = V2

ω3 = ω0.

These are the optical Bloch equations written by Feynman, Vernon and Hellwarth
(Feynman et al., 1957). The physical picture is that r precesses around ω. In the
case of spin 1

2 , r is proportional to 〈μ〉, the average magnetic moment, and ω pro-
portional to the magnetic field. Then r is truly a physical space with 〈μ〉 precessing
in this space about the magnetic field. We will discuss this later in this chapter.
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For the electromagnetic field, the geometry is more abstract. If E (t) is also
sinusoidal, then

V1 = (V+− + V−+)

V2 = 1

i
(V+− − V−+) ,

where V+− = − 1
2μ+− (E exp (iωt)+ E exp (−iωt)). The optical field perturba-

tion is “rotating” in the 1,2 plane. There is a ± rotation. For positive ω0 we ignore
the −ω rotation, since it may not add in phase. This is the rotating wave approxi-
mation. To solve we go to a rotating frame in +ω. In this rotating frame, |V − ω|
precesses about V− ω. The angular rotation velocity is the nutation frequency, �:

� ≡ |V − ω| =
√∣∣∣∣μ+−E

h̄

∣∣∣∣2 + (ω0 − ω)2. (2.69)

This is the Rabi formula (Rabi, 1937), leading to a population inversion,

p+ (t) = |a (t)|2 =
∣∣μ+−∣∣2
�2

E2 sin2 �t

2
. (2.70)

The above calculation is a geometric interpretation of that which may be done in
other ways (Scully and Zubairy, 1997).

This result may also be obtained immediately from the von Neumann equation,
Eq. (2.66), assuming

ρ++ = ρ0
++ exp (λt) (2.71)

ρ−− = ρ0
−− exp (λt)

ρ+− = ρ∗−+ = ρ0
+− exp (−i (ω0 − ω) t) exp λt.

The determinant of the coefficients gives

λ2

{
λ2 + (ω0 − ω)2 +

∣∣∣∣μ+−E

h̄

∣∣∣∣2
}
= 0,

having roots λ1 = 0 and λ2 = i� = λ∗3, where � is given in Eq. (2.69).
Semi-classical electron spin resonance is another example of two-level system

dynamics. Here we treat electron spin resonance briefly. An electric dipole moment
interacts with a radio frequency field. We take

H = −μ · H, (2.72)

H being the classical magnetic field with

μ = −γ

2
σ . (2.73)
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We also take H1,H2 rotating and H0 being constant in the z direction. We have

H = γ

2

[
H0σ z + H1 (σ+ exp (−iωt)+ σ− exp (+iωt))

]
. (2.74)

For the spin 1
2 states already discussed in detail,

E+ − E− = ω0 = γH0. (2.75)

We may show

U (t) = exp (−i Ht) (2.76)

= exp
(
−iωt

σ z

2

) [
cos

1

2
�t − i sin−1

2
�t (cos θσ z + sin θσ x)

]
,

where

�2 = (ω − ω0)
2 + (γH)2 ,

since

� cos θ = ω0 − ω

� sin θ = γH1.

From this we may obtain |ψ (t)〉. If |ψ (0)〉 = |+〉, then

|c− (t)|2 = |〈−|ψ (t)〉 |2= sin2 θ sin2 1

2
�t,

and we may write it as

|〈−|ψ (t)〉 |2= (γH1)
2

(ω − ω0)
2 + (γH1)

2 (2.77)

× sin2 1

2
t
√
(ω − ω0)

2 + (γH1)
2.

These are the Rabi oscillations in their earliest example of spin resonance. At
resonance ω = ω0,

〈σ x〉 = sinω0t sin γH1t (2.78)

〈σ z〉 = cos γH1t

〈σ z〉 = cos γH1t .

〈σ x〉 and
〈
σ y

〉
precess at ω0, and 〈σ z〉 nutates at frequency γH1.
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Appendix 2A: the Fokker–Planck equation

We will here derive the Fokker–Planck equation for P (αa∗, t) for the case of the
harmonic oscillator, Eq. (2.34) (Gardiner, 1991). We use Bargman states (Bargman,
1961, 1962), defined as

‖α〉 = exp

(
−1

2
|α|2

)
|α〉 , (2A.1)

which because of the Gaussian prefactor are analytic functions of |α〉. Then

| f 〉 = 1

π

∫
d2α f

(
α∗

)
exp

(
−1

2

∣∣α2
∣∣) |α〉 (2A.2)

is unique. Also, for operator in Hilbert space

O
(
α∗β

) = 〈α ‖O‖β〉 , (2A.3)

the matrix elements in Bargman states are well defined.
For Bargman states,

a+ ‖α〉 = ∂

∂α
‖α〉 (2A.4)

〈α‖ a = ∂

∂α∗
〈α‖ .

In these states, the P (αa∗) representation becomes

ρ̂ =
∫

d2α ‖α〉 〈α‖ exp
(−αa∗

)
P

(
αα∗

)
. (2A.5)

Upon using Eq. (2A.4) and integrating by parts, we obtain

â†ρ̂ =
∫

d2α ‖α〉 〈α‖ exp
(−αα∗

) (
α∗ − ∂

∂α

)
P

(
αα∗

)
.

This is an operator rule for a+ρ on P (αα∗). We easily obtain the rules

âρ̂ → αP
(
αα∗

)
(2A.6)

â†ρ̂ →
(
α∗ − ∂

∂α

)
P

(
αα∗

)
ρ̂â →

(
α − ∂

∂α∗

)
P

(
αα∗

)
ρ̂â† → α∗P

(
αα∗

)
,

where the right sides are the complex functions α, α∗ and derivatives under the
integral as above. This correspondence is discussed in much more detail in later
chapters.
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We now consider the harmonic oscillator in normal ordered form:

H = ω

(
a†a + 1

2

)
.

This will be the source of the correspondence rule to follow.
The von Neumann equation is, in this simple example,

i
∂ρ̂

∂t
= ω

[
a†a, ρ

]
.

Using the preceding operator correspondence, maintaining the order

â†â →
(
α∗ − ∂

∂α

)
αP

ρâ†â →
(
α − ∂

∂α∗

)
α∗P,

and using Eq. (2A.6) with the von Neumann equation, we find the integrand to be

∂P

∂t
= i

(
−ω

∂

∂α
+ ω

∂

∂α∗
α∗

)
P, (2A.7)

a complex Fokker–Planck equation for P (αα∗) .
The real variables may be introduced with

α = x + iy

α∗ = x − iy.

We obtain
∂P

∂t
= ω

[
∂

∂x
y − ∂

∂y
x

]
P,

which is a classical Liouville equation in the phase space x, y. The method of
characteristics has already given the solution used in this chapter,

P
(
αα∗, t

) = δ2 (α − α (t)) .
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3

Quantum statistical master equation

3.1 Reduced observables

The fundamental density operator ρ having the properties

〈A〉 = TrρA (3.1)

Trρ = 1 (3.2)

ρ† = ρ (3.3)

was introduced in Chapter 1.
Here A is the observable. ρ(t) obeys von Neumann’s (Liouville) equation,

i ρ̇(t) = [H, ρ(t)] ≡ Lρ(t) (−∞ ≤ t ≤ ∞), (3.4)

and here � = 1. It might be the case that A is diagonal in a discrete representation
|m〉, where

A |m〉 = am |m〉 . (3.5)

Thus,

〈A〉 =
∑

m

am ρmn(t)δnm,

and only diagonal elements of ρ are important.

ρmm � 0∑
m

ρmm = 1.

This is the case in elementary applications of equilibrium statistical mechanics,
as in the text of Reif (1965). Of course, ρmm(t) = Pm(t), the probability that the
system is in state |m〉 at time t . For this average the off-diagonal elements of ρ(t)

37
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do not enter. This “reduction” clearly depends upon what is being observed. It is
important in that it simplifies the description. The full density operator is no longer
necessary to the calculation of such averages. This is also true classically when
we are considering hydrodynamic observables such as n(r,p, t), the local num-
ber density in the spacially inhomogenous fluid. Then the N -particle distribution
function fN (r1p1, r2p2, . . . , rNpN , t) is not necessary, and we may use one-body
distributions, f1(r1p1, t). For the details of this, the reader should see the texts of
Balescu (1975) and Huang (1987).

Quantum reduced distribution functions may also be introduced. The Wigner
function (Wigner, 1932; Balescu, 1975) is one. It is defined as

w(x, p) = 1

2π

+∞∫
−∞

dξ exp(−i pξ)

〈
x + 1

2
ξ
∣∣ρ̂∣∣ x − 1

2
ξ

〉
(3.6)

(Schleich, 2001). It is not a probability distribution, since w(x, ρ) � 0. More will
be said in the next chapter, where we discuss the quantum Boltzmann equation and
its derivation.

For the purpose of obtaining reduced forms of the density operator and its matrix
elements, we will introduce here a projection operator, P, and its realizations. This
simple approach is due to Nakajima (1958) and Zwanzig (1960a). The equations
are called master equations.

For the reduction we will use a tetradic representation of operators. The
fundamental operator is L ≡ [H, ], written

Lmm′nn′ = Hmnδm′n′ − δmn Hn′m′, (3.7)

where the mapping of “ordinary” observables in Hilbert space (A) C = L A is
written

Cmn = ∑
m′n′

Lmnm′n′ Am′n′ . (3.8)

This is discussed further in Section 3.3.
For a simple reduction of ρ to its diagonal elements, we have

(Pρ)mn = ρnmδmn. (3.9)

In tetradic representation, the projection operator is

Pmnm′n′ = δmnδmm′δnn′ . (3.10)
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P has the properties

P2 = P (3.11)

P† = P. (3.12)

The latter property is not necessary but assures an orthogonal projection. It is true
in the case of Eq. (3.10). The projection operator method is quite general, and
with it we may obtain an “intermediate” equation, the generalized master equation.
From Eq. (3.4) we have

i P ρ̇ = PL(Pρ + (1− P)ρ) (3.13)

i(1− P)ρ̇ = (1− P)L(Pρ + (1− P)ρ). (3.14)

Writing a formal solution to Eq. (3.14), we have

(1− P)ρ =− i
t∫

0
dt ′[exp(−i(1− P)L(1− P)t ′)(1− P)× L Pρ(t − t ′)]

+ exp(−i(1− P)L(1− P)t)(1− P)ρ(0); t > 0. (3.15)

Here a time initial value, ρ(0), has been assumed, with 0 ≤ t ≤ ∞. Thus,
Eq. (3.15) is not equivalent to the von Neumann equation, where −∞ ≤ t ≤ ∞.

Putting Eq. (3.15) into Eq. (3.13), a closed equation for Pρ(t) may be obtained. It
is non-Markovian (see the appendix to this chapter) in the sense that it depends on
Pρ(t− t ′). This is the so-called generalized master equation of Montroll, Zwanzig,
Prigogine and Résebois (Montroll, 1960; Zwanzig, 1960a; Prigogine and Rése-
bois, 1961; Prigogine, 1963). It represents a starting point for further discussion
but by itself is too general and unwieldy.

The point of this chapter is to develop, physically, useful master equations of a
Markovian nature. Such a generalized master equation was first obtained by Van
Hove (1957), using diagrammatic perturbation theory. Its form is difficult to com-
pare with that obtained by Eq. (3.13) and Eq. (3.15). We shall not try, but refer the
reader to the work of Swenson (1962). He showed that perturbation theory is not
necessary.

3.2 The Pauli equation

We will now turn to the simplest example of a quantum master equation first intro-
duced by Pauli (1928). We repeat the original derivation of Pauli and discuss its
weakness. Also, we will consider the structure of this original quantum master
equation as a prototype example.

We take the Hamiltonian as

H = H 0 + λV, (3.16)
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where the unperturbed contribution is

H 0 |α〉 = E0
α |α〉 , (3.17)

with |α〉 being the unperturbed discrete eigenstates. The perturbation λV, here
assumed small, is characterized by the parameter λ. A simple example would be in
a cubic anharmonic oscillator, the harmonic approximation being most important.
In perturbation, the states |α〉 are the basis set and the “language” of the discussion.

The state at time t is

φ(t) =∑
α

c(α, t) |α〉 . (3.18)

Now

P(α, t) = |c(α, t)|2 (3.19)

the probability at the time t that the system is in state |α〉. Utilizing second-order
(in λ) time-dependent perturbation theory, the transition rate is

Wαα′ = 2πλ2δ(E0
α′ − E0

α)
∣∣〈α| V ∣∣α′〉∣∣2 . (3.20)

This is, of course, the “golden rule” (Dirac, 1958). The energy-conserving delta
function is the continuum limit of the discrete state index α. For instance, for a
lattice in three dimensions with periodic boundary conditions in the infinite volume
limit, ∑

α

⇒ V

8π3

∫
d3α.

The Pauli equation may now be obtained. Using the unitary time evolution

φ(t +�t) = exp(−i(H 0 + λV )�t)φ(t), (3.21)

we have

P(α, t +�t) = ∑
α′α′′

c∗(α′′t)
〈
α′′

∣∣ exp(i(H0 + λV )�t |α〉 (3.22)

× 〈α| exp−i(H0 + λV )�t
∣∣α′〉 c(α′, t).

The continuous-in-time random phase approximation is now made. The α �= α′

contributions rapidly oscillate and cancel, leaving only the α′ = α′′ contributions
to the summation. Eq. (3.22) becomes

P(α, t +�t) =∑
α′
| 〈α| exp(−i(H 0 + λV )�t)

∣∣α′〉 |2 P(α′, t), (3.23)
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where �t � 0. To second order in λ, Eq. (3.23) becomes

P(α, t +�t) = P(α, t)δαa′

+ 2πλ2�t
∑
α′

δ(E0
α′ − E0

α) |
〈
α′
∣∣ V |α〉 |2 [P(α′, t)− P(α, t)].

(3.24)

Thus, to this order,

d

dt
P(α, t) =∑

α′
[Wαα′ P(α′, t)−Wα′α P(α, t)]. (3.25)

This is Pauli’s argument. Wαa′ is given by Eq. (3.20). It is a gain–loss (birth–death!)
equation between states |α〉 , ∣∣α′〉. It is Markovian, being an equation for P(α, t)
in terms of P(α′, t). This is a continuous-in-time stochastic Kolmogorov equation
(Kolmogorov, 1950). For this the reader should note the appendix to this chapter.
The name “master” is derived from this.

The validity of perturbation theory must be examined for a given problem. The
reader can consult any good book on applied quantum mechanics to see examples.

The limit of continuous spectrum for |α〉 is more subtle and is discussed in detail
in Chapter 18. It depends on the level spacing, which depends on V for free parti-
cles with periodic boundary conditions in one dimension. This is one aspect of the
thermodynamic limit as the volume V approaches infinity,

V →∞, (3.26)

such that N
V = c = constant as N → ∞. N is the number of particles. This will

be used in many applications in later chapters. We note, however, that this is not
true for harmonic oscillators in a container. They have no V dependence to the
spectrum.

The repeated random phase assumption at all time has a flaw. It is inconsistent,
as was first pointed out by Van Hove (1962).

From Eq. (3.23) we may also show

P(α, t −�t) = P(α, t)δαa′ − 2πλ2�t
∑
α

Wαa′ P(α′, t)−Wα′a Pα(α, t).

Thus,

lim
�t→0+

�P(α, t)

�t
= − lim

�t→0−
�P(α, t)

�t
. (3.27)

The only solution is Ṗ(α, t) = 0 for all time. In a sense this is the “watched pot”
difficulty. Repeated continuous random phase leads to no change in the equilibrium
state. To remove this difficulty, we must random phase initially only (Van Hove,
1962; Prigogine, 1963).
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3.3 The weak coupling master equation for open systems

Let us consider open systems, which are a central theme of this book. We will take
the Hamiltonian to be

H = H 0 + λV, (3.28)

where

H 0 = HS + HR . (3.29)

The system of interest is S, which is in contact with a “reservoir” R through the
interaction λV . The reservoir R may be a very large system in approximate thermo-
dynamic equilibrium. However, this need not be the case. The two systems together
are isolated. H is a conserved Hamiltonian. The unit operator in Eq. (3.28) is under-
stood. We will take R to be macroscopic. By tracing over the R states (TrR), we
will obtain a reduced density operator ρS for the system of interest. Now

i ρ̇(t) = Lρ(t) ≡ [H, ρ], (3.30)

and

ρS (t) = TrRρ(t). (3.31)

We assume initially that the two systems are uncorrelated.
We will choose the relevant projection operator to be

Pρ = ρR (0)TrR ρ. (3.32)

This was first introduced by Argyres and Kelley (1964) in the discussion of spin
resonance (see also Peier and Thellung, 1970; Peier, 1972; Agarwal, 1973; Haake,
1973; Louisell, 1973). ρ and A are assumed to have a finite trace in R, that is,
trace class in the Hilbert space LR. P is idempotent, since TrRρR(0) = 1. It is not
necessarily Hermitian. We form (A, P B) and examine (P A, B). Let A = As AR

and B = Bs BR. We have the condition for hermiticity,

TrR BR TrR A†
RρR (0) = TrR (BR ρR (0))TrR A†

R,

which is not necessarily true.
We assume

ρ(0) = ρR(0)ρS(0) (3.33)

[HR,ρR(t)] = 0

PLS = LS P

PL ′P = 0,
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where L ′ = [λV, ]. The latter follows by incorporating the diagonal part of λV
into H 0. Now, following Eqs. (3.13), (3.14) and (3.15), we have

i ρ̇S(t) = LSρS(t)− i
t∫

0
dt ′G(t − t ′)ρS(t

′), (3.34)

where the kernel is

G(t − t ′) = λ2TrR[L ′ exp(−i(t − t ′)(L0 + (1− P)λL ′)) L ′ρR(0)]. (3.35)

Here the reduced system density operator is

ρS(t) = TrR Pρ(t). (3.36)

Since we are interested in obtaining the Pauli equation, we will form an equation
for ρSd, the diagonal part of ρS(t), introducing a further projection DρS(t), where

D AS AR = ASd AR. (3.37)

Assume also

ρS(0) = ρSd(0). (3.38)

Eq. (3.35) becomes

G(τ ) = DTrR{λ2L ′ exp(−iτ [L0 + λ(1− P)L ′)]L ′ρR(0)} (3.39)

in the equation for ρSd(t).
Let us rescale the time, since we are interested in the singular limit, λ → 0,

t →∞; λ2t = constant (Van Hove, 1962). Eq. 3.34 becomes

dρ̃sd(t̃)

dt̃
= −

t̃
λ2∫
0

dt ′G(t ′)ρ̃Sd(t̃ − λ2t ′), (3.40)

where

t̃ = λ2t.

Now

ρ̃Sd(t̃) = ρSd(t).

In the limit λ→ 0,
dρ̃Sd(t̃)

dt̃
= −

∞∫
0

dt ′G(t ′)ρ̃Sd(t̃); (3.41)

we obtain a general Markovian equation. Later we will make some further
comments on Eq. (3.40) and Eq. (3.41).

To lowest order in λ (sometimes here called a Born approximation after
scattering theory), Eq. (3.39) becomes

G0(t ′) = λ2 DTrR[L ′ exp(−i L0t ′)L ′ρR(0)]. (3.42)
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Let us first evaluate Eq. (3.41) and Eq. (3.42); later in this chapter, we will comment
on what time scale we expect the Van Hove limit to hold. We take the Laplace
transform and obtain

ρ̂Sd(0) = −i z̃ρ̂Sd(z̃)− iG0(λ2 z̃)ρ̂Sd(z̃) (3.43)

with z = λ2 z̄.

ρSd(z̄) = 1

λ2 ρ̂(z̄). (3.44)

The Laplace transform of Eq. (3.42) is

G0(λ2 z̄) = −i DTrL ′
1

λ2 z̃ − (L0 + λ(1− P)L ′)
L ′ρR(0). (3.45)

As λ→ 0, we write formally

G0(0+) ≡ lim
ε→0+

G0(0+ iε).

The limit is obtained because we have already made a causality assumption in the
derivation of the generalized master equation. We write the result of the limit as

G0(0+) = +iPDTr

[
L ′

1

L0
L ′ρR(0)

]
− πDTrR[L ′δ(L0)L ′ρR(0)], (3.46)

where the distributions

lim
ε→0+

1

x + iε
= P

1

x
+ iδ(x),

P(x) being the principal part function and δ(x) the Dirac delta function. Eq. (3.46)
is just a formal statement with operators indicating what must be evaluated after
the tetradic operations in that representation have been done.

As an example, we may use the simplest representation of tetradic Lmn,m′n′, due
to Résebois (Résebois, 1961; Prigogine, 1963). Let

ν = n − m (3.47)

N = n + m

2
.

Then 〈n| A |m〉 = An−m( n+m
2 ) ≡ Aν(N ), and Eq. (3.7) becomes

〈ν| L ∣∣ν ′〉 = η+ν′Hν−ν′(N )η−ν − η−ν′Hν−ν
′ (N )η+ν (3.48)

with the shift operator

ην Aν′(N ) = Aν′
(

N + ν

2

)
. (3.49)
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This is a “classical-like” representation. Furthermore, since

H 0
∣∣n′〉 = E0

nδnn′,

we have H 0
ν−n′(N ) = E0(N )δν−ν′ and 〈ν| L0

∣∣ν ′〉 = E0 · νδνν′ . Now assume the
basis states are those which diagonalize ρR(0). We also assume the thermody-
namic limit, N→∞, V→∞ ; N

V = c = constant. For particular systems to be
discussed, n, m and ν become continuous. ν may be viewed as a frequency and has
the range −∞ to +∞. Thus, the singular operators in Eq. (3.46) have a meaning.
More will be said concerning the limit in Chapter 18.

The first term in Eq. (3.46) is proportional to P

E0·ν and vanishes. We are left with

G0(0+) = πDTrR[L ′δ(L0)L ′ρR(0)].
Now

L ′ = L ′S + L ′SR and TrR[L ′SRρR(0)] = 0.

Thus,

G0(0+) = πDL ′Sδ(L
0
S)L

′
S + πDTrR L ′SRδ(L

0)L ′SRρR(0).

From this, using Eq. (3.48) or Eq. (3.7), we obtain

dρ̃Snn(t̃)

dt̃
= − 2π

∑
m

∣∣H ′
Snm

∣∣2 δ(E0
n − E0

m)[ρ̃Snn(t̃)− ρ̃Smm(t̃)] (3.50)

− 2π
∑
m

∑
αβ

[∣∣HSRnαmβ

∣∣2 δ(E0
n + E0

α − E0
m − E0

β)]

× [ρRαα(0)ρ̃Snn(t̃)− ρRββ(0)ρ̃Smm(t̃)].
Here E0

m and E0
α are the system and reservoir eigenstates respectively. This

is a Pauli master equation for the system in interaction with a reservoir. The
two terms have the apparent meaning of a system gain–loss dynamics due to
the interaction within the system and due also to the system interaction with
the reservoir. It is characterized by the initial reservoir probability, ρRαa(0). The
most important result (following Van Hove) is to obtain this in the singular limit
λ → 0, t → ∞; λ2t finite. The random phase assumption is made at t = 0, only
with ρ(0) = ρS(0)ρR(0).

In the subsequent sections we will examine the validity of this and in particular
ask on what time scale we may expect the dynamics to be obeyed by ρ̃Sd(t). A
similar equation may be obtained for the off-diagonal elements of ρ(t). For this see
Peier (1972) and Louisell (1973). Eq. (3.50) contains ρRαα(0), which may be taken
as a thermodynamic equilibrium state for a large system. This then introduces a
temperature as a parameter in the reservoir.
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General results of this Pauli equation will be discussed in Chapter 5. The prin-
cipal applications will be seen in later sections of this book, particularly in the
discussion of quantum optics in Chapter 11. The reader should consult the fine
book of Louisell (1973) and the early reviews of Agarwal (1973) and Haake (1973).
We will use this in Chapter 19 to discuss boundary scattering and the Landauer
theory.

In the more chemically oriented area, the book of Oppenheim (Oppenheim
et al., 1977) is a must. This reprint volume contains many valuable articles, includ-
ing those of Zwanzig and Van Hove, as well as others contributing to chemical
physics relaxation phenomena. Of particular interest is the discussion by Oppen-
heim of the formal solutions to finite dimensional master equations. For this, the
more recent book of Gardiner (1985) also should be consulted. Gardiner’s hand-
book is extremely useful to anyone working in stochastic processes, no matter the
topic. It is not our purpose to turn to this arena but rather to continue the discussion
of the derivation of the quantum Pauli equation.

3.4 Pauli equation: time scaling

The Van Hove λ2t limit leads from the “exact” generalized master equation, Eq.
(3.34), to the weak coupling Pauli equation. This is similar to the singular Grad
limit (Grad, 1958) in the derivation of the Boltzmann equation from the classical
hierarchy. Some comments will be made on this in the next chapter. Here it is
important to ask on what real physical time scale the Pauli equation holds (Peier,
1972; Davies, 1974; Davies, 1976; Middleton and Schieve, 1977).

The considerations of simple decay models such as that of Friedrichs (1948)
and other exact results (Goldberger and Watson, 1964; Horwitz and Marchand,
1967; Middleton and Schieve, 1973) make it clear that the decay of G(t − t ′)
in the generalized master equation cannot be only exponential in 0 ≤ t ≤ ∞,
thus guaranteeing its Markovianization. It is at least not exponential. Two time
scales exist: one τ B as t → ∞, and the other τ c as t → 0. The lower limit was
examined by Horwitz and Marchand (1967). They argue that near t = 0, we may
neglect the time integral in Eq. (3.34). In the remaining term, ρS(0) is diagonal,
and PL ′P = 0. Thus ρS(t) near t = 0 is time independent, and there can be no
exponential decay.

The long-time behavior is difficult to treat and subject to much consideration.
Qualitatively, in decay-scattering models, the energy E0 is bounded from below
(E0

m = 0), and a branch cut must appear in the Laplace transform space of the

resolvent (Goldberger and Watson, 1964). A power law decay t−
3
2 results as t →

∞. This is a manifestation of the Paley–Weiner theorem (see Chapter 17).
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To understand this in more detail, let us consider the generalized master equation
for a simple Friedrich’s model (Middleton and Schieve, 1973). We have then a
discrete state |E〉 and a continuum |ω〉, such that

〈E | E〉 = 1,
〈
ω | ω′〉 = δ(ω − ω′) (3.51)

〈E | ω〉 = 0.

In this basis and for an isolated system here considered, the eigen representation is
H = H 0 + H ′, where

H 0 = E |E〉 〈E | + ∫
dω ω |ω〉 〈ω| (3.52)

and H ′ = V (ω) |ω〉 〈E |. The tetradic representation (see Eq. (3.7)) of L ′ = [H ′] is

L ′ωμEν = V (ω)δ(μ− ν). (3.53)

L ′νEμω = −V (ω)δ(μ− ν)

L ′ωE E E = V (ω)

L ′E E Eω = −V (ω)

Labcd = L∗cdab.

For the isolated system, the relevant diagonal projection tetradic operator is

PE E E E = 1

= 0 otherwise.

This projects to the sole diagonal density matrix ρE E for the discrete state |E〉, and
thus it is the probability to be in |E〉.

We write the Laplace transform of the kernel of the generalized master
equation as

Ĝ(z) = PLP(z)L P (3.54)

where

P(z) = Q(z − QL Q)−1Q

and

Q = 1− P. (3.55)

We easily obtain coupled equations for the tetradic matrix elements of P(z). This
is the merit of this simple model.
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The relevant matrix element equations are

PEμνE = −V ∗(μ)�1(μ)

[
V ∗(ν)�2(ν)

z + μ− ν
− ∫

dωK2(μ, ω)V (ω)PEωνE

]
(3.56)

PμE Eν = −V (μ)�2(μ)

[
V (ν)�1(ν)

z + ν − μ
− ∫

dωK1(μ, ω)V ∗(ω)PωE Eν

]
, (3.57)

where

K1(μ, ω, z) ≡ ∫
dη

| V (η) |2 �1(η, z)

(z + η − μ)(z + η − ω)
(3.58)

K2(μ, ω, z) ≡ ∫
dη

| V (η) |2 �2(η, z)

(z + μ− η)(z + ω − η)
(3.59)

and

�1(μ, z) ≡
[

z + μ− E − ∫
dω

| V (ω) |2
z + μ− ω

]−1

(3.60)

�2(μ, z) ≡
[

z + E − μ− ∫
dω

| V (ω) |2
z + ω − μ

]−1

. (3.61)

Now the other tetradic matrix elements of P(z) are simply related to the previous
six equations. We have, for instance,

PEξημ = (z + μ− η)−1[V ∗(η)PEξ Eμ − V (μ)PEξηE ].
We may obtain solutions to the integral equations (3.57) and (3.58) if we fac-

torize the kernel, K . To proceed further, we simplify the spectrum of |ω〉. We
take

H 0 = E |E〉 〈E | +
+∞∫
−∞

dωω |ω〉 〈ω| . (3.62)

This assumption from the point of view of our earlier discussion removes the
branch cut and power law decay as t →∞ (Goldberger and Watson, 1964). How-
ever, certain features remaining in the calculation will still play a similar role as
t →∞. Assume further that |V (ω)|2 is a Lorentzian:

|V (ω)|2 = g2γ 3

4π

1

(ω − E)2 + γ 2
, (3.63)

where

g2 ≡ 4π
λ

γ
(3.64)

is the dimensionless height-to-width ratio of the interaction of the single-level |E〉
with the continuum “field” |ω〉. These parameters will scale the time dependence.
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Eq. (3.60) and Eq. (3.61) become

�1(ω, z) = z + ω − E + iγ

(z + ω − E + iα)(z + ω − E + iβ)
(3.65)

�2(ω, z) = z + E − ω + iγ

(z + E − ω + iα)(z + E − ω + iβ)
, (3.66)

where

2α ≡ γ
[
1− (1− g2)

1
2

]
(3.67)

and

2β ≡ γ
[
1+ (1− g2)

1
2

]
.

Now

K1(ω, ν, z) ≡ (z + 2iγ )h(z) f1(ω, z) f1(ν, z) (3.68)

K2(ω, ν, z) ≡ (z + 2iγ )h(z) f2(ω, z) f2(ν, z),

where

f1(ω, z) ≡ (z + iγ + E − ω)−1 (3.69)

f2(ω, z) ≡ (z + iγ + ω − E)−1

h((z) ≡ αβ(z + iγ + iα)−1(z + iγ + iβ)−1.

The solution of the integral equation for PμE Eν is now found with the factored
kernel K1K2. We multiply Eq. (3.57) by V ∗(μ) f1(μz) and integrate on μ to obtain
+∞∫
−∞

dμV ∗(μ) f1(μz)PμE Eν . Substituting again in Eq. (3.57), we obtain the solution

PμE Eν = −V (μ)V (ν)�1(ν)�2(μ)×
[

1

z + ν − μ
+ (2+ iγ )

f2(ν) f1(μ)h2(z)

1− h2(z)

]
.

(3.70)

Similarly,

PEμνE = −V ∗(ν)V ∗(μ)�2(ν)�1(μ)×
[

1

z + μ− ν
+ (z + 2iγ )

f1(ν) f2(μ)h2(z)

1− h2(z)

]
.

(3.71)

From Eq. (3.70) and Eq. (3.71), Eq. (3.54) becomes

G(z)E E E E = 2φ(z), (3.72)
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where

φ(z) = αβ(z + iγ )

(z + iμ+)(z + iμ−)
(3.73)

and

2μ± = 3γ ± γ (1− 2g2)
1
2 .

Eq. (3.72) and Eq. (3.73) are the important results. We hope the reader has followed
this solution for this simple model. It is one of the few.

Let us comment on the analytic results. G(z) is analytic in the half plane Im
(z) > Re (μ) ≥ 0. G(t) will decay to zero as t → ∞ unless the interaction
amplitude γ = 0. We also note that

G(z = 0) = −2iπλγ (γ + πλ)−1. (3.74)

The time-dependent decay may now be examined. Assume

ρE E(0) = 1, Qρ(0) = 0. (3.75)

Then, from Eq. (3.72),

ρE E(t) = − 1

2π i

∫
c

dz exp(−i zt)

z − G(z)

= (β − α)−2[β2 exp(−2αt)+ α exp(−2βt)− 2αβ exp(−γ t)]. (3.76)

For g2 < 1 (weak coupling!), α, β are then positive real numbers, and for t >>

γ−1 the solution approximates

ρE E(t) = β2(β − α)−2 exp(−2αt), (3.77)

a simple exponential decay.
Now we note that in the constant interaction limit γ →∞,

G(z) = −2π iλ |V (ω = E)|2 . (3.78)

The exact dynamics at all time become the Pauli master equation dynamics at all
time. This suggests further introducing time τ c of collision duration. We Fourier
transform |V (ω)|2:

+∞∫
−∞

dk |V (k)|2 exp(−ikt) = 2πγ exp(−γ t)

and define τ c = γ−1 as the interaction duration time scale. Take λ2� ≡
2πλ2 |V (ω)|2 as the transition rate of the Pauli equation. Call this time scale
τ B = (λ2�)−1 the relaxation time scale. It is apparent that we expect the Pauli-like
dynamics for 2τ c/τ B << 1 as γ →∞ , τ c → 0.
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For g2 > 1 the time dependence is more complicated:

ρE E(t) = exp(−γ t)

G2

[
γ G sin Gt + (G2 − γ 2) cos Gt + 1

2
(G2 + γ 2)

]
. (3.79)

Here G = γ (g2−1)
1
2 . The solution is damped oscillations, not simple exponential,

as in Eq. (3.77). If λ → ∞ or γ → ∞, such that γ λ = constant, ρE E(t) =
cos2(πλγ t). For g2 > 1 there is no simple decay at long time. This is a strong
coupling manifestation of a new behavior analogous to branch cut time dependence
for this model.

We now return to the discussion of open systems where the projection is that
introduced by Eq. (3.32) (Middleton and Schieve, 1977). Let us focus on a time
asymptotic equation of the form

dρ̃S(t)

dt
= −i LSρ̃S(t)+

∞∫
0

dτG(τ )ρ̃S(t − τ). (3.80)

Here we have simply made the assumption t →∞ in the limit of the integral. We
are also considering ρ̃S rather than ρ̃Sd . Assume formally

ρ̃S(t) = exp(−i�t)ρ̃S(0) (3.81)

and an operator equation for � results,

� = LS +
∞∫
0

dτ exp(−i�τ). (3.82)

An iterated equation for � was first obtained by Résebois (Prigogine and Résebois,
1961). If � is a scalar, then this expansion is the Lagrange expansion

� =
∞∑

n=1

1

n!
dn−1

dzn−1
G(z) |z=0 . (3.83)

This is so for the Friedrich’s model already discussed, since � there commutes
with its derivatives with respect to z. We may define

i
dρ̃S(t)

dt
= �ρ̃S. (3.84)

Claude George (Prigogine et al., 1969) showed that Eq. (3.54) is an exact
projection, �ρ, of the von Neumann equation, Eq. (3.4), where

�2 = �

�L = L�.

(For the details, see Prigogine et al., 1973.) See also Balescu (1975) and Schieve
(1974). This will also be discussed in Chapter 18.
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We may write a perturbation expansion of �, � =
∞∑

n=1
λ2�2n . Let us assume the

reservoir time scale to be simply

δτ c =
1

τ c
for t ≤ τc

2
(3.85)

= 0 otherwise.

We take the reservoir to be a free field correlation function:

〈F1(t1)F2(t2)〉 = TrF(t1)F(t2)ρR(0) = F2δτ c(t1 − t2).

We further assume a Gaussian factorization of the higher order correlation func-
tions. These (and also < � >) are completely determined by the two-point-in time
correlation function above. This is discussed in detail by Middleton (Middleton
and Schieve, 1977). It is found that∥∥�τ c

2n

∥∥ ≤< F >2 ‖[VS, ]‖2n
(τ c

2

)n−1
dn; n ≥ 1. (3.86)

Here dn is a numerical factor close to unity. We define τ B , the relaxation time, as

τ−1
B = λ2 < F2 > ‖[VS, ]‖2 . (3.87)

This is the Pauli equation relaxation time estimate. Then we obtain the inequality

λ2n
∥∥�τ c

2n

∥∥ ≤ τ−1
B (

τ c

τ B
)n−1dn; n > 1. (3.88)

The n = 1 term is the Pauli answer. We see that τ c → 0 leads to this as an exact
result. Also, if τ B →∞, we obtain the Van Hove limit. No proof has been possible
concerning the convergence of the series for � in general. For the simple Friedrichs
model, the convergence has been shown for the Lagrange expansion.

Finally, let us comment on the difficulty of the lower bound energy in decay
scattering (Goldberger and Watson, 1964). Levy (1959) was the first to point out
the existence of a power law non-exponential decay (Riley and Wiener, 1934). This
does not exist in the Friedrichs model of this section, since we assumed E0 →∞.

In other cases an estimate of the time T , when the power law becomes comparable
to the exponential decay, is

T ≈
5

γ
ln

E0

γ
,

where γ = τ−1
B , the exponential time constant. For common values of γ , T ≈

10−100, and the power law is apparently unobservable. Hawker and Schieve have
argued that at this time the amplitude is so small that it plays no role in the physical
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results of master equations and kinetic equations. This follows the 1975 unpub-
lished University of Texas Ph.D. thesis of my student Kenneth Hawker, entitled
“Contributions to Quantum Kinetic Theory.”

3.5 Reservoir states: rigorous results and models

In Section 3.4 we suggested that the Pauli equation is obtained from the generalized
master equation in the singular limits:

(i) τ c → 0 zero memory
(ii) τ B →∞ Van Hove limit.

To a large measure, the difficulty remaining is to put reasonable conditions on the
reservoir state ρR(0) = 0 to carry through a vigorous development of the argument.
In his thesis, Middleton outlined and discussed a number of possible avenues. For
one, the Gaussian factorization of the reservoir multitime correlation functions to
〈F(t1)F(t2)〉 may be obtained by the assumption of chaotic initial reservoir states
for bosons:

ρR(0) = ρK , (3.89)

where

ρK =
∞∑

k=0

(
nk

1− nk

)
|nk >< nk| .

In quantum optics these represent states of a thermal source. With this in the infinite
volume limit (V → ∞), the argument carried through at the end of the previous
section may be done. The zero memory limit is independent of the weak coupling
assumption. It is thus true independent coupling strength between the system and
reservoir. In the Friedrichs model, discussed in Section 3.4, the constant coupling
limit corresponds to a white noise (zero memory) reservoir limit.

In Chapter 17 we will discuss the Friedrichs model formulated as an open system
of two-level atoms interacting in the rotating wave approximation with the reservoir
in the vacuum state.

Davies (1974, 1976) has given an impressive, rigorous proof of the λ2t limit
(case 2 at the beginning of this section). He assumed that the reservoir state is rep-
resented by correlation functions for an infinite free Fermi system in equilibrium.
This requires the existence of certain integrals over time correlation functions,
where he exploited the properties of the Volterra integral equation. These methods
were adopted by Middleton (Middleton and Schieve, 1977). Frigerio and coauthors
(Frigerio et al., 1976) have obtained the zero memory limit (case 1) using a weak
coupling argument similar to Davies’s.



54 Quantum statistical master equation

3.6 The completely positive evolution

It has been suggested that there is a class of physically relevant and mathematically
interesting semigroup transformations termed completely positive. This was intro-
duced by Kraus (1971) and later developed by others (Davies, 1976; Gorini et al.,
1976; Lindblad, 1976). The focus of our discussion will be to show how the Lind-
blad or Kossakowski quantum master equation is obtained. We will also discuss
some of its properties and recent applications. We will follow a very readable and
nonrigorous discussion by George Sudarshan (1991). There is also a review by
Gorini (Gorini et al., 1978).

Consider the dynamic linear map ρ → ρ ′, where

ρ ′ = ∫
dαε(α)B(α)ρB†(α) (3.90)

B† = B

ε2(α) = 1

and
∫

dαε(α)B(α)B†(α) = 1.

This utilizes the diagonal representation of the operator B in the Stieltje’s integral.
Complete positivity is defined as

ε(α) = 1 all α. (3.91)

For a discrete spectrum then,

ρ ′ =∑
α

B+(α)ρB (α) . (3.92)

A tetradic representation is

ρrs =
∑
r ′s′

Brr ′,ss′ρr ′s′ (3.93)

with

Brr ′,s′s =
∫

dαBrr ′(α)B
∗
s′s . (3.94)

Complete positivity is a stronger condition than positivity. Not many physical
examples have been obtained, but considerable attention is being given to this
now, since it represents a method of quantizing dissipative systems. The simplest
mathematical example is

ρ ′ = VρV † (3.95)

V †V = 1,

where

V V † = 1−�.
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The V is an isometry familiar in scattering theory as the Möller wave operator
(Goldberger and Watson, 1964).

Let us consider an extended H built of the product H⊗ HR, H being the system
Hilbert space and HR that of the reservoir. In the extended space, we assume unitary
time evolution:

ρ ′ = VρV † (3.96)

ρ̇ = [ρ, H ].
In H consider the isometric map

(ρ × σ)′ = V (ρ × σ)V †; V †V = 1. (3.97)

σ is the density operator of the reservoir in HR . Now we trace over HR and assume
the reservoir is diagonal in its ground state:

σ 1 = 1

σ n = 0; n �= 1.

Then

ρ
′ = TrR(V (ρ × σ)V †) =∑

αB
VαBρσαB(VαB)

† =∑
α

V
α1ρV †

α1. (3.98)

Here V (α) = Vα1.
This is a completely positive map of ρ in H and the result of the assumption on

the reservoir state. We time evolve V (α) in H:

Vα1(t) = exp(−i t H)Vα1(0), t ≥ 0, (3.99)

a Heisenberg semigroup evolution. Then, to second order in t,

ρ ′(t) = ρ(0)− i t H11ρ + i t (H11)
† (3.100)

+ (i t)2

2!

[∑
β

H1β Hβ1ρ +∑
β

ρH †
β1 H †

1β

]
− i t2 ∑

α

Hα1ρH †
α1.

We can rewrite Eq. (3.100) as

ρ ′ = ρ− i t[h, ρ]+ (i t)2

2! [h, [h, ρ]]− t
∑
α

[L†
αLαρ+ρL†

αLα−2L†
αρLα], (3.101)

defining

h = H11 (3.102)

Lα = t
1
2 Hα1; α > 1.
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We assume Lα to be defined as t → 0. The remaining t2 term is neglected in this
limit. Eq. (3.102) gives

ρ̇ = −i[h, ρ] +∑
α

[L†
α, ρ]Lα + L†

α[ρ, Lα]. (3.103)

This is the Lindblad–Kossakowski equation for the completely positive semigroup
time evolution (Lindblad, 1976; Gorini and Kossakowski, 1976). In this heuristic
derivation, much has been assumed. The reader should consult the references for
more complete treatment.

If a system obeys completely positive semigroup, then it will follow Eq. (3.103).
Gorini (Gorini et al., 1978) discussed the two-level atom system. We will not write
down the map. They defined a polarization vector Mi and derived Bloch equations
for these quantities:

Ṁi (t) =
3∑

j,k=1
εi jkh j (Mk(t)− Mk(0))− γ i (Mi (t)− Mi (0)). (3.104)

Mi (0) is the equilibrium state if γ 1γ 2γ 3 > 0. γ−1
i are, of course, the relaxation

times. The conditions for complete positivity imply

γ 1 + γ 2 ≥ γ 3; γ 2 + γ 3 ≥ γ 1; γ 3 + γ 1 ≥ γ 2. (3.105)

Take the magnetic field in the “3” direction. Then M1(0) = M2(0) = 0, and

γ−1
1 = γ−1

2 ≡ γ−1
⊥ = T⊥

γ−1
3 = γ−1

‖ = T‖,

defining the parallel and perpendicular relaxation times. The necessary and
sufficient condition for complete positivity is

2T‖ ≥ T⊥. (3.106)

This seems to be true experimentally (Haake, 1973). However, there is a recent
exception (Weinstein et al., 2004).

The alert student will note that the von Neumann equation for phase damp-
ing, Eq. (2.38), is of the completely positive type, having the positive solutions
given there. We remark that the Fokker–Planck equation, Eq. (2.40), has a positive
definite diffusion coefficient. This is as expected. The phase-damping model is a
good example of the Lindblad dynamics. More will be said about completely pos-
itive dynamical evolution in later chapters on dissipative evolution, particularly in
Chapter 6.
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Appendix 3A: Chapman–Kolmogorov master equation

The Kolmogorov master equation is the stochastic mathematical basis of Pauli-like
non-Markovian master equations. We will discuss this here briefly (Kolmogorov,
1950; Gardiner, 1985).

Consider particles in a state |l〉. l is a continuum. We introduce the conditional
probability

h(l)
1 (12 . . . l)dl, (3A.1)

being the probability that a particle is in “dl” near 1, given that 2 is in |2〉, 3 is in
|3〉, etc. If the events are independent,

fl(1, 2 . . . l) = f1(1) f2(2) . . .where
∫

f1(i)di = 1,

then

hl
1(1 | 2 . . . l) = f1(1).

Other conditional probabilities are

hl
2(1, 2 | 3 . . . l) = fl(1 . . . l)

fl2(3 . . . l)
.

Now we write

fsdl . . . ds =∏
s
(1, 2 . . . t | 10 . . . s0,t0)dl . . . ds. (3A.2)

Let z ≡ (1, 2 . . . s). �(zt | z0t0)dz is the conditional probability of being in dz
around z at t , given it was in dz0 at t0 with∫

dz�(zt | z0t0) = 1 (3A.3)

for an intermediate time t1, t0 < t1, t.

�(zt | z0t0) =
∫
�(zt | z1t1; z0t0)�(z1t1 | z0t0)dz1. (3A.4)

The Chapman–Kolmogorov equation, Eq. (3A.4), is rather subtle. The convolution
depends on z0, t0. This is nonlinear and has memory of z0, t0 in �(zt | z1t1; z0t0)
for all t1. We neglect the memory and write

�(zt | z0t0) =
∫

dz1�(zt | z1t1)�(z1t1 | z0t0). (3A.5)

This is the Markovian Chapman–Kolmogorov equation. It has many solutions. For
a discrete basis, we let ∫

dz →∑
l
,
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and then ∑
l
�(z | z1; t) = 1 (3A.6)

�(l | l0, 0) = δll0 .

We have

�(l | l0; τ +�t) =∑
j
�(l | j;�t)�( j | l0; τ). (3A.7)

Now we assume near τ = 0 that � is small and introduce the transition probability
ai j , j �= l. Then �(l, j,�t) = al j�t , l �= j , would be

�(l | l;�t) = 1− probability that l � l in �t = 1−�t
∑
l �=l ′

al ′l . (3A.8)

Substituting this in Eq. (3A.7), we write

�(l | l0; t +�t)−�(l | l0; t)
�t

=∑
j
[al j�( j | l0; t)− a jl�(l | l0; t)],

or as �t → 0,

d�(l | l0; t)
dt

=∑
j
[al j�( j | l; t)− a jl�(l | l0; t)]. (3A.9)

This is the differential Kolmogorov equation in a discrete space l. Pauli identified
ai j in the quantum case with the “golden rule” transition rate, as we have discussed.

A simple example is a Poisson process. Let

ai j = λ j = i + 1 i = 0, 1, 2, . . .

αi j = 0 otherwise.

We obtain

d�i j (t)

dt
= −λ�i j (t)+ λ�i j−1(t)

or
d�i j (t)

dt
= −λ�i j (t)+ λ�i+1, j (t).

The solution to this set of Kolomogorov equations is

�i j (t) = (λt) j−1

( j − 1)! exp(−λt) j ≥ i

�i j (t) = 0 j < i

with �i j (0) = δi j .
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4

Quantum kinetic equations

4.1 Introduction

Now let us discuss the fundamental jewel of non-equilibrium statistical dynamics,
the Boltzmann equation (Boltzmann, 1872). Of course, we will be discussing the
quantum version of this equation and its structure, which shows a remarkable sim-
ilarity to the original classical example. This fact alone would speak of the genius
of the founder of statistical mechanics. We will also touch on the other fundamen-
tal equation of plasma, the Vlasov equation (Vlasov, 1938; Balescu, 1975), which
again will be the quantum version.

What distinguishes these from the Markov master equations of the previous
chapter? They are spacially inhomogeneous, thus necessitating the introduction
of phase space distribution functions, w(xp, t), into quantum mechanics. We shall
do this in some detail in this chapter. This could also have been done earlier. Phase
space distribution functions seem not to be a natural thing in quantum mechanics
because of the noncommutivity of the position, x , and momentum, p. We will see
that this is not necessarily the case.

4.2 Reduced density matrices and the B.B.G.Y.K. hierarchy

The method of presentation of the following is similar to that of K. Hawker in his
unpublished 1975 University of Texas doctoral thesis, “Contributions to Quantum
Kinetic Theory.” The von Neumann equation for the density operator is

i ρ̇N = [HN1ρN ] ≡ L NρN ; ∞ ≤ t ≤ ∞. (4.1)

The N emphasizes that we have an N -body system where we assume

HN =
N∑

i=1
H 0

i +
N∑

i< j
Vj =

N∑
i=1

p2
i

2m
+

N∑
i< j

Vi j . (4.2)
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We make the simple assumption of structurally simple identical particles. At
t = 0,

ρ(1, 2, . . . , r, s, z, . . . , N , 0) = ρ(1, 2, . . . , s, z, r, . . . , N , 0),

and we assume that there are no particles with internal structure. Because of
HN chosen here, this symmetry is propagated in time. We will discuss quantum
exchange symmetries in a later section and show that the main features of the fol-
lowing discussion go unchanged. In a sense, we are dealing with quantum particles
which are “Boltzons,” to use a rather cryptic title.

The interaction potential is assumed to be a sum of pair potentials, Vi j , which
depend on the scalar distance between the particle pairs. All masses are taken to
be equal, although this is not necessary. The reduced density operator for a set of
s < N particles is ρs = V s Tr

s+1...N
ρN . This is, of course, a reduction similar to

that discussed in the chapter on master equations. The main point is that N -body
observables do not depend on ρN but rather on simpler objects such as ρ1, ρ2 etc.
It has not been possible to introduce projection operators to achieve Eq. (4.12).
However, it is not really necessary here.

We shall form a hierarchy of the ρs . We trace over (2 . . . N ) variables in Eq.
(4.1) and obtain

i ρ̇1 =
[
H 0

1 , ρ1

]+ V
N∑

i< j

Tr
(2...N )

[
Vi j , ρN

]
.

We may show by the identical particle assumption

∑
1≤i≤ j≤N

Tr
(2...N )

[
Vi j , ρN

] = N∑
2≤ j<N

Tr
(2...N )

[
Vi j , ρN

] = N − 1

V
Tr
(2)

[
V12, ρ12

]
. (4.3)

We obtain

i ρ̇1 = L0
1ρ1 + N − 1

V
Tr
(2)

L ′12ρ12, (4.4)

where

L0
1 =

[
H 0

1 ,
]

L ′12 = [V12, ] (4.5)

and

ρ12 = V 2 Tr
(3...N )

ρN , (4.6)
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being the next more complicated two-particle density operator. This may be carried
on successively. Operating with V 2 Tr

(3...N )
ρN on Eq. (4.1), we find

i ρ̇12 =
[
H12, ρ12

]+ N − 2

V

∑
(3)

Tr
(3)

[
(V12 + V23) , ρ123

]
(4.7)

where ρ123 = V 3 Tr
(4...N )

ρN . This is the B.B.G.Y.K. (Born, Bogoliubov, Green, Yvon,

Kirkwood) hierarchy first written by Yvon (1935). The general formula is obvious,
and we do not need to write it here. The final equation is Eq. (4.1). As with the
generalized master equation, this hierarchy is a beginning. Further analysis must
be done to obtain closed kinetic equations.

At this point we will take the thermodynamic limit

N →∞, V →∞,
N

V
= n0 = c <∞, (4.8)

obtaining to low order

i ρ̇1 = L0
1ρ1 + n0Tr

(2)
L ′12ρ12 (4.9a)

i ρ̇12 = L12ρ12 + n0Tr
(3)

[(
L ′13 + L ′23

)
ρ123

]
(4.9b)

i ρ̇123 = L123ρ123 + n0Tr
(4)

[(
L ′14 + L ′24 + L ′34

)
ρ1234

]
(4.9c)

and so on, with

L ′i j =
[
Vi j ,

]
L0

1 =
[
H 0

1 ,
]

L12 =
[
H 0

1 + H 0
2 + V12,

] = L0
12 + L ′12.

Taking the thermodynamic limit here is merely a convenience. We do not imply
that such an infinite set of operator equations has been derived in a rigorous fashion,
a formidable and daunting task. However, Gallavotti has proved the existence of
time-dependent correlation functions for a one-dimensional classical B.B.G.Y.K.
hierarchy (Gallavotti et al., 1970). There are several subsequent reasons for this
limit, such as the elimination of Poincaré recurrences still present in finite quantum
systems with the use of almost periodic functions (Bocchieri and Loingier, 1957)
and the introduction of asymptotic scattering states in the derivation of the quantum
Boltzmann equation, discussed in the next section. The recurrence proof is given
in the appendix to Chapter 6.

4.3 Derivation of the quantum Boltzmann equation

We will now use the first two elements, Eqs. (4.9a) and (4.9b), and by an argu-
ment similar to that made by Bogoliubov and Green in the classical case, obtain
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the Boltzmann operator equation for ρ (t) (Born and Green, 1949; Green, 1961;
Bogoliubov, 1962; McLennan, 1989). First, we define the two-body correlation
function g12 by

ρ12 = ρ1ρ2 + g12. (4.10)

We write Eq. (4.9b) as

i ġ12 = L ′12g12 + L12ρ1ρ2 − i
d

dt
(ρ1ρ2)+ 0 (n0) .

With Eq. (4.9a) we obtain

i ġ12 = L12gn + L ′12ρ1ρ2 + 0 (n0) .

We formally solve this equation to obtain

ρ12 = ρ1ρ2 (4.11)

+ exp (−i L12t) g12 (0)

− i
∫ t

0
dτ exp (−i L12τ ) L ′12ρ1 (t − τ ) ρ2 (t − τ) .

0 < t <∞
Eq. (4.11) is not of definite order in n0 because of the convolution term. Note the
causality assumption and 0 < t <∞.

To obtain a Markovian result to lowest order in n0, we may show in Eq. (4.11)
that

ρ1 (t − τ ) ρ2 (t − τ ) = exp
(
i L0

12τ
)
ρ1 (t) ρ2 (t) . (4.12)

We note that the density expansion has time localized, ρ1 (t − τ ) → ρ1 (t) in the
time integration to order n0. Now we also take the asymptotic limit t → ∞. The
justification for this is similar to the time scaling discussed in the previous chapter.
Here the time scales are the duration of the two-body scattering collision (τ c above)
and τ B , the Boltzmann relaxation time. Also, there is an additional longer time, a
hydrodynamic time τ H , which governs the rate of spacial homogeneity. This is not
yet explicit. We assume τ c < t ≈ τ B < τ H . These qualitative remarks are not at
all rigorous. There are some mathematical results, and the interested reader should
consult the mathematical literature.

We recognize a perfect differential in τ . After integration we obtain

ρ12 (t) = exp (−i L12t) g12 (0)+ exp (−i L12t) exp
(
i L0

12t
)
ρ1 (t) ρ2 (t)+ 0 (n0) .

(4.13)
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Using this in Eq. (4.9a), we obtain a closed nonlinear equation for ρ1 (t):

i ρ̇1 (t) = L0
1ρ1 (t)+ n0Tr

(2)

[
L12 lim

t→∞ exp(−i L12t) exp
(+i L0

12

)
ρ1ρ2

]
(4.14)

+ n0Tr
(2)

[
L ′12 lim

t→∞ exp (−i L12t) g12 (0)
]
+ 0

(
n2

0

)
.

Eq. (4.14) is an operator form of the Boltzmann equation for ρ1 (t) if we choose
g12 (0) = 0. It is the lowest order in n0 and nonlinear. If g12 (0) = 0, the initial
correlations are zero and do not influence ρ1 (t) at a later time. No assumption
of g12 (t) = 0 at t > 0 is made in Eq. (4.14). This argument is a proof of
Boltzmann’s “Stosszahlansatz” classically and follows naturally from the meth-
ods of Bogoliubov and Green (Tolman, 1938; McLennan, 1989). Rigorous proof
of this result has been made classically by Lanford (1969). A quantum proof of the
Stosszahlansatz has been given by Petrosky and Schieve (1982) using the two-time
resolvent approach of Van Hove (1955, 1957, 1962).

We must now interpret the remaining order n0 term in Eq. (4.14). We let

K12 (t) = exp (−i L12t) exp
(
i L0

12t
)

and consider lim
t→∞Kn (t) ≡ K12 (∞) . We have in Eq. (4.14) K12 (∞) . Now

K12 (t) ρ1ρ2 = S12 (t) G†
12 (t) ρ1ρ2G12 (t)S

†
12 (t) , (4.15)

where

exp (−i L12t) A = exp (−i H12t) A exp (i H12t) ,

where the Green’s functions are

S12 (t) = exp (−i H12t) (4.16)

G12 (t) = exp
(−i H 0

12t
)
.

Now we take

lim
t ′→∞

S

(
t
′)

G†
12

(
t
′)

ρ1ρ2G12
(
t ′
)
S

†
12

(
t
′)

=
[

lim
t ′→∞

S

(
t
′)

G†
12

(
t
′)]

ρ ′ρ2 lim
t ′′→∞

[
G

(
t ′′
)
S

†
12

(
t ′′
)]

,

provided the limits are independent on both sides of ρ1ρ2. Now the Möller
scattering operators are

�12 = lim
t→∞S12 (t) G†

12 (t) (4.17)

�
†
12 = lim

t→∞G12 (t)S
†
12 (t) ,
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where

�†� = 1 �= ��† (4.18)

�† H� = H 0

(Taylor, 1972). The first emphasizes the isometric property of the Möller operator.
Isometrics were introduced at the end of Chapter 3. We do not distinguish �± =
lim

t→±∞S12 (t) G†
12 (t) here, since we need only the positive time limit.

We have

K12 (∞) ρ1ρ2 = �12ρ1ρ2�
†
12.

Eq. (4.14) becomes the quantum operator Boltzmann equation in the scattering
theory form:

i ρ̇1 = L0
1ρ1 + n0Tr(2)

[
V12, �12ρ1ρ2�

†
12

]
. (4.19)

We could also have derived it to n2
0 including three-body effects, but that is not our

purpose here.
In obtaining this result, we have used an implicit density expansion. The density

expansion has been known for some time to have difficulties (McLennan, 1989),
but not at the order at which we are using it here. Persistent time correlations appear
in the n2

0 order of the form t−
3
2 , and this results in the transport coefficients not

being analytic functions of the density. Re-summation of the n0 expansion has to
some extent alleviated the problem, but not entirely. The result is that the consis-
tent theory of transport coefficients (a principal object of general solutions of the
Boltzmann equation) has not yet been successful. The reader should see the text of
McLennan (1989) for a clear discussion of this in the classical work.

4.4 Phase space quantum Boltzmann equation

Because many systems such as gases and fluids are spacially inhomogeneous,
it is necessary, as in the classical approximation, to use a distribution function
(like F (Rp, t)) language which is somewhat alien to quantum mechanics. This
is a phase space distribution function which serves the purpose of the classical
counterpart. Phase space distribution functions are defined by the requirement

TrOopρ =
∫

d RdpO (Rp) w (R, p) . (4.20)

Here O (Rp) is the classical counterpart of Oop. We will discuss the phase space
distribution functions quite generally in the appendix to this chapter, following the
work of Cohen (Cohen, 1966; Margenau and Cohen, 1967). The Wigner function
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has been used almost exclusively in Eq. (4.20), and we shall do so also in this
section (Wigner, 1932). Recently, Schleich (2001) has made extensive use of the
Wigner phase space distribution function in phenomena of quantum optics. There
the discussion is centered on quantum states in phase space, not on kinetic theory,
which is the topic of interest here. P (αα∗), which we already met in Chapter 2,
plays a similar role to w (R, p).

The relation of the Wigner function w (R,p) to the matrix elements of the
density operator is the transform

w (R,p) = (2π)−3
∫

dk ′ exp
(
i R · k′)× < p + k ′

2
|ρ| p − k ′

2
>; h̄ = 1.

(4.21)

Eq. (4.21) is a Fourier transform of ρ (p) with respect to a parameter k ′. See the
similarity to the ν, N representation mentioned in Chapter 3. From the general
discussion in this chapter’s appendix, notice that the marginal distributions are

φ (p) =
∫

d Rw (Rp) , the momentum distribution function (4.22)

n (R) =
∫

dpw (Rp) , the number density.

We have dropped explicit vector notation for simplicity. As with other phase space
distribution functions (see appendix),

w (Rp) � 0
∫

d Rdpw (Rp) = 1. (4.23)

Thus, it is not a probability distribution in the classical sense. The fact that w (R, p)
is not a true classical distribution function is to be expected, as was noted in Chapter
1. It is a tool for calculating averages in phase space via the rule of Eq. (4.20), of
which more is said in the appendix and in Chapter 6. There are many old and new
references to the Wigner function in quantum mechanics. For a nice bibliography,
see Schleich (2001).

There is an additional interesting theorem for a pure state:

Tr (ρ1ρ2) = 2π
∫ +∞

−∞
dx

∫ +∞

−∞
dp wρ1 (xp) wρ2 (xp) = |< �1|�2 >|2 . (4.24)

We recognize that the right side is the transition rate 1 → 2.

wρ1
(xp) = 1

2π

∫ =∞

−∞
dψ exp (−i pψ)

〈
x + ψ

2

∣∣∣∣ ρ1

∣∣∣∣x − ψ

2

〉
.

The proof is left as a problem.
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Now we observe that

Tr (ρ1ρ2) = 0∫ +∞

−∞
dx

∫ +∞

−∞
dp wρ1 (xp)wρ2 (xp) = 0,

and wρ1 (xp) must take on negative values. We should mention that the Hudson–
Piquet theorem states that the only nonnegative Wigner function is a Gaussian
(Hudson, 1974; Piquet, 1974). We will use this fact in Chapter 6.

We also note from Eq. (4.23) that if ρ1 = ρ2 = ρ,

2π
∫ +∞

−∞
dx

∫ +∞

−∞
dp wρ (xp)2 ≤ 1,

since Trρ2 ≤ 1.
One of the first uses of the Wigner function to discuss hydrodynamic systems

was in the papers of Irving and Zwanzig (1951) and Born and Green (1949).
An early review of applications to the kinetic theory of gases is that of Mori,
Oppenheim and Ross (1962). The algebra to transform the operator Boltzmann
equation to one for the Wigner function is awkward. First, we write Eq. (4.19) in
the momentum representation, ραβ. Then we transform it to the Wigner function
using

w

(
R,

α + β

2

)
= (2π)−3

∫
d (α − β) exp (i R (α − β)) ραβ. (4.25)

We change variables to

p = α + β

2
p1 = (α − β)

and obtain

i

[
∂w

∂t
+ m−1p ·∇w

]
= (2π)−3

∫
dp1dγ dμdv′

× exp (ip1 · R)

[
< p + p1

2 , γ |V�|μν >< μ′ν ′
∣∣�†

∣∣ p − p1
2 , γ >

− < p + p1
2 , γ |�|μν >< μ′ν ′

∣∣�†V
∣∣ p − p1

2 , γ > ρμ′μρνν′

]
.

(4.26)

We may eliminate ρμ′m′ and ρνν′ by the inverse of Eq. (4.25), obtaining a nonlinear
equation for w.
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Next, we write

i
[
∂tw + m−1 p · ∇w

] = 2π−3
∫

dp1dγ dμ . . . dν ′dr1dr2

×

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
exp (i p1 · R) exp

(−ir1
(
μ− μ′

))
exp

(−ir2
(
ν − ν ′

))[ 〈
p + p1

2 , γ |V�|μν
〉 〈
μ′ν ′

∣∣�†
∣∣ p − p1

2 , γ
〉

− 〈
p + p1

2 , γ |�|μν
〉 〈
μ′ν ′

∣∣�†V
∣∣ p − p1

2 , γ
〉 ]

×w
(
r1,

μ+μ′
2

)
w

(
r2,

ν+ν′
2

)
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ .

We change variables:

r1 = R + x + y

2
μ = k ′

2
+ k1 μ′ = k ′2

2
+ k2

r2 = R + x − y

2
ν = k ′1

2
− k1 ν ′ = k ′2

2
− k2 .

We use the translational invariance of V and �. We then recognize the δ functions

δ
(

p + p1

2
− γ − k ′1

)
, δ

(
p − p1

2
+ γ − k ′2

)
.

After doing the integrals on k ′1, k ′2 , we again change variables:

q = p1

2
, k = k1 + k2

2
, q2 = k1 − k2

and obtain

i
[
∂tw + m−1 p1∇w1

] = 2π−3
∫

dγ dq1dq2dkdxdy exp−i (xq1 + yq2){ 〈 p−γ+q1
2

∣∣ V�
∣∣k + q2

2

〉 〈
k − q2

2

∣∣�†
∣∣ p−γ+q1

2

〉
− 〈 p−γ+q1

2

∣∣� ∣∣k + q2
2

〉 〈
k − q2

2

∣∣�†V
∣∣ p−γ−q1

2

〉 }

×w

(
R + x + y

2
,

p + γ

2
+ k

)
w

(
R + x − y

2
,

p + γ

2
− k

)
.

Now V † = V , so the bracket {} is the difference between the term and its complex
conjugate. Defining (P − γ ) /2 = q, we finally have

∂tw + m−1p ·∇w = Im
∫

. . .

∫
dqdq1dq2dkdxdy

×
{

exp (−i (xq1 + yq2)) J
(
q1k1

q1
2

q2
2

)
× w

(
R + x+y

2 , p − q + k
)
w

(
R + x−y

2 , p − q − k
) }

,

(4.27)

where

J
(
qk

q1

2

q2

2

)
≡

〈
q + q1

2

∣∣∣ V�

∣∣∣k + q2

2

〉 〈
k − q2

2

∣∣∣�†
∣∣∣q − q1

2

〉
. (4.28)
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Eq. (4.27) is not yet the spacial form of the quantum Boltzmann equation but rather
a generalization. It is nonlocal, and the J is not the collision cross section. This
equation has been treated and transport effects discussed by Kenneth Hawker in
his doctoral thesis.

Assume now that w (R, p, t) varies negligibly over the range of particle inter-
action. x and y are connected in J by a Fourier transform, and the interaction is
short range, rather like a Yukawa-type potential, exp

(−μr
r

)
. This makes possible

the local homogeneity approximation. In Eq. (4.27) we have by a Taylor expansion

w

(
R + x + y

2
, p − q + k

)
w

(
R + x − y

2
, p − q − k

)
≈ w (R, p − q + k) w (R, p − q − k) .

Now the x and y integrations are done with the help of δ (q1) δ (q2). We obtain

∂w (R p)

∂t
+ m−1p ·∇w (R p)

= Im 2
∫

. . .

∫
dqdk

[
J (qk00) w (R p − q + k) w (R p − q − k)

]
.

(4.29)

It remains to relate Im J (qk00) to the scattering cross section. Considering
scattering theory (Taylor, 1972), we may define the T operator, T † = V�†,

where the † means outgoing scattered wave
∣∣β†

〉 = �† |β〉, and the operator
Lippmann–Schwinger equation gives

�† = 1+ G†T †. (4.30)

G† is the free particle Green operator. Thus,
〈
α
∣∣�†

∣∣β〉 = 〈α | β〉 +(
Eβ − Eα + iε

)−1 〈
α
∣∣T †

(
Eβ

)∣∣β〉. The convention is that the T operator is in the
same energy state as that to its right. Using Eq. (4.29), Eq. (4.30) and the adjoints,
we have

J (qk00) = Tqkδ (q − k)+ TqkT ∗qk

(
Ek − Eq − iε

)−1
.

Here Tqk ≡ 〈q |T | k〉. We may use the optical theorem (Taylor, 1972)

Tqq − T ∗qq = −2π i
∫

dk ′
∣∣Tqk1

∣∣2 δ(Eq − Ek1)

and

lim
ε→0

[(
Ek − Eq − iε

)−1 − (
Ek − Eq + iε

)−1
]
= 2π iδ

(
Ek − Eq

)
to obtain

Im J (qk00) = π

[∣∣Tqk

∣∣2 δ (Eq − Ek
)− δ (q − k)

∫
dk1

∣∣Tqk1

∣∣2 δ (Eq − Ek1

)]
.
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Eq. (4.30) becomes

∂tw + m−1 p · ∇w = 8 (2π)4
∫

dqdk (4.31){ ∣∣Tqk

∣∣2 δ (Eq − Ek

)
× [

w (p − q + k) w (p − q − k)− w (p)w (p − 2q)
] }

t > 0.

When we introduce the quantum differential cross section∣∣Tqk

∣∣2 = [m2 (2π)4]−1 dσ

d�
(k → q)

(Taylor, 1972) and change integration variables∫
dk →

∫ ∞

0
dk k2

∫
d�k,

we obtain a result which has exactly the same form as the classical Boltzmann
equation with the replacement of the classical differential cross section by the quan-
tum one. We can only be amazed at Boltzmann’s genius in writing this equation.
The later methods of calculating the transport coefficients, though difficult indeed,
go through here in quantum mechanics (Chapman and Cowling, 1960). However,
the question of the positivity of the Wigner function does enter, and this will be
discussed in some detail in Chapter 6 when dissipation is considered. Uehling and
Uhlenbeck (1933) first derived this equation, including exchange statistics, which
we have not done here for simplicity, preferring to emphasize the connection to
statistical dynamics and the von Neumann equation. The properties of Eq. (4.31)
are identical to the classical case. The exchange scattering will be discussed in the
next sections.

The equation is nonlinear and of the birth–death (gain–loss) form. The principal
quantum effect is wave diffraction in the cross section. In the following table, we
give a few numerical estimates of parameters for the case of helium and argon at
30 K at 0.1 atm:

He Ar
R 4× 10−8 cm 6× 10−8 cm

nR3 1.2× 10−3 5× 10−3

nλ3
T 8.34× 10−5 3.48× 10−6

λT

λM F P
4.9× 10−3 4.5× 10−4

λT

R
4.1× 10−1 8.8× 10−2

λT is the thermal DeBroglie wavelength 2πh2

mkT , and λM F P =
(
nR2

)−1
the mean

free scattering distance. λT
λM F P

estimates the importance of diffraction in scatter-

ing, important in the two cases shown. nλ3
T estimates the importance of exchange
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scattering at these low densities and for heavy masses. nR3 small validates the trun-
cation of the hierarchy, leaving only the important binary collision effects. The last
rows show that quantum dynamic diffraction, λT

R , is more important than statistical
exchange in these cases. The values of R are taken from Farrar et al. (1973). A final
comment here concerning phase space distribution functions is that it is possible
to transform the exact von Neumann equation to the Wigner representation. The
result is called the quantum Liouville equation.

Let us take the nth momentum moment of Eq. (4.31), forming 〈pn〉 using Eq.
(4.20): 〈

pn
〉 = ∫

d3 pnw (R pt) .

We then have an equation in a symmetric form:

∂t

〈
pn

〉+ m−1∇
∫

d3 pppnw = 8 (2π)4
∫ ∫ ∫

dqdkdp′δ
(
Eq − Ek

)
(4.32)

×
[∣∣Tqk

∣∣2 (p′ − q
)n − ∣∣Tkq

∣∣2 (p′ − k
)n
]

× [
w

(
p′ + k

)
w

(
p′ − k

)− w
(
p′ + q

)
w

(
p′ − q

)]
.

Now the R dependence will be implicit in w. The right side vanishes for n =
0, 1. The latter case is true because of parity

∣∣T−q−k

∣∣2 = ∣∣Tqk

∣∣2. The n = 2 case
also vanishes because of this, and q2 = k2 from the kinetic-energy-conserving
delta function. This is the well-known result that the Boltzmann equation conserves
particle number, momentum, and one-particle energy. Thus, we can write, from the
left side in these cases, the macroscopic hydrodynamic conservation laws (in a
common notation):

∂tρ +∇ · (ρu) = 0 (4.33)

ρ∂tu+ ρu ·∇u = ∇ ·P
ρ∂t e + ρu ·∇e = ∇ · q−

∑
i j

Pi j Di j .

Here the strain tensor Di j and pressure tensor Pi j appear. Also ρ = mn, u =
ρ−1 〈p〉, e is the energy density, and q is the heat flux. These are not a complete
set of equations unless we introduce the phenomenological (or derived) transport
laws. q = −�∇T , and

Pi j = 2η

(
Di j − 1

3
Di jδi j

)
+ ξ Di jδi j . (4.34)
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Here � is the thermal conductivity, η the shear viscosity, and ξ the bulk viscosity.
It is the main object of the Boltzmann kinetic theory (quantum or classical) to cal-
culate these coefficients (Chapman and Cowling, 1960; Balescu, 1975; K. Hawker
in his 1975 unpublished Ph.D. thesis; McLennan, 1989).

We will not undertake this in detail here, but rather consider a simple case as
an example. Let us expand the Boltzmann equation around the local Maxwellian
solution (to be discussed further in Chapter 6):

f 0 (1) = n0

(2πmkT )
3
2

exp
[
− m

2kT
(V− u)2

]
(4.35)

u is the mean particle velocity at R, and T the absolute temperature at R. This
classical assumption linearizes the equation, which we write in the steady state,
∂w
∂t = 0, as for the first correction w′ :

v· ∂

∂r1
f 0 (Ev) =

[
J f 0 (1)w′ (2)− Jw′ (2) f 0 (1)

]
. (4.36)

This is a linear inhomogeneous integral equation for w′ (1) ≡ f 0 (1) (1+�(1)).
The kernel contains the differential cross section. We wish to calculate the heat
flow, q:

q =
∫

w (v) v
m

2
v2d3v (4.37)

=
∫

f 0 (Ev)� (v)
m

2
v2vd3v.

Now we may write to this order by means of Eq. (4.33)

∂

∂r
f 0 (Ev) = f 0 (Ev)

mv2

2 − h∇T

kBT 2

(Huang, 1987), where h is the enthalpy per particle. Now 〈vz〉 = 0 and ∇T =
(∇T ) ez .

Let us make the Bhatnager, Krook, Gross (Bhatnager et al., 1954) approximation
to the Boltzmann collision kernel:

JBK G = ν( f 0 − w). (4.38)

When ν ≡ 1
τ c , the collision frequency is ν = ∫

f 0vσd�d3v, σ being the dif-
ferential cross section. Note that f 0 is the local Maxwellian. This approximation
is deceptively simple and still contains many aspects of the Boltzmann equation
itself. It implies, for instance, the proper relaxation to the equilibrium state and the
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preceding continuity equations. With this approximation we may easily solve for
w (and �), thus obtaining the transport law

qz = −
∫

d3v f 0τ
1

2
mv2vz

(
mv2

2kT
− 5

2

)
vz

T

∂T

∂z
. (4.39)

Thus, the thermal conductivity is

λ = m5τ

6kT

∫
d3vv

4

(
m

2kT
− 5

2

)
f 0 = 5

2
τkT n0. (4.40)

Similarly, for the viscosity, we have

η = τm5

kT

∫
d3vv

2
i v

2
j f 0 = τn0kT ; any i, j. (4.41)

In Eqs. (4.39) and (4.40), n is the number density. Immediately we see λ
ηcv
= 5

2 .
This is also true of the low-order approximation to the Chapman–Enskog solution,
where J not JBK G is used.

The above illustrates two important points. In the steady solution to the transport
flux, we obtain from the Boltzmann equation (quantum and classical) the transport
law (Eq. 4.39) and numerical estimates of λ and η. Through τ these are related to
the quantum binary scattering cross section, σ . We will not discuss the full details
of the Chapman–Enskog (or other procedures) for obtaining more exact results. See
Chapter 6 for further discussion of the role of transport coefficients in irreversible
thermodynamics.

Now consider exchange scattering, already mentioned (Taylor, 1972; McLen-
nan, 1989). For identical particles, the proper Hilbert space is Hε of functions with
the proper exchange symmetry. Let �(α, β) be the exchange operator for particles
α, β:

�(αβ)� = ε� (4.42)

ε = 1 (−1) for fermions −1, bosons +1.

Instead of space Hε, it is more convenient to utilize the full Hilbert space H and the
projector

ε = 1

N !
∑
�

ε�� (4.43)

ε = ε2 = ε†,
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� being the permutation operator on N particles such that

ε� = 1 boson

= ±1 fermion

(even or odd permutations).

The density matrix on H is now ρ = ερeε and ρε = ερ. The useful relation is that
for any A,

Trε A = TrAε. (4.44)

The exchange symmetry requires a modification of the initial factorization
assumption. Eq. (4.10) is now taken as

ρ12 (t0) = ρ1 (1, t0) ρ1 (2, t0) [1±�(12)] . (4.45)

In matrix elements, in the two-particle momentum representation, this is

ρ12

(
p1 p2 | p′1 p′2

) = ρ1

(
p1 | p′1

)
ρ1

(
p2| p′2

)± ρ1

(
p1 | p′2

)
ρ1

(
p2 | p′1

)
.

The arguments in the derivation of the operator or Wigner function Boltzmann
equation are now as earlier. The collision part of Eq. (4.31) is now the same form,

J = 4π2
∫

d3 p′1d3 p2δ
(
E − E ′

) |Tε|2
[
w

(
p′1

)
w

(
p′2

)− w (p1) w (p2)
]
, (4.46)

where the scattering matrix is Tε

(
p | p′

) = T
(
p | p′

) ± T
(−p | p′

)
. Here the

optical theorem for Tε has been used. The cross section σ = f 2 (θ) is replaced by
1
2 | f (θ)± f (π − θ)|2, f (θ) being the scattering amplitude for spherically sym-
metric scattering. This leads to characteristically quantum interference effects. In
addition, the steady state (equilibrium, J = 0) must be invariant under �, so w0 is
then the Bose–Einstein or Fermi distribution, rather than Boltzmann. The former
give the well-known equilibrium results, which will be discussed later. However,
we must note here that the Wigner function Boltzmann equation, Eq. (4.46), con-
serves single-particle energy, and thus one obtains Bose, Fermi and, in the limit,
the Maxwellian distribution for equilibrium. This is not true for the exact hierarchy
expansion, Eq. (4.19), where no spacial localization has been introduced. There we
obtain p = nkT [1− nB (T )]. B (T ) is the quantum second virial coefficient. This
effect is properly taken into account by systematically treating the spacial delocal-
ization or collisional transfer corrections (Thomas and Snider, 1970; K. Hawker,
unpublished Ph.D. thesis, 1975).

The comments above are strictly for repulsive potentials where no bound states
are present. If there are bound states, then a naive examination of collisional mem-
ory in the derivation of the Boltzmann equation is not possible. Both collisional
memory and initial correlations (bound states) must be considered.
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4.5 Memory of initial correlations

The evolution of initial correlations are given by the operator

D1 (t) = Tr(2)
[
V12, exp (−i H12t) g12 (0) exp (i H12t)

]
.

See Eq. (4.10) and the following material. Eq. (4.10) may be written (after
considerable calculation) in terms of Wigner functions as

D (Rpt) = 2i (4π)−3 Im
∫

. . .

∫
dp1dk2dk3dγ dxdy

× exp

(
−i p1 (p + γ )

t

2m

)
exp

(
−i p1

x

2

)
(4.47)[ 〈

p + p1
2 − γ

2
|VG| k2

〉〈
k3

∣∣S†
∣∣ p − 1

2 − γ

2

〉
exp−iy(k2 − k3)

×G

(
R + x + y

2
, R + x − y

2
,

p + γ + k2 + k3

2
,

p + γ − k2 − k3

2
; 0

)]
.

S is the two-particle Green’s function, and G the Fourier transform,

〈ab |g (0)| cd〉 =
∫

dr1dr2 exp(−ir1 (a − c)) exp (−ir2 (b − d))

× G

(
r1r2,

a + c

2

b + d

2
; 0

)
.

In the preceding equations, r1, r2 are the spacial coordinates of two statistical par-
ticles, g their relative separation, and x the difference between the center of mass
position and the point R. These expressions may be somewhat simplified in the
spacially homogeneous approximation.

The weak coupling (Born) approximation for homogeneous systems to Eq.
(4.47) is

D (Rp, t) = 16 Im
∫

. . .

∫
dydkdk

′
(4.48){

exp
(−iy · k ′) exp

(
−2i

(
k · k ′) t

m

)
V

(
k ′
)

× G

(
y1 p + k ′

2
, p − 2k + k ′

2

)}
.
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We again make the equilibrium approximation to g (0). Assuming high-
temperature (Born) approximation and retaining the lowest-order terms,

Geq

(
y, p + k1

2
, p + k1

2
− 2k

)
= −β4π2 (2πm)−3 (2π)3 V (y)+ β5n2 (2πm)−3 (2π)3 (4.49)

×
{[

2

(
p + k1

2

)2

+ 4k2 − 4k

(
p + k1

2

)]
V (y)− ∂2V

∂2y

}
.

Only the β5 term gives a nonzero contribution to D (p t). This can be shown to be

D (p t) = −16β5n2

m
(2π)6

(
mk

4t

)4

(2πm)−3 V 2 (k) |
k=0

. (4.50)

Thus, in the approximation, the initial correlations decay at least as t−4. This was
first shown by Lee, Fujita and Wu (Lee et al., 1970). However, the Born series
diverges. This suggests that this is true also for D (p, t). This can be seen simply.
The bound state contribution to the total Green’s function is GcmSβ (t), where

Sβ (t) =
∑

n

|n〉 〈n| exp (−i Ent) (4.51)

Gcm = exp (−i Hcmt) ,

and for homogeneous systems, we have

D (p, t) =16i Im
∫

dkdk ′dydq (4.52)∑
mm1

[
exp

(−iyk ′
)

exp(−i (En − En′) t )

〈p − q |V | n〉
〈
n | k + k ′

2

〉 〈
k − k ′

2
| n

′
〉 〈

n′ | p − q
〉
G (Ry, qt, q + k)

]
.

This obviously does not decay because of the oscillatory contributions. Initial
bound state correlations do not decay in time.

There is an interesting special case of pure states, ρ2 = ρ:

�(t) ρ2�†(t) = [�(t) ρ]
[
ρ�†

]
.

A theorem states that A (t) B (t) → AB weakly if A (t) ⇒ A, B (t) ⇒ B
(strongly). By weakly convergent, remember (ψ, A (t) φ)→ (ψ, Aφ) in a Hilbert
space ψ, so that the convergence ρ�† (t) ⇒ ρ�† is required. ρ�†(t) converges
strongly to �† only if no bound states contribute. Thus, if ρ is a projection operator
on scattering states, we have ρ�† (t) ⇒ ρ�†. We may expect if the subspace of



78 Quantum kinetic equations

interest is the scattering states only, then an asymptotic evolution may be proven.
This idea has not been carried through with any rigor. Some aspects have been
considered by Snider and Sanctuary (1971).

McLennan (1989) carried this formal argument forward in the hierarchy. To
follow this argument, we define initially

ρ2 (12, t0) = Pρ1 (1, t0) ρ1 (2, t0)+ D (1, 2, t0) . (4.53)

P is the projection operator of ρ on the scattering states, Pρ= (1 −
λ)ρ (1− λ) = ��†ρ��†. The additional term D is to be determined. Now
�± = lim

t→±∞H2 (t) H0 (−t) (Taylor, 1972). Taking t0 → −∞, as in the classical

argument (McLennan, 1989), we have

ρ2 (12) = �ρ1 (1) ρ1 (2)�
† + D (12) . (4.54)

If there are no bound states initially, then D = 0. This is true both for attractive and
repulsive potentials. The limit t0 → −∞ is expected to exist for scattering states.
This is true of the first term. But what about D? We will now consider this. The
first term of the hierarchy is now

ρ̇1 (t)+ 1

i

[
ρ1, H1

] = n

i
{Tr2

[
V (1, 2) ,�ρ1 (1) ρ1 (2)�

†
]+ D (12)}. (4.55)

To this order in the density,

Ḋ + 1

i
[D, H2] = 0. (4.56)

Taking the Tr2 and defining,

ρ A (1) = ρ1 (1)− nTr
(2)

D (12) . (4.57)

The subscript A here means atoms found in collision. We obtain, to lowest order in
n0,

ρ̇ A (t)+ 1

i

[
ρ A, H1

] = n0

i
Tr
(2)

[
V (12) ,�ρ A (1) ρ A (2)�†

]
. (4.58)

From Eq. (4.55) and Eq. (4.58), D may be obtained to this order in n0. We may
expect the asymptotic equation for the “atom” contribution to be well defined.
The real question is the next order in n0, and very little is known. However, see
McLennan’s book (1989). Here we have accomplished the goal of writing a kinetic
equation with bound states by use of the scattering states only, where �ρ�† is
expected to be well defined.

This completes our overly long discussion of attractive forces and points out
that much must yet be done on this interesting topic. Let us now turn briefly to the
quantum Vlasov equation to complete the discussion of kinetic theory.



4.6 Quantum Vlasov equation 79

4.6 Quantum Vlasov equation

The operator Vlasov equation may be most quickly obtained by factoring ρ2 =
ρ1 (1)ρ1 (2) in the first equation of the hierarchy. We have

i ρ̇1 = L0
1ρ1 + Tr2[V1,�ρ1 (1) ρ1 (2)�

†]. (4.59)

To make the spacial dependence explicit, we must, as before for the Boltzmann
equation, introduce the Wigner function. This we have implicitly done already. We
take � = �† = 1 in Eq. (4.27). After doing the δ function integration, we have

ẇ + m−1p ·∇w = 16 (2π)−3 Im
∫

dqdq1dq2dxdy

×
{

exp(−i (xq1 + yq2))V

(
q1 − q2

2

)
× w

(
R + x + y

2
, p − q1 − q2

2

)
× w

(
R + x − y

2
, p − 2q + q1 − q2

2

)}
.

Changing variables to q1−q2
2 = k, q1 + q2 = k1. The k1 integration leads to

(2π)3 δ
( x+y

2

)
. Then doing the y integration and introducing the Fourier transform,

V (k) = (2π)−3
∫

drV (r) exp (iky) ,

we have the quantum Vlasov equation (Balescu, 1963, 1975):

ẇ + m−1p · ∇w = −i (2π)−3
∫

dρdldp′dp′′{exp il
(
p − p′

)
(4.60)

×
[

V

(
R − ρ − l

2

)
− V

(
R − ρ + l

2

)
w

(
Rp′

)
V

(
ρ, p′′

)]
.

Let us consider the collisional transfer approximation to this Vlasov equation.
Let

w
(
R − r, p′′

) = w
(
Rp′′

)− r ·∇w
(
Rp′′

)
.

The first term does not contribute. Upon carrying out an r and p integration, the
latter using a δ function, we have

ẇ(R, p) + m −1p ·∇w= ∂w (R, p) (R, p)

∂p
·∇

∫ ∫
dxdp′′V (x)w (R, p)

(
R, p′′

)
.

(4.61)

This is the exact form of the classical counterpart to this order. The quantum effects
appear to higher order in the gradient expansion. If we localize the quantum Vlasov
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to first order in the spacial gradient expansion, we obtain exactly the classical
Vlasov equation, which is still nonlocal. We see that the right side is of order V (r)
in the interaction, in contrast to the Boltzmann equation discussed earlier in this
chapter.

This completes our discussion of kinetic equations. The profound results of
these equations and the master equations discussed in the previous chapter will
be considered in Chapters 5 and 6.

Appendix 4A: phase space distribution functions

Phase space distribution functions are introduced to transform quantum mechanics
into a form similar to probability distributions in classical statistical mechanics.
They are similar but not equivalent. In this chapter, we have utilized exclusively
the Wigner function, whose properties we have discussed. In this appendix, we will
look at a more general representation, after the work of Cohen (1966). The main
point is that the phase space distributions are not unique, and we will see how they
are determined. Phase space distributions functions are also utilized in quantum
optics (Schleich, 2001) and in kinetic theory (see our previous discussion).

We map ρ → F by the relation〈
Ô
〉
= Tr

[
Ôρ

]
=

∫
d RdpO (Rp) F (Rp) . (4A.1)

Here Ô is the quantum observable, ρ the density operator, O (Rp) the classical
phase space operator, and F (Rp) the appropriate phase space distribution. The
relation of O (Rp) to Ô is crucial. We assume

F (Rp) = (2π)−6
∫

dydkdk ′

× exp
(
ik ′R

)
exp (−iy (p − k)) g

(
k ′y

) 〈
k + k ′

2

∣∣∣∣ ρ ∣∣∣∣k − k ′

2

〉
. (4A.2)

g (ky) is the generating function for this mapping. Three reasonable conditions are
assumed:

1. F (Rp) is real.
2. There is a marginal momentum distribution,

φ (p) =
∫

d RF (Rp) . (4A.3)

3. There is also a marginal position distribution, a number density n (R) =∫
dpF (Rp) .
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The first condition requires

g (k, y) = g∗ (−k,−y) , (4A.4)

and the second and third conditions imply

〈p |ρ| p〉 = φ (p) g (0, y) = 1 (4A.5)

〈R |ρ| R〉 = n (R) g (k, 0) = 1. (4A.6)

It is easily seen that the dispersion in p and R space separately are independent of
further properties of F (R, p). Note that we may write

F (R, p) =
∫

drdkG (Rk) w (R − r, p − k) , (4A.7)

where w is the Wigner function, g = 1, in Eq. 4A.2, and

G (Rk) = (2π)−6
∫

dk ′dy exp (ir · k) exp
(−iy · k ′) g

(
k ′y

)
, (4A.8)

which is the Fourier transform of g (ky). Thus, F (Rp) need not be positive, since
w is not positive, as we discussed earlier.

We now turn to the role of correspondence rules. Given a classical observable,
what is the correspondence to that observable in quantum mechanics (Cohen, 1966;
Margenau and Cohen, 1967)? Some choices are:

1. symmetrization rule:

qn pn → 1

2

(
q̂n p̂m + p̂mq̂n) ,

2. Born–Jordan rule:

qn pm → (m + 1)−1
m∑

l=0

p̂m−l q̂n p̂l ,

3. Weyl rule:

qn pm → 2−n
n∑

l=0

(n
l

)
q̂n−l p̂mq̂l .

There is also a Dirac rule:

{} → [, ]

classical Poisson bracket → quantum commutator.

In the rules listed, the “hat” (as a common notation) indicates a quantum operator.
This notation is used only when necessary. In the context of the earlier discussion,
one of the possibilities listed (and any other) will put further conditions on g. Let
us discuss this now, following Cohen.
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Let γ
(
k ′, k

)
be the momentum space Fourier transform of O (R, p). Using the

phase shift

exp

(
i r̂ · k

′

2

)
|k〉 =

∣∣∣∣k − k ′

2

〉
,

we have, using Eq. (4A.1) and Eq. (4A.2),∫
d RdpF (Rp) O (Rp) = 〈O〉 =

∫
dkdk ′dx[g (

k ′, x
)
γ
(
k ′x

)
× 〈k| exp i

(
r̂ · k ′

2

)
exp

(
i p̂ · x) exp

(
i r̂

k ′

2

)
ρ |k〉.

Now exp
(
i r̂ · k′

2

)
exp

(
i p̂x

)
exp

(
i r̂ k′

2

)
= exp

(
i
(
p̂ · x + r̂ k ′

))
. See Louisell

(1973) in Section 3.3. We have then

TrÔρ = Tr

[∫ ∫
dk ′dxg

(
k ′x

)
γ
(
k ′x

)
exp i

(
p̂ · x + r̂ · k ′)] ρ. (4A.9)

We identify that

Ô =
∫ ∫

dk ′dxg
(
k ′x

)
γ
(
k ′x

)× exp
(
i
(
p̂x + r̂ k ′

))
. (4A.10)

This is a general correspondence rule, given γ
(
k ′x

)
and g. The latter generates

both the correspondence rule and the phase space distribution, F (Rp). To pro-
ceed further by means of a power series expansion, we write Eq. (4A.6) in normal
ordered form, that is, r̂ preceding p̂. Then we may replace the operators by c
numbers r,p, and carrying out the integration, we obtain

Ô
(
r̂ p̂

) = g

(
−i

∂

∂r
, i

∂

∂p

)
exp

(
−i

1

2

∂

∂r∂p

)
O (r, p) |r→r̂

p→ p̂ . (4A.11)

Thus, we compute (4A.11), normal order, and let r → r̂ , p → p̂. This gives
Ô

(
r̂ p̂

)
. We may show that g = 1 yields the Weyl rule and the Wigner function.

g (k, x) = cos
(
k − x

2

)
gives the symmetrization rule, and g (kx) = sin(k− x

x )
k− x

2
yields

the Born–Jordan prescription.
There is an infinity of rules. What is the “correct” unique rule? There appears to

be none. One can only adopt a rule.
Then Eq. (4.A11) gives Ô (R, p). With the choice of g, Eq. (4A.11) may

be inverted (in principle) to obtain γ
(
k ′x

)
and thus the appropriate distribu-

tion function. All this ambiguity is due to the fact that F (R, p) is defined by
“weak” conditions, Eqs. (4A.1), (4A.4) and (4A.5). We should emphasize that
F (R, p) ≯ 0 are not probabilities but rather calculational aids.
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A final remark concerns the uncertainty relation. This is definitely true for the
three rules mentioned in this appendix. Can we make more general comments?
That is a problem. Even if so, the quantum averages would be properly calculated
by TrÔρ, with Ô given by Eq. (4A.11).
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5

Quantum irreversibility

Here we will examine dynamic irreversibility of the master equations discussed in
Chapter 3 and of the kinetic equations of the previous chapter. Irreversibility is one
of their important properties. First, what is irreversibility, quantum and classical
(Tolman, 1938; Farquahar, 1964)?

5.1 Quantum reversibility

Let us first consider classical reversibility and then its generalization to quantum
mechanics. The Hamiltonian equations are

q̇i = ∂H

∂pi
(5.1)

ṗi = −∂H

∂qi

i = 1 . . . N

−∞ ≤ t ≤ ∞.

We take H (piqi ) to be time independent and to be even in pi . Thus,

H (piqi ) = H (−pi , qi ) ≡ H T . (5.2)

The time reversal transformation, or dynamic reversal T is

T p →−pT (5.3)

T H = H T ≡ H

T qi ≡ qT
i .

85
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The T transformation on Eq. (5.1) gives

q̇T
i =

−∂H T

∂pT
i

− ṗT
i = −

∂H T

∂qT
i

,

where • ≡ d
dt . So T qi , T pi obey Eq. (5.l) for −t . Thus,

qT
i = qi (−t) −∞ < t < +∞ (5.4)

pT
i = −pi (−t) .

For every solution of Eq. (5.1), there is a dynamic reversed solution for−∞ ≤ t ≤
∞. This is time reversal invariance. Note that an external magnetic field will force
us to modify the statement of this invariance. (See the appendix to this chapter.)

Of course, the Liouville equation also has this property. After a T operation on
the Liouville equation, we have

T ∂ f

∂t
= ∂ f T

∂t
= −

N∑
i=1

(
∂ f T

∂qT
i

∂H T

∂pT
i

− ∂H T

∂qT
i

∂ f T

∂pT
i

)
. (5.5)

So, by comparison,

f T = f (qi ,−pi ,−t); −∞ ≤ t ≤ +∞.

These classical symmetries are termed reversibility. Here, from a solution f (qpt)
to the Liouville equation, we may construct by the same equation and at all time
the reversed solution f T .

Now, how must this be generalized to quantum mechanics? A hint is in the
Schrödinger representation p̂ → −i h̄ ∂

∂q . Since q and h̄ are unchanged, p̂ → −p
is complex conjugation. So T is the operation of complex conjugation (see the
chapter appendix). Since H is real,

T ĤT−1 = Ĥ ∗ = Ĥ T (time independent) (5.6)

T p̂T−1 = − p̂.

We also take T Ĵ T−1 = − Ĵ , since we wish to preserve
[

Ĵi , Ĵ j

]
= iεi jk Ĵk . Now

dρ̂
dt = i

[
Ĥ ρ̂ − ρ̂ Ĥ

]
for −∞ ≤ t ≤ ∞. Dropping the “hat” and again setting

h̄ = 1, we have

T ρ̇T−1 = ρ̇T = −i
[
H ∗ρT − ρT H ∗] . (5.7)

Thus, ρT (−t) obeys the same von Neumann equation. More is said of the operator
properties of the time reversal transformation in the appendix.
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5.2 Master equations and irreversibility

The Pauli master equation, Eq. (3.25), is

d P

dt
(α, t) =

∑
α′

Wαa′
[
P

(
α′, t

)− P (α, t)
]

t > 0, (5.8)

where

Wαa′ = 2πλ2δ
(
E0

α′ − E0
α

) |< α| V ∣∣α′ >∣∣2 .
We have emphasized here that the original repeated random phase argument of
Pauli is for t ≥ t0 = 0. It has already been mentioned that Pauli’s argument carried
backward for t < 0 gives this equation a sign change and thus the inconsistency
mentioned in Chapter 3, pointed out by Van Hove. This difficulty was overcome
by later arguments and is discussed in Chapter 3.

Let us consider the dynamic reversal issue. If we operate with T on Eq. (5.3)
the equation is invariant, since Wαa′ and P (α, t) are real. Thus, T P (α, t) T−1 =
P (α, t) for t > 0. There is no dynamic time inversion possible with such an equa-
tion. For the full unitary group governing the solution to the von Neumann equation
ρ (t),−∞ ≤ t ≤ ∞, we have for the Schrödinger solution

|ψ (t)〉 = U † (t) |ψ (0)〉
and

ρ (t) = U † (t) ρ (0)U (t) ≡ Stρ (0) t ≥ 0,

where, of course, U † (t) = exp (−i Ht). Being a group, U † (τ ) = U−1 (τ ) =
U (−τ), and S−t St = I. Also, S−t St = St S−t for −∞ ≤ t ≤ ∞ . This last
property does not hold for solutions to Eq. (5.8) or, as we now note, most equa-
tions to be discussed in this section. They are irreversible. For an evolution
S−t St (t ≥ 0), there is no reversed solution. Of course the evolution is not governed
by St either, but rather a different linear semigroup operator. P (α, t) are real, and
there is a profound change in this reduced evolution which concerns only the diag-
onal elements. The appearance of the semigroup is a manifestation of irreversibility
called non-invertible in the mathematics literature (Mackey, 1992).

5.3 Time irreversibility of the generalized master and Pauli equations

As a first step in obtaining the Pauli master equation for open systems by means
of the projection operator P , the generalized master equation was obtained in Eq.
(3.13), Eq. (3.14) and Eq. (3.15). “Is it irreversible?” is a common question. The
answer is, certainly! A formal exact solution to Eq. (3.14) is obtained by Eq. (3.15)
with the initial value of (1− P) ρ (0) and Pρ (t = τ ) = Pρ (0) at time t = 0. It
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is valid for 0 ≤ t ≤ ∞. Of course, it is possible by means of another initial
value to find a solution to another equation for negative time. We shall not write
it here. All the subsequent derivation is in terms of a non-Markovian evolution for
0 ≤ t ≤ ∞. The Pauli master equation subsequently obtained by these more exact
methods, Eq. (3.25), is a Markovian semigroup equation.

Balescu (1963) has discussed this clearly in his treatment of the classical Liou-
ville equation. Let L be the classical Liouville operator (Poisson bracket with H ).
He considers the Green’s equation,

LG
(
xvt | x ′v′t ′

) = δ
(
x − x ′

)
d
(
v − v′

)
δ
(
t − t ′

)
,

and introduces the semigroup causality condition,

G
(
xvt | x ′v′t ′

) = 0; t ≤ t ′.

The appropriate solution is for

L fN (xv, t) = δ (xvt) t ≥ 0,

such that

fN (xv, 0) = q (xv) .

The solution is for homogeneous time,

G
(
xvt | x ′v′t ′

) = θ
(
t − t ′

)
G

(
xv | x ′v′, t − t ′

)
,

where the well-known Heaviside function is

θ (x) =
{

1 x > 0
0 x < 0

.

The Heaviside function leads to a one-sided (semigroup) Laplace transform,

R
(
xv | x ′v′, z

) = ∫ ∞

0
dτ exp (i zτ) G

(
xv | x ′v′, τ

)
.

All this is very clear but still is a cause of confusion. It holds in terms of quantum
operators also. The discussion of open systems does not change matters at all. The
appropriate reservoir projection operators Eq. (3.32) and Eq. (3.33) give us Eq.
(3.34).

The more difficult task of understanding entropy and the approach to equilibrium
for the Pauli equation and its generalizations will come in the next chapter. It is
important to separate the intertwining of irreversibility from what we may term
dissipative behavior.

Now let us turn to the Boltzmann equation and the B.B.G.Y.K. hierarchy.
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5.4 Irreversibility of the quantum operator Boltzmann equation

Clearly the operator B.B.G.Y.K. hierarchy of Chapter 4, Eq. (4.9a, b, c), is
reversible, since it is derived from the original von Neumann equation by
Tr(2 . . . N )ρN etc. operations. It is, in fact, a reduced vector representation of ρN (t),
as emphasized by Balescu (1975).

The Boltzmann equation (classical or quantum) is irreversible. This apparent
paradox was first pointed out to Boltzmann by Loschmidt (1876). What is the
source of irreversibility in the derivation? This can be seen in Eq. (4.10) and
the following, where the equation for g12 (t) is solved formally for 0 ≤ t ≤ ∞.

This equation is then used to obtain a non-Markovian and irreversible equation
for ρ12 (t). This is used to obtain the time asymptotic equation Eq. (4.14) for the
one-body operator ρ1 (t). We have called this equation the Boltzmann operator
equation.

The Boltzmann operator equation is irreversible because 0 ≤ t ≤ ∞, just as
with the master equation already discussed. The source of the irreversible behavior
is in the initial causality assumption.

The subsequent form of the asymptotic operator equation, Eq. (4.19),

i ρ̇1 = L0
1ρ1 + n0tr

[
V12,�12ρ1 (t) ρ2 (t)�

†
12

]
t ≥ 0

with

�12 = lim
t→∞S12 (t) G†

12 (t) ,

makes the irreversibility all very transparent. �12 is the asymptotic Möller wave
operator. (See the appendix to this chapter.) Usually this is called �−, but we have
not needed �+. Recall that the time reverse of �− is �+.

The introduction of phase space Wigner function ω (R,p) in Section 4.5 does not
at all change the irreversibility of the quantum phase space Boltzmann equation. As
emphasized there, Eq. (4.31) is exactly the same form as the irreversible nonlinear
Boltzmann equation. It contains the quantum differential cross section∣∣Tqk

∣∣2 = [
m2 (2π)4

]−1 dσ (k → q)

d�
.

The consistency of irreversibility is even more apparent in the scattering from the
“in” state to the “out” state q. We have not written this equation in its simplest
form. For spacially local scattering, from Eq. (4.31), we have

∂tw + m−1p ·∇w =
∫ ∫

dv′2d�
′
{

dσ

(
v1v2 → v′1v

′
2

)
d�

|v1 − v2| t > 0

× [
w

(
v′1

)
w

(
v′2

)− w (v1)w (v2)
]}

(5.9)
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with

|v1 − v2| =
∣∣v′1 − v′2

∣∣ ; v2
1 + v2

2 = v′21 + v′22 .

We have not yet discussed the gain–loss structure of this equation. It is pertinent to
do that now. Let

R
(
v1v2 → v′1v

′
2

) = dσ
(
v1v2 → v′1v

′
2

)
d�

|v1 − v2| .
Time reversal invariance (discussed in the appendix) implies

R
(
v1v2 → v′1v

′
2

) = R
(−v′1 − v′2 →−v1 − v2

)
,

and parity invariance is

R
(−v →−v′

) = R
(
v → v′

)
,

so the PT invariance suggested in the appendix gives

R
(
v1v2 → v′1v

′
2

) = R
(
v′1v

′
2 →−v1 − v2

)
.

This has been called inverse collision symmetry in the sense of the classical Boltz-
mann equation (Huang, 1987). We may then write in a reverse order to the usual
derivation

∂tw + m−1p ·∇w =
∫

dv′2d�
′{R (

v′1v
′
2 → v1v2

)
w

(
v′1

)
w

(
w′2

)
(5.10)

− R
(
v1v2 → v′1v

′
2

)
w (v1)w (v2)} t > 0.

The first term of Eq. (5.0) is the gain in the correlations in v1,v2. The second term
is the loss of correlations in v1v2. Here, in the Boltzmann equation, the correla-
tions are factored into a product of one body w1 (v), as is seen in the derivation of
Chapter 4. We recall the two-body scattering picture, which gives the well-known
depiction of the binary scattering growth and loss of these correlations. See Balescu
(1975) and Huang (1987). Here we have the picture of the reversible instantaneous
gain and loss of correlations to cause a temporal change in w. The process is irre-
versible (t > 0). Markovian master equations usually have this form, also. See the
discussion of the Kolmogorov equation in the appendix to Chapter 3.

5.5 Reversibility of the quantum Vlasov equation

Let us recall briefly the derivation of the Vlasov equation, in Chapter 4. The deriva-
tion began with the reversible hierarchy, as with the Boltzmann equation discussed
in Section 5.4. By a simple instantaneous factorization of the first equation of the
B.B.G.Y.K. hierarchy, letting

ρ2 (1, 2, t) = ρ1 (1, t) ρ1 (2, t) ,
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we obtained Eq. (4.62),

i ρ̇1 (t) = L0
1ρ1 (t)+ Tr(2)

[
V12,ρ1 (1, t) ρ1 (2, t)

]
(−∞ ≤ t ≤ ∞) .

This is valid for the time range −∞ < t < +∞. No formal causal solution
of ρ2 |1, 2, t | has been used. This equation is reversible. It is highly nonlocal in
space, as is apparent in the derivation of the subsequent equation, Eq. (4.31), for
the Wigner function w (Rp, t). However no irreversibility has been used there,
either.

The above equation is similar to the von Neumann equation itself, and since V12

is real, it is invariant under the time reversal transformation of the appendix. The
time reversed equation is

−i
dTρ1T−1

dt
= L1Tρ1T−1 + Tr2

[
V12, Tρ1ρ2T−1

]
.

Hence, as in the general discussion, Tρ (−t) T−1 obeys the same Vlasov equation
as the original solution. This fact of reversibility is fundamental in discussions of
plasma physics, as given by Balescu (1963). We refer the reader to these appli-
cations. However, there is a form of damping in the solutions not connected to
irreversibility. There are transient oscillations set up by initial perturbations. The
damping is due to destructive interference produced by the distribution of initial
velocities.

The early time solution to the Vlasoff equation may be expressed as a Fourier
transform:

w (k, p, t) =
∫

dk exp (−ikt) akw (kp, 0) .

The details of the solution do not concern us here (Balescu, 1963). We obtain

w (k, p, t) = ak exp (−ikp0t) exp
(−kμ0t

)
for a sufficiently broad initial w (kp, 0) characterized by μ0 and a group momen-
tum p0. The damped oscillatory motion depends on the initial value. It may cause
w (R, t) to decay in long time as a power law due to the Riemann–Lebesgue the-
orem. This is the source of Landau damping (Landau, 1946). Such a reversible
damping has been called phase mixing (Balescu, 1975) to distinguish it from irre-
versibility defined in this section. The difference should be apparent. Phase mixing
is possible in free particle motion due to initial values, in states which have a
continuum of values, as here.
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5.6 Completely positive dynamical semigroup: a model

As discussed in Chapters 2 and 3, the Lindblad–Kossakowski equation,

ρ̇ (t) = −i [L , ρ]+
∑
α

[
L†

α, ρ
]

La + L†
α

[
ρ1Lα

]
t > 0

(Gorini et al., 1976; Lindblad, 1977), represents a general mathematical class
of quantum, non-Markovian irreversible master equations, termed completely
positive. It is a dynamic map

ρ1 =
∫

dαε (α) B (α) ρB† (α) ,

∫
dαε (α) B† (α) B (α) = 1,

such that B† = B and particularly ε (α) = 1 for all α. (See the simple derivation of
the Lindblad–Kossakowski equation in Section 3.5.) It represents the “if and only
if” condition for complete positivity. This equation is irreversible by construction.
Gorini has also shown that it is equivalent to the Pauli equation for a class of singu-
lar reservoir interactions (Gorini et al., 1976). We discussed this in Chapter 3 and
use it in Chapter 7.

A simple example is a harmonic oscillator in interaction with an equilibrium
electromagnetic field as the reservoir R. This has been extensively discussed by
Agarwal (1973). Another example is the Milburn–Walls model in Chapter 2. The
interaction of the harmonic oscillator of frequency ω with the field frequency ωk is

H = ωa†a +
∑

k

ωka
†
k ak + λV,

where V = ∑
k Vk

(
a†ak + h.c.

)
. Assuming weak coupling and an equilibrium

reservoir (the field), we may obtain a Pauli-type equation for the oscillator system
S, as discussed extensively in Chapter 2. This equation may easily be put into a
Lindblad–Kossakowski form, as proved by Gorini et al. We obtain

i
dρ

dt
= ω

[
a†a, ρ

]− i

2

2∑
j=1

[
L†

j L jρ + ρL†
j L j − L†

jρL j

]
,

where

L1 =
[∑

k

γ k (〈nk〉 + 1)

] 1
2

a

L2 =
[∑

k

γ k 〈nk〉
] 1

2

a†
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and

γ k = 2πλ2 |Vk |2 δ (ωk − ω)

γ =
∑

k

γ k .

As previously discussed in Chapter 2, a simple and soluble form of the reser-
voir is called phase damping (Walls and Milburn, 1985; Gardiner, 1991), where
the reservoir harmonic oscillator interaction may be written λV = a†a�, where
� is the simple reservoir damping contribution. Remember that in the number
representation, the matrix elements 〈n |ρ̇|m〉 are very simple:

〈n |ρ̇|m〉 = −iω (n − m) 〈n |ρ|m〉
+ i K (2 〈nk〉 + 1) (n − m)2 〈n |ρ|m〉 ,

where we write

η = √km

K = πκ
ω2

2η
.

The solution is

〈n |ρ|m〉 = exp (−iω (n − m) t)

exp

(
− (2 〈nk〉 + 1) K (n − m)2 t

2

)
.

The off-diagonal elements decay to zero as (2 〈nk〉 + 1), K being the damp-
ing constant. The decay is proportional to (n − m), the “distance” between the
off-diagonal states. At long time, the remaining contributions are 〈n |ρ| n〉 =
〈n |ρ (0)| n〉, which plays the role of a time-unchanging equilibrium state. Again,
these results illustrate decoherence, which will be discussed later.

Let us make a final comment here on completely positive dynamics. Recently,
in a discussion of quantum damping, Monroe and Gardiner (1996) have shown
that a master equation more general than that of the Lindblad and Kossakowski
form is valid when the rotating wave approximation of quantum optics does not
hold. This leads to unphysical short-time transients. Consequently, the most gen-
eral form of the quantum Brownian motion is not fully understood. Anil Shaji, in
his 2005 University of Texas Ph.D. dissertation, “Dynamics of Initially Entangled
Open Quantum,” has found that in a simple dynamic map, complete positivity does
not hold (Shaji, 2005).



94 Quantum irreversibility

Appendix 5A: the quantum time reversal operator

Let us examine in more detail the structure of T introduced in this chapter (Wigner,
1932; Mathews and Venkatesan, 1975; Bohm, 1993). Now define T in a Hilbert
space, not that of superspace, although we use the same notation:

T Qi T
−1 = Qi (5A.1)

T Pi T
−1 = −Pi

T LT−1 = −L .

Consider

T [Q, P]T−1 = −[Q, P].
We have T (i h̄) T−1 = −i h̄. Thus, we must require that T is not linear but rather
antilinear (Wigner, 1932):

T (c1σ 1 + c2σ 2) = c∗1Tσ 1 + c∗2Tσ 2. (5A.2)

Let us mention some properties of antilinear operators. An adjoint operator is
antilinear:

(A f, g) = (
A†g, f

) = (
f, A†g

)∗
.

Now we let TH=HT and operate on the Schrödinger equation using the
antilinearity of T . We obtain

− i
δσ ′

δt
(xt) = Hσ

′
(xt) , (5A.3)

taking

TH=HT

for

σ ′ (xt) = Tσ (x, t) .

There is, thus, another solution to the Schrödinger equation for t, σ (t) . It is σ ′ =
Tσ for−t , the time reversal solution. We note that the time t has the range−∞ ≤
t ≤ +∞. Now we introduce T = U K , where K is the complex conjugation
operator and U is any linear operator. If U = I , then T H = HT implies that H
must be real, and Eq. (A5.3) is just the complex conjugate Schrödinger equation
for t

′ ≥ 0. T. Jordan has proved a stronger property for H than simply reality. He
proved the theorem, “If the negative part of the spectrum of H has a lower bound
and the positive part is unbounded then P , the parity operator, is linear and T , the
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time reversal operator, is antilinear” (Jordan, 1969). Further, using U †U = 1 and
T = U K ,

(Tφ, Tσ) = (φ, σ )∗ = (σ , φ) .

For any operator A,

(φ, Aσ) = (Tφ, T Aσ)∗ =
(

Tφ, A
′
Tσ

)∗
,

where A′ = T AT−1.

In the case of particles with angular momentum, such as spin, the third relation
in Eq. (5A.1) requires T ST−1 = −S. We may fulfill this by choosing T G =
exp

(
iπ Sy

)
K . Since K 2 = 1, then T 2 = exp 2π i Sy = (−1)S . Hence,

T 2=+1 integer spin
−1half odd integer spin.

Now let us consider time reversal in quantum scattering (Taylor, 1972). This has
much to do with our discussion of the Boltzmann equation in the previous chapter.
For scattering of particles without spin,

T exp (i Ht) = exp (−i Ht) .

Thus, the Möller wave operators

T�± = T

[
lim

t→∓∞ exp(i Ht) exp
(−i H 0t

)] = �∓T,

since T †T = 1. Hence,

�± = T †�∓T . (5A.4)

T interchanges �+ and �−. Only the latter has been used in our previous dis-
cussion in Chapter 4. From this, it follows that for the S matrix, S ≡ �−�+,
T−1S†T = S. Forming matrix elements of S between asymptotic “in” state φ and
“out” state χ , we have

〈χ |S|φ〉 = 〈
χ, T †S†Tφ

〉 = 〈
Tχ, S†Tφ

〉∗ = 〈
χT , S†φT

〉∗
. (5A.5)

Thus,

〈χ |S|φ〉 = 〈
φT |S|χ T

〉
. (5A.6)

We see that the S-matrix elements between “in” and “out” states are T invariant.
We conclude that the scattering transition probability W (χ ← φ) is the same for
W

(
φT ← χT

)
. This is a form of microreversibility. The case of particles with spin

is discussed in detail in the book by Taylor.
Finally, let us comment on the TCP invariance theorem of quantum field theories

(Luders, 1957; Schweber, 1962). This is discussed all too often in the context of
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irreversibility or its failure. We are treating the fields classically here, and the only
effect is to reverse A, the vector potential under T. Consider the current source of
A (or B). T reverses the currents and thus A (Wigner, 1932). The natural choice in
this classical limit is to choose C ⇒ I , so the invariance becomes PT invariance.
We will take this to be the case. Hence, [H, T P] = 0. This is consistent with the
previous theorem of Jordan and its requirements on the spectrum. The main point
is that if T and P invariance are not separately found true, then PT invariance
must hold. We note that PT is antilinear, since P is linear and T antilinear.

The charge-classical field interaction Hamiltonian is

H = 1

2m

(
P− e

c
A
)2 + e�

and is invariant under PT if � is a central potential, and T A = −A (Wigner,
1932), since the sources of the external field corresponding to A are currents. The
canonical P = m q̇ + e

c A. Thus, P →−P under more this, as must be.
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6

Entropy and dissipation: the microscopic theory

6.1 Introduction

The microscopic theory of dissipation in open quantum systems will be discussed
in this chapter. The central issue is the approach of an open quantum system to a
local or global equilibrium, thermodynamic equilibrium. Of course, this was begun
by Boltzmann in statistical mechanics, classically, in his famous work (Boltzmann,
1872; Balescu, 1975; Huang, 1987; McLennan, 1989).

The irreversible equations of the previous chapter, the quantum master equations
and the quantum Boltzmann equation, will be utilized to follow the wonderful path
set out in Boltzmann’s work. To some extent we will have success, yet not entirely,
since the trail is not at its end.

Central to the issue of dissipation is the entropy production theorem for an
inhomogeneous or homogeneous system. We will now turn to so-called non-
equilibrium thermodynamics to outline the macroscopic picture of what needs to
be achieved from the microscopic theory.

6.2 Macroscopic non-equilibrium thermodynamics

Macroscopic non-equilibrium thermodynamics will be outlined for a fluid system.
This thermodynamics is, of course, far more general than this system. This partic-
ular example is used in order to make a connection with the microscopic quantum
Boltzmann equation of Chapter 4 (de Groot and Mazur, 1962; Prigogine, 1967;
Callen, 1985; McLennan, 1989).

The macroscopic conservation laws for a fluid, for instance, are written in a
laboratory inertial frame as

∂ρ

∂t
+∇ · Jm = 0 (6.1)

∂ε

∂t
+∇ · S = 0 (6.2)

98



6.2 Macroscopic non-equilibrium thermodynamics 99

∂gi

∂t
+ ∂t ji

∂x j
= 0. (6.3)

Here ρ is the mass density, ρ(x, t), ε the energy density, and g the momentum den-
sity. All these are functions of x,t , which we shall not explicitly indicate. ti j is the
pressure tensor, Jm the mass flux, and S the energy flux. Of course, repeated indices
are summed one to three. These equations can be derived from the Boltzmann equa-
tion and the B.B.G.Y.K. hierarchy, as discussed in Chapter 4. Here, however, they
are phenomenological equations. For a non-isolated system, we have

∂gi

∂t
+ ∂t ji

∂x j
= Fi (6.4)

and
∂ε

∂t
+∇ · S = W. (6.5)

Fi is the external force per unit volume, and W the rate of doing work. If μ is the
fluid velocity, g =ρμ, and we may write Eq. (6.3) as

ρ

(
∂μi

∂t
+ μ ·∇μi

)
= ∂σ j i

∂x j
, (6.6)

where σ j i = ρμiμ j − t ji is the stress tensor.
The continuity equations must be equally true in all inertial frames. They are not

form invariant. Let us make a Galilean transformation of a fluid element moving
with velocity μ at t .

The transformation to the new inertial frame is x′ = x − wt . ρ is invariant, and
the fluid velocity in the moving coordinate is μ′

(
x′t

) = μ (x, t) − w. We obtain,
since ρ is invariant and �′ = �,(

∂ρ

∂t
+∇ · g

)′
= ∂ρ

∂t
+∇ · g.

We leave it as a problem to show that the transformations are also

t ′i j = ti j − wi g j − w j gi − ρwiw j

ε′ = ε − g · w+ 1

2
ρw2 (6.7)

and

s ′i = si −
(
ε − w · g+ 1

2
ρw2

)
wi − ti jwi + 1

2
w2gi .

With this in mind, let us consider the thermodynamics of a local moving frame
with velocity μ (x, t) in the fluid. w is a function of a particle position and time,



100 Entropy and dissipation: the microscopic theory

that is, w = μ (x, t). There is a succession of rest frames for each x, t of the fluid.
We consider the thermodynamics in these various frames. This is why the term
“non-equilibrium thermodynamics” is adopted. Let ρ0 = ρ indicate a local rest
frame, at x, t . We have

ρ0 = ρ

g0 = 0

ε0 = ε − 1

2
ρμ2

t0,i j = ti j − ρμiμ j

s0,i = si −
(
ε0 + 1

2
ρμ2

)
μi − t0i jμ j . (6.8)

For simplicity we ignore internal variables. The local intensive (additive) ther-
modynamic variables are ρ and ε0. Hence it is reasonable to assume that the
entropy per unit mass, s = s (ρ, ε0), and its derivative, ∂s

∂ε0
|ρ≡ 1

T , are functions
of x, t. T here is the local thermodynamic Kelvin temperature. s is not to be con-
fused with the vector s, the energy flux. The pressure and chemical potential may
be similarly defined locally (Callen, 1985). The total (global) entropy is

S =
∫

d3xρs. (6.9)

This is a result of the general property of additivity of the entropy. We have then
the first law,

T ds = d

(
ε0

ρ

)
+ pd

(
1

ρ

)
(6.10)

dp = ρ (dμ+ sdT ) ,

where the chemical potential μ is given by

μρ = ε0 + p − Tρs.

Let us now turn to dissipative fluxes and entropy production. If the local fluid
element is in equilibrium t0,i j = pδi j and the energy flux s0 = 0, then Eq. (6.8)
becomes

ti j = pδi j + ρμiμ j (6.11)

si =
(
ε0 + p + 1

2
ρμ2

)
μi .
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However, if this is not so, additional dissipative terms are added:

ti j = pδi j + ρμiμ j + t∗i j (6.12)

si =
(
ε0μi + pμi + 1

2
ρμ2μi + t∗i jμ j + s∗i

)
.

In the local rest frame, t0i j = pδi j + t∗i j , s0 = s∗. The terms with ∗ are the dissipa-
tive (also called irreversible!) parts. By means of Eq. (6.12), the conservation laws
may be rewritten as follows:

ρ

(
∂

∂t
+ μ ·∇

)
μ = ∇p −∇ · t∗(

∂

∂t
+ μ ·∇

)
ε0 = − (ε0 + p)∇ · μ− t∗j i

∂μi

∂x j
−∇ · s∗ (6.13)

and (
∂

∂t
+ μ ·∇

)
ρ = −ρ∇ · μ.

Let us introduce the substantial derivative,

D

Dt
≡ ∂

∂t
+ μ · D.

Form

DT

Dt
=

(
∂T

∂ρ

)
ε0

Dρ

Dt
+

(
∂T

∂ε0

)
ρ

Dε0

Dt

= −
[
ρ

(
∂T

∂ρ

)
ε0

+ h

(
∂T

∂ε0

)
ρ

]
∇ · μ−

(
∂T

∂ε0

)
ρ

[
t∗j i

∂μi

∂x j
+∇ · s∗

]
.

The enthalpy h = ε0 + p may be rewritten using the T dρs equation as

h = T

(
∂p

∂T

)
ρ

+ ρ

(
∂ε0

∂ρ

)
T

.

Introducing the specific heat, we have

DT

Dt
= −T

(
∂p

∂ε0

)
ρ

∇ · μ− (ρcv)
−1

(
t∗j i

∂μi

∂x j
+ ∇s∗

)
.

Now consider

Ds

Dt
=

(
∂s

∂T

)
ρ

DT

Dt
+

(
∂s

∂ρ

)
T

Dρ

Dt
.
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With this, we obtain the important relationship(
∂

∂t
+∇ · μ

)
ρs = − (ρT )−1

[
t∗j i

∂μi

∂x j
+∇ · s∗

]
. (6.14)

This shows that the entropy continuity depends only on the dissipative quantities
s∗, t∗i j . This is its importance.

From Eq. (6.14) we may write the time change of the global entropy,

dS

dt
=

∫
d3x

[
s∗∇T−1 − T−1t∗j i

∂μi

∂x j

]
−

∫
dA · (ρsμ+ T−1s∗

)
. (6.15)

Here the entropy flow appears as a flux across the area dA, and the dissipative
entropy production is given by

σ = s∗ ·∇T−1 − T−1t∗j i
∂μi

∂x j
. (6.16)

This separation of entropy change into a flow and spontaneous production is the
principal point of this section on dissipative thermodynamics. If there is no flow,
then we expect σ ≥ 0. This will be examined from the microscopic theory with the
irreversible equations we have obtained. In the case of zero flux, then,

dS

dt
≥ 0, (6.17)

the second law of thermodynamics.
We shall not, at this point, extend this discussion to the linear transport laws and

Onsager’s reciprocal relations. Comments were made on transport laws and the
Boltzmann equation in the previous chapter. The main focus has been to introduce
the entropy production due to dissipation.

In the chemical literature, see the book by Kondipudi and Prigogine (1998). The
introduction of a local entropy production and the dissipative quantities to a local
thermodynamics has been termed an extended irreversible thermodynamics. Partic-
ularly, see the work of Jou (1993, 1996). We prefer to utilize the title “dissipative”
to distinguish it from irreversible, the reasons now being clear. The approach here
taken is due to McLennan (1989).

Let us now consider the transport relations. t∗ and s∗ are functions of x, t through
their dependence on T (x, t), ρ (x, t) and μ (x, t). These relations may be non-
linear and have all order spacial derivatives. Considering Taylor expansions, the
simplest form is a linear one. For a fluid or gas with spherical symmetry, the
so-called linear transport laws are uniquely

s∗ = −λ∇T (6.18)

t∗i j = −2ηDi j − η′Dii .
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Here

Di j = 1

2

(
∂μi

∂x j
+ ∂μ j

∂xi

)
(6.19)

D = Dii = ∇ · μ
D = Di j − 1

3
δi j D.

Here λ is the thermal conductivity, η the shear, and η′ the bulk viscosity. It has
been emphasized that from a microscopic point of view, these relations are derived
in the process of obtaining the steady solution to the Boltzmann equation.

By means of these, an expression for the entropy production discussed above
may be found:

σ = λT−2 (�T )2 + T−1
[
2ηDi j Di j + η′D2

]
. (6.20)

λ, η, η′ are by hypothesis positive and thus also σ . Equation (6.20) is a special form
of a postulate of steady non-equilibrium thermodynamics (Callen, 1985; Kondipudi
and Prigogine, 1998).

The transport laws, Eq. (6.18), are written generally as

Jk =
′∑
j

L jkF j , (6.21)

where the fluxes Jk are linearly dependent on the generalized force F j , also called
affinity. L jk are the linear transport coefficients, generally tensors. The entropy
production is (Callen, 1985)

Ṡ =
∑

k

∇FkJk, (6.22)

with Fk = Fk − F0
k . F0

k is the equilibrium value. Eq. (6.20) is Eq. (6.22) for the
system being discussed.

Onsager (1931) proved that

L jk = Lkj . (6.23)

This symmetry is the major content of steady non-equilibrium thermodynamics
and has been verified extensively (Callen, 1985; Kondipudi and Prigogine, 1998).
For instance, in the case of the thermoelectric effect, the coefficient of the Thomson
effect is related to the derivative of the thermoelectric power (Callen, 1985).
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For the flux of the system being discussed here, we may write, generally,

s∗i = λi j
∂T

∂x j
− ai jk

∂μk

∂x j
(6.24)

t∗i j = −bi jk
∂T

∂xk
− ηi jkl

∂μk

∂xi
.

The Onsager theorem gives ai jk = −T b jki . These relations may be microscopi-
cally derived by Green–Kubo formulas (Green, 1951; Kubo, 1957). We shall not
go into this approach now but will treat it later in Chapter 15. However, see the
detailed discussion in McLennan (1989). Onsager brilliantly argued these results
by the consideration of the average equilibrium correlation function fluctuation,〈
δX j , δXk (τ )

〉
of the extensive parameters X j , Xk . This is a delayed correlation

moment between τ = 0 and τ . He assumed that there should be a time-reversible
microscopic symmetry,

〈
δX jδXk (τ )

〉 = 〈
δX jδXk (−τ)

〉
. (6.25)

From this we may obtain, at τ = 0,

〈
δX jδ Ẋk

〉 = 〈
δ Ẋ jδXk

〉
, (6.26)

and using the macroscopic law,

δ Ẋk =
∑

i

LikδFi . (6.27)

From Eq. (6.26) and Eq. (6.27) there follows

∑
i

Lik

〈
δX jδFi

〉 =∑
i

Li j 〈δFiδXk〉 .

We then obtain Eq. (6.23) also. This is indeed puzzling, in the light of the discus-
sion in the previous chapter. Eq. (6.25) is a reversible equation, whereas Eq. (6.26)
is irreversible and dissipative, containing transport relations.

The answer to this conundrum is that Eq. (6.25) is an equilibrium relationship.
It is due to microscopic reversibility in the equilibrium solution. This will be seen
in detail in Section 6.5, when we consider the derivation of the Onsager symmetry
from the point of view of the open system Pauli equation.
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6.3 Dissipation and the quantum Boltzmann equation

In Chapter 4 we wrote the Wigner function form of the quantum Boltzmann
equation, Eq. (4.31), as

∂tw(R,V)+ m−1P ·∇Rw (R,V)

=
∫ ∫

dV1d�

⎧⎨⎩ dσ
(

V1, V2→V′1,V′2
)

d� |V1 − V2|
× [

w
(
R,V′1

)
w

(
R,V′2

)− w (R,V1) w (R,V)
]

⎫⎬⎭ .

t ≥ 0 (6.28)

This quantum Boltzmann equation has exactly the classical form except that dσ
d� is

the quantum differential cross section and w is the Wigner function. This makes
for significant differences, because w ≯ 0.

Already in Eq. (4.32) and following, we have derived the continuity equations,
Eq. (4.33), corresponding to Eq. (6.18) and Eq. (6.19). We have followed the
Chapman–Enskog work (Chapman and Cowling, 1970; McLennan, 1989), and we
obtained the formulas for the dissipative transport coefficients, λ and η, the thermal
conductivity and shear viscosity. The Chapman–Enskog expansion was based upon
the assumption of

w′ ≡ f 0 (1+�) ,

where we interpreted

f 0 (RV ) = n
( m

2πkT

) 3
2

exp
[
−

( m

2kT

)
(V − μ)2

]
(6.29)

as the local equilibrium solution to the Boltzmann equation, Eq. (6.28). This is
simply proved, classically (Balescu, 1975; McLennan, 1989).

But it is more subtle in the quantum case. (At this point we drop the explicit
vector notation for R, V .) Now f 0 (R, V ) must obey[

f 0
(
R, V ′) f 0

(
R, V ′

2

)− f 0 (R, V1) f (R, V2)
] = 0

and

f 0 (R, V ) ≥ 0.

R. L. Hudson (1974) has proved that the necessary and sufficient condition for the
Wigner function to be positive is that it correspond to a wave function, which is
quadratically positive,

ψ (x) = exp

(
− 2

w

(
ax2 + 2bx + c

))
,
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i.e. a coherent state (see Chapter 2). Thus, the only density matrix satisfying the
condition of Eq. (6.31) is Eq. (6.29). Here we make a similar argument, as in the
classical case (McLennan, 1989), to assign the constants.

f 0 is now positive. We also have the microscopic conservation laws for the
invariants mV, m V 2

2 and 1, of the two-body elastic scattering. We then have[
ln f 0

(
V ′

1

)+ ln f 0
(
V ′

2

)− ln f 0 (V1)− ln f 0 (V2)
] = 0,

thus satisfying the condition of Eq. (6.30). In local equilibrium f 0 is a positive
Gaussian in V and parameterized by u (R) and T (R), and is uniquely positive.

The use of the ln is not possible out of equilibrium, assuming that w (R, V, t) is
positive. The fact that local equilibrium is the only positive solution to Eq. (6.28)
would imply that all time-dependent solutions are negative. This is a serious pitfall
in interpreting Eq. (6.28) as closely analogous to the classical case. How close?
This is as yet an unanswered problem suggested by the Hudson theorem.

One way to continue, of course, is to reduce the spacially dependent to the
spacially independent case and obtain an equation for the marginal distribution
function

ϕ (V, t) =
∫

d Rw (R, V, t) .

It is

∂tφ (V, t) =
∫ ∫

dV1d�

{
dσ(V1V2→V ′1V ′2)

d� |V1 − V2|
× [

φ
(
V ′

1, t
)
φ
(
V ′

2, t
)− φ

(
V1,t

)
φ (V2, t)

] }
≡ J (φ)

(6.30)

and has a form exactly like the classical case. Since φ(V, t) ≥ 0, the same analysis
may now be made (Balescu, 1975; Huang, 1987). For equilibrium,[

φ0

(
V ′

1

)
φ0

(
V ′

2

)− φ0 (V1) φ0 (V2)
] = 0,

or

lnφ0

(
V ′

1

)+ lnφ0

(
V ′

2

) = lnφ0 (V1)+ lnφ0 (V2) .

The collisional constants of the two-body scattering then give

φ0 (V ) = n
( m

2πkT

) 3
2

exp
[
−

( m

2kT

)
(V − μ)2

]
, (6.31)

the global Maxwellian (McLennan, 1989). Here μ, T are not spacially dependent
but equilibrium thermodynamic properties of the entire homogeneous system. We
must note that Eq. (6.30), except for the nonlinearity, is of a form of the Pauli
equation discussed in the previous chapter.
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The famous Boltzmann H theorem (for a homogeneous system) may now be
obtained quantum mechanically. We define

H =
∫

d3Vφ lnφ, (6.32)

and from the symmetries of the two-body scattering, we may write the fundamental
relation∫

d3V h J (φ) = 1

4

∫
d3V d3V1d� |V1 − V | σ

× [
h + h1 − h′ − h′1

] [
φ
(
V ′)φ (

V ′
1

)− φ (V ) φ (V1)
]
,

(6.33)

where h is any function of V (Balescu, 1975; Huang, 1987; McLennan, 1989).
Using this, we write the entropy production:

dH

dt
=

∫
d3V (1+ lnφ) J

= 1

4

∫
d3V d3V1d�

∣∣V1 − V ′
1

∣∣ σ (
φ′φ′1 − φφ1

)
ln

φφ1

φ′φ′1
. (6.34)

And since

(y − x) ln
x

y
< 0, y > 0, x > 0, (6.35)

therefore,

dH

dt
≤ 0. (6.36)

For equilibrium we choose

H0 =
∫

d3Vφ0 lnφ0, (6.37)

and we have ∫
d3Vφ lnφ0 =

∫
d3Vφ0 lnφ0

H− H0 =
∫

d3Vφ ln
φ

φ0

=
∫

d3Vφ0

{
1+ φ

φ0

[
ln

φ

φ0
− 1

]}
. (6.38)

Thus,

H ≥ H0. (6.39)
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Here H0 is the lower bound of H. H > 0 and is monotonically decreasing as
t → ∞. Thus, the equilibrium value is obtained as t → ∞ and Ḣ = 0. It
is a Liapunov function (Liapunov, 1949; Lasalle and Lefschitz, 1961) showing
that asymptotically as t → ∞, φ (p, t) → φ0 (p, t), the equilibrium global
Maxwellian.

Choose S = kH. S is the microscopic representation of entropy, and Ṡ
the entropy production. k is Boltzmann’s constant, k = 1.380658 × 10−23 J

K ,

introduced for historical reasons. Boltzmann proved Eq. (6.39) classically for
f (R,V, t) ln f (R,V, t). We remark that we have here assumed, using φ (p, t) ,
that the system is initially homogeneous and evolves homogeneously to the global
Maxwellian, φ0. There is no strong proof classically that an initially inhomoge-
neous system governed by Eq. (6.28) evolves to a homogeneous state governed by
φ0. In fact, it is probably not so.

The H theorem led to the famous discussion of Boltzmann with Zermelo, the
recurrence paradox or the Wiederkehreinwand. We invite the student to read this in
the marvelous compilation of Brush (1966). Zermelo first argued by the Poincaré
recurrence theorem (Poincaré, 1890) that in an isolated classical system, any initial
phase state must recur with near precision in a finite time. This being so, how
can the monotonic decreasing H function be correct, having been derived by his
dynamic equation (albeit approximate)? We must note that Zermelo formulated
the recurrence theorem in a new way based upon the conservation dynamically
of phase. This proof is repeated in the book of Huang (1987) and in the article on
stochastic processes by Chandresekhar (1943). The proof that a similar result holds
also in quantum mechanics is given by Bocchieri and Loinger (1957). We give this
proof in the appendix to this chapter.

How did Boltzmann answer? He agreed that the Poincaré theorem is valid but
then introduced the new element of interpreting his equation in a probabilistic
sense, as is done universally today. Poincaré recurrences are thus fluctuations from
the average, which at some long time may, infrequently, be very large. This picture
Boltzmann sketched in his final paper of the series. He said, “I’ve also emphasized
that the second law of thermodynamics is from the molecular point of view merely
a statistical law” (Boltzmann, 1896). In addition, in an appendix to his paper, he
estimated a macroscopic recurrence time, a task repeated in subsequent years by
others. He wrote, for his estimate,

n = even
N

b
= 2 (2π)

(3n−4)
2 a3(n−1)

3 • 5 • • • 3(n − 1)
sec.

n is the number of molecules, a = 5 × 1011 m/sec, and b = 2 × 1027 collisions
per sec. The point is made that a large complete macroscopic recurrence is super-
astronomical in time.
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In his second paper, Zermelo does not accept the probabilistic view and insists
that the entropy principle has not yet been obtained from pure mechanical argu-
ments as he desires. He also raises the question of the special role of initial states,
saying, “But as long as one cannot make comprehensible the physical origin of the
initial state one must merely assume what one wants to prove” (Zermelo, 1896).
He then turns to the choice of irreversible conditions and says, “Not only is it
impossible to explain the general principle of irreversibility it is also impossible
to explain individual irreversible processes themselves without introducing new
physical assumptions, at least as far as the time direction is concerned” (Zermelo,
1896).

Faced with this, Boltzmann, in his second rejoinder, turns easily to the justifica-
tion of the use of probability in what we might call the law of large numbers. He
simply asserts that his theory is designed to be applied to a large system in which
n (his) is large, almost macroscopic.

The second question concerning the choice of improbable initial conditions is
more difficult. He suggests two possible assumptions: (1) the universe is in an
improbable state, and the system chosen from it and isolated from it at some time
is also in an improbable state, and the entropy must increase; (2) the universe is
in equilibrium. A subsystem fluctuates from equilibrium, and in it, the direction of
time is chosen for there always to be an increase in entropy.

The discussion stops, although Zermelo implies he will turn to it again with a
purely mechanical answer. At any rate, the great debate has begun which will be
taken up with enthusiasm in the next hundred years or longer. I cannot possibly do a
complete bibliography here, but only mention the more recent articles of Prigogine
(1973) and of Lebowitz (1993).

Now, in order to proceed further with an inhomogeneous case in obtaining
the H theorem, let us linearize the Boltzmann equation by the Chapman–Enskog
procedure. This has been done earlier in Eq. (4.36).

We expand

w (Rp, t) = f 0
1

(
1+�1 +�2 + · · ·) , (6.40)

where the local equilibrium is given by Eq. (6.29). Now, as earlier,∫
d3 pψ

(
w − f 0

1

) = 0

for the summational invariants ψ. Thus,∫
d3 pψφ f 0

1 =
∫

d3 pψφi = 0. i = 1, 2, . . .
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φ1 is linear in the first-order spacial gradients. With this the Boltzmann equation
reduces to the linear form(

∂

∂t
+ v ·∇

)
ln f 0 = −nI�1,

where

nI� =
∫

d3v1d� |g| σ f 0
1

[
�+�1 −�′ −�′

1

]
. (6.41)

Here, as customary, we changed variables from p to v, g = ∣∣v− v′
∣∣ , and now

dropped the superscript 1 in �. Again, as discussed in Chapter 3, we may use the
hydrodynamic equations to write the right side of Eq. (6.41) as

I� = −1

nkT 2

(
1

2
mv2 − 5

2
kT

)
v ·∇T − 1

nkT
m

(
viv j − 1

3
δi jv

2

)
∂μi

∂x j
. (6.42)

The solution to this linear integral equation may be written as

� = − 1

nkT 2
Si

∂T

∂xi
− 1

nkT
Ti j

∂μi

∂x j
, (6.43)

where the two integral equations are now

ISi =
(

1

2
mv2 − 5

2
kT

)
vi ≡ Si (6.44)

ITi j = m

(
viv j − 1

3
δi jv

2

)
≡ Ti j .

With Eq. (6.43) we may obtain the transport laws for λ, the thermal conductivity,
and η, the viscosity. We have outlined this in Chapter 4.

Consider the scalar product,

(k, I h) ≡ n2
∫

d3vd3v1d�(g) σ f 0k
[
h + h1 − h′ − h′1

]
. (6.45)

We may show, similarly to the proof of the fundamental lemma in Eq. (6.33), that

(k, I h) = (I k, h) . (6.46)

Thus, for the linearized Boltzmann equation,

(h, I h) ≥ 0. (6.47)
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This is the important result. The equality holds if h is a summational invariant.
Using the integral equations given as Eq. (6.44) and the general expressions for λ

and η,

λ = 1

3kT 2
(Si ,Si )

η = 1

kT

(
Txy,Txy

)
. (6.48)

We recognize

n2k (�, I�) = −T−2S∗·∇T − T−1t∗i j

∂μ

∂x j
. (6.49)

k is here Boltzmann’s constant. This is the expression for the irreversible thermo-
dynamic entropy production. See Eq. (6.16). We have for the entropy production

σ = n2k (�, I�) ≥ 0. (6.50)

We have obtained the Boltzmann entropy production theorem for inhomoge-
neous systems by utilizing the linearized Boltzmann equation and the associ-
ated Chapman–Enskog procedure, in order to arrive at the transport coefficients
with Eq. (6.48) and Eq. (6.49) (McLennan, 1989). The central points are the
inequality, Eq. (6.47), the use of the general thermodynamic definition of entropy
production, Eq. (6.16), and the microscopic relation Eq. (6.46). For the inhomoge-
neous case, we can do no more. Eq. (6.50) may be used as a basis for a variational
solution to the linearized Boltzmann equation. One can verify that Eq. (6.42) has
solutions, providing

(ψ, Si ) =
(
ψ, Ti j

) = 0.

This can be shown to be the case.

6.4 Negative probability and the quantum H theorem

In an essay dedicated to David Bohm, Feynman (1988) argued the possibility of
negative probabilities in classical and quantum mechanics. There he gave a number
of interesting simple examples, from a roulette wheel to a two-level spin system.
We invite the reader to enjoy this. He pointed out the Wigner function as a quantum
manifestation of negative probability, arguing that such a concept is a helpful and
useful approach which need not or should not be an observable quantity.

We will carry this idea further to treat the Wigner function seriously as a neg-
ative probability in the derivation of the quantum Boltzmann H theorem, directly
alleviating some of the difficulties discussed in the previous section.
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Consider the Wigner function Boltzmann equation, Eq. (6.28). Define again

H =
∫

dRdvw (R, v,t) lnw (R, v, t) . (6.51)

By means of Eq. (6.28) we may form an equation for Ḣ as before. We operate there
with ∫

dRdv (1+ lnw)

and obtain
∂

∂t

∫
dRdvw lnw = dH

dt
. (6.52)

The external force has been neglected, and so have surface flows at large volume.
Here the collisional functional is

I (φ) =
∫

dvdv1d� |v − v1| dσ

d�
× φ

[
w1w − w′1w

′] . (6.53)

By scattering symmetries we write

4I (1+ lnw) = I (1+ lnw)+ I
(
1+ lnw1

)− I
(
1+ lnw′1

)− I (1+ lnw) .

(6.54)

Now consider the difference of the quantum from the classical in the meaning of
lnw. Since w may be negative, we must consider the complex representation of
ln z:

log z = log r + i (θ ± 2nπ) ; n = 0, 1, . . . (6.55)

We will choose the principal branch (n = 0), and then

log z = log r + iθ; (−π < θ ≤ π) . (6.56)

Maintaining the principal branch, we have the properties

log z1 + log z2 = log (z1z2) (6.57)

log z1 − log z2 = log

(
z1

z2

)
. (6.58)

It is the Eq. (6.57) relation that we wish to maintain as a thermodynamic additive
property. For the special case of negative probabilities, z = |w| exp (+iπ), and

logw1 + logw2 = log |w1| + log |w2| + 2iπ

= log |w1| + log |w2| (6.59)



6.5 Entropy and master equations 113

on the principal branch. And

log |w1| − log |w2| = log
|w1|
|w2| . (6.60)

Now, for negative probabilities, we may use Eq. (6.59) and Eq. (6.60) in Eq. (6.52)
and obtain from Eq. (6.54) exactly the classical result:

4I (�) = −
∫

dv
∫

dv1 |v − v1| σd�L (x, y) , (6.61)

where

L (x, y) = (x − y) ln

(
x

y

)
(6.62)

and

x = ∣∣w′∣∣ ∣∣w′1∣∣ > 0

y = |w| |w1| > 0.

All this is as in the classical case, and L (xy) ≥ 0, since x, y are positive. Hence,

dH

dt
≤ 0, (6.63)

or S = −kH.
dS

dt
≥ 0. (6.64)

This is true for positive and negative w. The equilibrium value is dS
dt = 0, which

requires
∣∣w′1∣∣ ∣∣w′2∣∣ = |w1| |w2| . By the familiar argument, already made at Eq.

(6.31), we obtain a positive Gaussian distribution. Both the positive and the nega-
tive approach the Gaussian distribution. This is consistent with the Hudson theorem
previously discussed.

Now out of equilibrium S is complex:

S = −k
∫

dvdRw lnw = k
∫

dvdR |w| [ln |w| + π i] . (6.65)

This precludes the “counting” interpretation of entropy. A physical interpreta-
tion is not apparent. A few more remarks on this will be made in the section on
equilibrium statistical thermodynamics.

6.5 Entropy and master equations

Quantum master equations were discussed and derived in Chapter 3 for open sys-
tems. In the previous chapter the elements of irreversibility were derived for these
equations.
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Here we will turn to dissipation and entropy for such equations and the physics
and chemistry they describe. This is parallel to the preceding discussions of kinetic
theory. We will see that the discussion is technically quite different and the limits
are different from those previously discussed.

First we consider the Pauli equation for closed systems (Pauli, 1928). Eq. (3.25)
was

d

dt
P (α, t) =

∑
β

[
Wβa P (β, t)−Waβ P (α, t)

] ; t ≥ 0. (6.66)

P (α, t) = ραα (t), the probability of state |α〉. The interaction potential V is
Hermitian, and

Wαβ = 2π
∣∣Vαβ

∣∣2 δ (E (α)− E (β))

Wαβ = Wβα. (6.67)

We also note that P (α, t) are positive. It is quite simple to obtain an H theorem
from this equation. We define

H =
∑
α

P (α, t) ln P (α, t) . (6.68)

It has the additive property for independent systems. We operate on Eq. (6.51) with∑
γ (1+ ln P (γ , t)). We have

dH

dt
=

∑
γβ

(1+ ln P (γ , t))
(
P (β, t) Wβγ − P (γ , t) Wγβ

)
.

Since ∑
gβ

P (β) Wβγ =
∑
γ β

P (γ ) Wγ β,

we have
dH

dt
=

∑
βγ

ln P (γ , t)
(
P (β, t) Wβγ − P (γ , t) Wγ β

)
.

This may be written

dH

dt
=

∑
βγ

P (β, t) Wβγ ln

(
P (γ , t)

P (β, t)

)
.

By changing indices and using Wγβ = Wβγ , we obtain

dH

dt
= 1

2

∑
βγ

Wγβ (P (β, t)− P (γ , t)) ln
P (γ , t)

P (β, t)
. (6.69)



6.5 Entropy and master equations 115

We use the same inequality as in the Boltzmann equation, Eq. (6.35). Since P ≥ 0,

(P (β, t)− P (γ , t)) ln
P (γ , t)

P (β, t)
≤ 0, (6.70)

and since Wγβ > 0, we obtain the Pauli H theorem,

dH

dt
≤ 0; t ≥ 0. (6.71)

Not surprisingly, it is the same result as with the spacially independent Boltz-
mann equation. H is again a Liapunov function (Liapunov, 1949), assuring the
time-asymptotic stability of the t → ∞ solution. We may again define the
thermodynamic entropy, S:

S = −kH, (6.72)

k being Boltzmann’s constant. At equilibrium, S is a maximum as desired, and
because of stability,

dS

dt
= 0. (6.73)

From Eq. (6.53) we see that the equilibrium solution is

P (β,∞) = P (γ ,∞) for E (α) = E (γ ) (6.74)

= 0 otherwise,

where |β〉 , |γ 〉 are states of the unperturbed energy H 0 |α〉 = E (α) |α〉, the
unperturbed energy shell.

The equilibrium solution is microcanonical. Further, Seq = +k
∑

α Pmicro (α)

ln Pmicro (α). We should note that this is microcanonical equilibrium on the unper-
turbed energy states and not on the state of H = H 0 + V, which would be
the beginning of a discussion of an equilibrium thermodynamics. This will be
discussed in Chapter 7.

Let us now turn to the case of open systems, which is our focus. Here the
situation is far more difficult and, as we shall see, less finished. We will begin
with the Lindblad–Kossakowski equation (Kossakowski, 1972; Lindblad, 1976).
As discussed and derived in Chapter 4, the solutions of this master equation are
the necessary and sufficient conditions for 〈φ, ρφ〉 being positive for any |φ〉. Its
importance is that it represents a mathematically rigorous quantum, though lim-
ited Brownian motion description, concerning which there is much recent interest.
However, the physical content is limited, as has been recently discussed by Monro
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and Gardiner (1996). We consider the Lindblad–Kossakowski equation in a special
form (Gorini et al., 1978):

ρ̇ = Lρ t ≥ 0 (6.75)

Lρ = 1

2

N2−1∑
α,β=1

Cαβ

{[
V S
α ρ (t) , V †S

β

]
+

[
V S
α , ρ (t) V †S

β

]}
(6.76)

for an N -level system where

H SR =
N2∑
α=1

V S
α

⊗
V R
α , V † = V, and Cαβ > 0 and symmetric.

This results from the Born approximation (weak coupling) with a free Bose or
Fermi reservoir. Another point of view which gives this result is the singular limit
discussed in Chapter 4. In this case (see Gorini et al., 1978),

hαβ (t)→ Cαβδ (t) . (6.77)

We may overlook the mathematical details but simply be concerned with this
restricted form of the Lindblad equation. This will serve our purposes here. In
terms of system states |i〉,

H S =
∑

i

Ei |i〉 〈i | .

We may write the commutators in Eq. (6.76) as

[Vα | j〉 〈 j | ρ |k〉 〈k| Vβ − Vβ | j〉 〈 j | Vα |k〉 〈k| ρ]
− [Vα | j〉 〈 j | ρ |k〉 〈k| Vβ − ρ | j〉 〈 j | Vβ |k〉 〈k| Vα].

Now, in the above, by an argument of Spohn and Lebowitz (1978), we consider
diagonal elements of ρ only, taking always

ρ̇ =
∑

i

|i〉 〈i | ṗi ; ṗi ≥ 0. (6.78)

This is justified by

exp (Lt) (exp
(−i H S)ρ exp

(
i H St

)) = exp
(−i H St

)
exp(Lt)ρ exp

(
i H St

)
.

(6.79)
The diagonal elements are an invariant space, and we obtain

ṗi =
∑

j

∑
αβ

Cαβ

[
(Vα)d j

(
V †
β

)
d j

p j −
(
Vβ

)
d j

(
V †
α

)
d j

pi

]
; t ≥ 0. (6.80)



6.5 Entropy and master equations 117

This is a Pauli equation for the probabilities p j (t) ≥ 0. Now

Wi j =
∑
αβ

Cαβ (Vα)i j

(
Vβ

)
j i
. (6.81)

We note Wi j �= Wji . However, Wi j > 0, since V †
β = Vβ.

To define the equilibrium state, we assume the KMS (Kubo–Martin–Schwinger)
boundary conditions (Huang, 1987) for the density matrix satisfying

Tr [ρAB (t)] = Tr [ρB (t − iβ) A] (6.82)

for all observables A, B. From this the reservoir correlation function is

hαγ (ω) =
∫ +∞

−∞
dt exp (−iωt)TrR

(
ωRVγ Vα (t)

)
.

This has the time invariance of ωR, the equilibrium density matrix for the
reservoirs. For a simple system, ωR = exp (−βH) Z−1. We have

hαγ (ω) = hγ α (−ω) expβω, (6.83)

and thus from the Pauli equation at equilibrium where ṗ j = 0,

Wjk exp
(−βE S

k

) = Wkj exp
(−βE S

j

) ≥ 0. (6.84)

We will define the conditional entropy

SC

(
f

g

)
= −kTr f log

f

g
. (6.85)

f and g are positive probabilities. We will now use a theorem due to Voigt (1981).
We may view Eq. (6.80) with Eq. (6.81) as a Markov equation for pi . We write Eq.
(6.80) as

ṗi (t) = Pt pi (t) ; t ≥ 0. (6.86)

It has the property pi (t) ≥ 0. The Voigt theorem is from Mackey’s book, with
slight rewording (Mackey, 1992).

Let Pt be a Markov operator; then

SC

(
Pt f

Pt g

)
≥ SC

(
f

g

)
(6.87)

for f ≥ 0 and for all probabilities g.
Now let g = p∗i , the equilibrium solution p∗i = Pt p∗i , and f = pi (t) . We have

SC

(
Pt pi

p∗i

)
≥ SC

(
pi (t)

p∗i

)
; t > 0. (6.88)
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The conditional entropy is an increasing nondecreasing function which has as a
maximum SC

(
p∗i | p∗i

) = 0. Note that the Markov process is irreversible, since
the Pauli equation, Eq. (6.80), also is irreversible. The main limitation for a more
general argument based on the Lindblad equation, Eq. (6.75), is the following:
although ρ is of a completely positive form, it cannot, in general, be construed to
be of the Pauli form, and thus Voigt’s theorem cannot be assured. However, we
could have used this argument earlier for the closed system Pauli equation, Eq.
(6.76). There the system has a microcanonical equilibrium, and S (Pt pi ) ≥ S (pi )

for all pi .

Let us consider a different interpretation of this result by returning to entropy
production and flows previously considered in this chapter (Spohn and Lebowitz,
1978; Mackey, 1992). We begin with the entropy continuity law,

∂S

∂t
= −divJs = σ , (6.89)

σ being the local entropy production and Js the flow. We integrate on the system
coordinates and obtain

dStotal

dt
= σ total − Jtotal. (6.90)

Jtotal is the total entropy flow into the system due to the energy loss in the reservoir:

Jtotal = −βd Q

dt
= dTrρ (t)

dt
log ρβ. (6.91)

Here ρβ = Z−1 exp
(−βH R

)
; we assume a single reservoir in canonical equi-

librium as discussed in this section. A steady state may not be possible, nor is it
necessary for the discussion now being presented. Now we integrate over time. We
have

S (t)+ Trρ (t) log ρβ − S (0)− Trρ (0) log ρβ =
∫ t

0
σ ltotal (t) dt.

We introduce the conditional entropy, SC

(
f
g

)
, and obtain

[SC
(
ρ (t) | ρ∗)− SCρ (0) | ρ∗)] =

∫ t

0
σ total (t) dt = σ̄ (t) . (6.92)

Thus, the Voigt theorem gives∫ t

0
σ total (t) dt ≥ 0; t ≥ 0. (6.93)

The time average of the total entropy production over any infinitesimal time is pos-
itive. The change in the conditional entropy is related to the time average entropy
production.
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Let us now return and comment on the fundamental result, which assures that
SC

(
Pt pi | p∗i

)
is ever increasing to its maximum, Si

(
p∗i | p∗i

) = SC (1) = 0,
where

Pt p∗i = p∗i (6.94)

is the equilibrium state. We have assumed that it exists and is unique. We must then
examine the zero eigenvalues of the Pauli equation, Eq. (6.80), which we will not
do. A slightly more general derivation of these results has been given by Spohn and
Lebowitz (1978). It is also more complicated.

Spohn and Lebowitz have argued that the results may be generalized to more
than one independent reservoir, L = L1 + • • + Lr , β1 • •βr and

σ̄ total =
r∑

k=1

σ̄ k total. (6.95)

From here we will drop the “total” in the notation, leaving it to be understood.
Now we assume the steady state thermodynamic postulate

σ =
k∑

r=1

Xk Jk, (6.96)

and for the heat flow case we take

Xk =
(
β − βk

)
. (6.97)

Further, we introduce the linear transport coefficient assumption

Jk =
r∑

j=1

Lkj X j . (6.98)

Thus, as designed, we have

σ =
r∑

k, j=1

Lkj (β) Xk X j . (6.99)

The entropy production is quadratic in Xk , and since σ is positive and real, so are
Lkj (β).

The symmetry will now be examined. This is the Onsager result (Onsager,
1931). Let us now use the Green–Kubo formula for the thermal conductivity
matrix (Lebowitz and Shimony, 1962; McLennan, 1989). This will be discussed
in Chapter 15. Here

Lkj (β) =
∫ ∞

0
dt Tr

[
Jkβ (t) Jjβρβ

]
, (6.100)
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where Jkβ (t) = exp (L∗t) Jkβ , L∗ being again the Markovian weak coupling
Heisenberg operator.

The steady state is LS

(
ρS

) = 0. We may now write the detail balance condition
(Kossakowski et al., 1977), since V ∗ = V , and L∗ = L in the model considered,
Eq. (6.76). For steady state LSρS = 0,

exp (LSt)
(
Lkjρβ

) = exp
(
L∗St

)
(Lkjρβ). (6.101)

This is difficult to discuss in more general cases (Gorini et al., 1978; Spohn and
Lebowitz, 1978) and is a major obstacle to general proofs of Onsager’s result. To
continue, and using the condition

[
Jk j , ρβ

] = 0, we have

Tr
[
exp

(
L∗St

)
Jkβ Jjβρβ

] = Tr
[
Jkβ exp (LSt) Jjβρβ

] =
Tr

[
Jkβ exp

(
L∗St

)
Jjβρβ

] = Tr
[
exp

(
L∗t

)
Jjβ Jkβρβ

]
, (6.102)

leading to the Onsager symmetry

Lkj = L jk . (6.103)

Appendix 6A: quantum recurrence

The proof of quantum recurrence (Bocchieri and Loinger, 1957) is quite direct. It
says that, given a discrete energy Schrödinger state ψ (t), having its value ψ (t0)
at t = t0, there exists a time T for which ‖ψ (T )− ψ (t0)‖ < ε for an arbitrary
small ε.

The formal proof is to consider the solution

ψ (t) =
∞∑

n=0

rn exp (i Ent) un,

where Hun = Enun . rn are real and positive. Thus,

‖ψ (T )− ψ (t0)‖ = 2
∞∑

n=0

r2
n (1− cos En (T − t0)) .

We may choose N such that

∞∑
n=N

(1− cos En (T − t0)) < ε.

Then we prove by the property of almost periodic functions that there exists a T−t0
such that
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N−1∑
n=0

(1− cos En (T − t0)) < ε.

The theorem fails for a continuous spectrum.
A considerable discussion is given in the book of Schleich (2001) of estimates

of recurrent times, particularly in quantum optic models. Experimental results are
also discussed extensively. The theorem was worked out for density matrices by
Percival (1961). He placed conditions on the interaction potentials for quantum
recurrences to occur in the entropy. No estimates were made of T .

References

Balescu, R. (1975). Equilibrium and Non-equilibrium Statistical Mechanics (New York,
Wiley), rev. 1999 as Matter out of Equilibrium (London, Imperial College Press).

Bocchieri, P. and Loinger, A. (1957). Phys. Rev. 107, 337.
Boltzmann, L. (1872). Further studies on the thermal equilibrium of gas molecules. Trans.

S. Brush (1966) in Kinetic Theory 2 (London, Pergamon).
Boltzmann, L. (1896). Reply to Zermello’s remarks on the theory of heat. Trans. S. Brush

(1966) in Kinetic Theory 2 (London, Pergamon).
Brush, S. (1966). Kinetic Theory 2 (Oxford, Pergamon).
Callen, H. (1985). Thermodynamics, 2nd edn. (New York, Wiley).
Chandresekhar, S. (1943). Rev. Mod. Phys. 15, 1.
Chapman, S. and Cowling, T. G. (1970). The Mathematical Theory of Non-uniform

Gases, 3rd edn. (London, Cambridge University Press).
de Groot, S. R. and Mazur, P. (1962). Non-equilibrium Thermodynamics (Amsterdam,

North-Holland).
Feynman, R. P. (1988). Quantum Implications in Honor of David Bohm, ed. B. J. Hiley

and F. D. Peat (London, Routledge).
Gorini, V., Frigerio, A., Kossakowski, A. and Sudarshan, E. C. G. (1978). Rep. Math.

Phys. 13, 149.
Green, H. S. (1951). J. Math. Phys. 2, 344.
Huang, K. (1987). Statistical Mechanics, 2nd edn. (New York, Wiley).
Hudson, R. (1974). Rep. Math. Phys. 6, 249.
Jou, D. (1993, 1996). Extended Irreversible Thermodynamics (New York, Berlin,

Springer).
Kondipudi, D. and Prigogine, I. (1998). Modern Thermodynamics (New York, Berlin,

Wiley).
Kossakowski, A. (1972). Rep. Math. Phys. 3, 247.
Kossakowski, A., Frigerio, A., Gorini, V. and Verri, M. (1977). Commun. Math. Phys. 57.
Kubo, R. (1957). J. Phys. Soc. Jpn. 12, 570.
Lasalle, J. P. and Lefschitz, S. (1961). Stability by Liapunov’s Direct Method with

Applications (New York, Academic Press).
Lebowitz, J. (1993). Phys. Today, Sept., 32.
Lebowitz, J. and Shimony, A. (1962). Phys. Rev. 128, 391.
Liapunov, A. M. (1949). Problème général de la stabilité du movement. Ann. Math.

Studies 17 (Princeton, Princeton University Press).
Lindblad, G. L. (1976). Commun. Math. Phys. 48, 119.



122 Entropy and dissipation: the microscopic theory

Mackey, M. G. (1992). Time’s Arrow: The Origins of Thermodynamic Behaviour (New
York, Springer).

McLennan, J. A. (1989). Introduction to Non-equilibrium Statistical Mechanics
(Englewood Cliffs, N.J.: Prentice Hall).

Munro, W. J. and Gardiner, C. W. (1996). Phys. Rev. A 53, 2633.
Onsager, L. (1931). Phys. Rev. 37, 405 and 38, 2265.
Pauli, W. (1928). Festschrift zum 60 Geburtstag A. Sommerfeld. (Leipzig, Hirzl).
Percival, I. (1961). J. Math. Phys. 2, 235.
Poincaré, H. (1890). “Sur le probléme des trois corps et les équations de la dynamique,”

Acta Math., 13, 1.
Prigogine, I. (1967). Introduction to Thermodynamics of Irreversible Processes (New

York, Interscience).
Prigogine, I. (1973). Statistical interpretation of non-equilibrium entropy. In Acta Physica

Austriaca, Suppl. 10, The Boltzmann Equation, ed. G. D. Cohen and
W. Thirring (New York, Springer).

Schleich, W. P. (2001). Quantum Optics in Phase Space (Berlin, Wiley–VCH).
Spohn, H. and Lebowitz, J. L. (1978). Adv. Chem. Phys. 38, 109, ed. S. A. Rice and

I. Prigogine. (New York, Wiley).
Voigt, J. (1981). Commun. Math. Phys. 81, 31.
Zermelo, E. (1896). On the mechanical explanation of irreversible processes. Trans. S.

Brush (1966) in Kinetic Theory, 2 (London, Pergamon).



7

Global equilibrium: thermostatics and the
microcanonical ensemble

We shall assume here that the total system H = HS + HR + V ≡ E is isolated.
Thus, [

HS,ρeq

] = 0, (7.1)

and
dρeq

dt
= 0; ρeq (t) = ρeq (0) .

There has been no proof of this state, in the preceding chapters, for the total H.

There were arguments that the system in interaction with the reservoir, in some
approximation (basically weak coupling), approaches a state for which

[
H 0

S , ρ
] =

0. Eq. (7.1) is a fundamental assumption whose justification is based on empirical
results. It further carries with it an additional ansatz that the constant of the motion
H is unique for systems with many degrees of freedom.

In classical dynamics a sufficient number of other constants may lead to the inte-
grability of the dynamic equations (Farquahar, 1964; Balescu, 1975; Lichtenberg
and Lieberman, 1991; Scheck, 1999). Then the motion may be defined on a subset
of the “energy surface.” It must be conjectured that most systems of a large number
of degrees of freedom have only the energy as a constant. This is born out in the
proof of J. G. Sinai (1963) that a system of N hard spheres in a box has no integrals
other than the energy.

These matters may have only indirect effect in quantum mechanics, where the
question of the number of simultaneously commuting observables plays a similar
role. We will assume that, for a large system, only the total energy may be observed.
Thus, in the equilibrium state, ρeq , we may choose

ρmn = amδmn, (7.2)

where H |m〉 = Em |m〉. We now drop the explicit notation “eq.” Since we know
nothing concerning a fine structure on the surface of constant energy, we make the
equal a-priori hypothesis of Tolman (1938) and choose

123
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am = 1 E ≤ Em ≤ E +�E (7.3)

am = 0 otherwise.

This is the microcanonical ensemble and very much a classical distribution. It is a
mixture, as can be seen by writing

ρ = �−1
∑

E≤Em≤Em+�E

|m〉 〈m| . (7.4)

Now normalization gives

Trρ = 1; � =
∑

E≤Em≤Em+�E

. (7.5)

� is a sum of the states in E ≤ Em ≤ E + �E and is a function of E, N and V ,
the last being the macroscopic number of particles and volume.

7.1 Boltzmann’s thermostatic entropy

Carved on the tombstone of Boltzmann in the Zentral Friedhof in Vienna is the
formula

S = k log W. (W is here �.) (7.6)

This is the remarkable connection of a macroscopic quantity, the thermostatic
entropy, to probability and the number of microstates. However, in his famous
paper of 1877 (Boltzmann, 1877), he introduced entropy in the f ln f form, which
served the same purpose for him. The formula itself, in the form of Eq. (7.6),
is apparently due to Planck (1923). k is Boltzmann’s constant, as mentioned in
Chapter 4.

How do we understand this? The thermostatic entropy for a homogeneous iso-
lated system must be a function f (�) of the number of microstates leading to
the macroscopic S. � is termed the thermodynamic probability. Now two inde-
pendent systems, φ1 and φ2 in Hilbert space, form a resulting state φ1

⊗
φ2, and

consequently

� = �1�2. (7.7)

Thus, by the law of independent classical probabilities,

f (�1�2) = f (�1)+ f (�2) .

In the light of Chapter 1, this is a reasonable assumption, since the assumption
of equal a-priori probabilities leading to � is classical. The only way for this
to be true is if S = k ln�, k being a constant entering for dimensional reasons
1.38 × 10−23 J K−1. The really important point is Boltzmann’s connection of S to
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microscopic probabilities. This, of course, is also true in the modern interpretations
of the Boltzmann equation and its consequences, already discussed extensively in
Chapters 4 and 6.

7.2 Thermostatics

Once we have the equation for entropy,

S (E, V ) = k ln�(E, V ) , (7.8)

we are in a position to obtain thermostatics from the microcanonical distribution
(Callen, 1985). From Eq. (7.8) we solve for S (E, V ), knowing �(E, V ) . Then

dS (E, V ) =
(

∂S

∂E

)
V

d E +
(

∂S

∂V

)
E

dV, (7.9)

and we now define the absolute temperature and pressure as

T−1 = ∂S

∂E
|V (7.10)

P = −∂E

∂V
|S . (7.11)

Now we may write

T dS = d E − d̄W, (7.12)

where the quasistatic work is

d̄W = −PdV .

Also, we may identify heat flux as

d̄Q ≡ T dS. (7.13)

For systems with fixed particle number, being considered here, we have the first
law of thermodynamics and the definition of S. We, with Callen, further assume
that T > 0. Further results of this are done by Callen extensively in his book.
With these results, simply from micro statistical ensembles, we have derived the
macroscopic thermostatic (thermodynamic!) laws. It is all based on Boltzmann’s
assertion in Eq. (7.1).

The Einstein model of a lattice is a nice illustrative model of the microscopic
view. There are 3N vibrational modes. E is quantized with E

hω0
quanta. This is
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the problem of placing U
h̄ω0

(integer) indistinguishable balls in 3N distinguishable
states (boxes). The result is

� =
(
3N + E

h̄ω0

)
!

(3N !)
(

E
hω0

)
!
. (7.14)

Using Stirling’s formula for N !,
ln (N !) = N ln−N ,

we obtain the molar entropy

s ≡ S

NA
= 3R ln

(
1+ μ

ω0

)
(7.15)

+ 3R
μ

ω0
ln

(
1+ ω0

μ

)
.

NA is Avogadro’s number where the equation of state is

μ ≡ 3NAh̄ω0. (7.16)

It is characteristic of this model that T ∂S
∂V = 0. We have

1

T
= ∂S

∂E
= k

h̄ω0
ln

(
1+ 3N

E
NAh̄ω0

)
.

7.3 Canonical and grand canonical distribution of Gibbs

We will take the entire isolated universe, system plus reservoir, to be in micro-
canonical equilibrium and from this obtain the system statistical state, which will
be canonically characterized by a parameter, β. For the moment, no particle inter-
change is possible with the reservoir. Only energy may change in the system. Let
Pj be the probability that system S is in state E j . We have

Pj = �R
(
ET − E j

)
�T (ET )

. (7.17)

The reservoir is assumed to be so large that it is microcanonically distributed. The
numerator is the number of reservoir states which are in ET − E j . These are a
priori uniformly distributed. Thus Eq. (7.17) is the functional number of reservoir
states for which ET − E j , thus reflecting indirectly the system probability Pj , a
remarkable result indeed! Using Boltzmann’s formula we have

Pj = exp
(
k−1SR

(
ET − E j

))
exp

(
k−1SS+R (ET )

) . (7.18)
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Let U be the average energy of S. We may expand

SR
(
ET − E j

) = SR (ET −U )− (E j −U )

T

and obtain

Pj = expβF exp
(−βE j

)
. (7.19)

This is Gibbs’s canonical distribution (Gibbs, 1961); see also Tolman, 1938;
Balescu, 1975; Callen, 1985). Here β = 1/kT , and we identify

F = U − T S (7.20)

as the Helmholtz free energy. Define the partition function, Z = exp (−βF) . Then
normalization of Eq. (7.19) gives

Z =
∑

j

exp
(−βE j

)
. (7.21)

This is the cornerstone of equilibrium calculations. We obtain

− βF = ln Z (7.22)

and

U = −∂ (ln Z)

∂β

P = β−1 ∂ (ln Z)

∂V
(7.23)

S = k ln Z + kβU. (7.24)

From Eq. (7.24) using Eq. (7.19), we find that

S = −k
∑

j

Pj ln Pj (7.25)

in terms of the canonical distribution of the system, S.
Comments should be made here concerning the equilibrium entropy. We note

that Eq. (7.11) is for the system in interaction with the reservoir, in a sense a
“reduced” entropy. The Boltzmann entropy, Eq. (7.1) upon which it is based, is the
entropy of the universe (system plus surroundings). Both are in time-independent
equilibrium. The entropy production form, Eq. (7.25), has been achieved previ-
ously for the time-dependent Pauli equation and Boltzmann equation in special
cases, as in the asymptotic time limit t → ∞ (see Chapter 6). This does not at
all justify Eq. (7.11) as used here. We further note that S = −kH, H being the
function H of previous chapters. From general statistical considerations, Shannon
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has related this to statistical uncertainty or disorder (Shannon and Weaver, 1949).
This has important engineering applications.

Let us now generalize the results to allow exchange of particles between the
reservoir and the system. For the system plus reservoir, we use the simultaneous
eigenstate

ĤS+R

∣∣μ (
E j , N

)〉 = E j N
∣∣μ (

E j , N
)〉

N̂
∣∣μ (

E j , N
)〉 = N j

∣∣μ (
E j , N

)〉
.

Here N̂ is the number operator which commutes with ĤS+R . It is assumed that
N = ∑

j N j . Now we write for the universe �(E, N ). Using this and the same
argument as in the canonical case,

P
(
E j , N j

) = �R
(
ET − E j , NT − N j

)
�T (ET NT )

. (7.26)

As before, ET ≡ E and NT ≡ N emphasize the conserved quantities of the system
plus reservoir. We now obtain

P
(
E j , N j

) = exp

[
1

k
SR

(
ET − E j , NT − N j

)− 1

k
SS+R (ET , NT )

]
(7.27)

and consequently, on using a Taylor series expansion,

P
(
E j , N j

) = exp (βψ) exp
(−β

(
E j − μN j

))
. (7.28)

This is the grand canonical distribution where ψ is the grand canonical potential

ψ = U − T S − μN . (7.29)

Normalization of Eq. (7.28) gives

exp(−βψ) = ZG =
∑

j

exp
(−β

(
E j − μN j

))
. (7.30)

This is the grand partition function. It is a function of β and μ, which must be
obtained by an additional condition on the number of particles. It is the chemical
potential or the Gibbs potential. We may show that

dμ = T ds − Pdv. (7.31)

Introducing U = 〈N 〉 u, S = 〈N 〉 s and V = 〈N 〉 v, we obtain

dU = T ds − PdV + (u − T s + Pv) d 〈N 〉 (7.32)
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and

g = (u − T s + Pv) = μ, (7.33)

the Gibbs free energy per mole. Finally, we may collect all the statistical mechanics
connections to thermodynamics for this ensemble:

U = 〈E〉 (7.34a)

S = k [ln ZG + β 〈E〉 − βμ 〈N 〉]
g = μ

〈E〉 = − ∂

∂β
(ln ZG)+ μkT

∂

∂μ
(ln ZG)

P = kT
∂

∂V
(ln ZG) (7.34b)

〈N 〉 = kT
∂

∂μ
(ln ZG)

We have tabulated these separately to emphasize that Eqs. (7.34b) represent
simultaneous relations determining the equation of state and the Gibbs potential.
Examples given later will emphasize this. Note that there is a variety of notations
for ZG , the grand partition function. To finish, we will calculate the equilibrium
fluctuations about 〈E〉 and 〈N 〉 with this ensemble (Tolman, 1938; Callen, 1985).

7.4 Equilibrium fluctuations

When the system is in interaction with the reservoir in equilibrium, we may expect
that there are fluctuations in the thermodynamic variables. Fundamental references
are Einstein (1910); Landau and Lifschitz (1967); and Callen (1985).

Consider first the canonical ensemble. We have

〈E〉 ≡ Ē = Z−1
∑

k

Ek exp (−βEk) (7.35)

= −Z−1 ∂Z

∂β
.

Now

�2E ≡ Ē2 − (
Ē
)2

(7.36)

is the variance of E . We find

Ē2 = Z−1 ∂
2 Z

∂β2 .



130 Global equilibrium: thermostatics and the microcanonical ensemble

Thus

�2E = −∂U

∂T

∂T

∂β
= kT 2CV (7.37)

in the case of PdV work, CV being the heat capacity and positive. This is, in
fact, a macroscopic stability criterion. If we expand P (E) about equilibrium, the
positive CV of the resulting Gaussian behavior assures this. The magnitude of these
fluctuations may be estimated as

�(E)

Ē
= 1(

3N̄
2

) 1
2

and is unimportant for the system in equilibrium with a large number of particles.
Similarly from the grand ensemble we may find that

β N̄ = ∂

∂μ
(ln ZG)

and

�2 (N ) = β−1

(
∂ N̄

∂μ

)
V,T

. (7.38)

We expect ∂ N̄
∂μ
≈ N̄ , so �N

N̄
≈ N̄− 1

2 with the same conclusion as earlier.
There is another useful thermodynamic relation. The isothermal compressi-

bility is

KT = −1

V

(
∂V

∂P

)
N ,T

. (7.39)

We may obtain dμ = +vd P − sdT and show
(
∂μ

∂v

)
T
= v

(
∂P
∂v

)
T

and thus

−N 2

V

(
∂μ

∂N

)
V,T

= V

(
∂P

∂V

)
N ,T

. (7.40)

Consequently

(�N )2

N̄
= KT

βv
. (7.41)

Hence KT must also be positive. A main point of these results is that the thermo-
static laws become exact in the limit N → ∞. T. G. Kurtz (1972) has proved a
similar result for chemical kinetics. The chemical reaction equations are exact as
N̄ →∞, and the stochastic effects play no role.



7.5 Negative probability in equilibrium 131

7.5 Negative probability in equilibrium

Let us return to the possibility of negative probabilities in the light of the Wigner
representation. This discussion was begun in Chapter 6. In the canonical ensem-
ble formula, Eq. (7.19), we assume that w may have negative values for Pj .
Consequently,

S = −k
∑

j

∣∣Pj

∣∣ ln
∣∣Pj

∣∣− kπ i
∑

j

∣∣Pj

∣∣ . (7.42)

After Feynman (1988), we normalize the “probability” as∑
j

Pj = 1 (7.43)

and write

S = Sr + Si , (7.44)

where

Sr = −k
∑

i

|Pi | ln |Pi | (7.45a)

Si = −kiφ, (7.45b)

where the “angle”

φ = π
∑

j

∣∣Pj

∣∣ < π. (7.46)

The entropy is complex, having a phase φ. This phase is obtained from Eq.
(7.46). We may view the entropy as a function S (E, V, φ), φ being a macroscopic
thermodynamic phase variable. Hence

dS = ∂S

∂E
|V,φ d E + ∂S

∂V
|Eφ dV + ∂S

∂φ
|V,E dφ, (7.47)

where, as before,

∂S

∂E
| Vφ

= 1

T
∂S

∂V
| Eφ

= P

T
∂S

∂φ
| V,E = −ki ,

−ki being a small imaginary constant. The real part of the entropy obeys

T dSr = d E + PdV, (7.48a)
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assuming the heat flow and work are real. (Need this be true?)

dSi = −kidφ (7.48b)

is governed by the distribution of the “positivity” of the probability distribution

π
∑

i

Pi − π
∑

i

|Pi | = dφ. (7.49)

This is determined by the reservoir.
What is the mechanism for this macroscopic quantum effect? If dφ = 0, we

would then insist on positive probabilities, Pi . Of course, we may attempt to main-
tain Eq. (7.49) on an equilibrium thermodynamic scale. Feynman obtains such
results for a microscopic model based on the assumption of the possibility of
negative Pi .

7.6 Non-interacting fermions and bosons

Let us consider the important examples of systems of non-interacting Fermi
and Bose particles. Assume the energy of a single-particle quantum state to be
Ek (k = 1. . .). The total energy of the non-interacting system of identical parti-
cles is E{n} = ∑

k nk Ek , where {n} = (n1, n2, . . ., nk, . . .), nk being the number
of particles in single particle state k. This, of course, is the occupation number
representation which may be systematically developed by the methods of second
quantization (see Balescu, 1975; Plischke and Bergersen, 1989).

The total number of particles is N = ∑
k nk . We write the grand ensemble

partition function as

ZG =
∞∑

N=0

exp (βNμ)

′∑
{n}

exp

(
−β

∑
k

nk Ek

)
. (7.50)

The restrictive prime on the summation in Eq. (7.50), N = ∑
k nk , is removed by

the first summation on all N . Thus,

ZG =
∑
n1

∑
n2

∑
n3

. . . exp

(
β
∑

k

(μ− Ek)

)
nk = �k

{∑
nk

expβ (μ− Ek) nk

}
.

There are two occupation number possibilities brought out in the symmetries of
the many independent particle wave functions. The Fermi states are Slater deter-
minants, and the bosons are so-called permanents. For fermions, nk = 0,+1
only, as a result of the Pauli exclusion principle, whereas the boson states allow
nk = 0, 1, 2, . . . This is because of the fundamental commutation laws of the latter
and anticommutation in the case of the former.
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For Fermi–Dirac we obtain∑
ni=0,1

exp (β (μ− Ek) ni ) = 1+ exp (β (μ− Ek)) ,

and for Bose
∞∑

n=0

exp (β (μ− Ek)) = (1− expβ (μ− Ek))
−1 .

We may write concisely

ZG = �k {1∓ exp (β (μ− Ek))}∓1 . (7.51)

(−1) Bose

(+1) Fermi–Dirac

Now we may show that P (nk), the probability that nk particles occupy state Ek, is

P (nk) = expβ (μ− Ek) nk∑
nk

expβ (μ− Ek) nk
.

Hence,

〈nk〉 =
∑

nk
nk expβ

(
μ− E,

)
nk∑

nk
expβ (μ− Ek) nk

. (7.52)

Thus,

〈nk〉 = expβ (μ− Ek)

1∓ expβ (μEk)
, (7.53)

which are the Fermi–Dirac (+) and Bose (−) distributions. Now we may show that

PV = kT ln ZG (7.54)

and obtain

PV = ∓kT
∑
nk

ln (1+ 〈nk〉) . (7.55)

The thermodynamic quantities are

N =
∑

k

〈nk〉 and E =
∑

k

〈nk〉 Ek

N =
∑

k

(expβ (Ek − μ)∓ 1)−1

E =
∑

k

Ek(expβ (Ek − μ)∓ 1).
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With the above we can calculate S from Eq. (7.46):

S = k
∑

k

[〈nk〉 log 〈nk〉 ± (1± 〈nk〉) log (1± 〈nk〉)
]
. (7.56)

Quite generally, we have the thermodynamics of ideal quantum non-interacting
gas. Now let z = expμ, the fugacity. We then have a pair of equations which
implicitly are the equation of state:

PV

kT
= ln ZG = ∓

∑
k

log (1∓ z exp (−βεk)) (7.57)

N = z
∂

∂z
ln ZG =

∑
k

z exp (−βεk)

1∓ z exp (−βεk)
. (7.58)

For the purpose of physical parameterization, let us adopt a continuum state
model:

Hi = p2
i

2m
pi = h̄ki ki = mπ

L
m = 0, 1, 2, . . . (7.59)

Then as L →∞, ∑
k

→
∫ +∞

−∞
d3 p →

∫ ∞

0
g (ε) dε, (7.60)

where the energy density of states is

g (ε) dε = 4π

(
2m

h2

)
V
√
εdε. (7.61)

We then obtain

P

kT
= 1

λ3 f 5
2
(z) (7.62)

N

V
= 1

v
= 1

λ3 f 3
2
(z)

for fermions. For bosons,

P

kT
= 1

λ3 g 5
2
(z) (7.63)

1

v
= 1

λ3 g 3
2
(z) .

Here

λ =
√

2π h̄2

mkT
, (7.64)
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which is a measure of quantum wave properties, the thermal de Broglie wavelength.
Here

f 5
2
(z) = 4√

π

∫ ∞

0
dxx2 log

(
1+ z exp

(−z2
)) = ∞∑

l=1

(−1)l+1 zl

l
5
2

(7.65)

f 3
2
(z) = z

∂

∂z
f 5

2
(z) =

∞∑
l=1

(−1)l+1 zl

l
3
2

,

and similarly

g 5
2
(z) = −4√

π

∫ ∞

0
dxx2 log

(
1− z exp

(−x2
)) = ∞∑

l=1

zl

l
3
2

(7.66)

and

g 3
2
(z) = z

∂

∂z
g 5

2
(z) =

∞∑
l=1

zl

l
3
2

.

For the preceding expansions of the integrals to be valid, z < 1. In the Bose
case, this continuum limit has not treated properly the near-ground states. Much
more will be said in the next chapter about this.

We may compactly express the small z approximation

P = kTλ−3z
(
1+ θ2−

5
2 z + 3

5
2 z2 + · · ·

)
(7.67)

N

V
= 1

v
= cλ−3

(
z + θ2−

3
2 z2 + 3−

3
2 z3 + · · ·

)
(7.68)

θ = +1 for bosons and − 1 for fermions.

By iteration, for low density, Eq. (7.67) is solved for z = expμ:

z = λ3c[1− θ2−
3
2 λ3c + · · · ] (7.69)

This is used in Eq. (7.67) to obtain

P = ckT
[
1− θ2−

5
2 λ3c . . .

]
(7.70)

U = 3

2
PV = 3

2
NkT

[
1− θ2−

5
2 λ3c + · · ·

]
. (7.71)

The expansion parameter is now apparent:

λ3c =
(

h2

2πmkT

) 3
2

c � 1.
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The first term is, of course, the classical Boltzmann result. For hydrogen at standard
conditions, T = 300 K, cλ3 = 10−4 and at 10−2 K, cλ3 = 10−2. The quantum
effects are negligible for such gases.

7.7 Equilibrium limit theorems

A very important question is the existence of the partition function (microcanon-
ical, canonical, grand canonical) for reasonable potentials in the thermodynamic
limit. Considerable work has been done in this regard, mostly classical. The first
work was that of Van Hove (1949). Ruelle, in his book of rigorous results, treats
uniquely full quantum systems (Ruelle, 1969). It is beyond the scope of the remarks
to be made here, but a mathematically mature reader is encouraged to look at this
book. Concerning the canonical partition function, it is outlined in detail by Mun-
ster (1969). Balescu (1975), in a very readable fashion, outlines the Van Hove
work.

We will follow Munster’s discussion of the microcanonical case, since it is the
simplest and contains the weakest assumptions. This is due to Van der Linden (Van
der Linden, 1966; Van der Linden and Mazur, 1967). Our principal purpose will be
to state the resulting theorem and the physical conditions for the proofs.

We write the entropy per particle as s (e, v),

Ns (e, v) = ln�(E, N , V ),

where the quasi-quantum phase volume (Balescu, 1975) is

�(E) = 1

hn�i Ni !
∫ E

d�, (7.72)

which may be written after momentum integration as

�(EV, N ) = (2πm)
3
2 N

h3N N !� (
3
2 N + 1

) (7.73)

×
∫

V
dqN

[
E −U N

(
q N

)] 3
2 N

θ
[
E −U N

(
q N

)]
.

The Heaviside function, θ , contains the N -body interaction potential U N
(
q N

) ≡
U N (q1 . . . qN ), and the N ! is because we are assuming particle identity. The factors
multiplying the integral contain free particle de Broglie wavelengths. In this sense,
this is quasi-quantum. To discuss the thermodynamic limit, we assume that V is
a cylinder of constant cross section parallel to the z-axis. The upper and lower
surfaces at z = h and h′ have walls of constant thickness 1

2 R0. The so-called



7.7 Equilibrium limit theorems 137

free volume is (h − h′)A. In the thermodynamic limit
(
h − h′

)
N and A are held

constant.
The initial assumptions concerning the classical many-body potential are more

general than with the B.B.G.Y.K. hierarchy discussion (see Chapter 4). Assume
that

U N (q1 . . . qN ) =
∑

i

u(1) (q1)+
∑

N≥i> j≥1

u(2)
(
qiq j

)
(7.74)

+
∑

N≥i> j>k≥1

u(3)
(
qiq jqk

)+ · · ·
Here the cluster decomposition is evident:

u(1) (q1) = U 1 (q1)

u(2) (q1q2) = U 2 (q1q2)−U 1 (q1)−U 1 (q2) etc.

The basic assumptions beginning the proof are:

1. U N (q2 . . . qN ) is symmetric in N .
2. U N (q1 . . . qN ) is translationally invariant.
3. U N (qN ) is piece-wise continuous in U N

(
q N

)
< E .

4. Stability condition: U N (q1 . . . qN ) ≥ −NμA for all q1 . . . qN and all N . We
now also assume the so-called tempering condition. Here it is called strong
tempering, making the proof weak.

5. Strong tempering: U (N1 N2)
(
q1 . . . qN1; q ′1 . . . q ′N2

)
≤ 0 for

∣∣∣qi − q ′j
∣∣∣ ≥ R0

for all qi , q j .

Let us examine these conditions. As earlier, the condition (1) is classical particle
identity. Condition (2) excludes external fields, and thus transport phenomena, as
discussed elsewhere. Condition (3) implies that U N (q1 . . . qN ) is bounded from
below and may allow Lebesque integrals. The stability criterion (4) appears to
be due to Onsager (1939). This may be examined for pair potentials (see Ruelle,
1969). The violation of stability is termed catastrophic potentials. An example is
an attractive square well with no hard core. Here the bound is μA = 0. Ruelle has
stated the proposition that the pair potential of the form

U (x) ≥ φ1 (|x |) |x | ≤ a1

U (x) ≥ −φ2 (|x |) |x | ≥ a2

is stable. Lennard–Jones potentials are of this type with

φ1 (|x |) = φ2 (|x |) = |x |−λ ; λ > 0.



138 Global equilibrium: thermostatics and the microcanonical ensemble

The tempering condition (5) is more difficult. It may be shown to hold for pair
interactions if and only if

U (x) ≤ A |x |−λ |x | ≥ R,

particularly if A corresponds to Van der Walls and finite long-range pair potentials.
More generally, the mutual interaction energy of two separated groups of particles,
N1 and N2, is

U
(
q1. . . qN1; q ′1. . . q ′N2

)−U
(
q1. . . qN1

)−U
(
q ′1. . . q ′N2

)
.

Here there are no particles in the distinct groups at a distance less than d, and
the net interaction is purely attractive. The distance between the distinct groups is
R. There are no long-range repulsions which would cause the groups N1, N2 to
explode. The positive part of the interaction is small at large distances.

Let us now state the important theorem in detail:

Theorem If conditions 1, 2, 3, 4, 5 are satisfied and the thermodynamic limit
is carried out (E →∞, N →∞, V →∞, e = constant, v = constant) with a
sequence of cylinders of constant cross section A, then the function s (e, v, Nk),

the entropy density, converges uniformly to s∞ (e, v) for emin < ∞, and vmin ≤
v ≤ v1 <∞, s∞ (e, v) has the desirable properties:

1. s∞ (ev) is continuous and convex in e and v.
2. s∞ (e, v) is a nondecreasing function of e for constant v and also a non-

decreasing function of v for constant e.
3. The derivatives with respect to e, v exist almost everywhere and are nonnega-

tive. And the derivative with constant v, with respect to e, is a nonincreasing
function of e. Also, at constant e, the derivative with respect to v is a
nonincreasing function of v.

4. The ∂2s∞
∂2e

and ∂2s∞
∂2v

exist almost everywhere and are nonpositive.

Two lemmas lead to the theorem.

Lemma 1 Lemma 1 follows from the stability condition property 4. It is the
inequality

s (e, v, N )≤ Ln

[
4πm

3h2
(e + μA)

] 3
2

+ ln v+ 5

2
. (7.75)

Lemma 2 follows from strong tempering condition 5. We state it here:

Lemma 2 If volume V is divided into two subsets V1, V2 in such a way that for
V1,−h − 1

2 R0 ≤ z ≤ h" and for V2, h′′ ≤ z < h′ + 1
2 R0, and in V1 there are N1

particles and in V2 there are N2 = N − N1 particles, then
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Ns (evN ) ≥ N1s (evN1)+ N2s (e, vN2) (7.76)

for all N and N1 ≤ N .

Functions obeying the inequality, Eq. (7.76), are such that s (e, v, N ) are
sub-additive in N . Using these two limits, Van der Linden proved, using the
sub-additive property, that

lim
Nk→∞

s (e, v, Nk) = sup
Nk→∞

s (e, v, Nk) = s∞ (e, v) . (7.77)

A similar argument also shows that for e (v, Nk),

lim
Nk→∞

emin (v1Nk) = inf
Nk→∞

emin (vNk) ≡ emin (v) .

In addition, from sub-additivity, following conditions 4 and 5, we may show that
s∞ (e, v) is convex:

s∞
[

1

2
(e1 + e2) ,

1

2
(v1 + v2)

]
≥ 1

2
s∞ (e1v1)+ 1

2
s∞ (e2v2) . (7.78)

From this, continuity in e, v follows. It also follows that the remaining results
in this theorem hold. The details are outlined in Munster’s discussion. The point
here is to give the reader an idea of how the physical conditions lead to the theorem.
This, and such theorems for the other ensembles, are the foundations of equilibrium
statistical mechanics as the basis of macroscopic thermodynamics.
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8

Bose–Einstein ideal gas condensation

8.1 Introduction

Let us turn to the unusual and exciting quantum effects first suggested by Einstein
(1924a,b). After translating the paper by Bose (1924) for the Zeitschrift Physik,
Einstein generalized it and noted, because of the particle identity, that there would
be a statistical tendency for the particles to “condense” into their ground state, the
state of momentum zero. Further, he stated that the condensation would begin at a
critical temperature. For a three-dimensional box, volume V , with N particles,

N

V

(
h2

2πmkTc

) 3
2

=
∞∑
j=1

j−
3
2 = 2.612. (8.1)

We recognize this as λ3
c = 2.612, much beyond the limits of the expansion

discussed at the end of the previous chapter, Eq. (7.70).
Fritz London was one of the few to note Einstein’s suggestion and in the con-

tinuum approximation gave detailed calculation of the thermodynamic properties
of the condensate state for a box in the thermodynamic limit N → ∞, V →
∞, c = constant, Eq. (7.60) and Eq. (7.61). He boldly associated the resulting
transition (phase transition) at TC = 3.1 K. with that for the super fluid transition
in 4He at Tγ = 2.17 K. We will discuss this further and go through the London
calculation in detail in the next section.

The London continuum approximation was examined in detail by de Groot (de
Groot et al., 1950) in a heroic calculation of the grand ensemble for a variety of
trapping potentials. He examined in detail the apparent transition for finite N .

Much later the technical development of supercooled dilute atomic traps in 87Rb
(Anderson et al., 1995) and 23Na (Davis et al., 1995) led to the creation of dilute
condensates for finite numbers of particles in these systems of trapped condensates,

141
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no longer spacially homogeneous (see also Pethick and Smith, 2002; Pitaevskii and
Stringari, 2003).

This led to a renewed interest in finite N ideal Bose–Einstein condensation
(Bagnato et al., 1987; Grossman and Holthaus, 1995; Ketterle and Van Druten,
1996). These Bose–Einstein condensates are marvelous examples of spacially
inhomogeneous systems showing “exotic” quantum hydrodynamic properties. It
is possible to use the early theories of Bogoliubov and others because of the dilute
nature of the system. We will not have space or time to go into the hydrodynamic
inhomogeneous properties of these Bose–Einstein condensates but refer the reader
to the recent book of Pethick and Smith (2002) and that of Pitaevskii and Stringari
(2003).

In Section 8.5 we will examine fluctuations in the ground state. There we will
show, after Ziff (Ziff et al., 1977), that the grand canonical approach cannot be
relied upon to estimate fluctuations in the ground state. In Section 8.6 we will
return to the master equation methods of Chapter 3 and consider the recent master
equation for boson condensation of Scully (1998) and Kocharovsky (Scully, 1996;
Kocharovsky et al., 2000). Finally, in the chapter appendix, we outline the theory
of finite trap condensation of de Groot (de Groot et al., 1950).

8.2 Continuum box model of condensation

Again, for the grand ensemble Bose–Einstein continuum model, Eq. (7.63) and Eq.
(7.66),

P

kT
= 1

λ3 g 5
2
(z) = 1

λ3

∞∑
1

zl

l
5
2

(8.2)

N

V
= 1

v
= 1

λ3 g 3
2
(z) = 1

λ3

∞∑
1

zl

l
3
2

. (8.3)

The difficulty begins to appear at z = 1, μ = 0. Note Eq. (8.3) in the limit 0 < z ≤
1 (or μ < 0). We define the critical particle number, N = Nc:

Nc = V

λ3 · 2.612.

There can be no larger particle number even though we have taken N →∞. What
is the origin of this unphysical limitation? As London (1938) pointed out, this is
the result of the unphysical neglect of the discrete ground and adjacent states. We
may also define a corresponding Tc,

kTc = 2π h̄2

m

[
N

V

1

2.612

] 2
3

, (8.4)
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which Einstein mentioned. For fixed density, no lower temperature can be achieved.
Let us break the discussion here and treat the single ground state in Eq. (7.57)

and Eq. (7.58) separately. Let it be p = 0. The remaining states will be treated in
the continuum approximation. Thus we have a better approximation to Eq. (7.57)
and Eq. (7.58):

PV

kT
= ln ZG = − ln (1− z)+ 1

λ3 V g 5
2
(z) , (8.5)

and

N = z

1+ z
+ 1

λ3 g 3
2
(z) . (8.6)

We may now extend this to z > 1 and approximate, in this regime, g 3
2
(z) by g 3

2
(1),

defining again the critical temperature with λ3
c

N
V = 2.612, obtaining

N = N0 + N
λ3

c

λ3 . (8.7)

Therefore, the ground state occupation density is

N0 = N

[
1−

(
T

Tc

) 3
2

]
. (8.8)

We call 3/2 the critical index.
Below Tc the ground state rapidly accumulates to N particles. Above Tc there

is no ground state occupation. Does this have a physical effect? By the same
argument we examine PV/kT , Eq. (7.57):

For T < Tc
P

kT
= 1

V
ln (1− z)+ 1

λ3 V g 5
2
(z = 1) (8.9)

T > Tc
P

kT
= 1

λ3 g 5
2
(z < 1) . (8.10)

We must examine the first term in Eq. (8.9), (1− z) = 0
(

1
V

)
as T < Tc. Hence

1
V ln (1− z)→ 0 as V →∞. Thus P is independent of V for T < Tc, whereas for
z < 1 Eq. (8.2) holds, and for z � 1, as discussed, P = ckT . The ground state has
no contribution to the pressure, which is natural, since this is the zero-momentum
state. In the zero-momentum state the system is spacially homogeneous, so there is
no spacial evidence of this condensation below Tc.
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Now, from the exact formula for ideal quantum gas in the continuum limit,
PV = 2

3 E . We have, from the above,

E = 3

2

V kT

λ3 g 5
2
(1) T < Tc (8.11)

E = 3

2
RT

g 5
2 (z)

g 3
2 (z)

T > Tc. (8.12)

We may eliminate z from Eq. (8.12). We need g 5
2
(z) in terms of g 3

2
(z). This was

done by London in the appendix to his book Superfluids. The result is

E = 3

2
RT

[
1− 0.4618

(
Tc

T

) 3
2

− 0.0226

(
Tc

T

)3

− . . .

]
; T > Tc. (8.13)

With these results we obtain

CV = 1.926R

(
T

Tc

) 3
2

T < Tc

CV = 3

2
R

[
1+ 0.231

(
Tc

T

) 3
2

+ 0.045

(
Tc

T

)3

. . .

]
T > Tc. (8.14)

As pointed out by London, a more careful analysis must be done at T ≈ Tc. He
examined

C+
V = lim

(T−Tc)→0+
CV = 3

2
R

(
5

2

g 5
2 (z)

g 3
2 (z)

− 3

2

g 3
2 (z)

g 1
2 (z)

)
. (8.15)

By the inversion, eliminating z in the limit, London showed the second term van-
ishes and thus CV is continuous at T = Tc. A similar analysis by London was used
to examine the discontinuity in ∂CV /∂T at T = Tc. We find

�

(
∂CV

∂T

)
= 3.66

R

Tc
. (8.16)

London then associated this “phase transition” with the experiments on 4He of
Keesom (Keesom and Clusius, 1932). These wonderful experiments exhibit an
extremely sharp derivative discontinuity at Tc = 2.12 K. The formula (Eq. 8.3)
for this experiment gives Tc = 3.1 K, as already mentioned. We will come back to
this association in the last section of this chapter.

In the preceding analysis the important limits N → ∞, V → ∞, N/V = c
have been implicitly used. This is termed the thermodynamic limit. The entropy is
given by S = − (

∂F
∂T

) |μ,v = ∂(PV )

∂T |μ,v . Using this and Eq. (8.9) and Eq. (8.10),
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S = 5

2
kV

1

λ3 g 5
2
(1) = 5

2
nnV

g 5
2 (1)

g 3
2 (1)

, T < Tc, (8.17)

where we introduced nm (T ) = 1
λ3 g 3

2
(1) as the density of particles not in the

ground state. As expected, we see that the entropy below Tc decreases with nor-
mal component density. The ground state, of course, has zero entropy. The latent
heat is proportional to this entropy.

Let us compare these approximate results with the exact results (without contin-
uum approximation) of de Groot (de Groot et al., 1950) for the box. They find, in
the finite N , V limit, a continuous curve for z (T ), which means that z (T ), E (T )

and all their derivatives are continuous. Then, in the thermodynamic limit, they
show z = 1 for T < Tc given by Eq. (8.1). E is given exactly by Eq. (8.8) and
Eq. (8.9). In addition, they obtain C+ and C− to be continuous, and the derivative
discontinuous. Also, the formula for the ground state density is Eq. (8.6). De Groot
did not use London’s periodic boundary conditions. The same equation of state was
found qualitatively:

PV = 0.5133

(
T

Tc

) 3
2

, T < Tc,

compared with 1.342. In the appendix we will illustrate their calculation by
considering their theorems.

8.3 Harmonic oscillator trap and condensation

For the ideal Bose–Einstein gas in a harmonic oscillator container, there is no
natural thermodynamic limit. Here

En1n2n3 =
1

2
(ω1n1 + ω2n2 + ω3n3)+ E0 (8.18)

n1n2n3 ∈ 0, 1, 2, . . .

N =
∑

n1n2n3

[
exp (β (ω1n1 + ω2n2 + ω3n3))+ β (E0 − μ)− 1

]−1
.

De Groot and coauthors discussed three possibilities:

1. N = n (a)3, where n is a mean density and a is the radius of a sphere containing
the particles in their ground state. Thus, take N → ∞, a → ∞, and n =
constant. However, this is unphysical, since En1n2n3 → 0.

2. Let v = n
a3 = N

a6 = constant as N → ∞, a → ∞. This choice suffers from
the same criticism as the first.

3. A finite N →∞. z = 1 for all T . In this case it may be seen that
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N − N0 = lim
′∑

Ei

exp
(−Ei

kT

)
1− exp

(−Ei
kT

) .

N − N0 is finite except at T → ∞, where N → ∞, N0 → ∞. The lowest
state is excluded.

Despite these difficulties, Bagnato (Bagnato et al., 1987; Grossman and
Holthaus, 1995; Kirsten and Toms, 1997) has introduced a continuum approxi-
mation to discuss the harmonic oscillator traps, motivated by the experiments in
progress. Since T is of the order of a few micro Kelvin and ωi 100Hz , βωi � 1,
and βωi is closely spaced, a continuum (though not exact) is expected to be a good
approximation. It is straightforward to construct a continuum approximation for
the symmetric harmonic trap ω = ω1 = ω2 = ω3 in three dimensions.

The number of lattice points is neglecting the zero energy:∫
(ωn1+ωn2+ωn3≤E)

dn1dn2dn3 = ν (E) .

The latter integral is

ν (E) = 1

ω3

∫ E

0
dε1

∫ E−ε1

0
dε2

∫ E−ε1−ε2

0
dε3 = 1

6

E3

ω3
. (8.19)

The answer for an asymmetric harmonic trap is

ν (E) = 1

6

E3

�3
, (8.20)

where � = (ω1ω2ω3)
1
3 . De Groot and coauthors have obtained the density for a

general trap in w dimensions:

Es1...sw =
Mk

d2

w∑
ν=1

sα
ν (s1 . . . sw = 0, 1, 2, . . .) . (8.21)

They show

ν (E) = Ew I = Ew

∫
sα1+···+sαw=1

ds1 · · · dsw =
{
(α)−1!}w

q! Ew. (8.22)

Here 1 ≤ q ≤ 2. This is the same as above for the harmonic trap α = 1. Bagnato
(Bagnato et al., 1987) also obtained such results.
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Using such continuous density of states, the argument of London may be carried
out, separating out the ground state contribution. Now, as before,

N = N0 + 1

2

1

(�)3

∫ ∞

0

E2d E

exp [β (E + E0 − μ)]− 1
(8.23)

= N0 +
(

kT

�

)2

g3 (z) , (8.24)

where

N0 = z

z − 1
; g3 (z) =

∞∑
l=1

zl

l! ,

and the limiting value z = 1 gives g (1) = 1.202. Thus,

N0 = N −
(

kT

�

)3

g3 (1) . (8.25)

Defining, for the trap, a temperature associated with the onset of condensation into
the ground state,

kTc = �

(
N

1.202

) 1
3

. (8.26)

We may find for the trap for finite N

N0

N
= 1− (Tc)

3 . (8.27)

Since no thermodynamic limit may be taken, we do not expect a sharp change at
Tc. Note the difference in temperature dependence from the box. Values N ranging
from 104 to 107 have been achieved so that TC

∼= 102nK . A sudden transition
is seen in the Ensher experiments (Ensher et al., 1995). There the formula Eq.
(8.27) is obeyed very well. The condensate fraction N0

N approaches 1 as T → 0.
We must reiterate that this is not strictly speaking a phase transition, since no true
discontinuity is found in the derivative of the specific heat.

Grossman and Holthaus (1995) have suggested an additional small correction
due to the (n+1)(n+2)

2 degeneracy of state |n〉. They write

g (E) = 1

2

E2

(�)3 +
3

2

E

�2
.

This leads to a small shift in the critical temperature,

�T

Tc
= −3

2
N− 1

3 .
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This is verified by numerical computation. Kirsten and Toms (1997) wrote an
interesting formula in general for such effects.

Let us finish this section by remarking on the heat capacity of the harmonic trap
(de Groot et al., 1950; Grossman and Holthaus, 1995). If the method of London is
used to make the continuous approximation,

ln ZG =
(

kT

�

)3

g4 (z)− ln (1− z) . (8.28)

gn (z) is, as in Chapter 7, gn (z) =∑∞
l=1

zl

ln . With this we find

E = E0 + 3kT

(
kT

�

)3

g3 (z) T ≥ Tc (8.29)

E = E0 + 3kT

(
kT

�

)3

g3 (1) T < Tc (8.30)

E = 3kT

(
kT

�

)3

g4 (z) T > Tc.

The heat capacity is in the N very large limit,

C− = 12Nk
g4 (1)

g3 (1)

(
T

TC

)3

T < Tc (8.31)

C+ = 3

[
4

g + (z)

g3 (z)
− g3 (z)

g2 (z)

]
T > Tc

z < 1,

a formula similar to Eq. (8.15). An examination reveals that there is a discon-
tinuity in C itself at T = Tc. The magnitude is 6.6Nk. De Groot et al. (1950)
had previously recognized this in their exact treatment of the harmonic oscillator
trap. Grossman and Holthaus further calculated numerically the behavior of C± for
small N . It looked like a “rounded” version of the λ transition for T = Tc, the
discontinuity being less in evidence.

8.4 4He: the λ transition

London’s purpose in discussing the Bose–Einstein condensation was to explain the
experiment of Keesom showing the λ transition in the heat capacity of 4He. This
phase transition occurs between HeII, superfluid liquid phase, and HeI, liquid phase
at T = 2.17 K for pressure zero. See the nice discussion of Pitaeveskii and Stringari
(2003). London’s calculation gives T = 3.1 K, so he felt strongly that this was the
Einstein-suggested condensation. The reasons for thinking this could be true, in this
dense system where the average interaction distance is only a few angstroms, were
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mentioned by London (1954) and Munster (1964). The most compelling reason
was that the experiments of Osborne (unpublished) found no superfluidity at low
temperature in 3He, a Fermi liquid.

In the modern sense, HeII is a superfluid. This will be discussed later. No mat-
ter what the pressure is, there is no liquid–solid phase transition, and there are a
number of “exotic” hydrodynamic effects such as zero sound velocity, quantized
vortices, zero entropy and free capillary flow. This leads to the two-fluid model of
Tisza (1940) and Landau (1941). The agreement between modern many-particle
calculations (Ceperley, 1995) and the λ transition experiment is now good. The
temperature Tc is correct. Since 4He is a fluid, the atomic interactions are impor-
tant. A relatively simple estimate of their importance was made by Penrose and
Onsager (1956). We shall follow the brief discussion of Munster in his book.

The wave function in the ground state is ψ0 (q1 . . . qN ). It is real. For T = 0, the
two-point density matrix for one particle is

ρ1

(
q ′ − q

) = N
∫

. . .

∫
ψ0

(
q . . . q N

)
ψ0

(
q ′ . . . q N

)
dq2 . . . dqN . (8.32)

Writing this in the momentum representation, we may prove

lim r →∞ ρ1 (r) = N̄0

V
(8.33)

because of the rapid oscillations of exp (−i2πp · r). We consider the pair correla-
tion and write

ψ0 (q1 . . . qN ) = [
Q(N )

]−1
2 F (N ) (q1 . . . qN ) ,

where

F (n) (q1 . . . qN ) = 0; ∣∣qi − q j

∣∣ ≤ σ . (8.34)

This is the quantum hard sphere gas. Q(N ) is the classical normalizing factor and
is the configuration integral of the classical partition function. With this,

ρ1

(
q − q ′

) = N

Q(N )

∫
. . .

∫
F (N+1)

(
qq ′, q2 . . . qN

)
dq2 . . . dqN . (8.35)

Now the classical pair distribution hard sphere value is

ρpair

(
q − q ′

) = (N + 1) N

Q(N )

∫
. . .

∫
F (N+1)

(
qq ′q2 . . . qN

)
dq2 . . . dqN . (8.36)

We find

ρ1

(
q − q ′

) = 1

N

Q(N+1)

Q(N )
ρpair (r) . (8.37)
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Making use of the approximation to the classical pair correlation function,

lim r →∞ ρpair (r) =
(

N

V

)2

= c2. (8.38)

Thus, Eq. (8.33) and Eq. (8.38) give the ratio of the ground state occupation to the
total particle number

N̄0

N
= 1

V

Q(N+1)

Q(N )
. (8.39)

This is simply estimated for 4He by Munster after Penrose and Onsager. Taking
σ = 2.56 angstroms, they find 0.08, which is much less than unity, the ideal gas
Bose–Einstein condensation answer.

The experimental ratio was obtained by neutron scattering after some numerical
calculations (Sokol, 1995). The result was 10%. This is in remarkable agreement
with the simple Penrose and Onsager estimate. These results show that the London
calculations of the Bose–Einstein condensation properties are indeed too simple,
as was expected. However, the 4He transition may still be considered an Einstein
condensation with interactions.

8.5 Fluctuations: comparison of the grand canonical and
canonical ensemble

Ziff, Uhlenbeck and Kac (1977), in a comprehensive article, showed that in the
thermodynamic limit for the ideal Bose gas, the grand canonical and canonical
ensembles give the same result for the intensive bulk thermodynamic quantities
p, u, s. The results may again be written, for completeness, as

s = S

V
= 5

2

k

λ3 g 5
2
(z)+ kρμ ρ < ρc (8.40)

= 5

2

k

λ3 g 5
2
(1) ρ > ρc

μ ≡ g = −kT u ρ < ρc (8.41)

= 0 ρ > ρc

u

ρ
= 3

2

g 5
2 (z)

g 3
2 (z)

T > Tc (8.42)

= 3

2
kT

(
T

Tc

) 3
2 g 5

2
(1)

g 3
2 (1)

T < Tc
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and

CV

k
= 15

4

g 5
2 (z)

g 3
2 (z)

− 9

4

g 3
2 (z)

g 1
2
(z)

T > Tc (8.43)

= 15

4

(
T

Tc

) 3
2 g 5

2 (1)

g 3
2 (1)

T < Tc.

Here ρ = N
V and ρc =

g 3
2 (1)

λ3 . Now it may be shown, for the canonical ensemble,
that

lim
V→∞

〈
n2

k

〉− 〈nk〉2
V 2

= 0 for all nk and ρ, (8.44)

including the ground state. This is done utilizing

〈ni 〉 = 1

Z

N∑
{nk }

ni exp

(
−β

∑
k

nkεk

)
(8.45)

and 〈
n2

i

〉 = 1

Z

N∑
{nk }

n2
i exp

(
−β

∑
k

nkεk

)
. (8.46)

N is fixed. Since N is fixed and finite, Eq. (8.44) is reasonable. Now, utilizing
the well-known general relation for the grand canonical case,

〈
n2

k

〉 − (〈nk〉)2 =
(〈nk〉) (1+ 〈nk〉) for all k. In particular, we find that for the ground state,

lim
V→∞

〈n0〉
V

= 0 ρ < ρc (8.47)

= ρ − ρc ρ > ρc

lim
V→∞

〈
n2

0

〉
V 2

= 0 ρ < ρc (8.48)

= 2
(
ρ − ρc

)2
ρ > ρc

and thus the anomaly

lim
V→∞

〈
n2

0

〉− (〈n0〉)2

V 2
= (

ρ − ρc

)2
. (8.49)

This exhibits large uncontrolled fluctuations in densities for ρ > ρc. For the
excited state

lim
V→∞

〈nk〉
V

= lim
V→∞

〈
n2

k

〉
V 2

= 0. (8.50)
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Eq. (8.50) is not in agreement with the canonical result, since in this case N →∞
and is not fixed but is consistent, since we may show for 〈N 〉 = N

lim
V→∞

〈
(�N )2

〉
V 2

= 0 ρ < ρc (8.51)

= (
ρ − ρc

)2
ρ > ρc.

For the condensed phase the fluctuations are those of the entire system. Ziff
et al. (1977) have explained this by considering a system λ′ containing a smaller
subsystem λ having a boundary λ′−λ. The region λ is determined by the canonical
ensemble being an open system in the limit V, V ′ → ∞. λ′ must be determined
by the canonical ensemble in contradiction to the results in the condensed phase.
We note that this is a difficulty with the average ground state number density and
its moments.

8.6 A master equation view of Bose condensation

A recent suggestion of Willis Lamb induced M. Scully and his colleagues
(Kocharovsky et al., 2000) to reconsider the laser transition analogy to a phase
transition (Degiorgio and Scully, 1970). They utilized the density matrix master
equation of Scully and Lamb (Scully and Zubairy, 1999) to possibly describe the
Bose–Einstein phase transition which we are considering in this chapter. Since it
deals with the master equation description of an open system (see Chapter 3), it
is pertinent to consider this here. The original quantum optics application will be
looked at extensively in Chapter 9.

Let us look at the ideal gas Einstein condensate from a master equation and
possibly non-equilibrium point of view. The reservoir is taken to be a system of
harmonic oscillators with b†

j creation operators and a†
k for the condensing Bose

atoms in state k, h̄νk being the energy of the particular trap, not yet specified.
The interaction is

V =
∑

j

∑
k>l

g j,klb
†
j aka

†
l × exp

(−i
(
ω j − νk + νl

)
t
)+ Hc. (8.52)

In the Markov approximation, with basically the assumptions of Chapter 3, assum-
ing ρ (0) = ρS (0) ⊗ ρR (0), the infinite reservoir is taken to be in equilibrium.
The von Neumann equation for the Bose system is (see Kocharovsky et al., 2000;
Scully and Zubairy, 1999)

ρ̇S = −κ

2

∑
k>l

(nkl + 1)
[
a†

k ala
†
l ρS − 2a†

l akρSa†
k al + ρSa†

k ala
†
l ak

]
(8.53)

− κ

2

∑
k>l

nkl

[
aka

†
l ala

†
kρS − 2

(
ala

†
kρSaka

†
l + ρSaka

†
l ala

†
k

)]
.
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The reservoir energies have been taken as continuous with densities D (ωkl) and
assumed to be constant. Also, the off diagonal contributions ωkl �= ωk′l ′ are

neglected. Then κ = 2π Dg2

h̄2 . Also, nkl =
[
exp

( hωkl
T

)− 1
]−1

, being the equilibrium
occupation of the infinite heat baths.

For the condensate system we will obtain a further reduced equation for the
conditional diagonal probability:

Pn0 =
∑
{nk}′

Pn0,{nk}′ . (8.54)

The prime means n0 +∑
k �=0 nk = N . Here N is fixed, and {nk} is summed over

all nk but not over n0. This is consistent with the soon to be obtained canonical
equilibrium ensemble.

Further, assume that the excited states {nk}′ are in thermal equilibrium at tem-
perature T , the bath temperature. This factors the intermediate nonlinear equation
for Pn0 . It results in

〈nk〉 =
∑
{nk }′

nk′
Pn0,{nk }′

Pn0

, k �= 0,

characteristic of a conditional probability. The excited states are now in equilibrium
at T and subject to

∑
k>0 nk = N − n0, given n0 and N .

Finally, the simple linear “working” equation is obtained for Pn0 :

d Pn0

dt
= −κ

{
Kn0 (n0 + 1) Pn0 − Kn0−1n0 Pn0−1 + Hn0n0 Pn0

−Hn0+1 (n0 + 1) Pn0+1
}
, (8.55)

where

Kn0 =
∑
k′>0

(nk′ + 1) 〈nk′ 〉 (8.56)

Hn0 =
∑
k′>0

nk′ (〈nk′ 〉 + 1) .

The averages in Eq. (8.56) are conditional. This is a linear irreversible birth–death
equation for the probabilities Pn0 in the ground state. The occupation probabil-
ity Pn0 is changed from the states n0 ± 1, both increased by Kn0−1n0 Pn0−1 and
Hn0+1 (n0 + 1) Pn0+1 and decreased by Kn0+1 (n0 + 1) Pn0 and Hn0n0 Pn0 . It is a
master equation in the sense of Pauli but not necessarily weak coupling in the
reservoir condensate coupling. It is better understood to be in the Van Hove limit,
as in Chapter 3 (λ2t finite, λ→ 0, t →∞).

For such an equation as Eq. (8.55), the steady “equilibrium” solution may be
readily obtained, as is the object of this discussion. The authors (Kocharovsky
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et al., 2000) have done this for a number of traps and condensate numbers. By
standard procedure, using detailed balance (Gardiner, 1985), one may obtain the
time-independent (steady) solution:

Pn0 = ZN−1�
N
i=n0+1

Hi

Ki−1
, (8.57)

and with this and normalization we write

ZN =
N∑

n0=0

τ�N
i=n0+1

(
Ki−1

Hi

)−1

, (8.58)

the canonical partition function.
Scully and his colleagues made the approximation for low temperature nk′ +1 ≈

1 and also made a constant coefficient approximation

Kn0 = N − n0. (8.59)

N − n0 is the number of noncondensed atoms. In this case,

Hn0 =
∑
k>1

nk, (8.60)

and

Pn0 =
1

ZN

(
Hn0

)N−n0

(N − n0)! . (8.61)

Normalizing to obtain ZN , there results, for the noncondensed probability,

PN−n = exp
(−Hi0

)
N !

�
(
N + 1, Hn0

) × (
Hn0

)n

n! . (8.62)

Also, immediately,

〈n0〉 = N − Hn0 +
(
Hn0

)N+1

ZN N ! (8.63)

〈
n2

0

〉− 〈n0〉2 =
(
Hn0

) (
1− (〈n0〉 + 1)

H N
n0

ZN N !

)
.

They show that these approximations are valid in the weak trapping limit, T >>

ε1, ε1 being the energy difference of the ground and excited state. They appear
to be qualitatively true, in general, for the harmonic oscillator trap, which we will
turn to now.



Appendix 8A: exact treatment of condensate traps 155

Consider again the three-dimensional (3-D) harmonic oscillator trap where

εk = h̄ (k1ω1 + k2ω2 + k3ω3) .

Now Hn0 =
∑
k>0

(expβh̄ω − 1)

and ηHn0 =
∑
k>0

(expβh̄k − 1)2 .

As we have already done in Section 8.2, Eq. (8.3) and following, we approximate
the sums by integrals and also define the critical temperature as

kTc = �

(
N

1.202

) 1
3

,

where � = (ω1ω2ω3)
1
3 . We have

Hn0 =
(

T

Tc

)3

N (8.64)

and

ηHn0 =
(

T

Tc

)3

N

(
g2 (1)− g3 (1)

g3 (1)

)
.

The number of particles in the condensate is thus approximately N−Hn0 , where

n0 = N

(
1−

(
T
Tc

)3
)
, as we found in Section 8.3. The formula, Eq. (8.61), has

been numerically evaluated in the harmonic oscillator case and found to agree well
with the numerical results of Wilkens, Grossmann and Holthaus (Grossman and
Holthaus, 1995) for finite N .

Appendix 8A: exact treatment of condensate traps

We will outline here the exact evaluation of rather general traps by the summation
of the Bose–Einstein grand ensemble of de Groot (de Groot et al., 1950). Particular
attention will be paid to the box and harmonic traps. We suggest the reader look
into this impressive and rather complete work.

They choose generally the energy

β
(
εs1 . . . εw

) = M

T

w∑
ν=1

sα
ν

a2
ν

(s1 . . . sw = 1, 2, . . .) . (8A.1)

Here a1 . . . aw have dimension of length in w dimensions, λ is a parameter ranging
1 ≤ λ ≤ 2. λ = 1 is the harmonic oscillator (dimension possibly w = 3), and
λ = 2 is the spectrum of the particle in a box. M is a constant. Then one has
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N =
∞∑
j=1

z j�w
ν=1Gα(xν, j) (8A.2)

and

ε̄ = kT

N

∑
j

z j d

d j
�w

ν=1Gα (xν, j) . (8A.3)

Here

xν = M

a2
νT

Gα (x) = exp x
∞∑

s=1

exp (−xsα) . (8A.4)

Gα (x) (for x > 0) and its first and second derivatives are continuous monotoni-
cally decreasing. But Gα (0) = ∞, and Gα (∞) = 1. However, lim

x→0
x

1
2 Gα (x) =(

α−1
)!.

Now consider z and the series

Rq (z) ≡
∞∑
j=1

z j j−q . (8A.5)

As we already know for 0 ≤ z < 1, Eq. (8A.5) converges and reaches the gq

functions at gq (z = 1). The derivative

d Rq

dz
= Rq−1 (z)

z

is zero for z = 0. But for q < 1, z → 1 and Rq (z)→∞ such that

(1− z)−q+2 d Rq

dz
→ (−q + 1)!.

Let us consider the inversion zq (R). We may obtain three regimes:

1 < q <
3

2

d2z

d R2
= 0

(
R = Rq (1)

)
(8A.6)

q = 3

2

d2z

d R2
= −1

2π

(
R = Rq (1)

)
(8A.7)

3

2
< q ≤ 2

d2z

d R2
→∞ (

R = Rq (1)
)
, (8A.8)

and q > 2 dz
d R > 0 for 0 ≤ R ≤ Rq (1). De Groot and colleagues proved the central

theorem for aν →∞, N →∞ and ν =constant where
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ν = N

�w
ν=1a

2
α
ν

with q = w

α
. (8A.9)

There are two cases:

(1) q = 1 for all T . z (R) is defined by

u (T ) ≡ ν
{(

α−1
)
!
}−w

(
M

T

)q

= Rq(z). (8A.10)

(2) q > 1, then Eq. (8A.10) is valid only for T > Tc where Tc is determined by
the limiting value

ν
{(

α−1
)
!
}−w

(
M

Tc

)q

= Rq (z = 1) and for T < Tc. (8A.11)

z = 1 (8A.12)

These two cases distinguish the behavior of z (T ) and its derivatives. For case 1,
Eq. (8A.10) defines z as a continuous function of T decreasing monotonically from
z = 1 at T = 0 to z = 0 at T = ∞. Case 2 is more interesting. Rq (z) ≤ Rq (1),
and the functions meet at T = Tc. Tc is determined by Eq. (8A.11), and now from
Eqs. (8A.7), (8A.8) and (8A.9) we see the character of this transition in terms of
dz
dT and d2z

dT 2 . We find:

For 1 ≤ q <
3

2
: E,

d E

dT
and

d2E

dT 2
are continuous at T = Tc.

For q = 3

2
(the box, w = 3, α = 2) : d2E

dT 2
shows a finite discontinuity.

For
3

2
< q ≤ 2 : d2E

dT 2
has an infinite discontinuity.

For q > 2 : d E

dT
has finite discontinuity and thus shows a λ transition at Tc.

Only a finite transition Tc appears if N →∞ for ν finite. Now, for the box, a = 2,
and ν is the mean gas density when N → ∞. If ν → 0 or ∞, Tc → 0 or ∞,
respectively.

Generally, de Groot et al. prove that where N →∞, finite ν, for the case q > 1
and T < TC

N0

N
=

(
1−

(
T

Tc

)q)
. (8A.13)

This is London’s result with q = 3
2 . It was later proved by Grossman and Holthaus,

also.
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9

Scaling, renormalization and the Ising model

9.1 Introduction

The Heisenberg ferromagnetic Hamiltonian is

Ĥ = −
∑

ij

Jijŝi · ŝj − hz

∑
i

ŝiz. (9.1)

Here ŝi is the electron spin operator at lattice site i. i is an arbitrary lattice vector in
d dimensions. Jij is the spin coupling constant, the details of which do not interest
us except to say that it is strong, near unity. The details of the lattice are also not
important, and we will choose a square array and simply write Ji j without the
explicit vector notation. The second term is the paramagnetic effect of the external
dimensionless field h in the z direction. As already discussed in Chapter 2, we may
write

ŝ = 1

2
h̄σ̂ , (9.2)

where σ̂ are the Pauli spin matrices having the properties

σ̂
2
x = σ̂

2
y = σ̂

2
z = 1 σ̂

2 = 3 (9.3)

σ̂ x σ̂ y = −σ̂ y σ̂ x = i σ̂ z (9.4)

σ̂ y σ̂ z = −σ̂ zσ̂ y = i σ̂ x

σ̂ zσ̂ x = −σ̂ x σ̂ z = i σ̂ y

for a given spin site i. Consequently Eq. (9.1) cannot be diagonalized in the spin 1
2

basis set.
It is thought that the partition function written with Eq. (9.1) is the basis for

the description of the ferromagnetic phase transition, although this has never been
exactly demonstrated. A simplification of this was introduced by Ising (1925) in a
model of a spin chain. This will be the basis of the discussion here, as elsewhere in

159
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many good books (Huang, 1987; Chandler, 1987; Plischke and Bergersen, 1989;
Kadanoff, 2000).

The Ising model is a severe replacement of Eq. (9.1) by

HI = −
∑

i j

Ji j ŝi z ŝ j z − hz

∑
i

ŝi z. (9.5)

Now the partition function may be evaluated in the basis which diagonalizes σ̂ i z.

We have the diagonal form

〈σ 1 . . . σ N | HI |σ 1 . . . σ N 〉 = −J
′∑
i j

σ iσ j − hz

∑
i

σ i ≡ E (σ 1 . . . σ N ) ,

(9.6)

where σ 1 . . . σ N = ±1. Here appropriate factors of h̄ and the number of nearest
neighbors have been incorporated in J and h.

In his famous work, Onsager (1944) obtained the exact specific heat for the
2–D Ising model showing a phase transition. We shall not repeat this here, since
good descriptions of the transfer matrix technique (Schultz et al., 1964) already
exist. See the books of Huang (1987) and Plischke and Bergersen (1989). We shall
discuss this later by an approximation.

Let us begin with Landau (1941) mean field theory to introduce critical indices.
We will then turn to the phenomenological Widom scaling (Widom, 1965) and
then Kadanoff’s block spin scaling (Kadanoff et al., 1967). These are a prelude
to the consideration of the renormalization theory of Wilson (1971). Here we will
consider the use of these methods and results for the 2–D Ising model. This will
follow the nice introduction of Maris and Kadanoff (1978).

9.2 Mean field theory and critical indices

Recall the thermodynamic properties of magnetic systems. The work done by the
system with constant applied field is ðW = −H·dM, where H is the applied
magnetic field and M the total magnetization (Callen, 1985).

The Helmholtz free energy is given by

d F ≡ d A = H · dM− SdT (9.7)

and for the canonical ensemble, as earlier,

A = (kT ) ln Z (T, H) , (9.8)

Z again being the partition function

Z = Tr exp (−βH) . (9.9)
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The Gibbs free energy, which will play an important role, is

dG = −SdT − Md H. (9.10)

We drop the vector notation on M and H . It may be shown for the grand canonical
ensemble that

G (H, T, N ) = μN ,

so the g per particle is μ. Thus we have

S = −
(
∂ A

∂T

)
M

(9.11)

and

H =
(

∂ A

∂M

)
T

. (9.12)

The specific heats are

CM = −T

(
∂2 A

∂T 2

)
M

(9.13)

and

CH = −T

(
∂2G

∂T 2

)
H

. (9.14)

The susceptibilities are

χ S =
(
∂M

∂H

)
S

(9.15)

and

χT =
(
∂M

∂H

)
T

. (9.16)

Two coexisting phases at equilibrium lead to the Gibbs phase rule. We have for two
phases, “1” and “2,”

T1 = T2 (9.17)

H1 = H2

μ1 = μ2

and consequently

g1 (T, H) = g2 (T, H) . (9.18)
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From this, along the phase coexistence curve, the Clausius–Clapyron equation
follows: (

dμ

dT

)
coex

= s1 − s2

v1 − v2
. (9.19)

Critical indices or exponents became important experimentally and theoretically
(Fisher, 1974). Near the critical point, it is assumed that the singularities are power
laws:

C+ = A+ (T − Tc)
−α T > Tc (9.20)

C− = A− (Tc − T )−α′ T < Tc

χ+ = D+ (T − Tc)
−γ T > Tc (9.21)

χ− = D− (Tc − T )−γ ′ T < Tc

and

M = B (Tc − T )β T < Tc (9.22)

as well as the equation of state,

M = H
1
δ . (9.23)

The spin correlation length is

〈si − 〈s〉〉
〈
s j − 〈s〉

〉 ≈ exp

(−ri j

ξ

)
, (9.24)

where

ξ ≈ (T − Tc)
ν T > Tc

and

≈ (Tc − T )−ν′ T < Tc.

The parameters (apparently disparate) α, α′, γ , γ ′, β, δ, ν, ν ′ will be the central
focus of the subsequent discussion.

The mean field approximation, used many places in physics, replaces σ j in Eq.
(9.6) by the average value

〈
σ j

〉
in the first term.

〈
σ j

〉 = m, the magnetization per
atomic site, is independent of j . Thus we have an effective E (σ 1 . . . σ N ):

Eeff (σ 1 . . . σ N ) = −Jm
∑

i

σ i − hz

∑
i

σ i . (9.25)

The idea is that the effect of fluctuations is small in the interaction and that the
nearest neighbor sites effect a spin through their average value. This, of course,
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depends nonlinearly on all adjacent spins in a self-consistent fashion. The validity
of the mean field approach depends on the smallness of these fluctuations and may
or may not be true, as we will see.

We may immediately easily calculate m in this approximation:

m = Trσ 0 exp (−βEeff)

Tr exp (−βEeff)
= tanh [β (Jm + h)] . (9.26)

We obtain a transcendental equation of state for m. Here we have incorporated the
number of nearest neighbors into J.

We may solve Eq. (9.26) approximately or numerically. For small β J and h = 0,

m0 = β Jm0 − 1

3
(β J )3 m3

0.

This has solutions

m0 = 0 (9.27)

and

1 = β J − 1

3
(β J )3 m2

0. (9.28)

Eq. (9.28) is used to define the critical temperature, βc J = 1 and m0 �= 0. Using
this, we find

m0 = ±3
1
2

(
T

Tc

) 3
2
(

Tc

T
− 1

) 1
2

. (9.29)

Which solution applies? The Gibbs free energy is for small m

β [G (m0T )− G (0, T )] = m2
0

2
(1− β J )+ 1

12
m4

0 − ln 2. (9.30)

The solution to Eq. (9.29) has the lowest value of G for T < Tc,
J

kTc
= 1. It is

the stable phase. Thus, Eq. (9.29) represents the spontaneous magnetization in the
temperature range. For T > Tc, m0 = 0 is the stable phase. β = 1

2 is the mean
field critical index already mentioned.

Consider now the susceptibility per spin site

χ (h, T ) = ∂m

∂h
|T . (9.31)

From the expression for m,

χ (0, T ) = β sec h2 (β Jm)

1− β J sec h2 (β Jm)
, (9.32)
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as T → T+c , we obtain

χ+(0, T ) = 1

kTc
(
1− Tc

T

) ; T > Tc.

By writing

m = T

Tc
tanh−1 m (9.33)

we expand and obtain

χ− (0, T ) = 1

kT
(
1− Tc

T

) ; T < Tc.

The susceptibility mean field critical exponent is γ = γ ′ = 1.
The specific heat is obtained by writing

〈H〉 = −J
∑

i j

〈σ i 〉
〈
σ j

〉 = −1

2
J Nm2. (9.34)

C+
h = 0, T > Tc and C+

h = 3
2 Nk for T < Tc. Thus, the mean field does not have

conventional critical indices for the specific heat. This failure is what led Onsager to

examine the 2– D Ising model exactly, which led to the famous ln
(
1− T

Tc

)
result.

Also, we should note from Eq. (9.26) how, taking h �= 0,

m = m + βh − 1

3
(m + βh)2 . (9.35)

Near h = 0,

h = m3, (9.36)

and the mean field critical index is here δ = 3.
Eq. (9.30) is a special case of the general Landau approach to mean field theory.

Near the critical point, it is assumed that

G (m, T ) = G (0, T )+ 1

2
b (T )m2 + 1

4
c (T )m4 + 1

6
d (T )m6 . . . (9.37)

b (T ), c (T ), d (T ) are unspecified macroscopic coefficients. As with the Ising
model, it is assumed G (m, T ) = G (−m, T ), and only even powers in the
expansion appear. Assume C (T ), d (T ) > 0 and b (T ) = b0 (T − Tc). Then
G (m, T )−G (0, T ) may have the double symmetric well curve for T < Tc, which
disappears for T > Tc. m = 0 is now a local maximum with symmetric minima on
either side.
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We write the free energy extremum condition

∂G

∂m
| T = 0 (9.38)

bm + cm3 + dm5 + · · · = 0

and obtain to m3 order

m = ±
[

b0

c (Tc)

] 1
2

(Tc − T )
1
2 T < Tc, (9.39)

having the critical index already obtained. Consider S = − ∂G
∂T , and obtain the

specific heat

C = T

(
∂S

∂T

)
= −T

d2a

dT 2
+ 1

2

(
T b2

0

c

)
T < Tc (9.40)

= −T
d2a

dT 2
T > Tc.

We have not yet obtained the critical index for ξ , the correlation length. To do
this, we will treat the spacial dependence r by the Landau–Ginsburg macroscopic
fluctuation theory (Ginsburg and Landau, 1950). The total magnetization is

M =
∫

d3rm (r) , (9.41)

and the Gibbs free energy is

G (h (r) , T,m (r)) = A −
∫

d3rh (r)m (r) . (9.42)

Expand the Helmholtz free energy as a function of m (r):

A ({m (r)} , T ) =
∫

d3r

{
a (T )+ b

2
m2 (r)+ c

4
m4 (r) · · · + f

2
[�m (r)]2

}
.

(9.43)

This is a spacially dependent generalization of the previous expansion, Eq.
(9.37). Assume f positive, and this guarantees the fluctuation term increases the
Helmholtz free energy. This term is the simplest assumption which is invariant
under m → −m, which also determines the form of the other terms. Consider the
functional derivative

h (r) = δA

δm (r)
. (9.44)
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Taking the variation of Eq. (9.43), we may write the Ginsburg–Landau equation

h (r) = bm (r)+ cm3 (r)− f �2m (r) , (9.45)

where we have integrated by parts and assumed δm (r) = 0 on the boundaries.
Assume an expansion around weak fluctuations, φ (r),

m (r) = m0 (T )+ φ (r) (9.46)

and the inhomogeneity

h (r) = h0

f
δ (r) locally; (9.47)

m0 (r) = 0 T > Tc (9.48)

m2
0 = −

b

c
T < Tc

as in the deterministic theory discussed earlier.
The linearized equation for φ is then

�2φ − b

f
φ = −h0

f
δ (r) T > Tc (9.49)

�2φ + 2b

f
φ = −h0

c
δ (r) T < Tc.

The solution is

φ = h0 f

4π f r
exp

(
− r

ξ

)
. (9.50)

The spherical correlation length becomes

ξ =
[

f

b (T )

] 1
2

T > Tc (9.51)

ξ =
[

1 f

2b (T )

] 1
2

T < Tc.

Since b (T ) = b0 (T − Tc), ξ (T ) has the critical index ν = ν ′ = 1
2 , being

symmetric around Tc. φ (r) is indeed the correlation function, since

δm (r)
δh (0)

= φ (r)
h0

= β (〈m (r)m (0)〉 − 〈m (r)〉 〈m (0)〉) . (9.52)

From the foregoing mean field considerations, a criterion may be obtained for
the self-consistency of the mean field approach known as the Ginsburg criterion,
which we write down as

d > 2+ 2β

ν
, (9.53)



9.3 Scaling 167

d being the dimension. For Landau and mean field theories, β = 1
2 and ν = 1

2 and
hence are valid for d > 4 and not d = 3. This is consistent with the fact that the
exact 2–D Ising values are β = 1

8 , ν = 1.

9.3 Scaling

The failure of the mean field theory and its expression in Eq. (9.53) led to macro-
scopic scaling, due to Widom (1965) and Kadanoff (Kadanoff et al., 1967), which
we shall now examine. For the magnetic case we generalize

h = ∂ A

∂m
= mχ

(
t,m

1
β

)
. (9.54)

We no longer use the Landau expansion. Let t = T−Tc
Tc

, and β is the critical
index already introduced. Following Widom’s brilliant suggestion, take χ to be
a homogeneous function of two variables:

χ
(
λ

1
γ t, λ

1
γ m

1
β

)
= λχ

(
t,m

1
β

)
, (9.55)

or equivalently, assume the Gibbs free energy singular part

G (t, h) = λG
(
λs t, λr h

)
. (9.56)

The parameters r, s will be determined. λ is the scale parameter. Using m =
−∂G
∂h and χ = ∂m

∂h |t , we may obtain

m (t, h) = λr+1m
(
λs t, λr h

)
(9.57a)

χ (t, h) = λ2r+1χ
(
λs t, λr h

)
. (9.57b)

Also, Ch = −T
(

∂2G
∂t2

)
|h , so

Ch (t, h) = λ2s+1Ch
(
λs t, λr h

)
. (9.57c)

Now we examine this near both sides of the critical point, t = 0, for t small,
positive and negative. First we take h = 0 and assume λ = −t

−1
s . We have from

Eq. (9.57a) and Eq. (9.57b)

m (t, 0) = (−t)−
(1+r)

s m (−1, 0) (9.58a)

χ (t, 0) = (−t)−
(2r+1)

s χ (−1, 0) (9.58b)

Ch (t, 0) = (−t)−
(2s+1)

s Ch (−1, 0) . (9.58c)
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Now we choose t = 0 and the scale λ as λ = +h
−1
r for small h. Eq. (9.57a)

becomes

m (0, h) = h
−r+1

s m (0,+1) . (9.58d)

We may obtain similar equations for t positive and also h negative.
Now, comparing with Eq. (9.21), Eq. (9.22) etc., we find

γ = γ ′ = 2r + 1

s
(9.59a)

α = α′ = 2s + 1

s

and from Eq. (9.58d)

δ−1 = − (r + 1)

r
. (9.59b)

Also, Eq. (9.58a) gives

β = − (r + 1)

s
. (9.59c)

These relations may be rewritten compactly, as follows:

α + 2β + γ = 2 (9.60)

β (δ − 1) = γ .

We have the remarkable result that there are only two independent critical indices
and these relations. The first was deduced as an inequality from thermodynamics
by Rushbrook (Rushbrook, 1963). The scaling laws are thought to be exact and
valid even when mean field theory holds.

There is another relation called hyperscaling,

dν = 2− α, (9.61)

in which ν is the correlation length index and d the dimension. The physical con-
tent of the scaling assumption, Eq. (9.60), is not clear. Kadanoff took an important
step by introducing the notion of a block spin Hamiltonian. We will see that the
scaling relations may be obtained from this. If we are near the critical point, t = 0,
we may expect that neighbor aggregates of micro spins may be statistically corre-
lated, such that

〈
σ i , σ j

〉 = 1 for |i− j | ≤ R and |k| >> a0. We may form blocks
of these spins. These Rd volume blocks of d dimensions may then form a new
lattice with an effective (macro?) spin σR on this lattice:

σR =
∑

jk in R

σ jk. (9.62)
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We assume that this new set of σR are governed by an effective Ising Hamiltonian
with h′ and t ′ and also K ′ = β ′ J ′. The number of block spins is N ′ = |R|−d N .

The spins are “thinned,” to use a future terminology. We further assume h′ → −h′,
t ′ → t ′ when h = −h. We then take

h′ = hRx (9.63)

t ′ = t Ry,

x, y being as yet unspecified parameters and positive.
The rescaled Gibbs free energy per site is now

g (t, h) = R−d g
(
Rxt, Ryh

)
, (9.64)

and the correlation length is

ξ (t, h) = Rξ
(
Rxt, Ryh

)
. (9.65)

Thus, scaling of the Gibbs free energy in R appears naturally from the block
picture. The λ of Widom is R, and s is dy, r is dx in general.

Eq. (9.65) is a new result of the block scaling. Assume R = t
−1
y and for h = 0,

ξ (t, 0) = t
−1
y ξ (±1, 0) . (9.66)

We obtain ν = 1/y and show

d

y
= 2− α = dν. (9.67)

We have used d/y = 1/s = 2 − α. ν is the correlation length. Eq. (9.67) is the
hyper scaling relation depending on dimension. All scaling laws, including hyper
scaling relation Eq. (9.67), hold for the 2– D Ising model exactly. Eq. (9.67) is not
true for mean field theory except for d = 4.

9.4 Renormalization

From the previous section we do not see the reason for two independent critical
indices, nor do we have a method of calculating these indices. The fundamental
method and deeper understanding of how to do this is due to Wilson, and we call
it renormalization theory.

To see the elements of this, we will consider the one-dimensional Ising model,
as Wilson did in his first paper (Wilson, 1971). The methods are far more general,
as nicely discussed in the book of Kadanoff (2000) and also in Wilson and Kogut
(1974).
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Consider again the 1– D nearest neighbor, Ising Hamiltonian energy

H = −K
N∑

i=1

σ iσ i+1 − h
N∑

i=1

σ i , (9.68)

where the coupling constants are K = β J, h′ = βh. Now we will drop the prime.
The partition function is

Z (N , K h) ≡
∑

{σ i }=±1

exp

(
N∑

i=1

Kσ iσ i+1 + 1

2
h (σ i + σ i+1)

)
. (9.69)

We wish to write this in a block spin representation with new coupling constants
K ′, h′. We assert that there is a transformation (mapping) from N → N ′ =
N/2, K → K ′, h → h′. Clearly it is possible to reduce the number of sites
and introduce blocks by summation (integration!), but is it then of the Ising form
with simply K ′, h′ ? In fact, it is of a more general form:

Z

(
1

2
N K ′h′

)
= Z (N , K , h) exp−Ng (K h) (9.70)

= [
f (K )

]−N
Z (K h) .

This is the Kadanoff transformation. The factor f (K ) is proportional to the free
energy, and g (K ) is independent of the system size. In the 1– D example for h = 0,
we sum on all even spin sites and introduce K ′:

f −1 (K )
[
exp K

(
σ + σ ′

)+ exp
(−K

(
σ + σ ′

))] = exp
(
K ′σσ ′

)
, (9.71)

or, since σ, σ ′ = ±1,

K ′ = 1

2
ln cosh (2K ) (9.72a)

f (K ) = 2 cosh
1
2 (2K ) .

Using

g (K ) = 1

2
ln f (K )+ 1

2
g
(
K ′) ,

we have

g
(
K ′) = 2g (K )− ln

[
2
√

cosh 2K
]
. (9.72b)

Eq. (9.72a) and Eq. (9.72b) represent the transformation of Z (N K ) when the num-
ber of sites is reduced by 1/2, forming blocks of effective spins. They are termed
the renormalization group equations. More generally,
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K ′ = 1

4
ln

cosh (2K + h) cosh (2K − h)

cosh2 h
(9.73)

h′ = h + 1

2
ln

cosh (2K + h)

cosh (2K − h)
.

g = 1
8 ln

[
16 cosh (2K + h) cosh (2K − h) cosh2 h

]
, which we leave as a problem

for the student.
This procedure may be repeated from N ′ → N

2 , N ′′ = N ′
2 = N

4 etc., introducing
repeatedly larger blocks with effective Ising constants K , K ′, K ′′, h, h′, h′′, . . . ,
which change the scale of description. Wilson emphasized that this may be viewed
as a continuous transformation in block size and not necessarily discrete. We
have not made this explicit but have maintained a block picture for simplicity,
which is not strictly valid, but physical (Wilson, 1971). This is the essence of the
renormalization maps, the iteration of Eq. (9.73). We may write

−βG (N K h) = Ng (K h)+ ln Z

(
1

2
N , K ′h′

)
(9.74)

=
∞∑
j=0

(
1

2

) j

g
(
K j , h j

)
.

Higher dimension is more complicated, but the procedure is similar. There are
now {K } = (K1 . . . Kn) coupling constants in d dimensions and bd degrees of
freedom, one of which is h. The Hamiltonian energy is written

H = N
h∑

α=1

Kαψα (σ i ) . (9.75)

The renormalization transformation gives new constants,

K ′
α = Rα (K1 . . . Kn) , (9.76)

and the Kadanoff transformation is

Tr{σ i } exp H = exp Ng (K )× Tr{
σ
′
i

} exp H ′ (K ′) , (9.77)

where Tr exp H ′ = exp
(

N f (K ′)
bd

)
. Therefore,

f ({K }) = g ({K })+ b−d f
(
K ′) . (9.78)

Eq. (9.76) and Eq. (9.78) are the renormalization group transformations. b−d f
(
K ′)

is identified with the singular part of the free energy (Niemeijer and van Leeuwen,
1976). In general, Eq. (9.76) is a continuous scale transformation and is analytic
at the fixed point. Wilson wrote down these differential equations explicitly. Eq.
(9.76) represents the solutions.
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9.5 Renormalization and scaling

This change of scale is represented by the sequence of coupling constant evo-
lutions. In a dynamic sense, there is a flow governed by Wilson’s equations
in the coupling constant space (Wilson, 1971). By construction, Z

(
K′, N ′) =

Z (KN ). K is a vector made of the components (Kα). Hence we may conclude
that the singular part of the free energy f

(
K′) = b−d f (K) (Niemeijer and van

Leeuwen, 1976), which is Widon’s scaling.
In the flow in K space under the renormalization, the fixed points play a special

role. This can be seen in the 1– D Ising example. We have for h = 0

K ′ = 1

2
ln cosh 2K ≤ K .

K = K ′ for K = 0 and K = ∞. K = 0 corresponds to J = 0 and no spontaneous
magnetization, or to finite J for weak coupling. From the map the K ′ = ∞ fixed
point is unstable, and the flow is toward the no-interaction fixed point. This, of
course, corresponds to the fact that in the 1– D Ising model there is no spontaneous
magnetization.

In higher dimensions the fixed points are

K∗ = R
(
K∗) . (9.79)

We may also argue physically, from the block picture, that the spin correlation
length obeys

ξ
(
K′) = b−dξ (K ) . (9.80)

We see that at the fixed point ξ (K ∗) = b−dξ (K ∗), which has two solutions,
ξ (K ∗) = 0 or ∞ for finite b. One of these we have already met in zero
magnetization. The other is the critical point.

Let us examine this further in two dimensions with K1, K2. We parameterize the

critical point (K1c, K2c) =
(

J1
kTc

, J2
kTc

)
by fixing J1

J2
. Criticality is now determined

by Tc. The flow induced by the renormalization transformations is for T > Tc

toward K1 = K2 = 0 and away for T < Tc toward a zero-temperature ground
state. For ξ = ∞ it is along a line of invariant criticality. This may be a saddle in
the K1, K2 space. The flow must be away from ξ = ∞, since the renormalization
increases the block size. Consequently, ξ (K ∗) = ∞ is an unstable fixed point,
since ξ decreases on repeated mapping.

Now let the generally nonlinear map be

K ∗
1 = R1 (K1K2) (9.81)

K ∗
2 = R2 (K1K2) .
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We examine the solution by standard linear stability analysis. Let

δK1 = K1 − K ∗
1 (9.82)

and

δK2 = K2 − K ∗
2

be small. To first order we have the linearized map, by Taylor expansion,

δK ′
1 = M11δK1 + M21δK2

δK 1
2 = M21δK1 + M22δK2,

where Mi j = ∂Ri
∂K j

|K ∗i K ∗j �= M ji is, in general, not Hermitian. We may diagonalize
this by obtaining the left eigenvalue and eigenfunction of∑

i j

φαi Mi j = λαφα j . (9.83)

Since λα (b) λα (b) = λα

(
b2

)
, we may write, by the group property,

λα = byα , (9.84)

introducing the parameter yα. Using the φαi coordinates we write generally

Uα = δK1φα1 + δK2φα2

and

U 1
α = δK ′

1φα1 + δK ′
2φα2.

Hence U ′
α = λαUα. The Uα scale under the linear transformation by λα. Thus,

U ′
α = byαUα.

Generally, we have the free energy recursion under the map

f ({K}) = g ({K})+ b−d f
({

K′}) . (9.85)

The singular part of the free energy is the second term. Near the critical point we
may express K in terms of U. Thus, for the singular part,

f (U1,U2) = b−d f
(
by1U, by2U2

)
, (9.86)

which is the Kadanoff scaling form of the free energy. y1 and y2 may be related
to critical indices, as we have already done. Since the fixed point is hyperbolic,
y1, y2 must have opposite sign. We choose y1 positive. The Uα for yα > 0 are
called relevant scaling fields. Wilson has examined in detail the structure of a two-
dimensional renormalization set of equations and their solution. For h = 0 having
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the gradient form, the saddle fixed point is possible with the well-known properties.
We may show

d

y1
= 2− α (9.87)

with

y1 = ln λ1

ln b
y′1 = ν−1.

The important point here is that we have a method of calculating λ by solving
the linearized eigenvalue problem at the unstable critical point. In addition, all the
scaling relations hold. We only need Mi j = ∂Ri

∂Ki j
|K ∗1 K ∗2 and the solution to Wilson

renormalization equations.

9.6 Two-dimensional Ising model renormalization

We will return to the two-dimensional Ising model which, in the light of the famous
Onsager result, exhibits a phase transition in the specific heat. We will use the
renormalization approach to illustrate the technique of obtaining an approximate
solution. We follow closely the simple paper of Maris and Kadanoff (1978). See
also the book of David Chandler (1987). The thinning or block size mapping will be
carried out directly on the Ising 2– D partition function. The procedure was already
begun earlier in 2– D when discussing the block scaling of Kadanoff. Another
approach would be to solve the renormalization group equations of Wilson. Other
approximation methods are discussed in the book by Plischke and Bergersen
(1989).

We again consider the 2– D nearest neighbor Ising partition function for the
square lattice and write the partition function for h = 0:

Z =
∑
{σ }

. . . exp [Kσ 5 (σ 1 + σ 2 + σ 3 + σ 4)] (9.88)

× exp [Kσ 6 (σ 2 + σ 3 + σ 7 + σ 8)] . . .

The site “5” has neighbors 1, 2, 3, 4, and site “6” has 2, 3, 7, 8, etc. K = J/K T .
We reduce the degrees of freedom, as in the 1– D case, by summing over 1/2 the
spins that have “5” and “6” and also other nearest neighbors to 1, 2, 3, 4, 7, 8. At
this point unlabeled sites in the original block also remain unsummed. We obtain,
for the two relevant summations,
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Z =
∑
{σ }′

{
exp [K (σ 1 + σ 2 + σ 3 + σ 4)]

+ exp [−K (σ 1 + σ 2 + σ 3 + σ 4)]

}

×
{ + exp [K (σ 2 + σ 3 + σ 7 + σ 8)]
+ exp [−K (σ 2 + σ 3 + σ 7 + σ 8)]

}
.

{σ }′ means the remaining sums.
Now, is this of the Kadanoff transformation form? This would assume that the

summed partition function is effective 2– D Ising. For this special case it would
read

I (Kσ) = exp [K (σ 1 + σ 2 + σ 3 + σ 4)]+ exp [−K (σ 1 + σ 2 + σ 3 + σ 4)]

= f (K ) exp
[
K
′
(σ 1σ 2 + σ 1σ 4 + σ 2σ 3 + σ 3σ 4)

]
. (9.89)

There are two parameters, K
′

and f (K ), and four σ i = ±1. This cannot hold.
The Kadanoff transformation must be modified. Unlike 1– D, we cannot in 2– D
obtain a renormalized exact Ising partition function for nearest neighbor blocks. A
possibility is to enlarge the block interaction and introduce new constants, K2 and
K3, such that

I (Kσ) = f (K ) exp

[(
1

2
K1

)
(σ 1σ 2 + σ 2σ 3 + σ 3σ 4 + σ 4σ 1) (9.90)

+ K2 (σ 1σ 3 + σ 2σ 4)+ K3 (σ 1σ 2σ 3σ 4)

]
.

We obtain

K1 = 1

4
ln cosh (4K ) (9.91)

K2 = 1

8
ln cosh (4K )

K3 = 1

8
ln cosh (4K )− 1

2
ln cosh (2K ) .

To obtain an Ising block partition function, K2 and K3 must be approximately
zero. Setting K2 = K3 = 0, however, reduces the problem to 1– D where there is
no phase transition. Another approximation is essential.

Let us, after Maris and Kadanoff, at least keep approximately K2, letting
K3 = 0. Assume that the K2 and K3 terms in Eq. (9.90) may be written
K ′ (K1K2)

∑
i j σ iσ j , an effective nearest neighbor interaction. This gives the

Ising-like expression

Z (K , N ) = f (K )
1
2 Z

(
K ′ (K1K2) ,

N

2

)
(9.92)
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and

g (K ) = 1

2
ln f (K )+ 1

2
g
(
K ′) (9.93)

or

g
(
K ′) = 2g (K )− ln Z (K1, K2) , (9.94)

with K1, K2 given by Eq. (9.91). This is the approximate renormalization transfor-
mation. For the 2– D cubic lattice of N/2 spins, there are N nearest neighbors and
N next nearest. We may approximate K ′ = K1 + K2. Thus, the renormalization
transformation solution, Eq. (9.79), is

K ′ = 3

8
ln cosh 4K . (9.95)

The fixed points to this are

Kc = 3

8
ln cosh 4Kc,

which are Kc = 0,∞ and 0.50698. The latter is unstable. The exact Onsager
answer is

J

kTc
= 1

2
sinh−1 (1) = 0.44069. (9.96)

Now we follow the Wilson procedure discussed in the previous section. We expand
around the fixed point. Assume a nonanalytic part of g which contributes to the
scaling (K − Kc)

2−α . Thus, using near Kc,

K ′ = Kc + (K − Kc)
dK ′

dK
|K=Kc ,

which is the equation for Mi j discussed in the previous section. We have, from Eq.
(9.95),

α = 2− ln 2

ln
(

dK ′
dK

)
k=Kc

= 0.131, (9.97)

giving α = 0.131 compared with the Onsager answer of zero where the singularity
is logarithmic. The formula for the specific heat index α may be obtained by an
expansion around Kc of the singular part of the free energy. We leave this as a
problem.

The main point of the renormalization theory is that it provides a tool for the
application of approximation methods. They are more systematic than what has
been done in this simple model. See Plischke and Bergersen (1989) for an intro-
duction. For instance, the position space cumulant approach (Niemeijer and van
Leeuwen, 1976) gives to first order α = −0.267 but in the next systematic approx-
imation gives α = 0.081. It must be emphasized that these methods are applied to
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a much wider and realistic group of problems than the 2– D Ising model. However,
it shows that the Onsager solution is a touchstone for examining a multitude of
approaches.
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10

Relativistic covariant statistical mechanics
of many particles

10.1 Introduction

We will focus here principally on quantum relativistic kinetic theory in a covariant
form. Much of the work that has been done on classical relativistic kinetic theory
is summarized in the fine book by de Groot, van Leeuwen and van Weert (de Groot
et al., 1980). A short review of this noncovariant point of view is in the book
of Liboff (1998). Pauli, in his classical review of special relativity (Pauli, 1958),
touches on the early work of Jüttner (1911). Ehlers (1974) has reviewed the kinetic
theory in the context of classical general relativity, but we shall limit ourselves to
a discussion of special theory. This may come as a surprise to the reader. However,
it must be remembered that even the two-body classical and quantum Schrödinger
equation solutions have not been obtained exactly (Bethe and Saltpeter, 1957).

The noncovariant point of view starts with a Hamiltonian

H =
∑

i

Hi + 1

8π

∫ (
E2 + H 2

)
d3x, (10.1)

where i = 1 . . . N particles, Hi , with the fields being H and E and

Hi =
√[

pi − eAi (xi , t)
]2 + m2

i + V (x, t) ; c = 1. (10.2)

pi , xi are three vectors, and the time t associated with the dynamics is the lab frame
time. This is the basis of the work of Balescu, Hakim and Kandrup (Balescu, 1964;
Havas, 1965; Balescu and Kotera, 1967; Hakim, 1967; Kandrup, 1984) among
others. These theories are said to be “on mass shell,” since for each particle

E2
i = c2 p2

i + m2
i c4, (10.3)

mi being the particle rest mass.

178
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The formulation of a truly relativistic theory of many particles as distinct from
field theories has only recently been achieved. Here we will discuss the statisti-
cal mechanics of this approach with emphasis first on non-equilibrium and the
relativistic quantum Boltzmann equation of events and then turn generally to the
Gibbs-equilibrium ensembles. Comments will be made on new properties in this
theory of quantum equilibrium ensembles.

There is a misunderstanding (Goldstein, 1980) that because we may write a
covariant Lorentz–Dirac equation for a single particle in interaction with the
electromagnetic field, as

dμμ

ds
= e

mc
Fμνμν + Rμ (10.4)

Fμν = ∂μ Aν − ∂ν Aμ ,

that this may be easily generalized to many particles. s in this case is the single
proper time of the accelerating particle. This is, in fact, difficult to accomplish. It
appears to be true that the Lorentz–Einstein coordinate time, s, cannot be used as
a dynamic time (ds2 = dx · dx− dt2).

Among a number of possibilities, we will adopt what we might call the universal
time formalism. Let us consider a succession of local clocks evolving with the par-
ticles time τ i . These are, of course, for a particular observer the particle properties
dτ 2

i = dxi ·dxi −dt2
i . The evolution of xμ

i (τ i ) in time τ i we term events. We will
at first take the number of event times τ as discrete and equal to N . This should not
be confused with the 8n degrees of freedom of the n particles. We will correlate
these events by means of a global universal covariant parameter τ , where

τ = τ 1 = τ 2 = τ 3 . . . = τ i . . . = τ n . (10.5)

This approach was begun by Stueckelberg (1941) and Feynman (1949) and later
enlarged and completed by Horwitz and Piron, and independently by Cook (Cook,
1972; Horwitz and Piron, 1973; Trump and Schieve, 1999). With this it is assumed
that there exists a total invariant energy K :

dK

dτ
= 0. (10.6)

We define generalized coordinates and velocities of n particles:

xμ

i (τ ) = (xi (τ ) , ti (τ )) (10.7)

v
μ

i (τ ) = dxμ

i (τ )

dτ
i = 1 . . . n.

Then we define the invariant action at a distance interaction potential:

vi j = vi j
(
ρi j (τ )

)
,
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where

ρi j =
∣∣(xi (τ )− x j (τ )

)∣∣ .
The covariant momentum is defined as

pμ

i (τ ) = mi
dvμ

i (τ )

dτ
. (10.8)

mi is a scalar particle constant. The
∣∣pμ

i

∣∣ �= mi , and the dynamics are off particle
energy shell. The Hamiltonian function is now

K = T + v = 1

2

n∑
i=1

1

mi
pμ

i pμi +
∑
i> j

v
(
ρi j

)
. (10.9)

Thus we obtain a classically covariant many-body Hamiltonian set,

dpμ

i

dτ
= − ∂K

∂xμi
(10.10)

dxμi

dτ
= ∂K

∂pμi
.

We have here an 8n-dimensional phase space, pμ

i , xμ

i . The pμ

i , xμ

i transform by
the Lorentz–Einstein transformations. The motion in the space, pμ

i (τ ) , xμ

i (τ ) is
generated by the invariant Hamiltonian, K .

10.2 Quantum many-particle dynamics: the event picture

Utilizing these ideas, we generalize to quantum mechanics (Horwitz et al., 1989),
introducing a scalar many-body wave function ψ

(
xμ

i , τ
)

in the 4n-dimensional
space xμ

i (not τ ). The assumed Schrödinger equation for the events xμ

i , (μ =
0, 1, 2, 3; i = 1 to n) is

i h̄
∂ψ

(
xμ

i , τ
)

∂τ
= K̄ψ

(
xμ

i , τ
)
. (10.11)

This equation has been named the Stueckelberg equation (Stueckelberg, 1941;
Fanchi, 1993). τ is an invariant, as is K̂ , so the Stueckelberg or Schrödinger equa-
tion for the scalar ψ

(
xμ

i , τ
)

is also invariant. For the case of a single free particle,

K̂0 = 1
2m

(
∂2

t − ∇̄2
)
, which gives the invariant Klein–Gordon equation in the

steady state:

i∂τψ (xμ, τ ) = 0.

This is not the equation of motion but an event eigenstate, the eigenmodes for a
spin zero function.
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Now we must assume, also, that∫
dxμ

i

∣∣ψ (
xμ

i

)∣∣2 <∞ (10.12)

and invariant. ψ
(
xm

i

)
here is not a function of

∣∣xμ

i

∣∣2, so it is not necessarily
invariant.

Further, for a single free particle, the solution

ψ (xμ, τ ) = 1

(2π)2

∫
d4 p exp

(
−i

p2

2m
τ

)
exp

(
ip · q

h̄

)
ψ0 (p) (10.13)

gives a wave packet at center xμ
c = pμ

c
m τ , moving along the classical world line.

The events are distributed around this.
Let us introduce an event, ket

∣∣xμ

i

〉
, being not invariant. We may write the

Schrödinger wave function as ψ
(
xμ

i τ
) = 〈

xμ

i | ψ (τ)
〉

with the assumed scalar
product. We introduce the pure state density matrix,〈

xμ′ |ρ| xμ
〉
= ψ

(
xμ′, τ

)
ψ∗ (xμ, τ ) . (10.14)

From the Schrödinger equation we obtain the von Neumann equation:

i h̄
d

dτ

〈
xμ′ |ρ| xμ

〉
= [K , ρ]xμ′ ,xμ . (10.15)

We might proceed differently by assuming that Eq. (10.11) can be generalized
to Heisenberg operator equations for the observables

pμ

i → p̂μ

i (10.16)

xμ

i → x̂μ

i

K → K̂

d p̂μ

i

dτ
= − ∂ K̂

∂ x̂μ

i

(10.17)

dx̂μ

i

dτ
= ∂ K̂

∂ p̂μ

i

with commutation laws [
x̂μ

i , p̂ν
i

] = i h̄gμνδi j . (10.18)

As in the classical case, a quantum event, x̂μ

i , p̂μ

i evolves by operator Heisen-
berg equations as x̂μ

i (τ ) , p̂μ

i (τ ), but abstractly, not in a Minkowski picture. In
the Schrödinger picture we may view events as wave packets ψ

(
xμ

i , τ
)

on or near
particle world lines in the 4n xμ

i space. In this sense there are “particles” in this
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picture which may be localized in space-time (x, t). The entire history of a packet
with τ is the particle. This is realized as a summation on all τ , a concatenation
or (Latin) vincula. To introduce ρ we assume that any average of a Heisenberg
operator at time τ is 〈

Â (τ )
〉
= Trρ̂ (0) Â (τ ) . (10.19)

Then, using the cyclic trace property, we introduce

ρ̂ (τ ) = exp
(
−i K̂ τ

)
ρ (0) exp (i K τ) . (10.20)

We obtain, by differentiation, the operator form of the von Neumann equation,
Eq. 10.15, above.

To write a quasi distribution function for events, we will utilize the second quan-
tization form of the wave function, assuming for the event xμ ≡ q, q = q, t with
the operator

ψ (q) = 1

(2π h̄)2

∫
d4 pψ (p) exp (i p · q) (10.21)[

ψ (p) , ψ
(
p′
)]
± = 0[

ψ (p) , ψ†
(
p′
)]
± = δ4

(
P − P ′

)
p ≡

(
p,

E

c

)
.

An operator in the space of N events may be written

A =
N∑

i=1

1

i !
∫

d4q1 . . . d
4qiψ

† (q1) . . . ψ
† (qi )Aiψ (q1) . . . ψ (qi ) . (10.22)

Ai is an operator on the subset of the N -event space, a reduced operator. In the
following we will fix N . The idea is that events leading to a realization of a par-
ticle (with positive energy) trajectory should not disappear in a finite space–time
volume.

Important examples are the single-particle kinetic energy representation in terms
of quantum fields,

K0 = −h̄2
∫

d4qψ† (q)
∂μ∂

μ

2m
ψ (q) ,

and the two- “body” covariant interaction potential,

V = 1

2

∫
d4q ′d4q ′′ψ†

(
q ′
)
ψ†

(
q ′′

)
V

(∣∣q ′ − q ′′
∣∣)ψ (

q ′
)
ψ

(
q ′′

)
. (10.23)
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This should be called the two-event interaction. This interaction is weighted by the
event distribution through ψ(q), ψ(q ′). Also, the potential is taken as covariant
with ∣∣q ′ − q ′′

∣∣2 = c2�t2 −�x2.

The potential is found phenomenologically or through field theories. It is here an
action at a distance between events.

10.3 Two-event Boltzmann equation

In this section we will see that Boltzmann’s profound ideas on microscopic sta-
tistical dynamics may be carried over to a covariant form which treats the binary
statistical dynamics of quantum event interaction (Boltzmann, 1872; Horwitz et al.,
1989). The global time, covariant τ , plays the central role. Let us proceed quickly
with the outline of this development in which you will see Boltzmann’s ideas. We
must add that this may be more rigorously done and with fewer assumptions. Some
comments will be made on this later.

We will adopt, as the simplest quantum event distribution function, the Wigner
function (Wigner, 1932). This is discussed in detail in Chapter 4. The one-event
relativistic Wigner function is in the four-momentum representation

f1 (q, p) = 1

(2π)4

∫
d4kTr

[
ρψ†

(
p − h̄k

2

)
ψ

(
p + h̄k

2

)]
exp (ik · q) .

f1 was called w previously. With this,

〈A1〉 =
∫

d4qd4 pA1 (q, p) f1 (q, p) . (10.24)

The two-event Wigner function Fourier transform is

f2 (k1 p1k2 p2) = Trρψ†

(
p1 − h̄k1

2

)
ψ†

(
p2 − h̄k2

2

)
(10.25)

× ψ

(
p2 + h̄k2

2

)
ψ

(
p1 + h̄k1

2

)
.

This may, of course, be extended to N events. From Eq. (10.24), f1 (q, p) seems
to play a role of a classical distribution function. However, remember that this is
not true, since

fs (q, p) � 0, (10.26)
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but the marginal distribution functions have the property∫
dq f1 (q1 p1) � 0∫
dp f1 (q1 p1) � 0.

Recall that a very important property of phase space distribution functions is
that they are associated with correspondence rules. In Eq. (10.24), A1 (q, p) is
the classical operator associated with the quantum, operator Â1 by the Weyl
correspondence rule

qn pn → 2−n
n∑

l=0

(
n
l

)
qn−l pmql . (10.27)

We will further normalize f1 (qp) in the eight-dimensional phase space∫
d4qd4 p f1 (qp) = N , (10.28)

N being the total number of events, which we assume to be fixed in τ . The reduced
event Wigner distributions may be formed into a B.B.G.Y.K. hierarchy as in the
nonrelativistic classical and quantum cases. (See Chapters 4 and 6.)

We can use this hierarchy to derive the Boltzmann event equation by the methods
of Green and Bogoliubov for the quantum case, as shown in Chapter 4. However,
we will not do this but rather, for simplicity, follow directly a Boltzmann-type
argument, filling in important points of the more general approach. We will operate
on the event von Neumann equation above and form an equation for ∂ f1

∂τ
. It is in the

eight-dimensional position momentum space:

∂τ f
(
q1 p1,τ

)+ 1

m
(q1 · p1) f

(
q1 p1,τ

) = (10.29)∫
d4 p2d4q2δ

4(q2)L12 f2
(
q1 p1q2 p2,τ

) ≡ J (q1 p1) .

This is the first equation of the hierarchy in fs already mentioned. It is not closed,
since f2

(
q1 p1q2 p2,τ

)
appears on the right. The basic problem is to obtain f2 from

the second equation of the hierarchy or make an ad hoc approximation and evaluate
the right side.

The Stosszahlansatz may be made at global time τ . We replace

f2 (q1 p1q2 p2, τ )→ f1 (q1 p1, τ ) f1 (q2 p2, τ ) (10.30)
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and write the right side as an event transition in a Chapman–Kolmogorov gain loss
form. We drop the “1” now:

J (qp, τ ) = R+ f (qp, τ )− R− f (qp, τ ) (10.31)

R+ f (qp) =
∫

d4 p1d4 p′1d4 p′ Ṗ
(
p′1 p′ → p1 p

)
f
(
qp′

)
f
(
qp′1

)
(10.32)

R− f (qp) =
∫

d4 p1d4 p′1d4 p′ Ṗ
(
pp1 → p′1 p′

)
f (qp1) f (qp1) .

Ṗ is the event transition rate. One must not think too physically about the event
transitions due to binary interaction. Here events are not particles, nor is f a
measure of particle density. It is not a probability. All this is written by analogy.

We must estimate the transition rate from binary event interaction. We assume
a dilute event density. The event density is a covariant idea; thus we assume no
three-particle world line interactions at any time τ .

We will estimate Ṗ from binary event scattering (Horwitz and Lavie, 1982). We
think of an event wave packet of an incoming event beam ψ in having, by means of
the scattering, an outgoing wave event packet. We have

ψout (p) =
∫

d4 p′
〈
p |S| p′

〉
ψ in

(
p′
)
, (10.33)

where 〈
p |S| p′

〉 = δ4
(
p − p′

)− 2π iδ

(
p2

2m
− p′2

2m

)
T

(
p′ → p

)
. (10.34)

In center-of- “mass” coordinates, the event Möller operator is

�+ = lim
τ→−∞ exp (i K τ) exp (−i K0τ) (10.35)

S = �
†
−�+ .

It has been shown that the wave operator exists and is asymptotically complete for
a wide range of interactions. This follows from the well-known methods of formal
scattering theory.

The differential event scattering cross section is

dσ
(
ψ ′

n → d4 p
) = Nsc

Ninc
(d4 p) . (10.36)

We may show that

dσ
(
ψ in → d4 p

) = d4 p (2π)4 2m2
∫

d4 p′
1

|p′| (10.37)

× δ
(
p2 − p′2

) ∣∣T (
p′ → p

)∣∣2 ∣∣ψ in

(
p′
)∣∣2 .
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With this, the rate of event scattering in relative event coordinates is

Ṗ
(
p′r → pr , P

) = (2π)3 m
∣∣∣Tp′

r ′ pr

∣∣∣2 δ (P2 − p′2r
)
, (10.38)

and we may write the binary event Boltzmann equation as

∂τ f (qp, τ )+ pμ

m

∂

∂qμ

f (qp, τ )

=
∫

d3 prd3 p′rd3 p′′r

∣∣p′r ∣∣
m

dσ
(
p′r → pr , P

)
d3 pr

× [
f
(
qp′1, τ

)
f
(
qp′, τ

)− f (qp, τ ) f (qp1, τ )
]
. (10.39)

Not surprisingly, this has the same form as the quantum Wigner–Boltzmann
equation neglecting exchange symmetries. The obvious difference is the increased
dimensionality to the phase space; the cross section is now of dimension L3, and
τ is a dynamic parameter. The cross section may be reduced in dimension to an
experimental comparison by an integration of dp0

r over an initial mass distribution.
The gradient is obviously four-dimensional.

Let us make some remarks. The event potential for fixed τ is taken to be covari-
ant V (ρ) , ρ2 = qμqμ ≡ xμxμ, identically. For two-event scattering it may be
shown that

lim
τ→+∞

∥∥exp (−i Krτ ) ψ − exp (−i K01τ ) φout

∥∥ = 0

for a dense set φout, and∫ ∞

T
dν̂

∥∥V exp (−i K0r ) φout

∥∥ <∞

if V (ρ) =
(

1
ρ2

)α

with α = 1
2+δ, δ > 0 (Horwitz and Lavie, 1982). We might note

that in the case of simple central force scattering, asymptotic condition requires

V (r) = 1

r
3
2

[∫
d3x |V (x)|2] 1

2 < ∞ (Taylor, 1972). The difficulties here start at

r
−3
2 .
The necessity for low-density events is not clear from the derivation, but it is

from the B.B.G.Y.K. hierarchy. Here, three event correlations f3 (q1 p1, q2 p2, q3 p3)

are neglected. Briefly, one may write

f2 (12) = f1 (1) f1 (2)+ g12 (12) (10.40)

and show that from the second-hierarchy equation

i h̄∂τ g12 = L12g12 + L12 f1 (1) f1 (2) (10.41)

− i h̄∂τ f1 (1) f1 (2)+ n0Tr
{(

L ′13 + L ′23

)
f3 (123)

}
.
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We treat fs to zero order in N0 = N/V = constant as N →∞ and V →∞. N0

is the density of events (K. Hawker, unpublished 1975 Ph.D. thesis, Contributions
to Quantum Kinetic Theory, University of Texas, Austin). See Chapter 4. The form
of L12 is not necessary here. Thus, to low “density,” f3 of Eq. (10.41) may be
neglected, and we have

ik∂τ g12 = L12g12 + L ′12 f1 (1) f1 (2) . (10.42)

The Stosszahlansatz may be treated in a similar way. This latter assumption is
probably the weakest point. To do better, we follow the method of Bogoliubov
(1946). See also the work of McLennan (1989). Eq. (10.42) may be formally solved
for 0 < τ �∞. We obtain

f12 (τ ) = exp

(
−i L12

τ

h̄

)
g12 (0)+ exp

(
−i L12

τ

h

)
exp

(
+i L0

12

τ

h

)
× f1 (1, τ ) f1 (2, τ ) τ ≥ 0. (10.43)

Now we assume initially (not at all τ) that g12 (0) = 0 to obtain the protokinetic
equation. We call it the operator Boltzmann equation:

i h̄∂τ f1 (1, τ ) = L0
1 f1 (1, τ )+ n0Tr{L ′12

[
exp

(
−i L12

τ

h̄

)
exp

(
+i L0

12

τ

h̄

)]
× f1 (1, τ ) f1 (2, τ )}; τ ≥ 0. (10.44)

This equation, after much detailed calculation, leads to the Boltzmann equation,
Eq. (10.39). Two very important points appear:

1. The factorization is initial only.
2. The equation is irreversible, since τ � 0.

10.4 Some results of the quantum event Boltzmann equation

Time reversal is, in this case, defined by

ψ ′
τ (x, t) = Tψτ (x, t) (10.45)

= ψ∗
τ (x,−t) .

Since f (xt) is real, the above Boltzmann equation, Eq. (10.44), is not time reversal
invariant. This is not surprising, since it is derived for τ � 0.

Let us now examine the equilibrium solution. The binary event collision has the
following invariants:

1

2m

(
P2

1 + P2
2

) = 1

2m
P2 + pr2

m
.

Thus p2, pμ are conserved. Mμν = qμ pν − qν pμ is also invariant, but we will
constrain the system so this does not play a role.
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To achieve a positive f0 (p, q), which causes the right side of the Boltzmann
equation to vanish, we choose the Gaussian as discussed in Chapter 6. It is unique
and positive because of the theorem of Hudson (1974):

f0 (qp) = c (q) exp
(−A (q) (p − pc (q))

2
)

(10.46)

p =
(

p,
E

c

)
.

In the q = (x, t) space, the events distribution is a time dependent wave packet
parameterized by the functions c(q), A(q), pc(q). This is a local equilibrium
solution very much like hydrodynamics or the notion of coherent states.

Some subtlety of this approach is the thought that this theory does not generally
maintain the mass shell condition

∣∣Pμ

i

∣∣ = mi for particle momentum. In terms of
dynamics, this would generally lead to a loss of n degrees of freedom in the phase
space of n particles. In a Stueckelberg theoretical approach,

∣∣Pμ

i

∣∣ = π i (τ ) �= mi =
constant. In a sense,

∣∣Pμ

i

∣∣ is a dynamic mass. In K0 m is a property of an event.
We now restrict P2 to a small region of fixed m, i.e. P2 ∼= −m2. Then, with

some calculation, we identify 2Amc = 1/kT , which is the definition of equilib-
rium absolute temperature as suggested by Synge from a mass-shell theory (Synge,
1957). In this approximation

f0 (qp) = c (q) exp
{

A
(
m2 + m2

c

)}× exp(2Apμ pμ
c )

when p2
c = −m2

c .

In the local rest energy frame where μ = Pr
E , E ′ = Eq−μ·p√

1−μ2
we have the inter-

esting result
〈
E ′

〉 = m K2(2Amc)

K1(2Amc)
where Ki are Bessel functions of the third type

(Horwitz et al., 1989). We find that〈
E ′

〉 = 3

2
kT + m T → 0 (10.47a)

and 〈
E ′

〉 = 2kT T →∞. (10.47b)

The latter important result was obtained from the equilibrium Gibbs theory
(Horwitz et al., 1981). The first result agrees with Pauli in his famous article
“Relativistats Theorie” (Pauli, 1958). In the T → ∞ limit, 2 is replaced by 3
in Pauli’s result. This remains one of the significant tests of the event time theory
being discussed here, as yet not determined experimentally.

From the pressure tensor we may obtain, in the local rest frame in the previously
stated limits,

P = N0

2Amc
= N0kT, (10.48)
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the ideal gas law. Here N0 is the number of particles per unit space volume.
〈N0〉q =

〈
J 0 (q)

〉
q

where by means of a concatenation over events, τ , we write
the conserved four-particle current as

Jμ (q) =
∑

i

∫
pμ

i

m
δ4 (q − qi (τ )) dτ , (10.49)

a weighted event history.
Let us turn now to the local entropy production. We define

s (qp) = −kH (qp) , (10.50)

assume additivity

sA + sB = sAB, (10.51)

and take s (q) = ∫
dp f0 (qp) ln f0 (qp). In Eq. (10.51), f0 (qp) � 0, so this is

possible. We have, then,

s0 (q) = c (q) A (q)
〈
(p − pc)

2
〉
.

Then the entropy production is ds0
dt = σ , and ċ (q) = constant in the steady

state. From the conservation laws, as discussed in Chapter 6, we would obtain
σ � 0, which is a general steady non-equilibrium thermodynamic result (McLen-
nan, 1989). This has not been carried out in detail, but there is no doubt of the
result.

We may consider another global quantity. Assume q independence, i.e. homo-
geneity in time as well as in space. We utilize the marginal Wigner function,

φ (p) =
∫

dq f (qp) ; � 0. (10.52)

We may write a Boltzmann equation for φ (p) and obtain

∂τφ (p, τ ) = 2
∫

d3 prd3 p′r dp0
r

∣∣p′r ∣∣
m

dσ

d3 pr

(
p′r → pr ; P

)
(10.53)

× {
φ
(
p′, τ

)
φ
(
p′1, τ

)− φ (p, τ ) φ (p1, τ )
}
.

Now we can define the global H, assuming it is bounded:

H (τ ) =
∫

dpφ (p, τ ) lnφ (p, τ ) . (10.54)

Forming dH
dτ and utilizing the well-known property of integral invariants,

4I (F) = I (F)+ I (F1)− I
(
F ′

)− I
(
F ′1

)
, (10.55)
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where I (F) is a function of the right side of the above Boltzmann equation,
Eq. (10.53). With this, as in Chapter 6,

4I (1+ lnφ) =
∫

dp
∫

dp1 Ṙ
(
φ
(
p′1

)
φ
(
p′
)− φ (p1) φ (p)

)
ln

φ
(
p′1

)
φ
(
p′
)

φ (p1) φ (p)
.

(10.56)

It then follows that

4I (1+ lnφ) � 0, (10.57)

so
dH

dτ
� 0.

This is exactly the form of Boltzmann’s H theorem. H is a Lyapunov function
and guarantees that φ (p, τ ) approaches φ0 (p,∞). Here φ0 (p,∞) is a global
Maxwellian given by f0 (p) with c (q), A (q) independent of space and time. The
initially inhomogeneous system approaches a spacial-temporal independent system
characterized by a Gaussian in (p, E) and is physically characterized by an event
density and temperature. This is not very surprising.

The situation with respect to f (qp, τ ) is more problematic. If we assume

H =
∫

dqdp f (qp) ln f (qp) (10.58)

near equilibrium, then the inhomogeneous Boltzmann event equation, by precisely
the same argument, gives

dH

dτ
� 0; q independent.

This would seem to imply that an inhomogeneous event distribution approaches
homogeneity. This is doubtful.

As shown in Chapter 5, by identifying the collisional invariants here, pμ, p2, and
Mμν = qμ pν − qν pμ, we may obtain the macroscopic conservation laws from the
Boltzmann equation (Horwitz et al., 1989). An important point to be mentioned is
that we must define the particle densities’ currents as vincula (concatenation) of
the historical events, such as

Jμ (q) =
∫ +∞

−∞
n

M
〈pμ〉q dτ , (10.59)

having the conservation property

∂

∂qμ

Jμ (q) = 0, (10.60)
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assuming the event density n vanishes at τ = ±∞. Similar arguments are made to
obtain the other local in q = (x, t) conservation laws.

An important program yet to be done would be to follow the well-known
Chapman–Enskog procedure (see Chapter 5) and calculate the transport coef-
ficients, and then to compare the results with the noncovariant calculation so
completely described by de Groot, van Leeuwen and van Weert in their 1980 book.

10.5 Relativistic quantum equilibrium event ensembles

Let us now consider equilibrium and some thermodynamic consequences of the
covariant event formulation (Horwitz et al., 1981). We will consider the quantum
aspects. The classical ensembles have also been treated in full detail in Horwitz
et al. (1981).

Utilizing the covariant Hamiltonian K , Eq. (10.8), we construct in the usual
fashion (see Chapter 8) the microcanonical ensemble, the event density operator

ρ =
∑

kEε�,mi εμi

ψkEψ
∗
kE . (10.61)

ψk,E is eigenfunction of the operator K̂ , having the four-dimensional eigenval-
ues K, E ≡ (kE). These are the event invariant eigenvalues for which, from Eq.
(10.15),

dρ

dτ
= 0, (10.62)

the equilibrium state. In the classical 8N (N being the number of events) phase
space, this is the event (τ ) invariant distribution function. Also, we are not on
mass shell, Eq. (10.3). Consequently, the particle parameters mi may vary since
E, p, which are also independent of one another. We will confine the mi to some
small regions μi which are in the range of the particle-free mass, Mi . Thus μi (Mi ).
Free particle masses Mi are assumed on the mass shell.

We assume that the number of event states,

� (k, E) = Trρ =
∑

kEε�; μi εμi (Mi )

, (10.63)

is bounded. With Boltzmann’s famous formula (see Chapter 7), we assume that the
thermodynamic entropy is

S = k ln� (k, E) . (10.64)
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From this the other microcanonical thermodynamic quantities follow (Tolman,
1967). The classical microcanonical density is

� (k, E) =
∫

mi εμi ,qi εσ i

d E1 . . . d End3 p1 . . . d3 pnd4q1 . . . d4qNδ (K − k) .

(10.65)
Here c = 1, E =∑

i Ei , and q = (q, t) .
The interparticle forces are assumed weak, and hence mi = Mi

(
1+ 0

(
1/c2

))
,

Mi being the free-particle mass. For a free-particle gas, it has been shown that in
the ultra relativistic limit where

d Ei

c
∼= c2 midmi

|pi |
and with K = − 1

2 Mc2, that

� (k, E) ∼= (4π)N V N T N c3N−1
∫

mi εμi

m1dm1 . . . dmN p1dp1 . . . dpN

× δ

(∑
i

m2
i

Mi
− M

)
δ

(∑
i

Ei − E

)
for a finite range of τ ,T . From this it follows, with pidpi = (1/c2)Eid Ei , that

� (k, t) ∼= E2N , (10.66)

and hence

E = 2NkT,

as shown in the discussion of the Boltzmann equation in the earlier section. As
stated earlier in this chapter, the classical Jüttner result (Jüttner, 1911) of 3 rather
than 2 in Eq. (10.66) remains the principal test of the event covariant approach
being outlined here. Experiments have not yet achieved the precision necessary for
such a decision.

Now let us adopt a model to further investigate the free-particle quantum event
microcanonical ensemble, which will further elucidate the difference between the
results. Restrict the system to L , T

(
V (4) = L3T

)
with ψ0 (xyz, t) = 0 on the time

and space limits. Here we take the parameter mi to M for all particles. Then the
variables separate in the eigenvalue solution. The event modes are obtained from

K̂0ψ = Kψ.

K̂0 is the free-particle kinetic energy operator, and

N∑
i=1

h2

2M

(
∂2

∂2ti
−�2

i

)
ψ (xi yi zi ti ) ≡

N∑
i=1

Kiψ (xi yi zi ti ) . (10.67)
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Hence,

2M Ki = h̄2
(
ki2

1 + ki2

2 + ki2

3 − ki2

0

)
. (10.68)

For dρ/dt = 0, the zero eigenmode gives ψ̇ = 0 and Ki = 0 =(
ki2

1 + ki2

2 + ki2

3 − ki2

0

)
. For the clock determining τ placed in the center of mass

of the system, the modes for T →∞ are light-like, moving with velocity c on the
forward light cone of the center of mass. For T finite, the modes are distributed
near the light cone around μ (Mi ) . For p = h̄k, e = h̄k0,

p = 2π h̄

L
ν, ε = 2π h̄

T
ν0, (10.69)

with ν0, ν j = 0,±1, . . . We must consider only ν0 ≥ 0 to exclude the antiparticle
modes.

Now the eigenvalue spectrum is four-dimensional for each independent mode.
Let np,ε be the number of event modes with energy momentum p,ε. There is a mass
parameter constraint, mεμi . We further divide the eigenvalue space into these
mass regions, labeling it with i . Further, we coarse-grain. Let gi = the number
of mass and momentum states in each cell, a mass degeneracy parameter. Also,
ni =∑

p,εεi np,ε, the number of modes within the cell i .
The constraints are

E =
∑

i

ε̄i ni (10.70)

K =
∑

i

K̄i ni ;

N =∑
i ni =the total number of events. i now labels cells. Note that, in contrast to

the usual three-dimensional space, there is an additional constraint on K . Because
of the four-dimensional eigenspace, K̄i , ε̄i are the average values in each cell, μi .

Now we distribute the {ni } events into the mass cells with equal a-priori probabil-
ity subject to the foregoing constraints. This number of possibilities is � (E, K ) of
the microcanonical ensemble. A good estimate is to maximize the entropy subject
to the constraints. Boltzmann showed that we may maximize

S = kln� (E, K ) .

For each cell with n j identical events and g j energy mass levels, we have the
statistical weight, assuming

W
({

n j
}) = g j !

n j !
(
g j − n j

)! (Fermi–Dirac) (10.71)

W
({

n j
}) = (

n j + g j − 1
)!

n j !
(
g j − 1

)! (Bose–Einstein),
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where at most one mode may occupy a state in the Fermi case and any number in
the Bose–Einstein case. With this we have

ln�F D =
∑

i

[
gi ln gi − ni ln ni − (gi − ni ) ln (gi − ni )

]
,

and

ln�BE =
∑

i

[
(ni + gi − 1) ln (ni + gi − 1)− ni ln ni − (gi − 1) ln (gi − 1)

]
.

Introducing Lagrange multipliers α, β, γ , we find the constrained maximization
in the usual fashion

ln

(
g j

n j
− 1

)
= −α − βε̄ j − γ K̄ j (Fermi–Dirac)

and ln

(
n j + g j

n j
− 1

)
= −α − β ē j − γ K̄ j (Bose–Einstein).

Note here that K̄i < 0, since K is time-like. Defining z = exp (α) and ζ = exp γ ,
we have

navg.
i = gi

z−1ζ−Ki exp (βε̄)∓ 1
–1 B.E .; +1 F.D. (10.72)

= average number of events in the cell i.

This is, of course, the usual form. We have assumed that all cells have the same
z, ζ , β. In a sense they are in thermal equilibrium together. The new aspect to
this relativistic event description of thermodynamic equilibrium is the parameter
ζ , which is associated with the constraint due to K . We find a mass fugacity ζ ,

which determines the distribution of mass in the cell. Before saying more, we might
mention that the same result has been achieved from the grand canonical ensemble
for equilibrium events. This is also discussed in the paper of Horwitz, Schieve and
Piron (Horwitz et al., 1981). There the grand partition function is

ZG

(
V (4), ζ , z, β

) =∑
N

zN Q̂N

(
V (4), ζ , β

)
, (10.73)

which is, for the non-interacting relativistic quantum event gas,

ZG
(
V (4), ζ , zβ

) = �pεμ(i)
1

1− zζ K exp (−βε)
(B.E.) (10.74)

= �pεμ(i)

(
1+ zζ K exp (−βε)

)
(F.D.).

Here V (4) = V T . From this, the total event normalization is

N =
∑

pεμ(i)

navg
p =

∑
pεμ(i)

zζ K exp (−βε)

1+ zζ K exp (−βε)
, (10.75)
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in agreement with Eq. (10.72).
In a series of papers, Burakovski (Burakovski and Horwitz, 1993; Burakovski

et al., 1996a, 1996b; Burakovski and Horwitz, 1997) has investigated the conse-
quences of the preceding formulation in detail. We shall consider a particular aspect
here. Let us consider the relativistic Bose gas, Eq. (10.75) (without antiparticles).
We have the event normalization

N = V (4)
∑
Kμ

(
exp

(
E − μ− μK

m2

2M

)
1

T
− 1

)−1

.

We have taken h̄ = c = k = 1. Here ζ K = expβμK , and m2 = −k2 = −kμkμ.

We wish to examine how μK may determine the form of the mass distribution and
may consequently be termed a mass potential and ζ K the mass fugacity.

Now nkμ, kε (pε) and μ = μ (Mi ) are necessarily positive. Thus,

Mi − μ− μK
m2

2M
≥ 0. (10.76)

Eq. (10.76) has the solution bounded by m1 and m2 given by

m1 ≡ M

μK

(
1−

√
1− 2μμK

M

)
≤ m ≤ m2, (10.77)

where

m2 ≡ M

μK

(
1+

√
1− 2μμK

M

)
.

Thus, for small μ,

μ ≤ m ≤ 2M

μK
. (10.78)

μK determines the upper bound to the mass spectrum, and μ the lower bound.
This may be carried further by making the continuum approximation to the sum

on k:

n ≡ N

V (4)
=

∫ m2

m1

∫ +∞

−∞
dβ

m3 sinh2 β

exp
(
m coshβ − 1− μK

m2

2M

)
1
T − 1

. (10.79)

We have used four momentum hyperbolic coordinates (Horwitz et al., 1989), where
0 ≤ π, 0 ≤ φ < 2π , and −∞ ≤ β <∞. At high temperature, T >> M

μK
, the dβ

integral may be done, obtaining

n = T exp
(
μ

T

)
4π3

∫ m2

m1

dmm2K1

(m

T

)
exp

(
μK

m2

2MT

)
. (10.80)
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K1 is a Bessel function with imaginary argument. We have T >> M
μK

. Thus, from
Eq. (10.77),

μ

T
≤ m

T
≤ 2M

TμK
<< 1. (10.81)

Hence, using the formula

Kν (x) ∼= 1

2
π (ν)

( x

2

)−ν

x << 1,

the average n becomes

n = T 2

4π3

∫ m2

m1

dmm.

The density of mass states is as m. And

n = T 2

2π3

(
M

μK

)2
√

1− 2μμK

M
. (10.82)

The thermodynamic variables may be obtained. We find

〈m〉 = 4

3

(
M

μK

)(
1− μμK

2M

)
(10.83)

〈
m2

〉 = 3

2

(
M

μK

)
〈m〉 .

The high-temperature quantum average is 〈E〉 = 2T and is in agreement with
the earlier discussion. One also finds, generally,

N 0 = 〈
J 0

〉 = T 3

π2

8− x3K3 (x)

x2
(10.84)

p = 1

3

(
Ti j

)
gi j = N0T

ρ = 〈
T 00

〉 = T 4

π2

40− x4K4 (x)+ x3K3 (x)

x2
,

where x = 2M
TμK

. These particle quantities are defined by concatenation (vincula)
as before:

Jμ (q) =
∑

i

∫
dτ

piμ

M
μK

δ (q − qi (τ )) ,

and
〈
N 0

〉 = 〈
J 0

〉
. From this we again obtain the ideal gas law, p = N0T .

The low-temperature limit may also be obtained using the formula

Kν (x) =
√

π

2x
exp

(
1+ 4v2 − 1

8x

)
; x >> 1.
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We find

p = 2T 6

π2
(

2M
μK

)2ρ.

This is the same form as obtained from the phenomenological hadronic equation
of state suggested by Shuryak (1988).

Antiparticles have also been considered by taking

N = V (4)
∑
Kμ

⎡⎣ 1

exp
(

E − μ− μK
m2

2M
1
T

)
− 1

− 1

exp
(

E + μ− μK
m2

2M
1
T

)
− 1

⎤⎦ ,

and one finds

n = 1

π2

(
M

μK

)2
√

1− 2μKμT

M
.

Also, p = 2p (|μ|), and ρ = 2ρ (|μ|). p, ρ are the same as obtained earlier.
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11

Quantum optics and damping

11.1 Introduction

In this chapter we will turn to the arena of quantum optics for illustrative examples
of the use of the master equation discussed in Chapters 3 and 6. In fact, quantum
optics examples have already been utilized in Chapter 2 as introduction to the den-
sity matrix. The principal focus here will be quantum damping in these systems,
that is, the damping effect on an atom in interaction with the electromagnetic field
as a reservoir. Damping is discussed extensively in Chapter 17 in connection with
decay-scattering systems. For this system general phase space distribution func-
tions will be reexamined. To some degree, this has already been done in Chapter 2
with the introduction of the Glauber–Sudarshan P (αa∗) function. The micromaser
will be discussed as a modern and interesting example of the dynamic interaction
of an atom with an electromagnetic cavity not in equilibrium. For use of the stu-
dent, an appendix to this chapter will briefly review the quantization of the free
electromagnetic field and its atomic interaction.

There is no possibility of reviewing this extensive and growing field here. Our
desire in this chapter is to connect the general topics of this book to this example.
The books of Louisell (1973) and Scully and Zubairy (1997) are excellent. We
are also indebted to the work of Nussenzweig, Schleich, and Mandel and Wolf
(Nussenzweig, 1973; Mandel and Wolf, 1995; Schleich, 2001). We also recall the
fine early introduction to this topic by Agarwal (1973).

11.2 Atomic damping: atomic master equation

In this section we shall consider the so-called quantum optics master equation for
the reduced atomic density operator, ρ A (t), in the Born approximation. The ele-
ments of this derivation have already been discussed in Chapter 3 with the deriva-
tion of the Pauli equation for 〈α| ρ A |α〉. Here the generalization to off-diagonal
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contributions only adds complication. Thus, we will outline the derivation and refer
the reader to the work of Peier (1972), Louisell (1973) and Agarwall (1973, 1974)
for more detail. We will use the resultant dynamic equation to discuss the impor-
tant process of spontaneous emission first discussed by Einstein (1917) and later in
detail by Weisskopf and Wigner (1930). This is also discussed in Chapter 17.

As in Chapter 3 we begin with the von Neumann operator for ρ AR (t):

i ρ̇ AR (t) = Lρ AR (t) ≡ [
H, ρ AR (t)

] ; −∞ ≤ t ≤ ∞. (11.1)

We have not incorporated i in L here. The reservoir in the electromagnetic field,
which is assumed initially to be the vacuum, is

ρR (0) = |{0}〉 〈{0}| ,
and

ρAR (0) = ρ A (0) ρR (0) . (11.2)

We introduce the projection operator again:

Pρ = ρR (0)TrRρ AR = ρR (0) ρ A (t) (11.3)

P2 = P.

Assuming

H = HA + HR + HAR,

then

PL A = L A P, PL R = L R P = 0. (11.4)

We also assume

PL AR P . . . = 0.

We obtain the generalized master equation to lowest order in HAR (the so-called
Born approximation; see Chapter 3). We incorporate the free atom motion by going
to the interaction picture, and obtain in that representation the irreversible equation

∂t Pρ AR (t) = −
∫ t

0
dτ PL AR (t) L AR (t − τ) Pρ AR (t − τ) t ≥ 0, (11.5)

where

ρ (t) = exp (−i HAt) ρ int (t) exp (+i HAt) . (11.6)

In Eq. (11.5) we do not make the interaction picture explicit. The irreversibility of
such equations was discussed in detail in Chapter 5. Eq. (11.5) is the same form as
we met in Chapter 3.
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Now we introduce a group of two-level atoms utilizing the Pauli spin represen-
tation already introduced in Chapter 2. The Hamiltonian of the two-level atoms in
interaction with the quantized radiation field is

H = ω
∑

i

Sz
i +

∑
lσ

ωlσa†
lσalσ (11.7)

+
∑
ilσ

{
gilσalσ

(
S+i + S−i

)+ h.c.
}
.

(See the appendix to this chapter.) We recall that

S+i = |1i 〉 〈2i | , (11.8)

S−i = |2i 〉 〈1i | ,
Sz

i =
1

2
{|1i 〉 〈1i | − |2i 〉 〈2i |} ,

|1〉 ≡ |+〉 ≡ α being the excited atomic state. The atomic dipole moment is d j ≡
d
(

S+j + S−j
)
, being off diagonal, and ω = E1 − E2.

In Eq. (11.7) the E · P interaction discussed in the appendix gives

gils = −i

(
2πce

V

) 1
2

(d · εls) exp (i l · ri ) . (11.9)

It will be left as a problem to work this out in detail.
If we make the rotating wave approximation discussed in Chapter 2, we drop the

a†
lσ S+i term, and then

H ′ = ω
∑

i

Sz
i +

∑
lσ

ωlσa†
lσalσ (11.10)

+
∑
ilσ

{
gilσalσ S+i + h.c.

}
.

Now we make the Markov approximation to Eq. (11.5), letting t → ∞. Just as
in Chapter 3, we assume a collision time τ c and take τ B >> τ c or, in the special

limit, τ c → 0. For the case being considered, τ c = |rmax
A |
c , and τ B =

(
γ i j

)−1
,

γ i j given by Eq. (11.13). This is discussed in detail in that chapter and will not
be repeated. We also must take V → ∞, so that the continuum approximation∑

lσ → V
(2π)3

∫
d3l

∑
σ may be made.
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We make the rotating wave approximation in the course of this evaluation,
ignoring the S+i S+j and S−i S−j terms, to obtain

∂ρ A

∂t
= −i

∑
i j

�i j

[
S+i S−j , ρ A

]
−

∑
i j

γ i j

{
S+i S−j ρ A − 2S−i ρ AS+i + ρ AS+i S−j

}
. (11.11)

t ≥ 0

In the Schrödinger picture this is

∂ρ A

∂t
= −i

∑
i

(ω0 +�)
[
Sz

i , ρ A

]
t ≥ 0 (11.12)

− i
∑
i �= j

�i j

[
S+i S−j , ρ A

]
−

∑
i j

γ i j

(
S+i S−j ρ A − 2S−j ρ AS+i + ρ AS+i S−j

)
.

Here we may let ω0 = ω +�i i , where

γ i j = π
∑
lσ

glσ i g
∗
lσ jδ (ω − ωlσ ) (11.13)

and � ≡ �i i = −
∑
lσ

|glσ |2
{
(ωlσ − ω)−1 − (ωlσ + ω)−1

}
(11.14)

�i j = −
∑
lσ

glσ i g
∗
lσ j

{
(ωlσ − ω)−1 + (ωlσ + ω)−1

}
. (11.15)

A detailed discussion of the rotating wave approximation is given by Agarwal
(1973). He points out that the consistent use of this approximation is in the equation
and not by use of H ′.

Now we must note that Eq. (11.12) has the form of a Lindblad–Kossakowski
equation, discussed first in Chapter 3. Thus the rotating-wave quantum master
equation is of the completely positive form. ρ A (t) is assured, in this case, of being
positive in the semi group time evolution. If we had taken the view that the dis-
sipative evolution should be of the Lindblad form, we would have, for this open
system of atoms and fields, chosen this equation. This result is consistent with sim-
ilar comments made earlier concerning the Pauli equation. We have also mentioned
that Monroe and Gardiner (1996) have discussed the failure of the Lindblad form
in the more general nonrotating approximation case.
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Before considering a single two-level atom in interaction with the field, we must
evaluate Eq. (11.13) and Eq. (11.14). In the continuum limit,

γ i j = 2π2c (2π)−3
∫

d3kd�δ (ω − kc) |d|2 (1− cos θ2
)

exp
(
ik · ri j

)
.

For a single two-level atom, we take γ i j = 0 for i �= j and evaluate the delta
function in d3k. We obtain

γ i j → γ = 2

3
|d|2 ω3

c2
. (11.16)

This is 1/2 the famous Einstein A coefficient (Einstein, 1917). The other terms are
more involved. Agarwal (1974) obtained

� ≡ �i i = −
(γ

π

)
ln

{∣∣∣(ωc

ω
− 1

) (ωc

ω
+ 1

)∣∣∣} , (11.17)

having a logarithmic divergence necessitating the cutoff frequency ωc. We will not
consider further this frequency shift.

The master equation becomes simply

∂ρ A

∂t
= −iω

[
Sz, ρ

]− γ
(
S+S−ρ A − 2S−ρ AS+ + ρ AS+S−

)
t ≥ 0, (11.18)

where ω = ω0 +�i i . After renormalization there is a shift of both the ground and
excited states.

Now we write an equation for ρ12 ≡ 〈1| ρ A |2〉 and ρ11 (t), utilizing the
properties of Sz, S+ and S−. Eq. (11.18) becomes

dρ12

dt
= −iωρ12 − γ ρ12 (11.19)

dρ11

dt
= −2γ ρ11 (t) .

Thus, the solution is simply

ρ12 (t) = ρ12 (0) exp (−iωt) exp (−γ t) (11.20)

ρ11 (t) = ρ11 (0) exp (−2γ t) t ≥ 0

ρ11 (t)+ ρ22 (t) = 1.

The probability decays by the interaction with the electromagnetic field reservoir
in a time τ B = 1/2γ . The off-diagonal correlations decay spontaneously, slightly
more rapidly due to the factor of 1/2. This is qualitatively similar to the Walls and
Milborn example of Chapter 2 (Walls and Millborn, 1985). As already mentioned,
this is an indication of the decoherence process extensively studied by Zurek (1991)
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and discussed in Chapter 12. Zurek argues that this is the source of classical behav-
ior in quantum systems. The 2γ decay constant given by Eq. (11.11) was first
obtained by Weisskopf and Wigner in their theory of spontaneous emission (Weis-
skopf and Wigner, 1930). We will discuss this extensively in Chapter 17. We must
emphasize here that the source of the atomic decay resides in the dissipative open
system equation, Eq. (11.18), treated in a consistent manner. This goes beyond the
Schrödinger equation. We note that there is no induced emission or absorption in
Eq. (11.9). This is due to the initial reservoir condition of Eq. (11.2).

If we assume the reservoir is an initial thermal state with

ρR (0) =
exp

{
−β

∑
ls ωlsa

†
lsals

}
Tr exp

(
−β

∑
ls ωlsa

†
lsals

) , (11.21)

then by similar arguments, as already made, the system master equation is

∂ρ A

∂t
= iω

[
Sz, ρ A

]
− γ (1+ 〈n (ω)〉) (S+S−ρ A − 2ρS−ρ AS+ + ρ AS+S−

)
(11.22)

− γ 〈n (ω)〉 ∣∣S−S+ρ A − 2S+ρ AS− + ρ AS−S+
∣∣ ,

where 〈n (ω)〉 = (expβω − 1)−1 . It may easily be shown that this leads to
the famous stochastic equation of Einstein with the induced, spontaneous and
absorption terms. We leave it to the student to prove this.

In a number of respects, spontaneous emission is sometimes interpreted as due
to the vacuum fluctuations of the field〈

0
∣∣E2

∣∣ 0
〉 =∑

l

h̄ωl . (11.23)

This is a puzzle. Eqs. (11.19) indicate that the initial atomic state |1〉 is unstable and
decays at least at long time when these equations are valid under the influence of the
reservoir vacuum, Eq. (11.23). The details of this initial decay are not seen, since
we have not written a short-time initial exact solution. As discussed in Chapter 3,
it can easily be seen that at t = 0 for the diagonal part of PρAR,�Pρ AR ,

d�Pρ AR (t)

dt
= 0; t = 0+. (11.24)

It is a fixed point in the nonlinear dynamics sense that asymptotically decays. But
what is the cause? We shall turn to this now.

It is best to use the Heisenberg equations to discuss the short-time behavior, fol-
lowing Milloni in his Physical Reports review (Milloni, 1976). (He has done an
extensive review of the literature. See also Senitzky, 1973.) The main theme of the
discussion (and controversy) is whether vacuum fluctuations play the entire role or
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whether a quasi-classical picture of radiation reaction on the atom by the field is
primary. (See any good text such as that of Panovsky and Phillips [1962] or the clas-
sic discussion of Becker [1964 edn.]). The simple derivation of the Lamb shift of
Welton (Welton, 1948) would seem to support this latter view. Scully and Zubairy
(1997) repeat this derivation. In doing this, they derive the following interesting
formula: 〈

(δrvac)
2
〉 =∑

k

( e

mc2k2

)2 〈0 | Ek | 0〉2 , (11.25)

(δr)2 being a fluctuation in atomic position.
Milloni, in his derivation of the Heisenberg equations of motion for the two-level

atom, obtains in a self-consistent manner

Ṡx = −ω0Sy ω = ω +� (11.26a)

Ṡy = ω0Sx + 2

h̄
μ · E⊥ (0, t) Sz (11.26b)

Ṡz = −2

h̄
μ · E⊥ (0, t) Sy, (11.26c)

and

∇2E⊥ (r, t) = 1

c2
Ë⊥ (r, t) . (11.27)

Now

E⊥ (0, t) = E⊥0 (0, t)+ E⊥RR (t) , (11.28a)

separating the particle source and homogeneous parts.
A number of approximations have been made. The foremost is the adiabatic

approximation that the atom density matrix should follow the free evolution
ρ̇i j = −iωi jρi j in the field part of ρ AR. This is equivalent to the Weisskopf–
Wigner approximation. In addition, in the choice of the representation, a normal
ordering is now assumed. Photon annihilation operators are put to the right of oper-
ator products. Milloni obtains the level shift and width and subsequently obtains
the Bethe expression for the Lamb shift. The main point here is that Eqs. (11.26)
are valid at short time. No time scaling has been used.

The atom radiation field is

E⊥RR (t) =
[

2

3c3

...
σ x − 4K

3πc2
σ̈ x + 4K 3

9π
σ x

]
μ, (11.28b)

and E⊥0 (0, t) is the homogeneous solution to Eq. (11.27), depending on the vac-
uum. K = Emax

hc on introduction of the Bethe cutoff wave number, mc
h . The third
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term in Eq. (11.28b) has no classical counterpart. We solve now in the adia-
batic approximation. Taking the vacuum field expectation values, 〈〉 , Eqs. (11.26)
become

〈σ̇ 12 (t)〉 = −i (ω0 −�− iγ ) 〈σ 12 (t)〉 − i (�− iγ ) S+ (t) (11.29)

〈σ̇ z〉 = −2γ (1+ 〈σ z (t)〉) ,
where again

γ = 2 |ω12|2 ω3
0

3h̄c3
. (11.30)

The energy shift is now

� = 2 |μ12|2
3π h̄c3

ω2
0 P

∫
dω

(
ω

ω − ω0
− ω

ω + ω0

)
. (11.31)

� is apparently the effect of the vacuum fluctuations. However, it is not explicit,
since the homogeneous solution to Eq. (11.27), E+0 (0), proportional to alσ , does
not enter at all. It appears that Eq. (11.28b) plays the dominant role, which may be
interpreted as a radiation reaction effect.

Is this physical conclusion independent of normal ordering? Senitzky and Mil-
loni have redone the calculation with antinormal ordering (Senitzky, 1973; Milloni,
1976). Using the rotating wave approximation, it is found that E⊥0 (0, t) plays an
explicit role due to the new ordering. We have

〈σ̇ 12 (t)〉 = −i (ω0 −�− iγ ) 〈σ 12 (t)〉 ,
neglecting counterrotating terms. However, the physical interpretation differs, indi-
cating that the original question is meaningless. We cannot say that spontaneous
emission is due to radiation reaction or vacuum fluctuations. They are all one, as
implied by Senitzky (1973).

11.3 Cavity damping: the micromaser: detection

Let us now turn to the master equation and damping in the field of the cavity. We
will focus on the micromaser of Walther, Rempe and Klein (Rempe et al., 1987),
the Munich micromaser. See the review by Raithal (Raithal et al., 1994). In a cavity
of very high Q and very low temperature, a few atoms are sequentially injected and
excite the field of the cavity. We will derive by physical arguments the birth–death
equation for the density matrix of the field. The density matrix is off-diagonal. The
transiting atoms are later observed, and it is these atoms which measure the field
properties indirectly. The detection process will be included in the master equation.
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The two atomic levels are rubidium 63P3
2

and 61D 5
2

with frequency 21.5 MHz.
The spontaneous decay time for the upper state is 488μs, and the average number
of thermal photons due to the environment is 0.054; the cavity quality factor is
3× 1010, with T = 0.3 K.

The theory of such a system without detection was first done by Filipowicz,
Javanainen and Meystre (1986). A density matrix formulation was given early by
Krause (Krause et al., 1986). This is a form of the basic Scully–Lamb laser theory
(Scully and Lamb, 1967, 1969). It is to be compared with the previous section;
the system is the electromagnetic field in interaction with the injected atoms as the
“reservoir.” We will not approach this from the point of view of the generalized
master equation. Rather, we shall simply give an argument similar to the Pauli and
also the Scully–Lamb birth–death approach.

11.4 Detection master equation for the cavity field

For the two-level atom, we take |A〉 and |B〉 to be the upper and lower states.
The macroscopic detector registers after the atomic passage through the cavity,
|+1〉, |−1〉 and |0〉 for the atom in the upper state, lower state or no register. Super-
positions are possible in the detector registration. Ionizing field channeltrons were
used as detectors in the experiments. A postselection of phase may be made at the
cavity exiting port. We will take the incoming atoms in the |A〉 state. In this we will
adopt the simple “collapse” approach to measurement. This is discussed in some
detail in Chapter 13, and references are there. Now consider the work of McGowan
and Schieve (1997).

The atom, field and detector state before measurement is∣∣ψa f d

〉 = c1

∣∣ψ f

〉 |A〉 |+〉 + c2

∣∣ψ f

〉 |A〉 |0〉 + c3

∣∣ψ f

〉 |A〉 |−〉 (11.32)

+ c4

∣∣ψ f

〉 |B〉 |+〉 + c5

∣∣ψ f

〉 |B〉 |0〉 + c6

∣∣ψ f

〉 |B〉 |−〉 .
We assume no detector errors. We define then, on measurement,

|c1|2 = pA (state A detected atom in |A〉 ) (11.33a)

|c6|2 = pB (state B detected atom in |B〉 ) (11.33b)

|c3|2 = 0 (state B detected atom in |A〉 ) (11.33c)

|c4|2 = 0 (state A detected atom in |B〉 ) (11.33d)

|c2|2 = 1− pA (no detection) (11.33e)

|c5|2 = 1− pB (no detection)

and

c1c
∗
4 = c∗1c4 = c3c

∗
6 = c∗3c6 = 0. (11.33f)
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The only cross terms are c2c∗5 and c∗2c5, which is a mixed state, “no check,” of the
detectors. It must be emphasized that the detectors are macroscopic, and thus the
detector states are diagonal.

The resulting density matrix of the entire system after an atom passage of the
cavity is

ρa f d = pA |A〉 |+ 〉 ρ AA 〈+ | 〈A| (11.34)

+ (1− pA) |A〉 |0〉 ρ AA 〈0| 〈A|
+ (1− pB) |B〉 |0〉 ρB B 〈0| 〈B|
+ pB |B〉 |−〉 ρB B 〈−| 〈B|
+ c2c

∗
5 |A〉 |0〉 ρ AB 〈0| 〈B| + h.c.

We will now obtain a master equation for the field due to undetected atoms. We
take

TrA [〈0| |0〉] (11.35)

and find that the field changes after the atoms’ undetected passage leads to the state
reduction of the field density matrix,

ρ f (t)→ (1− pA)Aρ f (t)+ (1− pB) Bρ f (t) . (11.36)

The operators A, B depend on the form of measurement. If A detector clicks when
the atom is in the upper Ryberg state and B observes the lower state, then from the
simple Jaynes–Cummings model (Jaynes and Cummings, 1963), one obtains the
evolution in the phase-insensitive case:

Aρ f = SAρ f S†
A (11.37)

Bρ f = SBρ f S†
B,

where

SA = cos
(

gτ
√

aa†
)

(11.38)

SB =
a† sin

(
gτ
√

aa†
)

√
aa†

.

These super-operators describe this field change due to a single atom passage. The
atom is in interaction for a period τ , which is a parameter. It may be statistically dis-
tributed, but we assume here that it is determined by a precise injection rate, r, and
cavity length. This is not experimentally so. The operator coefficients A(τ ), B(τ )

are the principal differences between the micromaser and laser. (See the 1997 book
of Scully and Zubairy.) There A, B are constants independent of this parameter.
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A commonly used parameter is θ = √Nex gτ , a pumping parameter having values
(commonly) 1 to 10. This is left to the student as a problem. If we normalize Eq.
(11.36) and calculate the change in ρ f,�ρ f (t) , we find

�ρ f (t) =
(1− pA) Aρ f (t)+ (1− pB) Bρ f (t)

1− pATr
{

Aρ f (t)
}− pBTr

{
Bρ f (t)

} − ρ f (t) . (11.39)

This is the product of the probability that there is an undetected atom in the cavity
rdt and the probability that the atom is undetected. We obtain

∂ρ f (t)

∂t
= r [A (τ )+ B (τ )− 1] ρ f (t)− r

[
pA A (τ )+ pB B (τ )

]
ρ f (t) (11.40)

+ Lρ f (t)+ r
[
pATr

[
A (τ ) ρ f (t)

]+ pBTr
[
B (τ ) ρ f (t)

]
ρ f (t)

]
.

Such an equation was first obtained by Briegel (Briegel et al., 1994). It is nonlinear,
containing the inefficient pA, pB detector coefficients. Here

Lρ (t) = −1

Nex

[
(nb + 1)

(
a†aρ (t)− 2aρ (t) a† + ρ (t) a†a

)
+ nb

(
aa†ρ (t)− 2a†ρ (t) a + ρ (t) aa†

) ]
(11.41)

describes the field damping in the cavity. This has been discussed in Chapter 2. It
may be obtained from the density matrix for the driven-damped single harmonic
oscillator (Scully and Zubairy, 1997). Here nb is the mean number of thermal pho-
tons, < 1 for the micromaser, Nex = r/γ . r is the rate of atomic injection, and γ

the mean photon decay rate. The equation without the Tr terms is the master equa-
tion of the isolated laser. References were given earlier (see also Lugiato et al.,
1987). We should remark that Johnson and Schieve (2001) have discussed how
the nonnormalized form, Eq. (11.36), may be used in numerical calculations. This
obviates the use of the nonlinear operations.

In the phase-sensitive case, we may form an entanglement detection scheme for
states 1√

2
(|A〉 − |B〉) and 1√

2
(|A〉 + |B〉). (Entanglements are discussed in some

detail in Chapter 12.) If the atoms are injected in the upper state |A〉, then, with a
π/2 pulse before the detectors for postphase selection, the operators become for
entanglement detection

{
Aρ

Bρ

}
= 1

2

(
SAρS†

A + SBρS†
B

)
∓ 1

2

(
SAρS†

B + SBρS†
A

)
,

and Eq. (11.40) becomes appropriately modified. This is the Ramsey detection
method (see Scully and Zubairy, 1997). It was also done by Herzog (2000).
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Let us consider the analytic solution to Eq. (11.40) on totally inefficient detec-
tion, pA = pB = 0. (We now drop the f subscript on the field.) The equation
then is

∂tρ (t) = r [A + B − 1] ρ (t)+ Lρ (t) ,

which we write in the number representation |n〉. We assume the injection atoms
arrive in state |A〉 . Then

∂tρ
(k)
n = −γ (nb + 1)

[(
n + k

2

)
ρ(k)

n (t)−√
(n + 1) (n + k + 1)ρ(k)

n+1

]
(11.42)

− γ nb

[(
n + 1+ k

2

)
ρ(k)

n (t)−√
n (n + k)ρ(k)

n−1 (t)

]
− rρ(k)

n

+ r
[
cos

(
gτ
√

n + 1
)

cos
(

gτ
√

n + k + 1
)]

ρ(k)
n (t)

+ sin
(
gτ
√

n
)

sin
(

gτ
√

n + k
)
ρ

(k)
n−1 (t) .

Here ρ(k)
n ≡ ρn,n+k is off-diagonal. nb is the number of thermal photons present, γ

the cavity decay constant, and r the rate of injection.
The solution to Eq. (11.42) was discussed in some detail by McGowan and

Schieve (1997), using a method due to Scully (Scully and Lamb, 1967). Assuming
γ = 0 and nb = 0, we have, from Eq. (11.42), the recursion relations[

cos
(

gτ
√

n + 1
)

cos
(

gτ
√

n + k + 1
)]

ρ(k)
n

= − sin
(
gτ
√

n
)

sin
(

gτ
√

n + k
)
ρ

(k)
n−1. (11.43)

From this, as with birth–death equations generally, we obtain for k = 0,

ρS
n,n = ρnn (0)�n

j=1

Nex

j
sin2

(
gτ

√
j
)
. (11.44)

The recursion relation is interesting (Filipowicz et al., 1986); the recursion
truncates for n values both upward and downward for k = 0. For n(q)

sin
(

gτ
√

n (q)+ 1
)
= 0 gτ

√
n (q)+ 1 = qπ q odd (11.45)

and n(p)

sin (gτ )
√

n (p) = 0 gτ
√

n (p) = pπ p odd. (11.46)
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These truncation points are called trapping states of the cavity field, n (q) (up) and
n (p) (down). For n (q),

ρs
n(q),n(q) = Eq. (11.44) n < n (q) (11.47)

= 0 n > n (q) ,

and for n (p) ,

ρs
n(p),n(p) = 0 n < n (p)

= Eq. (11.44) n > n (p) . (11.48)

We recognize from Eq. (11.43) that∑
n

ρ̇(k)
n =

∑
n

X (k)
n ρ(k)

n , (11.49)

which suggests the solution

ρ(k)
n (t) = ρ(k)

n (0) exp
(
X (k)

n t
)
, (11.50)

where

X (k)
n = −r − γ (nb + 1)

(
n + k

2
−√

n (n + k)

)
(11.51)

− γ nb

[
n + 1+ k

2
−√

(n + 1) (n + k + 1)

]
+ r

[
cos

(
gτ
√

n + 1
)

cos
(
gτ
√

n + k + 1
)

+ sin
(
gτ
√

n + 1
)

sin
(
gτ
√

n + k + 1
)

]
.

This solution was utilized by McGowan and Schieve to obtain an approximate solu-
tion to the cavity with measurement. The γ -dependent terms here are, of course,
the cavity decay due to the various photon loss mechanisms. The trigonometric
terms are the new and interesting features in the cavity. These field points block
diagonalize the Fock space and are one of the main features of the one-atom micro-
maser. The physical interpretation is that the injected atom undergoes integer Rabi
oscillations, thus returning to its initial |A〉 state, leaving the field unchanged.

Trapping states have been observed in the Munich micromaser (Weidinger et al.,
1989). Dips in the inversion agree well with the preceding formulas. Johnson
and Schieve have done an extensive comparison of the theory based upon the
Jaynes–Cummings model (Jaynes and Cummings, 1963) with these experiments,
as outlined here. They find the positions of the trapping states in excellent agree-
ment with Eq. (11.45), Eq. (11.46), Eq. (11.47) and Eq. (11.48). However, the
qualitative behavior elsewhere in the inversion—for instance, as a function of τ for
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this experimental condition—does not agree with the theory. A number of modi-
fications of the theory were made, including atomic decay, velocity averaging and
two successive atom events. Little improvement in the agreement was obtained
(D. Johnson, unpublished Ph.D. thesis, University of Texas, 2003).

Let us return to the question of trapping states including detection. The steady-
state condition is

r
[
(1− pA) A + (1− pB) B − 1

]
ρs + r

[
pA + r Aρs

]+ pBTr
[
Bρs

]
ρs = 0.

(11.52)

We again assume nb = 0, γ = 0 and take pA << 1. This becomes, for k = 0 in
ρn,n+k ≡ ρs

n,[
cos2

(
gτ
√

n + 1
)
− 1

]
ρs

n + sin2
(
gτ
√

n
)
ρs

n−1 (11.53)

+
[

pA

∑
n′

cos2
(

gτ
√

n′ + 1
)
ρs

n′ + pB

∑
n′

sin2
(

gτ
√

n′
)
ρs

n′−1

]
ρs

n = 0.

The steady state is a solution to this nonlinear equation. Because of the nonlin-
earity, no simple recursive form may be found. Suppose now, for instance, that
the first term is approximately zero for the case sin

(
gτ
√

n (q)+ 1
) = 0, there

being no states present for n > n (q). This might be true for very small pA, pB ,
weak detection. The right side vanishes then. For n < n′ (q), we then have Eq.
(11.53) having

∑
n′<n(q) and ρs

n′ given on the right by Eq. (11.49). Thus we see
that in weak detection we may expect, by this iterative argument, the conditions
of Eq. (11.48) to be maintained. The distribution is altered by the pA, pB terms
in the nonlinearity. We have argued from the detection theory that the trapping
conditions can be observed. They are! Even for large pA, pB , this argument
seems to be true. Monte Carlo simulations with 100% detector efficiencies, thus
taking into account the measurement, agree well with the experimental trapping
values.

Let us turn to time-dependent solutions, in the phase-insensitive case in Eq.
(11.40), by a perturbation assuming pA, pB again small. We may use the pA =
pB = 0 solution and iterate with it in the Tr terms. The first-order equation is

d

dt
pk

n (t) = Xk
nρ

k
n (t)+ ρk

n (0) exp
(
Xk

nt
)

(11.54)

×
[

Ek
n + Fk

n+1 +
∑

m

{
Gmρ0

m (0)+ Hmρ0
m−1 (0)

}]
,
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where

Ek
n = −rpA cos

(
gτ
√

n + 1
)

cos
(

gτ
√

n + k + 1
)

(11.55)

Fk
n = −rpB sin

(
gτ
√

n
)

sin
(

gτ
√

n + k
)

Gm = rpA cos2
(

gτ
√

m + 1
)

Hm = rpB sin2
(
gτ
√

m
)
.

The solution is to first order

ρk
n (t) = ρk

n (0) exp
(
Xk

nt
) [

1+ t Ek
n + t Fk

n+1 + t
∑

m

{
Gmρ0

m (0)+ Hmρ0
m−1 (0)

}]
.

(11.56)

With nonzero γ , the solution decays with the parameter Xk
n given by Eq. (11.51).

Without damping, it diverges with t , meaning that it is then a short-time solution.
Now we will briefly mention the micromaser spectrum (Lu, 1993; McGowan

and Schieve, 1997). The spectrum is defined as

S (ω − ωc) = Re
∫ ∞

0
K (t) exp (−i (ω − ωc) t) dt, (11.57)

where

K (t) = 〈
a† (t) a (0)

〉
(11.58)

is the two-time correlation function. This may be related to the Green’s function,

K (t) =
∑
nm

Gm
n,n+1 (t)

√
(n + 1) (m + 1)Pm+1,

where

Pm+1 =
〈
m + 1

∣∣ρs
f

∣∣m + 1
〉
, (11.59)

and

G(m) (t) = Trr

[
U (t) |m〉 〈m + 1| ρs

rU
† (t)

]
. (11.60)

We may show in this approximation, using the initial conditions

G(m)

n,n+1 (0) = δn,m

G(m)
n,n+k (0) = 0 k �= 1,

that the analytic answer is

G(m)

n,n+1 = δn,m exp
(
X (1)

n t
)
.
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As a result of this, we obtain, for the micromaser with measurement,

S (ω) =
∑

m

(m + 1) Pm+1

⎡⎢⎣ ∣∣X1
m

∣∣∣∣X1
m

∣∣2 + ω2
+ {

E1
m + F1

m+1

} ∣∣X1
n

∣∣2 − ω2(∣∣X1
n

∣∣2 + ω2
)2

⎤⎥⎦ .

(11.61)
The second term contains the new additional measurement terms depending on
pA, pB .

The micromaser line width was calculated from this by McGowan and Schieve
(1997) in one case of 10% detector efficiency and also for no detection as a function
of θ = gτ

√
N . Peaks appear in both cases. These were associated with trapping

states by Lu (1993) by the formulas of Eq. (11.48). The result here was a significant
increase in peak height with detection. No significant qualitative change in the
curve structure was seen. The undetected case agrees well with Lu’s more exact
calculation.

This ends our brief discussion of quantum master equations in quantum optics.
The topics chosen were obviously personal but should illustrate the master equation
applications both to atoms and fields. The student should read the recent good texts
cited for other applications.

Appendix 11A: the field quantization and interaction

The source free Maxwell equations are

∇ · B = 0 (11A.1)

∇ × E = −∂B
∂t

∇ · E = 0

∇ ×H = ∂D
∂t

with

B = μ0H (11A.2)

D = ε0E

μ0ε0 = c−2.

We introduce the vector and scalar potentials A,U. We are dealing with the
nonrelativistic electrodynamics. We choose the Coulomb gauge,

∇ · A = 0; V = 0. (11A.3)
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From Eq. (11A.1) we have the wave equation for A (r, t):

∇2A = 1

c2

∂2A
∂t2

.

The Hamiltonian is

H = 1

2

∫
d3r

(
ε0E2 + μ0 H 2

) = 1

2

∫
d3r

[
ε0

(
∂A
∂t

)2

+ 1

μ0
(∇ × A)2

]
.

(11A.4)
We separate the variables r, t by assuming A (r, t) ≈∑

l ql (t) ul (r). The structure
of the mode l is determined by the boundary conditions of the cavity. We obtain

∇2ul (r)+ ω2
l

c2
ul (r) = 0, (11A.5)

and

d2ql

dt2
+ ω2

l ql = 0. (11A.6)

Choosing standing wave boundary conditions at the wall, ul |‖= 0, and ∇×ul |⊥=
0. We find in this case that ul (r) are sin kl · r and cos kl · r. A plane wave
representation is more convenient. Then we assume

A (r, t) =
∑

l

2∑
σ=1

√
h̄

2ωlε0V
elσ

[
alσ exp i (klσ · r− ωl t)

+a†
lσ exp−i (klσ · r− ωl t)

]
. (11A.7)

The alσ obey Eq. (11A.6) for harmonic oscillators. Here h̄ and an a† in the complex
conjugate part are prematurely introduced. The polarization vectors obey

el1 · el2 = 0 (11A.8)

and

elσ · kl = 0,

since ∇ · A = 0. To obtain a solution to the wave equation, we must have the
dispersion relation

k2
l =

ω2
l

c2
. (11A.9)

For periodic boundary conditions,

kl = 2π

L

(
l1ı̂ + l2ĵ + l3k̂

)
, (11A.10)



216 Quantum optics and damping

where l1, l2, l3 are infinite countable sets of integers from −∞ to +∞. With this
we have a new harmonic oscillator (countably infinite) representation of the elec-
tromagnetic field in the cavity of volume V = L3. We leave it as a problem to
show, after obtaining E and H in this representation, that the energy is

H =
∑
l,σ

h̄ωl

(
alσa†

lσ + a†
lσalσ

)
. (11A.11)

h̄ appears because âlσ = 1√
2hωl

(
ωl q̂lσ + i p̂lσ

)
and q̂lσ, p̂lσ are the position and

momentum and will obey canonical quantization commutation rules. We assume[
q̂lσ, p̂l ′σ ′

] = i h̄δlσ,l ′σ ′ .

l ≡ (l1l2l3), and now care has been taken in the ordering of alσ and a†
lσ in the

derivation.
We quantize the electromagnetic field after that of harmonic oscillators, assum-

ing

Ĥ =
∑
lσ

h̄ωl

(
âlσ â†

lσ + â†
lσ âlσ

)
, (11A.12)

with [
âlσ , â†

l ′σ ′
]
= δlσ,l ′σ ′ (11A.13)

[
âlσ , âl ′σ ′

] = [
â†

l ′σ ′, â†
lσ

]
= 0.

This quantization procedure is due to Dirac (1958).
Just as with the 1−D harmonic oscillator in Chapter 2, we may construct the

number states utilizing [
âlσ , â†

lσ âlσ

]
= âlσ (11A.14)[

â†
lσ , â†

lσ âlσ

]
= −â†

lσ .

We will now drop the operator “hat” notation. As in Section 11.2, we introduce the
number operator for each mode lσ ,

Nlσ = a†
lσalσ = N †

lσ , (11A.15)

and form the number states |nlσ 〉,
Nlσ |nlσ 〉 = nlσ |nlσ 〉 ,

by

Nlσalσ |nlσ 〉 = (nlσ − 1) 〈alσ | nlσ 〉 (11A.16)

Nlσa†
lσ |nlσ 〉 = (nlσ + 1)

〈
a†

lσ | nlσ

〉
.
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The orthonormal states are

|nlσ 〉 = a†n
lσ√
n! |0〉 (11A.17)〈

n′lσ | nlσ

〉 = δnlσ n′lσ

with
∞∑

n=0

|nlσ 〉 〈nlσ | = I.

With this we have the many-particle harmonic oscilator Hamiltonian:

H = 1

2

∑
lσ

(
p2

lσ + ω2
l q2

lσ

) = 1

2

∑
lσ

h̄ωl

(
a†

lσalσ + alσa†
lσ

)
. (11A.18)

The independent-mode pure field states are

|n1〉 |n2〉 . . . |nlσ 〉 . . . ≡ |n1n2 . . . nlσ . . .〉 (11A.19)

and obey the relations of Eq. (11A.15) and Eq. (11A.16). Thus,

〈n1 . . . nlσ | H |n1 . . . nlσ 〉 =
∑
lσ

h̄ωlnlσ + h̄ωl

2
(11A.20)

nlσ = 0, 1, . . .

The ground state energy has been shifted to zero. These multimode states are
bosons, and they obey boson commutation laws. See Schweber (1962) for a
detailed discussion of this.

These modes are often thought of as “particles,” i.e. photons. However, they
cannot be localized, as seen from Eq. (11A.7), where both positive and negative
frequencies appear. Some discussion of this is made in the book of Scully and
Zubairy (1997). Here “photon” will simply mean the mode of the field as described
above.

From the commutation laws for alσ , a†
lσ , we may obtain the field commutation

laws for E and H. This is left as a problem. In the continuum limit,∑
k

→ 2

(
L

2π

)3 ∫
d3k. (11A.21)

They are for equal time[
Ei (r, t) , Hj

(
r′, t

)] = 0 (11A.22)[
E j (r, t) , Hk

(
r′, t

)] = −ic2 ∂

∂rl
δ(3)

(
r− r′

)
,
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where i, j, l are 1, 2, 3 and cyclic. Parallel components of E,H may be measured
simultaneously, and perpendicular components may not. In going to the continuum
limit, we may introduce the density of modes in dω, g (ω) = 2ω2

(2πc)3
, since ω2 =

c2k2. The vacuum state nlσ = 0 is important:

〈0| H |0〉 =
∑

l

hωl

2
l. (11A.23)

The average field in any state is

〈n1 . . . nlσ |E
∣∣n1...nlσ

〉 = 0,

since E is linear in alσ , and a†
lσ . However, the field fluctuation is nonzero, and for

nlσ = 0 it is given by 〈0|E2 |0〉 = ∑
lσ

h̄ωl
2 . The zero point field fluctuations give

rise to possibly spontaneous emission and the famous Lamb shift of the 2P1
2
−2S 1

2
energy levels of hydrogen (Lamb and Retherford, 1947). See Schweber (1962) and
the book of Scully and Zubairy (1997) for a good, brief introduction, and also see
Section 11.2 of this chapter.

The interaction Hamiltonian of the field interacting with a charge e is an addition
to the radiation field previously discussed:

H ′
f a =

1

2m

[
p− eA (r, t)

]2 + cV (r) , c = 1. (11A.24)

This is nonrelativistic, and electron spin is not included. The total Hamiltonian may
be written in the Coulomb gauge as (p · A = A · p):

H = Ha + Hr + H ′,

where

Ha = p2

2m
+ eV (r) (11A.25)

Hr =
∑
lσ

h̄ωl

(
a†

lσalσ + 1

2

)
(11A.26)

H ′ = −A · p+ e2

2m
A2. (11A.27)

The second term in H ′ will be neglected as normally small. In some places the
interaction is written

H ′′ = −er · E (r0, t) . (11A.28)
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They are not equivalent, as discussed nicely by Scully and Zubairy (1997). It may
be estimated that ∣∣∣∣∣

〈
f
∣∣H ′∣∣ i

〉
〈 f |H ′′| i〉

∣∣∣∣∣ = ω

ν
.

ω = E f − Ei , the transition frequency, and ν is the field frequency. In our
discussions in this book, we adopt Eq. (11A.28) for simplicity.
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12

Entanglements

12.1 Introduction

We will now turn to quantum entanglements and their contemporary, possibly
practical, interest. Entanglements, first discussed in the E.P.R. paradox (Einstein,
Podolsky, Rosen, 1935) are a perplexing nonlocal feature of quantum mechan-
ics. This was immediately and succinctly discussed by Schrödinger (1935). The
long history of this apparent paradox is outlined in the wonderful book of Jammer
(1974). We will not focus on the central issue of “hidden variables” and their reso-
lution by the Bell inequalities (Bell, 1964) and the test, nor the failure, of these in
experiment (see Fry, 1998).

The distinctive quantum nature of entanglements has led to two quantum effects
which we will discuss: quantum information teleportation (Zeilenger, 1998) and
quantum computation by means of entangled states. A nice, recent, elementary
introduction to the latter is in the Los Alamos reports of James and Kwiat (2002).
The quantum correlations or entanglements are sensitive to environmental destruc-
tion. This was pointed out early by Zurek, who termed this “decoherence.” The
loss of coherence may occur on a short time scale. Recent discussions have been
given by Zurek (2002, 2003). We have already given a theoretical example early
in Chapter 2. It is pertinent to discuss this here, since it is a property of open-
system quantum master equations that is a central part of our study in this book.
In a sense, the decoherence of correlations has turned out to be a “practical” appli-
cation of these theoretical notions. Are there remedies for unwanted decoherence?
Quantum error correction is a possibility. This will be mentioned also.

12.2 Entanglements: foundations

Following the reading of the E.P.R. paper, Schrödinger (1935b) quickly repeated
the argument from quantum theory, but more generally. He introduced the term

221
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“entanglement” to describe what he seemed to agree was a curious, if not
unacceptable, property.

Let us follow his point of view. Given a state ψ (x, y) of a composite system of
particles x and y formed in their mutual interaction. ψ (x, y) is not a product state.
At the asymptotic separation, a complete measurement of “y” determines a set of
normalized eigenstates, fn (y). The variables measured commute, and by the rules
of quantum mechanics, we may write for the entangled state

ψ (x, y) =
∑

n

cngn (x) fn (y) , (12.1)

and

ckgk (x) =
∫

f ∗k (y) ψ (x, y) dy. (12.2)

The latter determine gk (x) . The ck (x) are introduced for normalization. |ck |2 is
the probability of “x” being in state gk (x), given that we measured fk (y). This
is the point right here. A measurement of the recently separated system in fk (y)
determines gk (x). The nonlocality is now apparent. The entangled state ψ (x, y)
produces this nonclassical (bizarre?) behavior after the interaction. Schrödinger
proves further the conditions on fk (y) for which there is a unique orthogonal
expansion of ψ (x, y). It is that∫

dxψ∗ (x, y′
)
ψ (x, y) <∞ (12.3)

(Courant and Hilbert, 1966). Then we have the condition

|ck |2 fk (y) =
∫

dx
∫

dy′ fk
(
y′
)
ψ∗ (x, y′

)
ψ (x, y) . (12.4)

This is an integral equation for what Schrödinger called the relevant eigenfunctions
fk (y). Knowing these, one knows all the gk (x). This is a program of measurement
of these fk (y), with probability |ck |2 , that determines the other “systems” gk (x).

Einstein, Podolsky and Rosen, in their paper (Einstein et al., 1935), had con-
sidered the special model of two-particle scattering. After the interaction at a time
t > T , they wrote the entanglement as

ψ (x1x2) =
∫

dp exp

[−2π i (x2 − x0) p

h

]
exp

(
2π i x1 p

h

)
, (12.5)

the term exp
(

2π i x1 p
h

)
being the eigenfunction u p (x1) corresponding to eigenvalue

p of particle x1. The other term is an eigenfunction ψ p (x2) corresponding to −p.
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A measurement on x1 of p determines the momentum state of x2 (−p) after they
have separated. It is also possible to rewrite Eq. (12.5) as

ψ (x1x2) = h
∫

δ (x − x2 + x0) δ (x1 − x) dx, (12.6)

the position eigenfunctions. We recognize ux (x1) = δ (x1 − x) and ψ x (x2) =
δ (x − x2 + x0) such that x2 = x+ x0. This is consistent, since x1− x2 and p1+ p2

commute. The choice of these commuting observables determines the proper fk (y)
in the Schrödinger discussion of entanglements.

The answer to the dilemma may be that the two particles are one system having,
even after interaction, the entangled ψ (xy). They cannot be conceptually disen-
tangled. To think of them apart is a fallacy. This point of view was emphasized by
Bohr (Bohr, 1949; Einstein, 1949). Utilizing a micromaser cavity similar to that
discussed in Chapter 11, Haroche (1998) has, by means of the Rabi oscillations,
created entangled atom-field states:

|ψ〉 = 1√
2
(|e, α exp iφ〉 + |g, α exp−iφ〉) , (12.7)

e, g being the two-level atom state and α the coherent state of the cavity n = |α|2
photons (one to ten).

If we ignore the e, g for simplicity, these are “cat states” (Schrödinger, 1935a).
The cat is built from entangling macroscopic nonorthogonal coherent states. Using
the position representation of a coherent state |β〉, we have

〈x | β〉 = π−
1
4 exp

1

2

(
β2 − |β|2) exp

[−1

2

(
x −√2β

)2
]
.

The entangled “cat state” is then

ψ (x) = π−
1
4

N√
2

exp
[−α2 sin2 φ

]
exp

[
1

2
α2 sin 2φ

]
⎧⎪⎪⎨⎪⎪⎩

exp

[
−1
2

(
x −√2α exp (iφ)

)2
]

+ exp
[−iα2 sin (2φ)

]
exp

[
− 1

2

(
x −√2α exp (−iφ)

)2
]

⎫⎪⎪⎬⎪⎪⎭ ,

where φ is the macroscopic angle in the p − x plane between the symmetry cen-
ter of 〈x | α exp iφ〉 and the x-axis. Being coherent states, they are approximately
macroscopic and distinguishable—in the cat paradox, the dead and alive cat. The
entangled state is neither.
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12.3 Entanglements: Q bits

The state representation of modern quantum computation is the Q bit (quantum bit),
which is the two-level spin 1

2 representation of the two-level atom model already
discussed in detail in Chapter 2. We assume the reader is very familiar with this.
Now we will consider the entanglement of two such states, of atom (spin) A and
B. Consider first the direct product

|ψ〉AB = |+1〉A ⊗ |+1〉B ≡ |1, 1〉 ,
whose density matrix operator

|+1〉A |+1〉B 〈+1|A 〈+1|B = ρ AB

is pure ρ2
AB = ρ AB .

We might be interested in a complete set of maximally entangled states where
the Q bit states are |1〉 or |0〉 and the identity A, B is in the order∣∣φ±〉

AB
= 1√

2
(|00〉AB ± |11〉AB) (12.8)∣∣ψ±〉

AB
= 1√

2
(|01〉AB ± |10〉AB) .

They are not factorable, but normalized.
The first pair determines the parity, and the second the phase of the entangle-

ment. These are called Bell states (a compliment!). Yes–no information, |+1〉 , |0〉 ,
is carried in these states, but now it is hidden in the entanglement. We might oper-
ate on Q bit A with Pauli operator σ x ≡ σ 1. This is a 90o y-axis rotation and causes
the transformation of the Bell basis to∣∣φ+〉

AB
→ ∣∣ψ+〉

AB
(12.9)∣∣φ−〉

AB
→− ∣∣ψ−〉

AB
.

A product of the unitary Hadamard transformation on a single Q bit is

H = 1√
2
(σ 1 + σ 3)→ 1√

2

[
1 1

1− 1

]
, (12.10)

and what is termed Cnot, operating on two Q bits, is

Cnot =

⎛⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞⎟⎟⎠where

|00〉 → |00〉
|01〉 → |01〉
|10〉 → |11〉
|11〉 → |12〉
|12〉 → |10〉

. (12.11)
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These create Bell states from |00〉AB , |01〉AB , etc. We then have

|00〉AB
H→ 1√

2
(|0〉A + |1〉A) |0〉B Cnot→ ∣∣φ+〉

AB
(12.12)

|01〉AB
H→ 1√

2
(|0〉A + |1〉A) |1〉B Cnot→ ∣∣ψ+〉

AB

|10〉AB
H→ 1√

2
(|0〉A − |1〉A) |0〉B Cnot→ ∣∣φ−〉

AB

|11〉AB
H→ 1√

2
(|0〉A − |1〉A) |1〉B Cnot→ ∣∣ψ−〉

AB
.

Being a unitary transformation, the inverse transformation reduces the Bell states
to the factored ones. These unitary operations are commonly called gates and given
diagrammatic circuit representations, which we shall not do. The product of these
transformations is nonlocal. The H creates the two–Q bit entanglement.

As an illustration, consider the
∣∣φ+〉

AB
state. A measurement of |0〉A gives prob-

ability 1
2 . But now the B partner is in state |0〉B . Similarly, a measurement of A

in |1〉A implies B is in |1〉B . The entanglement is apparent and destroyed by the
measurement. The measurement of A and B separately exhibits 100% correlation
between the results. Further, for this state, let us form

ρ A = TrB

∣∣φ+〉
AB AB

〈
φ+

∣∣ = 1

2
IA

and also

ρB = 1

2
IB .

In the measurement of A spin along any axis at all, we obtain probability 1
2 for

|0〉A state and |1〉A also. The spin is randomly oriented. To get more information
we must use, not surprisingly, the other members of the Bell basis.

There are tests for the measured degree of entanglement (Kraus and Cirac, 2001).
For the simple case of a pure state,

|ψ〉 = α |00〉 + β |01〉 + γ |10〉 + δ |11〉 ,
the quantity concurrence c = 2 |αδ − βγ | is a measure of entanglement. If and
only if c is zero is the state separable. Maximal entanglement is c = 1. For the Bell
states, α = δ = 1√

2
, and β = γ . Thus the Bell states are entangled maximally.

Another measure of entanglement is the Schmidt number Es , which is the num-
ber of nonzero coefficients minus 1 in the bi-orthogonal expansion (Schmidt,
1907):

|ψ〉AB =
∑

k

ck

∣∣φk

〉
A

∣∣ψk

〉
B
,
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discussed by Schrödinger in his first paper. We shall discuss the properties of this
in the appendix to this chapter.

Since the Bell states represent maximum entanglement, it is important theoreti-
cally (and possibly experimentally) to consider the observation after entanglement
of these states, i.e. Bell state analysis. We will follow the discussion of Zeilinger
(1998). The first thing to observe is that only

∣∣ψ−〉
AB

is antisymmetric under
interchange, whereas

∣∣ψ+〉
AB

,
∣∣φ+〉

AB
and

∣∣φ−〉
AB

are symmetric. We must also
consider the spacial degrees of freedom |xA, xB〉, which can also be symmetric
|xA, xB〉s or antisymmetric |xAxB〉a . For a known two-boson case (two photons),
the total wave function is then ∣∣ψ−〉

AB
|xAxB〉a∣∣ψ+〉

AB
|xAxB〉s∣∣φ+〉

AB
|xAxB〉s∣∣φ−〉

AB
|xAxB〉s .

Only in scattering do we observe an antisymmetric spacial state. We then identify
the internal state as

∣∣ψ−〉
AB

. To distinguish
∣∣ψ+〉

AB
,
∣∣φ+〉

AB
and

∣∣φ−〉
AB

, we must
distinguish the internal states. In

∣∣ψ+〉
AB

, if the two Q bits have differing polariza-
tion, then

∣∣φ+〉
AB

,
∣∣φ−〉

AB
have the same polarization. If we measure σ A

3 (or σ B
3 ),

does the other state then have the same spin direction? If it does not, we are fin-
ished, but if it does, we must distinguish

∣∣φ+〉
AB

from
∣∣φ−〉

AB
. Now, as discussed,

if we find on repeated measurement that ρ A = 1
2 IA and ρB = 1

2 IB , then we have∣∣φ+〉
AB

. The other possibility would be ρ A = ρB = 0. (We will not do the Fermi
case but leave it as a problem).

All this does not imply that such a scheme may be carried out experimentally.
(However, see Boumeester and Zeilinger, 2000).

12.4 Entanglement consequences: quantum teleportation, the Bob
and Alice story

The most remarkable effect of quantum entanglements is quantum teleportation,
first suggested by Bennett and Wiesner (Bennett and Wiesner, 1992; Bennett,
1998). Quantum information may be sent with entangled states. As we have empha-
sized, the Bell entanglements hide the fundamental bits of which they are made.
It is not possible to “eavesdrop” on messages in entangled pairs. Teleportation has
recently been observed experimentally by Boumeester and Zeilinger.

There are three actors in an entanglement play: “Charlie,” “Alice” and “Bob.”
We will speak in terms of entangled photons, since this is the first experimental
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system. “Alice” wants to transmit to “Bob” an arbitrary pure state, obtained
from “Charlie,” |ψ〉C = α |1〉C + β |0〉C . “Alice” has entangled states, as
does Bob, having acquired them earlier. They have, for instance, together

1√
2
(|+1, 〉A |+1, 〉B + |0〉A |0〉B) = ∣∣φ+〉

AB
. “Alice” performs a Bell analy-

sis on the combined state |ψ〉C
∣∣φ+〉

AB
and projects this onto the Bell basis∣∣φ±〉

C A
,
∣∣ψ±〉

C A
. Two bits of classical information result in the form of a local

unitary transformation Ui j which is sent by “Alice” to “Bob.” It is, for instance,

U00 =
(

1 0
0 1

)
U01 =

(
1 0
0 −1

)
U10 =

(
0 −1
−1 0

)
U11

(
0 −1
1 0

)
.

“Bob” then looks at his photon and finds by an inverse transformation on his bit
α, β and |ψ〉C . Thus a quantum state is teleported by two bits of classical infor-
mation. To understand this, consider the Bell basis projection by “Alice” (see J.
Preskill’s clear discussion in Lecture Notes for Physics 229, California Institute of
Technology, unpublished 1998; and also Jozsa [1998]):

|ψ〉C
∣∣φ+〉

AB
= (α |0〉C + β |1〉C) 1√

2
(|00〉AB + |11〉AB)

= 1√
2
(α |000〉C AB + α |011〉C AB + β |100〉C AB + β |111〉C AB) ,

which, upon using Eq. (12.8),

= 1

2
α
(|φ+〉C A +

∣∣φ−〉
C A

) |0〉B
+ 1

2
α
(∣∣ψ+〉

C A
+ ∣∣ψ−〉

C A

) |1〉B
+ 1

2
β
(∣∣ψ+〉

C A
− ∣∣ψ−〉

C A

) |0〉B
+ 1

2
β
(∣∣φ+〉

C A
− ∣∣φ−〉

C A

) |1〉B .

Collecting these, we have the Bell state representation:

|ψ〉C
∣∣φ+〉

AB
= 1

2

∣∣φ+〉
C A (α |0〉B + β |1〉B)

+ 1

2

∣∣ψ+〉
C A (α |1〉B + β |0〉B)

+ 1

2

∣∣ψ−〉
C A (α |1〉B − β |0〉B)

+ 1

2

∣∣φ−〉
C A (α |0〉B − β |1〉B) .
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By the Bell state analysis on C A Q bits of “Alice,” “Bob” may obtain one of these
results with equal likelihood, and thus knowledge of α, β and thus |ψ〉C . At this
point no photon has been transmitted to “Bob.” “Alice’s” Bell state analysis of
|ψ〉C

∣∣φ+〉
AB

has caused “Bob” to become aware of |ψ〉C at the time of the wave
function collapse in “Alice’s” Bell state measurement. The classical information
that is then sent by “Alice” to “Bob” is which of the Bell states,

∣∣φ±〉
C A

or
∣∣ψ±〉

C A
,

was found expressed as a unitary Ui j transformation from
∣∣φ+〉

AB
. We realize that

in the measurement by “Alice,” |ψ〉C
∣∣φ+〉

AB
has been destroyed.

This is very remarkable. All that is needed is an arbitrary entangled state between
“Alice” and “Bob” created at any time in the past. Then, by a Bell state analysis
of an arbitrary state product with one of these, “Alice” (or “Bob”) may, by means
of a classical message, transmit this state precisely and instantly and over any dis-
tance to “Bob.” Efforts at teleportation are reviewed by Boumeester and Zeilinger
(2000). Why not simply transmit the original photon |ψ〉C? Eavesdropping is more
difficult, since knowledge of the classical message does not give another party the
entanglement. In addition, the quality of the message is perfect, in principle, if the
classical information is not garbled. Dense coding of the state |ψ〉C into classical
information would, at best, give

∣∣
B 〈φ | ψ〉A

∣∣2 = 2
3 .

12.5 Entanglement consequences: dense coding

Consider again the Bell states. As we have seen in Section 12.4, in order to switch
from any one of the Bell states to any of the four, one must only manipulate one
Q bit. For instance, if one begins with

∣∣ψ+〉, then the operation of a phase shift
of π on

∣∣ψ+〉
AB

, i.e. H , gives
∣∣ψ−〉 . We may also obtain

∣∣φ+〉
AB

and
∣∣φ−〉

AB
by

unitary operations on
∣∣ψ+〉

AB
. Of course, the identity operator gives back

∣∣ψ+〉
AB

.
This classical coding of one bit gives any other desired Q bit of the four. This

is more efficient than coding the two classical bits of quantum information |0〉 |1〉
and so forth. Of course, B must have a Bell state analyzer to read this. It must be
noticed that, in the past, “Alice” and “Bob” had built

∣∣ψ+〉
AB

. In an experimental
realization of this with photons, it was possible to code log2 3 = 58 bits (Mattle
et al., 1996).

12.6 Entanglement consequences: quantum computation

Here we will discuss a simple algorithm showing that a quantum algorithm for
computation is possible. This is due to Deutsch (1985). His was the first response
to the call for such an algorithm by Feynman (1959). We will not outline the more
difficult and useful factoring algorithm of Shor (1994), which is at the center of
the focus to actually construct a quantum computer. This development is not the



12.6 Entanglement consequences: quantum computation 229

subject of our present discussion. An introduction to the Shor algorithm is given
by Ekert (1998). An overview of the effort to produce the computer is in the Los
Alamos scientific report already referred to and also in the article by Deutsch and
Ekert (2000). The subject is proceeding so rapidly that any review is quickly out of
date.

The key quantum elements which are potentially advantageous over a purely
classical one are nicely outlined by Jozsa (2002). The classical computation is
based on bits (yes, no) and the computation of functions. Quantum computation
would transform vectors in a Hilbert space (Q bits in the present form) by means
of unitary transformations. There are subtle advantages to the quantum calcula-
tions. The first advantage was termed quantum parallelism by Deutsch. We need
not input only a single state |a〉 into the quantum computer U f ,

U f |a〉 → | f (a)〉 . (12.13)

We might, by the linearity of quantum mechanics (superposition), input
∑

aεA |a〉
so that

U f

∣∣∣∣∣∑
aεA

|a〉
〉
→

∑
aεA

|a〉 | f (a)〉 . (12.14)

In one operation a quantum unitary transformation has performed a parallel com-
putation. Classical linearity is also possible, but quantum mechanics is more subtle.
Eq. (12.14) may contain nonclassical entanglements. An example is the Hadamard
gate mentioned in Eq. (12.10), operating on |0〉 , |1〉 where

H |0〉 = 1√
2
(|0〉 + |1〉) (12.15)

H |1〉 = 1√
2
(|0〉 − |1〉) .

If we operate on a vector of n Q bits, |0〉 . . . |0〉, we obtain

1

2
n
2
(|0〉 + |1〉) . . . (|0〉 + |1〉) (12.16)

and take a single output state |0〉, obtaining | f 〉 with U f operation:

| f 〉 = 1

2
n
2

∑
xεAn

|x〉 | f (x)〉 . (12.17)

Our enthusiasm for the advantages of quantum calculation should be cautious,
since the quantum theory of measurement (which we will discuss in the next chap-
ter) does not allow us to know |x〉 and f (x) in the entangled state. As emphasized
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by Jozsa, the quantum information is hidden and inaccessible. Certain global prop-
erties may be obtained, and this is the art of obtaining quantum algorithms, of
which the Shor algorithm is a prime example.

Let us illustrate these comments by considering Deutsch’s algorithm. Consider
the space |0〉 , |1〉 (B) and the map f : B → B. The possible one-bit functions are

f (0) = 0 f (0) = 1 (12.18)

→
f (1) = 0 f (1) = 1

and

f (0) = 0 f (0) = 1

→
f (1) = 1 f (1) = 0.

The second group has the “balanced” property, 0, 1, which appear both in input
and output. The global object of the quantum calculation will be to determine, in
one operation, whether the result is balanced or not.

We are given an “oracle,” U f , which is an unknown and inaccessible subroutine
which computes one of Eq. (12.18), producing an output. It transforms

U f |x〉 |y〉 → |x〉 |y × f (x)〉 (12.19)

(× means addition modulus 2) .

Now we start addition with input |0〉 and output |0〉 . We apply the Cnot operation
to the output, and then H to both input and output. Recalling Cnot |0〉 = |1〉, we
have the resulting input to U f :

|0〉 |1〉 →
( |0〉 + |1〉√

2

)( |0〉 − |1〉√
2

)
≡ |ψ〉 .

The result of H is to form entangled input. Now the oracle performs its function:

U f |x〉 (|0〉 − |1〉)√
2

→ (−1) f (x) |x〉 (|0〉 − |1〉)√
2

.

Thus we obtain

U f |ψ〉 = ±
[ |0〉 + |1〉√

2

] [ |0〉 − |1〉√
2

]
for f (0) = f (1)

U f |ψ〉 = ±
[ |0〉 − |1〉√

2

] [ |0〉 − |1〉√
2

]
for f (0) �= f (1) .
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A subsequent Hadamard transformation to the input gives

HU f |ψ〉 = ± |0〉
[ |0〉 − |1〉√

2

]
for f (0) = f (1) (12.20)

HU f |ψ〉 = ± |1〉
[ |0〉 − |1〉√

2

]
for f (0) �= f (1) balanced.

In this operation the entangled output is invariant. Now we ask one question: do
we do one measurement to determine the two alternatives? The measurement of
(|0〉 − |1〉) obtaining |0〉−|1〉√

2
would mean that it is balanced. The input is left in

± |1〉 if f is balanced. This may be shown from H · H = I . Thus we use the
standard basis, not the entangled one, and look at the input to obtain the result. The
analogous classical calculation would require two measurements. Thus there is a
non-epsilon difference.

If we map instead f : Bn → B1, then the difference between a classical and
quantum calculation becomes significant. Classically there are 0 (2n) questions to
the oracle. In the quantum case, choosing |0〉 for n-dimensional input state super-
positions, we choose the output state 1√

2
(|0〉 − |1〉), and we make one query to

the oracle. The input state to U f is the same as the previous example, except a

product state is
[

1√
2
|0〉 + |1〉

]n
. Transforming the output basis back to the stan-

dard basis, we have ± |0〉 . . . |0〉 or ± |1〉 . . . |1〉 for the constant or balanced result.
The quantum algorithm requires 0 (n) steps overall. This is the main result of the
Deutsch algorithm. However, it has been shown that this difference disappears in
the presence of noise in the quantum input (see Jozsa, 1998, 2002).

The quantum calculation in entangled Q bits has hidden information. It does not
give us the elements of the oracle. For instance, in Eq. (12.20), it may tell us that we
have the balanced case but not which two of the four. Only proper global questions
are possible in the quantum calculation.

12.7 Decoherence: entanglement destruction

W. Zurek, in Physics Today, called attention to destruction of quantum correlations
as the mechanism for the appearance of classical behavior (Zurek, 1991). See also
Zurek (2003) for an extensive list of references. We have already discussed, in
Chapters 2 and 5, the simple model introduced by Walls and Milburn (1985).

Recall, for an oscillator of the field, that

H = h̄ωa+a + a+a�,

the interaction with the environment being the second term representing phase
damping. There is no energy damping, since

[
a+a, H

] = 0. The number states
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|n〉 are the so-called pointer basis, as termed by Zurek. In this eigenstate the
environment interaction leaves this unchanged.

The reduced master equation for the system is exactly

∂ρ

∂t
= λ

2

(
2a†aρa†a − ρa†aa†a − a†aa†aρ

) ; t ≥ 0. (12.21)

It is completely positive, being of the Lindblad form as discussed in Chapter 5. The
matrix elements, ρnn (t) , may be readily obtained. They are, again

ρmn (t) = exp

(
−λ

(
(n − m)2

) t

2

)
ρmn (0) (12.22)

ρ̇mm = 0.

The correlations between the number basis decay as t
τ c

where τ c = 2
λ

1
(n−m)2

,

which is more rapid than the decay of the diagonal elements which do not decay
here at all. The quadratic dependence of the “distance” off the diagonal is rather
characteristic.

Walls and Milburn also considered the damped harmonic oscillator after the
results of Agarwal (1971). The Hamiltonian is

H = h̄ωa†a +
∑

j

h̄ω j a
†
j a j (12.23)

+ h̄
∑

j

[
g ja

†
j

(
a + a†

)+ h.c.
]
.

The Wigner function equation from the Born–Markov approximation master equa-
tion was discussed in previous chapters. For this oscillator, in interaction with a
finite temperature environment, we have

∂w(p, x)

∂t
= − ∂

∂x

[ p

m
w
]
+ ∂

∂p

[(
mω2x + 2kp

)
w
]

(12.24)

+ 2mh̄ωk

(
n̄ + 1

2

)
∂2w (p, x)

∂p2
.

Here k = π f (ω) |g (ω)|2 , f (w) being the density of bath oscillators and n̄ the
non-interaction oscillator Planck distribution. This is the same result as that of
Caldeira and Leggett at high temperature (Caldeira and Leggett, 1983) choosing
the harmonic oscillator initially in a coherent state. Agarwal obtained the time-
dependent solution to the Wigner function equation. The spacial entanglement is
represented in the relation

w (xp, t) = 1

2π h̄

∫
exp

(
i py

h̄

) 〈
x − 1

2
y |ρ| x + 1

2
y

〉
dy,
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giving
〈
x − 1

2 y |ρ| x + 1
2 y

〉
by inverse transform. (See Chapter 4 for details.) It may

be shown that the high-temperature bath destroys quantum correlations and at the
final state t →∞ is〈

x − 1

2
y |ρ| x + 1

2
y

〉
= N exp

[−x2

2σ 2
x

]
exp

[
−y2

2σ 2
y

]
, (12.25)

where σ 2
x = kT

mω2 is a Gaussian mixture.
The time dependence of the entanglements (spacial correlations) is〈
x − 1

2
y |ρ (t)| x + 1

2
y

〉
= N exp

[
− [x − 〈x (t)〉]2

2σ 2
x (t)

]
exp

[
−

[
y − 〈y (t)〉]2

2σ 2
y (t)

]
,

(12.26)

where

σ 2
x =

h̄n̄

mω
(1− exp (−2kt))+ h̄

2mω
(12.27)

σ 2
y =

4n̄mω

h̄
(1− exp (2kt))+ 2mω

h̄
.

Both the Gaussian spread of the coherent state (x dependence) and the spread of
the coherence in y are seen here. For high temperature the off-diagonal correla-
tions decay as 2kT

hω (1− exp (−2kt)) . This is large for kT
hω >> 1. The width of the

diagonal spread in the coherent state also spreads by the same factor.
The difference between the off-diagonal time scale of change from that of the

diagonal elements is the center of the decoherence time discussion. Zurek (2003)
has argued, from examples and general considerations, that the master equation
solution is of the form (at high temperature and h̄ small)

ρ
(
xx ′, t

) = ρ
(
xx ′, 0

)
exp

(
−γ t

(
x − x ′

)2

λT

)
(12.28)

ρ (x, t) = ρ (x, 0) ,

where λT = h√
2mkT

is the thermal de Broglie wavelength. The main point here
is the loss of entanglement in a classical limit on a short time scale dependent
on

(
x − x ′

)2
, as we saw in the first model. Good estimates of these decay times

are very model dependent. In the above formula, for m = 1, T = 300K and
x − x ′ = 1cm, the decoherence time is 1040 faster than γ−1.

The fragile nature of entanglements, due to interaction with the environment,
raises important questions concerning the use of these entanglements in quantum
computation and other arenas. Let us take up this question for a bit (!) (Ekert et al.,
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2002). These authors have modeled a Q bit interaction with the “environment” by
means of a reversible unitary map U (t) for the environment plus Q bit:

|0〉 |E〉 U (t)

→ |0〉 |E0 (t)〉 (12.29)

|1〉 |E〉 U (t)

→ |1〉 |E1 (t)〉 .
If the initial state is entangled, then

(a0 |0〉 + a1 |1〉)⊗ |E〉 U (t)

→ a0 |0〉 |E0 (t)〉 + a1 |1〉 |E1 (t)〉 . (12.30)

Decoherence is now viewed as a result of the environmental entanglement. The
reduced Q bit density matrix is

ρQ (t) = TrEρq+E =
∣∣∣∣ |a0|2 a0a∗1 〈E1 | E0〉
a1a∗0 〈E0 | E1〉 |a1|2

∣∣∣∣ . (12.31)

We really have no idea what the time dependence of 〈E1 | E0〉 is, but it is assumed
to be exponential. Neither do we have a very good way of calculating this. Certain
practical estimates have been made which are in the range of 104 to 10−12 s. How-
ever, the authors have raised a nice question concerning how this scales with the
size of the computer. This we will now consider.

Now we model the bath as a system of harmonic oscillators in interaction with
the two-level atom. The Hamiltonian is Eq. (12.23) with 1

2σ zω0
replacing the first

term and a+a† replaced by σ z. (See Chapter 2 in this connection.) Now
[
σ z, H

] =
0, and thus the two-level atom entangled state is a pointer state. Assuming the
vacuum state of the bath to be coherent states

∣∣φk

〉
, we may obtain, similar to the

preceding discussion of the oscillator model,

|E0〉 = �k

∣∣−φk

〉
(12.32)

|E1〉 = �k

∣∣φk

〉
.

We assume short coherence length between the bath oscillators. Then for n Q bits,∣∣Ek1,k2 . . .
〉 = �n

ki=1

∣∣Eki

〉
, (12.33)

and each Q bit decays independently exponentially, as in the one–Q bit model. We
have

ρ111,..., 1; 000,..., 0 (t) = ρ111,..., 1; 000,...,0 (0) exp
(−nt)

τ c
. (12.34)

In this case the effective decoherence time scales are τ c/n. This is not unexpected.
In the opposite extreme of large oscillator coherence length, there is a collective
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decay of the Q bits, exactly as in super radiance (Nussenzweig, 1973). Then the
decay is more rapid, depending on τ c/n2.

12.8 Decoherence correction (error correction)

How may we correct for the decoherence due to the environment? It may be viewed
as a natural form of noise. From the classical point of view, we might create
an ensemble of Q bits and make use of the expected 1/

√
n standard deviation

law by using repetition. This is not a sophisticated view of error correction, but
may it be done? Error correction is an enormous subject. See the introductions to
quantum error correction of Macchiavello and Palma (2000) and of Knill et al.
(2002.) The difficulty of creating an ensemble of identical entangled states is the
no-cloning theorem (Wooters and Zurek, 1982). For the orthogonal quantum bits
|0〉A |0〉B , |1〉A |1〉B , there is a unitary transformation, U :

|0〉A |0〉B U

→ |0〉A |0〉B
|1〉A |0〉B U

→ |1〉A |1〉B .

The associated entangled state a |0〉A + b |1〉A becomes, under U,

(a |0〉A + b |1〉A) |0〉B U

→a |0〉A |0〉B + b |1〉A |1〉B .

The result is not a tensor product with the original. No unitary transformation
can copy |ψ〉 and |φ〉 if they are distinct and are not the same ray, and thus
non-orthogonal.

The strategy to avoid this theorem was discovered by Shor (1995) and has been
developed into error correction algorithms which appear practical and promising.
Other possibilities are being explored, such as working in subspaces of the Hilbert
space, for a given problem, which is identified as being nearly decoherence free.
However, error correction is more developed and universal than classical experi-
ence with noise. Zurek briefly discusses these possibilities at the end of his article
(Zurek, 2002).

To illustrate the quantum error correction routine, consider the following simple
model (Macchiavello and Palma, 2000). This is a three-Q bit model which corrects
errors on the system of interest, a single Q bit. This increase in the dimensionality
is what obviates the cloning of the single Q bit. We adopt the model of Eq. (12.29).
Due to the entanglement, there will be phase errors of the form

|0〉 → |0〉 (12.35)

|1〉 → − |1〉 .
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We choose the message code words of three entangled Q bits |w0〉, |w1〉:
|w0〉 = |000〉 + |011〉 + |101〉 + |110〉 (12.36)

|w1〉 = |111〉 + |100〉 + |010〉 + |001〉 .
Only one Q bit (any one) is taken as entangled with the environment by U. Now
linear combinations

(a0 |w0〉 + a1 |w1〉) |E〉 U

→
3∑

k=0

(a0 |w0〉k + a1 |w1〉k |Ek〉). (12.37)

The error states
∣∣w j

〉
k

being orthogonal,k
〈
w j | wl

〉
i
= δk jδ jl , j, l = 0, 1 label the

word, and k, i = 0, 1, 2, 3 label the Q bits. The Q bit 0 is no error, and 1, 2, 3 label
the error (−1) on the relevant Q bit. The |Ek〉 are the environmental states with the
associated Q bit error.

We may project the code space into the resulting error spaces identifying the
errors. From this measurement on the error space, one now corrects the error by
applying σ z to the identified Q bit. We have measured in the error space, not the
Q bit space. If i = 0, we do nothing. This iterated monitoring of |w0〉 and |w1〉
may continue without disturbing either, except to apply the appropriate σ z. This
illustrates the general case (which we will not go into, but leave it to the interested
student). A nice, complete description of error-correcting methods in the quantum
case, incorporating the classical methods, is given in the review by A. M. Steane
(1998).

How effective is quantum error correction? Much work has been done recently
with the perfection of threshold theorems (see Knill et al., 2002). What are the pos-
sible tolerated error rates? This is of the order of 10−4 per computational step. For
reviews of fault tolerant computation, see the book of Nielsen and Chuang (2000).
It is a rather complete introduction to most of these topics. (See also Preskill’s
Lecture Notes for Physics 229, cited in Section 12.4 and available on the Internet:
www.theory.caltech.edu/∼preskill/ph219/topological.pdf).

Appendix 12A: entanglement and the Schmidt decomposition

In his fundamental introduction of entanglements, Schrödinger (1935a and 1935b)
was apparently not aware of the potential mathematical basis due to Schmidt
(1907). This is used in modern discussions of entanglements, and we will review it
here.

Let HA and HB be Hilbert spaces with corresponding complete orthonormal
basis, |i〉A , | j〉B . The joint Hilbert space HA ⊗ HB is |i〉A | j〉B . The state of the
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combined system is

ψ AB =
∑

i j

ci j |i〉A | j〉B . (12A.1)

We assume further ∑
i j

∣∣ci j

∣∣2 = 1. (12A.2)

If |ψ〉AB is not a direct product state |ψ〉A ⊗ |ψ〉B , it is said to be entangled. The
condition is obviously

ci j = cA
i cB

j . (12A.3)

Going further, we introduce the reduced density matrix ρ A. As in Chapter 2,

〈0〉A = TrA(TrB |ψ〉AB AB 〈ψ | 0A)

= TrAρ A0A,

where for pure states,

ρ A = TrB |ψ〉AB AB 〈ψ | . (12A.4)

It is obvious that the product condition is true for pure states and

ρ2
A = ρ A. (12A.5)

As we know from Chapter 2, the inverse also is true.
Now let

∣∣φi

〉
A

be an eigenstate of ρ A. We write

|ψ〉AB =
∑

i j

ci j

∣∣φi

〉
A
〈 j |B , (12A.6)

and introducing the state ∑
j

si j | j〉B ≡
∣∣χ i

〉
B
, (12A.7)

∣∣χ i

〉
B

may be orthonormal. We have then

|ψ〉AB =
∑

i

di

∣∣φi

〉
A

∣∣χ i

〉
B
. (12A.8)

di may be positive. This is a product representation of the entangled state |ψ〉AB ,

Eq. (12A.1) of Schrödinger’s discussion.
From Eq. (12A.8) entanglement is now apparent. Measurement of a single state∣∣χ i

〉
B

with certainty implies A is in state
∣∣φi

〉
A

with probability one, and the result-
ing |ψ〉AB is, on measurement, a product. Alternatively, if the measurement is not
with certainty, then terms in Eq. (12A.8) are a succession of

∣∣φi

〉
A

and are obtained
with probability |di |2. |ψ〉AB is now a mixture, and the entanglement is again
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removed. It is classical. The measurement
∣∣χ i

〉
B

may be done anytime, anywhere.
The mixture is not unique, as discussed in Chapter 2.

The spacial Schrödinger dependence is quickly obtained in the |x〉A |y〉B basis.
Now the nonlocality of the results is seen, as has already been discussed in this
chapter. This representation, Eq. (12A.8), and subsequent discussion are due, in
physics, to Schrödinger.
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13

Quantum measurement and irreversibility

13.1 Introduction

In the light of the preceding chapter, putting quantum measurement in some per-
spective is inescapable. This topic was begun by von Neumann (1955). We will see
that the discussions in Chapter 12 of the consequences of entanglement take a very
simplistic point of view, possibly leaving out important time scales.

To set the stage, let us first review what the postulates of quantum mechanics
are, but not too mathematically rigorously:

1. The physical states |ψ〉 of a system are associated with a Hilbert space H of normal-
ized vectors. Physical observables, Ô , are represented by these self-adjoint operators
in H. The results of a measurement of Ô are the eigenvalues

Ô |an〉 = an |an〉 , (13.1)

assumed discrete and nondegenerate, for simplicity. an are real, and |an〉 normed and
complete.

2. The time development of the state |ψ (t)〉 for the isolated system is given by the linear
Schrödinger equation

i h̄
d

dt
|ψ (t)〉 = Ĥ |ψ (t)〉 . (13.2)

Ĥ is the Hamiltonian operator in H. This is a reversible dynamic, as we emphasized
in Chapter 5.

3. The probability of measuring an at time t is

P (an) = | 〈an|ψ |(t)〉 |2 . (13.3)

4.∗∗ The effect of measurement on the system is a reduction of the state vector from |ψ (t)〉
to |an〉:

(before measurement) |ψ (t)〉 → |an〉 (after measurement). (13.4)

240
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This is a new dynamics. It is not often stated clearly nor agreed upon. Some do not
even accept this as a postulate or problem.

The preceding outline may also be described in terms of the density operator, ρ :
1′. Assume the trace class, trace one, semipositive definite density operator

ρ =
∑

i

Pi
∣∣ψ i

〉 〈
ψ i

∣∣ . (13.5)

Pi = Ni
N

is the weighting of state
∣∣ψ i

〉
in the ensemble N. As discussed in Chapter

2, we have either

ρ2 = ρ pure state (13.6)

or ρ2 �= ρ mixture (entanglements!).

2′. The time evolution of ρ (t) is given by the linear reversible von Neumann equation

i h̄dρ (t)

dt
=

[
Ĥ , ρ (t)

]
−∞ ≤ t ≤ ∞, (13.7)

Ĥ being the Hamiltonian operator in the commutator.
3′. The probability at time t of measuring |an〉 is

P [t, an] = TrPnρ (t) (13.8)

where

Pn = |an〉 〈an| .
4′**. The measurement transforms ρ

(before measurement) ρ → PnρPn

Tr [PnρPn]
(after measurement) . (13.9)

This transformation leads to the wave packet reduction.

13.2 Ideal quantum measurement

Let us consider the ideal measurement of von Neumann, which leads to the so-
called measurement problem. A deep and clear exposition is given by d’Espagnat
(1971).

We must introduce the state of the operator that physically does the measure-
ment. Call the state |A〉. It is macroscopic. There are possibly other degrees of
freedom, called the environment or “rest of the universe.” For the time being, we
will ignore these degrees of freedom. The apparatus may be viewed as a “pointer”
on the real line. Thus,

A |x〉 = x |x〉 ; 0 < x ≤ ∞.
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This is, possibly, a position or a photographic plate. The state of the system plus the
macro apparatus is then, initially, before measurement, |A〉⊗|a〉. Now, to make the
apparatus useful, we must correlate by means of repetitive separate measurement
the apparatus value with an. The process is ideal, and we ignore errors due to noise
(classical!) and back reaction. These may be taken into account (see Bassi and
Ghirardi, 2003; also Wigner, 1963; Margenau and Park, 1967).

Many examples of quantum measurement are treated by D. Bohm in his
prophetic book (Bohm, 1951). We urge the student not to leave this unread. For
instance, he emphasizes that classical measurements may be made arbitrarily weak,
whose errors may be corrected for by classical dynamics. However, quantum errors
cannot be so simply discussed. See the error correction discussion of the previous
chapter.

Now, once the perfect correlations between the apparatus and the system
have been made, we may dispense with the system coordinates. Measurement
is a recording of the apparatus coordinates. The total Hamiltonian of system,
plus apparatus with interaction, governs the measurement with the associated
Schrödinger equation. We find that

|an〉 ⊗ |A0〉 U (t)

→ |an〉 ⊗ |An〉 . (13.10)

The macro |An〉 implies the system state |an〉, which has not changed in the
reversible measurement. There is no trouble with a complete set of commuting
observables, which may be similarly treated. Now, what if the initial system state
is entangled?

|a〉 = 1√
2
(|an〉 + |al〉) .

The analysis now becomes

|a〉 ⊗ |A0〉 → 1√
2

[|an〉 ⊗ |An〉 + |al〉 ⊗ |Al〉] . (13.11)

The macroscopic pointer must read two separate distinct values. That is an absur-
dity. This necessitates the idea of a “collapse” where the reading is |An〉 or |Al〉,
not each with probability of 1/2. But what is the mechanism or dynamics of such a
“collapse”? This is the problem.

As pointed out by von Neumann, the argument may be carried further in a
hierarchical fashion. At a first stage we measure

|an〉 ⊗ |A0〉 → |an〉 ⊗ |An〉 .
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Next, instrument A interacts with macroscopic instrument B,

|An〉 |B0〉 → |An〉 |Bn〉 ,
and also B with C,

|Bn〉 |C0〉 → |Bn〉 |Cn〉 , etc.

The correlation is transferred through a succession of macroscopic measuring
instruments. The argument with entangled states may also be made successively.
We may imagine A, B,C, D etc. to be a succession of larger (more complex)
macro systems in use by the experimenter, such as a developed image, photo plate,
scanner, computer. All these then contain the information |an〉. When the hierarchy
is terminated, by definition the measurement has occurred. Is this satisfactory?

These considerations have led to an enormous body of debate ranging from
“there is no problem!” to “hidden variables,” the “many universe” interpretation,
etc. We will not review these. Bassi and Ghirardi have given a compact recent
review, with many references, as well as a helpful road map through the interest-
ing jungle as an introduction to their personal contributions. To a large extent the
contributions to the measurement problem are an effort to modify and enlarge on
the above rules of quantum mechanics and in a sense to create a “new quantum
mechanics.”

13.3 Irreversibility: measurement master equations

The suggestion that irreversibility plays a key role goes back in time to Szilard
(1929) and von Neumann, whose work caused von Neumann to contend that it was
impossible to formulate a consistent theory of measurement without reference to
human consciousness. Thus the above hierarchy is broken (see Jammer, 1974). The
collapse of the wave function appears analogous to the Stosszahlansatz of Boltz-
mann (see Chapter 6). Jordan (1949) asserted that an element of the wave function
collapse was irreversible, as in “thermodynamical” statistics. Misra, Prigogine and
Courbage have pointed out that the general entropy principle would lead conceptu-
ally to a solution of the measurement issue, although it was not carried out in detail
(Misra et al., 1979).

The system, plus macro measuring devices, is inescapably in interaction with
the environment and thus represents an open system, the subject of our book. Open
system dynamics is irreversible, at least in reasonable approximation, governed by
master equations of the type already discussed in many early chapters. An alter-
native generalization has been made by Ludwig (1953) in his attempt to create a
new Hilbert space formalism to properly define macro observables consistent with
quantum mechanics and the classical world. The idea was to consider the apparatus
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variables as in a metastable state evolving under a perturbation by the small system
to a stable state. A cloud chamber is a system illustrating this. N. G.Van Kampen
(1962) coarse-grained the Hilbert space, introducing coarse-grained macro quan-
tum observables and derived by qualitative argument the Pauli equation governing
the coarse-grained irreversible dynamics.

The subsequent work of the Trieste school is summarized in the long recent
review of Bassi and Ghirardi (2003). They term this approach dynamic reduc-
tion. It introduces, in place of the Schrödinger equation, a nonlinear stochastic
modification. A spontaneous localization is achieved continuously on the parti-
cle coordinates. The resulting master equation is a semi-group equation of the
Lindblad form. For a single particle it is

dρ

dt
= −i

h̄
[H1ρ (t)]− λ (ρ (t)− T [ρ (t)]) ,

where

T [ρ (t)] =
√

α

π

∫ +∞

−∞
dx exp

(−α

2
(q − x)2

)
ρ exp

α

2
(q − x)2 .

In between the localization disturbance, the system evolution has the Schrödinger
form. The spontaneous hitting of the particle is Poissonian, having a probability
λdt of occurrence in dt . This spontaneous localization is in a sense ad hoc. To
maintain quantum mechanics on a micro scale, they choose λ

micro
= 10−16 sec−1 .

The localization distance is 1/
√
α taken as 10−5 cm. Consider a macroscopic

entangled state ψ = ψ1 + ψ2 at position “1” and “2,” a distance larger than
1/
√
α. The spontaneous localization transforms ψ into a statistical mixture of

ψ1 and ψ2.

We will not adopt this approach now in this chapter, but rather, first, take an
alternative viewpoint called environment-induced superselection, which restricts
the class of observables by means of the interaction of the system plus pointer with
the environment. This is the open system master equation approach to measurement
strongly argued by Zurek (Dineri et al., 1962; Jauch, 1964; Zurek, 1991). Emphasis
on the open system master equation approach will allow us to treat a simple model
in detail, illustrating the point of view due to Walls (Walls et al., 1985; see also
Walls and Milburn, 1994). Many of the things now discussed were also covered in
the section on decoherence in Chapter 12.

The ambiguity as to which pointer state the macro measuring device is in may be
noted in a different fashion from Eq. (13.11). If the system is initially in the state
|ψ〉 =∑

i ci |ai 〉, then on measurement,

|ψ〉 ⊗ |A0〉 →
∑

i

ci |Ai 〉 ⊗ |ai 〉 . (13.12)
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The reduced density matrix of the system is the mixture

ρs =
∑

i

| c2
i | |ai 〉 〈ai | . (13.13)

However, this is not unique. The complete meter basis may be transformed,
assuming the meter states are complete, as

|Ai 〉 =
∑

j

〈
Bj | Ai

〉 ∣∣Bj

〉
. (13.14)

Then Eq. (13.12) becomes∑
i

ci |Ai 〉 ⊗ |ai 〉 =
∑

j

d j

∣∣Bj
〉⊗ ∣∣b j

〉
, (13.15)

where

d j

∣∣b j

〉 =∑
k

ck

〈
Bj | A j

〉 ∣∣a j

〉
. (13.16)

Are we measuring
∑

j d j

∣∣b j

〉
or

∑
j c j

∣∣a j

〉
? We have

ρs =
∑

j

∣∣d j

∣∣2 ∣∣d j
〉 〈

d j

∣∣ . (13.17)

The mixture may be made unique if there is selection by the environment of a
preferred basis. Call it the pointer basis. We choose that basis for which[

Ô, HA + HAE

]
= 0. (13.18)

Ô is that special class of observables for which Eq. (13.18) holds. HAE is the
apparatus–environmental interaction, HE the environment Hamiltonian, and EE

its energy. For a large environment (a thermal bath, for instance) for small systems,

we have approximately
[
Ô (t) , HA + HE

]
= 0. Eq. (13.18) ensures no “back

reaction” between the macro apparatus and the environment. The state |A, E〉 is
macro in nature, and

(HA + HE) |A, E〉 = (EA + EE) |A, E〉 (13.19)

are then the diagonal representation of Ô . Approximately, these Ô (t) are constant
and unchanging, even with the apparatus–environment interaction. The |AE〉 are
the pointer basis. Zurek (1982) has given a long discussion of the pointer basis.
By introducing the environment, we are no longer dealing with the reversible
Schrödinger equation but rather with irreversible master equations for open sys-
tems. The time scales have already been discussed in Chapters 3, 4, 5, 6 and 11. By
a selection rule, the so-called quantum measurement problem is answered. How-
ever, it is not clear how the macro nature of |A〉 appears in this approach, nor are the
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time scales of the measurement very explicit. To see this, we must turn to another
model.

13.4 An open system master equation model for measurement

We have already discussed the first model in Chapter 2. We take the apparatus
to be a harmonic oscillator and the interaction with the environment to be of the
phase-damping form

HAE = b†b�. (13.20)

The oscillator energy is conserved, but the phase is changed by E . The density
operator for the apparatus obeys the irreversible master equation

dρ

dt
= γ

2

[
2b†bρb†b − (

b†b
)2

ρ − ρ
(
b†b

)2
]
. (13.21)

It is of the Lindblad form, as already noted in Chapter 6. In the energy eigenstate
|n〉, we had

ρmn (t) = exp
(−γ (m − n)2 t

)
ρmn (0) (13.22)

ρmn (t) = ρmn (0) .

The off-diagonal apparatus correlations rapidly decay. The macro observable b†b
obeys [

b†b, HAE
] = 0 (13.23)

and is the pointer operator O . |n〉 are the pointer states, now macroscopic. The
interaction of the apparatus with the general system may be used to correlate |n〉
with the system states |a〉, thus performing the measurement.

This is a general model being restricted by the form of Eq. (13.21). The states |n〉
may be taken to be coherent states |α〉. Thus, in an appropriate limit, the apparatus
becomes apparently classical. The apparatus correlations have decayed rapidly on
a time scale (γ )−1. This is the collapse time scale and the apparatus decoherence
time scale. Thus we see, implicit in the measurements discussed in the previous
chapter, that there are apparatus–environmental time scales. The effect of this is
not clearly seen in such discussions.

Another model which illustrates this in more detail is the following: assume the
apparatus is a harmonic oscillator in interaction with a system harmonic oscillator
with the Hamiltonian

HS A = h̄

2
a†a

(
bE∗ + b†E

)
. (13.24)
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b†, b are, as before, the apparatus operators, and E a classical driving field. The
apparatus is coupled to the environment by a more realistic interaction:

HAE = b�† + b†�. (13.25)

Now we will find that b†b is an approximate pointer operator.
The system plus apparatus master equation is

dρ

dt
= 1

2

[(
Eb† − E∗b

)
a†a, ρ

]
(13.26)

+ γ

2

(
2bρb† − b†bρ − ρb†b

)
.

We assume the environment is at zero temperature and take

ρ (0) =
∑
nm

ρnm |n〉 〈m| ⊗ |0〉 〈0| , (13.27)

the apparatus being in the ground state |0〉 〈0|, and ρnm ≡ 〈n| ρS (0) |m〉 .
To solve Eq. (13.26), Walls (Walls et al., 1985) utilized the characteristic

function transformation

χnm (t) = Tr
[
exp

(
λb† − λ∗b

)
ρnm (t)

]
(13.28)

with

χnm (0) =
∑
αβ

Nnm (αβ) exp

(
−1

2
|λ|2 + λβ∗ − λ∗α

)
.

Obtaining the partial differential equation for χmn (λ, t) ,

∂χmn

∂t
(t) = γ

2

⎧⎨⎩ − |λ|2 − 1
2 (n + m)

[
E
γ
λ∗ − E∗

γ
λ
]

−
[
λ− (n − m) E

γ

]
∂
∂λ
− [

λ∗ − (n − m) E∗
λ∗

]
∂

∂λ∗

⎫⎬⎭χmn (t) .

(13.29)
We leave it as a problem for the student to solve this and show that

ρ (t) =
∑
nm

ρnm exp

{ |E |2
γ 2

(n − m)2

[
1− γ t

2
− exp

(−γ t

2

)]}
(13.30)

× |n〉 〈m| |
S
⊗|αn (t)〉 〈αm (t)|
〈αm (t) | αn (t)〉 |A,

where the time-dependent apparatus coherent states are

|αn (t)〉 = En

γ

(
1− exp

(−γ t

2

))
. (13.31)
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From Eq. (13.21) we see that the apparatus irreversibly decays rapidly on a time
scale

(
γ

2

)−1
and goes to the coherent state, the pointer basis. The amplification

in the “meter” reading is seen in the classical magnitude of the field E . Being
a coherent state, this is approximately classical macroscopic for large amplitudes
and is orthogonal.

Consider now the solution, Eq. (13.30). The master equation is not valid at short
time, as we have discussed in earlier chapters. The t dependence is not physical.
For sufficiently long time then,

ρ →
∑
nm

exp

[(
E2

γ 2
(n − m)2

)(
1− γ t

2

)]
|n〉 〈m| |

S
⊗ |αn〉

〈
γ m

∣∣ |
A

→ 0 n �= m

→ |n〉 〈n|s ⊗ |αn〉 〈αn|A n = m (13.32)

if γ t
2 " 1 and the decoherence of the off diagonal elements is of the form

exp −E2

2γ (n − m)2 t . Thus the intensity of the classical field amplifies the deco-
herence rate. Eq. (13.32) is a statement of the wave function collapse naturally
appearing in the solution. It is not an ad hoc postulate here but appears as a result
of the irreversible open system dynamics governed by a master equation. Of course,
the solution depends on a particular model, but the qualitative suggestion is general.

13.5 Stochastic energy based collapse

In the previous section we have discussed some of the historical development of
ideas related to the process by which a linear superposition of wave functions
makes a transition to a mixture of pure states, for which each is defined by an
eigenvalue of some self-adjoint operator characterizing the outcome of a measure-
ment process. As we have explained, one might think that there is no problem, since
the experimental consequences of the quantum theory, well verified, are consistent
with the computation of the probability of some outcome according to the absolute
square scalar product of the initial wave function with the wave function of the final
state sought by the apparatus. This leaves open, however, the question of how this
transition takes place, and that is the subject of many discussions that have appeared
in the literature. It is clear that the mechanism for this reduction—or collapse, as
it is sometimes called—of the wave function cannot be generated by the linear
action of a one-parameter unitary group such as the action of the normal evolution
through the ordinary Schrödinger equation. Jauch (1968) has discussed carefully
three apparent paradoxes that illustrate the philosophical difficulties involved in
the reduction process (Schrödinger, 1935; Einstein et al., 1935; Wigner, 1962),
all of which involve the destruction of coherence in the construction of the linear
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superposition of wave functions. Thus, the application of possible mechanisms of
disturbance, such as interaction with a random environment, provides an effective
way of looking at these difficulties, as we have discussed above. These mech-
anisms, however, are generally called upon to accomplish this task without a
complete specification of their nature and without accounting for their apparent
universality. In recent years, a mechanism has been introduced which is both uni-
versal and mathematically clear and rigorous, and which can therefore bear careful
investigation to the extent of model building within the framework of known phys-
ical theory. We shall discuss here some further details of this mechanism, which
we shall call stochastic reduction, referred to in Section 13.3.

The basic structure of this mechanism seems to have been first introduced by
Gisin (1984) and Diósi (1988) and was brought to a level that has been useful for
detailed calculations by Ghirardi, Pearle and Rimini (Ghirardi et al., 1990) and
Hughston (1996). Much of the large literature that has developed is recorded and
referred to in the work of Bassi and Ghirardi (2003) and in the book of Adler
(2004), which embeds the idea into a framework provided by a new form of
the dynamics of quantum field theory. This last is an interesting example of the
deeper investigations of the underlying physical processes that can now be carried
out given this relatively recently developed, well-defined, structural model, and
illustrates its connection with statistical mechanics in a fundamental way.

To describe this model, we write an extended Schrödinger equation in the form

d |ψ (t)〉 = −i H |ψ (t)〉 dt − σ 2

8
(H − Ht)

2 |ψ (t)〉 dt (13.33)

+ σ

2
(H − Ht) |ψ (t)〉 dW (t) ,

where Ht = < ψ (t) |H |ψ (t) >, σ is a parameter characterizing the reduc-
tion time scale, and W (t) is a standard Wiener process describing Brownian
fluctuations, satisfying the relation

dW (t)2 = dt. (13.34)

The first term on the right side of Eq. (13.33) corresponds to the usual Schrödinger
evolution, and the last is a stochastic contribution to the evolution law; both the
second and last terms are nonlinear, since they depend, through the expectation
value, on the state |ψ (t)〉 itself.

Using the rules of the Itô calculus, based on Eq. (13.34), it is straightforward to
prove that the evolution law Eq. (13.33) preserves the norm of the wave function,
which we take to be unity (Itô, 1950; see Malliavin, 1997, for a discussion of
properties and applications of these techniques). At this point the student might
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jump ahead and consider Section 14.2 of the following chapter for the derivation
of the quantum Langevin equation.

In Eq. (13.33) one applies the idea to the wave function of a quantum state.
It is this Brownian motion (Einstein, 1926; van Kampen, 1983) which represents
the fluctuations that may be induced by quantum fields or an “environment” and
supplies a mathematically rigorous basis for calculations as well as posing, in a
well-defined framework, deep physical questions for further investigation.

The stochastic variable dW has the property that its expected value E [dW (t)]
under the Brownian distribution is zero. Making use of the Itô calculus, one sees
that the expectation value of H is given by

Ht = Ht=0 + σ

∫ t

0
dW (s) Vs, (13.35)

where

Vt = 〈ψ (t)| (H − Ht)
2 |ψ (t)〉 (13.36)

is the variance of the energy in the state |ψ (t)〉. The expected value of Ht , under
the stochastic distribution E [Ht ], is therefore conserved (Hughston, 1996).

Furthermore, using the Itô calculas again, one easily finds that

dVt = −σ 2V 2
t dtσβ t dW (t) , (13.37)

where β = 〈ψ (t)| (H − Ht)
3 |ψ (t)〉 is the third moment of the deviation of H ,

and that therefore (Hughston, 1996; Ghirardi et al., 1990; Adler and Horwitz, 2000,
2003)

E [Vt ] = E [Vt=0]− σ 2
∫ t

0
dsE [Vs]

2 . (13.38)

This is the essential result of the stochastic reduction theory. Since E [Vt ] must be
positive, the integral must converge as t → ∞, and therefore E [Vt ] → 0. The
physical state, therefore, approaches a state in which the dispersion of the Hamil-
tonian operator goes to zero, and hence it must be an eigenstate (Hughston, 1996)
(for the nondegenerate case). We have therefore described a process in which the
system starts in some arbitrary state of the system, for example, a linear super-
position of energy eigenstates, and under the evolution Eq. (13.33) it necessarily
goes over to an eigenstate. It was shown in Ghirardi et al. (1990; Hughston (1996);
and Adler and Horwitz, 2003) that the probabilities for convergence to each of
the eigenstates obeys the Born rule, i.e. they are equal to the squared modulus of
the scalar product of the initial state with the corresponding eigenstate. The col-
lapse mechanism described by Eq. (13.33) is therefore consistent with the required
results of the quantum theory.
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It is clear that during this process of collapse, the initial pure state goes over to
a density matrix, since the outcome is a mixture of pure states with a priori proba-
bilities, given by the Born rule, i.e. one finds one or the other of the final states, not
a linear superposition. In fact, under the stochastic expectation, the pure density
matrix obtained by the direct product |ψ (t)〉 〈ψ (t)| becomes a state which, under
stochastic expectation (all terms linear in dW (t) vanish), evolves under the Lind-
blad equation, of the type we have discussed above, with well-defined coefficients
(Ghirardi et al., 1990; Adler and Horwitz, 2003; Adler, 2004).

For the collapse of a system of two spins in a spin zero state, involving a linear
superposition of up–down and down–up states to the experimentally detected up–
down state, as occurs in the E.P.R. experiment (Silman et al., 2008), it was found
that the nonlinear structure of the evolution law accounts for correlation between
measurements, even though the model for the Hamiltonian is a simple sum.

It appears that there will be interesting physics in the further exploration of the
methods of stochastic reduction of the type described here.
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14

Quantum Langevin equation and quantum
Brownian motion

14.1 Introduction

We will now consider a continuation of the topic of quantum reservoir damping
begun with the master equation description of Chapter 3 and continued in the chap-
ter on quantum optics, Chapter 10. The Heisenberg equation approach, utilizing
the Langevin equation type description, will contain elements of approximations
already made in those chapters.

The operator Langevin equation description is interesting in that it sheds new
light on the physical elements of the discussion, if not new results. We could have
derived the Langevin equation from the previous results, but it is profitable to start
from the beginning in the Heisenberg quantum description. Haken, in his detailed
theory of the laser (Haken, 1984), adopted this point of view. Senitzky (1960)
early discussed the quantum damped harmonic oscillator. Many of the elements
of this are quite general. It is an interesting paper to be read profitably by the
student.

The classical Brownian motion equation,

dv
dt
= −γ v+ F (t)+ � (t) (14.1)

≡ a (x, t)+ b (x, t) ζ (t) ,

is Newton’s second law with damping, −γ v. F (t) is an external driving force,
and � (t) a classical random stochastic force. See Gardiner (1983) and Wax
(1954) for the original Ornstein–Uhlenbeck theory. v (t) is a random variable
also assuming the Markov property for continuous in time random processes.
Examining

v (t) =
∫ t

0
dt ′ζ (t) , (14.2)

253
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it may be shown that the average, over the ensemble of random processes, is

〈v (t +�t)− v0〉 = 0〈
[v (t +�t)− v0]

2
〉 = �t.

We assume that ∫ t

0
ζ
(
t ′
)

dt ′ = W (t) (14.3)

or dW (t) = ζ (t) dt

is a Wiener random process called Brownian motion in one dimension with

〈W (t)〉 = W0 (14.4)〈
[Wi (t)−W0i ]

[
Wj (t)−W0 j

]〉 = (t − t0) δi j .

Eq. (14.4) indicates that the sample paths are highly irregular. They are, in addition,
nondifferentiable, although W (t) is continuous. Examining the solution for X (t),
we have

x (t)− x (0) =
∫ t

0
a (x, s) ds +

∫ t

0
b (x (s) , s) dW (s) . (14.5)

This is a stochastic Stieltjes integral over the sample path W (t). It is the source
of much discussion and the origin of the Itô stochastic integral, and also that
of Stratonovich (see Gardiner, 1983). These interpretations also appear in the
quantum case, to be discussed here.

Markov assumptions lead to the property for the classical stochastic forces,〈
�i (t) , � j (t0)

〉 = Gi jδ (t − t0) . (14.6)

The important point, in the quantum case, is that there are additional conditions to
be applied to the random operator “forces.”

14.2 Quantum Langevin equation

We will, largely, follow the paper of Gardiner and Collett (1985). Let us consider
the idealized Hamiltonian

H = HS + HSB + HB, (14.7)

where the reservoir HB = h̄
∫

dωωb† (ω) b (ω) is a system of bosons[
b (ω) , b†

(
ω′

)] = δ
(
ω − ω′

)
and the interaction with the system HS is taken as

HSB = i h̄
∫ +∞

−∞
dωK (ω)

[
b† (ω) c − c†b (ω)

]
. (14.8)
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c is a system interaction operator left rather general. HS need not be specified any
further now. Two things should be said: (a) the rotating wave approximation is
implicit in the simple choice of HSB (note Chapter 10); and (b) the integral on ω is
taken to−∞ and will lead to δ

(
t − t ′

)
. These assumptions facilitate the treatment.

As in Chapter 2, we may obtain the Heisenberg equations for an operator of the
system and also of b. They are immediately

ḃ (ω, t) = −ib (ω, t)+ K (ω) c (ω, t) (14.9)

and

ȧ (t) = −i

h̄
[a, HS]+

∫ +∞

−∞
dωK (ω)

{
b† (ω, t) [a, c]− [

a, c†
]

b (ω, t)
}
. (14.10)

We may formally solve Eq. (14.9) for b (ω, t):

b (ω, t) = exp (−iω (t − t0)) b0 (ω)+K (ω)

∫ t

t0

(−iω (t − τ))c (τ ) dτ) t ≥ t0,

(14.11)

where b0 (0) = b
(
t − t ′ = 0

)
. We use it to eliminate b (ω) on the right side of

Eq. (14.10), obtaining closed non-Markovian equations for operator a (t) of the
system:

ȧ = −i

h̄
[a, HS]+

∫ +∞

−∞
dωK (ω)

{
exp (iω (t − t0)) b†

0 (ω) [a, c]

− [
a, c†

]
exp (−iω (t − t0)) b0 (ω)

}
(14.12)

+
∫ +∞

−∞
dωK 2 (ω)

∫ t

t0

dτ

{
exp (iω (t − τ )) c† (τ ) [a, c]

− [
a, c†

]
exp (−iω (t − τ )) c (τ )

}
.

In our discussion of spontaneous emission in Chapter 10, the second term gave
the fluctuations, and the third the radiation reaction. There, an important point
was the necessity of adopting an ordering in system and reservoir operators and
maintaining it.

Recall here the derivation of the generalized master equation in Chapter 3. Note,
in principle, that the commutation laws of a and c are known. Now we make
the equivalent assumption to the Born–Markov approximation of Chapter 3. (The
derivation of the Pauli equation was discussed there.) We have K 2 (ω) = γ /2π ,
where the memory function in the resulting equation is 2γ δ (t). Eq. (14.12)
becomes

ȧ = −1

h̄
[a, HS]−

⎧⎨⎩
[
a, c†

] [
γ

2 c −√γ bin (t)
]

−
[
γ

2 c† +√γ b†
in (t)

]
[a, c]

⎫⎬⎭ t > t0, (14.13)

where

bin (t) ≡ 1√
2π

∫ +∞

−∞
dω exp (−iω (t − t0)) b0 (ω) .
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We have not included any explicit external time dependence. For the harmonic
oscillator system c → a,

ȧ = −iω0a − γ

2
a −√γ bin (t) ; t > t0. (14.14)

We may call the last term the fluctuating operator force F (t) = −√γ bin (t). We
note that the condition t ≥ t0 appears on the formal integration of Eq. (14.11), just
as in the generalized master equation of Chapter 3, also discussed in Chapter 5.
The Langevin equation is irreversible.

There is a time reversed Langevin equation which is obtained by the replacement
√
γ →√

γ
γ c

2
→−γ c

2
(14.15)

bin → bout ,

where

bout = 1√
2π

∫ +∞

−∞
dω exp

(−iω
(
t − t ′

))
b1 (ω) .

We have

bout (t)− bin (t) = √γ c (t) . (14.16)

The time dependent commutation laws are[
a (t) , bin

(
t ′
)] = −θ

(
t − t ′

)√
γ
[
a (t) , c

(
t ′
)]

(14.17)[
a (t) , bout

(
t ′
)] = θ

(
t − t ′

) [
a (t) , c

(
t ′
)]

,

θ being the Heaviside function reflecting the semi-group behavior of the forward
and backward equations.

We have not yet characterized the noise structure of the bath dynamics. There
is already a noise in bin (t), since there are vacuum fluctuations having effects in
spontaneous emission and in the Lamb shift. These are not yet stochastic equations
in the classical sense. Let us now define a quantum Wiener process. Let, for the
operators,

B (t, t0) =
∫ t

t0

bin
(
t ′
)

dt ′ (a Heisenberg operator) (14.18)

for an ensemble of operator inputs. This is a natural generalization of the c-number
W (t). Two ensemble averages are〈

B† (t, t0) B (t, t0)
〉 = N̄ (t − t0) (14.19)〈

B (t, t0) B† (t, t0)
〉 = (

N̄ + 1
)
(t − t0) ,



14.2 Quantum Langevin equation 257

and the commutator is [
B (t, t0) , B† (t, t0)

] = t − t0,

where N̄ = 1
(exp K−1) for B (t, t0) quantum Gaussian where

ρ (t, t0) = (1− exp (−K )) exp

{
K̄ B† (t t0) B (t t0)

t − t0

}
.

We may make a further idealization to quantum white noise. The input assumption
is then 〈

b†
0 (ω) b0

(
ω′

)〉 = N̄δ
(
ω − ω′

)
,

and thus 〈
b†

in

(
t ′
)

bin (t)
〉
= N̄δ

(
t − t ′

)
, (14.20)

in which N̄ is constant.
For a two-level atom ω0 in interaction with thermal radiation in weak coupling,

one obtains in the continuum approximation〈
E (t) E

(
t ′
)〉 = h̄

π

∫ +∞

−∞
dω

(
−ω + ω coth

(
h̄ω

kT

))
exp iω

(
t − t ′

)
.

Assuming a resonance interaction at ±ω0, the integrand is removed and evaluated
at these points. We have δ

(
t − t ′

)
. This gives the white noise result, approximately,

in a narrow range of ω0.
If we integrate the white noise force correlation function, in the case of a (t)

being that of the harmonic oscillator in Eq. (14.14), F = −γ Bin (t), we obtain

γ = N̄−1
∫ +∞

−∞
dt

〈
F† (t) F (0)

〉
. (14.21)

This is the quantum fluctuation dissipation theorem relating γ to the dissipative
force fluctuation. We may carry this further. We write, for a general ai ,

ȧi = Di (t)+ Fi (t) , (14.22)

and 〈
Fi

(
t ′
)

Fj (t)
〉 = 2

〈
Di j

〉
δ
(
t ′ − t

)
.

One may show, by expansion around t = 0,〈
ai (t) Fj (t)

〉 = 1

2

∫ +∞

−∞
dt ′

〈
Fi

(
t ′
)

Fj (t)
〉 = 〈

Di j

〉
(14.23)
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because of causality and assuming the noise to be stationary in time. Utilizing〈
Fi (t) a j (t)

〉 = 〈
Di j

〉
, we obtain from Eq. (14.22)

2
〈
Di j

〉 = − 〈
ai D j

〉− 〈
Djai

〉+ d

dt

〈
aia j

〉
. (14.24)

This is the Einstein formula relating a diffusion coefficient, Di j , to the drift
coefficient and is a manifestation of a quantum fluctuation-dissipation (Gardiner,
1991).

Further, we may easily obtain the quantum regression theorem of Lax (1967).
We consider, from Eq. (14.22),

d

dt

〈
ai (t) a j

(
t ′
)〉 = 〈

Dia j

(
t ′
)〉+ 〈

Fi (t) a j

(
t ′
)〉 ; t ′ < t.

The process is Markovian and causal. a j (t) cannot be affected by the future
noise, so

d

dt

〈
ai (t) a j

(
t ′
)〉 = 〈

Di (t) a j

(
t ′
)〉
. (14.25)

The two-time system correlation function obeys the same equation of motion as
the single-time a j (t) Heisenberg equation.

Now, what is the meaning of such operator stochastic integrals? We define the
Itô stochastic integral as

I
∫ t

t0

g
(
t ′
)

dB
(
t ′
) = lim

i→∞
∑

i

g (ti )
[
B (ti+1, t0)− B (ti , t0)

]
(14.26)

(see Gardiner, 1983). g (t) is any Heisenberg system operator. The Itô increments
may be shown to commute with g

(
t ′
)
. I (da) may also be shown to be equivalent

to the quantum Langevin equation, because I d (ab) = adb + bda + dadb.
The Stratonovich operator integral is defined as

S
∫ t

t0

g
(
t ′
)

d B
(
t ′
) = lim

i→∞
∑

i

g (ti + ti+1)

2

[
B (ti+1, t0)− B (ti , t0)

]
. (14.27)

d B
(
t ′
)

does not commute with g
(
t ′
)
. In fact, we have the general result

S
∫ t

ti

g
(
t ′
)

d B
(
t ′
)− S

∫ t

ti

d B
(
t ′
)

g
(
t ′
) = √γ

2

∫ t

t0

dt ′
[
g
(
t ′
)
, c

(
t ′
)]

. (14.28)

From this we may show

S
∫ t

t0

g
(
t ′
)

d B
(
t ′
) = I

∫ t

t0

g
(
t ′
)

d B
(
t ′
)+ 1

2
√
γ N̄

∫ t

t0

[
g
(
t ′
)
, c

(
t ′
)]

dt ′,

(14.29)
and similarly for d B

(
t ′
)

g
(
t ′
)

and g
(
t ′
)

d B†
(
t ′
)

and also d B†
(
t ′
)

g
(
t ′
)
.
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We may show that the quantum Stratonovich stochastic equation is equivalent
to the Itô quantum stochastic equation and they are both of the quantum Langevin
form. For instance,

S (da) = −i

h̄
[a, HS] dt − γ

2

{[
a, c†

]
c − c† [a, c]

}
dt (14.30)

−√γ
[
a†c†

]
d B (t)+√γ d B† (t) [a, c] dt .

In addition, for the Stratonovich case, ordinary noncommuting calculus is true for
two arbitrary Heisenberg operators,

S (d (ab)) = adb + dab. (14.31)

Gardiner and Collett have made a succinct comparison of these two definitions.
The consequence is that the Stratonovich view is useful for formulating physical
problems, since it maintains the ordering rule of ordinary calculus. However, the
definition Eq. (14.27) is difficult to utilize theoretically. Theoretically, the Itô view
is more useful. We may use either, depending on the problem at hand.

From the Langevin equation, we may obtain the master equation of Chapters 3
and 10. Assume initially, at t0 = t,

ρ = ρS (0)⊗ ρB (0) .

Then, for a given operator,

〈a (t)〉 = Tr
S
(a (0) ρ (t))

with exactly

ρ (t) = Tr
B

{
U † (t, 0) ρS (0)⊗ ρB (0)U (t, 0)

}
.

The Itô stochastic differential equation is

I (da) = i

h̄
[a, HS] dt + γ

s

(
N̄ + 1

) [
2c†ac − ac†c − c†ca

]
dt (14.32)

+ γ

2
N̄

(
2cac† − acc† − cc†a

)
dt

−√γ
[
a, c†

]
d B (t)+√γ d B† [a, c] dt.

From this we have the average equation

d 〈a〉
dt

= Tr
S

{
a

dρ

dt

}
,
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where we identify the master equation for the density operator ρ,

dρ

dt
= i

h̄
[ρ, HS]+ γ

2

(
N̄ + 1

)
(2cρc† − c†cρ − ρc†c) (14.33)

+ γ

2
N̄

(
2c†ρc − cc†ρ − ρcc†

)
.

This is in the Lindblad form already discussed in Chapters 3, 6 and 10. Hence Eq.
(14.33), for the density operator, is physically equivalent to the quantum Langevin
equation, Eq. (14.13). Since the Langevin equation is impossible to solve, it is
better to use the master equation approach.

In Eq. (14.33), for the two-level atom, let HS = 1
2 h̄ω0σ z and c → σ−. It is

left as an exercise for the student to write down the appropriate quantum Langevin
equations.

14.3 Quantum Langevin equation with measurement

Let us return in this section to measurement. This work has already been mentioned
in Chapter 13, particularly Section 13.5. Because of the relation to the Langevin
approach, we reconsider it here.

The aim of the work of Ghirardi is to replace the isolated system Schrödinger
equation with a stochastic Langevin-type equation in Hilbert space which incorpo-
rates measurement and thus the wave function collapse (Bassi and Ghirardi, 2003).
Consider the assumed linear Itô equation for the ensemble of wave function |ψ〉
which obeys

I (d |ψ〉) = Cdt + A · dB |ψ〉 . (14.34)

A are a set of operators, C an operator, C − C† = − i
h H , and dB is a set of real

Wiener processes such that

〈d Bi 〉 = 0 (14.35)

and 〈
d Bid Bj

〉 = γ δi j dt.

This does not preserve the norm ‖ψ (t)‖2 . The 〈〉 indicate ensemble averages of
random processes generated by dB. Define Pψ = |ψ |2 (not normalized!), |ψ〉 being
a solution to Eq. (14.34) and

d (Phy) = Pψ ‖ψ‖2 = “physical” probability = ‖φ‖2 (14.36)∫
d (Phy) = 1.
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We assume a new ensemble such that d
〈‖ψ‖2

〉 = 0, giving the conditions

C + C† = −γA† · A (14.37)

and thus

d ‖ψ‖2 = 〈
ψ

∣∣(A+ A†
)∣∣ψ 〉 · dB. (14.38)

We may obtain an Itô equation for a state |φ〉, giving the probability, Eq. (14.36),
from the new ensemble. It obeys

I (d |φ (t)〉) =
[
C − C† − 1

2
γ (A− R)2 dt + (A− R) · dB

]
|φ (t)〉

R = 〈φ |A|φ〉 (14.39)

for A = A†. Implicit in this now nonlinear stochastic operator equation is the
calculation of the physical average, Eq. (14.36). But now the probability is obtained
with |φ〉 by the usual rule. A similar equation has been proposed by Gisin, Pearle
and Diosi (Gisin, 1984a and b; Pearle, 1984; Diosi, 1988, 1989).

We may also carry this out in a Stratonovich way. Assuming A are self-adjoint
and that the ensemble is Gaussian white noise, the linear Stratonovich equation
corresponding to Eq. (14.34) is

S
d

dt
|ψ (t)〉 = [

C − C† + A · V (t)− γA2
] |ψ (t)〉 , (14.40)

where 〈V (t)〉 = 0, and 〈
Vi (t1)Vj (t2)

〉 = γ δi jδ (t1 − t2) . (14.41)

The physical probability is

Phy [ψ (t)] = Pψ ‖ψ (t)‖2 ≡ ||φ (t)〉|2 . (14.42)

From this the nonlinear Stratonovich equation for |φ (t)〉 is

S
d

dt
|φ (t)〉 =

[
C − C† + (A− R) · V (t)
−γ (A− R)2 + γ

(
Q2 − R2

) ]
|φ (t)〉 , (14.43)

where R = 〈φ |A|φ〉 and Q2 = 〈
φ
∣∣A2

∣∣φ〉. We choose a single A and assume a
Wiener process with no sample path memory,

B (t) =
∫ t

0
dτV (τ ) . (14.44)

We have a nonlinear Brownian process for the state vector |φ (t)〉. Instead of
solving this nonlinear equation, we solve the linear equation, Eq. (14.40). We
assume a two-level state given by the α, β eigenvalues of A. Taking initially
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ψ (0) = Pα |ψ (0)〉 + Pβ |ψ (0)〉 and neglecting C − C†, the Hamiltonian, the
solution to the linear Stratonovich equation is

|ψ (t)〉 = exp
(
αB (t)− α2γ t

)
Pα |ψ (0)〉 (14.45)

+ exp
(
βB (t)− β2γ t

)
Pβ |ψ (0)〉 ,

where Pα = |α〉 〈α| and Pβ = |β〉 〈β|. Since V (t) is a Gaussian ensemble, we then
have, from a Fokker–Planck equation solution,

Phy [ω (t)] = ‖Pα |ψ (0)〉‖2 1√
2πγ t

exp

( −1

2γ t

[
B (t)− 2γαt

]2
)

(14.46)

+ ∥∥Pβ |ψ (0)〉∥∥2 1√
2πγ t

exp
−1

2γ t

[
B (t)− 2γβt

]2
.

This is classical Brownian motion in a state space |a〉, which are eigenfunctions of
A. The ensemble is sampled by B (t). There are no interference terms from |ψ (t)〉,
since Phy[ψ (t)] = |φ|2 represents the collapse of the wave function to |α〉 or |β〉.
The effective state space diffusion coefficient is γ /2.

Phy[ψ (t)] must be normalizable so that as t → ∞ the ensemble B (t →∞)

must be contained in a width
√
γ t near either 2γαt or 2γβt . Note that as t →∞,

the value of
√
γ t to 2 (α − β) γ t tends to zero. The rate of collapse, (2γ )−1 , is

determined by the white noise constant γ . All this seems interesting, but what
is the source of this continuous white noise (in this case) which is appended to
the dynamics of the Schrödinger equation, thus leading to a Langevin quantum
dynamics via the nonlinear Itô equation, Eq. (14.39)? This is the point of much
discussion (Bassi and Ghirardi, 2003). We shall not take it up here, as our purpose
is to introduce the reader to this interesting equation in Hilbert space.

Finally, we remark that, by means of the Itô equation and the definition of
Phy[ψ (t)], we may obtain an equivalent density operator ρ (t) in the same fashion
as in the previous section. It is

dρ

dt
= C − C† + γAρ (t)A† − γ

2

[
A† · A, ρ (t)

]
+ ; t > 0. (14.47)

Interestingly, it is of the Lindblad form also, so ρ obeys a completely positive semi-
group equation. A good question is whether or not this is the most general quantum
Brownian motion equation.
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15

Linear response: fluctuation and
dissipation theorems

15.1 Introduction

Linear response is the perturbative steady state and temporal description of a sys-
tem in interaction with a reservoir, thermal and/or mechanical. We have already
discussed this, implicitly, in Chapter 6, on dissipation. There the first topic was
the thermodynamic description of linear response and the introduction of transport
coefficients as well as the Onsager symmetries (Onsager, 1931). Chapter 6 also
dealt with the results of the quantum Boltzmann kinetic equation approach, partic-
ularly in terms of the Chapman–Enskogg solution leading to the steady transport
laws in gases (Chapman and Cowling, 1939).

Linear response theory, a parallel approximate description of system–reservoir
interactions leading to “exact” closed equations for the transport coefficients, will
be discussed in this chapter in detail. The related topic is steady fluctuations and
their connection to the “dissipative” behavior due to the system–reservoir coupling.
This leads to a general form of the fluctuation-dissipation theorems, which we will
obtain. Let us now consider the simple classical origins of this.

Einstein, early in his treatment of Brownian motion, obtained the diffusion
constant of the form (Einstein, 1905, 1910)

D = kT

mγ
, (15.1)

considering the diffusion current with the linear law

j (x) = −D
∂n (x)

∂x
+ udn (x) , (15.2)

n (x) being the concentration and ud the drift velocity where

ud = −1

mγ
× dV

dx
(15.3)

264



15.1 Introduction 265

is the potential V (x), and mγ the dissipative friction constant. In equilibrium the
two terms compensate each other. This leads to the Einstein relation Eq. (15.1);
thus fluctuation and dissipation are apparently related. It can be seen more clearly
by examining the classical Langevin equation already met in Chapter 14. Assume
the stochastic Brownian motion equation for the particle velocity u (t),

mu̇ (t) = −mγ u + F (t) , (15.4)

F (t) being the stochastic random force. Assuming short correlation for the
elements of the ensemble,

〈F (t1) F (t2)〉 = 2πG δ (t1 − t2) . (15.5)

We may write a Fokker–Plank equation for the stochastic classical and random
ensemble probability, W (u0, t0; u, t),

∂W

∂t
= ∂

∂u

(
D

∂

∂u
+ γ u

)
W, (15.6)

where initially

W (u, t0; u0, t0) = δ (u − u0) . (15.7)

The bath is at thermal equilibrium. Thus,

W (u0t0; u∞) = const exp

(
−1

2

mu2

2

)
(15.8)

and Eq. (15.1) follows. The process has been assumed to be Gaussian. Further, it
may be shown heuristically that

D = 1

m2

∫ ∞

0
〈F (t0) F (t0 + t)〉 dt (15.9)

and is an integral of the force time correlation function depending on the force fluc-
tuation at equilibrium. There is a nice review by Callen (1985) of the calculation
of the equilibrium fluctuations begun by Einstein (1910), utilizing the Boltzmann
formula

d�(u) = exp

[
S (u)

k

]
du. (15.10)

We will not discuss this here but focus on the non-equilibrium aspects (see, how-
ever, Chapter 7). First we will consider steady state linear response and then
temporal. All of this is closely connected to dissipation, as discussed in Chapter
6. The reader should remind him- or herself of the results, particularly the entropy
production theorem.
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15.2 Quantum linear response in the steady state

Let us consider the statistical mechanics of an open system in the steady state,
due to the work by McLennan (1959; see also Zubarev, 1975). We take the total
Hamiltonian to be

HT = H + HR + V, (15.11)

H being the system Hamiltonian with a time-independent interaction V with the
surroundings, which we call the reservoir, HR . The von Neumann equation for the
universe, HT , is again

∂ρ

∂t
+ 1

i
[ρ, HT ] = 0; h̄ = 1. (15.12)

Let

f = TrRρ, (15.13)

then
∂ f

∂t
+ 1

i

[
f, H

]+ 1

i
TrR [ρ, V ] = 0. (15.14)

Now define X by

ρ = f X. (15.15)

The X operator will be identified later, thermodynamically. We assume f near
equilibrium initially at t = −∞,

f = f0 (1+ η) , (15.16)

where

f0 = z−1 exp (−βH + βμN ) ,

μ being the chemical potential and N the number of particles. The system is close
to grand canonical equilibrium initially and will be changed slowly in time from
that state by V . We may, to the lowest perturbation order, obtain an equation for
η (t):

∂η

∂t
(t)+ 1

h̄
[η, H ] = h (15.17)

h = −1

i f0
TrR

[
f0 X, V

]
.

This may be formally integrated to long time at t = 0:

η =
∫ 0

−∞
exp

(
εt ′

)
h
(
t ′
)

dt ′ (15.18)

h (t) = exp (i Ht) h0 exp (−i Ht) .
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The parameter exp(εt ′) achieves a slow adiabatic turning on of the interaction to
achieve a steady state. 1/ε is large compared with the time necessary to approach
this steady state. This is admittedly not a rigorous discussion in the spirit of Spohn
and Lebowitz (1978) used in Chapter 6. The critical reader should return to that dis-
cussion and allow us to proceed more physically here. h (t) is a system Heisenberg
operator,

h (t) = exp (i Ht) h0 exp (−i Ht) .

The steady state system ensemble is

f = f0

[
1+

∫ 0

−∞
dt ′ exp εt ′h0

(
t ′
)]

. (15.19)

Now h (t) must be related to thermodynamic forces discussed in Chapter 6. Let
there be r reservoirs,

(
R =∑

r
)
, for which the system may be in grand canonical

equilibrium;

f → fr = Z−1 exp
(−βr H + βrμr N

)
.

To obtain a linear thermodynamic description, we then take initially

f0 =
[
1− (

βr − β
)

H − (
βrμr − βμ

)]
fr . (15.20)

This imposes a condition on Xr :

Trr

[
f0 Xr , Vr

] = 0. (15.21)

Hence we write

h =
∑

r

[(
β − βr

)
qr −

(
μ− βrμr

)
jr
]
, (15.22)

where

qr = 1

i
Trr [H, Vr ] Xr (15.23)

jr = 1

i
Trr [N , Vr ] Xr .

Here we have identified the energy flux qr from the reservoir r to the system
and also the particle flux jr . This is a general microscopic expression for the
assumptions of linear irreversible thermodynamics (see Chapter 6).

The external force also may be added. In this case we take TrR [X, V ] = 0. The
contribution of mechanical forces to h is

h = −1

i f0
TrR

[
f0V

]
X. (15.24)
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Assuming [H, V ] commutes with H , we obtain the additional term for the power
input from the external device:

h = −βW

W = −1

i
Tr [H, V ] X. (15.25)

We further observe, in Eq. (15.22), that Xr must be interpreted as a general
macroscopic thermodynamic force. We write macroscopically

h = 1

k

∑
r

Xr 〈Jr 〉 (15.26)

and identify the ensemble average

〈Jr 〉 =
〈

Jr

[
1+ 1

k

∑
α

Xα

∫ 0

−∞
exp εt Jαdt

]〉
0

. (15.27)

The fluxes vanish at equilibrium, so〈
Jβ

〉
0 =

∑
α

Lβα Xα, (15.28)

and

Lβα = 1

k

∫ 0

−∞
exp εt

〈
Jβ (−∞) Jα (t)

〉
0 . (15.29)

〈〉0 indicates the ensemble average with respect to f0. Eq. (15.28) is the general
linear response steady state statement. The generalized flux is the result of the ther-
modynamic linear forces, Xα. We now have a further result from the microscopic
theory, a general formula for the transport coefficients Lβα which is a micro-
scopic flux time correlation function. This is the Green–Kubo formula (Green,
1954; Kubo et al., 1957). We leave it to the student to prove, from Eq. (15.29)
and the mechanical equations of motion, that the Onsager symmetry follows (see
Chapter 6):

Lβα = Lαβ. (15.30)

We may also prove the entropy production theorem of Chapter 6. The positive
integral

I =
〈[∫ 0

−∞
exp εt Jα (t)

]2
〉

0

≥ 0 (15.31)
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may be rewritten

I =
∫ 0

−∞
exp (εt) dt

∫ 0

−∞
dt ′

〈
Jα (−∞) Jα

(
t ′ − t

)〉
0 (15.32)

=
∫ 0

−∞
exp (εt) dt

∫ −t

−∞
ds exp ε (s + t) 〈Jα (−∞) Jα (s)〉0 . (15.33)

Doing a partial integration, this gives

I = 1

ε

∫ 0

−∞
exp εt 〈Jα (−∞) Jα (t)〉 dt. (15.34)

Thus,

Lαa = ε

k
I ≥ 0. (15.35)

The diagonal elements are positive in any representation. Hence the thermody-
namic entropy production is

σ =
∑
α,β

XαLαβ Xβ ≥ 0.

This result of the Green–Kubo form has already been discussed in Chapter 6.

15.3 Linear response, time dependent

We will now not turn on the linear response adiabatically but be interested, in
particular, in the time-frequency dependence of the weak response near initial
equilibrium (see Kubo, 1969; Chester, 1969). Again we assume the system is in
equilibrium initially, now t = 0, and we have

ρ0 (0) = Z−1 exp (−βH + βμN ) .

Take the potential V to be a perturbation turned on, not necessarily slowly, at t = 0.
Expanding near t = 0, we have

ρ (t) = ρ0 + ρ ′,

where

ρ ′ (t) = −i
∫ t

0
dt ′ exp−i H

(
t − t ′

) [
V, ρ0

]
exp+i H

(
t − t ′

)
. (15.36)

The ρ0 appears in the right side by iteration around t = 0, assuming ρ ′ to be
small due to V . Thus we have linear response. V may be explicitly time depen-
dent. Assume the form V = BF (t). B is a Hermitian operator. F (t), a c-number,
contains the form of the time dependence.
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Let us now calculate the response of 〈A (t)〉 to this. A is another hermitian
operator. From Eq. (15.36), we have

〈A (t)〉 = Tr
(
ρ ′, A

) = −i
∫ t

0
Tr

{
A
[
B
(
t ′ − t

)
, ρ0

]
F

(
t ′
)}

,

where

B (t) = exp (+i Ht) B exp (−i Ht)

is the unperturbed Heisenberg representation and 〈C〉0 =Tr
(
ρ0C

)
, since the aver-

age is on ρ0. Changing t − t ′ → τ and utilizing the cyclic trace property, we
have

〈A (t)〉 = −i
∫ t

0
dτ 〈[A (τ ) , B]〉0 F (t − τ) . (15.37)

We define

φAB = −i 〈[A (τ ) , B]〉0 (15.38)

to be the response function of A to B. The arguments made in Chapter 6 are nec-
essary to remove the non-Markovian memory and extend the limit to t = ∞. We
assume this to be so. Then

〈A (t)〉 = −i
∫ ∞

0
dτ 〈[A (τ ) , B]〉0 F (t) . (15.39)

We need only mention that Eq. (15.37) is an almost periodic function of time, and
it would seem necessary to use the thermodynamic limit here also. Eq. (15.37) is
certainly irreversible (see Chapter 5). The simplification is that 〈〉0 is an equilibrium
ensemble average. Kubo was the first to derive such an equation (Kubo, 1957).
We have already met these results in the previous section. A simple result may be
obtained with external forces (-βW earlier). We choose V = −P · E,P being the
polarization, E the external electric field. We choose to consider the response of
the electric current Jα. Assuming F (t) is constant,

〈Jα〉 = i
∑
β

∫ ∞

0
dτ

〈[
Jα, Pβ

]〉
0 Eβ.

We identify the conductivity tensor as

σαβ = i
∫ ∞

0
dτ

〈[
Jα, Pβ

]〉
0 ,

a Green–Kubo formula for the coefficient σαβ.
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Such an equation as Eq. (15.37) can be written in another form. We use the
identity [

B, ρ0

] = ρ0

∫ β

0
dλ [B (iλ) , H ] (15.40)

(the student should prove this) to obtain

〈A〉 = −i
∫ t

0
dτ

∫ β

0
dλ

〈
AḂ (τ − t + iλ)

〉
0 , (15.41)

having a complex time evolution. The response function is then

φAB =
∫ β

0
dλ

〈
Ḃ (t − iλ) A

〉
0 (15.42)

= −
∫ β

0
dλ

〈
B Ȧ (−t + iλ)

〉
0 . (15.43)

The latter useful form utilizes the translational invariance.
For frequency-dependent electrical conductivity, we take E = E0 exp (iωt).

Then Ȧ = −J , and B = J/V . We have〈
J

V

〉
= σ (ω) E (t) (15.44)

and

σ (ω) =
∫ ∞

0
dt exp (iωt)

∫ β

0
dλ

1

V
〈J (−t + iλ) J 〉 .

This is Kubo’s formula for frequency-dependent conductivity (Kubo et al., 1957;
see also Kubo et al., 1995).

As we have implied in Section 15.2, intrinsic transport is more difficult to deal
with. What are the stimulus and response? There are two interesting tricks. Mon-
troll (1959) pointed out that diffusion can take place either by an internal gradient
or by an external gravitational interaction. The result is easy to see for an external
gravitational force. Then F = −mgz. Thus, A = z and B = vz. 〈vz〉 = μF , and μ

is the mobility. Now, from the response function,

μ = β

∫ ∞

0
dt 〈vz (t) , vz〉0 . (15.45)

The diffusion coefficient may be defined as the autocorrelation function:

D =
∫ ∞

0
dτ 〈vz (τ ) vz (0)〉 . (15.46)

Thus

D = kTμ, (15.47)

which is the Einstein relation mentioned above.
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A similar remark may be made concerning the shear viscosity. Montroll also
suggested that Feynman realized that an incompressible flow pattern may be gener-
ated by a suitable boundary perturbation. By canonical transformation this may be
recast in a Hamiltonian time-dependent perturbation form with fixed boundaries,
and treated by the methods mentioned here. The result is η, the shear viscosity,
which may be written as

η = β

∫ ∞

0
dt

〈
1

2

[
Fxy (0) , Fxy (t)

]
+

〉
0

.

Fxy is a volume integrated momentum flux. The thermal conductivity is another
matter but was treated by methods resulting from the discussion in Section 15.2
(McLennan, 1960, 1989). McLennan showed on a relevant time scale, classically,
that the frequency-dependent thermal conductivity may be written exactly:

λ (ω) = 1

V kT 2

∫ 0

−∞
exp (iωt) dt 〈S (0) S (t)〉0 . (15.48)

S is the total energy flux. By means of the Chapman–Enskogg methods, this may
be shown to give the Boltzmann answer discussed in Chapters 4 and 6. Such for-
mulas, as Eq. (15.45) and Eq. (15.46), have been obtained by McLennan much
more systematically, but that is too lengthy to discuss here (McLennan, 1989).

From this discussion it is clear that transport coefficients may be written exactly
and in a somewhat independent way by means of the linear response approach.
However, their evaluation requires solutions to kinetic equations or the knowledge
of Green’s function solutions, which will be discussed in the next chapter.

15.4 Fluctuation and dissipative theorems

The term “dissipative” might seem to indicate that the present section is closely
related to the discussion of Chapter 6. There it was stated that the transport laws
are fundamentally dissipative, as emphasized by the separation in the Chapman–
Enskogg procedure of the local equilibrium hydrodynamic quantities from the
dissipative part D∗

i j S∗i in Eq. (6.12). This is related to the entropy production
σ ≥ 0, since from Eq. (6.20),

σ = λT−2 (�T )2 + 2T−1η
(
Di j

)2

is positive because λ and η are positive. This is the local entropy production and
may be time dependent through local equilibrium variables such as T (x, t).

Now we will turn to a somewhat related topic of fluctuation dissipation theorems.
This is a misnomer, in a sense, since such theorems may also be true for nondis-
sipative systems. There is a variety of these theorems, possibly the first being due
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to Nyquist (1928), which had to do with electrical circuits, as we shall see. The
first generalization is a general susceptibility fluctuation theorem due to Callen and
Welton (1951). They showed that the mean square of the fluctuating force

〈
V 2

〉
may

be related to R (ω) such that〈
V 2

〉 = (
2

π

)∫ ∞

0
R (ω) E (ω, T ) dω,

where R (ω) is the resistance and

E (ω, T ) =
{

h̄ω + h̄ω

[
exp

(
h̄ω

kT

)
− 1

]−1
}
.

See also the book by Landau and Lifshitz (1980).
To consider such relations in general, we introduce the Fourier transform of the

response function (Kubo, 1969), Eq. (15.38):

χ B A (ω) ≡
∫ ∞

0
dt exp (−iωt) φB A (t) , (15.49)

where

φB A (t) = i−1
〈
[A (0) , B (t)]−

〉
0

or = −
∫ β

0
iλ

〈
B Ȧ (−t + iλ)

〉
0 .

We call χ B A a generalized susceptibility. Kubo (1969) considered such correlations
and their symmetries, defining

〈X; Y 〉0 ≡ 1

β

∫ β

0
dλTrρ0 exp (λH) X exp (−λH) Y, (15.50)

and wrote Eq. (15.49) in the diagonal representation of H and also considered the
symmetrized equilibrium correlation

〈[AB (t)+ B (t) A]〉0 ≡
〈
[A, B (t)]+

〉
0

in the diagonal representation. A term-by-term comparison shows that

χ B A = χ ′B A + iχ ′′B A (15.51)

(see Chapter 16). We have

χ ′′B A (ω) = h̄−1

(
tanh

1

2
βh̄ω

) 〈
[A, B (t)]+

〉
0 . (15.52)

These relations between the imaginary parts of the susceptibilities to the equilib-
rium correlation function are called the general fluctuation dissipation theorem.
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Case (1971) has given a critical review of such relations. He pointed out, because
of tanh 0 = 0, the inversion of Eq. (15.52) is〈

[B (t) , A]+
〉
0 = h̄ coth

(
1

2
βh̄ω

)
χ ′′B A (ω)+ Cδ (ω) . (15.53)

The δ function arises because of such a term in the expansion of χ ′′ A principal part
is also present in χ ′ in this series. C is arbitrary. Thus the inversion is not unique.
However, physical results may be obtained. Landau and Lifshitz (1980) discuss in
detail χ ′B A (ω) and χ ′′B A (ω) and their symmetry.

Let us briefly write the symmetry properties of both
〈
[X (0) , Y (t)]+

〉
and 〈X; Y 〉.

The second case is the same as the first:

1. Stationarity-equilibrium:〈
[X (0) , Y (t)]+

〉 = 〈
[X (t0) , Y (t0 + t)]+

〉
.

2. If X, Y are hermitian,
〈
X2

〉 ≥ 0.
3. Time inversion: 〈

[X (0) , Y (t)]+
〉 = 〈

[Y (0) , X (−t)]+
〉
.

With time reversal, let H be a classical external magnetic field and εX = ±1,
for even (+1) and for odd momentum (−1) dependence, we have〈

[X (0) , Y (t)]+
〉
H
= εXεY

〈
[X (0) , Y (−t)]+

〉
−H
= εXεY

〈
[Y (0) , X (t)]+

〉
−H

.

Now, φB A (t) has been said to be dissipative in the sense of Landau and Lifshitz.
The expression for energy dissipation is proportional to χ ′′B A′, the imaginary part
of χ. It may, however, be complex. Let us consider this. We take the rate of work
on the system by an external “force” to be

dW

dt
= X

d f

dt
. (15.54)

For a harmonic driving, which is real,

f (t) = 1

2

(
f0 exp (−iωt)+ f ∗0 exp (iωt)

)
. (15.55)

We have

X̄ = 1

2

[
χ (ω) f0 exp (−iωt)+ χ (−ω) f ∗0 exp (iωt)

]
, (15.56)

χ (ω) being the susceptibility. The average time rate of work is

dW̄

dt
= 1

4
iω

(
χ∗ − χ

) | f0|2 = 1

2
ωχ ′′ | f0|2 . (15.57)
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If this work is dissipative, with it being turned only into entropy change, then the
condition χ ′′ is positive. This association of χ ′′ to system dissipation is not com-
pelling, and the word “dissipation” should not be used in this context. An additional
fact should be added. There are dispersion relations relating χ ′ (ω) and χ ′′ (ω).

They are general. These Kramers–Kronig relations are derived in the text of Kubo
(Kubo et al., 1995). We will also prove them in the next chapter. They are a result
of the Plemelj formulas of complex integration (see Balescu, 1963). They are

χ ′ (ω) = χ∞ + 1

π

∫ +∞

−∞
dω′

P

ω′ − ω
χ ′′

(
ω′

)
(15.58)

χ ′′ (ω) = −1

π

∫ +∞

−∞
dω′

P

ω′ − ω
[χ ′ (ω′)− χ∞].

Let us illustrate this further with the simple example of electrical transport where
the susceptibility χ B A is the frequency-dependent electrical tensor σμν (ω) (Kubo,
1969). Take this as

σμν (ω) =
∫ ∞

0
φμν (t) exp (−iωt) . (15.59)

We write a Fourier transform, fμν (ω):

φμν (t) =
∫ +∞

−∞
dω′ fμν

(
ω′

)
exp

(−iω′t
)
. (15.60)

Now, by time symmetry, f ∗μν (ω) = fνμ (ω). The tensor σμν is divided into
symmetric and anti-symmetric pieces. We further utilize∫ ∞

0
dt exp (iωt) = πδ (ω)+ i

P

ω
(15.61)

and find

f ∗sμν (ω) = f s
μν (−ω) real

f a
μν (ω) = − f a

μν (−ω) purely imaginary.

Now Eq. (15.59) is

σμν (ω) = 1

2
fμν (ω) + −i

2π

∫ +∞

−∞
dω′

P

ω′ − ω
fμν

(
ω′

)
. (15.62)



276 Linear response: fluctuation and dissipation theorems

As before, let σ ′μν be the real and σ ′′μν the imaginary part of the conductivity
susceptibility. The results are then

σ ′sμν (ω) = 1

2
f s
μν (ω) (15.63a)

σ ′′sμν (ω) = −1

2

∫ +∞

−∞
dω′

P

ω′ − ω
f s
μν

(
ω′

)
(15.63b)

σ ′aμν (ω) = −1

2

∫ +∞

−∞
dω′

P

ω′ − ω
f a
μν

(
ω′

)
(15.63c)

σ ′′aμν (ω) = −1

2
f a
μν (ω) . (15.63d)

Taking the inverse transform, we may then write Eqs. (15.63a) and (15.63d) in
terms of the response function as

σ ′sμν (ω) = 1

2

∫ +∞

−∞
dtφs

μν (t) cosωt (15.64)

σ ′aμν (ω) = 1

2

∫ +∞

−∞
dtφa

μν (t) sinωt.

In this pair of equations, we have extended φμν (t) to negative time using φμν (t) =
φνμ (−t), and thus φs

μν (−t) = φs
μν (t), φ

a
μν (−t) = −φa

μν (t). For the electrical
conductivity we have

φs
μn (t) = 1

2

〈[
Jμ(0), Jν (t)

]
+
〉
, (15.65)

and thus Eqs. (15.64) are time-dependent Green–Kubo formulas. Eq. (15.63a) and
Eq. (15.63d) are a form of the Nyquist–Callen–Welton theorem. It must be remem-
bered that there are yet relationships of the form of Eq. (15.63b) and Eq. (15.63c)
which may be utilized. To obtain the Nyquist theorem, we consider the sym-
metrized time correlation function φs

μν (t) and show that the Fourier transform,
now called φs

μν (ω), is again

φs
μν (ω) = h̄ω

2
+ h̄ω

exp (βh̄ω)− 1
2

(15.66)

φs
μν (ω) = h̄ω

2
coth

(
βh̄ω

2

)
fμν (ω) .

Thus,

φs
μν (t) =

h̄

π

∫ ∞

0
dωω coth

(
βh̄ω

2

)
f s
μν (ω) cosωt. (15.67)
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The factor h̄ω
2 coth

(
βh̄ω

2

)
was obtained by Nyquist. Since this relates φs

μν (t) to

the symmetric part of f s
μν (ω), it is called a fluctuation (symmetric) dissipation

theorem.

15.5 Comments and comparisons

Comparison of Chapters 3, 4 and 6 with this chapter indicates a considerable
difference in the derivation of transport coefficients, or what we may now term
susceptibilities. In earlier chapters, on the kinetic description, the transport coeffi-
cients appear as a result of the solution to the irreversible transport equations by
methods such as that of Chapman and Enskogg. These dissipative kinetic equations
are obtained from either the B.B.G.Y.K. hierarchy or the generalized master equa-
tion by reduction procedures. It was emphasized that the method of Bogoliubov is
an “exact” reduction. No ad hoc coarse-graining or stochastic Stosszahlansatz is
employed. The procedure provides the form of the transport coefficient as well as
the necessary solution.

In the linear response theory, an apparently exact formula for the susceptibility
is immediately obtained. After the initial system equilibrium ensemble assump-
tion, and as with linear thermodynamics, a truncation linear in the external field
is obtained. It is, surprisingly, a reversible result depending on initial equilibrium
correlations 〈[A (t) , B]〉0. The derivation is irreversible. This is, in fact, the same
symmetry that exists in the Onsager derivation. (Some comments were made in
Chapter 6.) No method of solution of this correlation function is given, and then,
at the next stage, one must use the equivalent of the kinetic method or Green’s
function to obtain results. In some sense the two methods overlap. However, the
conditions for the strong initial equilibrium assumption are not clear, nor is there
a method for examining this basic assumption within the theory itself. Van Kam-
pen (1971) has questioned the linear response approach. Kubo (Kubo et al., 1995)
has offered a rejoinder. We invite the student to look into this matter. The Green’s
function approach will be considered in the next chapter.

Balescu (1961) has bridged the gap between the two views to some extent.
He introduced, classically (the quantum version has not been carried through), an
external field in the exact Liouville equation by He:

H = Hi + He,

and assuming, just as in the linear response theory,

f s
N (x, p, 0) = α exp

(−βHi
)
.
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Then, using the causal Liouville Green’s function,

L�
(
xpt | α′ p′t ′) = θ

(
t − t ′

)
δ
(
x − x ′

)
δ
(
p − p′

)
.

L = {H, }, and θ is the Heaviside function. The response of the electric current
to this is exactly

J (t) = e
∑

m

∫
dxdp

∫
dx ′dp′vm�i

(
xpt | x ′ p′t ′

)
f 0
N (x, p.0) ,

which we may show to have a Kubo equation form linear in the field:

J (t) = −e2β
∑

m

∑
n

∫ t

0
dt ′

∫
dxdp

∫
dx ′dp′

vm�i
(
xpt | x ′ p′t ′

)
E
(
t ′
) · v′n f N

0

(
x ′ p′

)
.

The temporal response � of J to E is averaged over the equilibrium ensemble f N
0 .

The Liouville equation approach has given the linear response. A quantum version
of this is expected to be similar; it is just more complicated because of the necessity
of utilizing the Wigner function Liouville equation.

There is an additional important point. Utilizing the Fourier representation
of Prigogine and his colleagues (Prigogine, 1967), we may write the Laplace
transform of J (t) as

J (z) = −e2β
∑
m,n

∑
k

∫
dpvmE (z)

〈
0
∣∣Ri (z)

∣∣ k
〉
vn f 0

k (p) .

For a time-independent field, E (z) = E
(

1
−i z

)
, and the

〈
k |R (z)| k ′〉 is the Laplace

and Fourier transform of the “resolvent” of the system Liouville Green’s function:

〈
xp

∣∣Ri (z)
∣∣ x ′ p′

〉 = ∫ ∞

0
dz exp (−i zτ) �i

(
xp | x ′ p′, τ

)
.

In the steady state, only
〈
0
∣∣Ri (z)

∣∣ 0
〉
appears in J (z). By the analytic properties of

〈0 |R (z)| 0〉, we may show

〈
0
∣∣Ri (z)

∣∣ 0
〉 = (

1

2

)
1

z − iψ (z)
,

where ψ (z) is a holomorphic operator. It is a p space differential operator in the
upper half z-plane. The details may be expressed by perturbation theory. The steady
transport properties depend on ψ (z) and not on the full irreversible operator as
expressed by the �i Green’s function. Thus, a tool for the calculation of the J (z)
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or J (t) is in our hands, as well as a formula for the transport. The final formula
expressing this is

J = Ee2β
∑

m

∑
n

∫
dpvm

1

−ψ (0)
vn f 0

N (p) ,

where

〈0 |R (z)| 0〉 = 1

ψ (0)
.

These generalities do not answer the question of whether or not the Green–
Kubo type linear response formula gives the same answer as the kinetic equation
approach. Mori (Mori et al., 1961) was the first to show that they were the same
for the dilute gas in the Chapman–Enskogg approach. Résebois has extended the
previous results to inhomogeneous systems utilizing the classical diagrammatic
methods of Severne (Résebois, 1964; Severne, 1965). In a very elaborate calcula-
tion, Résebois showed that in a dense gas the kinetic approach and that of linear
response gave the same answer.

In his derivation of the kinetic transport coefficients to higher order in the den-
sity, McLennan (1989), has shown that the Green–Kubo formulas hold. However,
there are limitations to this in the failure of the formulation due to long time effects
(the “tails”). McLennan discusses this in some detail.

The reader, reconsidering Chapter 6, will rightly accuse us of “glossing over” the
question of time scales. Balescu (1961) has discussed this to some extent. The alert
reader will rightly suggest that Hi contains the interaction with a reservoir leading
to dissipation as well as He. This has not been clearly discussed, but the reader
should return to the comments of Spohn and Lebowitz (1978) for an overview of
the more rigorous considerations of the approach to a transport steady state.

We conclude by reminding the reader that the response theory is general,
being valid for small reversible quantum systems. It is useful in discussing the
time-dependent susceptibility phenomena. We will comment extensively on small
systems (particularly resistance) in Chapter 19.
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16

Time-dependent quantum Green’s functions

16.1 Introduction

Mathematically, given a linear differential operator Lx,

Lx = a0 (x)+ a1 (x)
∂

∂x1
+ a11 (x)

∂2

∂x2
1

+ a12 (x)
∂2

∂x1∂x2
. . . ann

∂2

∂x2
n

+ · · · + an...n (x)
∂ p

∂x p
n
,

one encounters the solution to the inhomogeneous differential equation

Lxφ (x) = −ρ (x) . (16.1)

Here ρ (x) is a given source function. For a given boundary condition, we assume
a solution to exist. The solution can be reduced to a simpler problem. Let

Lx G (x, y) = −δ (x− y) . (16.2)

G (x, y) is the Green’s function. This is a function of x with y a parameter. Take
G (x, y) to satisfy the same boundary conditions as φ (x). Then

φ (x) =
∫

dyG (x, y) ρ (y) , (16.3)

since

Lx φ (x) =
∫

LxG (x, y) ρ (y) dy

= −
∫

δ (x− y) ρ (y) dy = −ρ (x) .

An example of Lx is, of course, the Schrödinger operator

Lx,t =
(
−i h̄

∂

∂t
+ h̄2

2m
V

)
.

281
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We take ρ (x) = V (x) ψ(x, t), ψ (x, t) being the wave function and V (x) the
potential operator.

We are interested in Green’s functions taken over from the techniques of quan-
tum field theory (Schweber, 1961; Lifshitz and Petaevskii, 1981). We will concern
ourselves particularly with one- and two-time Green’s functions, since our princi-
pal interest is to show a connection to the calculations of linear response theory
(Chapter 15) as well as to quantum kinetic equations. Then we wish to compare
the methods with those described in Chapter 4. In this we will follow the work of
L. P. Kadanoff and G. Baym (1962) and of L. V. Keldysh (1965) and also Zubarev
(1974). We will not discuss equilibrium statistical mechanics utilizing Green’s
function techniques for many-body problems. The literature is exhaustive (see
Abrikosov et al., 1963; Fetter and Walecka, 1971). A good general introduction
is the book by G. D. Mahan (2000).

16.2 One- and two-time quantum Green’s functions and their properties

Let us introduce the creation operator ψ† (r, t) and annihilation operator ψ (r, t)
of the second quantization formalism (see Schweber, 1961). They have the equal
time commutation rules for Bose and Fermi particles:[

ψ (r, t) , ψ
(
r ′, t

)]
± = 0 + F.D. (16.4)[

ψ† (r, t) , ψ†
(
r ′, t

)]
± = 0 − B.E .[

ψ (r, t) , ψ†
(
r ′, t

)]
± = δ

(
r − r ′

)
.

The Hamiltonian operator for the particles is

H =
∫

dr
∇ψ† (r, t)∇ψ (r, t)

2m
(16.5)

+ 1

2

∫
drdr ′ψ† (r, t) ψ†

(
r ′, t

)
V

(∣∣r − r ′
∣∣)ψ (

r ′, t
)
ψ (r, t) ,

and the number density of particles at rt is the operator

n (r, t) = ψ† (r, t) ψ (r, t) . (16.6)

Note that r = (r1 . . . rN ) for (1, 2, 3, . . . , N ) and V
(∣∣r − r ′

∣∣) is the pair potential
depending, as in Chapter 4, on the scalar distance between the particles.

Now we define the one-particle time-dependent Green’s function as

G
(
1, 1′

) = −i
〈
Tψ (r1t1) ψ

†
(
r1, t ′1

)〉
. (16.7)

Here the Wick chronological operator, for two operators A and B, is

T A (t) B
(
t ′
) = θ

(
t − t ′

)
A (t) B

(
t ′
)+ ηθ

(
t ′ − t

)
B
(
t ′
)

A (t)
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where η = ±1, and the Heaviside function is

θ (t) = 1 t > 0

= 0 t < 0.

The two-particle time-dependent Green’s function is

G2
(
12, 1′2′

) = i2

〈
Tψ (r1, t1) ψ (r2, t2)
×ψ†

(
r ′2, t ′2

)
ψ†

(
r ′1, t ′1

) 〉
. (16.8)

Of course, there is a hierarchy of these. Here,

〈A〉 ≡ Tr
[
exp (−β (H − μN )) A

]
means a grand canonical ensemble with μ the chemical potential. In addition, T is
again the time-ordering operator of Wick (or chronological operator), and

Tψ (1) ψ†
(
1′
) = ψ (1) ψ†

(
1′
)

for t1 > t ′1 (16.9)

= ±ψ†
(
1′
)
ψ (1) for t1 < t ′1.

The earliest time appears on the right, and the later time on the left with the intro-
duction of ±1 for Fermi particles. Here the ± depends on the evenness or oddness
of the permutation of the original order.

These Green’s functions may be further generalized to the retarded Green’s
function:

G±
r

(
t, t ′

) = θ
(
t − t ′

)
(−i)

〈[
Â (t) , B̂

(
t ′
)]
±

〉
(16.10)

(θ (t) = 1 for t > 0 and 0 for t < 0 ),

where the Heaviside function introduces a causality. [ ]± are the anticommutator,
commutator brackets and Â, B̂ are arbitrary operator functions of ψ and ψ†. We
also define an advanced Green’s function,

G±
a

(
t, t ′

) = iθ
(
t ′ − t

) 〈[
Â (t) , B̂

(
t ′
)]
±

〉
, (16.11)

and we see the Green’s functions in a special form of Eq. (16.10) and Eq. (16.11),
which may be written as the causal Green’s function (the correlation function),

Gc
(
t, t ′

) = −i
〈
ψ (t) , ψ†

(
t ′
)〉 ≡ G>

(
t, t ′

)
. (16.12)

(no commutator brackets!)

G
(
t, t ′

) = G>
(
t, t ′

)
t > t ′

G
(
t, t ′

) = G<
(
t, t ′

)
t < t ′ .

It should be noted that as β → ∞, these particle Green’s functions go over to
the field theoretic ones averaged over the vacuum. The double time-temperature
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Green’s functions were first introduced by Bonch-Bruevich (1956, 1957) and
Bogoliubov and Tyablikov (1959) and reviewed in detail by Zubarev (1960, 1974).

The equations of motion for all these Greens’s functions are easily obtained from
the Heisenberg equations of motion for Â(t), B̂(t) and the fact that

d

dt

[±θ
(± (

t − t ′
))] = δ

(
t − t ′

)
.

The equation for G±
r

(
t, t ′

)
is

i
dG±

r

dt

(
t, t ′

) = δ
(
t − t ′

) 〈[
Â, B̂

]
±

〉
+ θ

(
t − t ′

) 〈1

i

[
Â (t) , H

]
, B̂

(
t ′
)]±〉 .

(16.13)

The Hamiltonian operator is assumed to be time independent. The right side con-
tains new double time Green’s functions for which equations of motion may be
formulated, then the whole process repeated, forming a hierarchy of the appropriate
Green’s functions. This is not unexpected in the light of the quantum B.B.G.Y.K.
hierarchy. Here the set of equations is supplemented by boundary conditions. This
hierarchy must be uncoupled by supplemental assumptions. More will be said
about this in Section 16.5.

16.3 Analytic properties of Green’s functions

As emphasized by Landau (1958), it is the analytic properties of the Green’s func-
tion approach which are important. Let us turn to this function approach now. We
term this the spectral representation. Let Hφν = Eνφv. The Fourier transform of
the retarded Green’s function is (dropping ± now),

Gr
(
t − t ′

) = ∫ +∞

−∞
Gr (E) exp

(−i E
(
t − t ′

))
d E (16.14)

and the inverse

Gr (E) = 1

2π

∫ +∞

−∞
Gr (t) exp (i Et) dt.

Here, because of the equilibrium average, Gr
(
t − t ′

)
has the time dependence of

the familiar time equilibrium correlation function already met in Chapter 14:

CB A
(
t − t ′

) = 〈
B
(
t ′
)

A (t)
〉
. (16.15)

We use Wick’s time ordering to write for the ± commutator

Gr
(
t, t ′

) = −iθ
(
t − t ′

) {〈
A (t) B

(
t ′
)〉− η

〈
B
(
t ′
)

A (t)
〉} ; η = ±1. (16.16)
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Thus,

Gr (E) = 1

2π i

∫ +∞

−∞
dt exp

(
i E

(
t − t ′

))
θ
(
t − t ′

)
(16.17)

× {〈
A (t) B

(
t ′
)〉− η

〈
B
(
t ′
)

A (t)
〉}

.

Following Zubarev (1974), we assume that φv are complete and ν discrete. We then
may write the correlation functions in Eq. (16.17) as〈

B
(
t ′
)

A (t)
〉 = Z−1

∑
ν,μ

(
φ∗ν B (0) φμ

) (
φ∗μ A (0) φν

)
× exp

(
−Eν

θ

)
exp

{
i
(
Eμ − Eν

) (
t − t ′

)}
,

and similarly for
〈
A (t) B

(
t ′
)〉
. By interchanging the indices μ, ν and comparing

these two expressions, we find〈
B
(
t ′
)

A (t)
〉 = 1

2π

∫ +∞

−∞
JB A (ω) exp iω

(
t ′ − t

)
dω (16.18a)

and 〈
A (t) B

(
t ′
)〉 = 1

2π

∫ +∞

−∞
JB A (ω) exp (βω) exp

(
iω

(
t ′ − t

))
dω, (16.18b)

where

JB A (ω) = 2π Z−1
∑
μν

(
φ∗μB (0) φν

) (
φ∗ν A (0) φμ

)
(16.19)

× exp
(−βEμ

)
δ
(
Eμ − Eν − ω

)
.

Eq. (16.18a) and (16.18b) are the spectral representations of time correlation
functions introduced by Callen and Welton (1951), as previously mentioned. Now

JAB (−ω) = JB A (ω) expβω. (16.20)

We note that because
〈
B
(
t ′
)

A (t)
〉

depends on the time difference, the first equa-
tion is a statement of a Fourier transform. We leave it as an exercise for the
student to prove that the second follows immediately. If now the limit exists,

lim
∣∣t − t ′

∣∣→∞, then 〈
A (t) B

(
t ′
)〉 = 〈A (t)〉 〈B (

t ′
)〉
.

If 〈A〉 = 0, the right side is zero. We may then write〈
B
(
t ′
)

A (t)
〉− 〈B〉 〈A〉 = 1

2π

∫ +∞

−∞
JB A (ω) exp

(
iω

(
t ′ − t

))
dω. (16.21)
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Since for finite systems the states are almost periodic functions, the above equation
is true only in the thermodynamic limit (N → ∞, N/V = constant). Now, by
the Riemann–Lebesgue lemma, the right side of Eq. (16.21) is zero. These matters
have already been met in Chapters 5 and 6.

Let us return to the Green’s function. Using Eq. (16.17) we have the Fourier
transform, Gr (ω):

Gr (ω) = 1

2π

∫ +∞

−∞
dω′ JB A

(
ω′

) (
exp

(
βω′

)− η
)

× (−i)
∫ +∞

−∞
dt exp

(
i
(
ω − ω′

)
t
)
θ (t) .

Using the representation

δ (t) = 1

2π

∫ +∞

−∞
exp (−i xt) dx (16.22)

θ (t) = i

2π

∫ +∞

−∞
exp (−i xt)

x + iε
dx, (16.23)

we obtain, for ε →+0, the retarded Green’s function:

Gr (ω) = 1

2π

∫ +∞

−∞

(
expβω′ − η

)
JB A

(
ω′

) dω′

ω − ω′ + iε
. (16.24)

The advanced one is with iε → −iε in Eq. (16.24). G (ω) may be viewed as a
function of the complex variable ω. Consider

Gr − Ga = G (ω + iε)− G (ω − iε) = 1

2π

∫ +∞

−∞
dω′

(
exp

(
βω′ − η

)
JB A

(
ω′

))
(16.25)

×
{

1

ω − ω′ + iε
− 1

ω − ω′ − iε

}
.

Now we use

δ
(
ω − ω′

) = lim
ε→0

1

2π i

[
1

ω − ω′ − iε
− 1

ω − ω′ + iε

]
.

We have

G (ω + iε)− G (ω − iε) = 1

i
(exp (βω − η)) JB A (ω) ≡ 1

i
f (ω) ;

ω real. (16.26)

The G (ω) has a discontinuity on the real axis. We shall call this the first Plemelj
formula. G (ω) is a sectionally regular function if we assume the Hölder condition:

‖ f (ω2)− f (ω1)‖ ≤ A (ω2 − ω1)
μ for A > 0, 0 ≤ μ ≤ 1
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(Muskelishvilli, 1953). We may also add, using

1

ω − ω′ ± iε
= P

1

ω − ω′
∓ iπδ

(
ω − ω′

)
, (16.27)

G (ω + iε)+ G (ω − iε) = 1

π i

∫ +∞

−∞
dω′

f
(
ω′

)
ω − ω′

.

This is the second Plemelj formula. We obtain

Gr (ω) = 1

2π i
P

∫ +∞

−∞
f
(
ω′

) dω′

ω − ω′
+ 1

2
f (ω) (16.28)

Ga (ω) = 1

2π i
P

∫ +∞

−∞
f
(
ω′

) dω′

ω − ω′
− 1

2
f (ω) . (16.29)

These are the fundamental formulas. From them we obtain the dispersion relations
already mentioned in Chapter 15. The above discussion is the proof. Also,

Re Gr (ω) = P

π

∫ +∞

−∞

Im Gr

(
ω′

)
ω′ − ω

dω′ (16.30)

Re Ga (ω) = −P

π

∫ +∞

−∞

Im Ga

(
ω′

)
ω′ − ω

dω′.

From these considerations we see that we may analytically continue (for
instance, Gr (ω)) into the upper half plane, providing f (ω) may be continued.
The continuation of Gr (ω) to the upper half plane and Ga (ω) to the lower half
plane creates two Riemann surfaces which intersect on the real ω axis.

Finally, in this section, the causal Green’s function Gc (ω) may also be Fourier
analyzed. It has the form

Gc (ω) = 1

2π

∫ +∞

−∞
J
(
ω′

)
dω′

{
exp (βω)

ω − ω′ + iε
− η

ω − ω′ − iε

}
.

Now one may prove

Re Gc (ω) = P

2π

∫ +∞

−∞
dω′

(
exp

(
βω′

)− η
)

J
(
ω′

) dω′

ω − ω′
(16.31a)

and

Im Gc (ω) = 1

2
(exp (βω)+ η) J (ω) . (16.31b)

Landau (1958) first obtained such relations.
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16.4 Connection to linear response theory

According to Eq. (15.38) and Eq. (15.39), we may generalize the response function
φik to a Green’s function,

φik

(
t − t ′

) = −iθ
(
t − t ′

)
Trρ0 [ai , ak] . (16.32)

Here the operators Â, B̂ are replaced by âi , âk . Then the susceptibility is again

χ ik (ω) =
∫ +∞

−∞
φik (t) exp (iωt) .

From the spectral representation for the Green’s function, we may immediately
have

χ ik (ω) = − 1

2π

∫ +∞

−∞

(
exp

(
βω′

)− 1
)

Jakai

(
ω′

) dω′

ω − ω′ + iε
(16.33)

= 1

2h̄
(exp (βω)− 1) Jakai (ω)− 1

2π
P

∫ +∞

−∞

(
exp

(
βω′ − 1

))
Jakai

(
ω′

) dω′

ω − ω′
.

In the case of a symmetrized time correlation function,

[ak, ai (t)] → [ak, ai (t)]+ (16.34)

and

Jakai (ω) = 1

2

[
Jakai (ω)+ Jai ak (−ω)

]
(16.35)

but also

Jakai (ω) = Jai ak (−ω) exp (−βω) (16.36)

= 1

2
Jakai (ω) (1+ expβω) . (16.37)

Thus we have

χ ik (ω) = − 1

π

∫ +∞

−∞
tanh

βω′

2
Jakai

(
ω′

) dω′

ω − ω′ + iε
. (16.38)

This is the Callen–Welton result already obtained in Chapter 15. From this it
follows, using

J ∗akai

(
ω′

) = Jai ak

(
ω′

)
,

that for the symmetric case,

Imχ s
ak

(ω) = tanh
βω

2
Re Jai ak

(
ω′

)
, (16.39)

and for the antisymmetric case,

Reχa
ik = tanh

βω

2
Im Jai ak (ω) . (16.40)
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These useful results relate χ ik to the spectral density Jai ak (ω). The point here is to
emphasize the connection of the spectral properties of the generalized susceptibil-
ity χ ik to the spectral properties of the retarded Green’s function of this chapter, as
expected from Eq. (16.31).

16.5 Green’s function hierarchy truncation

Let us return to the few-body Green’s function of Eq. (16.7) and Eq. (16.8) with the
purpose of deriving a kinetic equation from the hierarchy outlined earlier. First we
will follow the earliest development in the book of Kadanoff and Baym (1962). We
should say that the Green’s function hierarchy was studied extensively by means
of the diagrammatic techniques originated by Feynman (Feynman, 1949). This is
principally focused on the equilibrium time-independent many-body phenomena.
For more on this topic, see Abrikosov et al., 1963. We will consider the Keldysh
time-dependent theory in Section 16.6.

To analyze the causal one-particle Green’s function (correlation function),

G
(
1, 1′

) = −i
〈
Tψ (1) , ψ†

(
1′
)〉

(16.41)

= −i
〈{
θ
(
t1 − t ′1

)
ψ (1) ψ†

(
1′
)+ ηθ

(
t ′1 − t1

)
ψ†

(
1′
)
ψ (1)

}〉
,

we observe that[
−i

d

dt1
+ [H (1)]−

]
G

(
1, 1′

) = δ
(
t1 − t ′1

)
δ
(
r1 − r ′1

)
, (16.42)

which is similar to Eq. (16.13), H(1) being the one-particle Hamiltonian. A similar
equation may be written for G

(
1, 2, 1′, 2′

)
. It is

G
(
1, 2, 1′, 2′

) = i2
〈
Tψ (1) ψ(2)ψ†

(
2′
)
ψ†

(
1′
)〉
.

From Eq. (16.41) we may define the correlation functions which play a central
role here and in the subsequent section:

G>
(
1, 1′

) ≡ −i
〈
ψ (1) ψ†

(
1′
)〉

t1 > t ′1 (16.43)

G<
(
1, 1′

) ≡ −iη
〈
ψ†

(
1′
)
, ψ (1)

〉
t1 < t ′1

η = ±1.

Note that we have not included the Heaviside function of the previous analysis in
Eq. (16.43).

Now consider boundary conditions. We note that for the spectral function of the
correlation function,

JAB (ω) = exp (βω) JB A (ω) . (16.44)
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A and B are Hermitian (Kubo et al., 1992). Then from〈
A
(
t ′
)

B (t)
〉 = ∫ +∞

−∞
exp

[
iω

(
t − t ′

)]
exp (βω) JB A (−ω) ,

we find

〈
A (t) B

(
t ′
)〉 = 〈

A (t − i h̄β) B
(
t ′
)〉
. (16.45)

This suggests introducing the temperature Green’s function because of the ana-

log of −i h̄β with a time. The analog of the unitary time operator exp
(
−i H t

h

)
is exp (+βH) = exp i(−iβH) and was first developed by Matsubara (1955). We
shall not dwell on this formalism but refer the reader to Kubo et al. (1992). The
causal Green’s function (the correlation) does not have the simple analytic prop-
erties of the retarded Green’s function. From Eq. (16.45) we may show, for the
single-particle causal Green’s function,

G<
(
t1, t ′1

) = ± expβμG>
(
1, 1′

) |t1=−iβ . (16.46)

Here we are extending the Green’s function and T to a complex time domain, a
time contour. Other paths than this may be simpler for the purpose of diagrammatic
analysis. We shall, in a subsequent section, consider the choice of the Keldysh
contour (Keldysh, 1965). We restrict imaginary t1 to the range 0 < i t1 ≤ β. The
farther down the imaginary time axis, the “later” it is. The ± in Eq. (16.46) has
come from the Wick theorem in the imaginary time domain. Now the boundary
conditions are obtained. We have

G
(
1, 1′

) |t1=0 = G<
(
1, 1′

) |t1=0, (16.47)

since i t1 = 0 < i t ′1 for all t ′1, and

G
(
1, 1′

) |t1=−iβ = G>
(
1, 1′

) |t1=−iβ,

since β = i t1 > i t ′1 for all t ′1. By direct computation (a homework problem for the
student), we may also show for imaginary time from Eq. (16.46),

G
(
1, 1′

) |t1=0 = ± exp (βμ) G
(
1, 1′

) |t1=−iβ . (16.48)

Also, by Eq. (16.47), for the imaginary time causal two-particle Green’s function
G

(
12, 1′2′

)
, we have

G
(
12, 1′2′

) |t1=0= ± exp(βμ)G
(
12, 1′2′

) |t1=−iβ . (16.49)

This is the boundary condition to be imposed on the causal Green’s function in
the imaginary time domain. Here analyticity is maintained in the “time” range
Re

(
i
(
t1 − t ′1

))
> 0,−β + Im

(
t1 − t ′1

)
> 0. To do this we will utilize a rather



16.5 Green’s function hierarchy truncation 291

special Fourier series. Assuming time translational invariance, which is possible
since this is an equilibrium average, we write in momentum space

G
(
p, t − t ′

) = (−iβ)−1
∑
ν

exp
(−i zν

(
t − t ′

))
G

(
p,zν

)
(16.50)

and the inverse

G (p, zν) =
∫ −iβ

0
dt exp i

{[
πν

−iβ
+ μ

] (
t − t ′

)}
G

(
p, t − t ′

)
, (16.51)

where

0 ≤ i t ≤ β, 0 ≤ i t ′ ≤ β.

The boundary condition of Eq. (16.49) requires

1 = ± expβ (μ− zν) (16.52)

or zν = μ∓ πνi

β
,

where

ν = even + Bose–Einstein

= odd − Fermi–Dirac.

Utilizing Eq. (16.51) we may write the Hilbert transform:

G (p, zν) = 1

2π

∫ +∞

−∞
A (p, μ)

zν − μ
at zν = πν

−iβ
+ μ (16.53)

and A (pω) = lim
ε→0

i
[
G (p, ω + iε)− G (p, ω − iε)

]
. (16.54)

For free particles, (
zν − p2

2m

)
G (p, zν) = 1, (16.55)

and then we have

A (pω) = 2πδ

(
ω − p2

2m

)
.

The equations of motion will now be considered. In the Heisenberg picture the
operator equation of motion is

i
∂ψ

∂t
(r, t) = [ψ (r, t) , H (t)] .
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As in Eq. (16.5), we take

H (t) =
∫

dr
−∇ψ† (r, t) · ∇ψ (r, t)

2m

+ 1

2

∫
dr1dr2V (r1 − r2) ψ

† (r1, t) ψ† (r2, t) ψ (r2, t) ψ (r1, t) ,
(16.56)

and thus, by commutation laws,

[ψ (r t) , H (t)] = −∇
2

2m
ψ (r, t)+

∫
dr ′ψ†

(
r ′t

)
V

(
r ′ − r

)
ψ

(
r ′, t

)
ψ (r, t) ,

(16.57)
and similarly for

[
ψ† (r, t) , H (t)

]
.

Now consider G
(
r1t1, r ′1t

′
1

)
. We form, using Wick’s theorem,

i
∂

∂t1

[
Tψ (1) ψ†

(
1′
)] = iδ

(
t1 − t ′1

)
δ
(
r1 − r ′1

)
(16.58)

± θ
(
t ′1 − t1

)
ψ†

(
1′
)

i
∂ψ (1)

∂t
+ θ

(
t1 − t ′1

)
i
∂ψ (1)

∂t1
ψ†

(
1′
)

= iδ
(
1− 1′

)± ∫
dr2V (r2 − r1)

[
Tψ (1) ψ (2) ψ†

(
2+

)
ψ†

(
1′
)]

t2=t1

− ∇
2
1

2m

[
Tψ (1) ψ

(
1′
)]

. (16.59)

The notation
(
2+

)
requires t+2 > t2 infinitesimally, and the t2 = t1 reminds us that

there is a one-time variable t1. Carrying T through the time derivative introduces a
δ
(
t1 − t ′1

)
. Time ordering does not commute with T .

The result is(
i
∂

∂t1
+ ∇2

1

2m

)
G

(
1, 1′

) = δ
(
1− 1′

)± i
∫

dr2V (r1 − r2) G2
(
12, 1′2+

) |t2=t1

(16.60)

(Kadanoff and Baym, 1962). We rewrite Eq. (16.60) as

i

(
∂

∂t1
+ ∇2

1

2m

)
G

(
1, 1′

) = δ
(
1− 1′

)+ ∫
dr2! (1, 2) G

(
21′

)
, (16.61)

introducing the self energy ! (1, 2). Diagrammatic perturbation theory defines this.
A re-summation of diagrams gives it a formal solution, a Dyson equation:

G
(
1, 1′

) = G0
(
1, 1′

)+ ∫
dr2

∫
dr3G0 (1, 2)! (2, 3) G

(
3, 1′

)
. (16.62)

See the discussion and proof in Abrikosov et al. (1963). The ! (12) are introduced
variationally by Kadanoff and Baym (1962).
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Eq. (16.60) is the beginning of the hierarchy for G implied earlier. Again,

G
(
12, 1′2′

) = −i2
〈
Tψ (1) ψ (2) ψ†

(
2′
)
ψ†

(
1′
)〉
. (16.63)

The truncation of the hierarchy is the difficult point, as it is with the B.B.G.Y.K.
hierarchy discussed in Chapter 4 on the derivation of kinetic equations. To illustrate
this in the simplest way, we adopt the Hartree approximation, which is to factor the
G2

(
12, 1′2+

)
:

G2(12, 1′12
+)→ G

(
1, 1′

)
G

(
2, 2+

)
. (16.64)

Now introduce the one-particle time/position-dependent density

n (r, t) = ψ† (r, t) ψ (r, t) (16.65)

and the average

G
(
2, 2+

) = ±1

i

〈
ψ†

(
2+

)
ψ (2)

〉
(16.66)

= ±1

i
〈n (r)〉 .

Thus,[
i
∂

∂t1
+ ∇2

1

2m

]
G

(
1, 1′

) = δ
(
1− 1′

)+ ∫
dr2V (|r2 − r1|) 〈n (r2)〉G

(
1, 1′

)
.

(16.67)

The self-consistency of this equation for the “reduced” one-body G
(
1, 1′

)
is

apparent as in the Vlasov equation in Chapter 3. This is a Hartree self-consistent
Green’s function equation. What is the justification? That is not clear, just as in the
case of the B.B.G.Y.K. hierarchy. The identity of the particles is not maintained. To
do this, one must introduce the Hartree–Fock approximation and add an additional
term to the factorization:

G
(
12, 1′2′

)→ G
(
1, 1′

)
G

(
2, 2′

)± G
(
1, 2′

)
G

(
2, 1′

)
. (16.68)

Such equations are not truly quantum kinetic equations but proto-quantum operator
equations. To proceed further, as with the B.B.G.Y.K. hierarchy, one must introduce
phase space distributions. The Wigner function of Chapter 4 has been used by Kubo
(Kubo et al., 1992) to obtain, in an elegant way, the quantum Vlasov equation. We
refer the reader to this development. Eq. (16.67) does not lead to the Boltzmann
equation, as we would expect. Kadanoff and Baym (1962) have derived the Born
approximation quantum Boltzmann equation in their book. It is not simple, but we
refer the reader to it for the discussion.

Now, proceeding further and in a simpler way, let us consider the work of
G. D. Mahan (2000) in his detailed book introducing Green’s functions as applied
to condensed matter. He has carried the analysis of the hierarchy further. See also
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his earlier article (Mahan, 1987). He obtained coupled operator Green’s function
equations for G< (k, ω, RT ) , k, ω being the time-space Fourier transform of the
two-body relative coordinates, r, t and R, T being the center of mass position and
time. Let us outline this, following his work. We go to center of mass space-time
coordinates

(r, t) = x1 − x2, (R, T ) = 1

2
(x1 + x2)

and have

G< (x1, x2) = i

〈
ψ†

(
R − 1

2
r, T − t

2

)
ψ

(
R + 1

2
r, T + 1

2
t

)〉
.

We introduce G< (k, ω, RT ), the space-time correlation function, and recognize
that the Fourier transformed Wigner function is

w (k, ω, RT ) = −iG< (k, w, RT ) . (16.69)

Now we utilize Eq. (16.60) for G<, Ga, G>, Gr and complex conjugates. These

four equations form a matrix equation for G =
∣∣∣∣G> Ga

Gr G<

∣∣∣∣ , a form similar to

that which we shall meet in the following section. We add and subtract complex
conjugate pairs to obtain equations for the relative and center of mass motion.

Terms are dropped which represent system spacial temporal inhomogeneity.
Further, to obtain gauge invariance in the electromagnetic interaction case, a trans-
formation is made. Note that � is the center of mass energy, and E = −∇φ +
∇ · A ≡ Es + Ev. The transformation is

�+ eEs · R → ω (16.70)

q+ eEvT → k

∇R → ∇R + eEs
∂

∂ω
∂

∂T
→ ∂

∂T
+ eEv ·∇k .

Then the “hydrodynamic” part of the added and subtracted equations becomes[
ω − ωk + 1

8m

(
∇R + eE

∂

∂ω

)2
]

G> (k, ω, RT )

and

i

[
∂

∂T
+ vk ·∇R + eE

(
∇k + rk

∂

∂ω

)]
G> (k, ω, RT ).

The second expression is similar to the classical Boltzmann equation.
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The right side of Eq. (16.61) must now be transformed also. (This is similar
to what has been done in Chapter 4.) To obtain the Wigner function form, we
go to the center of mass variables, and, for instance, the arguments

(
y, X + z

2

)
and

(
z, X − y

2

)
appear. Write the preceding expressions in Fourier transforms,

obtaining [
ω − εk + 1

8m

(
∇R + eE

∂

∂ω

)2
]

G< (k, ω, RT ) (16.71)

= 1

2

∫
dz exp (−iqz)

∫
dy exp (−iqy)[

!t G
< −!<G t̄ + Gt!

< − G<! t̄

]
.

t̄ here means anti-time ordering, which we will discuss later. Thus, also,

i

[
∂

∂T
+vk · ∇R + eE

(
∇k + vk

∂

∂ω

)]
G< (k, ω, RT ) (16.72)

=
∫

dz exp (−i zq)
∫

dy exp (−iqy)
[
!t G

< −!<Gt̄ − Gt!
< + G<! t̄

]
,

and there is a similar equation pair for Gr in terms of !r . These are the first equa-
tions of a hierarchy introduced by !< etc.; they are a form of Wigner function
hierarchy. In the preceding equations,

Gt + Gt̄ = G> + G<, (16.73)

Gt − Gt̄ = 2 Re [Gr ] .

Also,

G> = G< − i A (16.74)

!> = !< − 2i�,

A being the non-equilibrium spectral function.
We now do a gradient in space-time expansion in the center of mass vari-

ables about (R, T ), as in Chapter 4. Assuming spacial-temporal homogeneity, the
equations for Gr (k, ω, RT ) become, in the static E approximation,

[ω − εk −!r ] Gr = 1 (16.75)

ieE ·
[(

1− ∂!r

∂ω

)
∇k + (vk + ∇k!r )

∂

∂ω

]
Gr = 0.

The solution is to 0
(
E2

)
,

Gr (kω) = (ω − εk −!r (kω))−1 . (16.76)



296 Time-dependent quantum Green’s functions

Finally, the equation for G< becomes, for the spacial-temporal homogeneous case,

eE

[(
1− ∂!r

∂ω

)
∇k + (vk + ∇k!r )

∂

∂ω

]
G< (16.77)

− ieE ·
[
∂!<

∂ω
∇k Re [Gr ]− ∂Gr

∂ω
∇k!

<

]
= !<A − 2�G<.

Further, as in the Chapman–Enskogg procedure, the quantities on the “left” side
(hydrodynamic) may be taken to be the equilibrium values. Now assume

A = 2�

σ 2 + �2
, (16.78)

where

σ = ω − εk − Re [!r ]

� = − Im!r .

We obtain a proto-Boltzmann equation for the electrons:

A2 (kω)
∂nF

∂ω
eE ·

[
(vk +∇k Re!r ) �

+σ∇k�

]
= !>G< −!<G>. (16.79)

This is still not uncoupled from a hierarchy on the right. This will now be discussed
for the special case of dilute impurity scattering of the electrons. !> and !< con-
tain the effects of scattering, creating the correlation. A general thing to do would
be to form equations for the two-particle Wigner functions, as in the hierarchy dis-
cussion earlier in this chapter and in Chapter 4. This, however, can be “finessed” by
the diagrammatic analysis. Eq. (16.79) was applied to electron scattering by dilute
impurities. In this case,

!r (k, ω) = ni Tkk (ω) , (16.80)

Tkk (ω) being the off shell scattering matrix. Now

!<,> = ni

∫
d3 p

(2π)3

∣∣Tpk (ω)
∣∣2 G<,>. (16.81)

The nonlinear structure and scattering form of the right side of Eq. (16.81) is now
apparent. For further discussion we refer the reader to Mahan’s book (Mahan,
2000).

Let’s compare this derivation with a similar derivation from the hierarchy in
Chapter 4. There are equivalent assumptions. Eq. (16.79) is a Wigner function
hierarchy. The density expansion is not explicitly done until a final step, whereas in
Chapter 4 this is done initially. This complicates the Green’s function approach. In
addition, here the Markovianization is done within the perturbation analysis. The



16.6 Keldysh time-loop path perturbation theory 297

dependence upon the perturbation diagrammatic analysis to do this, as well as to
obtain irreversible equations, which Eq. (16.77) is, does not add to the clarity of
the logic. The derivation of the kinetic equation in Chapter 4 does not depend on
the diagrammatic analysis.

For analytically extending the quantum operator Boltzmann equations, the dia-
grammatic methods are advantageous. Danielewicz (1984) has done this, to an
extent, in his derivation. However, Hawker and others have extended the Boltzmann
equation to include the further gradient terms in the expansion around the local
values. They are termed collisional transfer corrections and have physical impor-
tance. The Waldman–Snider equation is an example (Waldman, 1957; Snider and
Sanctuary, 1971). See also the book by McLennan (1989) for further references.

16.6 Keldysh time-loop path perturbation theory

Let us turn to the Keldysh (1965) analysis, suggested by Schwinger (1961), of a
Green’s function in time-contour perturbation theory. The main point is to do a
diagrammatic resummation of the one-body Green’s function terms in the pertur-
bation, obtaining by standard equilibrium techniques a closed Dyson equation. The
Dyson equation has the form

G (q) = G0 (q)+ G0 (q)! (q) G (q) ,

where G0 (q) is the unperturbed Green’s function, G (q) the exact Green’s func-
tion, and ! (q) the self energy function. This has the same structure as the resolvent
equation met earlier in our discussions. The reader should consult the book of
Abrikosov (Abrikosov et al., 1963), as well as the citations for the equilibrium
discussion. This equation is the starting point of the analysis of a quantum kinetic
theory in condensed matter applications. It is not exact.

We have already met the chronological ordering operator T , which arises in the
field theory interaction representation for the expression〈

S (−∞,+∞) T
{

Â (t) B̂
(
t ′
)
. . . S (+∞,−∞)

}〉
.

Here,

S (t,−∞) = T exp

(
−i

∫ t

−∞
Hi (τ ) dτ

)
t > −∞ (16.82)

is a generalized many-body scattering matrix. Hi (t) is turned on adiabatically from
t = −∞ and off at t = +∞, much as in the discussion of the derivation of linear
response in Chapter 15. Keldysh apparently generalized this for the case when
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reservoirs or irreversible absorption and emission are present, as in the Gamov
vector discussion of Chapter 17. Then,

S (+∞,−∞) φ0 �= exp (iα) φ0.

He takes〈
S (−∞,+∞) T

{
Â (t) B̂

(
t ′
)

S (+∞,−∞)
}〉
=

〈
Tc

{
Â (t) B̂

(
t ′
)
. . . Sc

}〉
.

(16.83)
Here 〈〉 = Trρ0.

Tc is an ordering operator on a new multi-time contour c running from −∞ to
+∞ along a positive increasing time branch and then returning along a negative
time oriented branch to −∞. In Eq. (16.83) t, t ′ are on the positive branch. The
complete S matrix is Sc = S (−∞,+∞) S (+∞,−∞). S (−∞,+∞) is the posi-
tive branch, and S (+∞,−∞) is the negative branch. Ordering on c means return
branch times are later than the positive branch times. The path ordering with time
loop was introduced by Schwinger (1961). See the history and many references in
Rammer and Smith’s review (Rammer and Smith, 1986). The Keldysh paths are
not “exact,” having omitted the initial correlation decay as well as non-Markovian
contributions.

There are four one-particle Green’s functions between the t+ (plus branch) and
t− (minus branch):

G<
(
t+, t ′−

) = i
〈
ψ†

(
t ′+

)
ψ (t−)

〉
(16.84)

G>
(
t−, t ′+

) = −i
〈
ψ (t−) ψ†

(
t ′+

)〉
(16.85)

Gc
(
t+, t ′+

) = −i
〈
Tψ (t+) ψ†

(
t ′+

)〉
(16.86)

G̃c
(
t−, t ′−

) = −i
〈
T̃ψ (t−) ψ†

(
t ′−

)〉
. (16.87)

G+ and G− in Keldysh’s original paper are frequently called G< and G> respec-
tively in the literature, which we shall follow from now on. The T̃ ordering on the
minus branch is

T̃ψ (t) ψ+ (
t ′
) = ψ (t) ψ+ (

t ′
)

t < t ′

= −ψ+ (
t ′
)
ψ (t) t > t ′.

This use of Wick’s ordering theorem is only true for fermions and bosons. Here T
products do decompose into sums of T products taken pairwise. The four cases for
G0 in Eq. (16.84) through Eq. (16.87) may represent lines in a graphical Feynman
pictorial decomposition. The line in Eq. (16.84) goes from the minus to the plus
branch. The line in Eq. (16.85) from the plus to the minus branch, etc.
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The diagram summation is equivalent to a time integration along c and thus is
an integration from −∞ to +∞ and a summation over subscripts +,−. To do the
latter, we introduce a 2 × 2 matrix. We define a Green’s function matrix G of the
four possibilities:

G =
(

Gc G<

G> G̃c

)
(16.88)

We must note that Gc, G>, G< are related. Gc + G̃c = G> + G< ≡ GK , the
Keldysh Green’s function.

The standard procedures of equilibrium for re-summation are then made by
forming the Dyson equation (Abrikosov et al., 1963: Mahan, 1987). This will be
illustrated in some detail in the next chapter.

G
(
r t; r ′t ′) = G0

(
r t; r ′t ′)+ ∫

G0
(
r t; r ′t ′)! (

r t, r ′t ′
)×G

(
r t, r ′t ′

)
dtdt ′,

(16.89)
where the 2× 2 self energy matrix is

! =
(
!c !−

!+ !̃c

)
. (16.90)

Note also that !c+!̃c = − (!> +!<). This is a one-body Green’s function equa-
tion with the electron interactions incorporated in !. We will examine it shortly. It
is again a proto-kinetic equation and a hierarchy. Alternative transformations of G
have been employed, and we have also dropped the explicit t+, t− notation. See the
review by Rammer and Smith (1986). If we first transform G ⇒ σ 3G = G′ and
then perform the rotation, we obtain

G = LG ′L† =
(

Gr Gk

0 Ga

)
.

This has advantages. Rammer and Smith discuss the Feynman graph rules, and we
refer the reader to this required review at this point.

In the diagrammatic analysis, x = rt, we have the irreducible summation

!i j

(
x, x ′

) = ∫
γ k

ii ′Gi ′, j ′ (x, x1) �
h′
j ′ j

(
x1x ′; y

)× Dk′k (y, x) d4x1d4y. (16.91)

x is the incoming electron line, and x ′ the outgoing; y is an external phonon line.
Because of the matrix form, the matrix σ z enters;

γ k
i j = δi j (σ z) jk .

The plus part of c corresponds to+1, and the minus part to−1. Subscripts are elec-
tron lines and superscripts the phonon line. D is the matrix for the Bose particles
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Green’s function. We are quoting Keldysh, who presented these aspects, but not in
much detail (see Mahan, 2000).

The vacuum of field theory
(
φ0

)
has been replaced by a trace over ρ0, an ini-

tial distribution. This causes the Dyson equation to depend on initial ρ0, which
is somewhat inconsistent with the Green’s function approach. However, this may
be handled with a transformation by a differential operator, which transforms the
equation and does not contain ρ0. The solution is unique up to the solution of
a homogeneous equation. The uniqueness of the solution is, however, proved by
Keldysh.

A different canonical rotation used by Keldysh of the G matrix and also ! and
D is employed:

G = 1

2

(
I − iσ y

)
G

1

2

(
I + iσ y

)
, (16.92)

=
(

0 Ga

Gr GK

)
,

where

Ga = Gc − G> (16.93)

Gr = Gc − G<

GK = Gc + G̃c = G> + G<,

and

! →
(
!K !r

0 !a

)
(16.94)

!a = !c +!
<

(16.95)

!r = !c +!>

!K = !c + !̃c.

Ga and Gr are advanced and retarded Heisenberg Green’s functions, previously
met in Eq. (16.10) and Eq. (16.11):

Gr

(
x, x ′

) = i�
(
t − t ′

) 〈[
ψ (x) , ψ†

(
x ′
)]
+
〉

(16.96)

Ga
(
x, x ′

) = −i�
(
t ′ − t

) 〈[
ψ (x) , ψ†

(
x ′
)]
+
〉
,

and the new

GK
(
x, x ′

) = −i
〈[
ψ (x) , ψ†

(
x ′
)]
−
〉
. (16.97)

GK is called a causal Green’s function. In this representation of G, it represents
one of its components. The perturbation summed equation is a matrix equation
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for all three one-body Green’s functions together. Remember Ga and Gr are not
independent. The presence of these elements together in G is an interesting feature
of the Keldysh theory.

In weak coupling (to g2 order in !), the hierarchy uncouples, and an independent
equation for GK or G< may be obtained. This localizes the equation in x− x′′/2.
It is for G>,{

∂

∂t
+ v ·∇ + eE · ∇ p

}
G> (xp) = g2

[
!> (xp) G< (xp)−!< (xp) G> (xp)

]
.

(16.98)

This is a one-body birth–death weak coupling gain–loss equation of a familiar
form. x is (xs, tx), the center of mass position and time, and can be transformed to
an equation for a single-particle Wigner function.

S. Datta (1989) has further examined the equation for G< (x, p) similar to Eq.
(16.97), for the special case of a steady state, where τ = t2− t1 is constant. In addi-
tion, he assumes the oscillator reservoir to be in equilibrium, interacting with the
electron with a δ (r1 − r2) potential. He considers, then, one-phonon weak coupling
process and obtains the approximate self energies !>,!<. The result is

!> (r1r2, E) = i h̄

τ> (r1, E)
δ (r1 − r2) (16.99)

!< (r1r2, E) = i h̄

τ< (r1, E)
δ (r1 − r) ,

where
1

τ>
= 2π

h̄

∫
d E ′F

(
r, E ′ − E

)
p
(
r E ′

)
(16.100)

1

τ<
= 2π

h̄

∫
d E ′F

(
r, E − E ′

)
n (r1E) ,

when n (r, E) and p (r, E) are equilibrium electron and hole densities. n (r, t)
and p (r, t) are diagonal and thus have one-particle Green’s functions. The weak
coupling birth–death structure of Eq. (16.98) is now apparent. F (r, E) is effec-
tively the phonon equilibrium distribution function at temperature T, and 1/τ≷

are the rates of scattering of the electrons by phonons. Thus we have a relaxation
time model of the Boltzmann-type picture. Here 1/τ ≈ λ2 is the electron–phonon
interaction constant.

Datta (1989) obtains from Eq. (16.99) a coupled equation set for the nondiagonal
G< (r1r2; E) and G> (r1r2; E) Green’s functions. They may be formally solved
beginning with

G< (r1r2, E) = i h̄
∫

d3r
Gr (r1r3, E) Ga (r3r2, E)

τ< (r3, E)
.
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These are nondiagonal operator equations, not Boltzmann equations. More will be
said concerning the use of the Keldysh theory in the discussion of tunneling in
Chapter 19.
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17

Decay scattering

17.1 Basic notions and the Wigner–Weisskopf theory

Although the notions of bound states, scattering and quantum transitions are well
defined in the quantum theory, the description of an unstable system, involved in
the process of decay, has remained an outstanding issue for many years. The prob-
lem is fundamental, since it concerns the nature of irreversible processes, one of
the most important issues in statistical mechanics and the theme that is central to
this book.

The theory of decay is intimately connected with scattering theory and necessar-
ily contains mathematical ideas and methods. We shall try to explain these points
carefully as we get to them.

We treat elsewhere in the book the ideas of Boltzmann, Van Hove and Prigogine
on irreversible phenomena. The tools that are developed there are basically approx-
imate, although very useful. One can argue that the basic rigorous characteristic
of an irreversible process is that, as represented in terms of the evolution of a
state in the Hilbert space of the quantum theory, it must be a semigroup. This
type of evolution, resulting in an operation Z (t) on a state ψ , should satisfy the
property

Z (t2) Z (t1) = Z (t1 + t2) . (17.1)

The argument is as follows. If the system evolves in time t1 and is stopped, then
evolves further at time t2, since the process has no memory, the total evolution
should be as if the system evolved from the initial state to a state at t1 + t2 inde-
pendently of the fact that it was done in two stages (Piron, 1976). Since the process
is irreversible, the operator Z (t) may have no inverse. Such an evolution is called
a semigroup. As we shall see, it is not possible to obtain such an evolution law in
the framework of the standard quantum theory (Horwitz et al., 1971), but recently
much work has been done, and methods have been developed, based on ideas of
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Sz.-Nagy and Foias (1976), such as the theory of Lax and Phillips (1967) and its
extension to the quantum theory (Strauss et al., 2000) in which semigroup evo-
lution can be achieved. In Chapter 18, we discuss in detail the structure of the
Liouville space (a linear space of operators in the Hilbert space containing the den-
sity matrices, and isomorphic to a larger Hilbert space defined through the trace
norm), which also provides an important framework for the realization of these
recently developed methods for the description of unstable systems and resonances.

We start by describing some of the history of the subject in the framework of the
standard quantum theory. In 1928, Gamow made the first striking application of
quantum theory to the α-decay of nuclei (Gamow, 1928). From a simple classical
point of view, one thinks of a collection of N unstable nuclei with a probability �

(per unit time, per particle) to decay by the emission of an α-particle. The rate of
change of the number of nuclei in the original state is described by

d N

dt
= −�N (17.2)

with solution

N = e−�t N0, (17.3)

where N0 is the original number of nuclei. To achieve such a result in the
framework of the quantum theory, Gamow assumed the form

i
∂ψ

∂t
=

(
E − i

�

2

)
ψ (17.4)

for the Schrödinger equation, i.e. that the state ψ is an eigenfunction of the Hamil-
tonian operator (usually taken to be self-adjoint) with complex eigenvalue. The
solution of this equation,

ψ t = e−i(E−i �
2 )ψ0, (17.5)

has the property that

Nt = e−�t N0, (17.6)

where we have taken |ψ0|2 as the probability to find N0 particles undecayed ini-
tially (obtained by multiplying the usual normalized probability to find a particle by
N0) and N0|ψ t |2 as the probability to find Nt undecayed particles remaining at time
t . The formula of Gamow satisfies the semigroup property and has been very useful
in describing experimental results. We shall return to this important point later.

We remark that the Laplace transform, well defined for � > 0,∫ ∞

0
eiztψ t dt = −i

z − (E − i �
2 )

ψ0, (17.7)
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has a simple pole in the lower half plane. We shall see some of these characteristics
emerge from much more sophisticated theories of unstable systems, and in fact, the
exponential law Eq. (17.5) has been shown to give a very precise representation of
the data (Winstein et al., 1997) in its two-channel generalization, a parametrization
more recently proposed by Lee, Oehme, and Yang (1957) and Wu and Yang (1964)
for the description of neutral K meson decay.

An obvious objection to the form Eq. (17.5) given by Gamow, however, is that
the momentum of a free particle is proportional to the square root of the Hamil-
tonian. Such a momentum would be, in this case, complex and gives rise to an
exponential divergence of the wave function.

Weisskopf and Wigner, in a fundamental work (Weisskopf and Wigner, 1930),
provided a possible theory for the description of unstable systems on a more fun-
damental level, using a proper self-adjoint Hamiltonian in a form consistent with
the standard structure of the quantum theory, and obtained, nevertheless, an expo-
nential decay law in good approximation. We shall describe their method in the
following section. (This has also been discussed in previous chapters.)

Their method, which we shall refer to as the Wigner–Weisskopf method (follow-
ing the nomenclature used in much of the literature on this subject), starts with the
general Schrödinger equation for the evolution of a quantum system

i
∂ψ

∂t
= Hψ, (17.8)

with H a self-adjoint Hamiltonian with (exact) solution

ψ t = e−i Htψ0. (17.9)

Weisskopf and Wigner then proceed to assume that the initial state ψ0 represents
an unstable system, and that its evolution Eq. (17.8) induces a decay of that system.
Note that Eq. (17.8), in the framework of the quantum theory, describes the evolu-
tion of the system represented by ψ; the assumption that this evolution corresponds
to a decay of the system from some initial type of system to another, as a strong
physical assumption, is the basis for the Wigner–Weisskopf model. Examples are
the decay of a discrete state of some characterizing (unperturbed) Hamiltonian,
such as the state of a neutron, to the set of states with continuous spectrum, such as
the proton, electron, antineutrino final state. Other examples are the excited atom
decaying into a ground state with the emission of a photon, or the excited nucleus
decaying to a nucleus in a lower level with the emission of electromagnetic radi-
ation or an α-particle, as in Gamow’s application. We emphasize that this idea is
not a natural consequence of the general structure of quantum theory, for which the
evolution generated by Eq. (17.8) constitutes a continuous, probability-preserving



306 Decay scattering

change in the state of a given system, but involves an additional explicit assump-
tion that the nature of the system itself is undergoing a change in structure. In its
corresponding formulation in quantum field theory – where, for example, one can
assume an interaction consisting of the annihilation operator for a neutron and the
product of creation operators for the proton, electron and antineutrino – the evo-
lution still, through the action of unitary evolution, follows a continuous transition
subject to the criticisms which we shall describe in Sections 17.4 and 17.5. As we
shall see, if this change is of an irreversible nature, the applicability of the Wigner–
Weisskopf formulation, in terms of evolution in the usual Hilbert space of states,
can only be approximate, and in some cases is not adequate to serve even approx-
imately as a basic theory. In succeeding sections, we shall discuss formulations
capable of describing irreversible processes more accurately.

It is remarkable, however, that the analytic structure of the resolvent (or
Green’s function) for the standard quantum evolution associated with the Wigner–
Weisskopf formulation, which we shall describe below, is a very robust feature of
the analysis. The primary difficulties arise in the representations of the evolution in
terms of quantum states, and it will be our purpose in this chapter to describe some
of the techniques that have been developed to deal with this problem. In Chapter
18 we will discuss the extension of these ideas to statistical mechanics.

17.2 Wigner–Weisskopf method: pole approximation

We shall start with a rather general analysis of this underlying analytic structure,
in the standard Wigner–Weisskopf framework. Consider the amplitude, according
to the Wigner–Weisskopf model, for which the state of the system remains in its
initial (undecayed) state,

A (t) = 〈ψ0|e−i Ht |ψ0〉, (17.10)

often called the survival amplitude (Misra and Sudarshan, 1977). Although the
original calculation of Weisskopf and Wigner (1930) was done in first-order per-
turbation theory, we shall follow a somewhat different method here. Consider the
Laplace transform, for Im z > 0:

i R (z) ≡
∫ ∞

−∞
eizt〈ψ0|e−i Ht |ψ0〉 = i〈ψ0|

1

z − H
|ψ0〉. (17.11)

Since the Hamiltonian is a self-adjoint operator, it has a spectral resolution of the
form

H =
∫

λd E (λ) (17.12)
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(von Neumann, 1955; Riesz and Sz.-Nagy, 1955; Reed and Simon, 1979), where
E (λ) is a spectral family of projections satisfying

E (λ) E (μ) = E (min (λ, μ)) (17.13)

d E (λ) d E
(
λ′
) = {

0 if λ �= λ′

d E (λ) if λ = λ′

}
,

and λ,μ correspond to the spectrum of H .
If we assume that the operator H is absolutely continuous, so that E (λ) is differ-

entiable, we may write the spectral representation as in Dirac’s book (Dirac, 1947),
in terms of bras and kets:

d E (λ) = |λ〉〈λ|dλ (17.14)

The bra-ket combination corresponds to the derivative of E (λ).
If there is a discrete spectrum, for example a point eigenvalue at λ0, then

d E (λ0) is infinite (there is a jump in the spectral function), but the integral in
the neighborhood of λ0 is finite and projection-valued:∫ λ0+ε

λ0−ε

λd E (λ) = λ0 P0, (17.15)

where P0 = limε→0 E (λ0 + ε) − E (λ0 − ε) is a simple projection operator, i.e.
P2

0 = P0, and it is self-adjoint. If H had a totally discrete spectrum, it could be
expressed in the familiar form

H =
∑

i

λi Pi .

We shall not discuss here the third case, of singular continuous spectrum, which
does not have the property Eq. (17.14). It is defined by the fact that E (λ) is not
the integral (with endpoint λ) of some operator valued function. As an example, to
see how such a construction could come about, one may think of a point spectrum
which is imbedded in a continuum, i.e. there is an absolutely continuous spectrum
between the points; then consider taking a limit in which the density of points
becomes so high that the derivative is no longer defined.

We shall assume for our present purposes that H has an absolutely continuous
spectrum. The discrete eigenstates of an “unperturbed” operator H0, where H =
H0 + V , may be used to characterize the initial states of the system. The operator
V here induces the decay, corresponding to a transition to the continuous spectrum
of H0.

Now, due to Eq. (17̇.13),

H 2 =
∫

λ2d E (λ) ,
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and, generally,

Hn =
∫

λnd E (λ) .

Therefore, for any function that can be formed as a sequence of polynomials (finite
or infinite),

f (H) =
∫

f (λ) d E (λ) . (17.16)

It then follows that Eq. (17.11) can be written as

R (z) = 〈ψ0|
∫

d E (λ)

z − λ
|ψ0〉, (17.17)

from which it is clear that, if the Hamiltonian has spectrum λ ≥ 0, the func-
tion R (z) is analytic in the cut plane excluding the positive real line. The inverse
transform is given by

A (t) = 〈ψ0|e−i Ht |ψ0〉 =
1

2π i

∫
C

R (z) e−i zt dz, (17.18)

where C is a contour running slightly above the real line on the z plane from +∞
to zero and then, going around the branch point, from zero back to +∞ slightly
below the real line. The proof of this statement can be achieved by reversing the
order of integration in Eq. (17.18):

1

2π i

∫
C
〈ψ0|

∫
d E (λ)

z − λ
|ψ0〉e−i zt dz = 1

2π i
〈ψ0|

∫
d E (λ)

∫
C

e−i zt

z − λ
|ψ0〉.

(17.19)

For each fixed λ, the integral on the contour C can be pinched down to a small circle
around λ, which just gives a residue 2π ie−iλt . The completion of the integral, after
cancellation of the factor 2π i , is then, according to Eq. (17.16),

〈ψ0|
∫

d E (λ) e−iλt |ψ0〉 = 〈ψ0 | e−i Ht | ψ0〉. (17.20)

We are, however, interested in utilizing Eq. (17.18) to obtain an approximate
result, since the exact explicit calculation of this expression is, in general, difficult.
To do this, we first note that one may deform the part of the contour C from the
branch point to +∞ below the real line to an integral along the imaginary axis
from the branch point to −i∞. This can be done, since the line integral along the
quarter circle arc in the lower half plane vanishes in the limit that the radius goes
to ∞ (the exponent e−i zt decreases exponentially with the radius). The part of the
contour above the real line must then be deformed through the cut to the second
Riemann sheet of R (z), to bring it to the negative imaginary half line as well. This
can be done as follows.
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We wish to construct a complex analytic function which is defined in the lower
half plane and is continuously and differentially connected to R (z) in the upper
half plane. Such a function is identified as the extension of R (z) to the second
Riemann sheet. Consider the difference of R (z) immediately below the real line
(the analytic continuation of the function R (z) defined in the upper half plane
around the branch point to the lower half plane, all on the first Riemann sheet) and
the function R (z) evaluated immediately above the real line. Using the spectral
form Eq. (17.17), we see that

R (μ+ iε)− R (μ− iε) =
∫
|〈λ | ψ0〉|2

(
1

μ+ iε − λ
− 1

μ− iε − λ

)
dλ,

(17.21)

where we have used the form Eq. (17.14) applicable to a Hamiltonian with abso-
lutely continuous spectrum, and the fact that < ψ0|λ〉〈λ|ψ0 >= |〈λ | ψ0〉|2. With
the well-known result of the theory of distributions,

limε→0
1

x + iε
= P

(
1

x

)
− iπδ (x) , (17.22)

we obtain

limε→0 R (μ+ iε)− R (μ− iε) = −2π i |〈μ | ψ0〉|2. (17.23)

If we assume that |〈μ | ψ0〉|2 is the boundary value on the real axis of a function
W (z) analytic in some region of the lower half plane, we see that the continuous
differentiable extension we were looking for is given by

RI I (z) = R (z)− 2π iW (z) . (17.24)

It is clear that in the limit as z goes to the real line from below, by Eq. (17.23),
RI I (z) approaches the limit of R (z) onto the real line from above, smoothly. We
shall show in Section 17.3 that there are models, such as the Lee–Friedrichs model
(Lee, 1954, Friedrichs, 1950, to be discussed later in this chapter), for which the
assumptions we made are justified. Furthermore, it can occur that the function
W (z) has a pole in the lower half plane in the extension of its domain of ana-
lyticity, a situation which we shall argue for in the framework of these models.
Let us assume for now that such a simple pole exists in W (z) and return to our
construction of the approximate form for the reduced evolution, Eq. (17.10).

The part of the contour which remained above the real line can now be distorted
by rotation downward, where the integration is now on the second sheet func-
tion RI I (z). This line can, by the same argument given above, be rotated down
to the negative imaginary axis, curving above the branch point into the line inte-
gral obtained earlier on the first Riemann sheet. In moving this line downward, we



310 Decay scattering

encounter the pole that we have assumed, say, at z0 = E0 − i �
2 , resulting in the

following exact form:

A = 1

2π i

∫
C

e−i zt R (z) dz (17.25)

= 1

2π i

∫
C1

e−i zt R (z) dz

− 2π ie−i z0t Res W (z0) ,

where C1 corresponds to the contour around the negative imaginary axis (the left
part in the first sheet and the right part in the second sheet), and Res W (z0) is the
residue of the function W (z) at the pole position z0. These integrals carry the factor
e−i zt for z in the lower half plane, and for t > 0 and not too small, one can consider
neglecting these contributions. These terms are called “background” contributions.
The remaining part, proportional to e−i z0t , is the principal contribution for this time
range (t not too small and not too large) and is called the “pole approximation.”
Actually, part of the integration along C1 has a weaker time decrease than this pole
contribution, but it is generally of higher order in some small coupling constant
(Bleistein et al., 1977).

Thus,

A (t) ∼= −2π ie−i z0t Res W (z0) . (17.26)

For t very large, the pole term decreases, of course, exponentially, and the integral
on C1 in the neighborhood of the branch cut, where | Im z| is small, will dominate
the integral. This usually gives rise to an inverse polynomial dependence on t,
that is, t−n, where n is the space dimension of the problem (Bleistein et al., 1977;
Höhler, 1958).

For t very small, the integral on C1 cannot be neglected, and the best path of
integration (minimum descent path) (Bleistein et al., 1977) is along the real axis,
where the expression for A (t) can be expanded in a power series. This results in a
very simple form for the survival amplitude:

A (t) ∼=
〈
ψ0

∣∣∣∣1− i Ht − 1

2
H 2t2 + · · ·

∣∣∣∣ψ0

〉
= 1− i〈ψ0|H |ψ0〉 −

1

2
〈ψ0|H 2|ψ0〉t2 + · · · (17.27)

The absolute square is (to order t2) the survival probability

p (t) = |A (t) |2 ∼=
(

1− 1

2
〈ψ0|H 2|ψ0〉t2

)2

+ 〈ψ0|H |ψ0〉2t2 (17.28)

∼= 1− t2�H 2,
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where

�H 2 = 〈ψ0|H 2|ψ0〉 −
(〈ψ0|H |ψ0〉

)2
, (17.29)

the dispersion of the Hamiltonian operator in the state |ψ0〉.
A very important consequence of this calculation is that for small t, p (t) does

not go linearly in t, as a pure exponential dependence (semigroup evolution) would,
but only quadratically.

In addition to destroying the possibility that the Wigner–Weisskopf method
could give rise to a semi-group, this so-called Zeno effect (Misra and Sudarshan,
1977) results in an apparent paradox, called the Zeno paradox. These effects are
related in the sense that if the decay were of semigroup form, there would be no
Zeno effect. The observation of a Zeno effect is a consequence of reversible evolu-
tion. It has been observed (Itano et al., 1990; Wilkinson et al., 1997; Fischer et al.,
2001) under conditions that minimize radiation and inelastic collisions.

Let us first describe this latter phenomenon before going on to the consequences
of the failure of the theory to provide a semigroup law of decay. If one thinks of
a series of measurements to extract, by a filter, the initial state from the beam,
after each filtering, the evolution process we have described here must be started
again. Done at fairly short time, one would find a quadratic decay law for this
short time, followed by another quadratic decay, followed by another, and so on.
The envelope of this curve would look approximately exponential (see articles of
E. Joos and H. D. Zeh in Giuliani et al. (1996)), accounting for exponential decay
in the Wigner–Weisskopf model as a result of successive interference by an “envi-
ronment” (selective scattering, with the effect of a filtering measurement). Such
efforts have been largely replaced by the use of stochastic terms in the Schrödinger
evolution, a fundamental idea previously discussed in the chapter on measurement.

If the frequency of selective filtering measurements becomes very high, it is
clear that the sequence of quadratic decays converges to a constant occupancy for
the initial state (Misra and Sudarshan, 1977), i.e. in spite of a perturbation inducing
decay, the state is completely stabilized. This is the so-called Zeno paradox (asso-
ciated with this Zeno effect) and has been used by Aharonov (Aharonov and Vardi,
1980) to theoretically stabilize an unstable state, and even to guide its evolution
macroscopically.

The Zeno effect, as seen from the expansion in Eq. (17.28), is an inevitable
consequence of the application of Hilbert space techniques to calculate transition
amplitudes under Hamilton (or any one-parameter group) evolution.

A serious consequence of the O
(
t2
)

decay law, as we have pointed out above,
is the obstruction it forms to the property of semigroup evolution, which is a
fundamental property of irreversible processes.
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The exponential, or pole approximation, of the Wigner–Weisskopf method
would have this property for the single channel, or one decay mode case at inter-
mediate times, but as we have seen, at long or short times, this approximation is
not valid.

For the two-channel case, studied experimentally very carefully for the neutral K
meson decay, it has been shown (Winstein et al., 1997) that the two-dimensional
generalization (Lee et al., 1957; Wu and Yang, 1964) of Gamow’s formula pro-
vides an extremely accurate description, while even in the pole approximation,
the Wigner–Weisskopf method predicts results that disagree with the experiments.
Therefore, for the two- (or more) channel case, if there is no decoupling due to sym-
metry, the Wigner–Weisskopf method is not suitable. We demonstrate this result in
a soluble model in the next section.

A fundamental theory, based on the scattering approach of Lax and Phillips
(1967), has recently been developed which provides an exact semigroup evolu-
tion, and therefore a theoretical basis for the Gamow construction (Flesia and
Piron, 1984; Horwitz and Piron, 1993; Eisenberg and Horwitz, 1997; Strauss, 2003,
2005a, 2005b, 2005c). We shall discuss this theory in Section 17.7.

17.3 Wigner–Weisskopf method and Lee–Friedrichs model with a
single channel

Before describing these developments, let us return to a quantitative discussion
of the Wigner–Weisskopf method in the framework of the soluble Lee–Friedrichs
model (Friedrichs, 1950; Lee, 1954), where we shall be able to make precise state-
ments as well as to introduce in a simple way the notion of the rigged Hilbert space,
or Gel’fand triple (Bailey and Schieve, 1978; Baumgartel, 1978: Bohm, 1978,
1980; Horwitz and Sigal, 1980; Parravicini et al., 1980; Bohm and Gadella, 1989;
Bohm and Kaldass, 2000), which has been widely used to obtain an exact semi-
group behavior. (We shall discuss the Gel’fand triple approach in Section 17.6.)

Although the Gel’fand triple states provide exponential evolution, there is, in
general, no scalar product defined in such spaces (they are Banach spaces, not
Hilbert spaces), and therefore properties such as expectation values of observables,
for example, for the spatial dispersion of a resonant state are not available. There
are, however, many robust properties of these theories which have their counter-
parts in the more complete physics contained in the Lax–Phillips type of approach,
and therefore these theories are important and worth studying.

The Lee–Friedrichs model for the decay of an unstable system is defined by a
Hamiltonian of the form

H = H0 + V, (17.30)
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where H0 has absolutely continuous spectrum {λ ≥ 0}, with spectral function
d E (λ) = |λ >< λ|dλ, and a discrete eigenvalue λ0 embedded in this continuum
with eigenstate |ψ0〉, which we shall identify with the initial (unstable) state.

The perturbation V has the property, essential for the model, that for all λ, λ′,

〈λ|V |λ′〉 = 0. (17.31)

The nonvanishing matrix elements are 〈λ|V |ψ0〉 and its conjugate 〈ψ0|V |λ〉. A
nonvanishing expectation value 〈ψ0|V |ψ0〉 would contribute a shift to λ0 in all
resulting expressions and may be taken as zero as well.

Historically, Lee (1954) formulated this model in the framework of nonrelativis-
tic quantum field theory. The special structure of the interaction terms permits the
problem to be decomposed to sectors involving one unstable particle which decays
into two final particles, or two unstable particles which decay into two pairs of
final particles, and so on. The problem in each sector is identical to that of the first
sector. It is therefore equivalent to the original quantum mechanical form given by
Friedrichs (1950).

In this construction, the eigenfunction for the discrete state corresponds to, as
noted above, the unstable system, and the continuum corresponds to the final states
of the decayed system. (In the quantum mechanical form, there is no reference to
the number of particles in the final state, so long as it is in a single degenerate
continuum.)

There are examples of decaying systems for which a multiplicity of continua
occur with a sequence of distinct thresholds (lower bounds on each continuum), as
in molecular physics. The analytic continuation that we shall carry out in our dis-
cussion is complicated by the occurrence of these nondegenerate continua. If the
potential is an analytic function of coordinates, it is possible to carry out what is
known as rotation of spectra, which effectively separates the many Riemann sheets
occurring in the lower half plane. This is done by carrying out a unitarily induced
dilation, and then using the fact that a one-parameter unitary transformation is an
analytic function of the parameter. All discrete parts of the spectrum (including
resonance poles) are left invariant (independent of the value of the real parame-
ter), but the continuum rotates. The method was originally developed by Aguilar,
Balslev, Combes and Simon (Aguilar and Combes, 1971; Balslev and Combes,
1971; Simon, 1972). We shall not discuss this method further here, but refer the
reader to the excellent discussions in the literature.

With this model, let us again consider the general identity (often called the
second resolvent equation or just the resolvent equation):

G (z) = G0 (z)+ G0 (z) V G (z) , (17.32)
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where

G (z) = 1

z − H
G0 (z) = 1

z − H0
.

The identity is easily proven by factoring out G0 (z) to the left and G (z) to the
right:

G (z) = G0 (z) [z − H + V ] G (z)

= G0 (z) [z − H0] G (z) ≡ G (z) .

Now we consider the expectation value

R (z) = 〈ψ0|G (z) |ψ0〉, (17.33)

as in Eq. (17.11). With the resolvent equation, we see that

R (z) = 〈ψ0|G0 (z) |ψ0〉 + 〈ψ0|G0 (z) V G (z) |ψ0〉 (17.34)

= 1

z − λ0
+ 1

z − λ0
〈ψ0|V G (z) |ψ0〉,

where ψ0 is a discrete eigenstate of H0. Furthermore, since the operator V connects
ψ0 only to the continuum |λ〉 (we have assumed 〈ψ0|V |ψ0〉 = 0), Eq. (17.34)
becomes

(z − λ0) R (z) = 1+
∫ ∞

0
〈ψ0|V |λ〉〈λ|G (z) |ψ0〉dλ. (17.35)

It is then necessary for us to consider 〈λ|G (z) |ψ0〉. Using the resolvent Eq. (17.32)
again, we obtain

〈λ|G (z) |ψ0〉 =
1

z − λ
〈λ|V |ψ0〉〈ψ0|G (z) |ψ0〉, (17.36)

since, again, the operator V connects 〈λ| only to |ψ0〉. This is the essential point of
the Lee–Friedrichs model. Substituting Eq. (17.36) into Eq. (17.35), we obtain

(z − λ) R (z) = 1+
∫ 〈λ|V |ψ0〉2

z − λ
dλR (z) ,

or [
(z − λ0)−

∫ ∞

0

ω (λ)

z − λ
dλ

]
R (z) = 1, (17.37)

where the spectral weight function ω (λ) for the Lee–Friedrichs model is given by

ω (λ) = |〈λ|V |ψ0〉|2. (17.38)

We write,

h (z) = z − λ0 −
∫ ∞

0

ω (λ)

z − λ
dλ, (17.39)
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and the condition, Eq. (17.37),

h (z) R (z) = 1, (17.40)

implies that if h (z) goes to zero at some value z → z0, then R (z) will have a pole
at z0. It is easy to see, with some simple assumptions, that there is no zero of h (z)
in the cut plane.

For z on the negative real axis, say, z = −E, E > 0, we would have to satisfy

− E − λ0 +
∫

ω (λ)

E + λ
dλ = 0. (17.41)

Since ∫ ∞

0
dλ

ω (λ)

E + λ
≤

∫ ∞

0

ω (λ)

λ
dλ,

if ω (λ) vanishes as λ → 0, so that the integral on the right side is defined (van-
ishing of the spectral weight at the threshold for decay), then for sufficiently small
coupling, measured by the norm∫

|〈λ|V |ψ0〉|2dλ = ‖Vψ0‖2,

the zero in Eq. (17.41) cannot be achieved for some finite λ0 (λ0 + E ≥ λ0).
We now consider complex z. Taking the imaginary part of Eq. (17.39), the

vanishing of h (z) at some point Im z �= 0 would imply

0 = Im z +
∫

ω (λ)

|z − λ|2 Im zdλ

= Im z

(
1+

∫
ω (λ) dλ

|z − λ|2
)
.

Since the second factor on the right is positive, this zero cannot be achieved for any
z in the cut plane.

As we have described in our discussion of the general case, in Eq. (17.25), we
must now consider the analytic continuation of R (z) to the second Riemann sheet.
From Eq. (17.40) we see that the second sheet function R (z)I I is defined by the
analytic continuation of h (z) through the cut, evident in Eq. (17.39), on the real
positive axis. The technique described in Eq. (17.21) through Eq. (17.24) can be
applied directly to h (z). Let us compare h (μ+ iε) and h (μ− iε) in the first sheet,
for μ real and positive and ε small, to obtain a function in the second Riemann sheet
which is the analytic continuation of h (z) above the cut into the lower half plane.
Consider

h (μ+ iε)− h (μ− iε) = −
∫ ∞

0
ω (λ)

{
1

μ+ iε − λ
− 1

μ− iε − λ

}
dλ
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in the limit ε → 0. Then

h (μ+ iε)− h (μ− iε) = 2π i
∫ ∞

0
ω (λ) δ (μ− λ) dλ (17.42)

= 2π iω (μ) .

We thus have the relation

h (μ+ iε) = h (μ− iε)+ 2π iω (μ) , (17.43)

the second term corresponding to the “jump” across the cut. We now wish to make
a further assumption, namely, that ω (μ) is the boundary value, on the real line, of
a function analytic in some sufficient domain in the lower half plane. Calling this
function ω (z), it follows from Eq. (17.43) that

hI I (z) = h (z)+ 2π iω (z) (17.44)

satisfies the conditions for the second sheet continuation of h (z) across the cut. As
z → μ − iε, this function smoothly approaches the value of h(z) just above the
cut.

Now let us examine again the imaginary part of hI I (z) for z in the lower half
plane:

Im hI I (z) = Im z

(
1+

∫ ∞

0

ω (λ) dλ

|z − λ|2
)
+ 2πω (z) . (17.45)

In a region for which Im z is small, ω (z) must be predominantly real and positive;
it goes smoothly to ω (μ) on the real line. Since Im z < 0, it is quite reasonable
to assume that Im hI I (z) defined in Eq. (17.45) vanishes at some value of z in
the lower half plane (close to the real axis). If the real part vanishes as well, then
hI I (z) becomes zero at this point, implying that RI I (z) has a singularity. There
are simple examples for which these assumptions are valid.

Assuming, then, that RI I (z) has a pole at some point z0 for Im z0 < 0 (and
small), the contour integral Eq. (17.18) takes on the form

A (t) = e−i z0t Res RI I (z) |z0 + background contribution, (17.46)

where the first term dominates for t not too large and not too small. Since

RI I (z) = 1

hI I (z)
∼= 1

z − z0

1

hI I (z0)
′

in the neighborhood of the pole, the residue is the inverse of

hI I (z0)
′ = 1+

∫ ∞

0
dλ

ω (λ)

(z0 − λ)2 + 2π iω′ (z0) . (17.47)

Since we have assumed that ω (λ) is the boundary value of a function analytic
in the lower half plane down to the neighborhood of Im z0, at least, we may make
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an estimate of the integral by distorting the contour below the real axis in some
neighborhood of Re z0. Calling the complex value of the variable on the contour
ζ , we have that ∫ ∞

0
dλ

ω (λ)

(z0 − λ)2 =
∫

C

ω (ζ ) dζ

(z0 − ζ )2 ,

where C is a small deviation of the real line (holding the origin λ = 0 fixed) below
the real axis. Continuing below to cross the pole position (the sense of encirclement
is negative), we obtain

−2π iω′ (z0)

as the contribution of the pole. This term is canceled by the third term on the right
of Eq. (17.47), and what remains of the integration is expected to be a well-bounded
contribution of second order in the coupling

∼ |〈Re z0|V |ψ0〉|2.
The residue is, therefore, very close to unity (for weak coupling).

We therefore conclude that to a very good approximation, for t not too small or
too large,

p (t) = |A (t) |2 ∼= e−�t (17.48)

for � = | Im z0|.
In a similar way, an estimate can be made for the decay width (Im z0) if it

is small (a small width is characteristic of a resonance, which is almost a bound
state). Returning to Eq. (17.45), we see that the vanishing of Im hI I (z) at z = z0

implies that

Im z0

(
1+

∫ ∞

0

ω (λ) dλ

|z0 − λ|2
)
+ 2πω (z0) = 0. (17.49)

For Im z0 small,

1

(Im z0)
2 + (Re z0 − λ)2

∼= π

| Im z0|δ (Re z0 − λ) , (17.50)

where we have used the relation

lim
ε→0

ε

ε2 + x2
= πδ (x) , (17.51)

approximately true, without taking the limit, for ε small. Thus Eq. (17.49) becomes

−| Im z0|
(

1+ π

| Im z0|ω (Re z0)

)
+ 2πω (z0) ∼= 0,

or

| Im z0| ∼= πω (Re z0) , (17.52)
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where we have approximated ω (z0) ∼= ω (Re z0). The result of Eq. (17.52) coin-
cides with the first Born approximation (the Golden Rule) for the transition rate
|〈ψ0|V |ψ0〉|2, the result of the original perturbation calculation of Weisskopf and
Wigner (1930).

This very useful result of the paper of Weisskopf and Wigner, in the so-called
pole approximation, a form first postulated by Gamow, appeared to provide a
fundamental theory describing the decay law for an unstable system.

17.4 Wigner–Weisskopf and multichannel decay

There remain two fundamental difficulties, related to the fact that the amplitude
A (t) does not satisfy a semigroup law. The first is the vanishing of the decay at
very short times, and the second is that even in pole approximation, the N -channel
(N ≥ 2) decay law that follows from the Wigner–Weisskopf method does not obey
the semigroup law, although the pole approximation in the one-channel case does,
to a good approximation.

For the N -channel case, we consider a Hamiltonian H0 with a continuous spec-
trum of multiplicity N . We assume for our present discussion that the lower bounds
on all of these spectra are at zero; the case of differing thresholds (onset values of
the final decay channels) slightly complicates the discussion of analyticity (Aguilar
and Combes, 1971; Balslev and Combes, 1971; Simon, 1972), as mentioned above.
We furthermore assume that there are N discrete states embedded in these continua,
but we admit coupling between the different channels, since this possibility gives
rise to the well-known C P violation effects and other similar physical phenomena
involving symmetry breakdown in decay processes. The physical idea is that we
have several types of initial resonant states which decay into a set of continuum
final states.

To formulate this problem, we consider an initial state in the finite dimensional
subspace spanned by the N discrete eigenstates of H0:

|ψ0〉 =
N∑

α=1

ααϕa. (17.53)

According to the Wigner–Weisskopf method, the probability of decay can be
described as follows.

One can argue that into any channel α, the probability of decay is given by

pD
α (t) =

∫ ∞

0
dλ|〈λ, α|e−i Ht |ψ0〉|2 (17.54)
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(a similar formulation is discussed in Antoniou et al., 1993), and the total decay
into all channels is

pD (t) =
∑
α

∫ ∞

0
dλ|〈λ, α|e−i Ht |ψ0〉|2 (17.55)

= 1−
∑
α

|〈ϕa|e−i Ht |ψ0〉|2,

since the set
{| ϕα >, |λα〉

}
is complete. Therefore,∑

α

|〈ϕα|e−i Ht |ψ0〉|2 +
∑
α

∫ ∞

0
dλ|〈λ, α|e−i Ht |ψ0〉|2 = ‖e−i Ht | ψ0〉‖2 = 1.

Since ψ0 is given by Eq. (17.53), what we must study in order to evaluate Eq.
(17.54) and Eq. (17.55) are the matrix elements 〈ϕα|e−i Ht |ϕβ〉. This finite matrix
can be thought of as the evolution e−i Ht of the system restricted to the subspace
spanned by

{|ϕα〉
}
, sometimes called the reduced evolution. It is this evolution

law which is expected to satisfy the semigroup law for an irreversible process.
We shall show in the following that this cannot be true in the Wigner–Weisskopf
method, and moreover, even in the pole approximation (which does satisfy this
requirement to a very good approximation in the single-channel case), deviations
from the semigroup law can be very large.

Let us consider again the reduced resolvent matrix obtained by the Laplace
transform of

〈ϕα|e−i Ht |ϕβ〉,
obtained as in Eq. (17.11):

Rαβ (z) =
〈
ϕα

∣∣∣∣ 1

z − H

∣∣∣∣ϕβ

〉
. (17.56)

This matrix is a set of functions of the complex variable z analytic (as seen from
the representation Eq. (17.17)) in the cut plane. Using the same methods employed
to obtain Eq. (17.24), we may define the second sheet continuation of Rαβ (z) to
construct RI I

αβ . It is then convenient to define a matrix W I I
αβ (z) in terms of RI I

αβ , so
that as a matrix equation,

RI I (z) = 1

z −W I I (z)
. (17.57)

The poles of this matrix-valued function occur at values of z for which it is equal
to an eigenvalue of the matrix W I I (z). We shall argue that the N × N matrix
residues at different pole values are, in general, not orthogonal, and therefore that
the semigroup property is not obeyed even in pole approximation.



320 Decay scattering

Let us use the fact that (almost) every finite matrix, Hermitian or not, has
a set of right and left eigenvectors with eigenvalues ωα, with α running from
one to N . Denoting the left and right eigenvectors of W I I (z), respectively, by

L〈α, z|, |α, z〉R , where we take into account the explicit z dependence of the matrix
W I I (z) , we have

W I I (z) |α, z〉R = ωα (z) |α, z〉R (17.58)

and

L〈α, z|W I I (z) = ωα (z)L 〈α, z|. (17.59)

Clearly,

L〈β, z|W I I (z) |α, z〉R = ωa (z)L 〈β, z | α, z〉R (17.60)

= ωβ (z)L 〈β, z | α, z〉R,
which can be valid only if

L〈β, z | α, z〉R = 0 (17.61)

for ωα (z) �= ωβ (z). Taking into account this orthogonality, we see that we can
construct a finite dimensional spectral representation, at any point z, for the non-
Hermitian matrix

W I I (z) =
∑
α

ωα (z) Qα (z) ,

where the

Qα (z) = |α, z〉R L〈α, z|
L〈α, z | α, z〉R

satisfy

Qα (z) Qβ (z) = Qα (z) δαβ.

The reduced resolvent may be represented in the form

RI I (z) =
∑
α

Qα (z)

z − ωα (z)
, (17.62)

for which poles occur at the points satisfying z = ωα (z). If this condition is true
at some point z for some α, it is generally true that z �= ωβ (z) for β �= α. If
we search for a second pole, we may find one at some other point in the complex
plane, e.g. z′, for which we may suppose, for example, that z′ = ωβ

(
z′
)
. This

process may be continued until we have located all of the poles of the reduced
resolvent. The residue of the first pole at z = ωα (z) has a residue proportional
to Qα (z), and the residue of the second pole has residue proportional to Qβ

(
z′
)
.

While Qα (z) Qβ (z) is zero for ωα (z) �= ωβ (z) (two poles at the same point z),
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there is no reason why Qα (z) Qβ

(
z′
)

must be zero, and therefore the pole residues
from different channels in the pole approximation will not, in general, be mutually
orthogonal. Extracting the pole contributions from the inverse Laplace transform,
as we did for the single-channel case,

1

2π i

∫
C

e−i zt R (z) dz ∼=
∑
α

e−i zα t

1− ω′α (za)
Qα (zα) , (17.63)

where {zα} are the pole positions, we see that (assuming, for weak interactions,
ω′α (zα) << 1, for example) the reduced evolution has the matrix valued form

Ured (t) ∼=
∑
α

e−i zα t Qα (zα) . (17.64)

Repeated application of this reduced evolution is then

Ured (t2)Ured (t1) ∼=
∑
aβ

e−i zα t2e−i zβ t1 Qα (zα) Qβ

(
zβ

)
. (17.65)

Although Qα (zα)
2 = Qα (zα), as we have pointed out, Qα (zα) Qβ

(
zβ

) �= 0,
so that even in the pole approximation, for more than one channel, the semi-
group property is not valid. In the following section, we estimate this effect in a
multichannel Lee–Friedrichs model.

17.5 Wigner–Weisskopf method with many-channel decay: the
Lee–Friedrichs model

Let us use a Lee–Friedrichs model for an N -channel system to illustrate this
point. In this model, we may estimate the departure from the semigroup prop-
erty and show that in at least one careful set of experiments—in particular, in the
two-channel case—the deviation predicted is larger than the experimental error.

The Lee–Friedrichs model, as in Eq. (17.30) and Eq. (17.31), is defined for the
N -channel case by excluding all final state interactions. For

H = H0 + V, (17.66)

the matrix elements

〈λα|V |λ′β〉 = 0 (17.67)

for all α, β, and we shall take, as before (in the subspace),

〈ϕα|V |ϕβ〉 = 0 (17.68)

for all α. β, i.e. V does not connect the bound states in different channels as well.
(If we did not assume Eq. (17.68), we would have a mass matrix instead of a shift;
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the channels could then be chosen to be their unperturbed mass eigenstates; we
would then have only shifts in each channel.)

Again, using the resolvent equation identity, the reduced resolvent in this model
takes on the form

Rαβ (z) =
〈
ϕα

∣∣∣∣ 1

z − H

∣∣∣∣ϕβ

〉
=

〈
ϕα

∣∣∣∣ 1

z − H0

∣∣∣∣ϕβ〉+ 〈
ϕα

∣∣∣∣ 1

z − H0
V

1

z − H

∣∣∣∣ϕβ〉 (17.69)

= 1

z − λα

δαβ + 1

z − λα

∑
γ

∫
dλ〈ϕα|V |λγ 〉

〈
λγ

∣∣∣∣ 1

z − H

∣∣∣∣ϕβ

〉
.

We therefore need〈
λγ

∣∣∣∣ 1

z − H

∣∣∣∣ϕβ

〉
=

〈
λγ

∣∣∣∣ 1

z − H0
V

1

z − H

∣∣∣∣ϕβ

〉
(17.70)

= 1

z − λ

∑
γ ′
〈λγ |V |ϕγ ′ 〉Rγ ′β (z) .

Note that in Eq. (17.70) we have used the fact that, by our assumption, the
continuous spectrum of H0 is N -fold degenerate.

Substituting Eq. (17.70) into Eq. (17.69), we find

Rαβ = 1

z − λα

δαβ + 1

z − λα

∑
γ

∫
dλ
〈ϕα|V |λγ 〉〈λγ |V |ϕγ ′ 〉

z − λ
Rγ ′β (z) . (17.71)

Defining the matrix

ωαβ (λ) =
∑
γ

〈ϕα|V |λγ 〉〈λγ |V |ϕβ〉, (17.72)

it follows from Eq. (17.71) that∑
γ

hαγ (z) Rγ β (z) = δαβ, (17.73)

where

hαγ (z) = (z − λα) δαγ −
∫

dλ
ωαγ (λ)

z − λ
. (17.74)

The proofs that there are no zeros of the determinant of hαβ (z) for z in the
first sheet (cut plane) are similar to those of the single-channel case. The analytic
continuation of haβ (z) to the second sheet follows the same method as in Eq.
(17.42), i.e.
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hαβ (μ+ iε)− hαβ (μ− iε) = −
∫

ωαβ (λ)

{
1

μ+ iε − λ
− 1

μ− iε − λ

}
dλ

= 2π iωαβ (μ) .

Again, assuming the elements ωαβ (μ) are boundary values on the real line of a
set of functions analytic in the lower half plane (in some region containing the
singularities), i.e. a matrix-valued analytic function ω (z), we can define the second
sheet function in the same way as in Eq. (17.44):

hI I
αβ (z) = hαβ (z)+ 2π iωαβ (z) . (17.75)

The second sheet reduced resolvent is then defined in terms of the second sheet
function Eq. (17.75) as ∑

γ

hI I
αγ (z) RI I

γ β = δαβ, (17.76)

and RI I
αβ will have a singular determinant where the determinant of hαβ (z)

vanishes. This vanishing can be expressed in terms of a matrix Wαβ (z) defined by

hI I
αβ (z) = zδαβ −W I I

αβ (z) ; (17.77)

the singularities in RI I (z) then occur on condition that the eigenvalue ωα (z) of
W I I

αβ (z) has the property

zα = ωα (z) |z=zα , (17.78)

that is, at the point z where the matrix has an eigenvalue equal to that value of z. As
we have pointed out, this condition may be satisfied at several different values of z
(or none, in which case there will be no resonance poles), and although the spec-
tral factors associated with each eigenvalue at a point are orthogonal, the spectral
factors associated with the eigenvalues at different points z will not, in general, be
orthogonal.

Let us consider in detail the case of N = 2 and use the formulas of Eq. (17.72),
Eq. (17.74) and Eq. (17.75) with λ1 = λ2 ≡ λ0 to estimate the lack of orthogonal-
ity of Q1 (z1) and Q2 (z2), and thus the violation of the semigroup property in pole
approximation. This case is of particular interest in the investigation of the decay
of the neutral K meson system. The neutral K meson system consists of two parti-
cle (resonance) types, the K 0 and K̄ 0, a meson and its antiparticle which differ by
the sign of a quantum number called hypercharge in the SU (3) classification of the
scalar meson octet (eight-dimensional representation of SU (3)). (See, for example
Ne’eman, 1967; Gell-Mann and Ne’eman, 1964.) This system decays into two π

mesons (uncharged or one positive, one negative), or into three π mesons (of zero
total charge). The π mesons have zero hypercharge, a quantity not conserved in
weak interactions, but both the K mesons and the π mesons have negative parity
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in the sense that the state vectors in the quantum mechanical Hilbert space rep-
resenting these particles change sign under space reflection. Thus, the decay into
two π mesons appears to violate parity conservation in the interaction that induces
the decay. It was hoped before 1964 (see Cahn and Goldhaber, 1989; Martin and
Shaw, 1997, for further discussion) that the combination of charge conjugation, by
which the signs of all charges are inverted, including the sign of the hypercharge,
and parity reflection, called C P , would be a symmetry obeyed by this interac-
tion. Although the deviations are small, of order one in 103, the C P symmetry
is not obeyed (Christenson et al., 1964). This admits a non-orthogonality of the
matrices corresponding to the pole residues, and therefore a failure of the semi-
group property in K meson decay (Horwitz and Marchand, 1969; Horwitz and
Mizrachi, 1974; Winstein et al., 1997; Cohen and Horwitz, 2001; estimates based
on Hagiwara et al., 2002).

The experiments carried out at Fermilab (Winstein et al., 1997) are accurate
enough to rule out the applicability of the Wigner–Weisskopf model as a descrip-
tion for the decay process. This experiment represents a very fundamental difficulty
in the application of the theory. It provides a simple and direct demonstration that
irreversible processes actually exist on a fundamental level in particle decay to a
very high accuracy and do not constitute just an effective macroscopic idealiza-
tion. Furthermore, it demonstrates that although Wigner–Weisskopf theory may
well apply on a rigorous quantum mechanical level to reversible processes gov-
erned by Hamiltonian evolution in the standard Schrödinger theory, for which one
sees the short-time Zeno effect (Wilkinson et al., 1997; Fischer et al., 2001), it does
not apply to the irreversible process involved in weak nonleptonic particle decay
for which the time dependence can be experimentally studied. It will be therefore
necessary to develop some new theoretical techniques, some of which we shall
describe in the next sections.

To estimate the non-orthogonality predicted by the Wigner–Weisskopf model,
we use the Lee–Friedrichs model and specialize our formulas to two channels.
We then proceed to estimate the pole residues and the magnitude of their non-
orthogonality.

According to Eq. (17.76), the poles of RI I
αβ are determined by the zeros of the

determinant of hI I
αβ , now a 2 × 2 matrix. In the neighborhood of one of the poles

(say, z p for p = 1, 2), let us write

det hI I (z) = (
z − z p

)
�

(
z p

)
, (17.79)

where �
(
z p

)
is the derivative of the determinant, and using the easily derived

formula (
α b
c d

)−1

= 1

(ad − bc)

(
d −b
−c a

)
,
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we see that the residue of the pole in RI I is

gp

(
z p

) = 1

�
(
z p

) (
hI I

22 −hI I
12

−hI I
21 hI I

11

)
. (17.80)

The quantity � can be estimated as follows. One can apply the well-known formula

δ ln det X = Tr (X−1δX),

easily seen as follows. By definition,

det (X − δX)− det X = δ det X,

so that

δ det X = det
(
1+ X−1δX

)− det X,

and the result then follows from

det
(
1+ X−1δX

) = 1+ Tr
(
X−1δX

)+ O
(
δX2

)
.

The derivative of the determinant is then

�(z) = ∂

∂z
det hI I Tr

(
hI I−1 ∂hI I

∂z

)
= Tr

[(
hI I

22 −hI I
12

hI I
21 hI I

11

)(
∂hI I

∂z

)]
, (17.81)

where det hI I has canceled. Since, by Eq. (17.75),

hI I
αβ (z) = (z − λ0) δαβ +

∫
dλ

ωαβ

z − λ
+ 2π iωαβ (z) , (17.82)

we have

∂hI I
αβ

∂z
= δαβ +

∫
dλ

ωαβ

(z − λ)2 + 2π i
∂ωαβ (z)

∂z
. (17.83)

By distorting the contour (0,∞) of the λ integration to the lower half plane, the
residue remaining in passing the double pole is −2π i ∂ωαβ(z)

∂z , canceling the third
term (Horwitz and Mizrachi, 1974; Cohen and Horwitz, 2001).

The smooth contribution of the background integral that remains can be esti-
mated by taking into account orders of magnitude of the matrix elements appearing
in

ωαβ (λ) =
∑
γ

〈ϕα|V |λγ 〉〈λγ |V |ϕβ〉,
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i.e.

〈λ1|V |ϕ1〉 = O (g)

〈λ2|V |ϕ1〉 = O (gα)

〈λ1|V |ϕ2〉 = O (gα) (17.84)

〈λ2|V |ϕ2〉 = O (g) ,

where g is the weak decay coupling constant (or order 10−6 in units of eV ) and α

measures the relative C P violation
(
α2 ∼ 10−3

)
(Charpak and Gourdin, 1967).

Thus,

∂hI I
αβ

∂z
= 1+ O

(
g2

)
, (17.85)

so, from Eq. (17.81), at each pole position,

�
(
z p

) = TrhI I
(
z p

) = O
(
g2

)
, (17.86)

and the pole residues are

gp
(
z p

) = 1

TrhI I

(
hI I

22 −hI I
12

hI I
21 hI I

11

)
. (17.87)

In contrast, as we have pointed out, by Eq. (17.76) and Eq. (17.77), these poles
occur at the eigenvalues of W I I (z) when z satisfies the condition Eq. (17.78), here,
for α = 1 or 2. We define the right and left eigenfunctions |KLα (z)〉 and |KRα (z)〉
for α = 1, 2 at any z, and the (non-Hermitian) projections

Qα (z) = |KRα (z)〉〈KRα (z) |. (17.88)

The reduced resolvent can then be written in the spectral form

1

z −W I I (z)
=

∑
α=1,2

1

z − ωa (z)
Qα (z) (17.89)

at any z in the lower half plane. At the poles, z = wα (z), in particular, at z1 and z2.
Also note that, in general (e.g. for the C P-violating case), at z1, z1 �= w2 (z1), and
at z2, z2 �= z1 (z2). The pole residues are then at z1

1

1− w′ (z1)
Q1 (z1) (17.90)

and at z2

1

1− w′2 (z2)
Q2 (z2) . (17.91)
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We now proceed to estimate the non-orthogonality of the pole residues. The
matrix W I I is given by

W I I
αβ = δαβz − hI I

αβ = λ0δαβ +
∫

dλ
ωαβ (λ)

1− λ
+ 2π iwαβ (z) ,

and therefore

W ′ I I
αβ (z) = −

∫
dλ

ωaβ (λ)

(z − λ)2 − 2π iω′αβ (z) .

The matrix W ′ I I is therefore second order in the weak coupling constant, and its
eigenvalues are very small compared with unity. The residues Eq. (17.88) and Eq.
(17.89) are therefore well approximated by the non-Hermitian projections Q1 (z1)

and Q2 (z2) alone. The eigenstates of W I I = z · 1− hI I are the eigenstates of hI I .

We shall relate these eigenstates, which we shall call |KS〉 and |KL〉, correspond-
ing to the short- and long-lived states, respectively (the C P+ state, admitting a
two-pion decay is short lived relative to the C P− state, which corresponds to a
three-pion decay), to the unperturbed eigenstates of C P±, which we shall call,
respectively, |K1〉 and |K2〉. The latter states have the property that for these, ω0

12 =
ω0

21 = 0 (for a V 0 which contains no C P violation); the corresponding matrix h0 I I

is then diagonal:

h0 I I
11 = z − λ0 −

∫
dλ

ω11
0

z − λ
− wπ iω11

0

h0
12

I I = h0
21

I I = 0 (17.92)

h0
22

I I = z − λ0 −
∫

dλ
ω22

0

z − λ
− 2π iω22

0.

The states |K1〉 and |K2〉 corresponding to the eigenvalues h0 I I
11 and h0 I I

22 are, in
our two-state representation, (

1
0

)
and

(
0
1

)
. (17.93)

The eigenstates of the interacting form of the matrix

hI I =
(

h11
I I h12

I I

h21
I I h22

I I

)
for null eigenvalue are given by(

u
υ

)
=

(
1

− h11
I I

h12
I I

)
=

(
1

− h21
I I

h22
I I

)
(17.94)
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since the determinant is zero at the pole positions. These eigenvectors obviously
are linear combinations of the two states given in Eq. (17.93). Since, as we have
seen, h11

I I and h22
I I determine the linear combination

|KS〉 = |K1〉 + εS|K2〉√
1+ |εS|2

(17.95)

and

|KL〉 = |K2〉 + εL |K1〉√
1+ |εL |2

, (17.96)

where we have written the result in accordance with the standard notation of Wu
and Yang (1964). In our case, at the corresponding pole positions,

εS = −h21
I I (S)

h22
I I (S)

(17.97)

and

εL = −h12
I I (L)

h11
I I (L)

, (17.98)

where we have again used the relation h11
I I h22

I I = h12
I I h21

I I at the pole positions,
and written the eigenfunctions in a way making explicit the small quantities. The

magnitudes of the ε’s are
O(g2α)
O(g2)

= O (α), where α is the order of the C P-violating

decay amplitude (it appears only linearly in the off-diagonal elements).
In the same way, we can compute the left eigenvectors of hI I to obtain

〈KS| = 〈K1| + ε̃S〈K2|√
1+ |ε̃S|2

(17.99)

〈KL | = 〈K2| + ε̃L〈K1|√
1+ |ε̃L |2

,

where

ε̃S = −hI I
12 (S)

hI I
22 (S)

(17.100)

and

ε̃L = −h21
I I (L)

h11
I I (L)

. (17.101)

We are now in a position to evaluate the non-orthogonality of the residues. As
we have seen in our discussion of the residues, they correspond to the matrix
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coefficients of z − zP at the pole positions P = S, L and have the form (from
Eq.(17.87))

gP = 1

�

(
h22

I I (P) −h12
I I (P)

−h21
I I (P) h11

I I (P)

)
(17.102)

at the pole positions P = S, L . Factoring out h22
I I (S) from the matrix for gS and

h11
I I (L) from the matrix for gL , these residue functions can be written as

gS = h22
I I (S)

� (S)

(
1 ε̃S

εS εS ε̃S

)
(17.103)

and

gL = h11
I I (L)

� (L)

(
εL ε̃L εL

ε̃L 1

)
. (17.104)

Now, multiplying the residues, we obtain

gSgL = h11
I I (L) h22

I I (S)

� (S)� (L)
(εL + ε̃S)

(
ε̃L 1

εS ε̃L εS

)
(17.105)

and

gL gS = h11
I I (L) h22

I I (S)

� (S)� (L)
(ε̃L + εS)

(
εL ε̃LεS

1 ε̃S

)
. (17.106)

In both of these expressions, the matrices contain a term of order one, and the
coefficients

h11
I I (L) h22

I I (S)

� (S)� (L)

are of order unity. It therefore remains to estimate (εL + ε̃S) and (ε̃L + εS) . Let us
consider the first of these:

(εL + ε̃S) = εS

(
1+ ε̃S

εL

)
= εL

[
h12

I I (zS) h11
I I (zL)

h12
I I (zL) h22

I I (zS)
+ 1

]
. (17.107)

Since |zS − zL | = O
(
g2

)
,

h12
I I (zS)− h12

I I (zL) = O
(
g4α

)
,

and therefore,

h12
I I (zS)

h12
I I (zL)

= h12
I I (zL)+ O

(
g4α

)
h12

I I (zL)
= 1+ O

(
g2

)
. (17.108)
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Finally, we estimate the second factor as follows. For the imaginary part of zL ,S

small compared with the real part, we can approximate the formulas for h11
I I (zL)

and h22
I I (zS) by

h11
I I (zL) ∼= (zL − λ0)− P

∫
ω11

(
λ′
)

λL − λ′
dλ′ + π iω11 (λL)

and

h11
I I (zS) ∼= (zS − λ0)− P

∫
ω22

(
λ′
)

λS − λ′
dλ′ + π iω22 (λS) ,

where λS,L are the real parts of the pole values. Furthermore, from the eigenvalue
conditions and the formulas for the matrix elements of the hI I ’s, we see that

zL = λ0 + P
∫

ω22
(
λ′
)

λL − λ′
dλ′ − π iω22 (λL)+ O

(
g2α2

)
(17.109)

zS = λ0 + P
∫

ω11
(
λ′
)

λS − λ′
dλ′ − π iω11 (λS)+ O

(
g2α2

)
,

where we have used εS,L = O (α). Hence

h11
I I (zL) ∼= P

∫
ω22

(
λ′
)− w11

(
λ′
)

λL − λ′
dλ′ + π i (ω11 (λL)− ω22 (λL))+ O

(
g2α2

)
h22

I I (zS) ∼= P
∫

ω22
(
λ′
)− ω11

(
λ′
)

λS − λ′
dλ′ + π i (ω11 (λS)− ω22 (λS))+ O

(
g2α2

)
.

(17.110)

Since |λS − λL | = O
(
g2

)
, we have

h11
I I (zL)+ h22

I I (zS) = O
(
g2α2

)+ O
(
g4

)
,

or
h11

I I (zL)

h22
I I (zS)

= −1+ O
(
α2

)
. (17.111)

Putting these results together, we see that

εL + ε̃S = εL

(
1+ h11

I I (zL) h12
I I (zS)

h22
I I (zS) h12

I I (zL)

)
.

The first factor in the second term is
(−1+ O

(
α2

))
, and the second is(

1+ O
(
α2

))
, so that (since εL is O (α))

εL + ε̃S = O
(
a3

)
. (17.112)

A similar argument can be made for ε̃L + εS. We see that the non-orthogonality
of gS and gL is far from negligible; the products depend only on the C P violation
amplitude, and not on the weak coupling constant.
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The idempotence properties for the residues can be similarly checked and are
valid up to O

(
g2

)
.

Some of the crucial experiments with K meson decay proceed as follows. The
beam of K 0 mesons produced by collisions in an accelerator decay rapidly to two
pions, corresponding to the KS component of the linear superposition making up
the beam. The remaining KL component decays primarily into three pions, but due
to C P violation, there is a small component of two-pion decays (the volume of
phase space for three-pion decays is smaller than that for two-pion decays). The
beam is passed through a block of material containing heavy nuclei, such as cop-
per, and the special linear combination of K 0 and K̄ 0 making up the KL component
is disturbed by the scattering of the K 0 and K̄ 0 components on the nuclei, which
involves phase shifts corresponding to the strong interactions sensitive to the oppo-
site sign of hypercharge of these states. Thus, an admixture of KS is regenerated
(and the apparatus is called a regenerator). The short-lived decay of this KS beam
then interferes coherently with the C P-violating two-pion decay of the older KL

beam, which was unaffected by the regeneration.
This process of regeneration takes place at a sequence of the order of 108 atomic

scattering sites, and between each scattering the beam is presumed to develop
according to the reduced evolution law. The deviations from semigroup behav-
ior are brought into evidence at each scattering center when the reduced evolution
starts to flow from the new initial conditions. The sum of these deviations add
up over all these scatterings and give rise to a disagreement with experiment
of the order of a few percent. In contrast, the model of Wu and Yang (1964),
which is an exact semigroup, since it is constructed of the exponential of a non-
self-adjoint effective 2 × 2 matrix Hamiltonian, leads to a very accurate fit to
the data (Winstein et al., 1997). Details of these calculations are in papers by
Horwitz, Mizrachi and Cohen (Horwitz and Mizrachi, 1974; Cohen and Horwitz,
2001; numerical estimates based on Hagiwara, 2002), where further estimates are
made for the deviations from experiment in the exit channel of the regenerator due
to the non-orthogonality of the residues.

In view of the inadequacy of the Wigner–Weisskopf model, even in pole approx-
imation, for the more than one channel decay system, the development of a theory
for unstable systems which contains the property of exact semigroup evolution
becomes very important. In the following sections, we describe two relatively
recent developments for achieving the semigroup property for the evolution of an
unstable system. These developments have fundamental importance, since, as we
have pointed out, the semigroup property corresponds to irreversible evolution. It
was for this reason that we gave considerable detail to the computation of the esti-
mates of the deviation from the semigroup law in the framework of the approach
commonly used in the application of quantum theory to the description of unstable
systems.
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17.6 Gel’fand triple

We have shown in the previous sections that the Wigner–Weisskopf theory does not
lead to a semigroup property for the decay law of an unstable system. To achieve
a semigroup law, one may seek a function in some space which corresponds to the
complex pole, and for which the evolution has exact exponential decay.

An important development in this direction is the introduction of the Gel’fand
triple construction, for which an element of a generalized linear space larger than
the original Hilbert space represents the resonance, and the extension of the unitary
evolution to this element results in an exact exponential decay. As we shall see, this
functional is, in general, not useful for the description of a quantum mechanical
problem, since scalar products and expectation values of physical observables are
not available in this generalized space. It is, however, an important concept, and in
some mathematical formulations, the space of generalized states has turned out to
be useful. To illustrate the construction, we shall again utilize the Lee–Friedrichs
model discussed in the previous section.

We have seen that the reduced resolvent R (z), defined in Eq. (17.33) may
acquire a pole in its analytic continuation to the second Riemann sheet. Since this
function is the expectation value of the resolvent operator

G (z) = 1

z − H
, (17.113)

the process of analytic continuation appears to provide a complex eigenvalue for
the Hermitian operator H ; this is, of course, not possible in the Hilbert space but
indicates that some type of extension could be consistent with a complex eigen-
value. We show in the following section how this can happen, most simply in
the rank one Lee–Friedrichs model (Bailey and Schieve, 1978; Baumgartel, 1978;
Horwitz and Sigal, 1980) discussed in the previous section.

As we have remarked, the occurrence of a pole in G (z) suggests the existence,
in some sense, of a complex eigenvalue for H . A self-adjoint operator in a Hilbert
space cannot, of course, have a complex eigenvalue; we shall see in the following
discussion precisely in what sense this statement can be true.

Let us search for an eigenfunction f (z), a vector parametrized by the complex
number z, for which

H | f (z)〉 = z| f (z)〉. (17.114)

Since H = H0 + V , where in this model V does not connect the discrete eigen-
state |ψ0〉 of H0 with itself and has no continuum–continuum matrix elements, the
continuum part of Eq. (17.114) is:

〈λ|H0 + V | f (z)〉 = λ〈λ | f (z)〉 + 〈λ|V |ψ0〉〈ψ0 | f (z)〉 (17.115)

= z〈λ | f (z)〉,
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from which it follows that

〈λ | f (z)〉 = 1

z − λ
〈λ|V |ψ0〉〈ψ0 | f (z)〉. (17.116)

We now consider the discrete component of Eq. (17.114). Taking the scalar
product with 〈ψ0|, and remembering that 〈ψ0 | λ〉 = 0, we obtain∫

dλ〈ψ0|V |λ〉〈λ | f (z)〉 + λ0〈ψ0 | f (z)〉 = z〈ψ0 | f (z)〉,

and substituting the result Eq. (17.116), we find the condition{
(z − λ0)−

∫
dλ
|〈λ|V |ψ0〉|2

z − λ

}
〈ψ0 | f (z)〉 = 0. (17.117)

The coefficient of 〈ψ0 | f (z)〉 is exactly what we called h (z) in Eq. (17.39);
the condition that h (z) vanish corresponds to the resonant pole condition and can
be achieved only by analytic continuation to the second Riemann sheet. In Eq.
(17.114) the factor 〈ψ0 | f (z)〉 cannot vanish; according to Eq. (17.116) this would
imply vanishing of the continuum part of f (z) as well, so that the vector f itself
would be zero. Hence, the condition for the complex eigenvalue is the same as that
for the complex pole of the reduced resolvent. We must continue the eigenvalue
equation to the second Riemann sheet in order to achieve this. The analytic contin-
uation of Eq. (17.114) is not a trivial matter; a vector in the Hilbert space defined
by a relation such as Eq. (17.116) can be analytically continued only in the sense
of considering its scalar product with all other vectors in the Hilbert space, and
the integration over λ required for carrying out the scalar product then admits the
analytic continuation to the second Riemann sheet. Let us examine this expression,
taking the scalar product with some vector g:

〈g|H | f (z)〉 = z〈g | f (z)〉. (17.118)

We have studied two parts of this scalar product, consisting of the continuum and
the discrete parts. For z in the upper half plane, it is easy to see that f (z) is a very
well-defined vector with finite norm in the Hilbert space. However, to satisfy the
“eigenvalue” condition, we had to carry out an analytic continuation. The analytic
continuation of 〈g | f (z)〉 is carried out as follows:

〈g | f (z)〉 = 〈g | ψ0〉〈ψ0 | f (z)〉 +
∫

dλ〈g | λ〉〈λ | f (z)〉 (17.119)

= 〈g | ψ0〉〈ψ0 | f (z)〉 +
∫

dλ〈g | λ〉〈λ|V |ψ0〉
z − λ

〈ψ0 | f (z)〉.

Following the procedure of Eq. (17.42), it is clear that analytic continuation through
the cut on the positive half line will pick up a factor of 〈g | λ〉 upon crossing the
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cut, and carry the function defined as its analytic continuation (assuming it is the
boundary value on the real line of a function analytic in at least part of the lower
half plane) into the lower half plane.

The Riesz theorem (Riesz and Sz.-Nagy, 1955) states that if there is a bounded
linear functional L (g) mapping vectors of the Hilbert space into the complex
numbers, for which

L (ag) = aL (g) , |L (g) | ≤ K‖g‖, (17.120)

for all g in the Hilbert space H, then there is a unique f in the Hilbert space for
which

L (g) = 〈 f | g〉. (17.121)

The functionals L are called dual, since they constitute also a linear space; it is a
special property of Hilbert spaces that they are self-dual; the f ’s of Eq. (17.121) are
elements of the Hilbert space themselves. However, in the case we have studied,
although the analytic continuation of 〈g | f (z)〉 is linear in g, this procedure
cannot be carried out for all g, since the function 〈g | λ〉 is the boundary value of an
analytic function only for a subset of g’s in H. Hence, the analytic continuation of
〈g | f (z)〉 does not define a vector in the original Hilbert space. If the value of this
function is known for all gεD, where D ⊂ H, a proper subspace, then Eq. (17.121)
defines an element of a larger space (Gel’fand and Shilov, 1967) which we may call
H̄, so that

D ⊂ H ⊂ H̄.

This construction is called a Gel’fand triple, and we see that the “state” corre-
sponding to the resonance, the continuation of f (z), is an element of a Gel’fand
triple. According to Eq. (17.118), continued to the location of the pole in the lower
half plane (where it can be satisfied), the Hamiltonian operator (now extended to
operate on such elements) has a complex eigenvalue, and the extension of the evo-
lution operator exp−i Ht would induce an exact exponential decay (semigroup) on
this “state” (Bohm, 1978; Parravicini et al., 1980; Bohm, 1980, 1981; Bohm and
Gadella, 1989; Bohm et al., 1989; Bohm and Kaldass, 2000).

We have therefore succeeded in finding a representation of the unstable state
which evolves according to an exact semigroup property, but the “state” defined in
this way is not an element of a Hilbert space. It is an element of a Banach space,
in which a norm can be defined (in this case related to a maximum modulus norm
on a complex variable) (Baumgartel, 1978; Horwitz and Sigal, 1980), but no scalar
products or expectation values can be defined in general; only bilinear forms such
as the continuation of 〈g | f (z)〉 can be defined, where g belongs to a subset of
elements of H for which 〈g | λ〉 are the boundary values of analytic functions in
λ at least in a region of the lower half plane including the resonance pole. There
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are, however, cases in which the Gel’fand triple states lie in a Hardy class of states
(Bohm and Gadella, 1989), which are Hilbert spaces (of a special type which we
shall describe later, after Eq. (17.169)), and in such cases, more information may
become available. Hence we cannot deduce properties of the resonant state, such
as its locality in coordinate or momentum space.

There are important physical problems for which this information is essential.
For example, an electron on a conducting sheet of material with embedded elec-
trodes that create a potential well (a so-called quantum dot) may pass the region of
the well as a resonance. It is possible to detect the resulting current and find sig-
natures of smooth or chaotic behavior. For example, Altshuler (Agam et al., 1995,
1996) has conjectured that if the resonance is not localized in momentum space
(so that it may be localized in coordinate space), one may find chaotic behavior,
based on the analog of a classical billiard, a localized object in a closed boundary
(of irregular shape). It therefore is important to find a description of a resonance
which can be represented in a Hilbert space, for which one can define observables
in terms of self-adjoint operators, and scalar products and expectation values are
well defined.

In the next section we develop the framework for such a theory, directly applica-
ble to some important problems, and for which current research indicates extension
to a wider class of applications (Strauss, 2003, 2005a, 2005b, 2005c; Baumgartel,
2006).

17.7 Lax–Phillips theory

In the previous sections we have pointed out the importance of describing the state
of a resonance as a vector in a Hilbert space, for which the evolution is of the
form of a semigroup. Such a theory was developed by Lax and Phillips in 1967 for
application to classical wave equations, such as electromagnetic or acoustic waves
(Lax and Phillips, 1967). We shall describe this theory in this section and show
that the structure can be extended to the quantum theory. The development of this
theory in the quantum framework is under rapid development at present and shows
indications of reaching wide classes of non-equilibrium physical phenomena.

In their study of wave equations, Lax and Phillips (1967) showed how to write
second-order wave equations in a way that defines an effective Hamiltonian evolu-
tion. Given such an evolution, it was possible to characterize the system in terms
of invariant subspaces of a Hilbert space. The notion of invariant subspaces is
fundamental to the development of theories for unstable systems which admit a
semigroup evolution law.

There has been considerable effort in recent years in the development of the the-
oretical framework of Lax–Phillips scattering theory for the description of quantum
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mechanical systems (Horwitz and Piron, 1993; Eisenberg and Horwitz, 1997;
Strauss, 2003, 2005a, 2005b, 2005c; Baumgartel, 2006).

As an example of how an effective Hamiltonian evolution can be introduced into
the study of wave equations, consider the wave equation in three dimensions, valid
in some exterior domain G (Lax and Phillips, 1967):

utt (x, t)−�u (x, t) = 0,

where � corresponds to the Laplacian, for all x on some bounded region G (R),
for which |x | < R. Subscripted letters indicate partial derivatives (e.g. ux (x, t) ≡
∂xu (x, t)), and we suppose that u (x, t) satisfies the boundary condition u (x, t) =
0 on the boundary ∂G of this region. The boundaries of this region define an “exte-
rior” problem, where the wave motion is outside of regions of varying density
or speed of propagation. The “free” problem corresponds to a similar structure,
but with such unperturbed waves everywhere. We shall return to this point in our
discussion of the translation representations below, and its analog in the quantum
mechanical problem in Eq. (17.138) and what follows. Lax and Phillips (1967; see
also Reed and Simon, 1979) show that there is a conserved “energy norm” which
can be used to define a scalar product on a Hilbert space of solutions, and that the
evolution can be described in terms of the action of a one-parameter unitary group
acting on this space. This example forms a prototype of the structure of the general
Lax–Phillips theory, and we describe it briefly here.

The energy norm is defined as

E (u (t) , R) = 1

2

∫
G(R)

{|ux (x, t) |2 + |ut (x, t) |2}dx .

By multiplying the wave equation by ut and integrating over the space-time region
|x | < R + T − t, 0 < t < T , we can show that

E (u (T ) , R) ≤ E (u (0) , R + T ) ,

and by reversing the direction of time, that

E (u (T ) , R) ≥ E (u (0) , R − T ) .

Thus, if the initial values for u vanish in the ball |x | < R, then u (x, t) vanishes in
the region |x | < R − t , and if the total energy is finite, it has the same energy for
all time.

Let us now express this problem in terms of a pair of complex functions f ≡
{ f1, f2}, defined on the same space domain G, and write the energy norm as

‖ f ‖2
E =

1

2

∫
G

{|∂x f1|2 + | f2|2
}

dx .



17.7 Lax–Phillips theory 337

We then define a Hilbert space H as the (closed) set of functions in this norm with
compact support in G. Note that then both the derivative (gradient) of f1 squared
and f2 must be finitely integrable.

We now define the operator

A =
(

0 I
� 0

)
,

with domain of definition D (A) the set of all f treated as a two-dimensional vector
under the action of this matrix such that A f lies in H , i.e. has finite energy norm.
We now show that this matrix generates a unitary group U (t) on H , and that if
f is in D (A), when f1 = u (x, t) and f2 = ut (x, t), then u (x, t) satisfies the
second-order wave equation written above.

From the energy norm formula, we can write a scalar product

〈 f | g〉 = 1

2

∫
G

{
∂x f ∗1 ∂x g1 + f ∗2 g2

}
dx,

and therefore, by multiplying out A on the (two-dimensional) function f and
integrating by parts in G, we find

〈A f | g〉 = 1

2

∫
G

[
∂x f ∗2 ∂g1 − ∂x f ∗1 ∂x g2

]
dx,

so that

〈A f | g〉 = −〈 f | Ag〉,
and A is therefore a skew-Hermitian operator. Thus, A generates a unitary group
of operators {U (t)} for which

d

dt
U (t) f = AU (t) f,

and it is easy to see that the second component of this equation, for f1 = u (x, t)
and f2 = ut (x, t), assures that the wave equation is satisfied under this evolution.

In addition to the formulation of wave equations in the form of unitary evolution,
another essential feature of Lax–Phillips theory is that one can construct translation
representations for the unitary evolution, for which there are invariant subspaces
under its action, called ingoing and outgoing subspaces. This result is not surpris-
ing in view of the Huygens principle governing wave equations in odd-dimensional
spaces. To construct these subspaces, we choose ρ > 0 so that |x | < ρ contains ∂G
in its interior, and set Dρ

+ = U0 (ρ) D+ and Dρ
− = U0 (−ρ) D−, where D± are the

incoming and outgoing subspaces of the solutions in free space (the unperturbed
problem referred to above), and U0 (t) is the unitary propagation on the full unper-
turbed space. By construction,

[
U (t) f

]
(x), for f in Dρ

±, vanishes in the forward
(backward) cones
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|x | < t + ρ (t > 0)

|x | < −t + ρ (t < 0) ,

respectively. Then

U (t) Dρ
+ ⊂ Dρ

+ for t > 0

∩U (t) Dρ
+ = {0}

∪U (t) Dρ
+ = H ;

that is, Dρ
+ is an outgoing subspace, defined by successive inclusion. Similarly, Dρ

−
is an incoming subspace; these two subspaces are orthogonal.

As we shall show below, these properties provide the Lax–Phillips theory with
the power to describe resonances as irreversible phenomena, and the resonant state
as a state in a Hilbert space. Clearly, these properties would be desirable for the
description of quantum mechanical systems. The Huygens principle to assure the
outgoing, incoming and translation properties is not available for quantum mechan-
ical systems, but as we shall show below, similar arguments comparing free and
perturbed motion, with the additional assumption of the existence of wave opera-
tors, provide sufficient structure to develop the corresponding quantum theory.

The quantum Lax–Phillips theory (Strauss, 2003, 2005a, 2005b, 2005c; Baum-
gartel, 2006), constructed by embedding the quantum theory into the original
Lax–Phillips scattering theory (Lax and Phillips, 1967), describes a resonance
as a state in a Hilbert space, and therefore it is possible, in principle, to calcu-
late all measurable properties of the system in this state. Moreover, the quantum
Lax–Phillips theory provides a framework for understanding the decay of an unsta-
ble system as an irreversible process. It appears, in fact, that this framework
may be categorical for the description of irreversible processes on a fundamental
level.

In the following discussion, we distinguish the abstract Hilbert space and rep-
resentations in terms of L2 (square integrable) functions, since we shall be using
explicitly different types of representations. In preparation for this idea, we remind
the reader that, for a given physical state of the system, there corresponds a
vector—say, ψ in a Hilbert space—and this vector can be represented as a wave
function 〈x | ψ〉 ≡ ψ (x) or equally well as a function in momentum space,
〈p | ψ〉 ≡ ψ (p). Other complete sets may be used as well to represent the state
vector, such as energy and angular momentum eigenstates. These representations
have special properties. For example, in the x-representation, the position operator
X is diagonal, in the sense that 〈x |X |ψ〉 = x〈x | ψ〉, with similar properties for
the operator P in the p-representation, or energy and angular momentum operators(
e.g. H, J 2 andJz

)
in a representation provided by energy and angular momentum

eigenstates. In conventional quantum mechanical scattering theory, one thinks in
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terms of the evolution of a set of incoming states to a set of outgoing states, and
in terms of these (asymptotic) states, to describe the scattering with the so-called
scattering S-matrix. The Lax–Phillips theory defines incoming and outgoing repre-
sentations and defines an analogous S-matrix which relates these representations,
defined in terms of the property of translations along a line. With these ideas in
mind, we may proceed to define the basic ideas of the Lax–Phillips scattering
theory.

The scattering theory of Lax and Phillips (1967) assumes the existence of a
Hilbert space H of physical states in which there are two distinguished orthogonal
subspaces, D+ and D−, and a unitary evolution U (τ ), a function of the physical
laboratory time, with the properties

U (τ )D+ ⊂ D+ τ > 0

U (τ )D− ⊂ D− τ < 0

∩
τ
U (τ )D± = {0} (17.122)

∪
τ
U (τ )D± = H ,

where ∩ and ∪ correspond to the intersection and union of the subspaces (here
evolved by U (τ )). Thus, the subspaces D± are assumed to be stable under the
action of the full unitary dynamical evolution U (τ ), for positive and negative times
τ respectively; over all τ , the evolution operator generates a dense set in H from
either D+ or D−. Note that we are here discussing abstract vectors, (pure) states
in the sense of Dirac (1947), in H without reference to a particular representation.

We shall call D+ the outgoing subspace and D− the incoming subspace with
respect to the group {U (τ )}.

A theorem of Sinai (Cornfeld et al., 1982) then assures that H can be represented
as a family of Hilbert spaces obtained by foliating H along a real line, which we
shall call {s}, in the form of a direct integral

H =
∫
⊕

Hs, (17.123)

where the set of auxiliary Hilbert spaces Hs are all isomorphic. This foliated struc-
ture does not rule out the possibility that there are operators on H which have matrix
elements between different values of s.

Representing these spaces in terms of square-integrable functions, we define the
norm in the direct integral space (we use Lesbesgue measure ds on the line s) as

〈 f | f 〉 ≡ ‖ f ‖2 =
∫ ∞

−∞
ds‖ fs‖2

H , (17.124)

where f ∈ H represents a vector in H, and fs ∈ H, the L2 function space rep-
resenting Hs for any s. (It then represents the vector f in H in the L2 function
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space L2 (−∞,∞,) H .) Thus, fs is an L2 valued function in some representa-
tion (e.g. fs (x), square integrable in x ; we do not specify the variables of the
measure space of the auxiliary spaces H at this stage). The Sinai theorem further-
more asserts that there are representations for which the action of the full evolution
group U (τ ) on L2 (−∞,∞, H) is translation by τ units. Given D± (the L2 spaces
representing D±), there is such a representation, called the incoming translation
representation (Lax and Phillips, 1967), for which functions in D− have support
in L2 (−∞, 0, H), and another called the outgoing translation representation, for
which functions in D+ have support in L2 (0,∞, H).

We remark that the foliation variable s, whose existence is asserted by Sinai,
might be thought of as the laboratory time at which the state of the unstable sys-
tem could potentially be observed as an unstable system, i.e. with some probability
of existing at that value of s. The notion that occurs here is a difficult concept to
grasp but also occurs in standard Floquet theory (Zhang and Feng, 1995), a method
developed to manage the Schrödinger evolution with a time-dependent Hamilto-
nian in a systematic way. The idea is that there is a physical state at laboratory
time τ which predicts not only the space distribution, say, of anticipated events,
but also the times s at which such events are to be observed. The difficulty in
grasping this notion is that the time s corresponds to the time of the measure-
ment, a value of τ itself. Thus, the theory, as in the Floquet case, predicts what
will (or would be) found if one did the measurement at a time different, in gen-
eral, from the time at which this state is extant. As in any quantum mechanical
statement, the state of the system provides an a priori prediction, but here we have
the prediction at time τ for what would be seen at a different time τ ′ = s if the
measurement were done then. That prediction, of course, varies with the time τ

at which the state is determined, since the distribution and therefore the predic-
tion changes at each τ . Such concepts also occur in relativistic quantum theory,
where the state of a system evolving in τ (in this case a universal world time
that is reflected on the laboratory clock) is a distribution on space-time (Stueck-
elberg, 1941; Schwinger, 1951; Feynman, 1948, 1950; Horwitz and Piron, 1973;
Fanchi, 1979; Kyprionides, 1986 and references therein), a structure consistent
with the covariance of special relativity (see Chapter 10). The events occurring
in that space-time occur, when measured, as times on the laboratory clock. It is
this expanded space (the space of variables on which the wave functions are rep-
resented) for the representation of the state that enables one to define projection
operators into subspaces that are partly determined by time boundaries (Horwitz
and Piron, 1993). It is a fundamental result, as we shall see, that the evolution
operator of the system, projected into such subspaces, may become non-self-
adjoint, with complex spectrum, and thus capable of describing exact semigroup
evolution.
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Lax and Phillips (1967) show that there are unitary operators W±, called wave
operators, which map elements in H, respectively, to the incoming and outgoing
representations. For example, suppose f is an element of H; then |W± f 〉s, an
element of L2 (−∞,∞, H), has the property that

U (τ ) |W± f 〉s = |W± f 〉s−τ , (17.125)

where we have used the notation that U (τ ) is considered as an operator on the L2

space as well. That is, we write, as is usual in quantum theory literature,

|Ag〉 ≡ A|g〉
for A, some operator defined on g. Eq. (17.125) corresponds to translation of | f 〉s
forward by τ units. These representations furthermore have the property that, for
f+ ∈ D+, | f+〉s vanishes for s ≤ 0; it has support only on the positive half line and
therefore is an element of L2 (0,∞, H). For f− ∈ D−, | f−〉s similarly vanishes
for s ≥ 0 and is therefore an element of L2 (−∞, 0, H).

Lax and Phillips then define an S-matrix,

S = W+W−1
− , (17.126)

which connects these representations; it is unitary, commutes with translations,
and maps L2 (−∞, 0) into itself. The singularities of the S-matrix, in what we
shall define as the spectral representation, obtained by means of Fourier transform,
correspond to the spectrum of the generator of the exact semigroup characterizing
the evolution of the unstable system. This very striking result is analogous to the
approximate treatment of resonances in standard scattering theory (Taylor, 1972;
Newton, 1976).

With the assumptions stated above on the properties of the subspaces D+ and
D−, Lax and Phillips (1967) prove that the family of operators

Z (τ ) ≡ P+U (τ ) P− (τ ≥ 0) , (17.127)

where P± are projections into the orthogonal complements of D±, respectively, is
a contractive, continuous semigroup. This operator annihilates vectors in D± and
carries the space

K = H $ D+ $D− (17.128)

into itself, with norm tending to zero for every element in K. It is clear that
therefore

Z (τ ) = PKU (τ ) PK (17.129)

as well.



342 Decay scattering

In the following, we use the L2 function space (square integrable functions)
representing H and denote the corresponding subspaces of functions as D± and K .

The semigroup property of the operator Z (τ ) of Eq. (17.127) may then be proven
as follows (Lax and Phillips, 1967).

Z (τ ) clearly vanishes on the subspace D−, and by the stability of D+ under
U (τ ) for τ ≥ 0, it vanishes on D+ as well. It is therefore nonzero only on the
subspace K , and on such vectors, the operator P− can be omitted. We must then
consider, on a vector | fK 〉 in K ,

Z (τ 1) Z (τ 2) | fK 〉 = P+U (τ 1) P−P+U (τ 2) | fK 〉.
But U (τ 2) | fK 〉 lies in K+D+, and P+ annihilates the part in D+. The projection
operator P− can then be omitted, since K is orthogonal to D−. We then have

Z (τ 1) Z (τ 2) | fK 〉 = P+U (τ 1) P+U (τ 2) | fK 〉
= P+U (τ 1)

[
1− [

1− P+
]]

U (τ 2) | fK 〉;
the second term in brackets makes no contribution, since it is a projection into D+,
and U (τ 1) leaves D+ invariant (it is then annihilated by the first factor P+). We
are then left with

Z (τ 1) Z (τ 2) | fK 〉 = P+U (τ 1)U (τ 2) | fK 〉 (17.130)

= P+U (τ 1 + τ 2) | fK 〉
= Z (τ 1 + τ 2) | fK 〉,

completing the proof of the semigroup property of Z (τ ) .

The outgoing subspace D+ is defined, in the outgoing representation, in terms
of support properties (this is also true for the incoming subspace in the incoming
representation). One can then easily understand that the fundamental difference
between Lax–Phillips theory and the standard quantum theory, as pointed out, lies
in this property. The subspace defining the unstable system in the standard the-
ory is usually defined as the eigenstate of an unperturbed Hamiltonian and does
not correspond to an interval on a line associated with evolution. The subspaces
of the Lax–Phillips theory correspond, generally, to semibounded intervals (e.g.
the positive and negative half lines in the outgoing and incoming representations).
The generator of the semigroup (the generator of the full group restricted to the
subspace K ) is then, in general, not self-adjoint. To see this, consider the action
of the semigroup on a vector | fK 〉 in K . In the outgoing translation representation
(Horwitz and Piron, 1993),

P+U (τ ) P−| fK 〉s = P+U (τ ) | fK 〉s = θ (−s) | fK 〉s−τ , (17.131)
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since K is in the complement of D−, and therefore

P+K | fK 〉s = iθ (−s)
∂ | fK 〉s−τ

∂s
|τ→0+ , (17.132)

where | fK 〉s is a vector-valued function, as described above, and K is the self-
adjoint generator associated with U (τ ). (We use the symbol K for the generator
as well as for the subspace orthogonal to D±; there should be no confusion in
context.) If we then compute the scalar product of the vector given in Eq. (17.131)
with a vector |g〉, we find that∫ ∞

−∞
ds s〈g|P+K | fK 〉s = iδ (s) 0〈g | f 〉0 +

∫ ∞

−∞
ds s〈P+Kg) | fK 〉s . (17.133)

The generator is therefore symmetric but not self-adjoint. It is through this mech-
anism that the Lax–Phillips theory, as remarked above, provides a description that
has the semigroup property for the evolution of an unstable system (Horwitz and
Piron, 1993; see also Eisenberg and Horwitz, 1997).

Comparing with the formula of Wigner and Weisskopf discussed in Section 17.1,
let us consider a vector ψ0 in K, corresponding to an “unstable state,” and evolve
it under the action of U (τ ); the projection back into the original state is, using the
form Eq. (17.129),

A (τ ) = 〈ψ0|U (τ ) |ψ0〉
= 〈ψ0|PK U (τ ) PK |ψ0〉 (17.134)

= 〈ψ0|Z (τ ) |ψ0〉,
so that the survival amplitude of the Lax–Phillips theory, analogous to that of the
Wigner–Weisskopf formula, Eq. (17.10), has the exact exponential behavior. The
difference between this result and the corresponding expression given in Section
17.1 for the Wigner–Weisskopf theory can be accounted for by the fact that there
are translation representations for U (τ ) and that the definition of the subspace K
is related to the support properties along the foliation axis on which these trans-
lations are induced. As a consequence of this structure, as made explicit in Eq.
(17.133), the generator of Z(τ ) in Eq. (17.134) is not self-adjoint. The presence
of complex eigenvalues then implies the possibility of the (often experimentally
observed) exponential decay law for A (τ ).

Functions in the space H , representing the elements of H, depend on the variable
s as well as the variables of the auxiliary space H. The measure space of this Hilbert
space of states is one dimension larger than that of a quantum theory represented
in the auxiliary space alone. Identifying this additional variable with an observable
time (in the sense of a quantum mechanical observable), we may understand this
representation of a state as a virtual history. The collection of such histories forms
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a quantum ensemble; the absolute square of the wave function corresponds to the
probability that the system would be found, as a result of measurement, at time s in
a particular configuration in the auxiliary space (in the state described by this wave
function), i.e. an element of one of the virtual histories. For example, the expecta-
tion value of the position variable x at a given s is, in the standard interpretation of
the auxiliary space as a space of quantum states,

〈x〉s = 〈ψ s |x |ψ s〉
‖ψ s‖2

. (17.135)

The full expectation value in the physical Lax–Phillips state, according to Eq.
(17.124), is then ∫

ds|〈ψ s |x |ψ s〉|2 =
∫

ds‖ψ s‖2〈x〉s, (17.136)

(Strauss et al., 2000), so we see that ‖ψ s‖2 corresponds to the probability to find a
signal which indicates the presence of the system at the time s.

The generator of the full evolution restricted to the subspace K has a family of
complex eigenvalues, if there are resonances, in the lower half plane. We can easily
see this by writing the action of the semigroup (in the subspace K) as Z (τ ) = e−i Bτ

for B non-self-adjoint. Then the Laplace transform is given by∫ ∞

0
dτe−i(μ−B)τ = − i

μ− B

for μ in the lower half plane, where the integral is well defined. There may be
poles, however, if B has a discrete spectrum, for which

B| f 〉 = μ| f 〉.
(Lax and Phillips, 1967).

Then, in the outgoing representation,

〈s|e−i Bτ | f 〉out = 〈s + τ | f 〉out = e−iμτ 〈s | f 〉out

for s + τ > 0. For, in particular, s = 0, 〈τ | f 〉out = e−iμτ 〈0 | f 〉out and zero for
τ negative; i.e. the eigenfunctions are

〈τ | f 〉out =
{

e−iμτn τ ≥ 0
0 τ < 0,

(17.137)

where n ≡ 〈0 | f 〉out is some vector in the auxiliary space. This is a very
fundamental result, displaying the eigenvector of a resonance in a Hilbert space.

The preceding ideas were worked out by Lax and Phillips (1967) for classical
wave equations, where the Huygens principle could be used to provide illustrations
of the existence of the invariant subspaces D±. In the following discussion we show
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how the theory can be extended to the quantum case, for which the construction of
these subspaces is the central problem.

The fundamental step in bringing the Lax–Phillips framework to the quantum
theory is to construct the incoming and outgoing subspaces. The definition of these
subspaces plays a crucial role, as we have explained, in achieving the required
semigroup law for the description of irreversible processes. To achieve this (Strauss
et al., 2000), we consider the evolution operator to be composed of an unperturbed
part and a small perturbation in the form

K = K0 + V, (17.138)

and assume that there are wave operators that intertwine K and K0. We may then
construct D0± in terms of support properties on the spectrum of K0 and lift the
result to the subspaces D± for the full structure of the generator K . The notion of
the wave operator is very important in conventional scattering theory as well, and
we therefore review the idea briefly in the following.

The foundation of standard scattering theory (Jauch, 1958; Taylor, 1972; New-
ton, 1976) lies in the following statement. Under the usual Schrödinger evolution

ψ t = e−i Htψ0 (17.139)

for large positive or negative t, ψ t approaches asymptotically a state φt , called an
asymptotic state, which evolves according to

φt = e−i H0tφ0, (17.140)

where H = H0 + V and V is a “small” operator, relatively bounded with respect
to H0 (Jauch, 1958; Taylor, 1972; Newton, 1976). We may write this condition as

lim
t→±∞‖ψ t − φ±t ‖ = 0, (17.141)

where we have distinguished the incoming and outgoing asymptotic states with the
sign ±.

Since the norm taken in Eq. (17.141) is invariant under multiplication by a
unitary operator, it can be rewritten as

lim
t→±∞‖ψ0 − ei Hte−i H0tφ±0 ‖ = 0. (17.142)

In this relation, the norm of the difference between ψ0 and a sequence of vectors
in t converges to zero, so that we may write

ψ0 = lim
t→±∞ei Hte−i H0tφ±0 . (17.143)



346 Decay scattering

Since the operators multiplying φ±0 are bounded for every t, if these asymptotic
states form a dense set in the Hilbert space, the operator

lim
t→±∞ei Hte−i H0t (17.144)

can be defined everywhere. These limits are defined as the wave operators

�± = lim
t→±∞ei Hte−i H0t (17.145)

and have some remarkable properties. Although they are constructed of a sequence
of products of unitary operators, the limit is not necessarily unitary, although the
wave operators are isometric. The exceptional situation occurs when either H or
H0 has bound states; we refer the reader to discussions in Taylor or Newton (Taylor,
1972; Newton, 1976; Jauch, 1958) for the general case. (In the specific example of
the Stark effect, which we shall treat below, the wave operators are unitary.) The
convergence of Eq. (17.145) will certainly not occur on a dense set if one of the
elements in the Hilbert space is an eigenfunction of H0, and of the inverse, if one of
the elements is an eigenfunction of H, so these subspaces must be excluded in the
definition. One may, in fact, think of the convergence as an interference in phases
between the two factors.

A property that we will use for the wave operator is that of intertwining, obtained
by differentiating the product before taking the limit. If the limit indeed converges,
then the limit of the derivative must be zero. One finds in this way that

H�± = �±H0. (17.146)

(In this computation one must take care that H does not commute, in general,
with H0; the result is obtained by bringing H to the left and H0 to the right when
differentiating.) Then, when �−1

± exists,

H = �±H0�
−1
± , (17.147)

a simple relation between the unperturbed and perturbed Hamiltonians. This prop-
erty is precisely what we need for the construction of the quantum Lax–Phillips
theory.

We remark that, looking at the derivative before the limit in another way (bring-
ing H to the right and H0 to the left of the exponents), it is easy to see that the
convergence implies that

‖V e−i H0tφ±0 ‖ → 0 (17.148)

for t → ±∞; that is, for example, for a local potential of the form 〈x |V |x ′〉 =
V (x) δ

(
x − x ′

)
, the free evolution must bring the function φ±0 (x) out of the range

of V (x) faster than the tail of the wave packet spreads. If this condition is met on
a dense set, the wave operator exists. There are, of course, many other beautiful
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properties of scattering theory (Kato, 1966; Reed and Simon, 1979), but this brief
discussion will suffice for our purposes.

We now return to the Lax–Phillips theory and the definition of the invariant sub-
spaces D± in the quantum case. To do this, we assume that there is an evolution
operator K0 for an “unperturbed” system in the Lax–Phillips Hilbert space H, and
a full perturbed operator K of the form K = K0 + V , and seek a translation
representation for the unperturbed evolution, i.e., a solution of the differential
equation

K0χ s = −i
∂

∂s
χ s, (17.149)

obtained from the requirement that e−i K0s acts as translation on χ s (extracted for
infinitesimal s). Note that this is not a Schrödinger equation for the evolution of
a state χ s in “time” s, but an actual translation along the s-axis of this function
which is square integrable (on the absolute square) over all s (clearly, wave packets
must be constructed). The Schrödinger evolution of a state in quantum theory has
a finite norm but is not square integrable over the time, since the norm is invariant
in time in the standard nonrelativistic theory, and t commutes with all observables.
Eq. (17.149) is completely analogous to the translation in space of a wave function
ψ (x) in the sense that eipaψ (x) = ψ (x + a), where p is the canonical momentum
operator, and our problem is to find the analog of the momentum representation for
K0 for translations in s. Eq. (17.149) defines the operator K0 as −i ∂

∂s on this
representation. Let us now choose a set of functions χ+s with support in (0,+∞),
and another set of functions χ−s with support in (−∞, 0). These form the two
invariant subspaces for the unperturbed problem, D0±. Now suppose that there
are wave operators defined in an analogous way to the wave operators of standard
scattering theory,

�± = lim
τ→±∞ei K τe−i K0τ . (17.150)

Then by the intertwining relation discussed above, we see that

f ±s = �±χ±s (17.151)

form the functions that lie in D± for the full interacting evolution e−i K τ . In general,
this lifting does not complete the space H with D±; the deficit is just the subspace
K , spanned by the resonance states. We have thus arrived at a procedure for the
construction of the incoming and outgoing representations for the full quantum
Lax–Phillips theory (Strauss et al., 2000). The possibility of carrying through this
construction depends, of course, on the existence of the wave operators defined in
Eq. (17.150).
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A model that has been widely used, and discussed in this context by Flesia and
Piron (1984), is to take

K = E + H, (17.152)

where E is represented by i ∂
∂t in the “physical” coordinate-time representation

〈x, t | f 〉 of elements f in H , as will be discussed below, as the form of the
Lax–Phillips evolution operator. This structure was also used by Howland (1974,
1979) in his discussion of how to deal with time-dependent Hamiltonians in the
framework of the standard theory, both classically and quantum mechanically, and
is the basis for the mathematical formulation of Floquet theory, as discussed above
(Zhang and Feng 1995). Taking for K0 the form

K0 = E + H0, (17.153)

it is clear that, since K − K0 = H − H0, there is a good likelihood that the
wave operator defined in Eq. (17.150) can be found in particular applications. Fur-
thermore, the time derivative term assures that the spectra of K0 and of K are
unbounded from below, even though H0 and H may be semibounded. Thus, a
translation representation may be accessible. We shall discuss in detail toward the
end of this section an important example in which these operators exist and can be
computed explicitly. Note that the variable t does not, in general, coincide with the
foliation variable, whose existence is asserted by Sinai (Cornfeld et al., 1982). In
any model for K , K0, formulated in terms of functions on x, t (for a one-particle
system, x may correspond to the position of the particle at a given t), one has
to find representations in which these operators act as translations, involving the
construction of unitary transformations.

The translation representation for a state f may be written as 〈s, ξ | f 〉, where
the variables of the auxiliary space ξ associated with the foliated description along
s do not, in general, coincide with the “physical” variables x (corresponding to
the coordinate description of the configuration space). The transformations to the
translation representations generally require that the new variables s, ξ are func-
tions of t, x . For a one-particle system, for example, x may correspond just to the
position of the particle. For X , the position operator, we have not only

〈t, x |X | f 〉 = x〈t, x | f 〉 (17.154)

and, as usual, the canonically conjugate relation (related by Fourier transform)

〈t, x |P| f 〉 = −i
∂

∂x
〈t, x | f 〉, (17.155)

where P is the canonical momentum operator, but also the relation

〈t, x |E | f 〉 = i
∂

∂t
〈x, t | f 〉. (17.155’)
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In the translation representation associated with K0, what we might call the free
translation representation, we have

〈s, ξ |K0| f 〉 = −i
∂

∂s
〈s, ξ | f 〉. (17.156)

We can now see that the model posed in Eq. (17.152) and Eq. (17.153) does not
admit a unique definition of the translation representation. We shall show, however,
that unitarity requirements are sufficient to resolve the ambiguity up to a phase.
Nevertheless, important new developments in the subject have arisen, motivated
by the problem of dealing directly with a Hamiltonian with support on the half line
(Strauss, 2003, 2005a, b; Strauss et al., 2006; see also Strauss, 2005c).

Let us write out the condition Eq. (17.156) in terms of the transformation
functions 〈s, ξ | t, x〉. To do this, we write∫

dtdx〈s, ξ | x, t〉〈x, t | (E + H0) | f 〉 = i
∂

∂s

∫
dtdx〈s, ξ | x, t〉〈x, t | f 〉

(17.157)
and use the properties of the operator E of Eq. (17.155’) and that of H0:

〈x, t |H0| f 〉 = Ĥ0〈x, t | f 〉, (17.158)

where Ĥ0 is now an operator on x alone—for example, − ∂2

∂x2 . The equation
(17.157) then becomes∫

dtdx〈s, ξ | x, t〉
(

i
∂

∂t
+ Ĥ0

)
〈x, t | f 〉 = i

∂

∂s

∫
dtdx〈s, ξ | x, t〉〈x, t | f 〉.

(17.159)
Assuming that the differential operator Ĥ0 is even in derivatives with respect to x,
we may integrate both terms by parts so that the operator on the left side acts only
on the transformation function 〈s, ξ | x, t〉. We may then extract from this equation
the (arbitrary) function 〈x, t | f 〉 to obtain the condition{

−i
∂

∂t
+ Ĥ0

}
〈s, ξ | x, t〉 = i

∂

∂s
〈s, ξ | x, t〉. (17.160)

Bringing the term −i ∂
∂t 〈s, ξ | x, t〉 to the right, we obtain

i

(
∂

∂t
+ ∂

∂s

)
〈s, ξ | x, t〉 = Ĥ0〈s, ξ | x, t〉, (17.161)

which provides a condition which involves the transformation function 〈s, ξ | x, t〉
only as a function of s+ t and does not determine the dependence on s− t. It must
satisfy, however, the normalization and orthogonality conditions∫

dxdt〈s, ξ | x, t〉〈s ′ξ ′ | x, t〉∗ = δ
(
s − s ′

)
δ
(
ξ − ξ ′

)
(17.162)
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and ∫
dsdξ〈s, ξ | x, t〉〈sξ | x ′, t ′〉∗ = δ

(
x − x ′

)
δ
(
t − t ′

)
. (17.163)

Let us define

u = s + t

2
v = s − t

2
(17.164)

and

〈s, ξ | x, t〉 = f (u, v; ξ, x) . (17.165)

It then follows from Eq. (17.162) and Eq. (17.163) that the unitarity and complete-
ness relations can be satisfied for

f (u, v; ξ, x) = eivαg (u; ξ, x) , (17.166)

for any constant α. The main results of the theory, such as the S-matrix poles
and eigenstates for the resonances, to be discussed below, do not depend on the
choice of α, and in spite of this ambiguity, the theory is therefore predictive, even
in the case of Hamiltonians H0 which are semibounded and treated in the context
of the model proposed in Eq. (17.152). Although this form for the embedding of
standard Hamiltonian theory into the Lax–Phillips structure is not necessary, it is
a very natural generalization from the point of view of Zhang and Feng (1995)
and Howland (1974, 1979). It also occurs in the nonrelativistic limit of a covariant
relativistic theory (Horwitz et al., 1981).

As we shall see, this ambiguity does not occur in the Stark model that we
shall treat below, since the H0 that we choose in that case naturally has spectrum
(−∞,∞), without the addition of a time derivative. In the relativistic quantum
theory (Stueckelberg, 1941; Schwinger, 1951; Feynman, 1948, 1950; Horwitz and
Piron, 1973; Fanchi, 1979; Kyprionides, 1986 and references therein), the genera-
tor of motion has spectrum (−∞,∞) quite generally; in place of the Hamiltonian
H0, usually of the form of Laplacian, one has a d’Alembert differential operator,
containing only second derivatives in both space and time, and therefore the trans-
formation function of the Lax–Phillips theory is well defined. An analysis of the
Lax–Phillips theory in the relativistic treatment of the neutral K meson decay was
carried out by Strauss and Horwitz (2000), and formulas given for the semigroup
evolution in agreement with the Yang–Wu phenomenological formulation (Lee
et al., 1957; Wu and Yang, 1964).

We shall assume in the following discussion that the translation representations
are well defined; each particular example must be examined to determine how this
can be done.
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As in the transition to momentum space from coordinate space, let us define the
free spectral representation in terms of the Fourier transform

〈σξ | g〉 =
∫

e−iσ s〈sξ | g〉ds, (17.167)

where 〈σξ | g〉 satisfies

〈σξ |K0|g〉 = σ 〈σξ | g〉. (17.168)

Here |g〉 (the abstract vector, or Dirac ket) is an element of H and ξ remains as the
set of variables (measure space) of the auxiliary space associated to each value of
σ , which with σ comprise a complete spectral set. The functions may be thought
of as a set of functions of the variables ξ indexed on the variable σ in a continuous
sequence of auxiliary Hilbert spaces, as described in the book of Lax and Phillips
(1967), isomorphic to H . Clearly, K0 acts as the generator of translations in the
representation 〈sξ | g〉.

We now proceed to define the incoming and outgoing subspaces D±. Let us
consider, as remarked above, the sets of functions with support in L2 (0,∞) and in
L2 (−∞, 0), and call these subspaces D±

0 . The Fourier transform back to the free
spectral representation provides the two sets of functions,

f 〈σξ | g±0 〉 =
∫

e−iσ s〈sξ | g±0 〉ds ∈ H±, (17.169)

for g±0 ∈ D±
0 . Since these functions are defined as Fourier transforms on half

lines, they are Hardy class functions, i.e. functions satisfying square integrable
conditions as functions of a complex variable.

We remind the reader that an analytic function f (x + iy) is said to belong to a
Hardy class in the upper half plane if∫ +∞

−∞
| f (x + iy) |2dx <∞

for all y > 0. A Fourier transform with weight factor eiσ s of a square integrable
function g (s) with support on the positive real line has the property that, as a
function of complex σ, it is of Hardy class in the upper half plane.

We may now define the subspaces D± in the Hilbert space of states H in the
energy representation. To do this, we first map these Hardy class functions in H to
H, i.e. we define the subspaces D

±
0 by∫

dξdσ |σξ〉 f f 〈σξ | g±0 〉 ∈ D
±
0 . (17.170)

We shall now make use of the wave operators, discussed above, which intertwine
K0 with the full evolution K . (We shall explicitly construct these wave operators in



352 Decay scattering

the case of the Stark effect that we shall study as an example here.) The construc-
tion of D± is then completed with the help of the wave operators. We define these
subspaces by

D+ = �+D
+
0

D− = �−D
−
0 . (17.171)

We remark that these subspaces are not produced by the same unitary map. This
procedure is necessary to realize the Lax–Phillips structure nontrivially. If a sin-
gle unitary map were used, then there would exist a transformation into the space
of functions on L2 (−∞,∞, H) which has the property that all functions with
support on the positive half line represent elements of D+, and all functions
with support on the negative half line represent elements of D− in the same
representation. The resulting Lax–Phillips S-matrix would then be trivial.

The requirement that D+ and D− be orthogonal is not an immediate conse-
quence of our construction. Since the functions f 〈sx | g±0 〉 have support on,
respectively, the positive and negative half lines, and the orthogonality of D± is
determined by the integral of the product of these functions with an operator valued
kernel S

(
s − s ′

)
(to be defined below), one sees that suitable analyticity properties

of the transformed kernel S (σ ) assure that these subspaces will be orthogonal. This
analyticity property (upper half plane analyticity) is true in the Stark model that we
shall treat below.

The wave operators defined by Eq. (17.150) intertwine K and K0:

K�± = �±K0. (17.172)

We may therefore construct the outgoing (incoming) spectral representations from
the free spectral representation. Since

K�±|σξ 〉 = �±K0|σξ 〉
= σ�±|σξ〉, (17.173)

we may identify

|σξ〉out
in
= �±|σξ 〉. (17.174)

The Lax–Phillips S-matrix is defined as the operator on H which carries the
incoming to outgoing translation representations of the evolution operator K . Sup-
posing g is an element of H, its incoming spectral representation, according to Eq.
(17.174), is

in〈σξ |g〉 = 〈σξ |�−1
− g〉. (17.175)
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Let us now act on this function with the Lax–Phillips S-matrix in the free spectral
representation, and require the result to be the outgoing representer of g:

out〈σξ |g〉 = 〈σξ |�−1
+ g〉

=
∫

dσ ′dξ ′〈σξ |S|σ ′ξ ′〉〈σ ′ξ ′|�−1
− g〉, (17.176)

where S is the Lax–Phillips S-operator (defined on H). Transforming the kernel to
the free translation representation with the help of Eq. (17.167), i.e.

〈sξ |S|s ′ξ ′〉 = 1

(2π)2

∫
dσdσ ′eiσ s′e−iσ ′s′ 〈σξ |S|σ ′ξ ′〉, (17.177)

we see that the relation Eq. (17.176) becomes, after using Fourier transform
in a similar way to transform the in and out spectral representations to the
corresponding in and out translation representations,

out〈sβ|g) = 〈sβ|�−1
+ g) =

∫
ds ′dξ ′〈sξ |S|s ′ξ ′〉〈s ′ξ ′|�−1

− g)

=
∫

ds ′dξ ′〈sξ |S|s ′ξ ′〉in 〈s ′ξ ′|g). (17.178)

Hence the Lax–Phillips S-matrix is given by

S = {〈sξ |S|s ′ξ ′〉} (17.179)

in free translation representation. It follows from the intertwining property Eq.
(17.172) that

〈σξ |S|σ ′ξ ′〉 = δ
(
σ − σ ′

)
Sξξ ′ (σ ) . (17.180)

This result can be expressed in terms of operators on H. Let

w−1
− = {〈sξ |�−1

−
}

(17.181)

be a map from H to H in the incoming translation representation—the same sense
that {〈x |} provides a map from the vectors {�} in an abstract Hilbert space to the
functions 〈x | �〉 in a space of square integrable functions in the x representation.
Similarly, let

w−1
+ = {〈sξ |�−1

+
}

(17.182)

be a map from H to H in the outgoing translation representation. It then follows
from Eq. (17.178) that

S = w−1
+ w− (17.183)

is a kernel (integral operator) on the free translation representation. This ker-
nel is understood to operate on the representer of a vector g in the incoming
representation and map it to the representer in the outgoing representation.
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17.8 Application to the Stark model

In preparation for the application of the Lax–Phillips theory to the Stark model
(Ben-Ari and Horwitz, 2004), let us first study the Wigner–Weisskopf approach
to this problem. The results will be useful in writing out the solutions to the
Lax–Phillips analysis as well. The potential for the Stark effect problem, of the
form−Ex , is unbounded (on the full space; we shall work in one space dimension).
For a model of the form (Friedrichs and Rejto, 1962)

H = −Ex + λP0, (17.184)

where λ is real and P0 is a rank one projection operator, it will be convenient to
consider −Ex ≡ H0 as the unperturbed Hamiltonian and the second term, λP0 ≡
V as the perturbation. (The resolvent is, of course, unaffected by this choice, but
the form of the perturbation theory is very different.) In this case, therefore, neither
H nor H0 has bound states, and the resulting wave operators are unitary. We study
in this section the Wigner–Weisskopf description of the resonance, and in the next
section embed this analysis in the Lax–Phillips Hilbert space.

Let us choose for P0 the form

〈x |P0|x ′〉 =
(

2

π

) 1
2

e−(x2+x ′2). (17.185)

The resolvent satisfies the identity (second resolvent equation)

G = G0 + G0V G, (17.186)

where, as before, G = (z − H)−1, and G0 = (z − H0)
−1, defined for z in the upper

half plane, where H0 = −Ex . The x, x ′ matrix element of G is therefore

〈x |G|x ′〉 = 1

z + Ex
δ
(
x − x ′

)+ 1

z + Ex
λ

∫ ∞

−∞
〈x |P0|x ′′〉〈x ′′|G|x ′〉dx ′′. (17.187)

Let us define

f
(
z, x ′

) = ∫
dx ′′e−x ′′2〈x ′′|G|x ′〉dx ′′. (17.188)

It then follows from Eq. (17.187) that

f
(
z, x ′

) = ∫
dx

e−x2

z + Ex
+ λ

∫
dx

e−x2

z + Ex

√
2

π
e−(x2+x ′′2)〈x ′′|G|x ′〉dx ′′.

We can write this as

f
(
z, x ′

) = e−x ′2

z + Ex ′
+ λ

√
2

π
F (z) f

(
z, x ′

)
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or

f
(
z, x ′

) = 1

a − λ

√
2
π

F (z)

e−x ′2

z + Ex ′
, (17.189)

where

F (z) =
∫

dx
e−2x2

z + Ex
= iπ

E
e−

2z2

E2 erfc
[
i
√

2
z

E

]
and the error function is defined by

erfc(x) =
∫ ∞

x
e−t2

dt (17.190)

Returning to Eq. (17.187), we see that

〈x |G (z) |x ′〉 = 1

z + Ex
δ
(
x − x ′

) + 1

z + Ex
λ

√
2

π
e−x2

f
(
z, x ′

)
(17.191)

= 1

z + Ex
δ
(
x − x ′

)+ λ

√
2

π

e−x2
e−x ′2

(z + Ex) (z + Ex ′)

⎛⎝ 1

1− λ

√
2
π

F(z)

⎞⎠.

We now wish to approximate the time behavior of the survival amplitude. The
time dependence of the survival amplitude (for one channel) is given by

A (t) = 1

2π i

∫
C
(ϕ|G (z) |ϕ) e−i zt . (17.192)

The contour C corresponds to a line running in the complex energy plane from right
to left slightly above the real axis. The matrix element (ϕ|G (z) |ϕ) is analytic in
the upper half plane. We can shift this line continuously and differentially through
the real axis into the lower half plane, provided that the contributions of the vertical
pieces at±∞ vanish. It is clear from Eq. (17.190) and Eq. (17.191) that this is true
for the parts of the vertical integrations that lie in the upper half plane. To write the
integrand along the new curve below the axis, we must analytically continue F (z).
To do this, we consider (for ξ real)

F (ξ + iε)− F (ξ − iε) =
∫ ∞

−∞
dxe−2x2

{
1

ξ + iε + Ex
− 1

ξ − iε + Ex

}
= −2π i

∫
dxe−2x2

δ (ξ + Ex)

= −2π i

E
e−

22
ξ

E2 . (17.193)

This function has an analytic extension in the finite lower half plane, given by

F L (z) = F (z)− 2π i

E
e−

2z2

E2 . (17.194)
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We find, numerically, for a reasonable choice of parameters and a simple
assumption for ϕ (x), that the analytic continuation of the function

(ϕ|G (z) |ϕ) =
∫

dxdx ′ϕ∗ (x)

⎛⎝ 1
z+Ex δ

(
x − x ′

)
+λ

√
2
π

[
e−x2

e−x ′2
(z+Ex)(z+Ex ′)

] [
1

1−λ
√

2
π

F(z)

] ⎞⎠ϕ (x) ,

(17.195)
defined by Eq. (17.191) and Eq. (17.194), into the lower half plane, has a pole,
inducing an exponential decay term to the amplitude. The function (ϕ|G (z) |ϕ)
has a very simple form if we assume that ϕ (x) has the Gaussian form

ϕ (x) =
√

2

π
e−x2

. (17.196)

The first term of Eq. (17.195) contains e−2x2
; its integral with the denominator

z+ Ex is, according to Eq. (17.190), the function F (z). The second term factorizes
into two integrals of the same form. It then follows, with this assumption on ϕ, that

(ϕ|G (z) |ϕ) =
√

2

π
F (z)+ λ

(
2

π

)
(F (z))2

1− λ

√
2
π

F (z)

=
√

2
π

F(z)

1− λ

√
2
π

F(z)
. (17.197)

The analytic continuation of this function into the lower half plane is achieved
by the continuation of F (z) to F L (z). This function has no poles in the finite lower
half plane, and hence the pole can only come from the condition

g (z) ≡ 1− λ

√
2

π
F L(z) = 0 (17.198)

where F L(z) is the analytic continuation of F(z) defined in Eq. (17.194).
For the value λ/E = 11, Maple provides us with a unique solution for the posi-

tion of the pole, z0 = −4.446 − .31896 × 10−15i , which has, as expected, a very
small imaginary part for this reasonably physical choice of parameters. Differen-
tiating Eq. (17.198) implicitly with respect to E , we find that the real part of the
pole moves to more negative values as E increases. Since the unperturbed system
has mean position of the particle at zero, this shift corresponds to an increase in
field-induced polarization with increasing value of the field.

There remains, however, a contribution to the survival amplitude from integra-
tion on a line running from +∞ to −∞ on the real part of z = ξ + iζ , where ζ

can be very large and negative. The contribution of this so-called background inte-
gral is strongly suppressed by the exponent exp (−i zt) for t large and positive. For
small t , however, this suppression is not strong unless ζ → −∞. However, in this
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limit, the integrand is not well defined, since for any large and negative ζ , the con-
tribution of the discontinuity in F (z) strongly suppresses the integrand for ξ small
compared with ζ . This suppression is not maintained, however, for the contribu-
tions from ξ in the neighborhood of or greater than ζ . Hence the convergence of the
contribution on the background is not uniform. We see from the general argument
that the derivative of |A (t) |2 vanishes at t = 0 (clearly seen in Eq. (17.28)), that
the pole contribution cannot represent the result precisely for small t , and therefore
the Wigner–Weisskopf treatment, even in this case of unbounded spectrum, cannot
result in a pure exponential (semigroup) behavior for the reduced evolution. It is
exactly in this respect that the Lax–Phillips treatment provides a result which is
closer to the physics of irreversible decay.

We now proceed to apply the techniques of the Lax–Phillips treatment to this
model for the Stark effect.

Since the Stark model that we are using has spectrum (−∞,∞), we may take
for the generator of motion

K = HStark; K0 = H0Stark; V = VStark , (17.199)

where HStark, H0Stark and V = VStark are the operators defined above. Since H0

is proportional to x , we may make use of the canonical commutation relations of
the quantum theory to identify the momentum p as proportional to the (foliation)
variable of the unperturbed (free) translation representation; i.e. one may take s =
p/E , implying that [s, K0] = i (we have taken h̄ = 1). We then have

e−i K0τ | f 〉s = | f 〉s−τ (17.200)

or in differential form,

K0| f 〉s = −i
d

ds
| f 〉s . (17.201)

The auxiliary Hilbert spaces of the corresponding Lax–Phillips theory are one-
dimensional.

The spectrum of K0, given by {−Ex}, with −∞ < x < ∞, can then be iden-
tified with σ of the Lax–Phillips (unperturbed) energy representation. We shall
follow this formal identification to develop the Lax–Phillips theory of resonances,
and return to the original interpretation of x and p to obtain physical information
about the resonant state.

The wave operators are defined as

�± = lim
τ→±∞ei K τe−i K0τ . (17.202)

We shall calculate the matrix elements of the wave operator in the unperturbed
energy representation. It will be convenient, moreover, to use directly the measure
on the spectrum of x ; we therefore use kets of the form |x〉 ≡ √|E | |σ 〉.
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Following the standard procedure for taking these limits, we find for the
representation {|x〉} that

〈x |�±|x ′〉 = δ
(
x − x ′

)− lim
ε→0+

〈
x

∣∣∣∣ 1

H + Ex ′ ± iε
V

∣∣∣∣ x ′
〉
. (17.203)

Since this formula is bilinear in the kets |x〉 and |x ′〉, we could use equally well the
kets |σ 〉 and |σ ′〉.

The operator multiplying V in Eq. (17.203) is −G (z) for z = −Ex ′∓ iε; the
matrix elements of this operator were evaluated in Eq. (17.191). Carrying out the
integral for the product G (z) V with the help of the definition Eq. (17.190), we
find that

〈x |G (z) V |x ′〉 = λ

√
2

π

e−(x2+x ′2)

(z + Ex)
(
1− λ

√
2
π

F (z)
) . (17.204)

The wave operators are then given by

〈x |�±|x ′〉 = δ
(
x − x ′

)+ λ

√
2

π

e−(x2+x ′2)

(E (x − x ′)∓ iε)
(
1− λ

√
2
π

F (−Ex ′ ∓ iε)
) .

(17.205)
Using a partial fraction decomposition for the product of the GV terms, we easily
verify that the operators �± are unitary.

We now turn to the construction of the incoming and outgoing translation rep-
resentations. We define the free outgoing translation as the set of functions with
support in s (i.e. p/E in the Stark model) on the positive real axis. By Eq. (17.167),
the functions

f 0
+ (x) =

∫ ∞

0
eipx f 0

+ (p) dp ≡ 〈x | f 0
+〉 (17.206)

are in the free outgoing translation representation and are analytic in the upper
half x-plane (lower half σ -plane). Since the wave operators intertwine K0 and K ,
functions of the (full) outgoing representation are then given by∫ ∞

−∞
〈x ′|�+|x〉dx f 0

+ (x) dx = f out
+

(
x ′
) ∈ D+ . (17.207)

Given a function of the type f 0+ (x), we can calculate the resulting function
f out+

(
x ′
)

explicitly by noting that the boundary value of F (z) from below the real
axis is

F
(−Ex ′

)
below = lim

ε→0+

∫ ∞

−∞
e−2x ′′2

E (x ′′ − x ′)− iε
dx ′′ = iπ

E
e−2x ′2erfc

(
−i
√

2x ′
)
.

(17.208)
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For the construction of the incoming translation representation, we use �− and
a corresponding set of functions f 0− (x) with support on the negative half line. The
kernel of integration then contains F

(−Ex ′ − iε
)
; this may be obtained from Eq.

(17.193):

F
(−Ex ′

)
above = F

(−Ex ′
)

below −
2π i

E
e−2x ′2 . (17.209)

We now turn to the calculation of the S-matrix. We see from Eq. (17.176) that

〈x |S|x ′〉 = 〈x |�+−1 �−|x ′〉 . (17.210)

We now use the definition Eq. (17.145) for the wave operators. Following the
standard methods (Jauch, 1958; Taylor, 1972; Newton, 1976), we find that

〈x |S|x ′〉 = δ
(
x − x ′

) (
1+ 2π i

E
lim
ε→0+

〈x |T (−Ex ′ + iε
) |x ′〉) , (17.211)

where T (z) ≡ V (1+ G (z) V ) . We now compute

lim
ε→0+

〈x |T (−Ex ′ + iε
) |x ′〉 = lim

ε→0+

∫ ∞

−∞
λ

√
2

π
e−x2+x ′′2⎡⎢⎣δ

(
x ′′ − x ′

)− λ

√
2
π

e−(x ′2+x ′′2)

(E (x ′ − x ′′)− iε)
(
1− λ

√
2
π

F (−Ex ′ + iε)
)
⎤⎥⎦ dx ′′

= lim
ε→0+

λ

√
2
π

e−(x2+x ′2)

1− λ

√
2
π

F (−Ex ′ + iε)
. (17.212)

It then follows that

〈x |S|x ′〉 = δ
(
x − x ′

)⎡⎣1+ 2π i

E
lim
ε→0+

λ

√
2
π

e−2x2

1− λ

√
2
π

F (−Ex + iε)

⎤⎦ , (17.213)

so that we may write

〈x |S|x ′〉 ≡ δ
(
x − x ′

)
S (x) . (17.214)

If we write the semigroup evolution, restricted to the subspace K, as

Z (τ ) = e−i Bτ , (17.215)

it follows from the contractive semigroup property that the operator B has an
eigenvector in the outgoing representation satisfying

B| f 〉out = μ| f 〉out (17.216)
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with μ in the lower half plane, for which the eigenfunctions are of the form (with
support in (0,∞)), as in Eq. (17.137),

〈s| f 〉out = e−iμs〈0|n〉, (17.217)

where we shall take 〈0|n〉 to be a numerical coefficient n (in our Stark model,
the auxiliary space is one-dimensional). The eigenfunctions in the outgoing x
representation (corresponding to the “energy” variable σ ) are then of the form

〈x | f 〉out = in

x − μ
, (17.218)

with n a numerical coefficient (Lax and Phillips, 1967). This result provides one
of the most important new aspects of the Lax–Phillips theory: the definition of the
resonance in terms of a state in the quantum Hilbert space.

In the usual framework of standard scattering theory, resonances appear as
enhancements of the cross section in scattering cross section or, as often used in
applications, large derivatives of the scattering phase shifts, attributed to the pres-
ence of poles in the second Rieman sheet of the S-matrix (Jauch, 1958; Taylor,
1972; Newton, 1976). Such a characterization does not, however, provide a vector
in a Hilbert space.

The S-matrix, connecting the incoming to outgoing representations, therefore
has the form

S (x) ∼ r

x − z0
, (17.219)

where z0 is the position of the pole of the diagonal S-matrix in the lower half
plane, which we identify with the semigroup exponent μ, and r is the residue.
From Eq. (17.213), we see that the pole of the S-matrix corresponds to a zero of
the denominator

1− λ

√
2

π
F (−Ex + iε)

continued to the lower half plane; i.e. we must find the zero of

1− λ

√
2

π
F L (z) . (17.220)

This is precisely the pole approximation of the Wigner–Weisskopf theory as in
connection with Eq. (17.198). The residue of the pole in Eq. (17.219) is then given
by

r = 8π i

E3
λ

√
2

π

⎛⎜⎝ e
−2z2

0
E2

z0 − λ

⎞⎟⎠ . (17.221)
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We have studied, in this analysis, a model which provides the possibility of
studying in the Wigner–Weisskopf method, the standard technique for such analy-
ses, giving exponential behavior in the pole approximation, but also is accessible
in a simple way to the Lax–Phillips framework.

In this example, we have computed the resonant state for a Stark model. The
variable x used here corresponds to the “energy” in the Lax–Phillips formal struc-
ture but retains its physical meaning, in the result, as position. Note that this is
also true in our formulation of the Wigner–Weisskopf model, taking for the unper-
turbed Hamiltonian the term −Ex in the Hamiltonian Eq. (17.184), since this term
is large compared with the term producing the embedded bound state. The position
variable occurs in the Hamiltonian, producing a continuous energy spectrum {Ex}.
The interpretation of the poles of the S-matrix, or resolvent, therefore remains, as
in the usual formulation of resonance problems, as occurring in the complex energy
plane, but the variable x retains its physical meaning as coordinate as well.

In the framework of general Lax–Phillips theory, the resonant state carries the
pole as in Eq. (17.218), where the x that appears would be replaced by another
symbol, say, σ , associated with unperturbed energy, and the distribution over space
of the wave function would reside in the vector n of the auxiliary Hilbert space. In
our case, this vector is just a number (one-dimensional), and the space distribution
is provided by the equivalence of (unperturbed) energy and the variable x .

The resonance state provided by the Lax–Phillips theory in the “energy” repre-
sentation actually therefore corresponds to a distribution of x values in the resonant
state:

|〈x | f 〉out|2 = |n|2
(x − Re z0)

2 + | Im z0|2
,

a Cauchy distribution with width | Im z0|. The Cauchy distribution is centered on
Re z0, corresponding to a shift away from the mean value of x = 0 in the bound
state in the absence of electric field; as we have seen, the pole moves farther to the
left with increasing field, so that the center of the wave packet moves to the left.

This example therefore illustrates the approximate exponential decay law in time
in the pole approximation of Wigner–Weisskopf theory, and the exact exponential
decay law in the Lax–Phillips treatment, with precisely the same exponent.

We have seen in this chapter some of the limitations of the Wigner–Weisskopf
method, as well as some of its very useful and robust results. In the Wigner–
Weisskopf analysis, the resonance is described by the position of a pole in the
complex energy plane but does not have a state in the Hilbert space associated with
it. There has been considerable study, as discussed in Section 17.6, of the applica-
tion of the method of Gel’fand triples, or rigged Hilbert spaces, for the description
of resonances which satisfies the property of exact exponential decay (without the
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“background” corrections to the Wigner–Weisskopf pole approximation) (Bailey
and Schieve, 1978; Bohm, 1978, 1980; Parravicini et al., 1980; Bohm and Gadella,
1989; Bohm and Kaldass, 2000). The elements of the Gel’fand triple are not, how-
ever, vectors of a Hilbert space (they belong to a Banach space) and have no scalar
products. Hence, it is not possible, in general, to compute the expectation value of
an observable or to study physical properties, such as localization, of the state.

The Lax–Phillips formulation describes the resonant state as an element of a
Hilbert space, and answers to such questions then become accessible.
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18

Quantum statistical mechanics, extended

18.1 Intrinsic theory of irreversibility

In connection with the previous chapter on Wigner–Weisskopf, quantum irre-
versibility, Gamov states and the Lax–Phillips theory of decay, we shall examine
the recent program in statistical mechanics carried forward by Ilya Prigogine and
his colleagues since his early book in 1962 (Prigogine, 1962). This discussion is
somewhat out of the focus of the present book, since the work to be discussed has
principally been devoted to isolated quantum systems, not those in interaction with
“reservoirs.” In addition, Prigogine’s work is very classical in its content. We shall
not attempt the task of reviewing the many changes that have taken place between
1962 and the present. Fine texts describing some of this work are those of Balescu
(1963, 1975). A recent critical overview of the “modern view” is in the unpublished
thesis of B. C. Bishop of the University of Texas Philosophy Department (Bishop,
1999).

In many ways this is related to the use of Gel’fand triplets (Gel’fand and
Vilenkin, 1968), mentioned in Chapter 17.6, to describe irreversible quantum
states, i.e. Gamov states. See Chapter 17, the book of Bohm and Gadella (1989) and
also the more recent review article by Bohm and colleagues (Bohm et al., 1997).
The object in statistical mechanics is to extend the range of the Liouville operator
(classical and quantum) such that its eigenvalues are complex and intrinsically irre-
versible. Statistical mechanics has always been focused on many particle systems
and the appearance of a continuum spectrum in the thermodynamic limit, already
used in many places in this book. In the classical case Antoniou and Tasaki carried
out the adaptation of the Gel’fand triplet approach to the Liouville operator, but this
is, apparently, not possible quantum mechanically (Antoniou and Tasaki, 1993).
Thus, another route must be taken in what Prigogine has termed, for emphasis,
“large Poincaré systems” which have a continuum spectrum (Prigogine, 1997).

We must also say that much of the early development was by the use of per-
turbation theory and diagrammatic methods, in the use of the master equation of

365
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Chapter 4. A central article in the early work is by Prigogine, George, Henin and
Rosenfeld (Prigogine et al., 1973) and must not be overlooked. In a sense, the
theoretical effort was formalized here and then clarified by later nonperturbation
and more rigorous discussion. A most important physical assumption, called the
“iε rule” of analytical continuation, was introduced by George at that time. Its
importance cannot be underestimated (George, 1971). We will discuss this in the
subsequent sections.

18.2 Complex Liouvillian eigenvalue method: introduction

Influenced by the idea of a rigged Hilbert space approach to construct an extension
of the Schrödinger wave function to complex eigenvalue spectra, Petrosky and Pri-
gogine (1997) began a similar program with the Liouville operator. They somewhat
audaciously proposed a super operator, L , eigenvalue spectra

L | Fν
α "= zνα | Fν

α ", (18.1)

and a related adjoint eigenvalue spectra

� F̃ν
α | L =� F̃ν

α | zνα, (18.2)

assuming bi-orthogonality and completeness. They assumed the super operator L
to be diagonalizable and represented by a complex spectral representation as

L =
∑
ν

∑
α

| Fν
α " zνα � Fν

α | . (18.3)

Here we will be interested in the quantum version of this approach. (The classical
version, possibly simpler and related to classical chaotic dynamics, will be left
aside.)

This was examined particularly in the context of scattering theory and the well-
known and often-employed Friedrichs model, which has a Hamiltonian of the form
already considered in the previous chapter,

H = ω1 |1〉 〈1| +
∫ ∞

0
dωω |ω〉 〈ω| + λ

∫ ∞

0
dωVω (|ω〉 〈1| + |1〉 〈ω|) ,

representing a single excitation |1〉 interacting with a continuum |ω〉 (Friedrichs,
1948).

To illustrate this, we will follow the somewhat more rigorous formulation of
Antoniou (Antoniou et al., 1997). We will reduce the mathematical sophistication
of their article, which perhaps is its contribution, but still follow the discussion. The
central point is to use a manifest continuum representation rather than the thermo-
dynamic limit of a discrete spectra in Hilbert space, which is more traditional and
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appears throughout this book. This is in keeping with Prigogine’s insistence that
the theory is “large Poincaré,” i.e. completely non-integrable. This is the main dif-
ference from the rigged Hilbert space approach of Bohm and colleagues and from
the Lax–Phillips theory.

18.3 Operators and states with diagonal singularity

Van Hove observed that in continuous basis Hilbert spaces

Aαa′ =
〈
α |A|α′〉 = Aαδ

(
α − α′

)+ Aαa′ (18.4)

(Van Hove, 1955, 1962). The matrix elements in the continuum representation |α〉
have a diagonal singularity for nonvanishing Aα in the first term. Here it will be
assumed that the off-diagonal Aaa′ are compact and correspond to trace class oper-
ators usually assumed in statistical mechanics. It will be further assumed that the
diagonal part Aα corresponds to a Banach algebra norm with∥∥Ad

∥∥ ≡ sup
ψ �=0

‖Aψ‖
‖ψ‖ . (18.5)

The nondiagonal parts are compact on a Hilbert space. As a consequence, any
operator A with a diagonal singularity becomes

A = Ad + Ac (18.6)

and ‖A‖ = ∥∥Ad
∥∥+ ∥∥Ac

∥∥ .

Antoniou et al. prove from these assumptions that the space of A is a Banach
space which includes the identity, and further that the algebra is not C∗. A basis is
constructed with

|α) ≡ |α)d ≡ |α >< α| , (18.7)

and further (note the “round” ket),∣∣αα′) = ∣∣α >< α′
∣∣ . (18.8)

The representation of A is then

A =
∫

dαAd
α | α)+

∫
dαdα′Ac

αα′
∣∣αα′) . (18.9)

The basis
∣∣αα′) is discussed in some detail by Antoniou et al. (Please note that we

will not use the notation of Petrosky and Prigogine.) Now we have

〈〈A | B〉〉 = Tr
(
A† B

)
.
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Further, the density operator (state!) may be defined with the scalar product

(ρ | A) ≡ 〈A〉ρ (18.10)

over all A in this Banach space. They are normalized linear functionals having the
familiar property

(a) (ρ | z1 A1 + z2 A2) = z1 (ρ | A1)+ z2 (ρ | A2) (18.11)

(b)
(
ρ | A† A

) ≥ 0

( c) (ρ | I ) = 1,

since I is included.
The ρ themselves form a subset of the dual space to that of the operators A.

Thus,

ρ = ρd + ρc (18.12)

for any operator A in the space(
ρd | A

) = (
ρd | Ad

)
(18.13)(

ρc | A
) = (

ρc | Ac
)
.

Because the off-diagonal states ρ are trace class by assumption,(
ρc | A

) = Trρ̂ Â. (18.14)

Antoniou et al. prove that in the dual space of A,

‖ρ‖ = max
{(

ρd | I
)
,Trρ̂

}
. (18.15)

With this, it may be argued that ρd
α are the probabilities of the continuous state |α〉,

and the ρ ′αa correspond to correlations, as we had physically expected. Now

(ρ | A) = 〈A〉ρ =
∫

dαρd
α Ad

α +
∫

dαdα′ρc∗
αa′ A

c
αa′ . (18.16)

By this we identify, in the familiar way,

(ρ | α) = ρ∗0α = ρ0
α (18.17)(

ρ | αa′
) = ρc∗

αa′ .

Antoniou et al. prove the lemma that (α| , (αa′
∣∣ ; |β) , ∣∣ββ ′) form a biorthogonal

basis with the following properties:

1. (α | β) = δ (α − β)

2.
(
αa′ | ββ ′) = δ (α − β) δ

(
α′ − β ′

)
(18.18)

3.
(
α | ββ ′) = 0

4.
(
αa′ | β) = 0
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It must be emphasized that these linear functionals are an extension of the usual
quantum theory to states (ρ| with diagonal singularity.

Some further properties must be mentioned. If ‖ρ‖ = (ρ | I ), then from the
norm condition, Eq. (18.15),

max
(∥∥ρd

∥∥ ,
∥∥ρc

∥∥) = (
ρd | I

)
. (18.19)

A pure state of the Hilbert space is the vector ψ where

〈ψ | Aψ〉 = (ρ | A) , (18.20)

if and only if

ρd
α =

∣∣ψα

∣∣2 (18.21)

ρc
αa′ = ψαψ

∗
α′,

where

ψα ≡ 〈α | ψ〉 .
This expresses the Born rule for calculating quantum probabilities. Further, the
representation of operator A by ψ is then, as usual,

〈ψ | Aψ〉 =
∫

dα
∣∣ψα

∣∣2 Ad
α +

∫
dαdα′

(
ψ∗

αψα′
)

Ac
αa′ .

18.4 Super operators and time evolution

Super operators in the form of projection operators and the commutator evolution
operator—the Liouville operator—are well known and were used in Chapter 3 for
the discussion of time evolution and development of the master equation. However,
this was in terms of Hilbert space representations, for instance, the tetradic matrix
operator (Zwanzig, 1965). This is extended here by the methods of Section 18.3 to
continuous spectra having diagonal singularities.

Define the operation of linear U on ρ with the duality

(Uρ | A) = (ρ | V A) (18.22)

in the Banach space for all A,U being the dual of V, U = V x . The diagonal and
off-diagonal projection operators are

(Pdρ| =
∫

dα (ρ | α) (α| = (
ρd

∣∣ (18.23)

(Pcρ| =
∫

dαdα′
(
ρ | αα′) (αα′∣∣ = (

ρc
∣∣ .
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The form

(Pcρ | A) =
∫

dαdα′
(
ρ | αα′) (αα′ | A

)
(18.24)

is a tetradic (four-index) multiplication. The Liouville (commutator) operator is for
any A

(Lρ | A) ≡ (ρ | [H, A]) ≡ (ρ | L A) . (18.25)

We consider the super operator eigenvalue problem

U fν = zν fν, (18.26)

which is for all A

(U fν | A) = (zν fν | A) = z∗ν ( fν | A) . (18.27)

The left eigenvector

U+ f̄ν = zν f̄ν ≡ V f̄ν, (18.28)

which is for all states ρ (
ρ | V f̄ν

) = (
ρ | zν f̄ν

)
. (18.29)

Assuming these eigenfunctions of U are biorthogonal, U has the complex spectral
decomposition

U =
∑
ν

zν
∣∣ f̄ν

)
( fν | . (18.30)

For any operator V there is a tetradic representation:

(ρ | V A) =
∫

dαdβ (ρ | α) (α | V | β) (β | A) (18.31)

+
∫

dαdβdβ ′ (ρ | α) (α | V | ββ ′) (ββ ′ | A
)

+
∫

dαdα′dβ
(
ρ | αα′) (αα′ | V | β) (β | A)

+
∫

dαdα′dβdβ ′
(
ρ | αα′) (αα′ | V | ββ ′) (ββ ′ | A

)
.

With these rules the time evolution may be constructed. Assume the Heisenberg
evolution

exp (i Lt) A ≡ exp (i Ht) A exp (−i Ht) ; (18.32)

from this we obtain the Heisenberg equation of evolution,

∂t A = i [H, A] = i L A, (18.33)
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and the Schrödinger representation evolution of the state (ρ |,
(∂tρ | A) = (ρ | i [H, A]) (18.34)

= −i (Lρ | A) .

This is familiar in form to the evolution in Hilbert space when ρ is trace class.
The assumed spectral decomposition of L is

(Lρ| =
∑
ν

zν
(
ρ | f̄ν

)
( fν | . (18.35)

This is what Petrosky and Prigogine first used. It must be emphasized that in this
representation, outlined in detail here, zν is complex, similar to but not the same as
the Gamov state representation of Arnold Bohm and others.

18.5 Subdynamics and analytic continuation

We introduce a many-body operator � similar to the Möller operator of scattering
theory mentioned in Chapter 4 and Chapter 17:

L� = �θ (18.36)

L = �θ�−1. (18.37)

The intertwining relation will be used to construct the spectral decomposition, Eq.
(18.35). This was first shown by Petrosky and Prigogine (1991). To do this, we must
first introduce creation Cn and destruction Dn super operators, first appearing in the
diagrammatic perturbation analysis of the generalized master equation (Prigogine,
1962). We introduce P0 = Pd and P1, and Pn where

1. P0 is the diagonal projector on the states

P0 + Pc = I, (18.38)

Pc being the off-diagonal part, P2
c = Pc.

2. Pn is a further projection onto states of degree n correlation, n = 1, 2, . . .

In this, the states are (
Pd L ′n

′
ρ

∣∣∣ = 0 n′ < n (18.39)(
Pd L ′n

′∣∣∣ �= 0 n′ = n,

where L ′ρ = [V, ρ], the Liouvillian of perturbation. We also assume that L0

is diagonal and hence Pd = P0 in the states of L0. The minimal power of n,
which connects the diagonal to off-diagonal, is the degree of correlation. This is a
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beginning of a further decomposition, a subdynamics, early used by George (see
Prigogine et al., 1973). We have

Pc = P1 + P2 + · · · + Pn. (18.40)

Now

P0 + P1 + · · · = I (18.41)

P0 Pn = 0

Pn Pn′ = δnn′ Pn

L0 P0 = P0L0 (18.42)

L0 Pn = Pn Lo.

We define

θ =
∑

n

(
Pn L Pn + Pn LCn Pn

) ≡∑
n

θn, (18.43)

and also, most importantly,

�−1 =
∑

n

(
Pn + DnCn

)−1 (
Pn + Dn

)
, (18.44)

where

Cn = (
1− Pn

)
Cn Pn (18.45)

Dn = Pn Dn
(
1− Pn

)
.

The reader must verify that Cn, Dn obey the operator equations[
L0, PmCn

] = (
PmCn − Pn

)
L ′

(
Pn + Cn

)
(18.46)[

L0, Dn Pm
] = (

Pn + Dm
)

L ′
(
Pm − Dn Pm

)
. (18.47)

These form the basis of a perturbation analysis. They are equivalent to the resolvent
expansion analysis used earlier (Prigogine, 1962; also see Balescu, 1975).

The “subdynamics” is constructed by introducing a transformed projector �n:

�n = �−1 Pn�. (18.48)

It is not Hermitian. Now we may show that

�n = (
Pn + Cn

)
An

(
Pn + Dn

)
, (18.49)

where

An ≡ Pn
(
1+ DnCn

)−1
. (18.50)
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Further, �n�m = �nδnm , and the commutation relation

L�m = �m L . (18.51)

Introducing a transformation of (ρ | A) for the arbitrary operator A,(
ρ ′ | A

) = (�ρ | A) , (18.52)

we find

i
d

dt

(
ρ ′ | A

) = θ
(
ρ ′ | A

)
, (18.53)

where we have used Eq. (18.36). This may be further decomposed by the
orthogonality of the subspaces:

i
d

dt

(
Pnρ ′ | A

) = θn
(
Pnρ ′ | A

) ; t ≥ 0. (18.54)

This is the main result of the subdynamics decomposition of a set of independent
kinetic Markovian semigroup equations governing the time evolution in the corre-
lation subspaces. This was discussed in detail by Balescu (1975). It represents a
considerable development of the master equation methods of Chapter 3.

Now let us comment on the George analytic continuation rule, which is central
to the perturbation analysis of the solution to Eq. (8.46) and Eq. (18.47) (George,
1971). The formal solution to the nonlinear equations, Eq. (18.46) and Eq. (18.47),
may be written with the time ordering (see Kato, 1966, p. 553; Antoniou and
Tasaki, 1993):

PmCn = i
∫ ±∞

0
dt exp (−i L0t)

(
PmCn − Pm

)
L ′

(
Pn + Cn

)
exp (i L0t)

lim+∞ for m > n

lim−∞ for m < n (18.55)

and

Dn Pm = +i
∫ ±∞

0
dt exp (−i L0t)

(
Pn + Dn

)
L ′

(
Pm − Dn Pm

)
exp (i L0t)

lim+∞ for n > m

lim−∞ for n < m. (18.56)

Here, transitions are from n to m in Eq. (18.55) and m to n in Eq. (18.56). Thus, if
we choose time running 0 →∞ in Eq. (18.55), the correlation patterns increase in
size in the future.

This may be formulated in complex variable space, resulting in the so-called iε
rule of analytic continuation. We will not pursue this further. See the articles by
Antoniou and Tasaki (1993) and by Petrosky and Prigogine (1997).
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This time boundary condition in Liouville space should be contrasted with that
of Bohm for the wave function in the rigged Hilbert space approach (Bohm et al.,
1997; see also Chapter 17). There, it is assumed in interaction with

detection
〈
E | ψout

〉 = 〈−E | ψ−〉 εL ∩ H
∗
+ |R+ t ≥ 0 (18.57)

preparation
〈
E | φin

〉 = 〈+E | φ+〉 εL ∩ H
∗
− |R+ t ≥ 0.

We have a pair of rigged Hilbert spaces:

�− ⊂ H ⊂�x
− (in states) (18.58)

�+ ⊂ H ⊂�x
+ (out states).

�+ is the subspace of the measurement detection, and �− is the subspace of prepa-
ration. Analytic continuations are taken consistent with this boundary condition.
Time t = 0 is taken as the moment state where preparation ends and detection
begins, continuing into the future. This separation determines the two regions of
Eq. (18.57) and Eq. (18.58). There are two spaces, �− and �+, both of which are
the Gel’fand triplets seen in Eq. (18.58). The �x− and �x+ are further assumed to
be Hardy class.

From these states two semigroup continuous evolution operators are constructed:

U x
−�− → �x

− t ≤ 0 (18.59)

U x
+�+ → �x

+ t ≥ 0.

U x+ and U x− are extensions of U † (t) to the two spaces �x+ and �x−. They do not
represent evolution from �− to �+. Both are semigroups. Here, for instance,

U x
+ = exp (−i ERt) exp

−γ t

2
for t ≥ 0.

In both, the evolution is toward the future, decaying in the future. It evolves as a
Gamov state decaying into the past, but is interpreted as the preparation growing
from t = −∞ to t = 0 in the future (see Bohm and Harshman, 1996).

We can see from the iε rule, in Eq. (18.55) and Eq. (18.56), that the forward-
in-time propagators are used for m > n and the backward-in-time propagators
are used for m < n in Eq. (18.55). The direction of the semigroup evolution
depends upon the degree of correlation. Both semigroups are intertwined. It cannot
be expected that in quantum mechanics the Bohm formulation in rigged Hilbert
space will give the same result as the physical extension to a complex eigenvalue
decomposition in Liouville space as outlined here. How may we be expected to
derive one from the other in quantum mechanics? This is an interesting problem.
It would seem that there is no propagation from −∞ to 0 in Eq. (18.55) and Eq.
(18.56).
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18.6 The Pauli equation revisited

Consider again the λ2t approximation already mentioned in Chapter 3. The lowest-
order contribution, Eq. (18.55), is for P0 for m = c > n:

C0 = −iλ
∫ ∞

0
dt exp (−i L0t) PcL ′P0 (18.60)

= λ

iε − L0
PcL ′P0 where ε > 0.

We construct the evolution operator to this order:

θ
(2)
0 = P0L P0 + P0LC0(1)P0

= P0L P0 + P0LC0(1).

Now P0L P0 = 0 by construction. Then

θ
(2)
0 = λ2 P0L ′Pc 1

iε − L0
PcL ′P0. (18.61)

This is the Pauli operator. The master equation is

d

dt
ρd = −iθ(2)

0 ρd . (18.62)

Let us turn again, in this context, to the continuous model of Friedrichs (1948),
already met in the previous chapter, as an example of the more general discussion.
Here

H = H0 + V (18.63)

H0 = ω1 |1〉 〈1| +
∫ ∞

0
dωω |ω〉 〈ω|

V = λ

∫ ∞

0
dωVω [|ω〉 〈1| + |1〉 〈ω|] .

A single level in Hilbert space |1〉 interacts with the continuum |ω〉. The dyadic
states previously introduced are defined:

|1) ≡ |1〉 〈1| |ω) ≡ |ω〉 〈ω| (18.64)

|1ω) ≡ |1〉 〈ω| ∣∣ωω′
) ≡ |ω〉 〈ω′∣∣ .
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The diagonally singular observables (because of the continuum) are written A =
Ad + Ac as before:∣∣Ad

) = A1 |1)+
∫

dωAω |ω) (18.65)∣∣Ac
) = ∫

dω′A1ω′
∣∣1ω′) (18.66)

+
∫

dωAω1 |ω1)+
∫

dωdω′Aω′ω
∣∣ωω′

)
.

Correspondingly, we form linear functionals (1| , (1ω| , (ω1| , and
(
ωω′

∣∣. A few
properties are

(1 | ω) = (
1 | ωω′

) = (1ω | 1) = (
1ω | ω′1) (18.67)(

ω | ω′ω′′) = (
1ω | ω′ω′′) = 0(

ω | ω′) = δ
(
ω − ω′

)(
1ω | 1ω′

) = δ
(
ω − ω′

)
.

With these, we represent the functional (ρ| = (
ρd

∣∣+(ρc|where (ρ | A) = 〈A〉ρ .

Now these represent (ρ| :(
ρd

∣∣ = ρ1 (1| +
∫

dωρω (ω| (18.68)(
ρc

∣∣ = ∫
dωρω (ω1| +

∫
dω′ρ1ω′

(
1ω′

∣∣+ ∫
dωdω′ρωω′

(
ωω′

∣∣ .
Here

ρ1 = ρ∗1 ρω = ρ∗ω ρω1 = ρ∗1ω (18.69)

ρω′w = ρ∗ωw′ ρ1 +
∫

dωρω = 1.

The relevant super operator projectors are

P ≡ |1) (1| +
∫

dω |ω) (ω| (18.70)

(1− P) ≡ Q =
∫

dω |1ω) (1ω| +
∫

dω |ω1) (ω1| +
∫

dωdω′
∣∣ωω′

) (
ωω′

∣∣ .
The super operator (commutator) L = L0 + L1 may now easily be written. We
have

L0 =
∫

dω (ω1 − ω) |1ω) (1ω| +
∫

dω (ω − ω1) |ω1) (ω1| (18.71)

+
∫

dωdω′
(
ω − ω′

) ∣∣ωω′
) (

ωω′
∣∣
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and the perturbation interaction

L ′ =
∫

dωVω

{
[|ω1)− |1ω)] (1| +

∫
dωVω [|1ω)− |ω1)] (ω|

}
+

∫
dω′Vω′

∣∣ω′ω) |1ω)−
∫

dωVω |1) (1ω|

−
∫

dω′Vω′
∣∣ωω′

)
(ω1| +

∫
dωVω |1) (ω1|

+
∫

dωdω′
[
Vω

∣∣1ω′)− Vω′ |ω1)
] (

ωω′
∣∣ . (18.72)

These have the same form as a tetradic multiplication in a discrete Hilbert space
representation. The student should show that, for this, the Pauli operator equation
gives, taking A = |1),

d

dt
(ρ |α) = −2πλ2V 2

m(ρ |1) t ≥ 0 (18.73)

d

dt
(ρ |ω) = 2πλ2V 2

mδ(ω − ωm)(ρ |1) .
The solution is (

ρ t | 1
) = exp

(−2πλ2V 2
mt

)
(ρ0 |1) . (18.74)

The decay of the discrete state is the “golden rule” form, so with A = ω,(
ρ t | ω

) = (
ρ0 | ω

)+ [
1− exp

(−2πλ2V 2
mt

)
× δ (ω − ωm)

(
ρ0 | ωm

) ]
, (18.75)

which grows with the overlap of |ω) with |ωm). This is, of course, semigroup
evolution, as is the operator Pauli equation.

The exact Friedrichs model, to all orders in λ, has been treated (Antoniou et al.,
1997). The reader is referred there for the discussion of the complex extension. The
result is the same as that of de Haan and Henin (1973).

An exact expression for �0 of Eq. (18.54) is obtained:

�0 = C0L P0 =
(
z1 − z∗1

) |1){(1| − (
z∗1 − z1

)−1
∫

dω f (ω) (ω|
}
, (18.76)

where

f (ω) = λ2V 2
ω

[(
1

(ω − s1)

)+
z1

−
(

1

(ω − s)

)−
z∗1

]
. (18.77)

In Eq. (18.77) the ± terms arise from the analytical continuation of the form

f (z) =
∫

dω
1

ω − z
φ (ω) Im z > 0
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from above to below (+), and similarly f (z) for Im z < 0 from below to above
(−). Further, it is assumed that

η (z) = z − ω1 +
∫

dωV 2
ω

ω − z

has a pole at η+ (z1) = 0 (Im z1 < 0) and η−
(
z∗1
) = 0. This is the result of the

continuation rules discussed earlier.
We conclude with a reminder to the student that the extension of the Liouville–

von Neumann equation, here described briefly, has naturally led to an irreversible
set of equations, Eq. (18.54) and the Pauli master equation, which we have met in
many forms as a special case and illustration.

References

Antoniou, I. and Prigogine, I. (1992). Nuovo Cim. 219, 93
Antoniou, I. and Tasaki, S. (1993). Int. J. Quantum Chem. 46, 425.
Antoniou, I., Suchanedki, Z., Laura, R. and Tasaki, S. (1997). Physica A 241, 737.
Balescu, R. (1963). Statistical Mechanics of Charged Particles (New York, Wiley).
Balescu, R. (1975). Equilibrium and Non-equilibrium Statistical Mechanics (New York,

Wiley), also published by Elsevier.
Bohm, A. and Gadella, M. (1989). Dirac kets, Gamov vectors and Gel’fand triplets. In

Lecture Notes in Physics 348 (New York, Springer).
Bohm, A. and Harshman, H. L. (1996). Irreversibility and Causality, ed. A. Bohm

(Berlin, Springer).
Bohm, A., Maxson, S., Loewe, M. and Gadella, M. (1997). Physica A 236, 485.
de Haan, M. and Henin, F. (1973). Physica 67, 197.
Friedrichs, K. (1948). Comm. Pure. Appl. Math. 1, 361.
Gel’fand, I. M. and Vilenkin, N. Ya. (1968). Generalized Functions 4 (New York,

Academic Press).
George, C. (1971). Bull. Cl. Sci. Acad. R. Belge 56, 505.
Kato, T. (1966). Perturbation Theory for Linear Operators (New York, Springer).
Petrosky, T. and Prigogine, I. (1991). Physica A 175, 146.
Petrosky, T. and Prigogine, I. (1997). Advances in Chemical Physics XCIX, ed. I.

Prigogine and S. A. Rice (New York, Wiley).
Prigogine, I. (1962). Non-equilibrium Statistical Mechanics (New York, Wiley).
Prigogine, I. (1997). The End of Certainty (New York, Free Press).
Prigogine, I., George, C., Henin, F. and Rosenfeld, L. (1973). Chemica Scripta 4, 5.
Van Hove, L. (1955). Physica 21, 801–923.
Van Hove, L. (1962). Fundamental Problems in Statistical Mechanics, ed. E. G. D.Cohen

(Amsterdam, North-Holland).
Zwanzig, R. (1965). Physica 30, 1109.



19

Quantum transport with tunneling and reservoir
ballistic transport

19.1 Introduction

In all the previous discussions of transport (in Chapters 4, 5, 6, 15 and 16), we have
been dealing with the small Knudson number regime, K = l/d (Cercignani, 1969;
Kogan, 1969). l is the mean free path between collisions, and d is a system size
parameter. Here the major source of irreversibility and the impedance to transport
have been internal system collisions. The reservoirs have played a lesser role in
this aspect of these discussions. This is also true of the quantum situation.

The reservoirs become more important in the intermediate Knudson regime, and
for large l, the collisions in the system become increasingly less important. Classi-
cally, the linearized Boltzmann equation (see Cercignani, 1969) has been utilized
to discuss this. Much less has been done quantum mechanically from this point
of view. The case K → ∞ corresponds to free or ballistic motion. Qualitatively
speaking, the Knudson number scales the left-hand noncollision part to the col-
lision term in the Boltzmann kinetic picture. In the large Knudson regime, the
character of the boundaries becomes important. In gases near the wall, the ther-
modynamic constitutive equations do not hold, and in this case there is a formation
of the Knudson “layer” and a reduction there in the viscosity. In the pure ballistic
regime, there are no local hydrodynamic equations at all.

Recently, with the advent of nanoscience and its technology in condensed matter,
the transport in systems of few electrons (molecules) has become an important
problem (Datta, 1995, 2005). The discussion of the nanotechnology is not the point
here. A recent good reference is the book by Ferry and Goodnick (1997).

R. Landauer was apparently the first to discuss electron ballistic transport
in semiconductors. Utilizing a simple model and the ideas of one-dimensional
quantum scattering, he took the electrical conductance σ to be

σ = e2

h

(
T

R

)
, (19.1)

379
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where T is the 1−D transmission coefficient of free electrons between two random-
izing reservoirs. R is the reflection coefficient (Landauer, 1970). This point of view
was extended by Buttiker (1986). A review of this simple scattering point of view
is given by Stone and Szafer (1988). They discuss the controversy. In his book, in
Chapter 2, Datta (1995) gives extensive discussion of the physical aspects of this
and completely ignores the many particle aspects. It is the many particle aspects
that we wish to take up here and in the next section, where we will consider the
Keldysh Green’s function approach to the transport current of electrons through
a tunneling junction. The electrons will not be ballistic in the region between the
reservoirs. This will give an all-order perturbation theory via the appropriate con-
tour time Dyson equation. An expression for the time-dependent current will be
obtained. The purpose is to illustrate the Keldysh perturbation theory as well as to
obtain a generalization of Landauer’s formula.

19.2 Pauli equation and boundary interaction

The dissipative quantum Pauli equation for a system interacting with reservoirs
was derived in Chapter 3, Eq. (3.50) (Peier, 1972):

∂ρsnn(t)

∂t
= −2π

∑
m

∣∣H ′
smn

∣∣2 δ (E0
n − E0

m

) [ρsnn (t)− ρsmm (t)] (19.2)

− 2π
∑

m

∑
αβ

∣∣H ′
s Rnαmβ

∣∣2 δ (E0
n + E0

α − E0
m − E0

β

)
[
ρRαα (0) ρsnn (t)− ρRββ (0) ρsmm (t)

] ;
t ≥ 0.

It is the second terms which we will utilize here. Recall that the equation is exact
in the singular Van Hove limit, λ → 0, t → ∞; λ2t is finite. In this case λ

characterizes the strength of H ′
s R . It is a time asymptotic equation for the diagonal

elements of the system density matrix ρsnn(t). We will take the system to be a 1−D
free non-interacting system of electrons (ballistic). Thus, |n〉 ≡ |k〉, k = (2πn)/d ,
n = 0, 1, . . ., Hsnn′ = 0. The Knudson number is infinite.

Initially, the boundary condition is

ρ0 (t = 0) = ρs (t = 0) ρR (t = 0) . (19.3)

The diagonal elements of the initial reservoir states, ρRaα (0), are influential at all
time. In the ballistic case the total irreversible behavior comes from the system–
reservoir interaction, H ′

s Rnαmβ. (Irreversibility and dissipation have been discussed
in Chapters 5 and 6.) We further assume that

[
ρR (0) , HR

] = 0.
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The reservoir is further characterized by being described in a macroscopic ther-
modynamic limit, L → ∞, N → ∞, N/L = constant. N is here the number of
reservoir electron degrees of freedom, and L the size. As first pointed out by Van
Hove (1955, 1956, 1957), using perturbation theory, in this limit in Hilbert space a
diagonal singularity in

(
lim R0Lint . . . Lint

)
νν

(
N , N ′) appears. This was discussed

in Chapter 16, where we used a direct method of choosing continuum states to
deal with this problem. Suffice it to say that here we may use perturbation methods
to deal with continuum Hilbert space matrix elements appearing in the thermody-
namic limit. This limit eliminates Poincaré recurrences in the system reservoirs, as
we shall see.

We will take the two reservoirs as incoherent, being sufficiently spacially
separated. Call the two reservoirs l and r , left and right:

HR = Hr + Hl (19.4)

[Hr , Hl] = 0.

Thus, in Eq. (19.2), α = (l, r), and

H = H 0
s + Hl + Hr + H ′

s R (19.5)

H ′
s R = H ′

sl + H ′′
sr .

We might think of the reservoir system interactions to be of the approximate
tunneling form (see Datta, 1995):

HT =
∑
kpσ

[
Tkpa†

kσapσ + h.c.
]

Nk = a†
k ak .

The precise details of H ′
sl or H ′

sr do not concern us except that they are short range
compared with d and weak (λ→ 0). Since this is a one-dimentional problem,
H 0

s = p2
k/2m, we will integrate around k,−k since there is present, implicitly,

an energy-conserving delta function. Thus, the relevant system diagonal density
matrix contributions are integrated around ρkk, ρ−k−k . We take the left equilibrium
reservoir to be Fermi,

ρll (0)→ fl (El) = (expβ
(
El + μl

)+ 1)−1 (19.6a)

and the right,

ρrr (0)→ f 0
r (Er + eV ) = (

expβ
(
El + μl + eV

)+ 1
)−1

. (19.6b)

The chemical potential is shifted by a voltage parameter. We will not discuss its
external measurement but just assert a shift in the chemical potential between the
left and right reservoirs.
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We may write

ρR (0) = ρl (0) ρr (0) (19.7)

TrlρR (0) = ρr (0) etc.,

so 〈
r |ρr | r ′

〉 = f (Er ) δrr ′ = f (El + eV ) δrr ′ ≡ ρr (0) δrr ′

and 〈
nα

∣∣H ′
s R

∣∣ n′α′
〉 = 〈

nl
∣∣H ′

sl

∣∣ n′l ′
〉
δrr ′ +

〈
nr | H ′

sr | n′r ′
〉
δll ′ .

Using these assumptions we have for the left–right equilibrium reservoir–system
interaction

ρ̇skk (t) = −2π
∑
k′l ′

∣∣H ′
s Rklk′l

∣∣2 δ (E0
k − E0

k′
)

(19.8)

× [
ρl (0) ρskk (t)− ρl ′ (0) ρsk′k′ (t)

]
− 2π

∑
k′r

∣∣H ′
s Rkrk′r

∣∣2 δ (E0
k − E0

r

)
× [

ρr (0) ρskk (t)− ρr (0) ρsk′k′
]
.

We have assumed no correlations between the left and right reservoirs; they are
independent. Now H ′

kr,k′r ′ is invariant under k, r; k ′r ′ → kl; −k ′l ′ and indepen-
dent of the volume V . The right–left transition rate of l from k → k ′ is the same as
the right–left of r between k ′ and −k. This is a form of detailed balance.

We assume, further, that the interaction H ′
s Rklk′l ′ has a resonance or sharp peak

at Ek = El and Ek = Er . Thus, the dominant contribution of the reservoir is at
fl (Ek) and fl (Ek + eV ). Because the interactions at the two reservoirs are taken
to be the same, we have

dρkk (t)

dt
= −2π

∑
k′l

Akl; k′lδ (El − Ek)
[

f (Ek) ρkk (t)− ρ−k′−k′ f (Ek′ + eV )
]
,

(19.9)
where

Aklk′l ′ = 2π
∣∣H ′

s Rkl, k′l ′
∣∣2 δ (Ek − Ek′) .

This is the gain–loss Pauli equation for an electron in free state |k〉. The gain–loss
is due to the reservoir’s interaction appearing naturally in Eq. (19.9). All dissipa-
tive effects are due to this interaction of the macroscopic reservoir pair in thermal
equilibrium with differing chemical potential coming from their uncorrelated initial
condition, ρR (0) = ρr (o) ρl(0).
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We remind the reader that the thermodynamic limit is implicit here, since it is
necessary to go to the continuum limit (N → ∞, V → ∞, N/V = constant)
to evaluate the delta function.

19.3 Ballistic transport

We identify the overall transition rates as

Wl,r = 2π
∑
l ′k′

Akl;−k′lδ (El − Ek) f (El) (19.10)

Wr,l = 2π
∑
r ′k′

Akr; −k′rδ (Er − Ek′) f (Er + eV ) .

We have again made explicit the energy conservation law between the left and
right electron reservoir in this order of perturbation theory. To higher orders, line
broadening may appear (see Appelbaum and Brinkman, 1969). We note that Wl,r �=
Wr,l .

A global equilibrium, ρkk = ρ−k,−k = constant, is achieved only when eV = 0
and thus Wl,r = Wr,l . The chemical potentials of the reservoirs are equal, and
βl = βr .

For the steady state (assumed) flow,

ρ̇kk = Ik, (19.11)

and the current to the right is Jk = −eVk Ik . The net current to the right is

J = −eVk (Ik − I−k) = constant. (19.12)

The total right flow is J =∑
k Jk , where Vk is the particle velocity in state k.

The entropy behavior was discussed in Chapter 6. It was shown (see Eq. 6.80)
for equations of the form of Eq. (19.2) that

Sc

(
Pt pi

p∗i

)
≥ Sc

(
pi (t)

p∗i

)
t > 0,

where Sc is the conditional entropy. Pt is a Markov operator. p∗i = Pt pi is the
steady solution. Sc = 0. Thus the dissipative evolution of the reservoir system
without internal system interaction is proved. Such systems as this simple model
are dissipative and irreversible. Further, there is a heat flow into the system from
the reservoirs:

J = d

dt
TrRρS (t) · log z−1 exp (−βHR) .

Because of this, assuming a steady state (not proved), Spohn and Lebowitz (1978)
showed that there is a time averaged entropy production, and indicated conditions
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for the validity of the Onsager symmetry, Lkj = L jk . See Chapter 6 again for more
details. We must say that there is no rigorous proof to date of the existence of such
steady states.

Considering Eq. (19.9) and Eq. (19.10), we assume

J =
∑

k

Jk

is constant. Thus, since Akl,−k′l = A−kl,k′l , the net steady current becomes

J =
∑

k

Jk = −e
∑
kk′

Vk

(
ρ̇kk − ρ̇−k′−k′

)
(19.13)

= 2π
∑
kl,k′l

Vk Akl,k′l
(
ρkk − ρ−k′−k′

) [
f (Ek)− f (Ek′ + eV )

]
.

Now

N (Ek) =
(
ρkk − ρ−k′−k′

)
f (Ek) δ (El − Ek) (19.14)

N (Ek′ + eV ) = (
ρkk − ρ−k′−k′

)
f (Ek′ + eV ) δ (El − Ek′ − eV )

are the net “to the right” and “to the left” distributed particle density in the right
and left reservoirs. Thus,

J = −2πe
∑
kl,k′l

Vk Akl, −k′l ′ [N (Ek)− N (Ek′ + eV )] . (19.15)

The current depends on the difference in the chemical potentials of the two sepa-
rated reservoir boundaries which are Fermi distributions. It is zero if the potential
is zero, V = 0.

In the classical limit, the rate would reduce to the particle velocity in state |k〉.
If we expand to lowest order in eV , we may then define a conductance coefficient.
We have

J = 2π
∑

kl

Vk Akl,−k′l
∂N (Ek + eV )

∂Ek
|V=0 V . (19.16)

In going to the evaluation of δ functions on energy of the reservoirs, we have, in
the thermodynamic limit, ∑

→ L

2π

∫
dl.

L is the reservoir length. We may formally perform these integrals and obtain

J = e

2π
L
∑
kk′

Vk Ak,−k′
∂N (Ek′ + eV )

∂Ek
|V=0 V,
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where

Vk Ak,−k′ =
∫

dl Vk Akl,−k′l (19.17)

is the reduced transition rate between states |k〉 to
∣∣k ′〉. Now we introduce density

N = Ln. We have then, in the limit N →∞, L →∞,

J = σV, (19.18)

where the conductance is

σ = e

2π

∑
kk′

Vk Ak,−k′
∂n (Ek′ + eV )

∂Ek′
|V=0, (19.19)

independent of L . Note that no electric field between the reservoirs has been intro-
duced, just a difference in chemical potentials. Now Eq. (19.17) gives Ak−k′ . The
reservoir thermodynamic limit is taken (N →∞, L →∞, N/L = n). We do not
take the thermodynamic limit of the small system in state |k〉, as has already been
emphasized. The discrete sums remain. There is an overall state energy conserva-
tion law, so δ (Ek − Ek′) remains. The transitions are between degenerate states,
k ′ = ±k, with Akk = 0. Hence the linear conductance coefficient is

σ = e

h

∑
k

Vk Ak,−k
∂n (Ek + eV )

∂k
|V=0, (19.20)

where

Vk = 1

h̄

(
∂Ek

∂k

)
.

To summarize, resistance is due to the irreversible reservoir–system interac-
tion here to lowest order λ2. The reservoir is in thermodynamic equilibrium with
a Fermi distribution. This illustrates the Knudson regime for few-particle trans-
port. The Landauer notion is quite qualitatively correct. Such a formula may be
carried rigorously to higher orders in perturbation. We will discuss the means to
accomplish this in the next section.

19.4 Green’s function closed-time path theory to transport

We shall now turn to an illustration of the diagrammatic perturbation theory of
Keldysh, which was discussed in the previous chapter (Keldysh, 1965; Caroli
et al., 1971, 1972; Jauho et al., 1994). At the same time we will consider tun-
neling transport, which is closely related to the previous section of this chapter.
Here we will consider time-dependent theory and strong coupling by means of the
Keldysh–Schwinger time path Green’s functions.



386 Quantum transport with tunneling and reservoir ballistic transport

We will follow closely the discussion of Jauho et al. See also the fine book of
Ferry and Goodnick (1997). The two reservoirs (called leads) are time dependent,
having been turned on at t ′

(
t ′ → −∞)

. The Hamiltonian is

HR =
∑

k,α=l,r

εkα (t) c†
kαckα. (19.21)

The isolated reservoirs have time-dependent but independent Green’s functions,

g<
(
t, t ′

) ≡ i
〈
c†

kα

(
t ′
)

ckα (t)
〉

(19.22)

= i f
(
ε0

kα

)
exp

[
−i

∫ t

t ′
dτεkα (τ )

]
,

with the equilibrium being established at t ′. In the central region now occupied by
electrons, d†

mdm = Nc
m , so

Hc =
∑

m

εm (t) d†
mdm, (19.23)

the electrons being in time varying states. The tunneling interaction is taken as

HRc =
∑

kα=l,r

[
Vkα,n (t) c†

kαdn + h.c.
]
. (19.24)

We have here a possible simple model of quantum dot tunneling (Ferry and
Goodnick, 1997).

The time-dependent electron current from the left lead to the center is

Jα=l = −i |e|
h̄

〈[H, Nl]〉 .
Hl and Hc commute with this, and thus

Jl = +i |e|
h̄

∑
k,n

[
Vkl,n

〈
c†

kldn

〉
+ V ∗

kl,n

〈
d†

n ckl
〉]

. (19.25)

We define two Green’s correlation functions between the reservoir and the center:

G<
n,kα

(
t t ′

) = i
〈
c†

kα,n

(
t ′
)

dn (t)
〉

(19.26)

G<
kα,n

(
t t ′

) = i
〈
d†

n

(
t ′
)

ckα (t)
〉
.

Thus, the current is

Jl (t) = 2e

h̄
Re

∑
kn

Vkl,n (t) G<
n,kl (t, t) . (19.27)

We need, from diagrammatic analysis, equations of motion for the two-contour
time-ordered Keldysh Green’s functions. The derivation is given in an appendix of
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Jauho’s paper (Jauho et al., 1994). Let us look at this analog to the equilibrium
Dyson equations.

As proved by Rammer and Smith (1986), the contour-ordered Green’s functions
utilizing the Keldysh contour perturbation structure diagrams have the same topo-
logical structure as the equilibrium T = 0 diagrams. 〈〉 in Eq. (19.26) contains a
contour-ordering operator Tc. This Keldysh idea orders operators with later time
labels on the contour to the left of operators of an earlier time. With this, one
is assured, by analogy with the T = 0 equilibrium theory, that a diagrammatic
perturbation re-summation may achieve a Dyson equation. However, because the
Keldysh Green’s functions are matrices, as discussed in the previous chapter (the
elements of which are not linearly independent), rules of multiplication are nec-
essary. These rules have been given by Langreth (1976) for some cases and are
commonly employed.

Let us briefly describe these rules. There are products in the time contour
integrations of the form C = ∫

AB for which the following prescription holds:

Cr
(
t,t
′) = ∫

dτ Ar (t, τ ) Br
(
τ , t ′

)
(19.28)

C<
(
t, t ′

) = ∫
dτ

[
Ar (t, τ ) B<

(
τ , t ′

)
+A< (t, τ ) Br

(
τ , t ′

) ]
. (19.29)

Similar expressions are used for Ca and C>.
Now we begin with the equations of motion for the T = 0 time-ordered Green’s

functions in the intermediate region:

Gn,kα
(
t − t ′

) = −i
〈
T

{
d†

m

(
t ′
)

dn (t)
}〉

(not Tc),

which is simply the closed equation

− i
∂

∂t ′
Gn,kα

(
t − t ′

) = εkGn,kα
(
t − t ′

)+∑
m

V ∗
kα,mGnm

(
t − t ′

)
. (19.30)

Because the reservoirs are non-interacting, the hierarchy is closed at this sim-
ple equation. To go to higher orders, we must use coupling to more complicated
Green’s functions (as discussed in the previous chapter). By defining

Gn,kαg−1
kα =

∑
m

GnmV ∗
kαm,

we have the integral equation, by construction:

Gn,kα

(
t − t ′

) =∑
m

∫
dτGnm (t − τ )× V ∗

kα,mgkα

(
t − t ′

)
. (19.31)
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Now we generalize this to the Keldysh complex time closed contour, as follows:

Gn,kα

(
τ , τ ′

) =∑
m

∫
dτ 1Gnm (τ , τ 1) V ∗

kα,m (τ 1) gkα

(
τ 1τ

′) . (19.32)

The product form is apparent on the right. We use this for the < function with rule
Eq. (19.29) to write

G<
n,kl

(
t t ′

) =∑
m

∫
dτ 1V ∗

kl,m (τ 1) (19.33)

× [
Gr

nm (tτ 1) g<
kl

(
τ 1,t

′)+ G<
mn (t, τ 1) ga

kl

(
τ 1, t ′

)]
.

With this we may obtain an expression for the current Jl(t), combining Eq. (19.27)
and Eq. (19.33), utilizing the initial values

(
t ′ = −∞)

. We have

Jl (t) = −2 |e|
h̄

∫ t

−∞
dτ 1

∫
d E

2π
Im Tr

{
exp (−i E (τ 1 − t))× �l (E, τ 1, t)
× [

G< (t, τ 1)+ fl (E)Gr (t, τ 1)
] }

.

(19.34)

Here we have taken the continuum limit of the reservoir, as in the earlier discussion,∑
kl

→
∫

d Eρl (E) , (19.35)

and have defined

�l,mn

(
E, t ′, t

) = 2πρl (E) Vkl,n (t) V ∗
kl,m

(
t ′
)× exp

(
i

h̄

∫ t

t ′
dτ 1Ekl (τ 1)

)
,

(19.36)

the level width function. G< and Gr are Keldysh matrices of the central region, the
dynamics of which are not yet determined. The second term in Eq. (19.34) is inter-
preted as the “out” rate, and the first as the “in.” These equations are irreversible.
This arises from the macroscopic reservoir limit.

For the time-independent steady case, G< and Gr are functions of τ 1 − t, and
�l must be assumed time-independent, assuming this with appropriate potential
modulation. The integral on dτ 1 may be done immediately. The time-independent
current is

Jl = −i |e|
h̄

∫
d E

2π
Tr

{
�l (E)

[
G< (E)+ fl (E) Gr (E)− Ga (E)

]}
, (19.37)

and we obtain a similar result for the right current Jr with l → r . Now, as the
steady state is approached in time, which is not proved but assumed, we have J =
Jl = −Jr , and using 2J = Jl − Jr , we obtain
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J = i |e|
2h̄

∫
d ETr

⎧⎨⎩
[�l (E)− �r (E)] G< (E)

+ [ fl (E) �l (E)− fr (E) �r (E)]
× [Gr (E)−Ga (E)]

⎫⎬⎭ . (19.38)

Eq. (19.38) appears to be the all-order non-equilibrium steady state generaliza-
tion of the Landauer idea. For applications to time-dependent situations, the student
is urged to consult the paper of Jauho (Jauho et al., 1994).
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20

Black hole thermodynamics

20.1 Introduction to black holes

In 1783 John Mitchell wrote, “If the semi-diameter of a sphere of the same density
as the sun were to exceed that of the sun in the proportion of five hundred to one,
and supposing light to be attracted by the same force in proportion to its vis-inertia
with other bodies, all light emitted from such a body would be made to return
towards it, by its own gravity” (Mitchell, 1783). Much later, in a prophetic paper,
Oppenheimer and Snyder (1939) described the nature of “continued gravitational
contraction” of a neutron star. With the nuclear heat gone, the core of the dead star
becomes incapable of supporting itself under its own gravitational pull. The final
phase is that the high density of the remaining core prevents the escape of the last
light. The star disappears from view. Wheeler, later, coined the term black hole for
such an object in the cosmos (Misner et al., 1973).

What is most remarkable is that today astronomers/astrophysicists have iden-
tified, with modern technical skills, numbers (uncountable) of these black holes.
There seems no empirical doubt as to their existence. See the incredible visual treat
in the volume The Universe, edited by Martin Rees (2005). Frolov and Novikov
(1998) have given a condensed list of objects, eleven in number, which are binary
systems that contain black holes. This comes from X-ray studies of binaries. As
pointed out by them, the central arguments for the existence of black holes are:
(a) the emission has a compact nature, and (b) the emission makes possible the
analysis of the orbital motion, and one obtains the mass of the compact partner.
If it is of the order of three solar masses, it is a black hole. See the resultant dis-
cussion of Cherepaschuk (1996). The strongest black hole candidates are three in
number: GS2023+338, GS2000+25 and XN oph 1997. The first has a period of 6.5
days, a mass of the compact companion is of the order of 10 solar masses, and its
luminosity is 6× 1038 erg/sec.

There is more dramatic evidence for supermassive black holes in galactic cen-
ters. In what are called active galactic nuclei, great quantities of energy are emitted

390
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from the galactic nuclei in the form of giant jets (luminosity of 1047erg/ sec).
Quasars are an example, emitting total energy a hundred times all the other energy
in a large galaxy. Estimates of the quasar mass are 1− 100× 107 solar masses, and
only a few light-hours in dimension. The Milky Way has an example of a dormant
black hole of 3 × 106 solar masses with accretion of 10−8 solar masses per year.
Also, M31 with 2× 107 solar masses exists nearby in Andromeda.

All this is quite exciting, but it is not our purpose to review it further, except to
say that Einstein’s theory of general relativity (Einstein, 1915a, 1915b; Wald, 1984;
Rees and Hawking, 1997) gives the prediction of classical black holes. The spher-
ically symmetric solution to Einstein’s equation was obtained by Schwarzschild
(1916a, 1916b). The solution is

d2s = −
(

1− 2GM

c2r

)
c2dt2 +

(
1− 2GM

c2r

)−1

d2r (20.1)

+ r2
(
dθ2 + sin2 dθdφ2

)
.

In this equation, G is the Newtonian gravitational constant, and M the mass of the
field source. d2s is the metric, the solution. t, r, θφ are the Schwarzschild reference
frame. In a local Cartesian coordinate system, infinitesimally,

δx =
(

1− 2GM

c2r

)− 1
2

dr (20.2)

δy = rdθ

δz = r sin θdφ,

and the local time

dτ = √−g00dt =
(

1− 2GM

c2r

) 1
2

dt. (20.3)

The free-fall acceleration is

a =
√

aiakhik,

where

hik = gik − g0i g0k

g00
,

and we obtain

a = GM

r2
(
1− 2GM

c2r

) 1
2

(20.4)

along the radius toward the center. The acceleration approaches infinity at r ≡
rg = 2[GM/c2], the Schwarzschild radius, in this reference frame. rg = 0.9 cm
for the earth and 3 km for the sun. In the Schwartzschild coordinates there are two
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singularities, r = rg and r = 0. The question is, are they the result of the coordinate
choice, or are they physical? We will turn to this shortly. We should, of course,
mention that the analysis of the r > rg solution led to the famous tests of general
relativity, the gravitational red shift, precession of the planetary orbits, bending of
light, and time delay of radar signals, all of which have been verified. We will not
repeat these calculations but refer the reader to the book of Wald (1984).

Our purpose is to find the black holes in the solution, which means we must
examine the r < rg region. We must obtain a description valid inside the
Schwarzschild sphere. To do this, we will use the Lemaitre reference frame. We
choose a reference frame of freely falling particles, with no infinite accelerations,
and choose the frame which has zero velocity at spacial infinity. The time coordi-
nate, T , is taken to be a clock fixed to the falling particles. The time of fall from r1

to r is

�T = 2

3

(rg

c

)[(
r1

rg

) 3
2

−
(

r

rg

) 3
2

]
. (20.5)

At T = 0 the freely falling ensemble of particles is located at r1. These are the new
radial coordinates of the new frame. The metric may be written

ds2 = −c2dT 2 + d R2

B
+ B2r2

g

(
dθ2 + sin2 θd2φ

)
, (20.6)

where

B =
[(

r1

rg

) 3
2

− (3cT )(
2rg

) ] 2
3

, (20.7)

and

R = 2

3
rg

(
r1

rg

) 3
2

(20.8)

is the scaled radial coordinate. The Lemaitre reference frame has eliminated the
singularity at r = rg. The frame extends to r < rg, and at r = rg, B = 1; rg =
3
2(R − cT ).

Comparing motion without the Schwartzschild sphere, we find that particles in
the future move to r = ∞, whereas in the Lemaitre coordinates they move within
the sphere from rg to the singularity r = 0, never outside the sphere. They are
invisible outside. This is the Lemaitre description of a black hole. There is some
difficulty with this description. However, we will use it for simplicity (see Frolov
and Novikov, 1998).
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Other coordinates are possible. Wald discusses the Kruskal extension and the
geometry of the black and white hole picture obtained (Kruskal, 1960; see Wald,
1984). In the T, X plane there are four regions: I, II, III, IV. The radial null
geodesics are 45◦ lines separating them. For r > 0, X2 − T 2 > −1, and r > rg

is region I, corresponding to the original Schwarzschild picture. The singularity
r = 0 exists both in region II in the future and in region III in the past. A particle
(observer) falling into region II (from region I) cannot escape but falls into r = 0.
Region II is the black hole. Region III is delineated by the line r = rg, t < −∞.

A particle within III must, in finite time to the future, leave III, called a white hole,
and go into region IV, which is a Schwarzschild region also. The Kruskal metric is a
spherically symmetric vacuum solution to Einstein’s equations. The reader should
consult appendix B in the book of Frolov and Novikov (1998) for the proof.

The preceding solution is the vacuum solution, but matter may be included with
a pressure of Tαβ in the Einstein equations. The simple model solution is due to
Tolman (1934). With this, we can describe the black hole formation due to grav-
itational collapse. Tolman considered a spherical relativistic dust cloud with zero
hydrodynamic pressure. The dust particles move along geodesics. In a co-moving
reference frame, with constant R, θ, φ, Tolman assumed

ds2 = −c2dT 2 + g11 (T, R) d R2 + r2 (T, R)
(
dθ2 + sin2 θdφ2

)
(20.9)

with

ṙ2 = f (R)+ F (R)

r
(20.10)

g11 (T, R) =
(
r ′
)2

1+ f (R)

8πGρ

c2
= F ′ (R)

r ′r2
.

“Prime” indicates R differentiation. f (R) and F (R) are arbitrary and determined
by initial conditions at T0. R = 0 is the cloud center with ṙ (0, T ) = 0 with R
as the boundary of which F (0) = 0 follows. r (R) is monotonic and positive.
Thus, F (R) ≥ 0. The first equation of Eq. (20.10) gives r̈ = −F/2r2. Thus, r̈
is negative, and hence all dust particles with fixed R and ṙ < 0 reach the true
singularity r = 0, never leaving the sphere r = rg. This is gravitational collapse of
matter into the center of the black hole.

With these introductory remarks, let us turn to the topic of this chapter, the
remarkable thermodynamic analogy of the black hole description.
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20.2 Equilibrium thermodynamic analogies: the first law

Bekenstein (1972, 1973) first noticed that the area of the event horizon of a black
hole, A, has a similarity to thermodynamic entropy, S. The area of a Schwarzschild
black hole is

A = 4πr2
g . (20.11)

A new result, obtained in Austin, was the Kerr solution (Kerr, 1963), which
introduced angular momentum J and has an event horizon radius

r = r+ = M +
√

M − a2. (20.12)

Here we adopt the relativistic units c = G = 1, where a = J/M. M is the black
hole mass (see Frolov and Novikov, 1998, for details of the Kerr solution). The
event horizon area in this case is

A =
∫

dθdφ
√

gθθgφφ = 4π
(
r2
+ + a2

)
. (20.13)

The area may be seen to be a function of the parameters M and J or by inverting
and writing

M (A, J ) =
[π

A

] 1
2

[(
A

4π

)2

+ 4J 2

] 1
2

. (20.14)

An infinitesimal change in A and J leads to an equation for the change of mass
d M . We write

d M = k

8π
d A +�H d J, (20.15)

where

k =
4π

√
M2 − J 2

M2

A
(20.16)

�H = 4π J

M A
. (20.17)

�H is the angular velocity. k is the surface gravity. It is the strength of the gravita-
tional field on a black hole event horizon surface, evaluated by a distant observer.
(See Frolov and Novikov, Chapter 6, for a considerable discussion, the details of
which we do not need here.) For us it is a constant surface property and a black
hole parameter. General derivations of Eq. (20.15) have been given by Bardeen,
Carter and Hawking (Bardeen et al., 1973; see also Wald, 1984, 1994). The further
introduction of the parameter charge, Q, is possible, utilizing the Kerr–Newman
metric.
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Comparing Eq. (20.15) with the first law of static thermodynamics, it seems the
following association is possible for the black hole, similar to Bardeen et al., for
energy E :

E ⇔ Mc2. (20.18)

Dimensionless entropy

S ⇔ A

l2
pl

, (20.19)

where the Plank length is

l2
pl =

h̄G

c3

and the Hawking temperature is

�H = kBT H = Gh̄

2πckB
· k, (20.20)

or if h̄ = c = KB = G = 1 (universal units), then

θ H = k

2π
. (20.21)

Eq. (20.15) then becomes

d E = θ H dS +�H d J. (20.22)

This is the analog of the first law of thermodynamics for black holes, governed
by infinitesimal changes in the “macroscopic” thermodynamic parameters E, S, J.
Before examining A and its analogy to entropy further, let us consider Einstein
radiation theory to understand �H . We naively quantize the black hole horizon to
be in the “two” -level energy state |ε〉, |g〉. It is taken to be in equilibrium with its
surroundings at T H = Tuniverse.

Let Agε be the spontaneous emission coefficient for the de-excitation from the
excited mass state |ε〉. Also, assume induced emission Bεgμν of Bose radiation.
μν is the radiation density. By the usual Einstein argument (Louisell, 1973), we
assume thermal equilibrium between the black hole and surroundings and write(

Agε + Bεgμν

)
exp

(−Eε

θ H

)
= Bgεμν exp

(−Eg

θ H

)
. (20.23)

We argue that Bεg = Bgε where the transition rate is Wεg = Bεgμν . By experiment,
Wεg = Wgε.

The assumed black hole quantization gives

hν = (
Mε − Mg

)
c2, (20.24)
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and from the equilibrium condition, Eq. (20.23),

μν =
a
b

exp
(

hν
θH

)
− 1

. (20.25)

In Eq. (20.25) a and b are parameters; this is Hawking’s famous result (Hawking,
1975a; Parker, 1975).

Hawking’s quantum S-matrix field calculation showed that baryon emission of
a black hole followed a Plank formula, Eq. (20.25), with the temperature being
θ H . This fundamental result reinforces the interpretation of Eq. (20.20) as truly
a macroscopic first law obeyed by the black hole. θ H is the temperature, related
through k, to the surface gravity of the event horizon. A detailed critique of this
derivation has been given by Wald (1994).

The process is pair creation. This is possible in the processes which are termed
the Hawking model:

(1) Particle 1, energy E, escapes to infinity, and particle 1′ remains in the black
hole.

(2) Particle 2 is captured and does not go to ∞, and 2′ is created and remains in
the hole.

(3) Particle 3, outside, is captured, and 3′ remains in the hole.
(4) Particles 4 and 4′ are created inside and remain there.

Thus, particle 1 appears as a spontaneous emission product at ∞. The Einstein
argument is used to describe it. Hawking’s calculation gives the result for a long
time scale. Wald has estimated this as GM/c3 = 10−5M/M S

0 , which is rapid, even
on galactic scales.

Bekenstein (Bekenstein and Mukhurov, 1995) has presented the picture of parti-
cle 1 passing through a potential barrier near the horizon and there, by interaction
at the horizon, achieving the equilibrium state. He and others argue that the horizon
area should be quantized in integers. He takes A = αh̄n, α being a pure number
and n an integer. He assumes that the degeneracy factor is g (n) = exp α(n−1)

4 being
integer, and so with S = 0 at n = 1, we have α = 4 ln l, l = 2, 3, 4, . . . , f . There
is a recent article with references to this “atom black hole” approach by Mäkela
(2003).

These views of the quantization are phenomenological and are really not part of
the long and important history of quantum gravity. See the early reviews of these
efforts in the books edited by Isham (Isham et al., 1975, 1981). For more recent
work using string theory of black holes, see the reviews of Maldacena (1996);
Akhmedo (1997); and Horowitz (1995). A fine recent introduction to string theory
with a chapter on black holes is in the book of Becker (Becker et al., 2007). For a
brief review, see Chapter 12 in the book by Frolov and Novikov (1998).
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To obtain the entropy, the important task is to count the various string excita-
tions. A comparatively simple example is the excitations of the two-dimensional
D-branes, assuming that a nonzero area charged black hole may be described by
these solitons of a single charge Q. The number of states in flat space-time was

found to be exp
(

πQ2

4

)
. This gives the entropy S = A/4G in four and five dimen-

sions, a good answer, agreeing with Hawking and Bekenstein. However, the branes
are said to be extremal, that is, they are configurations of the highest possible
charge, as are the black holes that they are compared with. The extremal branes
have the same properties as the black holes. This is interesting but not the complete
theory one would desire.

It is beyond the focus of our brief remarks to say more. Certainly, true quantum
statistical mechanics depends upon the success of an approach such as string the-
ory. This is the reason to focus on thermodynamics in our comments about black
holes. Black holes are possibly one of the most important tests of quantum gravity
theories.

20.3 The second law of thermodynamics and black holes

Now let us turn to the classical analog to the second law of thermodynamics
obtained by Hawking (1971). We will follow the short argument presented by
Wald (1994). To follow this, consider the Raychauduri equation. A congruence
of curves is a three-parameter family of curves xμ

(
λ; yi

)
. yi is a set of parameters

which label the curves. One and only one curve passes through each point. λ is
a parameter (proper time!) along each curve. The congruence of timelike curves
is a reference frame. There are important properties of these curves. There is a
representation

μα;β = ωαβ + Dαβ − ωαωβ. (20.26)

Here μα = dxα

dλ

(
μαμα = −1

)
, ωα = μβμα;β is the acceleration, ωαβ is the

vorticity, and ∇α () = ();α, where

ωαβ = 1

2

(
μαμPμ

β − μβ;μPμ
α

)
. (20.27)

The rate of deformation tensor is

Dαβ = 1

2
(μα;μPμ

β + μβ;μPμ
α ), (20.28)

where

Paβ = gαβ + μαμβ
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is a projection tensor onto the three-dimensional space perpendicular to μα. The
expansion which concerns us here is

θ = μα
;α = ∇αμ

α. (20.29)

It is a trace, so we have

Dμν = σμν + 1

3
θ Pμν. (20.30)

The Raychaudhuri equation is

dθ

dλ
= ωα

;α + 2
(
ω2 − σ 2

)− 1

3
θ2 − Rαβμ

αμβ (20.31)

(see Wald, 1984), where

ω2 = 1

2
ωαβω

αβ (20.32)

σ 2 = 1

2
σαβσ

αβ.

σμν is the shear, and Rμν is the Ricci tensor.
For null geodesics, which we are considering here, we generate a null hypersur-

face, the event horizon. λ is then the affine parameterization of the generators of
the event horizon. ka is the tangent. The expansion is θ = ∇aka. This is then the
local rate of change of the cross section of the area as moved up the geodesic. Thus,
θ = 1

A

(
d A
dλ

)
.

The Raychauduri equation for null geodesics is obtained by Wald (1984, p. 222):

dθ

dλ
= −1

2
θ2 − σ abσ

ab + wabω
ab − Rcdkckd (20.33)

with ωab = 0. The 1/2 appears because the space of interest is two-dimensional, in
the case of null congruences.

The area theorem is immediate. We assume that the stress energy tensor in
the Einstein equation satisfies Tabkakb ≥ 0, and then we have Rabkakb ≥ 0.
Classically, the energy density is nonnegative. We obtain

dθ

dλ
= −1

2
θ2. (20.34)

Further, it may be proved (see Wald, 1994) that the null geodesics generating the
future horizon cannot become infinite on that horizon. From Eq. (20.34), we have

d

dλ
θ−1 ≥ 1

2
.
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Hence,

θ−1 (λ) ≥ θ−1 (0)+ 1

2
λ. (20.35)

If θ (0) > 0 (expanding area), then θ (λ) expands for all time in the future. If θ (0)
is negative, then there is a λ1 such that θ−1 (λ1) = 0 or θ (λ1) = ∞, which is not
possible by Eq. (20.35). Thus, for all positive time, the area of a black hole must
be increasing:

θ = 1

A

(
d A

dλ

)
≥ 0. (20.36)

This was first proved by Hawking (1971).
This result strongly reinforces, classically, the notion that the black hole area

A is the intrinsic entropy S of the black hole, as has already been suggested by
the first law of thermodynamics. The entropy principle indicates an intrinsic dissi-
pation of black hole processes (classically). Moreover, we can associate with this
increase the direction of time, λ (time’s arrow). This is macroscopic, in contrast to
the familiar discussions on a microscopic level (see Chapter 4 of this book). Fur-
ther, as matter is lost into a black hole, the uncertainty is increased, as seen by the
external observer, and thus the area of the event horizon increases. This is consis-
tent with the Shannon information point of view. The information is indelibly lost
into the black hole interior. The relationship of the inaccessible information with
black hole entropy was first recognized by Bekenstein (1972).

We will close this section by remarking that the entropy of a black hole is
enormous. An estimate is

S ≈ kBc3h̄−1G−1 A ≈ 1060erg K−1

for a one-solar-mass black hole.

20.4 Extended entropy principle for black holes

The Hawking area theorem does not hold quantum mechanically, because the
Tabkakb > 0 condition need not be true. It may be an approximation for a quantum
system quasi-classically. We remind the reader of the difficulty of proving a quan-
tum H theorem (see Chapter 6). The details as to when the condition Rabkakb ≥ 0
might be true have not been determined (see Wald 1994). This remains an open
question. The radiation surrounding a black hole, plus the black hole itself, might
be expected to obey an entropy principle

�S = ASH +�Srad ≥ 0. (20.37)
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This is called the generalized second law. Bekenstein gave a number of examples
which implied the validity of the generalized second law (Bekenstein, 1972, 1973).

Frolov and Page (1993) later gave a limited proof. It is this proof that we shall
consider now. Zurek and Thorne (1985) suggested such an approach earlier.

Let the initial density matrix for the black hole and radiation (rather general and
unspecified) be

ρin = ρ01 = ρ0 ⊗ ρ1. (20.38)

ρ0 is the density matrix of the radiation (in up modes). ρ1 is the density matrix
of incident radiation from far away and in the past. They are uncorrelated fields
(semiclassical).

ρ01 interacts with an eternal black hole classical curvature barrier separating the
horizon from infinity. The final state after interaction is

ρ f ≡ ρ23, (20.39)

where

ρ23 �= ρ2 ⊗ ρ3.

Here ρ2 = Tr2ρ23, and ρ3 = Tr2ρ23. ρ2 is the density matrix of radiation escaping
to null infinity. ρ3 is the radiation completely absorbed by the future horizon. The
entropy of these states will be taken as S = Trρ ln ρ. ρ01 and ρ23 are in the same
Hilbert space,

H0 ⊗ H1 = H2 ⊗ H3,

and thus S01 = S23 are related by a unitary transformation in this space. A funda-
mental theorem of Araki and Lieb (1970) is utilized. If ρ12 is a density matrix on
H1 ⊗ H2, then

S12 ≤ S1 + S2. (20.40)

From this we may prove, by the relation

S2 + S3 ≥ S23 = S01 = S0 + S1,

from Eq. (20.38).
Now, from the first law of black hole thermodynamics, we assume the black hole

evolves through the “in to out” process by means of a set of isothermal states such
that

�SH = (
T H

)−1
(E3 − E0) . (20.41)

Now we define

�S = �SH +�Srad (20.42)
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and take

�Srad = S2 − S1.

From this and the inequality (Eq. 20.40),

�S ≥ S0

(
1

T

)
− S3

(
1

T

)
, (20.43)

where S
(

1
T

) = S − T−1E are Massieu functions (see Callen, 1985). Equilibrium
maximizes S

(
1
T

)
. S0

(
1
T

)
is the maximum. Thus,

�S ≥ 0. (20.44)

This is the Bekenstein entropy principle for black holes. It is apparent that the
properties of black holes enter in the quasistatic temperature T H of Bekenstein and
Hawking. Otherwise, this is a rather simple general thermodynamic argument.

20.5 Acausal evolution: extended irreversible dynamics in black holes

For the purpose of describing radiation and gravitational collapse of a black hole,
Hawking introduced a density matrix map,

ρ2AB =
∑

SABC Dρ1C D. (20.45)

Here ρ2AB is the final density matrix, and ρ1C D the initial one. SABC D is a gen-
eralized (tetradic) scattering matrix between these Hilbert space states. (We have
already met tetradic operators in the early chapters of this book. An example was
the tetradic Liouville operator Labcd .) Hawking termed SABC D a superscattering
operator. The observed final density matrix is not a pure state. In the gravitational
collapse, producing an event horizon in the black hole, the interaction region is
bounded by an initial and final surface and a third “hidden” macroscopic surface,
for which only incomplete quantum data are available. Here the rule of equal a
priori probability is applied and thus introduces the classical probability, making
the final state impure and a density matrix. We may write, for pure initial and final
states,

SC D AB = 1

2

(
SC AS−1

B D + S−1
AD SC B

)
.

Here SC A is a pure S matrix where ξC =
∑

SC Aξ A. This relation does not hold for
a mixture state black hole. Further, it is assumed that∑

SCC AB = SAB (20.46)∑
SC D AA = SC D.
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The latter may be taken as the result of assuming gravitational CPT invariance
on the hidden surface. CPT invariance implies that black holes must completely
evaporate, since they can form spontaneously.

As discussed previously in this chapter, Hawking’s calculation showed that par-
ticles radiated to infinity from a black hole are in an equilibrium thermodynamic
state at the Hawking temperature, and thus described by a mixture density matrix.
One of these paired particles disappears into the black hole and cannot be seen
by the infinite observer. This is a loss of information to the observer. This infor-
mation loss was deemed by Hawking to be a special feature of quantum gravity
not present in other quantum field theories. He called it the information loss puz-
zle. Gravity must be quantized consistent with this, an unsolved problem. Here the
super operator S-matrix cannot be factorized.

In Chapter 18 we have discussed extended statistical mechanics, which intro-
duced super operators and the irreversible time evolution of density matrix states
with diagonal singularity. This is a much more complete theory than the early dis-
cussion by Hawking. Utilizing the analytic continuation rule, Eq. (18.55) and Eq.
(18.56), we may write

〈α |Cn|β〉 = λ

ωα − ωβ + iεαβ

〈α |(Cn − Qn) L1 (Pn + Cn)|β〉 (20.47)

and

〈β |Dn|α〉 = λ

ωβ − ωα + iεαβ

〈β |(Pn + Dn) L1 (Qn − Dn)|α〉 (20.48)

with

εαβ =
{−ε for dα > dβ

+ε for dα < dβ

}
.

dα, dβ measure the degree of correlation. These are operator forms of nonlinear
Lippman–Schwinger equations in this theory and play the role of the superscat-
tering operator analogous to that introduced by Hawking. Thus, if we apply the
theory of Eq. (20.47) and Eq. (20.48) to quantized gravity, we may expect, from
Hawking’s argument, that there is a quantum information loss puzzle (Hawking,
1975a, 1981; Wald, 1994).
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Appendix 1

Problems

A.1 Comments on the problems

These exercises have been used over a number of years in a one-semester graduate
course during the germination of this book. They include homework problems and
exam questions. They are approximately equivalent in difficulty and are roughly
divided into three topic areas: (1) foundations of quantum statistical mechanics,
(2) kinetic dynamics and (3) equilibrium and phase transitions. The outline of the
course itself is given in the preface to the book.

Other sets of problems are available. Of those, one must mention the first book
of R. Kubo, Statistical Mechanics (Kubo, et al., 1965), which has an excellent
collection with answers.

In addition to offering the problems written here, we have often called upon the
student in this book to “finish a calculation.” These challenges, of course, should
be used as problems but will not be repeated here.

A.2 “Foundations” problems

1. (a) In the Schrödinger q representation, show that the canonical density matrix
exp (−βH) may be written as〈

q |exp (−βH)| q ′′
〉
= exp

[
−βH

(
h̄

i

∂

∂q ′
, q ′

)]
× δ

(
q ′ − q ′′

)
.

(b) Now apply this to a free particle H = p2

2m obtaining
〈
x ′

∣∣∣exp
(−β p2

2m

)∣∣∣ x
′′〉

, showing

that it is a Gaussian. Discuss the result.
2. (a) Show for a mixed state with Hermitian operators Â, B̂ that � Â �B̂ ≥

1
2

∣∣∣〈[ Â, B̂
]〉∣∣∣ .

(b) Show that this leads to �x �p ≥ h
2 where (�x)2 = 〈

x2
〉− 〈x〉2 .

3. Argue from problem (2.2b) that the uncertainty relationship is consistent with the
Wigner function.
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4. A system is in an eigenstate of H . Show that the Wigner function is then constant in
time.

5. Show that g = 1 in the appendix of Chapter 4 leads to the Weyl correspondence rule.
6. (a) Show that the N -body Wigner function may be written for a pure state ψ

(
x N , t

)
w

(
x N , pN , t

)
=

(
1

π h̄

)3N ∫
dyN exp 2i

(
pN · yN

h̄N

)
ψ∗

(
x N+

)
ψ

(
x N−

)
dyN ,

where x± = x N ± yN and ψ
(
x N , t

)
obeys

i h̄
∂ψ

(
x N , t

)
∂t

=
[
−h̄2

2m

N∑
k=1

∂2

∂x2
k

+ V (xN )

]
ψ

(
x N , t

)
.

(b) From problem (6a) show that w
(
x N , pN , t

)
obeys

∂w
(
x N p N , t

)
∂t

= −
∑

k

pk

m

∂w

∂xk
+ i

h̄

(
1

π h̄

)3N ∫ ∫
dyN dpN

× exp

[
2iyN · (pN − p′N

)
h̄

][
V
(

x N+
)
− V

(
x N−

)]
w

(
x N, p′N, t

)
.

7. From problem (6b) obtain the classical limit h̄ = 0, and show ∂w
∂t = {H, w} , which

is the classical Liouville equation.
8. What are the conditions for the Pρ of the generalized master equation to be constant

in time?
9. Derive a time-reversed generalized master equation, that is, an equation evolving to

t = −∞ from t = 0.
10. On C2 we have the observables (projections)

A =
∣∣∣∣1 0
0 0

∣∣∣∣ , B =
∣∣∣∣0 0
0 1

∣∣∣∣ , C = 1

2

∣∣∣∣1 1
1 1

∣∣∣∣ .
Examine A ∩ (B ∪ C) = (A ∩ B) ∪ (B ∩ C), and show that this quantum state is
non-Boolean.

11. Construct the density matrix for a quantum particle moving with equal likelihood to
the left or right in a box of length L .

12. Obtain the general solution to the Fokker–Planck equation, Eq. (7.34).
13. A mixture state is constructed as

ρ = 1

2
|x〉 〈x | + 1

2
|y〉 〈y| ,

where

|x〉 = √α |+〉 + √1− α |−〉
|y〉 = √α |+〉 − √1− α |−1〉

are pure states. Verify both statements, and construct another mixture state from
|+〉 , |−〉 .
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14. Use the von Neumann equation to show that ρ (t) if pure cannot evolve into a mixture
and vice versa.

15. For a beam of spin 1/2, particles S = Trρσ . σ are then the Pauli matrices.
(a) Argue that ρ = 1

2 (I + S · σ ).
(b) Show ρ = ρ†, and diagonalize ρ in terms of |S|.
(c) Argue that Trρ2 ≤ 1.
(d) For an unpolarized beam, obtain ρ. Is it a pure state?
(e) For complete polarization, show ρ is pure.

16. What is the surface of constant energy for a harmonic oscillator of frequency ν? Find
the volume in phase space �0 with energy below E . Quantize this, and find the number
of quantum states below E . For large E show that the number of states is �0

h̄ .

17. Prove that if the entropy S (x) only increases, and if there is a process governing the
variable (operator) x is adiabatic

H (qp, x)→ H (q, p, x +�x) ; dx

dt
= 0,

then S (x) does not change.
18. For a density matrix ρnm = α∗mαn where αn = cn exp (iφn), show that a uniform

average over phases φn gives ρnm = c∗ncmδnm .

19. Derive by time-dependent perturbation theory (in detail) the Pauli equation (for
isolated system).

20. From problem 19, consider the Pauli equation for a beam of two-level atoms entering
a uniform magnetic field with interaction μ = μbσ , Ĥ ′ = −μ · B in z direction.
Describe the solution. Describe what happens at ρ̇nn = 0.

21. Suppose the density operator for a harmonic oscillator is

ρ (a, a†) = (1− exp (−λ)) exp−λa†a,

where λ = βh̄ω.

(a) Show that this maximizes the entropy, subject to the constraint Trρ = 1.
(b) Show also that 〈H〉 = h̄ω 〈n〉, and as h̄ → 0, the average energy is 〈H〉 = kT .

(c) Prove that 〈n〉 = 1
exp λ−1 .

22. Let ps be the probability that a system is in state Es . The entropy is S = k
∑

s ps ln ps .

Show by means of Lagrange multipliers that the canonical distribution maximizes S
under the conditions Ē = E .

23. Examine the energy states of the free particle Schrödinger equation in 3–D for (1) a
box of side L with ψ (0) = ψ (L) = 0, and (2) periodic boundary conditions.
(a) What is the spacing of states in the lattice of the two boundary states?
(b) Obtain the energy density of states g (E) in the two cases.

24. (a) Describe quantum entanglement.
(b) Give examples of a non-entangled two-atom Q bit and an entangled one. Are they

mixtures? Show why or why not.
(c) Describe the process of teleportation. Give the Bob and Alice example.
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25. (a) Write the Pauli equation for 〈α| ρ (t) |α〉 ≡ P (α, t) for an isolated system.
Explain all terms.

(b) Outline the derivation of the H theorem (entropy principle) from this equation.
Discuss the physical results.

(c) What is the equilibrium solution to the Pauli equation, Ṗ (α, t) = 0?

A.3 Kinetic dynamics problems

26. In the KBG approximation to the Boltzmann equation, for the collision term, one takes

J (F) = ν
(

F0
L − F

)
where

ν =
∫

d3vF0
L gσd�.

F0
L is the local Maxwellian.

(a) Derive from this the center of mass hydrodynamic equations in detail, defin-
ing also T (also called conservation laws). Now follow the normal solution,
Chapman–Enskogg (see Huang, 1987). Do in detail each step in your discussion.

(b) Obtain the lowest order solution and discuss it.
(c) In the next order obtain in detail formula (5.67) in Huang (Huang, 1987).
(d) Obtain a formula for viscosity and thermal conductivity, proving their ratio is 5

2CV

(the famous result). CV is the specific heat.
27. (a) Write down the Boltzmann equation.

(b) Give an intuitive physical derivation.
(c) Is it reversible? Prove your answer.

28. From the considerations of Eq. (4.46), a Uhlenbeck–Uehling equation for electrons
may be obtained. In a quasi-classical approximation,

J ( f ) =
∫ [

f 1 f 1
1 (1+ θ f ) (1+ θ f1)− f f1

(
1+ θ f 1

) (
1+ θ f 1

1

)]
× gσd�dv1.

Here θ = h3

m3 × 1 for bosons, and θ = h3

m3 ×−1 for fermions. For free photons,

dp
h3
= 4π (2m)

3
2

h3
E

1
2 d E .

(a) Argue why this is a reasonable physical result.
(b) Show that the steady equilibrium solution is

f0dv =
dp
h3[

expβ (E − μ)∓ 1
] .

(c) Define the H function as

H = V

h3

∫
d3 p

[
( f ± 1) ln (1± f )− f ln f

]
.
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Assuming f positive, prove in the conventional way that dH
dt ≥ 0.

(d) Show that dH
dt = 0 implies the equilibrium state f0.

29. (a) For electron transport in the Krook-Bhatnager-Gross approximation, employ the
relaxation time approximation and obtain, in the steady state,

−
(

v · ∇ f + eε

h̄
· ∂ f

∂k

)
= 1

τ

[
f0 − f

]
,

where f0 is the Fermi distribution. Here f0 [E (k), T (x), μ (x)] is space depen-
dent.

(b) Solve this equation in perturbation about fo, assuming the left side is of order f0.
Obtain the following equation for g (xk) = f (xk)− f0:

v ·
(
∂ f0
∂T
∇T + ∂ f0

∂μ
∇μ

)
+ eε · v∂ f0

∂E
= g (k, x)

g (E)
.

(c) From the solution to problem (29b), obtain the electrical current density in the
following approximation:

Je = e
∫

d3k

4π3
v (k) f (k) .

(d) Obtain the thermal current, defined as

JQ =
∫

d3k

4π3 (E − μ) v (k) f (k) .

(e) Obtain the Onsager coefficients Li j where

Je = L11ε + L12 (−∇T )

JQ = L21ε + L22 (−∇T ) .

How is L12 related to L21?
30. For the harmonic oscillator H0 = h̄ωa†a, take the distribution function in normal

ordering to be

P
(
α, α∗, t

) = Trρ (t) δ
(
α∗ − a†

)
δ (α − a) ,

α, α∗ being coherent states.
(a) Show that this obeys

∂P (αα∗, t)

∂t
= iω

[
α
∂P

∂α
− α∗ ∂P

∂α∗

]
.

(b) Prove that the general solution is

P
(
α, α∗, t

) = g
[
α exp (iωt), α∗ exp (−iωt)

]
,

where g is an arbitrary function.
31. (a) Write the von Neumann equation in the exact energy representation, H |α〉 =

Eα|α〉.
(b) Obtain the solution.
(c) Discuss this time evolution.
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32. (a) Show that the Vlasov equation is time reversible.
(b) Define H = ∫

dxdvF (xv) ln F (xv), where F (xv) is a solution to the Vlasov
equation. Is there an entropy principle? Discuss in detail, and compare with the
Boltzmann result.

A.4 Equilibrium and phase transition problems

33. (a) Prove for the two quantum ideal gases that the dispersions may be written
(n − n̄)2 = n̄ (1± n̄), where n̄ is the average energy level occupation number.

(b) Also obtain the Boltzmann distribution result. Why do you expect this result?
34. Prove that the magnetic susceptibility obeying classical statistical mechanics is zero.

Take

H =
N∑

j=1

1

2m j

{
Pj + e j

c
A
(
r j

)}2 +U (r1 . . . rn) .

35. Consider an ideal Bose gas composed of particles with internal states as well as trans-
lational. Consider only one internal state, ε1. Determine how the Bose condensation
temperature changes as a function of this energy, ε1.

36. Use the transfer matrix method to solve the 1– D Ising problem. Particularly obtain
(a) Eq. (14.80) (Huang, 1987), and
(b) Eq. (14.82) (Huang, 1987).
(c) Then show in detail that there is no magnetic phase transition in 1– D.

37. For photons of the electromagnetic fields, prove that μ = 0. They are bosons, of
course.

38. For fermions (electrons), show that at low temperature, CV = 1
3π

2k2T g
(
μ0

)
, where

g is the density of states and μ0 the zero-temperature Fermi energy.
39. The Hamiltonian of an electron in a magnetic field H is H = −μBσ ·H. σ is the Pauli

matrices. Take H in the z direction. Now calculate the density operator,

ρ̂ = exp (−βH)

Trρ̂
β = 1

kT
,

as follows:
(a) Obtain ρ in the diagonal representation of σ z .
(b) Obtain ρ in the diagonal representation of σ x .

(c) Find 〈σ z〉, the average of σ z in both representations.
(d) Comment on your answer physically.

40. For the one-dimensional nearest neighbor Ising spin model, discuss the mean field
approximation as follows.
(a) Obtain the equation of state for M , the magnetization.
(b) Prove there is a spontaneous magnetization. Obtain TC .

(c) Show that M/N has a critical index 1/2 below the critical point. Obtain the critical
index for χ+ (susceptibility above TC ).

(d) What are all the mean field critical magnetic indices
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41. Assume exp
(
ε−μ
kT

)
>> 1 for the Fermi–Dirac and Bose–Einstein distributions.

(a) What is the meaning of the result?

(b) Prove in detail that this is valid if
( V

N

) 1
3 >> λ√

2π
. λ is the so-called “thermal” de

Broglie wavelength.
(c) Comment on the conditions physically when this is not true.

42. Let Ps be the probability that the system is in state Es . The entropy is S =
k
∑

s Ps ln Ps . Show, by means of Lagrange multipliers, that the canonical density
matrix arises from maximizing S, subject to

∑
s Ps = 1,

∑
s Ps Es = E .

43. (a) Obtain the occupation number of the ground state N0 of a Bose gas in a three-
dimensional harmonic oscillator trap (equal wi , i = 1, 2, 3) as a function of
temperature below the critical temperature Tc, having defined Tc.

(b) Is this a phase transition?
44. (a) Obtain the critical index relations by either Widom or Kadanoff scaling.

(b) What are the values of the mean field critical indexes? Do they scale?
45. (a) From the quantum microcanonical ensemble and suitable assumptions, derive the

equilibrium thermodynamic laws.
(b) Explain them physically.

46. Consider H = μHσ z (z-axis is along the magnetic field Hz). σ z is the z-component
Pauli spin operator, H is the magnetic field, and μ a constant. Prove, independent
of a particular representation for σ z , that the canonical density matrix gives σ z as
〈σ z〉 = tanhβμH.

47. The energy spectrum of a photon is E (q) = h̄cq. q = |q|, q being the wave vector.
Assume no polarization.
(a) Find the Helmholtz free energy F , integrating in detail.
(b) Obtain PV , also in detail. Comment on this result physically.
(c) Obtain the entropy S.

48. (a) Discuss Bose–Einstein condensation for a box of arbitrary dimension. For D = 3,
obtain the formula for condensation in the ground state for TC and T < TC .

(b) Show that there is no condensation for D = 1, 2 at finite temperature.
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