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Preface to the Fourth Edition

In this latest edition new material has been added, which includes many
additional clarifying remarks to some of the more advanced chapters. The
design of many figures has been reworked to enhance the didactic appeal of
the book. However, in the course of these changes, I have attempted to keep
intact the underlying compact nature of the book.

I am grateful to many colleagues for their help with this substantial re-
vision. Special thanks go to Uwe Täuber and Roger Hilton for discussions,
comments and many constructive suggestions on this new edition. Some of
the figures which were of a purely qualitative nature have been improved by
Robert Seyrkammer in now being computer-generated. I am very obliged to
Andrej Vilfan for redoing and checking the computation of some of the scien-
tifically more demanding figures. I am also very grateful to Ms Ulrike Ollinger
who undertook the graphical design of the diagrams. It is my pleasure to
thank Dr. Thorsten Schneider and Mrs Jacqueline Lenz of Springer for their
excellent co-operation, as well as the LE-TEX setting team for their careful
incorporation of the amendments for this new edition. Finally, I should like to
thank all colleagues and students who, over the years, have made suggestions
to improve the usefulness of this book.

Munich, August 2007 F. Schwabl



Preface to the First Edition

This is a textbook on quantum mechanics. In an introductory chapter, the
basic postulates are established, beginning with the historical development,
by the analysis of an interference experiment. From then on the organization
is purely deductive. In addition to the basic ideas and numerous applica-
tions, new aspects of quantum mechanics and their experimental tests are
presented. In the text, emphasis is placed on a concise, yet self-contained,
presentation. The comprehensibility is guaranteed by giving all mathemati-
cal steps and by carrying out the intermediate calculations completely and
thoroughly.

The book treats nonrelativistic quantum mechanics without second quan-
tization, except for an elementary treatment of the quantization of the radi-
ation field in the context of optical transitions. Aside from the essential core
of quantum mechanics, within which scattering theory, time-dependent phe-
nomena, and the density matrix are thoroughly discussed, the book presents
the theory of measurement and the Bell inequality. The penultimate chapter
is devoted to supersymmetric quantum mechanics, a topic which to date has
only been accessible in the research literature.

For didactic reasons, we begin with wave mechanics; from Chap. 8 on we
introduce the Dirac notation. Intermediate calculations and remarks not es-
sential for comprehension are presented in small print. Only in the somewhat
more advanced sections are references given, which even there, are not in-
tended to be complete, but rather to stimulate further reading. Problems at
the end of the chapters are intended to consolidate the student’s knowledge.

The book is recommended to students of physics and related areas with
some knowledge of mechanics and classical electrodynamics, and we hope it
will augment teaching material already available.

This book came about as the result of lectures on quantum mechanics
given by the author since 1973 at the University of Linz and the Technical
University of Munich. Some parts of the original rough draft, figures, and
tables were completed with the help of R. Alkofer, E. Frey and H.-T. Janka.
Careful reading of the proofs by Chr. Baumgärtel, R. Eckl, N. Knoblauch,
J. Krumrey and W. Rossmann-Bloeck ensured the factual accuracy of the
translation. W. Gasser read the entire manuscript and made useful sugges-
tions about many of the chapters of the book. Here, I would like to express my
sincere gratitude to them, and to all my other colleagues who gave important
assistance in producing this book, as well as to the publisher.

Munich, June 1991 F. Schwabl



Table of Contents

1. Historical and Experimental Foundations . . . . . . . . . . . . . . . . . 1
1.1 Introduction and Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Historically Fundamental Experiments and Insights . . . . . . . . 3

1.2.1 Particle Properties of Electromagnetic Waves . . . . . . 3
1.2.2 Wave Properties of Particles,

Diffraction of Matter Waves . . . . . . . . . . . . . . . . . . . . . 7
1.2.3 Discrete States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2. The Wave Function and the Schrödinger Equation . . . . . . . . 13
2.1 The Wave Function and Its Probability Interpretation . . . . . 13
2.2 The Schrödinger Equation for Free Particles . . . . . . . . . . . . . . 15
2.3 Superposition of Plane Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4 The Probability Distribution for a Measurement

of Momentum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4.1 Illustration of the Uncertainty Principle . . . . . . . . . . 21
2.4.2 Momentum in Coordinate Space . . . . . . . . . . . . . . . . . 22
2.4.3 Operators and the Scalar Product . . . . . . . . . . . . . . . . 23

2.5 The Correspondence Principle and the Schrödinger Equation 26
2.5.1 The Correspondence Principle . . . . . . . . . . . . . . . . . . . 26
2.5.2 The Postulates of Quantum Theory . . . . . . . . . . . . . . 27
2.5.3 Many-Particle Systems . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.6 The Ehrenfest Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.7 The Continuity Equation for the Probability Density . . . . . . 31
2.8 Stationary Solutions of the Schrödinger Equation,

Eigenvalue Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.8.1 Stationary States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.8.2 Eigenvalue Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.8.3 Expansion in Stationary States . . . . . . . . . . . . . . . . . . 35

2.9 The Physical Significance of the Eigenvalues of an Operator 36
2.9.1 Some Concepts from Probability Theory . . . . . . . . . . 36
2.9.2 Application to Operators with Discrete Eigenvalues 37
2.9.3 Application to Operators

with a Continuous Spectrum . . . . . . . . . . . . . . . . . . . . 38
2.9.4 Axioms of Quantum Theory . . . . . . . . . . . . . . . . . . . . . 40



X Table of Contents

2.10 Additional Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.10.1 The General Wave Packet . . . . . . . . . . . . . . . . . . . . . . . 41
2.10.2 Remark on the Normalizability

of the Continuum States . . . . . . . . . . . . . . . . . . . . . . . . 43
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3. One-Dimensional Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.1 The Harmonic Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.1.1 The Algebraic Method . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.1.2 The Hermite Polynomials . . . . . . . . . . . . . . . . . . . . . . . 52
3.1.3 The Zero-Point Energy . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.1.4 Coherent States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.2 Potential Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.2.1 Continuity of ψ(x) and ψ′(x)

for a Piecewise Continuous Potential . . . . . . . . . . . . . 58
3.2.2 The Potential Step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.3 The Tunneling Effect, the Potential Barrier . . . . . . . . . . . . . . . 64
3.3.1 The Potential Barrier . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.3.2 The Continuous Potential Barrier . . . . . . . . . . . . . . . . 67
3.3.3 Example of Application: α-decay . . . . . . . . . . . . . . . . . 68

3.4 The Potential Well . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.4.1 Even Symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.4.2 Odd Symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.5 Symmetry Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.5.1 Parity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.5.2 Conjugation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.6 General Discussion
of the One-Dimensional Schrödinger Equation . . . . . . . . . . . . 77

3.7 The Potential Well, Resonances . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.7.1 Analytic Properties of the Transmission Coefficient . 83
3.7.2 The Motion of a Wave Packet Near a Resonance . . . 87

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4. The Uncertainty Relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.1 The Heisenberg Uncertainty Relation . . . . . . . . . . . . . . . . . . . . 97

4.1.1 The Schwarz Inequality . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.1.2 The General Uncertainty Relation . . . . . . . . . . . . . . . 97

4.2 Energy–Time Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.2.1 Passage Time and Energy Uncertainty . . . . . . . . . . . . 100
4.2.2 Duration of an Energy Measurement

and Energy Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . 100
4.2.3 Lifetime and Energy Uncertainty . . . . . . . . . . . . . . . . 101

4.3 Common Eigenfunctions of Commuting Operators . . . . . . . . . 102
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106



Table of Contents XI

5. Angular Momentum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.1 Commutation Relations, Rotations . . . . . . . . . . . . . . . . . . . . . . 107
5.2 Eigenvalues of Angular Momentum Operators . . . . . . . . . . . . 110
5.3 Orbital Angular Momentum in Polar Coordinates . . . . . . . . . 112
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6. The Central Potential I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
6.1 Spherical Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
6.2 Bound States in Three Dimensions . . . . . . . . . . . . . . . . . . . . . . 122
6.3 The Coulomb Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
6.4 The Two-Body Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

7. Motion in an Electromagnetic Field . . . . . . . . . . . . . . . . . . . . . . 143
7.1 The Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
7.2 Constant Magnetic Field B . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
7.3 The Normal Zeeman Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
7.4 Canonical and Kinetic Momentum, Gauge Transformation . . 147

7.4.1 Canonical and Kinetic Momentum . . . . . . . . . . . . . . . 147
7.4.2 Change of the Wave Function

Under a Gauge Transformation . . . . . . . . . . . . . . . . . . 148
7.5 The Aharonov–Bohm Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

7.5.1 The Wave Function in a Region
Free of Magnetic Fields . . . . . . . . . . . . . . . . . . . . . . . . . 149

7.5.2 The Aharonov–Bohm Interference Experiment . . . . . 150
7.6 Flux Quantization in Superconductors . . . . . . . . . . . . . . . . . . . 153
7.7 Free Electrons in a Magnetic Field . . . . . . . . . . . . . . . . . . . . . . 154
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

8. Operators, Matrices, State Vectors . . . . . . . . . . . . . . . . . . . . . . . 159
8.1 Matrices, Vectors, and Unitary Transformations . . . . . . . . . . . 159
8.2 State Vectors and Dirac Notation . . . . . . . . . . . . . . . . . . . . . . . 164
8.3 The Axioms of Quantum Mechanics . . . . . . . . . . . . . . . . . . . . . 169

8.3.1 Coordinate Representation . . . . . . . . . . . . . . . . . . . . . . 170
8.3.2 Momentum Representation . . . . . . . . . . . . . . . . . . . . . . 171
8.3.3 Representation in Terms of a Discrete Basis System 172

8.4 Multidimensional Systems
and Many-Particle Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

8.5 The Schrödinger, Heisenberg
and Interaction Representations . . . . . . . . . . . . . . . . . . . . . . . . . 173
8.5.1 The Schrödinger Representation . . . . . . . . . . . . . . . . . 173
8.5.2 The Heisenberg Representation . . . . . . . . . . . . . . . . . . 174
8.5.3 The Interaction Picture (or Dirac Representation) . 176

8.6 The Motion of a Free Electron in a Magnetic Field . . . . . . . . 177
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181



XII Table of Contents

9. Spin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
9.1 The Experimental Discovery

of the Internal Angular Momentum . . . . . . . . . . . . . . . . . . . . . . 183
9.1.1 The “Normal” Zeeman Effect . . . . . . . . . . . . . . . . . . . . 183
9.1.2 The Stern–Gerlach Experiment . . . . . . . . . . . . . . . . . . 183

9.2 Mathematical Formulation for Spin-1/2 . . . . . . . . . . . . . . . . . . 185
9.3 Properties of the Pauli Matrices . . . . . . . . . . . . . . . . . . . . . . . . . 186
9.4 States, Spinors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
9.5 Magnetic Moment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
9.6 Spatial Degrees of Freedom and Spin . . . . . . . . . . . . . . . . . . . . 189
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

10. Addition of Angular Momenta . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
10.1 Posing the Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
10.2 Addition of Spin-1/2 Operators . . . . . . . . . . . . . . . . . . . . . . . . . 194
10.3 Orbital Angular Momentum and Spin 1/2 . . . . . . . . . . . . . . . . 196
10.4 The General Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

11. Approximation Methods for Stationary States . . . . . . . . . . . . 203
11.1 Time Independent Perturbation Theory

(Rayleigh–Schrödinger) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
11.1.1 Nondegenerate Perturbation Theory . . . . . . . . . . . . . . 204
11.1.2 Perturbation Theory for Degenerate States . . . . . . . . 206

11.2 The Variational Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
11.3 The WKB (Wentzel–Kramers–Brillouin) Method . . . . . . . . . . 208
11.4 Brillouin–Wigner Perturbation Theory . . . . . . . . . . . . . . . . . . . 211
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

12. Relativistic Corrections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
12.1 Relativistic Kinetic Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
12.2 Spin–Orbit Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
12.3 The Darwin Term . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
12.4 Further Corrections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

12.4.1 The Lamb Shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
12.4.2 Hyperfine Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

13. Several-Electron Atoms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
13.1 Identical Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

13.1.1 Bosons and Fermions . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
13.1.2 Noninteracting Particles . . . . . . . . . . . . . . . . . . . . . . . . 230

13.2 Helium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
13.2.1 Without the Electron–Electron Interaction . . . . . . . . 233



Table of Contents XIII

13.2.2 Energy Shift
Due to the Repulsive Electron–Electron Interaction 235

13.2.3 The Variational Method . . . . . . . . . . . . . . . . . . . . . . . . 240
13.3 The Hartree and Hartree–Fock Approximations

(Self-consistent Fields) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
13.3.1 The Hartree Approximation . . . . . . . . . . . . . . . . . . . . . 242
13.3.2 The Hartree–Fock Approximation . . . . . . . . . . . . . . . . 244

13.4 The Thomas–Fermi Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
13.5 Atomic Structure and Hund’s Rules . . . . . . . . . . . . . . . . . . . . . 252
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258

14. The Zeeman Effect and the Stark Effect . . . . . . . . . . . . . . . . . . 259
14.1 The Hydrogen Atom in a Magnetic Field . . . . . . . . . . . . . . . . . 259

14.1.1 Weak Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
14.1.2 Strong Field, the Paschen–Back Effect . . . . . . . . . . . . 260
14.1.3 The Zeeman Effect for an Arbitrary Magnetic Field 261

14.2 Multielectron Atoms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
14.2.1 Weak Magnetic Field . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
14.2.2 Strong Magnetic Field, the Paschen–Back Effect . . . 266

14.3 The Stark Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
14.3.1 Energy Shift of the Ground State . . . . . . . . . . . . . . . . 267
14.3.2 Excited States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

15. Molecules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
15.1 Qualitative Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
15.2 The Born–Oppenheimer Approximation . . . . . . . . . . . . . . . . . . 273
15.3 The Hydrogen Molecular Ion (H

+

2 ) . . . . . . . . . . . . . . . . . . . . . . 275
15.4 The Hydrogen Molecule H2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278
15.5 Energy Levels of a Two-Atom Molecule:

Vibrational and Rotational Levels . . . . . . . . . . . . . . . . . . . . . . . 282
15.6 The van der Waals Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287

16. Time Dependent Phenomena . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
16.1 The Heisenberg Picture for a Time Dependent Hamiltonian . 289
16.2 The Sudden Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
16.3 Time Dependent Perturbation Theory . . . . . . . . . . . . . . . . . . . 292

16.3.1 Perturbative Expansion . . . . . . . . . . . . . . . . . . . . . . . . . 292
16.3.2 First-Order Transitions . . . . . . . . . . . . . . . . . . . . . . . . 294
16.3.3 Transitions into a Continuous Spectrum,

the Golden Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294
16.3.4 Periodic Perturbations . . . . . . . . . . . . . . . . . . . . . . . . . . 297

16.4 Interaction with the Radiation Field . . . . . . . . . . . . . . . . . . . . . 298
16.4.1 The Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298



XIV Table of Contents

16.4.2 Quantization of the Radiation Field . . . . . . . . . . . . . . 299
16.4.3 Spontaneous Emission . . . . . . . . . . . . . . . . . . . . . . . . . . 301
16.4.4 Electric Dipole (E1) Transitions . . . . . . . . . . . . . . . . . 303
16.4.5 Selection Rules for Electric Dipole (E1) Transitions 303
16.4.6 The Lifetime for Electric Dipole Transitions . . . . . . . 306
16.4.7 Electric Quadrupole

and Magnetic Dipole Transitions . . . . . . . . . . . . . . . . . 307
16.4.8 Absorption and Induced Emission . . . . . . . . . . . . . . . . 309

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310

17. The Central Potential II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313
17.1 The Schrödinger Equation

for a Spherically Symmetric Square Well . . . . . . . . . . . . . . . . . 313
17.2 Spherical Bessel Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314
17.3 Bound States of the Spherical Potential Well . . . . . . . . . . . . . 316
17.4 The Limiting Case of a Deep Potential Well . . . . . . . . . . . . . . 318
17.5 Continuum Solutions for the Potential Well . . . . . . . . . . . . . . . 320
17.6 Expansion of Plane Waves in Spherical Harmonics . . . . . . . . . 321
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324

18. Scattering Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325
18.1 Scattering of a Wave Packet and Stationary States . . . . . . . . 325

18.1.1 The Wave Packet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325
18.1.2 Formal Solution

of the Time Independent Schrödinger Equation . . . . 326
18.1.3 Asymptotic Behavior of the Wave Packet . . . . . . . . . 328

18.2 The Scattering Cross Section . . . . . . . . . . . . . . . . . . . . . . . . . . . 330
18.3 Partial Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331
18.4 The Optical Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335
18.5 The Born Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337
18.6 Inelastic Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339
18.7 Scattering Phase Shifts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340
18.8 Resonance Scattering from a Potential Well . . . . . . . . . . . . . . 342
18.9 Low Energy s-Wave Scattering; the Scattering Length . . . . . 346
18.10 Scattering at High Energies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349
18.11 Additional Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351

18.11.1 Transformation to the Laboratory Frame . . . . . . . . . 351
18.11.2 The Coulomb Potential . . . . . . . . . . . . . . . . . . . . . . . . . 352

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352

19. Supersymmetric Quantum Theory . . . . . . . . . . . . . . . . . . . . . . . . 355
19.1 Generalized Ladder Operators . . . . . . . . . . . . . . . . . . . . . . . . . . 355
19.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358

19.2.1 Reflection-Free Potentials . . . . . . . . . . . . . . . . . . . . . . . 358
19.2.2 The δ-function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361



Table of Contents XV

19.2.3 The Harmonic Oscillator . . . . . . . . . . . . . . . . . . . . . . . . 361
19.2.4 The Coulomb Potential . . . . . . . . . . . . . . . . . . . . . . . . . 362

19.3 Additional Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367

20. State and Measurement in Quantum Mechanics . . . . . . . . . . 369
20.1 The Quantum Mechanical State, Causality,

and Determinism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369
20.2 The Density Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371

20.2.1 The Density Matrix for Pure and Mixed Ensembles 371
20.2.2 The von Neumann Equation . . . . . . . . . . . . . . . . . . . . 376
20.2.3 Spin-1/2 Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377

20.3 The Measurement Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380
20.3.1 The Stern–Gerlach Experiment . . . . . . . . . . . . . . . . . . 380
20.3.2 The Quasiclassical Solution . . . . . . . . . . . . . . . . . . . . . 381
20.3.3 The Stern–Gerlach Experiment

as an Idealized Measurement . . . . . . . . . . . . . . . . . . . . 381
20.3.4 A General Experiment

and Coupling to the Environment . . . . . . . . . . . . . . . . 383
20.3.5 Influence of an Observation on the Time Evolution . 387
20.3.6 Phase Relations in the Stern–Gerlach Experiment . . 389

20.4 The EPR Argument, Hidden Variables, the Bell Inequality . 390
20.4.1 The EPR (Einstein–Podolsky–Rosen) Argument . . . 390
20.4.2 The Bell Inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 396

Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399
A. Mathematical Tools for the Solution

of Linear Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . 399
A.1 The Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . . . 399
A.2 The Delta Function and Distributions . . . . . . . . . . . . 399
A.3 Green’s Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404

B. Canonical and Kinetic Momentum . . . . . . . . . . . . . . . . . . . . . . 405
C. Algebraic Determination

of the Orbital Angular Momentum Eigenfunctions . . . . . . . . . 406
D. The Periodic Table and Important Physical Quantities . . . . . 412

Subject Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417



1. Historical and Experimental Foundations

1.1 Introduction and Overview

In spite of the multitude of phenomena described by classical mechanics and
electrodynamics, a large group of natural phenomena remains unexplained by
classical physics. It is possible to find examples in various branches of physics,
for example, in the physics of atomic shells, which provide a foundation for
the structure of electron shells of atoms and for the occurrence of discrete
energy levels and of homopolar and Van der Waals bonding. The physics of
macroscopic bodies (solids, liquids, and gases) is not able to give – on the
basis of classical mechanics – consistent explanations for the structure and
stability of condensed matter, for the energy of cohesion of solids, for electri-
cal and thermal conductivity, specific heat of molecular gases and solids at
low temperatures, and for phenomena such as superconductivity, ferromag-
netism, superfluidity, quantum crystals, and neutron stars. Nuclear physics
and elementary particle physics require absolutely new theoretical founda-
tions in order to describe the structure of atomic nuclei, nuclear spectra,
nuclear reactions (interaction of particles with nuclei, nuclear fission, and
nuclear fusion), and the stability of nuclei, and similarly in order to make
predictions concerning the size and structure of elementary particles, their
mechanical and electromagnetic properties (mass, angular momentum (spin),
charge, magnetic moment, isospin), and their interactions (scattering, decay,
and production). Even in electrodynamics and optics there are effects which
cannot be understood classically, for example, blackbody radiation and the
photoelectric effect.

All of these phenomena can be treated by quantum theoretical methods.
(An overview of the elements of quantum theory is given in Table 1.1.) This
book is concerned with the nonrelativistic quantum theory of stable particles,
described by the Schrödinger equation.

First, a short summary of the essential concepts of classical physics is
given, before their limitations are discussed more thoroughly in Sect. 1.2.

At the end of the nineteenth century, physics consisted of classical me-
chanics, which was extended in 1905 by Albert Einstein’s theory of relativity,
together with electrodynamics.

Classical mechanics, based on the Newtonian axioms (lex secunda, 1687),
permits the description of the dynamics of point masses, e.g., planetary mo-
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Table 1.1. The elements of quantum theory

Nonrelativistic Relativistic

Quantum theory of stable Schrödinger equation Dirac equation
particles (for fermions)

Quantum theory of crea- Nonrelativistic Relativistic
tion and annihilation field theory field theory
processes

tion, the motion of a rigid body, and the elastic properties of solids, and
it contains hydrodynamics and acoustics. Electrodynamics is the theory of
electric and magnetic fields in a vacuum, and, if the material constants ε, μ, σ
are known, in condensed matter as well. In classical mechanics, the state of
a particle is characterized by specifying the position x(t) and the momen-
tum p(t), and it seems quite obvious to us from our daily experience that
the simultaneous specification of these two quantities is possible to arbitrary
accuracy. Microscopically, as we shall see later, position and momentum can-
not simultaneously be specified to arbitrary accuracy. If we designate the
uncertainty of their components in one dimension by Δx and Δp, then the
relation ΔxΔp ≥ �/2 must always hold, where � = 1.0545 × 10−27 erg s is
the Planck quantum of action1. Classical particles are thus characterized by
position and velocity and represent a spatially bounded “clump of matter”.

On the other hand, electromagnetic waves , which are described by the
potentials A(x, t) and Φ(x, t) or by the fields E(x, t) and B(x, t), are spa-
tially extended, for example, plane waves exp{i(k ·x−ωt)} or spherical waves
(1/r) exp{i(kr−ωt)}. Corresponding to the energy and momentum density of
the wave, the energy and momentum are distributed over a spatially extended
region.

In the following, using examples of historical significance, we would like to
gain some insight into two of the main sources of the empirical necessity for a
new theoretical basis: (i) on the one hand, the impossibility of separating the
particle and wave picture in the microscopic domain; and (ii) the appearance
of discrete states in the atomic domain, which forms the point of departure
for the Bohr model of the atom.

1 1 erg = 10−7 J
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1.2 Historically Fundamental Experiments
and Insights

At the end of the nineteenth and the beginning of the twentieth century, the
inadequacy of classical physics became increasingly evident due to various
empirical facts. This will be illustrated by a few experiments.

1.2.1 Particle Properties of Electromagnetic Waves

1.2.1.1 Black-Body Radiation

Let us consider a cavity at temperature T in radiation equilibrium (Fig. 1.1).
The volume of the cavity is V = L3, the energy density (energy per

unit volume and frequency) u(ω). Here u(ω)dω expresses the energy per unit
volume in the interval [ω, ω + dω]. Classically, the situation is described by
the Rayleigh–Jeans law

u(ω) =
kBT

π2c3
ω2 . (1.1)

Fig. 1.1a,b. Black-body radiation. (a) The radiation field. (b) k-space: 1 point
per volume (π/L)3

One can easily make this plausible by considering standing plane waves in a
cavity with reflecting metal walls. The components of the electric field are

E1(x) ∼ cos k1x1 sin k2x2 sin k3x3 . . . with k =
π

L
(n1, n2, n3) ,

... ni = 1, 2, 3, . . . .

The number of waves in the interval [ω, ω + dω] is, considering the vacuum
dispersion relation ω = c k, equal to the number dN of wave vector points in
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1/8 of the spherical shell2 [k, k + dk], that is

dN =
1
8

Volume of the k-space spherical shell
k-space volume per point

=
4πk2dk

8 (π/L)3
=

L3

2π2c3
ω2dω .

Fig. 1.2. The Rayleigh–Jeans law and the
Planck radiation law

Furthermore, since the energy of an oscillator is kBT (where the Boltzmann
constant is kB = 1.3806 × 10−16 erg/K), one obtains because of the two
directions of polarization

u(ω)dω = 2
L3

2π2c3
ω2dω

kBT

L3
=

kBT

π2c3
ω2dω ,

i.e., Eqn. (1.1). However, because of
∫∞
0

u(ω)dω = ∞, this classical result
leads to the so-called “ultraviolet catastrophe”, i.e., the cavity would have to
possess an infinite amount of energy (Fig. 1.2).

Although experiments at low frequencies were consistent with the Ray-
leigh–Jeans formula, Wien found empirically the following behavior at high
frequencies:

u(ω) ω→∞−→ Aω3 e−gω/T (A, g = const) .

Then in 1900, Max Planck discovered (on the basis of profound thermody-
namical considerations, he interpolated the second derivative of the entropy
between the Rayleigh–Jeans and Wien limits) an interpolation formula (the
Planck radiation law):

u(ω) =
�

π2c3
ω3

exp {�ω/kBT } − 1
, � = 1.0545 × 10−27 erg s . (1.2)

2 Remark: The factor 1/8 arises because the ki-values of the standing wave are
positive. One obtains the same result for dN in the case of periodic boundary
conditions with exp{ik · x} and k = (n1, n2, n3)2π/L and ni = 0, ± 1, ± 2, . . . .
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He also succeeded in deriving this radiation law on the basis of the hy-
pothesis that energy is emitted from the walls into radiation only in multiples
of �ω, that is En = n �ω.

This is clear evidence for the quantization of radiation energy.

1.2.1.2 The Photoelectric Effect

If light of frequency ω (in the ultraviolet; in the case of alkali metals in the
visible as well) shines upon a metal foil or surface (Hertz 1887, Lenard), one
observes that electrons with a maximal kinetic energy of

Ee =
mv2

e

2
= �ω −W (W = work function)

Fig. 1.3. The photoelectric effect

are emitted (Fig. 1.3). This led Albert Einstein in 1905 to the hypothesis that
light consists of photons, quanta of energy �ω. According to this hypothesis,
an electron that is bound in the metal can only be dislodged by an incident
photon if its energy exceeds the energy of the work function W .

In classical electrodynamics, the energy density of light in vacuum is given
by (1/8π)(E2+H2) (proportional to the intensity) and the energy flux density
by S = (c/4π) E ×H. Thus, one would expect classically at small intensities
that only after a certain time would enough energy be transmitted in order to
cause electron emission. Also, there should not be a minimum light frequency
for the occurrence of the photoelectric effect. However, what one actually
observes, even in the case of low radiation intensity, is the immediate onset
of electron emission, albeit in small numbers (Meyer and Gerlach), and no
emission occurs if the frequency of the light is lowered below W/�, consistent
with the quantum mechanical picture. Table 1.2 shows a few examples of real
work functions.

We thus arrive at the following hypothesis: Light consists of photons of
energy E = �ω, with velocity c and propagation direction parallel to the
electromagnetic wave number vector k (reason: light flash of wave number k).
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Table 1.2. Examples of real work functions

Element W Ta Ni Ag Cs Pt

W in eV 4.5 4.2 4.6 4.8 1.8 5.3

1 eV b= λ = 1.24 × 10−4 cm b= 1.6 × 10−12 erg
4 eV b= λ = 3.1 × 10−5 cm, i.e. ultraviolet

With this we can already make a statement about the momentum and mass
of the photon.

From relativity theory, one knows that

E =
√

p2c2 + m2c4 , v =
∂E

∂p
=

pc2
√

p2c2 + m2c4
. (1.3)

Since |v| = c, it follows from (1.3) that m = 0 and thus E = pc. If we
compare this with E = �ω = �ck (electromagnetic waves: ω = ck), then
p = �k results. Because p and k are parallel, it also follows that p = �k.
Thus

E = �ω

p = �k

}

four-vector pμ :
(
E/c

p

)

= �

(
k

k

)

. (1.4)

1.2.1.3 The Compton Effect3

Suppose that X-rays strike an electron (Fig. 1.4), which for the present pur-
poses can be considered as free and at rest. In an elastic collision between an
electron and a photon, the four-momentum (energy and momentum) remains
conserved. Therefore,

The four momentum:

Photon Electron

Before: �

“k
k

” “mc
0

”

After: �

“k′
k′

” “p
p′2 +m2c2

p′

”

Fig. 1.4. Collision of a photon γ and an electron e−

3 A.H. Compton, A. Simon: Phys. Rev. 25, 306 (1925)
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�

(
k

k

)

+
(
mc

0

)

= �

(
k′

k′

)

+
(√

p′2 + m2c2

p′

)

. (1.5)

If we bring the four-momentum of the photon after the collision over to the
left side of (1.5) and construct the four-vector scalar product (vμqμ ≡ v0q0−
v ·q = product of the timelike components v0, q0 minus the scalar product of
the spacelike ones) of each side with itself, then since pμpμ = p′μp′μ = m2c2,
kμkμ = k′μk′μ = 0:

m2c2 + 2�(k − k′)mc− 2�
2(kk′ − k · k′) = m2c2 ,

k − k′ =
�

mc
kk′(1 − cos Θ) .

Because of k = 2π/λ one obtains for the change of wavelength

λ′ − λ =
4π�

mc
sin2 Θ

2
= 4πλ̄c sin2 Θ

2
, (1.6)

where λ̄c = �/mec = 3.86 × 10−11 cm is the Compton wavelength of the
electron (me = 0.91 × 10−27 g, c = 2.99 × 1010 cm s−1). For the scatter-
ing of X-rays from electrons in carbon, for example, one finds the intensity
distribution of Fig. 1.5.

0.707 Å: unscattered photons
0.731 Å: scattered photons
The collision of a photon with an electron leads to
an energy loss, i.e., to an increase in the wavelength.

Fig. 1.5. Intensity distribution for scattering of X-rays from carbon

The experiments just described reveal clearly the particle character of
light. On the other hand, it is certain that light also possesses wave properties ,
which appear for example in interference and diffraction phenomena.

Now, a duality similar to that which we found for light waves also exists
for the conventional particles of classical physics.

1.2.2 Wave Properties of Particles,
Diffraction of Matter Waves

Davisson and Germer (1927), Thomson (1928), and Rupp (1928) performed
experiments with electrons in this connection; Stern did similar experiments
with helium. If a matter beam strikes a grid (a crystal lattice in the case of
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electrons, because of their small wavelength), interference phenomena result
which are well known from the optics of visible light. Empirically one obtains
in this way for nonrelativistic electrons (kinetic energy Ekin = p2/2m)

λ =
2π�

p
=

2π�c
√

2mc2(p2/2m)
=

12.2 Å
√

Ekin(eV)
. (1.7)

This experimental finding is in exact agreement with the hypothesis made by
de Broglie in 1923 that a particle with a total energy E and momentum p is to
be assigned a frequency ω = E/� and a wavelength λ = 2π�/p. The physical
interpretation of this wave will have to be clarified later (see Sect. 2.1). On
the other hand, it is evident on the basis of the following phenomena that in
the microscopic domain the particle concept also makes sense:

– Ionization tracks in the Wilson chamber: The electrons that enter the
chamber, which is filled with supersaturated water vapor, ionize the gas
atoms along their paths. These ions act as condensation seeds and lead
to the formation of small water droplets as the water vapor expands and
thus cools.

– Scattering and collision experiments between microscopic particles.
– The Millikan experiment: Quantization of electric charge in units of the

elementary charge e0 = 1.6021 × 10−19 C = 4.803 × 10−10 esu.
– The discrete structure of solids.

1.2.3 Discrete States

1.2.3.1 Discrete Energy Levels

The state of affairs will be presented by means of a short summary of the
recent history of atomic theory.

Thomson’s model of the atom assumed that an atom consists of an ex-
tended, continuous, positive charge distribution containing most of the mass,
in which the electrons are embedded.4 Geiger, and Geiger and Marsden (1908)
found backward and perpendicular scattering in their experiments, in which
alpha particles scattered off silver and gold. Rutherford immediately realized
that this was inconsistent with Thomson’s picture and presented his model
of the atom in 1911, according to which the electrons orbit like planets about
a positively charged nucleus of very small radius, which carries nearly the

4 By means of P. Lenard’s experiments (1903) – cathode rays, the Lenard window –
it was demonstrated that atoms contained negatively charged (−e0) particles
– electrons – about 2 000 times lighter than the atoms themselves. Thomson’s
model of the atom (J.J. Thomson, 1857–1940) was important because it at-
tempted to explain the structure of the atom on the basis of electrodynamics;
according to his theory, the electrons were supposed to undergo harmonic oscil-
lations in the electrostatic potential of the positively charged sphere. However, it
was only possible to explain a single spectral line, rather than a whole spectrum.
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entire mass of the atom. Rutherford’s theory of scattering on a point nucleus
was confirmed in detail by Geiger and Marsden. It was an especially fortu-
nate circumstance (Sects. 18.5, 18.10) for progress in atomic physics that the
classical Rutherford formula is identical with the quantum mechanical one,
but it is impossible to overlook the difficulties of Rutherford’s model of the
atom. The orbit of the electron on a curved path represents an accelerated
motion, so that the electrons should constantly radiate energy away like a
Hertz dipole and spiral into the nucleus. The orbital frequency would vary
continuously, and one would expect a continuous emission spectrum. How-
ever, in fact experiments reveal discrete emission lines, whose frequencies, as
in the case of the hydrogen atom, obey the generalized Balmer formula

�ω = Ry
(

1
n2

− 1
m2

)

(Ry is the Rydberg constant, n and m are natural numbers). This result rep-
resents a special case of the Rydberg–Ritz combination principle, according
to which the frequencies can be expressed as differences of spectral terms.

In 1913, Bohr introduced his famous quantization condition. He postu-
lated as stationary states the orbits which fulfill the condition

∮
p dq = 2π�n.5

This was enough to explain the Balmer formula for circular orbits. While
up to this time atomic physics was based exclusively on experimental find-
ings whose partial explanation by the Bohr rules was quite arbitrary and
unsatisfactory – the Bohr theory did not even handle the helium atom prop-
erly – Heisenberg (matrix mechanics 1925, uncertainty relation 1927) and
Schrödinger (wave mechanics 1926) laid the appropriate axiomatic ground-
work with their equivalent formulations for quantum mechanics and thus for
a satisfactory theory of the atomic domain.

Aside from the existence of discrete atomic emission and absorption spec-
tra, an experiment by J. Franck and G. Hertz in 1913 also shows quite clearly
the presence of discrete energy levels in atoms.

In an experimental setup shown schematically in Fig. 1.6, electrons emit-
ted from the cathode are accelerated in the electric field between cathode
and grid and must then penetrate a small counterpotential before reaching
the anode. The tube is filled with mercury vapor. If the potential difference
between C and G is increased, then at first the current I rises. However, as
soon as the kinetic energy of the electrons at the grid is large enough to knock

5 More precisely, the Bohr theory consists of three elements: (i) There exist station-
ary states, i.e., orbits which are constant in time, in which no energy is radiated.
(ii) The quantization condition: Stationary states are chosen from among those
which are possible according to Newtonian mechanics on the basis of the Ehren-
fest adiabatic hypothesis , according to which adiabatically invariant quantities
– that is, those which remain invariant under a slow change in the parameters of
the system – are to be quantized. (iii) Bohr’s frequency condition: In an atomic
transition from a stationary state with energy E1 to one with energy E2, the
frequency of the emitted light is (E1 − E2)/�.
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Fig. 1.6a,b. The Franck–Hertz effect. (a) Experimental setup: C cathode, G grid,
A anode. (b) Current I versus the voltage V : Fall-off, if electrons can excite Hg
before G, half-way and before G, etc.

mercury atoms into the first excited state during a collision, they lose their
kinetic energy for the most part and, because of the negative countervoltage,
no longer reach the anode. This happens for the first time at a voltage of
about 5V. At 10V, the excitation process occurs at half the distance be-
tween cathode and grid and again at the grid, etc. Only well defined electron
energies can be absorbed by the mercury atoms, and the frequency of the
radiated light corresponds to this energy.

1.2.3.2 Quantization of Angular Momentum (Space Quantization)

In 1922, Stern and Gerlach shot a beam of paramagnetic atoms into a strongly
inhomogeneous magnetic field and observed the ensuing deflections (Fig. 1.7).
According to electrodynamics, the force acting on a magnetic moment μ
under such conditions is given by

F = ∇(μ ·B) . (1.8)

Here Bz � Bx, By, and hence the magnetic moment precesses about the
z-direction and μ ·B ∼= μzBz. Now, the x- and y-dependence of Bz can be
neglected in comparison to the z-dependence, so that

Fig. 1.7. The Stern–Gerlach experiment



1.2 Historically Fundamental Experiments and Insights 11

F = μz
∂Bz
∂z

ez , (1.9)

where ez is a unit vector in the z-direction.
The deflection thus turns out to be proportional to the z-component of the

magnetic moment. Since classically μz varies continuously, one would expect
the beam to fan out within a broad range. However, what one actually finds
experimentally is a discrete number of beams, two in the case of hydrogen.
Apparently, only a few orientations of the magnetic moment μ with respect
to the field direction are allowed. Thus, the Stern–Gerlach experiment gives
evidence for the existence of spin.



2. The Wave Function

and the Schrödinger Equation

2.1 The Wave Function
and Its Probability Interpretation

According to the considerations of Sect. 1.2.2 in connection with electron
diffraction, electrons also have wavelike properties; let this wave be ψ(x, t).
For free electrons of momentum p and energy E = p2/2m, in accordance
with diffraction experiments, one can consider these to be free plane waves,
i.e., ψ takes the form

ψ(x, t) = C ei(k · x−ωt) with ω = E/� , k = p/� . (2.1)

Now let us consider the question of the physical significance of the wave func-
tion. For this we shall consider an idealized diffraction experiment (“thought
experiment”).

Fig. 2.1a–c. Diffraction at the double slit (a) with slit 1 open, (b) with slit 2 open,
(c) both slits open

Suppose electrons are projected onto a screen through a double slit
(Fig. 2.1). A photographic plate (or counter) in the plane of the screen
behind the double slit provides information on the image created by the
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incident electrons. Suppose first that one or the other of the slits is closed.
One then obtains the distributions �1(x) and �2(x), respectively, on the
screen (Fig. 2.1a,b). If both slits are open, an interference pattern is created
(Fig. 2.1c) with an amplification of the intensity where the path length dif-
ference Δl between the slits is an integral multiple of the electron wavelength
λ, that is, Δl = nλ. Because of the interference, one has for the intensities
�(x) �= �1(x) + �2(x). We are familiar with such interference phenomena
with just such screen patterns in the optics of light and also in water waves.
If a cylindrical electromagnetic wave goes out from slit 1 with electric field
E1(x, t), and one from slit 2 with electric field E2(x, t), one gets the following
for the above experimental setup:

If only slit 1 is open, one has the intensity distribution I1(x) = |E1(x, t)|2
on the screen, whereas if only slit 2 is open, one gets I2(x) = |E2(x, t)|2. Here
we have assumed that Ej(x, t) ∝ exp{−iωt}, which is equivalent to time-
averaging the intensities of real fields, up to a factor of 2. If both slits are
open, one must superimpose the waves, and one obtains

E(x, t) = E1(x, t) +E2(x, t) ,

I = |E(x, t)|2 = I1 + I2 + 2 Re (E∗
1 ·E2) .

The third term in the total intensity represents the so-called interference
term.

Comparison with our electron experiment allows the following conclusion:

Hypothesis. The wave function ψ(x, t) gives the probability distribution

�(x, t) = |ψ(x, t)|2 (2.2)

that an electron occupies the position x. Thus, �(x, t) d3x is the probability
of finding the electron at the location x in the volume element d3x. According
to this picture, the electron waves ψ1(x, t) and ψ2(x, t), which cause screen
darkening �1(x, t) = |ψ1(x, t)|2 and �2(x, t) = |ψ2(x, t)|2, are emitted from
slits 1 and 2, respectively. If both slits are open, then there is a superposition

Fig. 2.2. An interference pattern and its probability inter-
pretation: Each electron makes a localized impact on the
screen. The interference pattern becomes visible after the im-
pact of many electrons with the same wave function ψ(x, t)
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of the wave functions ψ1(x, t) + ψ2(x, t), and the darkening is proportional
to |ψ1 + ψ2|2 (Fig. 2.2). Two important remarks:

(i) Each electron makes a local impact, and the darkening of the photo-
graphic plate by a single electron is not smeared out. �(x, t) is not the
charge distribution of the electron, but rather gives the probability den-
sity for measuring the particle at the position x at the time t.

(ii) This probability distribution does not occur by interference of many
simultaneously incoming electrons, but rather one obtains the same in-
terference pattern if each electron enters separately, i.e., even for a very
low intensity source. The wave function thus applies to every electron
and describes the state of a single electron.

We shall try to construct a theory that provides the wave function ψ(x, t)
and thus a statistical description for the results of experiments. This theory
should reduce to classical mechanics in the limit of macroscopic objects.

2.2 The Schrödinger Equation for Free Particles

The equation of motion for ψ(x, t) should satisfy the following basic de-
mands:

(i) It should be a first order differential equation in time so that ψ(x, t)
will be determined by the initial distribution ψ(x, 0).

(ii) It must be linear in ψ in order for the principle of superposition
to hold, i.e., linear combinations of solutions are again solutions, and thus
interference effects such as those of optics occur. (These follow in the same
way from the linearity of the Maxwell equations.) For the same reason, the
constants in the equation may not contain any quantities that depend on the
particular state of the particle such as its energy or momentum.

(iii) It should be homogeneous, so that
∫

d3x|ψ(x, t)|2 = 1 (2.3)

is satisfied at all times, because the total probability of finding the particle
somewhere in space is 1 (normalization).

Remark: If an inhomogeneity q in the equation were to occur, e.g.,

∂

∂t
ψ(x, t) = Dψ(x, t) + q ,

then one would have

d

dt

Z

d3x|ψ(x, t)|2 =

Z

d3x(ψ̇ψ∗ + ψψ̇∗)

=

Z

d3x((Dψ)ψ∗ + ψ(Dψ)∗) +

Z

d3x(qψ∗ + ψq∗) .



16 2. The Wave Function and the Schrödinger Equation

IfD is the differential operator of the Schrödinger equation, then by Gauss’s integral
theorem (j is current density; see (2.58)–(2.60))

= −
Z

S

da · j +

Z

d3x 2Re{qψ∗} .

The first term is 0, if ψ decreases sufficiently rapidly, e.g., ψ ∈ L2, but the second

term is in general nonvanishing.

(iv) Finally, plane waves

ψ(x, t) = C exp
{

i
(

p · x− p2

2m
t

)/

�

}

should be solutions of the equations. For plane waves,

∂

∂t
ψ(x, t) = − i

�

p2

2m
ψ(x, t) =

i
�

�
2

2m
∇2ψ(x, t) .

From postulates (i–iv) we thus obtain

i�
∂

∂t
ψ(x, t) = − �

2

2m
∇2ψ(x, t) . (2.4)

This is the time dependent Schrödinger equation for free particles.

2.3 Superposition of Plane Waves

The plane waves

ψ(x, t) = C exp
{

i
�

(

p · x− p2

2m
t

)}

have a spatially homogeneous probability density |ψ(x, t)|2 = C2. If we imag-
ine that the particle is enclosed within a box of volume V , then the normal-
ization condition

∫
V d3xC2 = 1 for C gives the value C = 1/

√
V .

Localized states, that is, states with spatially concentrated extension, are
obtained by superposition of plane waves:1

ψ(x, t) =
∫

d3p

(2π�)3
ϕ(p) exp

{
i
�

(

p · x− p2

2m
t

)}

︸ ︷︷ ︸
(three-dimensional wave packet)

. (2.5)

The relationship is especially simple for a one-dimensional Gaussian wave
packet , i.e.,

ϕ(p) = A exp{−(p− p0)2d2/�
2} . (2.6)

1 We sometimes leave out the limits of integration, as in (2.5). In this case, these
are always −∞ and +∞.
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(The generalization to three dimensions is trivial, because the three-dimen-
sional Gaussian wave packet exp{−(p−p0)2d2/�

2} factorizes into three one-
dimensional Gaussians.) In order to calculate (2.5) we temporarily introduce
the following abbreviations:

a =
d2

�2
+ i

t

2m�
, b =

d2p0

�2
+ i

x

2�
, c =

d2p2
0

�2
, (2.7)

by means of which (2.5) and (2.6) result in

ψ(x, t) =
A

2π�

∫
dp exp

{

−a

(

p− b

a

)2

+
b2

a
− c

}

=
A

2π�

√
π

a
exp
{
b2

a
− c

}

, (2.8)

where we make use of the well known Gaussian integral
∫ +∞

−∞
dx e−αx

2
=
√

π

α
. (2.9)

In the following we will primarily be interested in the probability density

|ψ(x, t)|2 =
(

A

2π�

)2
π

|a| exp
{

2 Re
{
b2 − ac

a

}}

. (2.10)

The exponent in (2.10) becomes

2 Re {(b2 − ac)a∗}/|a|2 = −(x− vt)2/2d2(1 + Δ2) , (2.11)

with

v =
p0

m
and Δ ≡ Δ(t) =

t�

2md2
. (2.12)

Now, using (2.7), (2.9), and (2.11), we can fix the normalization factor A
such that

∫
dx|ψ(x, t)|2 = 1, with the result

A = 4
√

8πd2 . (2.13)

Thus, we finally obtain the complete result

|ψ(x, t)|2 =
1

d
√

2π(1 + Δ2)
exp
{

− (x− vt)2

2d2(1 + Δ2)

}

, (2.14)

i.e., a Gaussian distribution in configuration space as well. The maximum of
the wave packet moves with the group velocity v = p0/m = ∂E/∂p|p0 like a
classical particle, whereas the individual superimposed plane waves have the
phase velocities vph = Ep/p = p/2m. The quantity Δ increases with time t.
This means that the function |ψ|2 gets flatter or “spreads” as time goes on,
and thus its degree of localization is reduced.
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We are also interested in the average value and the root-mean-square de-
viation of position for the present probability density (2.14). The expectation
value of the position is calculated as

〈x〉 =
∫ +∞

−∞
|ψ(x, t)|2xdx

=
∫ +∞

−∞
dx|ψ(x, t)|2(x− vt) +

∫ +∞

−∞
dx|ψ(x, t)|2vt = vt .

The first integral vanishes, since |ψ(x, t)|2 is an even function of (x− vt). For
the mean-square deviation , one obtains

(Δx)2 = 〈(x− 〈x〉)2〉

=

∫ +∞
−∞ dx|ψ(x, t)|2(x− vt)2
∫ +∞
−∞ dx|ψ(x, t)|2

= d2(1 + Δ2) .

Here we make use of (2.9) and its derivative with respect to α:
∫ +∞

−∞
dxx2 e−αx

2
=

√
π/2α3/2 .

Thus,

position expectation value: 〈x〉 = vt , (2.15)

position uncertainty: Δx = d
√

1 + Δ2 . (2.16)

In order to illustrate these results, we consider two examples.

(i) Let the particle being described by a Gaussian wave packet be a
macroscopic body of mass m = Nmp

∼= 1023 × 10−24 g = 10−1 g. In this
case, one thus finds Δ = t�/2md2 ≈ 10−26 t/d2 (t and d in cgs-units, Δ
dimensionless). Such a body with initial positional uncertainty Δx = d =
10−8 cm does not have Δ = 1 until 1010 s and thus has the width Δx =

√
2 d.

This value is quite irrelevant in comparison to the extension of a macroscopic
body.

(ii) On the other hand, for an α-particle, one gets

Δ = (10−27/2 × 4 × 1.6 × 10−24)
t

d2
∼= 10−4 t

d2
.

With Δx = d = 10−11 cm at the time t = 0 one finds Δ = 1 for t ≈ 10−18 s.
Although this time is very short, whether or not the spreading is significant
depends entirely on the problem. For example, an α-particle with speed v =
c/30 traverses a distance 10−9 cm during this time, which is much larger than
a nuclear radius (≈ 10−12 cm). However, this implies that during the collision
with a nucleus the trajectory can be described classically!

The time evolution of a Gaussian wave packet is sketched in Fig. 2.3.
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Fig. 2.3. Motion and spreading of a Gaussian wave packet. The “width” of the
probability density grows with time

2.4 The Probability Distribution
for a Measurement of Momentum

Now we consider the question of what probability density describes the re-
alization of particular values of momentum. In position space the probabil-
ity of finding a particle at the position x in the volume d3x was given by
�(x, t)d3x = |ψ(x, t)|2d3x. Correspondingly, let the probability of finding the
particle with momentum p in d3p be represented by W (p, t)d3p. Here, the
total probability is also normalized to 1:
∫

d3pW (p, t) = 1 . (2.17)

If one expresses in analogy to (2.5) ψ(x, t) in terms of its Fourier transform
(see Appendix A) ϕ(p, t), that is

ψ(x, t) =
∫

d3p

(2π�)3
ϕ(p, t) ei p ·x /� ,

one then gets
∫

d3x|ψ(x, t)|2

=
∫

d3x

∫
d3p

(2π�)6

∫
d3p′ exp

{
i
�
(p− p′) · x

}

ϕ(p, t)ϕ∗(p′, t)

=
∫

d3p

∫
d3p′

(2π�)3
δ(3)(p− p′)ϕ(p, t)ϕ∗(p′, t) , (2.18)

because of
∫

d3x exp
{

i
�
(p− p′) · x

}

= (2π�)3δ(3)(p− p′) .
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Consequently,
∫

d3x|ψ(x, t)|2 =
∫

d3p
1

(2π�)3
|ϕ(p, t)|2

︸ ︷︷ ︸
(Parseval’s theorem of Fourier transforms)

(2.19)

results from (2.18). This suggests for the probability density in momentum
space the following definition:

W (p, t) =
1

(2π�)3
|ϕ(p, t)|2 . (2.20)

This is consistent with the idea that for a plane wave with momentum p0 the
Fourier transform ϕ(p, t) differs from zero only for p = p0.

Let us now return to the Gaussian wave packet in one dimension ((2.5),
specialized to one dimension, and (2.6)). For this special case, one obtains
the probability density

W (p, t) =
1

2π�
|ϕ(p)|2 =

√
2
π

d

�
exp {−2(p− p0)2 d2/�

2} . (2.21)

This is time independent, since we are considering free particles. With (2.21)
the expectation value of the momentum is calculated as

〈p〉 =
∫

dpW (p, t)p =
∫

dpW (p, t)(p− p0) +
∫

dpW (p, t)p0 = p0 ,

and the corresponding mean-square fluctuation is

(Δp)2 = 〈(p− p0)2〉 =
∫

dpW (p, t)(p− p0)2 =
(

�

2d

)2
.

Thus:

momentum expectation value: 〈p〉 = p0 , (2.22)
momentum uncertainty: Δp = �/2d . (2.23)

Together with (2.16), this leads to

ΔxΔp =
�

2

√
1 + Δ2 . (2.24)

Equation (2.24) represents a special case of the general uncertainty relation

ΔxΔp ≥ �/2 .

In the present context, it enters as a property of the Fourier transform and
implies that a spatially broadly extended wave packet corresponds to a small
spectrum of momentum values, whereas sharp wave packets can only be con-
structed from a broad band of Fourier components, i.e., they also contain
components of short wavelength. We will give the general derivation of this
later.
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2.4.1 Illustration of the Uncertainty Principle

We would like to consider the following thought experiment to determine the
position of an electron: The electron is illuminated with light of wavelength
λ, and its image is projected onto a screen by means of an optical system.
Figure 2.4 shows the simplified experimental apparatus in principle. The
smallest distance which can be determined with a microscope is given by its
resolving power d = λ/ sin ϕ. The inaccuracy of localization of the electron
is thus Δx ≈ d = λ/ sin ϕ. This uncertainty can thus be reduced with
light of shorter wavelength. Now, the electron feels a back-reaction due to
the collision with the photon. If we take the extreme values of the possible
path of the photon, we see that the uncertainty of the x-component of the
momentum of the electron and the photon is roughly

Δpx ≈
(

2π
λ

�

)

sin ϕ .

We thus obtain

ΔxΔpx ≈ 2π� .

In the experiment described above, position and momentum cannot in prin-
ciple be determined simultaneously to greater accuracy than that permitted
by this relation.

Two numerical examples will illustrate the uncertainty relation: The un-
certainty relation holds even for macroscopic bodies. Consider for example
a bullet with speed v = 105 cm/s (supersonic speed) and an uncertainty in
the velocity of Δv = 10−2 cm/s, corresponding to Δp = m × 10−2 cm/s.
Now, the uncertainty relation says that the simultaneous determination of
the position is only possible up to an uncertainty of

Δx = (1/m) × 102
� s cm−1 ∼= (1/m) × 10−25 g cm ,

which becomes increasingly insignificant with growing mass. Even at a mass
of only 10−6 kg = 10−3 g, Δx ∼= 10−22 cm ∼= 10−14 atomic radii. On the

Fig. 2.4. Determination of position with a micro-
scope
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other hand, for electrons in an atom,

Δp ∼= mv ∼= 10−27 × 1010/137 g cm/s and Δx ∼= a ∼= 10−8 cm

(a: Bohr radius) which borders on what is permitted by the uncertainty
relation. Because the given values are comparable to the dimensions of the
effects being investigated, the uncertainties have considerable significance in
the atomic domain.

2.4.2 Momentum in Coordinate Space

As we have seen, one can determine momentum expectation values, uncer-
tainties, etc., in momentum space by means of the probability density W (p, t)
defined in (2.20). Can these also be calculated in coordinate space? To this
end we consider the familiar momentum expectation value

〈p〉 =
∫

d3p

(2π�)3
ϕ(p, t)∗pϕ(p, t) . (2.25)

Substituting for ϕ(p, t) the Fourier transform, we obtain

〈p〉 =
∫

d3p

(2π�)3

∫
d3x′ eip ·x′/� ψ∗(x′, t)p

∫
d3x e−ip ·x/� ψ(x, t)

=
∫

d3p

(2π�)3

∫
d3x′ eip ·x′/� ψ∗(x′, t)

∫
d3x

[

−�

i
∇ e−ip ·x/�

]

ψ(x, t)

=
∫

d3x

∫
d3x′ 1

(2π�)3
ψ∗(x′, t)

(
�

i
∇ψ(x, t)

)

×
∫

d3p exp
{

i
�
(x′ − x) · p

}

.

In the preceding line, we have partially integrated under the assumption
that ψ(x) falls off sufficiently rapidly at infinity, that is, that the boundary
terms are zero. If we also use the fact that the last integral is equal to
(2π�)3δ3(x′ − x), we then finally obtain

〈p〉 =
∫

d3xψ∗(x, t)
�

i
∇ψ(x, t) . (2.26)

Because of this connection, (�/i)∇ is called the momentum operator in co-
ordinate space:

p −→ �

i
∇ momentum operator in coordinate space . (2.27)
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2.4.3 Operators and the Scalar Product

In the previous section, we encountered the first example of the representation
of physical quantities by operators in quantum mechanics. For this reason,
we would like to summarize some of the properties of such objects here. We
base our discussion on the space L2 of square integrable functions (due to
the normalization condition).

Definition. An operator A is defined by the prescription that for ψ(x) ∈ L2

it follows that

Aψ(x) = ϕ(x) ∈ L2 .

Examples:

Aψ = ψ2 +
∂

∂xi
ψ , Aψ = eψψ (nonlinear) .

Definition. A is called a linear operator if Aψ1 = ϕ1 and Aψ2 = ϕ2 imply

A(c1ψ1 + c2ψ2) = c1ϕ1 + c2ϕ2 , (2.28)

where c1, c2 are complex numbers.

Examples:

xi ,
∂

∂xi
, ∇2 ,

∂

∂t
, f(x, t) as multiplier .

Additional linear operators are obtained as the result of performing certain
operations with linear operators:

– Multiplication by a number c gives the operator cA: cAψ := c(Aψ)
– Sum of two operators A + B: (A + B)ψ := Aψ + Bψ (2.29)
– Product of two operators AB: ABψ := A(Bψ) .

Two special operators are the

– unit operator 1 1ψ = ψ

and the (2.30)
– zero operator 0 0ψ = 0 .

One has

A1 = 1A = A , 0A = A0 = 0 .

Generally, operators are not commutative, AB �= BA, i.e., ABψ �= BAψ.
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Definition. Commutator [A,B]: Let A,B be operators; then the commuta-
tor is defined by

[A,B] = AB −BA . (2.31)

Examples:
[

xi,
∂

∂xj

]

ψ =
(

xi
∂

∂xj
− ∂

∂xj
xi

)

ψ = xi
∂

∂xj
ψ − δijψ − xi

∂

∂xj
ψ = −δijψ

→
[

xi,
∂

∂xj

]

= −δij , (2.32)

[

f(x),
∂

∂xj

]

ψ = f
∂

∂xj
ψ −

(
∂

∂xj
f

)

ψ − f
∂

∂xj
ψ = −

(
∂

∂xj
f

)

ψ

→
[

f(x),
∂

∂xj

]

= − ∂

∂xj
f(x) , (2.33)

[xi, xj ] = 0 (real numbers commute) ,

[
∂

∂xi
,

∂

∂xj

]

= 0 (order of differentiation for ψ ∈ L2 commutes) .

The basic commutators of the position and momentum operators are thus

[xi, xj ] = 0 ;
[

�

i
∂i,

�

i
∂j

]

= 0 ;
[

xi,
�

i
∂j

]

= i�δij , (2.34)

with ∂i = ∂/∂xi. If the commutator of two operators vanishes, one says
“The two operators commute”. Equation (2.34) shows that like spatial and
momentum components do not commute, while different components do com-
mute. One refers to xj and pj = −i�∂j as canonical variables and (2.34) as
canonical commutation relations, which also can be written as

[xi, xj ] = 0 ; [pi, pj] = 0 ; [xi, pj] = i�δij . (2.34′)

Next, a scalar product is defined in L2. Let ϕ(x) and ψ(x) be arbitrary
functions in L2:

Definition. Scalar product (ϕ, ψ): The scalar product of two wave functions
ψ and ϕ is defined by

(ϕ, ψ) :=
∫

d3xϕ∗(x)ψ(x) . (2.35)
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The scalar product has the following properties :

(ϕ, ψ)∗ = (ψ, ϕ) , (2.36a)

(ϕ, c1ψ1 + c2ψ2) = c1(ϕ, ψ1) + c2(ϕ, ψ2) , (2.36b)

(c1ϕ1 + c2ϕ2, ψ) = c∗1(ϕ1, ψ) + c∗2(ϕ2, ψ) . (2.36c)

(The scalar product is linear in the second factor and antilinear in the first
factor.)

Furthermore

(ϕ, ϕ) ≥ 0 and thus (ϕ, ϕ) = 0 ⇔ ϕ ≡ 0 . (2.37)

Operators in the scalar product:

(ϕ,Aψ) =
∫

d3xϕ∗(x)Aψ(x) . (2.38)

Definition. A† is called the “adjoint operator to A” if

(A†ϕ, ψ) = (ϕ,Aψ) , (2.39a)

i.e.,
∫

d3x(A†ϕ)∗ψ =
∫

d3xϕ∗Aψ (2.39b)

holds for arbitrary ϕ and ψ.

Definition. The operator A is called Hermitian if

(Aϕ,ψ) = (ϕ,Aψ) ; (2.40)

we then write2 A† = A.

The definition (2.39a) implies

(AB)† = B†A† . (2.41)

For later use, we state the following identities:

[AB,C] = A[B,C] + [A,C]B , (2.42)

[A,B]† = [B†, A†] , (2.43)

2 In the mathematical literature the operator identity A† = A is used only, if in
addition to (2.40) the domains of A and A† are the same and are dense. A is
then termed self-adjoint.
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and also mention the Baker–Hausdorff identity

eABe−A = B + [A,B] + 1
2! [A, [A,B]] + . . . , (2.44)

where

eA ≡
∞∑

ν=0

1
ν!

Aν (2.45)

is defined by the power series. See Problem 2.5(b).
If the commutator of two operators A and B commutes with them, i.e.,

[[A,B], A] = [[A,B], B] = 0, then

eAeB = eBeAe[A,B] (2.46)

and

eA+B = eAeBe−[A,B]/2 . (2.47)

2.5 The Correspondence Principle
and the Schrödinger Equation

2.5.1 The Correspondence Principle

We found in Sect. 2.4.2 that calculation of the momentum expectation value
in coordinate space requires construction of the scalar product (ψ,−i�∇ψ).
We see further that the application of the operator −i�∇ on a plane wave
ψ(x) = C exp {i(p′ · x− Et)/�} with wave number p′/� just gives p′ times
the plane wave. Thus, the physical quantity momentum p is to be assigned
to the operator −i�∇ in quantum mechanics. The procedure for the energy
E is quite similar. From this, one obtains the correspondences

momentum p −→ �

i
∇ ,

energy E −→ i�
∂

∂t
. (2.48)

To what extent can we assign quantum mechanical relations to classical ones
on the basis of this correspondence? For example, does the classical energy–
momentum relation for free particles E = p2/2m imply the relation

i�(∂/∂t) = −(�2/2m)∇2 ?

This certainly cannot hold as an operator identity, but only when applied to
a class of states, i.e.,

E = p2/2m −→ i�
∂

∂t
ψ = − �

2

2m
∇2ψ .
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But this is precisely the Schrödinger equation (2.4) for free particles. So, from
the classical energy–momentum relation, that is, from the classical Hamilto-
nian for a free particle, we have obtained the Schrödinger equation for a free
particle.

This leads us to the quantum mechanical correspondence principle: In
quantum mechanics, operators are assigned to physical quantities. Quantum
mechanical relationships correspond to classical relationships.3 This can be
used to set up the Schrödinger equation on the basis of the classical Hamilto-
nian. We would now like to investigate this and use it to derive the equation
of motion in a potential by assuming the classical Hamiltonian p2/2m+V (x).

The Schrödinger equation for a particle in the potential V (x) is obtained
as follows. The assignment

E = p2/2m + V (x) −→ i�
∂

∂t
ψ(x, t) =

(

− �
2

2m
∇2 + V (x)

)

ψ(x, t)

implies the Schrödinger equation of a particle in the potential V (x)

i�
∂

∂t
ψ(x, t) = Hψ(x, t) (2.49)

with the Hamiltonian operator (or Hamiltonian for short)

H = − �
2

2m
∇2 + V (x) . (2.50)

2.5.2 The Postulates of Quantum Theory

In a preliminary formulation of the theory developed up to now, which will be
summarized more compactly in Sect. 2.9.4, the basic postulates of quantum
mechanics are:

1. The state of a system is described by the wave function ψ(x, t);
|ψ(x, t)|2d3x expresses the probability of finding the particle at the time
t at the position x in the volume element d3x.

2. Quantum mechanically, operators A,B, . . . are assigned to the physically
measurable quantities (observables) of classical mechanics.

3. The average values of operators are given by

〈A〉 =
∫

d3xψ∗(x, t)Aψ(x, t) ,

if the system is in the state ψ(x, t).

3 In this use of the concept correspondence principle we deviate from the tradi-
tional use. Traditionally, one considers the Bohr correspondence principle as
the statement that for large quantum numbers, quantum mechanical laws must
reduce to their classical counterparts.
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4. The time evolution of the states is described by the Schrödinger equation:

i�
∂

∂t
ψ(x, t) = Hψ(x, t) with H = − �

2

2m
∇2 + V (x) .

Additionally:

(i) If one assigns to the classical quantity a the operator A, then the powers
satisfy a2 −→ A2, a3 −→ A3, etc.

(ii) As we will see later, the operators corresponding to observables must
be Hermitian.

(iii) From (2) and (3) it follows that |ϕ(p, t)|2/(2π�)3 is the probability den-
sity in momentum space (i.e., for momentum measurements), as we will
see in Sect. 2.9.3.

2.5.3 Many-Particle Systems

Finally, we seek the Schrödinger equation for a system of N particles.
The state of this N -particle system is described by the wave function
ψ(x1,x2, . . . ,xN , t), where xi are the coordinates of the ith particle. There-
fore, |ψ(x1,x2, . . . ,xN , t)|2 d3x1d

3x2 . . . d3xN is the probability of finding
the particles 1, . . . , N at time t in the volume elements d3x1, . . . , d

3xN .
From the classical energy

E =
p2

1

2m1
+

p2
2

2m2
+ . . . +

p2
N

2mN
+ V (x1,x2, . . . ,xN )

we read off the Schrödinger equation for the N -particle system using the
correspondence principle:

i�
∂

∂t
ψ(x1,x2, . . . ,xN , t)

=
[

− �
2

2m1
∇2

1 − . . . − �
2

2mN
∇2
N + V (x1, . . . ,xN )

]

ψ . (2.51)

Here, ∇i, i = 1, . . . N, signifies the gradient operator with respect to xi.

2.6 The Ehrenfest Theorem

Classical Newtonian mechanics must be contained in quantum mechanics as
a limiting case. In this section, we would like to investigate in what sense this
is true.

We begin with the Schrödinger equation and its complex conjugate:

i�
∂

∂t
ψ = Hψ , (2.52a)
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−i�
∂

∂t
ψ∗ = Hψ∗ . (2.52b)

For a linear operator A, the average value (= expectation value) in the state
ψ is defined by

〈A〉 =
∫

d3xψ∗(x, t)Aψ(x, t) . (2.53)

This changes in time according to

d

dt
〈A〉 =

∫
d3x

(

ψ̇∗Aψ + ψ∗ ∂A
∂t

ψ + ψ∗Aψ̇

)

.

Using (2.52a,b), one then finds

d

dt
〈A〉 =

i
�
〈[H,A]〉 +

〈
∂A

∂t

〉

. (2.54)

Remarks:

(i) Hermiticity of H: Assuming that the wave functions ψ and ϕ vanish
at infinity, one obtains after partially integrating twice
∫

d3x

(

− �
2

2m
∇2ψ

)∗
ϕ =

∫
d3xψ∗

(

− �
2

2m
∇2ϕ

)

.

Since the operator V (x) depends only on position, one has
∫
d3x(V ψ)∗ϕ =∫

d3xψ∗V ϕ.
(ii) Comparison with classical mechanics: In classical mechanics, with

respect to generalized momentum position coordinates p and q, the equations
of motion

d

dt
f(p, q, t) = {H, f} +

∂f

∂t

hold, where the Poisson brackets are defined by

{g, f} =
∂g

∂p

∂f

∂q
− ∂f

∂p

∂g

∂q
.

The Poisson brackets of classical mechanics evidently correspond in quantum
mechanics to the commutator multiplied by i/�.

(iii) Evaluation of the most important commutators:

[H,xi] =
[∑

j

p2
j

2m
,xi

]

=
2

2m

∑

j

pj
�

i
δij =

−i�pi
m

. (2.55a)

Here, we use (2.42); likewise, with (2.33),

[H, pi] =
[

V (x),
�

i
∂

∂xi

]

= i�
∂V

∂xi
. (2.55b)
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(iv) Application to x and p: If the force F (x) = −∇V (x) is introduced,
then by means of the commutators (2.55a,b), one obtains from (2.54)

d

dt
〈x〉 =

1
m
〈p〉 , (2.56a)

d

dt
〈p〉 = −〈∇V (x)〉 = 〈F (x)〉 . (2.56b)

If the two equations are combined, an equation which is analogous to the
Newtonian equation of motion is obtained:

m
d2

dt2
〈x〉 = 〈F (x)〉 . (2.56c)

This, and more generally, (2.54), constitute the Ehrenfest theorem: “Classical
equations hold for the average values.” However, this does not yet imply that
the average values 〈x〉 and 〈p〉 obey the classical equations of motion. In
order for this to hold, the average value of the force

〈F (x)〉 =
∫

d3xψ∗(x, t)F (x)ψ(x, t)

must be replaceable by its value F (〈x〉) at the position 〈x〉. To obtain a
criterion for the validity of such an approximation, we expand the force F
about the average value 〈x〉:

Fi(x) = Fi(〈x〉) + (xj − 〈xj〉)Fi,j(〈x〉)
+ 1

2 (xj − 〈xj〉)(xl − 〈xl〉)Fi,jl(〈x〉) + . . . , (2.57a)

where fi,j ≡ ∂fi/∂xj and we sum over repeated indices. Since 〈(xj−〈xj〉)〉 =
0, one has

〈Fi(x)〉 = Fi(〈x〉) + 1
2 〈(xj − 〈xj〉)(xl − 〈xl〉)〉Fi,jl(〈x〉) + . . . .

To replace 〈F (x)〉 by F (〈x〉) in (2.56c) is thus exact whenever the second
and higher derivatives of the force vanish (for example, in the case of free
particles or the harmonic oscillator). It is approximately valid whenever the
wave packet is localized to such a degree that F (x) changes slowly within
the range of its extension, i.e.,

(Δxj)2Fi,jj(〈x〉)
Fi(〈x〉) � 1 , (2.57b)

where for brevity we assume that the wave function is symmetric about the
average value, 〈(xj − 〈xj〉)(xl − 〈xl〉)〉 = δjl(Δxj)2, and Δxj is the spread of
the packet in the j-direction.
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Remarks:

(i) The fact that 〈x〉 obeys the classical equation of motion does not imply that
quantum effects are unimportant for harmonic oscillators.

(ii) By reversing the inequality (2.57b) one may conclude that quantum features
will be significant if the characteristic length of the potential is smaller than
that of the wave packet. Alternatively, for wavelengths larger than the length
over which the potential varies, one finds quantum features.

2.7 The Continuity Equation
for the Probability Density

Because of (2.52a,b), the time rate of change of the probability density (2.2)
becomes

∂

∂t
�(x, t) = ψ̇∗ψ + ψ∗ψ̇ =

1
−i�

(Hψ∗)ψ +
1
i�

ψ∗(Hψ) .

Since the terms involving V (x) disappear, one obtains

∂

∂t
�(x, t) =

�

2mi
[(∇2ψ∗)ψ − ψ∗(∇2ψ)] . (2.58)

We define the probability current density

j(x, t) =
�

2mi
[ψ∗(∇ψ) − (∇ψ∗)ψ] . (2.59)

From this, the continuity equation follows from (2.58)

∂

∂t
�(x, t) + ∇ · j(x, t) = 0 . (2.60)

Its representation in integral form is obtained by means of Gauss’s integral
theorem for an arbitrary fixed volume V with surface S

d

dt

∫

V

d3x�(x, t) = −
∫

S

da · j(x, t) . (2.61)

Remark: We can now show that the norm of the wave function remains constant
in time by allowing the volume in (2.61) to go to infinity. A normalized wave
function must vanish faster than 1/|x|3/2 at infinity in order for the integral over
the probability density to be finite. With (2.59) and the assumption that possible
periodic dependencies are only of the form eik ·x for large x it follows that

lim
|x|→∞

|j| < 1

|x|3 ,

and thus for a sphere whose radius R is allowed to go to infinity,
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lim
V →∞

|
Z

S

da · j| < lim
R→∞

Z

dΩ R2 1

R3
= 0 .

Thus

d

dt

Z

d3x|ψ(x, t)|2 = 0 ,

which shows that the normalization to unity does not change with time.

2.8 Stationary Solutions of the Schrödinger Equation,
Eigenvalue Equations

2.8.1 Stationary States

Assuming that H is time independent, one can solve the Schrödinger equation
by separation into a time dependent and a spatially dependent part:

ψ(x, t) = f(t)ψ(x) . (2.62)

The Schrödinger equation (2.49) then yields

1
f(t)

i�
∂

∂t
f(t) =

1
ψ(x)

Hψ(x) .

Since the left side only depends on t, and the right side only on x, both sides
must be equal to a constant, which we call E. Thus, f(t) must satisfy the
differential equation

i�
∂

∂t
f(t) = Ef(t) (2.63)

with solution

f(t) = e−iEt/� . (2.64)

Similarly, we obtain for the spatially dependent part

Hψ(x) = Eψ(x) . (2.65)

This equation is known as the time independent Schrödinger equation.

Remarks:

(i) The states ψ(x, t) = exp {−iEt/�}ψ(x) are called stationary states ,
since the corresponding probability densities |ψ(x, t)|2 = |ψ(x)|2 are
time independent.

(ii) The condition of normalizability (
∫
d3x|ψ(x)|2 < ∞) will limit the al-

lowed values of the energy E.
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2.8.2 Eigenvalue Equations

Equation (2.65) is an eigenvalue equation. We would now like to give a general
discussion of these.

The quantity ψ is an eigenfunction of an operator A with eigenvalue a
when

Aψ = aψ (2.66)

holds. This equation is called an eigenvalue equation. In the following it is
assumed that the operator A is Hermitian.

Theorem 1. Eigenvalues of Hermitian operators are real.

Proof:

From (2.66), it follows that

(ψ,Aψ) = (ψ, aψ) = a(ψ, ψ) .

The complex conjugate equation is

(Aψ,ψ) = (aψ, ψ) = a∗(ψ, ψ) .

Since A is Hermitian, (Aψ,ψ) = (ψ,Aψ) holds, and we find by taking the
difference of the two equations

0 = (a− a∗)(ψ, ψ) ⇒ a = a∗ . (2.67)

Hermitian operators must be assigned to all measurable quantities (observ-
ables), in order that the expectation values and – as shown in Sect. 2.9 –
the measured values be real. The operators H, p, and x which we have en-
countered up to now are indeed Hermitian, as follows immediately from the
definition.

Theorem 2. Eigenfunctions of Hermitian operators belonging to different
eigenvalues are orthogonal.

Proof:

Given the two eigenvalue equations

Aψm = amψm and Aψn = anψn ,

we take the scalar product of the second equation with ψm, use the Hermitic-
ity of A, and substitute the first eigenvalue equation:

an(ψm, ψn) = (ψm, Aψn) = (Aψm, ψn) = am(ψm, ψn) .
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From this it follows that

0 = (an − am)(ψm, ψn) .

For an �= am it thus follows that

(ψm, ψn) = 0 . (2.68)

If several eigenfunctions belong to the same eigenvalue (degeneracy), one can
orthogonalize as follows: We define

(ψm, ψn) = Cmn with C∗
mn = Cnm . (2.69)

As known from linear algebra, the Hermitian matrix C can be brought into
the diagonal form CD = U †CU by means of a unitary transformation U. For
this transformation, it follows from (2.69) that
∑

m,n

(Umαψm, ψnUnβ) =
∑

m,n

U∗
mαCmnUnβ = CD

α δαβ . (2.70)

We now introduce the new functions ϕβ =
∑

n ψnUnβ , which according
to (2.70) are orthogonal. Using

ϕα −→ ϕα/(ϕα, ϕα)1/2

one can normalize them to unity.
Thus, the eigenfunctions of a Hermitian operator can always be chosen

such that the orthogonality relation

(ψm, ψn) = δmn (2.71)

is satisfied. Moreover, the eigenfunctions of the operators we are considering
satisfy the completeness relation
∑

n

ψ∗
n(x′)ψn(x) = δ(x− x′) . (2.72)

The ψn thus form a complete set of orthonormal eigenfunctions. Thus, a
general state ψ(x) can be expanded (represented) as

ψ(x) =
∫

dx′δ(x− x′)ψ(x′) =
∑

n

∫
dx′ψn(x)ψ∗

n(x′)ψ(x′) ,

that is

ψ(x) =
∑

n

cnψn(x) (2.73)

with

cn = (ψn, ψ) . (2.74)
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The normalization condition (2.3) and the orthogonality relation (2.71) imply
that
∑

n

|cn|2 = 1 . (2.74′)

Remark: The Schmidt orthogonalization procedure for degenerate eigenfunctions
ψ1, ψ2, . . . . Instead of diagonalizing the matrix C defined in (2.69) and thus deter-
mining the unitary matrix U of (2.70), it is sometimes more convenient to perform a
stepwise orthogonalization of a system of degenerate but linearly independent eigen-
functions. Beginning with ψ1, ψ2, . . ., the functions ϕ1, ϕ2, . . . are defined as follows:
ϕj is constructed from ψj by projecting out all parts proportional to ϕ1, .... ,ϕj−1,
i.e.,

C1ϕ1 = ψ1 C1 = (ψ1, ψ1)
1/2

C2ϕ2 = ψ2 − ϕ1(ϕ1, ψ2) C2 = ((ψ2, ψ2) − |(ψ2, ϕ1)|2)1/2
C3ϕ3 = ψ3 − ϕ1(ϕ1, ψ3) − ϕ2(ϕ2, ψ3)

...
...

2.8.3 Expansion in Stationary States

Orthogonality and completeness hold in particular for the eigenfunctions of
the Hamiltonian, i.e., for the stationary states ψn:

Hψn = Enψn , (2.75)

ψn(x, t) = e−iEnt/�ψn(x) . (2.76)

The En and ψn are called energy eigenvalues and energy eigenfunctions. For
the solution of the Schrödinger equation, ψ(x, t) at the initial time t = 0,
one has the expansion (2.73). Now, we know the time development of the
individual ψn(x, t) and find for the sum

ψ(x, t) =
∑

n

cne−iEnt/�ψn(x) with cn = (ψn, ψ(t = 0)) . (2.77)

It is easy to check that this ψ(x, t) is indeed a solution of the time dependent
Schrödinger equation:

i�
∂

∂t
ψ(x, t) =

∑

n

Encne−iEnt/�ψn(x)

= H
∑

n

cne−iEnt/�ψn(x) = Hψ(x, t) .

The expansion in terms of stationary states (2.77) solves the quantum
mechanical initial value problem. The wave function ψ(x, t = 0) at the initial
time t = 0 determines ψ(x, t).
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2.9 The Physical Significance of the Eigenvalues
of an Operator

Let an operator A with a complete, orthonormal system of eigenfunctions
ψm be given with eigenvalues am and a wave function

ψ(x) =
∑

m

cmψm(x) . (2.78)

What is the physical significance of the eigenvalues am and the expansion
coefficients cm? In order to clarify this question, we begin by introducing a
few concepts from probability theory.

2.9.1 Some Concepts from Probability Theory

Let X be an arbitrary random variable4 taking values x, and w(x)dx the
probability that the random variable takes a value in the interval [x, x+ dx].

Definition 1.

mn =
∫ +∞

−∞
xnw(x)dx = 〈Xn〉 (2.79)

is called the nth moment of the distribution w(x).

Definition 2.

χ(τ) =
∫ +∞

−∞
e−ixτw(x)dx (2.80)

is called the characteristic function.

χ(τ) is the Fourier transform of w(x). Inverting the transformation, one
obtains

w(x) =
∫ +∞

−∞

dτ

2π
eixτχ(τ) . (2.81)

4 A quantity X is called a random variable if it assumes values x depending on the
elements e of a “set of events” E. For each individual observation the event and
thus the value of X is uncertain, and solely the probability for the appearance of
a particular result (event) of E is known. For instance, in tossing a die the event
is the appearance of a particular side of the die, and the random variable is the
associated number of dots, which can assume values from 1 to 6, each with the
probability 1/6. If e ∈ E is an event contained in E and Pe its probability, then
for a large number of trials N , the number Ne of times the event e appears is
related to Pe by limN→∞Ne/N = Pe. See for instance W. Feller: An Introduction
to Probability Theory and Its Applications, Vol. I (Wiley, New York, 1968).
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Expansion of the exponential function in (2.80) together with the defini-
tion (2.79) gives

χ(τ) =
∑

n

(−i)n

n!
τnmn . (2.82)

If all the moments are known, then by substitution of (2.82) into (2.81) one
can determine w(x).

Let F (X) be a function of the random variable X . Then the average value
of F (X) is introduced by:

Definition 3.

〈F (X)〉 =
∫ +∞

−∞
F (x)w(x) dx . (2.79′)

Thus the nth moment defined in (2.79) equals the average value of Xn and
the characteristic function can also be represented as

χ(τ) = 〈e−iXτ 〉 . (2.80′)

2.9.2 Application to Operators with Discrete Eigenvalues

(i) Let the system be in an eigenstate ψm of A. Then, because of postulates
2 and 3,

〈An〉 = (ψm, Anψm) = (am)n (2.83)

and thus according to (2.82)

χ(τ) =
∑

n

(−i)nτn(am)n

n!
= e−iτam . (2.84)

Let w(a)da be the probability that the observable represented by A
takes values in the interval [a, a + da]. Then, by (2.81)

w(a) =
∫

dτ

2π
eiaτ e−iτam = δ(a− am) , (2.85)

i.e., one measures with certainty the value am.
(ii) Let the system be in the state ψ =

∑
cmψm. The quantities calculated

in (i) then become

〈An〉 = (ψ,Anψ) =
(∑

m

cmψm, An
∑

m′
cm′ψm′

)

=
∑

m

∑

m′
c∗mcm′(ψm, Anψm′)

=
∑

m

∑

m′
c∗mcm′(am′)nδmm′ ,
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〈An〉 =
∑

m

|cm|2(am)n , (2.86)

χ(τ) =
∑

m

|cm|2e−iτam , (2.87)

w(a) =
∑

m

|cm|2δ(a− am) . (2.88)

Examination of (2.88) shows that the probability density vanishes when a
does not coincide with one of the eigenvalues. Thus, the result of a measure-
ment can only be one of the eigenvalues am. The probability of measuring
am is |cm|2. (Thus, for example, the possible values of the energy are the
energy eigenvalues En, and the expansion coefficients in (2.77) determine the
probability |cn|2.)

What is the state after a particular result has been measured? After a
measurement with the result am, the system must be in the eigenstate ψm,
because repetition of the measurement should give the same result. If the
system was originally not in an eigenstate of the observable, then the mea-
surement changes the state! The fact that a measurement can change the
state of a system was seen in Sect. 2.4.1.

If after the measurement the wave function is precisely known and is not
further altered by the measurement in some uncontrolled way, one refers to
this as an ideal measurement. After an ideal measurement, the system finds
itself in an eigenstate of the operator corresponding to the observable.

2.9.3 Application to Operators with a Continuous Spectrum

As an example of an operator with a continuous spectrum, we consider the
momentum p (one-dimensional). Integration of the eigenvalue equation

�

i
∂

∂x
ψp(x) = pψp(x) (2.89)

yields for the momentum eigenfunctions the ubiquitous plane waves

ψp(x) = (2π�)−1/2eipx/� . (2.90)

The ψp(x) form a complete, orthonormal system, where the sum over the
discrete index n in (2.72) is replaced by an integral over p, and the Kronecker
δ in (2.71) is replaced by a Dirac δ-function.

Orthogonality relation
∫

dxψ∗
p(x)ψp′ (x) = δ(p− p′) . (2.91)
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Completeness relation
∫

dpψ∗
p(x

′)ψp(x) = δ(x− x′) . (2.92)

The expansion of an arbitrary wave function in momentum eigenfunctions
(Fourier transform) takes the form

ψ(x) =
∫

dp′
ϕ(p′)√

2π�

exp {ip′x/�}√
2π�

. (2.93)

If we compare with the formulas for a discrete spectrum, the replacements

cm → (2π�)−1/2ϕ(p′) ,
∑

m

→
∫

dp′ (2.94)

result. If these are inserted into the results of the previous section, (2.88)
yields for the probability density of the momentum

w(p) =
∫

dp′
∣
∣
∣
∣
ϕ(p′)√

2π�

∣
∣
∣
∣

2

δ(p− p′) (2.95a)

for

w(p) =
|ϕ(p)|2
2π�

. (2.95b)

From this we see that the expression W (p), introduced in the development
of our conceptual system as a temporary hypothesis (2.20), is not a separate
axiom, as mentioned above, but rather a consequence of the form of the
momentum operator and axiom III.

Now let us consider the position eigenfunctions

ψξ(x) = δ(x − ξ) , (2.96)

which evidently satisfy

xψξ(x) = ξψξ(x) . (2.97)

The quantity ψξ(x) is sharply localized in space. These are also eigenfunctions
with a continuous spectrum; they satisfy the following orthogonality and
completeness relations:

(ψξ, ψξ′) = δ(ξ − ξ′) , (2.98)
∫

dξ ψξ(x)ψξ(x′) = δ(x− x′) . (2.99)
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Now, evidently,

ψ(x) =
∫

dξ ψ(ξ)ψξ(x) , (2.100)

that is, the expansion coefficients of the position eigenfunctions are just given
by the wave function. It follows that |ψ(ξ)|2 is the probability density for the
position ξ.

Remark: One also refers to ψ(x) as the wave function in the x-representation

or coordinate representation, while ϕ(p), which contains the same information, is

referred to as the p-representation or momentum representation.

In many cases, the spectrum of an operator consists of a discrete part
(eigenvalues an, eigenfunctions ψn) and a continuous part (eigenvalues a,
eigenfunctions ψa). The expansion of a wave function is then

ψ(x) =
∑

n

cnψn(x) +
∫

da c(a)ψa(x) ≡ S
n
cnϕn . (2.101)

The symbol S
n

is used to cover both summation and integration. (We will
use the symbol S

n
only when making special reference to the simultaneous

existence of a continuous and a discrete part of the spectrum; otherwise, we
will simply use the discrete representation

∑
n.) The probability density is

then

w(a) =
∑

n

|cn|2δ(a− an) + |c(a)|2 . (2.102)

We can now formulate the axioms of quantum theory in final form.

2.9.4 Axioms of Quantum Theory

I. The state is described by the wave function ψ(x).
II. The observables are represented by Hermitian operators A . . . , with

functions of observables being represented by the corresponding func-
tions of the operators.

III. The expectation value of the observable represented by the operator A
is given in the state ψ by

〈A〉 = (ψ,Aψ) .

IV. The time evolution of the states is given by the Schrödinger equation

i�
∂

∂t
ψ = Hψ , H = − �

2

2m
∇2 + V (x) .

V. If in a measurement of A the value an is found, the wave function changes
to the corresponding eigenfunction ψn.
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From axioms II and III it follows that the only possible results of a mea-
surement of an observable are the eigenvalues of the corresponding operator
A, and the probabilities are given by |cn|2, where cn are the expansion coeffi-
cients of ψ(x) in the eigenfunctions of A. In particular, it follows that |ψ(x)|2
is the probability density for the position.

Remarks:

(i) We add a comment on terminology. Measurable physical quantities (also
referred to as dynamical variables) are called observables. We distinguish these
from their mathematical counterparts, the operators they are represented by. In a
number of expositions of quantum mechanics the term “observable” is used instead
to denote any Hermitian operator which possesses a complete set of eigenfunctions.

For convenience we use the same symbol for the observable as for the operator.
The one to one correspondence between observables and operators allows terminol-
ogy such as “the observable A” or even “the average value of the operator A”.

(ii) Experimentally, in principle, the average value of an observable (e.g. the
momentum) is determined as follows. One prepares a large number, say N , of iden-
tical systems, all in one and the same state ψ(x). One then measures the observable
in question for each system. In general, a range of measured values is obtained (the
distribution depending on the state). The observable is truly a random variable.
The experimental average value of the observable is the sum of the measured values
divided by N . For this series of measured values, any function (e.g., a power) of
the measured values can be computed. Again taking the average value, one obtains
the experimental average value of a function of the observable. Axioms III and II
state how these average values are computed quantum mechanically by means of
the operator corresponding to the observable and the wave function. The process
of measurement is studied in detail in Chap. 20, see Sect. 20.3, 20.3.4.

2.10 Additional Points

2.10.1 The General Wave Packet

We saw examples of wave packets in Sects. 2.3 and 2.4. The general wave
packet has the form

ψ(x, t) =
∫

d3p

(2π�)3
g(p) exp {i(p · x− E(p)t + �α(p))/�} . (2.103)

Comparison with (2.5) shows that ϕ(p) = g(p) exp{iα(p)}. Suppose that the
real weight function g(p) has a maximum at p0 and differs significantly from
zero only in a region with |p − p0| � Δp. For most of the values of the
position variable x, the phase factor will vary rapidly over this momentum
region and therefore give ψ(x, t) = 0. Now, ψ(x, t) is maximal at that position
x(t) for which the phase is stationary, i.e., where the condition

∇p (p · x− E(p)t + �α(p))|p0 = 0 (2.104)
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holds. This yields the “stationarity condition”

x(t) = x0 + v0t (2.105a)

with

x0 = −�∇p α(p)|p0 and v0 = ∇p E(p)|p0 . (2.105b)

Since for this value x(t) the phase does not vary rapidly as a function of mo-
mentum p in the vicinity of p0, i.e., is stationary, ψ(x, t) is large at the po-
sition x(t). Thus x(t) describes approximately the center of the wave packet
and therefore can be compared to the classical position of the particle, which
moves with the group velocity v0. In order to calculate the integral (2.103),
we expand the phase about p0:

p · x− E(p)t + �α = p0 · x− E(p0)t + �α(p0)
+ (x− ∇p E(p)t + �∇p α(p))|p0 · (p− p0)

+
1
2

∑

i,j

[

− t

m
δij + �

∂2α

∂pi∂pj

∣
∣
∣
∣
p0

]

(pi − p0i)(pj − p0j) + . . . ,

where we substitute E(p) = p2/2m. Using (2.105) we then obtain

p · x− E(p)t + �α(p)
= p0 · x− E(p0)t + �α(p0) + (x− x(t)) · (p− p0)

+
1
2

∑

i,j

[

− t

m
δij + �∂i∂jα(p)

∣
∣
∣
∣
p0

]

(pi − p0i)(pj − p0j) + . . . .

Then, in one dimension,

ψ(x, t) ∼= exp {i(p0x− E(p0)t + �α(p0))/�}

×
∫

dp

2π�
g(p) exp

{

i(x − x(t))
p− p0

�

+
i
2

[

− t

m
+ �α′′(p0)

]
(p− p0)2

�

}

. (2.106)

The spreading of the wave packet in position space is found by consider-
ing the x-dependence in the integrand of (2.106) (or its three-dimensional
counterpart) in the following way: if Δp is the width of g(p), then there is
constructive interference everywhere in the domain of integration if the real
part (or imaginary part) of the exponential function exp {i(x−x(t))(p−p0)/�}
does not change sign, i.e., (x− x(t)) roughly satisfies the condition

|x− x(t)|Δp/� � π
2 .
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On the other hand, there is destructive interference for

|x− x(t)|Δp/� � π .

Thus, in order of magnitude, the spreading of the wave packet, i.e., the po-
sitional uncertainty Δx is related to the uncertainty of the momentum Δp
by

ΔxΔp ∼= π� ; (2.107)

we obtained this result earlier in the discussion of the Gaussian wave packet.
The second phase factor exp {−it(p−p0)2/2m�} increasingly counteracts the
first with growing t. For this reason, one still gets a finite result for the
wave function ψ(x, t) even for larger values of |x−x(t)|, i.e., the wave packet
spreads out, as we showed earlier in the case of the Gaussian wave packet.5

Subject to the condition

t(Δp)2

m�
� 1 , (2.108)

it is possible to neglect the spreading in time.

2.10.2 Remark on the Normalizability of the Continuum States

The eigenfunctions of the momentum operator fulfill the orthogonality con-
dition (2.91). The ψp(x) are thus evidently not normalized to 1. By super-
position of such states, however, one can construct wave packets which are
quadratically integrable and thus normalizable to 1. An analogous situation
arises in the case of the continuum states (E > 0) of the Hamiltonian. For the
bound states (E < 0), only normalized eigenfunctions with discrete eigenval-
ues are to be considered. The remaining solutions of the time independent
Schrödinger equation with E < 0 are divergent at infinity, and thus cannot
be normalized even using superposition.

One can avoid the problem of normalizability of continuum states by
introducing a finite volume V = L3. The states

ψVp (x) =
1√
V

eip ·x/�

5 The positional uncertainty of (2.106) is most easily calculated in the momen-
tum representation (see Chap. 8). The calculation is given for example in W.
Pauli: General principles of quantum mechanics, Springer, Berlin, New York
1980. Translation of: Die allgemeinen Prinzipien der Wellenmechanik I, in En-
cyclopedia of Physics, Vol. V/1, p. 19, ed. by S. Flügge (Springer, Berlin, Hei-
delberg 1958).
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with

p =
2π�

L
(n1, n2, n3) , (ni are integers)

then form a complete, orthonormal system:

(ψVp , ψVp′) =
1
V

∫
d3x e−i(p−p′) ·x/� = δp,p′ .

In such a finite normalization volume, the continuum states become discrete
and are normalized to unity as well.

The non-normalizable solutions of the time independent Schrödinger
equation for E < 0 remain unacceptable even if one encloses the system
in a finite box, because they do not satisfy the boundary conditions.

Problems

2.1 (a) Show that, for complex α with Reα > 0 ,
Z +∞

−∞
dx e−αx

2
=

√
π/α

holds.

(b) Compute
Z +∞

−∞
d3k eik ·x e−k

2α2
.

2.2 Investigate the one-dimensional wave packet

ϕ(p) = AΘ [(�/d) − |p− p0|] .

(a) Determine the constant of normalization and ψ(x).

(b) Determine in coordinate space the wave function ψ(x, t) in the limit �/dp0 � 1.

(c) Compute in this limit 〈p〉, 〈x〉, Δp, and Δx.

2.3 Using the Bohr–Sommerfeld quantization rules, determine the energy eigen-
states of a particle of mass m moving in an infinitely high potential well:

V (x) =

(

0 for 0 ≤ x ≤ a

∞ otherwise
.

2.4 Show that

(a) p† = p, (p2)† = p2, V (x)† = V (x)

(b) (AB)† = B†A†

(c) [AB,C] = A [B,C] + [A,C]B.
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2.5 (a) Show that

[A,Bn] = nBn−1[A,B]

under the assumption [[A,B], B] = 0.

(b) Demonstrate the Baker–Hausdorff relation (2.44). Hint: Consider the Taylor
expansion of the function f(λ) = eλABe−λA.

(c) Using (a), show that (2.47) holds under the conditions stated in the main text.
Hint: Discuss the derivative of the function eλAeλB.

(d) Assuming λ� 1, expand the operator expression (A−λB)−1 in a power series
in λ.

2.6 Compute the probability current density for the one-dimensional Gaussian
wave packet (2.8) and verify that the continuity equation is satisfied.

2.7 Let ψa(x) and ψb(x) be two orthonormal solutions of the time independent
Schrödinger equation for a given potential with energy eigenvalues Ea and Eb. At
the time t = 0, suppose that the system is in the state

ψ(x, t = 0) =
1√
2

`

ψa(x) + ψb(x)
´

.

Discuss the probability density at a later time t.

2.8 For the operators

pi =
�

i
∂i and Li = εijk xj pk ,

compute the commutators

[p2
i , f(x)] and [Li, Lj ] .



3. One-Dimensional Problems

In this chapter, we will solve the Schrödinger equation for characteristic one-
dimensional potentials and discuss some typical quantum mechanical effects.

3.1 The Harmonic Oscillator

The Hamiltonian of the classical harmonic oscillator (Fig. 3.1) with mass m
and frequency ω is

H =
p2

2m
+

mω2

2
x2 . (3.1)

Fig. 3.1. The potential of the harmonic oscillator

With the momentum operator p, (3.1) represents the Hamiltonian operator.
The time independent Schrödinger equation is thus
[

− �
2

2m
d2

dx2
+

mω2

2
x2

]

ψ(x) = Eψ(x) , (3.2)

and it evidently contains

x0 =

√
�

ωm
(3.3)

as a characteristic length. The standard method of analysis for the solution
of the differential equation (3.2) subject to the auxiliary condition that ψ(x)
be square integrable leads to the Hermite polynomials. However, here we
would like to use an algebraic method in which we try to represent H as the
(absolute) square of an operator.
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3.1.1 The Algebraic Method

For this, we define the non-Hermitian operator a by

a =
ωmx + ip√

2ωm�
, (3.4a)

a† =
ωmx− ip√

2ωm�
, (3.4b)

and, inverting these relations, we obtain

x =

√
�

2ωm
(a + a†) , (3.5a)

p = −i

√
�ωm

2
(a− a†) . (3.5b)

As one can easily derive from the commutators for x and p,

[a, a†] = 1 , (3.6)

while a and a† commute with themselves. With the characteristic length x0,
one obtains

a =
1√
2

(
x

x0
+ x0

d

dx

)

, (3.7a)

a† =
1√
2

(
x

x0
− x0

d

dx

)

. (3.7b)

Substituting the relations (3.5a,b) into (3.1), one gets for the Hamiltonian

H = 1
2�ω(a†a + aa†) ,

and, using the commutator (3.6),

H = �ω(a†a + 1
2 ) . (3.8)

This reduces the problem to that of finding the eigenvalues of the occupation
number operator

n̂ = a†a . (3.9)

Let ψν be eigenfunctions with eigenvalue ν:

n̂ψν = νψν . (3.10)
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Calculation of the eigenfunction ψ0

From

ν(ψν , ψν) = (ψν , a†aψν) = (aψν , aψν) ≥ 0 (3.11)

it follows that

ν ≥ 0 .

The lowest possible eigenvalue is thus ν = 0. To calculate the corresponding
eigenfunction ψ0, we remark that by (3.11) the norm of aψ0 vanishes, and
therefore

aψ0 = 0 , (3.12)

i.e.
(

d

dx
+

x

x2
0

)

ψ0 = 0 . (3.13)

The solution of this differential equation, normalized to unity, is

ψ0(x) = (
√
πx0)−1/2 exp

{

−1
2

(
x

x0

)2}

. (3.14)

Calculation of the remaining eigenfunctions

From (3.6) and (3.9) one obtains, using [a†a, a†] = a†[a, a†] + [a†, a†]a = a†,
the important commutators

[n̂, a†] = a† , (3.15)

[n̂, a] = −a . (3.16)

Lemma. a†ψν is an eigenfunction with the eigenvalue ν + 1.

Proof:

n̂a†ψν = (a†n̂ + a†)ψν = (ν + 1)a†ψν . (3.17)

Norm:

(a†ψν , a†ψν) = (ψν , aa†ψν) = (ψν , (a†a + 1)ψν)
= (ν + 1)(ψν , ψν) > 0 . (3.18)

Thus, for ψν and ψν+1 normalized to unity,

a†ψν =
√

(ν + 1)ψν+1 . (3.19)
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Table 3.1. Eigenstates of the harmonic oscillator, eigenvalues of n̂ and H

n̂ H

Ground state ψ0 0 �ω/2

1st excited state ψ1 = a†ψ0 1 3�ω/2

2nd excited state ψ2 = 1√
2
(a†)2ψ0 2 5�ω/2

...
...

...

nth excited state ψn = 1√
n!

(a†)nψ0 n (n+ 1/2)�ω
...

...
...

Beginning with ψ0, we obtain from (3.19)

ψn =
1√
n
a†ψn−1 =

1√
n!

(a†)nψ0 , (3.19′)

the infinite sequence of eigenstates given in Table 3.1 together with the eigen-
values of n̂ and H . One calls ψ0 the ground state wave function and ψn for
n = 1, 2, . . . the wave function of the nth excited state.

Lemma. aψν is an eigenfunction with eigenvalue ν − 1.

Proof:

n̂aψν = (an̂− a)ψν = (ν − 1)aψν . (3.20)

Norm:

(aψν , aψν) = (ψν , a†aψν) = ν(ψν , ψν) = ν >
(=)

0 for ν >
(=)

0 . (3.21)

This implies for ν = 0 (3.12) and for ν ≥ 1

aψν =
√
νψν−1 . (3.22)

We can now show in addition that in Table 3.1 we have already found all the
states.

Lemma. With ψn, n = 0, 1, 2, . . ., all the eigenfunctions have been found.

Proof by contradiction:

Suppose there were an eigenvalue ν = n+ α with 0 < α < 1 and n a natural
number:

n̂ψν = (n + α)ψν .
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Then, from (3.22),

n̂(anψν) = α(anψν) ,

n̂(an+1ψν) = (α− 1)(an+1ψν) .

Since by (3.21) the norm of the wave function an+1ψν exists and α − 1 < 0,
there would be an eigenfunction of n̂ with finite norm and negative eigenvalue,
in contradiction to the positivity of the eigenvalues.

Thus, all the stationary states of the harmonic oscillator are given by
Table 3.1 or (3.19′). The operators a†(a) raise (lower) the energy eigenvalue by
�ω and are therefore called creation (annihilation) operators and occasionally
ladder operators.

Remarks:

(i) There can however exist non-square-integrable eigenfunctions with nega-
tive eigenvalues. For example

„

− d2

dx2

«

cosh x = − cosh x ,

although

− d2

dx2
=

„

i
d

dx

«2

is a positive definite operator. Similarly, ψ̃ = exp((x/x0)
2/2) is a non-normalizable

eigenfunction of a† (a†ψ̃ = 0) and also of n̂ with the eigenvalue −1.
(ii) The ground state, Eqn. (3.14), is not degenerate. One can deduce from this

that none of the remaining eigenvalues of n̂ are degenerate, because if corresponding
to n there were another orthonormal eigenfunction ϕn besides ψn, then anϕn would
be a ground state eigenfunction orthogonal to ψ0, which is a contradiction.

The energy eigenstates of the harmonic oscillator (Fig. 3.2) are thus

ψn = (n!
√
πx0)−1/2(a†)n exp

{

−1
2

(
x

x0

)2}

(3.23)

or

ψn = (2nn!
√
πx0)−1/2 exp

{

−1
2

(
x

x0

)2}

Hn

(
x

x0

)

, (3.23′)

and the corresponding eigenvalues are

En = �ω(n + 1
2 ) (3.24)

with n = 0, 1, 2, . . . . The spectrum of the energy eigenvalues is discrete. In a
moment, we will further investigate the polynomials Hn introduced here and
defined by (3.23) and (3.23′), and we will show that they are identical with
the Hermite polynomials.
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Fig. 3.2. The eigenfunctions of the harmonic oscillator for the quantum numbers
n = 0 to 5: y = x/x0 =

p

mω/� x

3.1.2 The Hermite Polynomials

The polynomials Hn are defined according to (3.23) and (3.23′) by

Hn(x) = ex
2/2(

√
2a†)n

∣
∣
∣
∣
x0=1

e−x
2/2

= ex
2
e−x

2/2

(

x− d

dx

)n
ex

2/2e−x
2

.

If one further uses the operator identity

e−x
2/2

(

x− d

dx

)n
ex

2/2 = (−1)n
dn

dxn
,
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which follows from

e−x
2/2

(

x− d

dx

)

ex
2/2 = − d

dx
,

one gets the usual representation for the Hermite polynomials

Hn(x) = (−1)nex
2 dn

dxn
e−x

2
. (3.25)

Table of the first six Hermite polynomials:

H0(x) = 1
H1(x) = 2x

H2(x) = 4x2 − 2

H3(x) = 8x3 − 12x

H4(x) = 16x4 − 48x2 + 12

H5(x) = 32x5 − 160x3 + 120x

(3.26)

Orthogonality relation:
∫ +∞

−∞
dx e−x

2
Hn(x)Hm(x) =

√
π2nn!δmn (3.27)

Generating function:

e−t
2+2tx =

∞∑

n=0

1
n!

tnHn(x) (3.28)

Differential equation:
[

d2

dx2
− 2x

d

dx
+ 2n

]

Hn(x) = 0 (3.29)

Completeness:

∞∑

n=0

ψn(x)ψn(x′) = δ(x− x′) (3.30)

Note that Hn, and thus ψn, has n nodes (simple real zeros).
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3.1.3 The Zero-Point Energy

Classically, the lowest energy of the harmonic oscillator is E = 0; quantum
mechanically, it is �ω/2. Since ψ0(x) does not minimize V (x) alone, but rather
the sum of the kinetic and potential energy, a finite ground state energy
or “zero-point energy” results. To illustrate this further, we calculate the
uncertainty product ΔxΔp. For the average value and the square fluctuation
of position, we find

〈x〉 = (ψn, xψn) ∝ (ψn, (a + a†)ψn) = 0 ,

(Δx)2 = 〈x2〉 =
�

2ωm
(ψn, (a2 + aa† + a†a + a†2)ψn) = x2

0(n + 1/2) ,

and similarly for the momentum

〈p〉 = 0 , (Δp)2 = 〈p2〉 =
�

2

x2
0

(n + 1/2) .

For the uncertainty product, one thus gets

ΔxΔp = (n + 1/2)� . (3.31)

This is a minimum for the ground state. The ground state wave function is
not concentrated at x = 0 – the minimum of the potential – but rather
has the spatial extension x0 and a corresponding finite positional uncertainty
(= fluctuation). This behavior, which is characteristic for quantum theory,
is known as the “zero-point fluctuation”. We would also like to derive an
inequality for the zero-point energy without explicit calculation of the wave
function, but only using the uncertainty relation

ΔxΔp ≥ �

2
. (3.32)

Since by symmetry 〈p〉 = 〈x〉 = 0 must hold for the ground state (see
Sect. 3.6),

〈p2〉〈x2〉 ≥ �
2

4
,

and thus the following inequality for the energy is obtained:

E = 〈H〉 =
〈p2〉
2m

+
1
2
mω2〈x2〉 ≥ 〈p2〉

2m
+

mω2

2
�

2

4
1

〈p2〉 .

The derivative with respect to 〈p2〉 gives as a condition for the minimum

1
2m

− mω2
�

2

8
1

(〈p2〉min)2
= 0
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and thus

〈p2〉min =
m�ω

2
.

The energy then satisfies

E ≥ m�ω

2m × 2
+

mω2
�

2

8
2

m�ω
=

�ω

2
.

The zero-point energy is the smallest energy eigenvalue which is consistent
with the uncertainty relation.

Remark: Comparison with the classical oscillator. The classical motion satisfies

x = q0 sin ωt , (3.33)

E = 1
2
mω2q20 . (3.34)

We define a classical “position probability”

Wclass(x)dx = 2
dt

T
,

where dt is the amount of time spent within dx and T = 2π/ω. From (3.33) it
follows that

dx = q0ω cosωt dt = q0ω
p

1 − (x/q0)2dt ,

and thus

Wclass =
1

πq0
p

1 − (x/q0)2
. (3.35)

Fig. 3.3. Comparison of the quantum mechanical (—–) with the “classical” (- - -)
position probability for (a) energy E1 and (b) E10; turning points (· · · · · ·)
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Example:

The first excited state has the energy E1 = (3/2)�ω. With (3.34), it follows (Fig. 3.3)
that

q0 =

r

3�ω

mω2
=

√
3x0 .

3.1.4 Coherent States

The position expectation value vanishes for the stationary states, i.e., 〈x〉 = 0;
these states therefore individually have nothing in common with the classi-
cal oscillatory motion. We now determine solutions of the time dependent
Schrödinger equation representing periodic motion. We first determine wave
functions for which at the initial time t = 0 the average value of x is different
from zero 〈x〉 �= 0. This is certainly the case for states ϕα which satisfy

aϕα = αϕα (3.36)

with some complex number α, i.e., which are eigenfunctions of the annihila-
tion operator. Since

(ψn, ϕα) =
1√
n!

(a†nψ0, ϕα) =
1√
n!

(ψ0, a
nϕα) =

αn√
n!

(ψ0, ϕα) ,

the expansion of ϕα in terms of the ψn results in

ϕα(x) = C

∞∑

n=0

αn√
n!

ψn = C

∞∑

n=0

(αa†)n

n!
ψ0 . (3.37)

For α �= 0, the ϕα are not eigenfunctions of the Hamiltonian H, i.e., they
are not stationary solutions. If one uses the orthogonality of the ψn, (3.37)
yields for the normalization constant C

1 = (ϕα, ϕα) = C2
∞∑

n=0

|α|2n
n!

= C2e|α|
2

,

C = e−|α|2/2 . (3.38)

By the known time evolution of the stationary states, the time evolution of
the ϕα(x, t) becomes

ϕα(x, t) = e−|α|2/2
∞∑

n=0

(αe−iωt)n√
n!

ψn e−iωt/2 (3.37′)
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or

ϕα(x, t) = ϕα(t)(x)e−iωt/2 , (3.39)

with

α(t) = αe−iωt . (3.40)

ϕα(x, t) is a solution of the time dependent Schrödinger equation. These
states are called coherent states, since they are of significance in optics for
the representation of coherent light waves. Incidentally, they were derived by
Schrödinger in one of his first papers1 and have become very popular since
the invention of the laser. The position expectation value is time dependent
in the state ϕα(x, t):

〈x〉 = (ϕα(t), xϕα(t)) =
x0√

2
(ϕα(t), (a + a†)ϕα(t))

=
x0√

2
(α(t) + α∗(t)) .

If we write α in the form α = |α|eiδ, then we finally get

〈x〉 =
√

2x0|α| cos (ωt− δ) . (3.41)

The position expectation value thus has the same time dependence as the
classical oscillation.

From (3.37) and (3.39), one can easily calculate with the help of (2.47)
the representation

ϕα(x, t) = e−iωt/2eα(t)a†−α∗(t)aψ0(x)

=
1

4
√
π
√
x0

exp
{

−i
[
ωt

2
− |α|2

2
sin 2(ωt− δ)

+
√

2|α|x
x0

sin (ωt− δ)
]

− 1
2x2

0

[x− x0

√
2|α| cos (ωt− δ)]2

}

(3.37′′)

of ϕα(x, t). The probability density then becomes

|ϕα(x, t)|2 =
1√
πx0

exp
{

− (x− x0

√
2|α| cos (ωt− δ))2

x2
0

}

. (3.42)

A coherent state is a Gaussian wave packet which does not spread out because
all of the terms in (3.37′) are in phase.
Classical limit: For large α (without loss of generality: δ = 0 and α > 0), i.e.,
large oscillation amplitudes, the coefficients αn/n! have a sharp maximum for
n0 = α2; the relative width of the n-values contributing to (3.37) decreases

1 E. Schrödinger: Die Naturwissenschaften 28, 664 (1926)
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like (n− n0)/n0 ∼ 1/
√
n0. Since n0 ∼ α2, the energy of the oscillator is then

(ϕα, Hϕα) = �ωα2 = mω2A2/2, where A =
√

2x0α is the amplitude of the
oscillation, consistent with classical mechanics.

3.2 Potential Steps

In both nuclear and solid-state physics, one often deals with potentials which
can be divided up into regions inside which they are more or less constant,
but where the transition from one region to another occurs within a very
short distance. Since we are familiar with the solution of the free Schrödinger
equation, we would now like to study, as an idealization of such physical
situations, motion in potential steps and related problems.

3.2.1 Continuity of ψ(x) and ψ′(x)
for a Piecewise Continuous Potential

Let us consider a one-dimensional potential with a discontinuity at the posi-
tion a (Fig. 3.4). The time independent Schrödinger equation for this problem
takes the form

d2ψ(x)
dx2

= −2m
�2

(E − V (x))ψ(x) . (3.43)

Fig. 3.4. A potential with a discontinuity

Now, suppose that ψ(x) or ψ′(x) were discontinuous at a. Then, the behavior
ψ(x) ∼ Θ(x−a) would have the consequence ψ′′(x) ∼ δ′(x−a), and similarly
the behavior ψ′(x) ∼ Θ(x−a) would imply ψ′′(x) ∼ δ(x−a). However, since
by the right-hand side of (3.43) ψ′′(x) may make at most a finite jump at
the position a, our supposition leads to a contradiction. Consequently, ψ(x)
and ψ′(x) must be continuous even if the potential V (x) is merely piecewise
continuous. At the discontinuity a of V (x), one thus obtains the continuity
conditions

ψI(a) = ψII(a) , (3.44a)

ψ′
I(a) = ψ′

II(a) . (3.44b)
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It is often convenient to use, in place of the second equation,

ψ′
I(a)

ψI(a)
=

ψ′
II(a)

ψII(a)
, (3.44c)

which results upon division of (3.44b) by (3.44a) and which implies the con-
tinuity of the logarithmic derivative. (ψI,II represent the solutions for the
regions I and II, respectively.)

The arguments given above and (3.44b) lose their validity if the potential
behaves like a Dirac δ-function.

3.2.2 The Potential Step

As an example of a problem of the type just discussed, we study the potential
step (Fig. 3.5a), that is, the potential

V (x) = V0Θ(x) , Θ(x) =

{
1 , x > 0
0 , x < 0

, (3.45)

where the constant V0 ≥ 0. Let us consider the Schrödinger equation sepa-
rately in the regions I (x < 0) and II (x > 0):

d2ψ

dx2
= −2mE

�2
ψ ;

d2ψ

dx2
= −2m(E − V0)

�2
ψ . (3.46a,b)

The continuity requirements for ψ and ψ′ will give us relations between the
free constants of the solutions in the regions I and II. We distinguish the cases
E > V0 and E < V0, since they correspond to different physical situations.

Fig. 3.5a. The potential step Fig. 3.5b. The potential step, E > V0

3.2.2.1 Particle Energy Above the Potential Step
(E > V0, Fig. 3.5b)

Defining the two wave numbers k and q, one sees that (3.46a) and (3.46b)
become

I:
d2ψ

dx2
= −k2ψ , k =

√
2mE/� ; (3.47a)

II :
d2ψ

dx2
= −q2ψ , q =

√
2m(E − V0)/� . (3.47b)
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These are classical oscillator equations with the fundamental solutions

eiKx , e−iKx , K =

{
k , x < 0
q , x > 0

.

Suppose that the particle is incident from the left2; the wave function in
region I is then the superposition of a wave incident from the left, whose
amplitude can be set to unity without loss of generality, and a reflected wave,
whereas in region II it is a transmitted wave:

ψI(x) = eikx + R e−ikx , (3.48a)

ψII(x) = T eiqx , (3.48b)

ψ(x) = Θ(−x)ψI(x) + Θ(x)ψII(x) . (3.48c)

The coefficients R and T are determined by the continuity conditions for ψ
and ψ′ at x = 0 :

1 + R = T , ik(1 −R) = iqT ,

so that

R =
k − q

k + q
, T =

2k
k + q

. (3.49)

In order to give these coefficients a physical interpretation, we compute the
probability current density in the regions I and II by (2.59):

jI(x) =
�

2mi
[(e−ikx + R∗eikx)(ik)(eikx −R e−ikx) − c.c.]

=
�

2mi
[ik(1 − |R|2 −R e−2ikx + R∗e2ikx) − c.c.] ,

jI(x) =
�k

m
(1 − |R|2) ≡ jin − jrefl , (3.50a)

jII(x) =
�q

m
|T |2 ≡ jtrans , (3.50b)

where “c.c.” stands for “complex conjugate”. Here, we have decomposed the
current densities in regions I and II into incident, reflected, and transmit-
ted current densities. Hence, one obtains for the reflection and transmission
coefficients r and t:
2 Although we solve just the time independent Schrödinger equation, we use the

terminology incoming, reflected and transmitted waves. This is justified, if one

recalls the time dependence e−�k2t/2m of the stationary states. Furthermore, one
can build wave packets (see Sect. 3.7.2), which behave in the following manner.
Initially there is a wave packet incident from the left, which after having reached
the barrier splits into a transmitted and reflected packet. It should also be men-
tioned that in addition to (3.48), there are solutions representing waves incident
from the right.



3.2 Potential Steps 61

r =
jrefl
jin

= |R|2 ; t =
jtrans

jin
=

q

k
|T |2 . (3.51)

Remarks:

(i) The particle is reflected with probability r. Classically, on the other
hand, there would be no reflection, but rather to the right of the step
the particle would just continue to move, albeit with smaller velocity.
This reflection is a wave phenomenon analogous to the reflection of light
at the boundary surface of media with different indices of refraction.

(ii) In the limiting case E → ∞ (E � V0), one obtains

q → k : R → 0 , T → 1 ,

i.e., the reflected wave vanishes. Since here we are confronted with an
infinitely sharp potential step, the Ehrenfest theorem, and hence the
transition to the classical case, is not valid until E → ∞, i.e., λ → 0,
is satisfied. If the transition from zero to V0 were to occur continu-
ously over a length d, particles with k � 1/d would then be completely
transmitted. This can be verified explicitly in the case of the potential
V (x) = V0(1+tanh (x/2d))/2, which leads to hypergeometric functions.

(iii) Conservation of particle number: From (3.49) follows

�k

m
(1 − |R|2) =

�q

m
|T |2 ,

and hence

jI = jII ,

so that

jin = jrefl + jtrans ;

i.e., the incident particle flux is equal to the sum of the transmitted and
the reflected particle flux. This result also follows from the continuity
equation (2.60) (particle number conservation), which gives ∂j(x)/∂x =
0, since �(x) is time independent.

(iv) Eq. (3.49) implies R > 0, i.e., the reflected and the incoming wave are
in phase. However, if the potential step descends towards the right, i.e.,
V0 < 0, then q =

√
2m(E + |V0|)/� in Eqs. (3.48) and (3.49) and hence

R < 0. In this case the reflected wave experiences a phase jump π.

We show the real and imaginary part of ψ(x) and the probability density
|ψ(x)|2 in Fig. 3.6. For the incident energy, we choose E = 4V0/3; the ratio
of the wave numbers is then q/k = 1/2.
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Fig. 3.6. The real and imaginary
parts of ψ(x) and the probabil-
ity density |ψ(x)|2 vs. xk/2π, for
incident energy E = 4V0/3, i.e.
q/k = 1/2

3.2.2.2 Particle Energy Below the Potential Step
E < V0, Fig. 3.5c)

Now let the energy E of the particle incident from the left be smaller than the
height V0 of the potential step. The Schrödinger equation (3.46a) or (3.47a)
in region I then remains unchanged and is solved as in the case E > V0

by (3.48a). In region II, on the other hand, (3.47b) is replaced by

ψ′′ = κ2ψ , with κ =
√

2m(V0 − E)/� , (3.52)

whose solutions either increase or fall exponentially. However, we do not need
to find the solutions of (3.47a) and (3.52) together with continuity conditions
all over again; we need only observe that q in (3.47b–3.49) becomes purely
imaginary:

q = iκ . (3.53)

Fig. 3.5c. The potential step, E < V0
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The solution leading to a finite probability density in region II is then

ψII(x) = T e−κx , (3.54)

and the reflection and transmission amplitudes from (3.49) become

R =
k − iκ
k + iκ

, T =
2k

k + iκ
. (3.55)

Remarks:

(i) According to (3.55)

|R|2 = 1 , (3.56)

that is, complete reflection occurs.
(ii) Since T �= 0, the particles penetrate into the step up to a depth of about

κ−1. However, no particle flux to the right takes place, as one sees either
from (3.56) or from jII = 0.

The wave function

ψ(x) =
{(

cos kx− κ

k
sin kx

)

Θ(−x) + e−κxΘ(x)
}

2
1 + iκ/k

(3.57)

without the factor 2/(1 + iκ/k) is shown in Fig. 3.7a.

Fig. 3.7. (a) The wave function (3.57) for κ/k = 3/4. (b) The wave function at
an infinity
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3.2.2.3 The Limiting Case of an Infinitely High Potential Step
(V0 → ∞)

We now consider the important limiting case of an infinitely high potential
step V0 → ∞. In this case, one has

κ → ∞ , T = 0 , R = −1 .

Hence,

ψI(x) = eikx − e−ikx ,

and thus

ψI(0) = 0 .

This yields the general boundary condition at an infinitely high step (Fig.
3.7b):

ψ|step = 0 . (3.58)

3.3 The Tunneling Effect, the Potential Barrier

3.3.1 The Potential Barrier

We now investigate motion in the presence of the square potential barrier

V (x) = V0Θ(a− |x|) (3.59)

shown in Fig. 3.8a. We consider only the case E < V0. A classical particle then
would be completely reflected from the barrier. After seeing in the preceding
section that, in quantum mechanics, particles can slip part way into the
classically forbidden region, we should not be surprised that particles can
even penetrate through to the other side of the barrier. Assuming E < V0,
one obtains the Schrödinger equation (3.47a) outside the potential barrier
(|x| > a) and (3.52) inside the barrier (|x| < a). The general form of the
solution is thus

Fig. 3.8a. The potential barrier Fig. 3.8b. The incident, reflected,
and transmitted waves
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ψ(x) =

⎧
⎪⎪⎨

⎪⎪⎩

A eikx + B e−ikx x < −a

C e−κx + D e+κx −a < x < a

F eikx + G e−ikx x > a

(3.60)

with wave numbers k =
√

2mE/�, κ =
√

2m(V0 − E)/�.
In order to obtain the relation between the constants A,B, . . . , G (Fig.

3.8b), one again uses the continuity requirements for the wave function ψ and
its derivative.

Matching condition at x = −a:

A e−ika + B eika = C eκa + D e−κa ,

ik(A e−ika −B eika) = −κ(C eκa −D e−κa) .

In matrix notation
(

e−ika eika

e−ika −eika

)(
A

B

)

=

⎛

⎝
eκa e−κa

iκ
k

eκa − iκ
k

e−κa

⎞

⎠
(
C

D

)

,

(
A

B

)

=
1
2

(
eika eika

e−ika −e−ika

)⎛

⎝
eκa e−κa

iκ
k

eκa − iκ
k

e−κa

⎞

⎠
(
C

D

)

,

(
A

B

)

= M(a)
(
C

D

)

, (3.61)

where

M(a) ≡ 1
2

⎛

⎜
⎜
⎝

(

1 +
iκ
k

)

eκa+ika

(

1 − iκ
k

)

e−κa+ika

(

1 − iκ
k

)

eκa−ika

(

1 +
iκ
k

)

e−κa−ika

⎞

⎟
⎟
⎠ . (3.62)

Matching condition at x = +a:
(
F

G

)

= M(−a)
(
C

D

)

. (3.63)

Thus, the connection between
(
A
B

)
and

(
F
G

)
then becomes

(
A

B

)

= M(a)M(−a)−1

(
F

G

)

. (3.64)

With

M(−a)−1 =
1
2

⎛

⎜
⎜
⎝

(

1 − ik
κ

)

eκa+ika

(

1 +
ik
κ

)

eκa−ika

(

1 +
ik
κ

)

e−κa+ika

(

1 − ik
κ

)

e−κa−ika

⎞

⎟
⎟
⎠ , (3.65)
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this leads to the equation
(
A

B

)

=

⎛

⎜
⎝

(cosh 2κa +
iε
2

sinh 2κa)e2ika iη
2

sinh 2κa

− iη
2

sinh 2κa (cosh 2κa− iε
2

sinh 2κa)e−2ika

⎞

⎟
⎠

(
F

G

)

,

(3.66)
where ε and η are defined by

ε =
κ

k
− k

κ
, (3.67a)

η =
κ

k
+

k

κ
. (3.67b)

We now specialize to the case of a particle incident from the left, i.e., let
G = 0. Equation (3.66) then simplifies to

A = F

(

cosh 2κa +
iε
2

sinh 2κa
)

e2ika ,

B = F

(

− iη
2

)

sinh 2κa . (3.68)

In order to characterize the transmission, one defines the transmission am-
plitude

S(E) ≡ F

A
=

e−2ika

cosh 2κa + (iε/2) sinh 2κa
, (3.69)

and hence the transmission coefficient

|S(E)|2 =
1

1 + (1 + (ε2/4)) sinh2 2κa
. (3.70)

|S(E)|2 expresses the probability that a particle incident on the potential
barrier passes through it.

In the limiting case of a very high and wide barrier , κa � 1, and since
sinh 2κa ∼= (1/2)e2κa � 1,

|S(E)|2 ∼=
(

1 +
ε2

4

)−1

4e−4κa =
16(κk)2

(κ2 + k2)2
e−4κa ,

|S(E)|2 =
16E(V0 − E)

V 2
0

exp
{

−4
√

2m(V0 − E)
a

�

}

. (3.71)

Absorbing the prefactor into the exponential,

|S(E)|2 = exp
{

−4
√

2m(V0 − E)
a

�
+ log

(
16E(V0 − E)

V 2
0

)}

,

one can carry out a further approximation by neglecting the logarithmic term,
and one finally obtains for |S(E)|2
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|S(E)|2 ∼= exp
{

−4
√

2m(V0 − E)
a

�

}

. (3.72)

A classical particle would be reflected from the barrier for E < V0. In contrast,
according to quantum theory, we even find a finite transmission probability
in this case, described by (3.70) and (3.72). This purely quantum mechanical
phenomenon is known as the tunneling effect. Important examples of the tun-
neling effect are alpha decay of nuclei (see Sect. 3.3.3) and the cold emission
of electrons from metals.

Finally, let us discuss the wave function in the interior of the barrier. According
to (3.63) and (3.65),

C =
1

2

„

1 − ik

κ

«

e(κ+ik)aF , D =
1

2

„

1 +
ik

κ

«

e(−κ+ik)aF ,

and for κa	 1 therefore C ∼ exp {−κa− ika} and D ∼ exp {−3κa − ika}. Here,

Ce−κx
˛

˛

˛

˛

x=a

∼ e−2κa ∼ D eκx
˛

˛

˛

˛

x=a

,

using (3.68) and A = 1. In Fig. 3.8c, the exponentially decreasing and growing

parts of the wave function are shown separately (without phase factors).

Fig. 3.8c. Absolute values of the exponentially decreasing
and increasing parts of the wave function within the barrier

3.3.2 The Continuous Potential Barrier

In realistic tunneling processes, the potential has a continuous shape, as illus-
trated in Fig. 3.9a. The probability of tunneling through this potential barrier
can be calculated approximately with the help of (3.72) by approximating
V (x) between a and b by N individual square barriers of width dx. The step
width 2a is now to be replaced by dx (Fig. 3.9b). The total transmission
probability is then the product

Fig. 3.9. (a) A continuous potential barrier, and (b) its decomposition into rect-
angular barriers
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|S(E)|2 =
N∏

i=1

exp
{

−
√

2m(V (xi) − E)
�

2dx
}

= exp
{

−2
N∑

i=1

√
2m(V (xi) − E)

�
dx

}

,

which approaches

|S(E)|2 = exp
{

−2
∫ b

a

√
2m(V (x) − E)

�
dx

}

(3.73)

in the limit N → ∞. This result can be justified more precisely by the WKB
method (see Sect. 11.3).

3.3.3 Example of Application: α-decay

The potential of an α-particle in a nucleus has approximately the shape
shown in Fig. 3.10. Here, the range of the nuclear force is R ≈ 10−12 cm, the
charge number of an α-particle is Z2 = 2, and the nuclear charge number
of the daughter nucleus is Z1. In the classical case, energy would have to
be supplied to the particle in order for it to climb over the Coulomb barrier
and leave the nucleus. Quantum mechanically, one obtains a finite tunneling
probability, which can be calculated using (3.73) by setting V (x) ∼= Z1Z2e

2/x
between the classical turning points. The limits of integration are a = R,
b = Z1Z2e

2/E, and it follows that

2
∫ b

a

dx

√
2m[V (x) − E]

�
= 2

√
2mE

�

∫ b

R

dx

√
b

x
− 1

= 2

√
2mE

�
b

[

arccos

√
R

b
−
(
R

b
−
(
R

b

)2)1/2]

.

For b � R, i.e., E � Coulomb barrier, this becomes

2
(√

2mZ1Z2e
2

√
E�

)(
π

2
− 2

√
R

b

)

,

so that the transmission probability finally becomes

|S|2 = exp
{

−π

√
2mZ2e

2

�

(
Z1√
E

− 4
π

Z
1/2
1 R1/2

Z
1/2
2 e

)}

. (3.74)

This does not yet suffice to determine the decay probability: one must also
take into account how often the particle is able to tunnel, i.e., how often it
“collides” with the nuclear surface. As a semiclassical estimate of the decay
probability, we suppose: decay probability per second = frequency of wall
collisions × transmission coefficient = (vi/2R)|S(E)|2. Here, vi is the speed of
the α-particle in the interior of the nucleus, an only vaguely defined quantity.
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Fig. 3.10. The potential of an α-
particle in a nucleus which is unsta-
ble to α-decay

Letting the number of radioactive nuclei be N and the change in the number
of radioactive nuclei be dN , one then finds the decay law

dN = −N × decay probability per second × dt = −N

τ
dt . (3.75a)

The mean lifetime τ is hence given by

τ =
2R
vi

|S(E)|−2 , (3.75b)

and the decay law becomes

N(t) = N(0) e−t/τ .

The half-life T of a substance is the time it takes for the number of nuclei
to be reduced to half of the initial value. It is related to the lifetime by

e−T/τ = 1
2 or T = (ln 2)τ = 0.693τ .

Numerical formula for T :

With Z2 = 2, R = 1.5 × 10−13A1/3 cm ∼= 2 × 10−13Z
1/3
1 cm for T in

years, E in MeV, the numerical formula of Taagepera and Nurmia follows
from (3.74, 3.75b):

log10 T = 1.61
(

Z1

E1/2
− Z

2/3
1

)

− 28.9 . (3.76)

Just this dependence of log τ on the energy of the emitted α-particle was
found experimentally by Geiger and Nutall. In three dimensions, the factor 2
in (3.75b) is replaced by 1.3 In heavy nuclei, vi is of the order of 109 cm s−1,
and R is about 10−12 cm, and thus the quantity log10 (0.69R/vi) varies only
slightly from nucleus to nucleus and may be replaced by the constant −28.9.

3 E. Segré: Nuclei and Particles, 2nd ed. (Benjamin, New York, Amsterdam 1977)
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Figure 3.114 shows experimental curves for various nuclei and demonstrates
the confirmation of the

√
E-dependence. Different isotopes of a radioactive

element have different mass number A and hence in the ground state the
energy E of the α-particle differs. In Fig. 3.11 the points corresponding to
the various isotopes of an element lie on a straight line.

The factor exp {−√
2mπZ1Z2e

2/�
√
E} also determines the probability for

the inverse process, i.e., the fusion of two nuclei of charge Z1 and Z2. This
implies that nuclear fusion occurs preferably for low Z, that is, for hydrogen
(or rather heavy hydrogen, i.e., deuterium and tritium)

Fig. 3.11. The logarithm of the half-life T as a function of the inverse square root
of the energy of the emitted α-particle plus the recoil energy (after Hyde et al.)

1H2 + 1H2 → 2He3 + n (3.27 MeV) ,

→ 1He3 + p (4 MeV) ,

1H2 + 1H3 → 2He4 + n (17.6 MeV) ,

1H3 + 1H3 → 2He4 + 2n (11 MeV) .

The numbers in parentheses give the reaction energy (Q-value). For higher
atomic number Z the Coulomb barrier rises and thus the temperature re-
quired to overcome it. In stellar evolution, the lightest elements are used
up one after the other, and controlled fusion experiments also concentrate
on Z = 1. Further important examples of the tunneling effect are the cold

4 E.K. Hyde, I. Perlman, G.T. Seaborg: The Nuclear Properties of the Heavy Ele-
ments I (Prentice Hall, Englewood Cliffs 1964)
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emission of electrons from a metal in an electric field and the tunneling be-
tween two metals separated by an insulating layer, an example of which is the
Josephson effect, that is, the tunneling of Cooper pairs in superconductors.

3.4 The Potential Well

Let us now determine the bound states of the potential well

V (x) = −V0Θ(a− |x|) (3.77)

(Fig. 3.12). The potential well serves as a model for short-range forces such
as those found in nuclear physics or at screened defects in solids.

The tendency to bind a particle will certainly grow with the depth and
width of the potential well and the particle mass. A dimensionless parameter
constructed from V0, a, and m which characterizes the strength is

ζ =
√

2mV0a/� . (3.78)

Fig. 3.12. The potential well

As in the preceding sections, one considers the Schrödinger equation for re-
gions of different potential strength separately. Since the energies of the bound
states lie in the interval

−V0 ≤ E ≤ 0 , (3.79)

we have

ψ′′ = κ2ψ with κ =
√

2m(−E)/� for |x| > a (3.80a)

and

ψ′′ = −q2ψ with q =
√

2m(E + V0)/� for |x| < a . (3.80b)

In order to guarantee the normalizability of the wave function in the re-
gion |x| > a, one chooses from the two fundamental solutions e±κx the
one that falls off exponentially. Inside the well, the solutions are oscillatory:
cos qx, sin qx, and possibly linear combinations of these two fundamental so-
lutions. However, the reflection symmetry of the potential (3.77) strongly
suggests seeking solutions that are purely even,
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ψ(x) =

{
A cos qx |x| < a

e∓κx x ≷ ±a
, (3.81)

and odd,

ψ(x) =

{
A sin qx |x| < a

± e∓κx x ≷ ±a
. (3.82)

Later we will show generally, in Sects. 3.5 and 3.6, that the bound states for
a reflection symmetric potential are either even or odd. From the continu-
ity conditions (3.44a–c) for the wave function and its derivative, we obtain
transcendental equations for the energy eigenvalues E and the amplitudes A
in (3.81) and (3.82). We consider even and odd solutions in turn.

3.4.1 Even Symmetry

Here, the continuity conditions imply

A cos qa = e−κa , Aq sin qa = κe−κa , (3.83)

and, after division, they yield

tan qa =
κ

q
, (3.84)

or, explicitly,

tan qa =
[ζ2 − (qa)2]1/2

qa
, (3.84′)

Fig. 3.13. Graphical solution of the transcendental equation (3.84);
(—): tan z, (− · −): (ζ2 − z2)1/2/z for various values of ζ (ζ1 < ζ2 < ζ3)
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where the dimensionless parameter ζ introduced in (3.78) enters. By (3.79),
the wave numbers q lie in the interval

0 ≤ qa ≤ ζ . (3.85)

Equation (3.84′) is the transcendental equation mentioned above for the wave
number q, or, by (3.80b), for the binding energy E. It can easily be solved
graphically (Fig. 3.13). Here, tan z and (ζ2 − z2)1/2/z are plotted for three
values of ζ against z ≡ qa. The permitted values of z are found from the
intersections of these two curves. For these values qa, the energy eigenvalues
according to (3.80b) are then

E = −V0 +
(q�)2

2m
= −V0

(

1 − (qa)2

ζ2

)

. (3.86)

One reads off the following characteristic properties of the eigenvalues from
Fig. 3.13.

(i) Since (ζ2 − z2)1/2/z vanishes at z = ζ, the number of intersections ne

can be read off from the value of ζ and is

ne = [ζ/π] , (3.87)

where [α] is the nearest natural number greater than α.
(ii) Thus, in any case, there is always an even bound state for ζ > 0; the

number of even bound states grows with increasing ζ according to (3.87).

3.4.2 Odd Symmetry

The continuity conditions now take the form

A sin qa = e−κa , Aq cos qa = −κe−κa , (3.88)

and, after division,

− cot qa =
κ

q
≡ (ζ2 − (qa)2)1/2

qa
. (3.89)

The graphical solution of (3.89) is illustrated in Fig. 3.14.
If ζ lies in the interval

π

2
(2no − 1) < ζ <

π

2
(2no + 1) , (3.90)

then (3.89) has exactly no solutions. In particular, we see from this that odd
solutions only exist if

2mV0a
2/�

2 > π2/4 , (3.91)
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Fig. 3.14. Graphical solution of the transcendental equation (3.89);
(—): − cot z, (− · −): (ζ2 − z2)1/2/z

that is, the potential must exceed a minimum strength. Of course, the con-
nection between the wave number determined from (3.89) and the energy is
also given for odd states by (3.86). We can now summarize our results for
even and odd states in Table 3.2. We give the wave number interval, the
symmetry, and the number of nodes, i.e., the zeros of the corresponding wave
function. The sequence of states terminates at the (ne + no − 1)th excited
state. Even and odd states alternate with increasing energy and number of
nodes. We can evidently number the states with the number of nodes. In the
next section we will show in general that the bound states for a symmetric
potential can be represented by real even and odd functions. Once we have
found all of these, we then know all the bound states for the potential well.

Table 3.2. State, wave number, symmetry, and number of nodes

State qa Symmetry Number of nodes

Ground state [0, π
2
] even 0

1st excited state [π
2
, π] odd 1

2nd excited state [π, 3
2
π] even 2

...

We illustrate our results in Fig. 3.15 for a potential of strength ζ = 5.
Here, according to (3.87) and (3.90), there are [ζ/π] = 2 even and 2 odd
solutions.

Finally, let us consider the limit of an infinitely deep potential well,
V0 → ∞. Then ζ → ∞, and the solutions of (3.84′) and (3.89) (the inter-
sections in Figures 3.13 and 3.14) move to the asymptotes of tan qa and
cot qa. Thus the even states are

ϕq(x) = Θ(a − |x|) cos qx with qa = (s + 1
2 )π , (3.92)
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Fig. 3.15. Bound states and en-
ergy eigenvalues for a potential well
with ζ = 5. The states are des-
ignated by the number of nodes.
Solid curves indicate even solu-
tions, dashed curves odd solutions

and the odd ones

ϕq(x) = Θ(a− |x|) sin qx with qa = sπ . (3.93)

Both solutions satisfy the general boundary conditions ψ(step) = 0 found
in (3.58). Normalized, they can also be expressed in the common form

ψn(x) =
1√
a

sin (x+ a)kn with kn =
(n + 1)π

2a
, n = 0, 1, 2, . . . , (3.94a)

having energy

En =
�

2k2
n

2m
=

�
2

2m

( π

2a

)2

(n + 1)2 . (3.94b)

The lowest eigenstates of the infinitely deep potential well are shown in
Fig. 3.16.

Fig. 3.16. The lowest states in an infinitely deep
potential well, shifted along the ordinate
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Now that we have solved a few special, characteristic problems, in the
next two sections we would like to investigate what general conclusions can
be drawn about stationary states.

3.5 Symmetry Properties

3.5.1 Parity

The parity operator (reflection operator) P is defined by

Pf(x) = f(−x) . (3.95)

Evidently, the even and odd functions are eigenfunctions of P with eigenval-
ues ± 1 (see (3.100)). We now assume that the potential is reflection sym-
metric,

PV (x) = V (x) . (3.96)

Since the kinetic energy contains only a second derivative, for any complex
function f(x) one has

PHf(x) = Hf(−x) = HPf(x) ,

i.e., P and H commute, so that

[P,H ] = 0 (3.97)

for symmetric potentials. If we now consider the time independent Schrödin-
ger equation

Hψ(x) = Eψ(x) , (3.98)

then upon applying P it follows that

Hψ(−x) = Eψ(−x) ,

so that both ψ(x) and ψ(−x) are solutions with the same eigenvalue E. By
forming the sum and the difference of these two equations, we see that

ψe/o(x) = ψ(x) ± ψ(−x) (3.99)

are eigenfunctions of H as well, with eigenvalue E. Since

Pψe/o = ±ψe/o , (3.100)

they are also eigenfunctions of P .
It thus follows that for symmetric potentials we can choose a basis of sta-

tionary states consisting only of even and odd states. If an energy eigenvalue
is nondegenerate, then the corresponding eigenfunction is automatically even
or odd.
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3.5.2 Conjugation

If we take the complex conjugate of the time independent Schrödinger equa-
tion, we get

Hψ∗(x) = Eψ∗(x) . (3.101)

Combining (3.98) and (3.101), one sees that ψ + ψ∗ and (ψ − ψ∗)/i are
real eigenfunctions with eigenvalue E. If, as always assumed, the potential is
real, then one can always choose real eigenfunctions. Nondegenerate energy
eigenfunctions are, aside from trivial factors, automatically real.

3.6 General Discussion
of the One-Dimensional Schrödinger Equation

In this section, we would like to discuss the one-dimensional Schrödinger
equation for a general potential in order to see to what extent the properties
found for our model potentials (oscillator, potential well, etc.) are generally
valid. We will base our considerations on a qualitative, mostly graphical dis-
cussion of the solutions of the Schrödinger equation, in order to underscore
the key elements. It should be clear from the discussion that this argumen-
tation could also be presented in the form of an analytic proof.

For clarity, we rewrite the one-dimensional Schrödinger equation:

d2ψ

dx2
=

2m
�2

(V (x) − E)ψ(x) . (3.102)

If for example we are presented with the continuous, short-range potential of
Fig. 3.17, there can be regions with E larger or smaller than V (x). These are
associated with different solution elements.

Fig. 3.17. A symmetric short range poten-
tial
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V (x) − E > 0 . Then ψ′′ has the same sign as ψ, i.e., ψ is convex to the
x-axis, that is, curved away from the x-axis (Fig. 3.18a).

Fig. 3.18. Solution elements
of the Schrödinger equation
in regions with
V (x) − E > 0

V (x) − E < 0 . Here, the sign of ψ′′ is opposite to that of ψ, and the wave
function ψ is concave to the x-axis (Fig. 3.18b).

Fig. 3.18b. Solution elements of the
Schrödinger equation in regions with
V (x) − E < 0

The solutions of the Schrödinger equation are constructed from the ele-
ments of Fig. 3.18a and 3.18b in a continuous and continuously differentiable
manner.

Let us now consider the potential of Fig. 3.17 and the possible solutions
of the Schrödinger equation (3.102) for different values of E.

I. E < Vmin . Then the case V (x) − E > 0 would be realized everywhere,
and the solution would diverge at infinity. For E < Vmin, there is thus no
acceptable solution.

II. Vmin < E < 0 . Here, we are in the domain of the bound states. In
Fig. 3.19, we show a typical bound state of this sort. The horizontal line
E intersects the potential at the turning points TP (shown dotted). Out-
side of the turning points, the solution is curved away from the x-axis,
while inside of the turning points the solution is curved toward the x-
axis. Roughly speaking, the solution outside the turning point has the form

Fig. 3.19. A typical bound
state for the potential of
Fig. 3.17
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e±κx with κ = [2m(V (x) − E)]1/2/�, and inside the form − cos qx with
q = [2m(E − V (x))]1/2/�. If we increase the energy, the turning points shift
outwards. The function which then results, ψ(x)(x > 0), is curved away less
in the outer region from, and in the inner region more strongly toward, the
x-axis. The problem of finding bound states now consists in combining sym-
metrically or antisymmetrically solutions that fall off exponentially at infinity
(Sect. 3.5) in such a way that ψ and ψ′ are continuous at the origin. We draw
the resulting solution sequences for four values of E in the interval [Vmin, 0]
in Fig. 3.20. The value of E increases from (a) to (d), whilst the turning
points shift outward. First of all, it is clear that for E = Vmin the two turning
points coincide at the origin, and the continuity conditions cannot be ful-
filled. Figure 3.20a corresponds to the situation where E is somewhat larger
than Vmin. The negative curvature in the region inside of the turning points
does not yet suffice to bring the derivative of the solution to the same value,
namely 0, at the origin, and as for the value of ψ to the right of the origin,
it is nowhere near being coincident with the dashed curve to the left of the
origin. If E is raised, we finally get to Fig. 3.20b. Here, the solid curves to the
left and right have the same slope and value at the origin. It is clear that one
reaches this situation for any potential, no matter how weak, as long as E
gets sufficiently close to E = 0. Thus, there always exists a bound state. This
state is symmetric. If one further increases the energy above E of Fig. 3.20b,
one arrives at Fig. 3.20c. The wave function in the interior has been curved
so strongly downward that the derivatives of the solid branches on the left

Fig. 3.20a–d. Construction of the bound states for a continuous, symmetric po-
tential for increasing energy E. The marks on the x-axis indicate the position of
the turning points
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and right are different. This is not an allowable wave function. If the poten-
tial is sufficiently strong, then upon additional raising of E the situation of
Fig. 3.20d is finally reached, in which ψ vanishes at the origin and the dashed
curve, together with the curve on the right, gives a continuous, differentiable
solution. This is the first excited state with one node. Clearly such a state
does not exist if the potential is too weak. In the case of a strong potential
there can be further states in which alternately solid and dashed curves fit
together.5

We can summarize these considerations as follows:

(i) There exists at least one bound state ψ0; it has no zeros.
(ii) The spectrum of the bound states is discrete.
(iii) The bound states are nondegenerate.
(iv) To the extent that the potential possesses multiple bound states, they

are alternately symmetric and antisymmetric with increasing energy.
The state ψn, n = 0, 1, . . . has n nodes.

Remark: We state without proof that for potentials V (x) behaving at large dis-

tances like limx→∞ V (x) ∼ −1/xs, one has: For s < 2, the energy eigenvalues have

a point of accumulation for E = 0. For s > 2, E = 0 is not a point of accumula-

tion; the next bound state is located at a finite distance from 0. If the potential is

singular for small distances like limx→0 V (x) = −1/xr, then for r < 2, the energy

spectrum is bounded from below, and for r > 2, the energy spectrum goes on to

−∞.

We now continue with the discussion of the potential from Fig. 3.17 in the
energy region E > 0.

III. E > 0 . In the regions outside the potential (V (x) = 0) we can write the
solution as

ψI = eikx + R e−ikx (3.103a)

on the left and

ψII = T eikx (3.103b)

on the right. In the domain of the potential, the solution is more complicated;
the effective wave number is larger than k there. Since two constants R and T
are available to us, however, it is possible for each k to achieve the following:
the solutions resulting from ψI and ψII match in a continuously differentiable
way at x = 0.

The energy of this scattering solution is E = (�k)2/2m. Finally, if we
recall that reflection of the solution given by (3.103a,b) gives rise to another
solution, we can summarize: For each E > 0, there are two stationary states.

5 For the potential in Fig. 3.17 this is the solution shown in Fig. 3.19 and also a
solution having three nodes.
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In general, the reflection amplitude differs from zero, R �= 0. Only for par-
ticular potentials is R = 0 for all k. These reflectionless potentials have a very
intimate connection to the solitons of classical mechanics (see Problem 3.6
and Sect. 19.2.1). In the case of resonances, R → 0 can occur for particular k-
values. A wave packet, which represents the superposition of many k-values,
will be partially reflected even in this domain.

3.7 The Potential Well, Resonances

We now return to the potential well described by (3.77) and Fig. 3.12. We
treated bound states (−V0 < E < 0) in Sect. 3.4. We found that a finite
potential well has a finite number of bound states.

It remains for us to derive and discuss the stationary states for E > 0,
the scattering states . We find these immediately from Sect. 3.3 by replacing
V0 by −V0 in the stationary solutions for the potential barrier. The wave
number in the exterior remains

k =
√

2mE/� . (3.104)

Now, in the interior of the potential, the solution is oscillatory too, and κ
should be replaced by κ = iq, where

q =
√

2m(E + V0)/� , (3.105)

which is the wave number in the interior. Then, by (3.60), the solution is
composed of the following elements: In the interior, we have

ψ(x) = C e−iqx + D eiqx for |x| ≤ a . (3.106a)

To the left of the potential well, ψ(x) = ψin(x)+ψr(x), the sum of an incident
wave

ψin = Aeikx for x < −a , (3.106b)

and a reflected wave

ψr = AS(E)
i
2

(
q

k
− k

q

)

sin (2qa)e−ikx for x < −a . (3.106c)

To the right of the potential well we have the transmitted wave

ψt = AS(E)eikx for x > a . (3.106d)

We assume from the outset that G = 0, i.e., no waves are incident from the
right. From (3.69), S(E) becomes with cosh (iq) = cos q and sinh (iq) = i sin q

S(E) =
e−2ika

cos 2qa− (i/2)((q/k) + (k/q)) sin 2qa
. (3.107)



82 3. One-Dimensional Problems

Therefore, the transmission coefficient is

|S(E)|2 =
1

1 + (1/4)((q/k) − (k/q))2 sin2 (2qa)

with
(
q

k
− k

q

)2
=
(√

E + V0√
E

−
√
E√

E + V0

)2
=

V 2
0

E(E + V0)
,

i.e.

|S(E)|2 =
[

1 +
sin2 (2qa)

4(E/V0)(1 + (E/V0))

]−1

. (3.108)

One easily recognizes from (3.106c) that
∣
∣
∣
∣S(E)

i
2

(
q

k
− k

q

)

sin 2qa
∣
∣
∣
∣

2

= 1 − |S(E)|2 (3.109)

holds for the reflection coefficient .
Next, we would like to investigate the properties of the transmission co-

efficient more thoroughly. First of all, one sees that |S(E)|2 is restricted to
the interval [0,1]. The transmission is equal to 1 and is thus maximal for

2qa = nπ . (3.110)

This is equivalent to energy values

ER =
�

2q2

2m
− V0 = n2 �

2π2

8ma2
− V0 , (3.111)

where n is an integer and large enough so that ER > 0. For particles with this
incident energy, the potential is completely penetrable. Minima of the trans-
mission coefficient are found approximately at 2qa = (2n + 1)π/2, because
here sin2(2qa) = 1. They thus lie approximately on the curve
[

1 +
1

4(E/V0)(1 + E/V0)

]−1

=
4(E/V0)(1 + E/V0)

1 + 4(E/V0)(1 + E/V0)
.

We recall the infinitely deep potential well of Sect. 3.4. Comparison of (3.110)
and (3.111) with (3.94b) and (3.86) shows that the energies of the maxima
of the transmission coefficients coincide with the energy eigenvalues of the
infinitely deep potential well. For a deep well, i.e., ζ � 1 and E � V0, the
maxima and minima are strongly pronounced. The maxima of the transmis-
sion coefficients are known as resonances. We can understand the resonance
phenomenon qualitatively using our knowledge of reflection at a step: The
wave ψin, incident from the left, penetrates into the potential, changing its
wave vector and its amplitude, and is reflected at x = +a. Because 4aq = 2πn,
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the incident and reflected wave are in phase, whereas the wave reflected at
−a makes a phase jump π (R < 0, see remark iv on page 61). Thus, the wave
reflected at −a and the waves reflected again and again at a are out of phase
and interfere destructively.

In Fig. 3.21 we have displayed |S(E)|2 as a function of E for two values of
the strength ζ. One sees from the figure and from (3.108) that for large ζ the
resonances become narrower or “sharper”. The n-values of the resonances,
according to (3.110) and (3.111), for ζ = 6, are n = 4, 5, . . . , and for the
stronger potential ζ = 370, they are n = 236, 237, . . . . We note here that
for potentials of the kind shown in Fig. 3.26, the resonances are even more
pronounced. We will encounter these again in Chap. 18 when scattering is
discussed.

(a) (b)

Fig. 3.21. The transmission coefficient |S(E)|2 for a potential well for (a) potential
strength ζ = 6 and (b) ζ = 370. Solid curve: |S(E)|2 from (3.108); dotted Lorentz
curve from (3.120)

3.7.1 Analytic Properties of the Transmission Coefficient

We now turn to the properties of S(E) in the complex E-plane. In order to
find the poles of S(E), we must set the denominator to zero, which leads to the
condition cos 2qa = (i/2)(q/k + k/q) sin 2qa. With the identity cot (2qa) =
(cot qa− tan qa)/2 the condition for a pole becomes

cot qa− tan qa =
ik
q

+
iq
k

. (3.112)

This equation is of the form f − f−1 = g− g−1, and it is satisfied if and only
if either

tan qa = − ik
q

(3.113a)

or

cot qa =
ik
q

(3.113b)

holds.
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For E > 0, i.e., for real k and q, there are no solutions of (3.113). If
E < −V0, and thus k and q are both pure imaginary, there are no solutions
either. The region −V0 < E < 0 remains, in which k is imaginary and q is
real. With E = |E|eiϕ,

√
E = |E|1/2eiϕ/2, one obtains for E < 0, i.e., ϕ = π,

k = i
(2m|E|)1/2

�
.

Therefore (3.113a,b) take the form

tan qa =
(2m|E|)1/2

�q
and cot qa = − (2m|E|)1/2

�q
,

which we are already familiar with from the potential well (3.84) and (3.89)
as conditions for the energy eigenvalues of even and odd bound states.

S(E) thus has a pole at the positions of the bound states Eb of the
potential well, i.e., it goes to infinity there. For this property of S(E) there is
a plausible interpretation as well. Because of the pure imaginary wave number
k, the amplitude A of the incident wave must go to zero for negative energy;
otherwise, ψin would be divergent for x → −∞. However, since S(Eb) =
∞ one still has for energy Eb a “reflected” wave for x < −a and and a
“transmitted” wave for x > a, which now falls off exponentially because of
the imaginary k. In the region of the potential, a finite wave function is then
present even without an incident wave ψin, representing the bound state (see
Fig. 3.22).

Fig. 3.22. The wave function of a
bound state: For E → Eb such that,
for A → 0, AS(E) remains finite,
one obtains the bound states at the
poles of S(E) along the negative real
axis

Let us now consider S(E) near the resonances ER:

S(E) e2ika =
1

cos 2qa
1

1 − (i/2)((q/k) + (k/q)) tan 2qa
. (3.114)

At the resonances ER one has 2qa = nπ and therefore

cos 2qa|ER = (−1)n , tan 2qa|ER = 0 .

Taylor expansion of the denominator in E − ER leads to

1
2

(
q

k
+

k

q

)

tan 2qa =
2
Γ

(E − ER) + . . . , (3.115)

where Γ is determined by

2
Γ

=
[
1
2

(
q

k
+

k

q

)
d(2qa)
dE

]

ER

. (3.116)
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Substitution of q and k gives

2
Γ

=
1
2

√
2ma

�

2ER + V0√
ER (ER + V0)

. (3.117)

Finally, for a very deep well (V0 � ER), one gets

2
Γ

≈ 1
2

√
2mV0 a

�

1√
V0ER

=
a

vR�
, (3.118)

where vR =
√

2ER/m is the incident velocity at the resonant energy. One
recognizes that Γ can become very small if |ER| � V0 and ζ � 1 (Eq. (3.78)).
We thus arrive at the following representation of S(E) in the neighborhood
of the resonances:

S(E)e2ika = (−1)n
iΓ/2

E − ER + iΓ/2
. (3.119)

The transmission amplitude S(E) has poles at the complex energy values

E = ER − i
Γ

2
.

Since because of our definition of
√
E the complex plane has a branch cut

along the positive real axis, i.e.,
√
E is discontinuous as one goes from above to

below the positive real axis (
√
E = |E|1/2 for E = |E|, but

√
E = −|E|1/2 for

E = |E| e2πi), S(E), as a function of
√
E, also possesses this branch cut along

the positive real axis. The poles which are related to the resonances belong
to the analytic continuation of S(E) into the second Riemannian sheet.

Fig. 3.23. Poles of S(E)
in the complex energy
plane

The analytic properties of S(E) are summarized in Fig. 3.23. In the first
Riemannian sheet, S(E) has poles at the binding energies of the potential
well, and in the second Riemannian sheet it has poles at the energy values
ER− iΓ/2, which lead to the resonances on the positive real axis. The precise
determination of the poles of S(E) – which can be achieved by continuing
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Fig. 3.24. Equation (3.120) Fig. 3.25. The phase shift (3.122)

the Taylor expansion (3.115) to higher order in the complex plane – shows
that the real part of the poles is displaced somewhat to the left with respect
to ER.

Now we take again E as real. Near resonance, the transmission coefficient
becomes, with (3.119),

|S(E)|2 =
(Γ/2)2

(E − ER)2 + (Γ/2)2
. (3.120)

This function is called the Lorentz curve or Breit–Wigner function. It is
shown in Fig. 3.24. Comparison with the exact form in Fig. 3.21 shows that
the scattering amplitude in the resonance region is represented very precisely
by (3.120). The width of the resonance is determined by Γ . The quantity
S(E) can also be described by a real amplitude and a phase:

S(E) = |S(E)| exp {iδ(E) − 2ika} , (3.120′)

where

tan δ(E) =
Im (S(E)e2ika)
Re (S(E)e2ika)

=
1
2

(
q

k
+

k

q

)

tan (2qa) , (3.121)

so that according to (3.119), near resonance, tan δ(E) = 2
Γ (E − ER), and

thus

δ(E) = arctan
[

2
Γ

(E − ER)
]

. (3.122)

The quantity δ(E), shown in Fig. 3.25, gives the phase shift of the transmitted
wave compared to the incident wave

ψt(x = a) = |S(E)| eiδ(E) ψin(x = −a) .

Here as well, the amplitude and phase show the typical behavior near reso-
nance which is familiar from phenomena of classical mechanics and electro-
dynamics.
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On the basis of our earlier physical considerations, it is clear that reso-
nances also occur for more general potentials, for which one can derive (3.119)
and (3.122) in an analogous fashion. We would now like to investigate how
a particle whose energy is near a resonance behaves under the influence of
such a potential.

3.7.2 The Motion of a Wave Packet Near a Resonance

Let the wave packet incident on the potential be given as the superposition
of plane waves by

ψin(x, t) =
∫ ∞

0

dp

2π�
g(p) exp

{
i
�
(px− E(p)t)

}

, E(p) = p2/2m (3.123)

(the integration is performed only from 0 to ∞, since for x < −a only plane
waves propagating to the right (p > 0) should be superposed). Assuming
that g(p) has a maximum at the value p0 with E(p0) ≈ ER, it follows for the
velocity and the position of the maximum of ψin(x, t) that

v0 = p0/m , x(t) = v0t . (3.124)

According to (3.106d) and (3.120′), the transmitted wave packet then has the
form (p = �k)

ψt(x, t) =
∫ ∞

0

dp

2π�
g(p)

× exp
{

i
�
(px− E(p)t− 2pa + δ(E)�)

}

|S(E)| , x > a. (3.125)

We obtain the center of mass of the wave packet from the stationarity of the
phase according to Sect. 2.10.1:

x(t) = v0t + 2a− d

dp
δ(E)�|p0

= v0t + 2a− �
dE

dp

d

dE
δ(E)|p0 . (3.126)

If we substitute (dE/dp|p0 = v0) and (3.122), it follows that

x(t) = v0t + 2a− � 2/Γ
1 + [(2/Γ )(E(p0) − ER)]2

v0 . (3.127)

We can read off the time the particle spends in the potential well from the
contributions to (3.127). The first term corresponds to free motion without
a potential. The second term corresponds to the infinitely fast transmission
through the potential which would be applicable to a classical particle in a
very deep potential. Finally the last term divided by v0 gives the time spent
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Fig. 3.26. (a) Capture of an α-particle in Pb206. (b) Potential well + Coulomb
barrier

in the well. Just at the resonance E(p0) = E(pR), it is 2�/Γ. For sharp
resonances, as in the potential of Fig. 3.26b, the time spent is very large, and
the resonance becomes similar to a bound state. Hence one calls 2�/Γ the life
time of the resonance. In the potential well considered previously for which
the resonances are not particularly sharp, it follows from (3.118) with the
“internal velocity” vi =

√
2/m(ER + V0)1/2 that the particle oscillates back

and forth in the potential region about (vi2�/Γ )/4a ≈ (1/4)
√

1 + V0/ER

times, before it finally leaves this region due to its positive energy.
Equation (3.127) describes the maximum of the wave packet if the phase

δ(E) does not vary too strongly over the extension of the packet, i.e., when the
spread of the wave packet is small compared to the resonance. In the more
interesting case in which the resonance is much sharper than the incident
wave packet g(p), (3.126) gives only the average position to the right of
the potential. Because of the sharp resonance, the packet is very strongly
deformed. We will discuss this at the end of this section. First, we would
like to discuss several physical applications based on the results thus far.
There are a large number of examples of such quantum mechanical resonance
phenomena.

In nuclear physics, for example, when Pb206 nuclei are bombarded with
α-particles of energy Eα = 5.4 MeV, the element Po210 is formed, which
decays again by α-emission with a half-life of 138 days, corresponding to a
width Γ of 3.8 × 10−23 eV (Fig. 3.26).

Resonances also play an important role in elementary particle physics. In
the scattering of pions from nucleons, π + N → N∗ → π + N, corresponding
to the maximum of the scattering cross section, a temporary bound state of
width Γ ≈ 120 MeV or lifetime τ ≈ 0.5× 10−23 s (Fig. 3.27) is formed. The
resonance can be identified with an elementary particle of finite lifetime. The
J/ψ-particle was discovered in 1974 as a very sharp resonance with the mass

Fig. 3.27. Resonance in π-meson–nucleon scatter-
ing cross section (qualitative)
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Fig. 3.28. The scattering cross sec-
tion for hadron production in electron–
positron scattering as a function of the
center of mass energy Ecm of e− and e+.
The resonance J/ψ represents a bound
state of quarks with the quantum num-
ber “charm”

3.1 GeV by Ting in the elementary particle reaction p+p → e+ +e−+X and
by Richter in the elementary particle reaction e+ +e− → hadrons (Fig. 3.28).
Here, one is dealing with orthocharmonium cc̄, the bound state of one quark
and one antiquark with the quantum number “charm”.

We now return to (3.125). We would like to determine the precise form of
the transmitted wave packet. Here, we assume that the wave packet overlaps
with only one of the resonances and that the width Γ of this resonance is
much narrower than the extension of the wave packet. Then g(p) is practically
constant in the region over which the resonance extends, and we can replace
g(p) by g(pR) (Fig. 3.29), where pR =

√
2mER. We further substitute for

S(E) the Breit–Wigner formula (3.119):

ψt(x, t) ≈ ±ig(pR)

×
∫ ∞

0

dp

2π�
exp
{

i
�
(px− E(p)t− 2pa)

}
Γ/2

E − ER + iΓ/2
.

(3.128)

Fig. 3.29. The wave packet g(p) and a sharp
resonance
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Fig. 3.30. The wave packet at a resonance
after transmission through the potential;
(- - -): exponential envelope

Because of the resonance structure of the second factor in the integrand, we
introduce for the remainder of this discussion the following approximations:

dp =
dp

dE
dE =

m

p
dE ≈ m

pR
dE

and

p ∼= pR +
dp

dE

∣
∣
∣
∣
ER

(E − ER) = pR +
m

pR
(E − ER) ,

where vR = pR/m. The integration over the new variable E is performed
over an interval around the resonance energy which is much larger than Γ .
However, since the denominator in the integrand grows with |E−ER| and the
exponential function oscillates strongly with E at great distances from ER,
we extend the integration from −∞ to +∞ for mathematical convenience,
without making an unacceptably large error. Thus, we finally obtain

ψt(x, t) ≈ ± ig(pR)
Γm

4π�pR
exp
{

i
�
[pR(x− 2a) − ERt]

}

×
∫ +∞

−∞
dE

exp
{

i
�
[(x− 2a)/vR − t](E − ER)

}

E − ER + iΓ/2
.

This integral can now be evaluated with the help of the residue theorem with
the result

ψt(x, t) ∼=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 for x > 2a +
pR

m
t

± g(pR)
Γm

2�pR
exp
{

i
�
[pR(x− 2a) − ERt]

}

× exp
{

− Γ

2�

[

t− m

pR
(x− 2a)

]}

for x < 2a +
pR

m
t

. (3.129)

The fact that, according to (3.129), ψt falls abruptly to 0 at the position
x = 2a + (pR/m) t comes from our extending the integration from −∞
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to +∞. The real part of the wave function is displayed in Fig. 3.30; it is
deformed characteristically compared to the incident wave packet. We re-
call that ψt(x, t) – the transmitted wave function – is confined to x > a.
By (3.124), the maximum of the incident wave packets arrives at the left side
of the potential region at the time t−a = −a/vR. The nonoscillatory part of
ψt is

ψt(x, t) ∝ g(pR)
Γ

2�vR
exp
{−Γ

2�

(

t− t−a − x− a

vR

)}

× Θ((t − t−a)vR − (x− a)) . (3.130)

The total position probability to the right of the potential well is given by

Pt(t) =
∫ ∞

a

dx|ψt(x, t)|2

= |g(pR)|2Γ/�

4vR

(

1 − exp
{−Γ

�
(t− t−a)

})

. (3.131)

The height of the wave front is g(pR)Γ/2�vR. Although it propagates with
velocity vR, the growth of the position probability to the right is only pro-
portional to (1− exp {−Γ (t− t−a)/�}), i.e., the decay rate of the resonantly
bound particle is Γ/�. A resonance is thus an “almost bound state” of the
potential with a finite lifetime �/Γ ; its energy uncertainty is ΔE ≈ Γ/2. We
will encounter the relation between energy and time uncertainty of a state in
the following chapter in a more general context.

The special functions of mathematical physics needed in this and the
subsequent chapters can be found in:

M. Abramowitz and I. Stegun: Handbook of Mathematical Functions (National
Bureau of Standards, Dover Publications, New York 1964)

P. Dennery and A. Krzywicki: Mathematics for Physicists (A. Harper International
Edition, New York 1969)

P. M. Morse and H. Feshbach: Methods of Theoretical Physics, 2 vols (McGraw-
Hill, New York 1953)

V. I. Smirnov: A Course of Higher Mathematics (Pergamon Press, Oxford 1964,
16th revised edition)

A. Sommerfeld: Lectures on Theoretical Physics Vol. 6: Partial Differential Equa-
tions in Physics (Academic Press, New York 1967)

E. T. Whittaker and G. N. Watson: A Course of Modern Analysis (Cambridge

University Press, 1963, 4th ed.)
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Problems

3.1 The Hermite polynomials Hn(x) are defined in (3.25).

(a) Show that e−t
2+2tx is a generating function of the Hermite polynomials, i.e.,

e−t
2+2tx =

∞
X

n=0

tn

n!
Hn(x) .

(b) By taking the derivative of this expression, show the validity of the recursion
relations

H
′
n(x) = 2nHn−1(x)

and

Hn+1(x) = 2xHn(x) − 2nHn−1(x) .

(c) Prove the completeness relation (3.30). Hint: Express Hn(x) and Hn(x
′) in

terms of (3.25) and represent the Gaussian by its Fourier transform.

(d) Show that the Hermite polynomials and hence the wave functions ψn have
n nodes (n simple real zeros) for finite x. Hint: proof by induction, using Rolle’s
theorem.

3.2 (a) Show that coherent states can be written in the form (3.37′′). Hint:
Use (2.47).

(b) Demonstrate that

(ϕα, ϕβ) = e−
1
2 (|α|2 + |β|2)+α∗β

holds.

(c) Prove the relation

Z

d2α

π
ϕα(x)ϕ∗

α(x′) = δ(x− x′) ,

where

d2α = (Re α) (Im α) .

3.3 The classical limit of the harmonic oscillator (see end of Sect. 3.1).

(a) Show using the Stirling formula

n! ≈
√

2πnnne−n for n	 1

that the absolute value of the amplitude αn/
√
n! is maximal for

n0 = |α|2 .

(b) Show that the expectation value 〈n̂〉 of the operator n̂ in the state ϕα is equal
to n0.
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(c) Calculate Δn/〈n̂〉.
(d) Show that in this limit the energy expectation value is

(ϕα,Hϕα) = �ω|α|2 .

Compare this answer with the classical result. See E. Schrödinger, quoted in foot-
note 4.

3.4 In this problem examples of non normalizable and hence unphysical solutions
of the Schrödinger equation of the harmonic oscillator are discussed.

(a) Is ex
2/(2x2

0) an eigenfunction of the operator n̂ = a†a ?

(b) Can you give a divergent eigenfunction of n̂ with eigenvalue 0?

(c) Why don’t these unphysical solutions occur in the algebraic method?

3.5 The state of the art of semiconductor technology allows one to manufacture
hardware in which the electrons move freely in two dimensions (e.g., the yz-plane).
In the third dimension (x-axis), by means of appropriate coatings of material – even
single-atom monolayers are “under control” – very narrow, high potential wells can
be achieved. These lead to a sharp quantization of the motion in this direction.
In this problem, a single, infinitely high potential well (this almost exists) is to be
treated. Imagine that the free motion in the yz-plane has been separated off and
solve the following subproblems.

(a) Determine the eigenfunctions and energy eigenvalues for motion in the infinitely
high potential box

V (x) =

(

0 for x ∈ (−a, a)
∞ otherwise

.

(b) Show that the system of eigenfunctions is complete.

(c) Determine the momentum distribution for a particle in the n-th energy eigen-
state.

3.6 Solve the time independent Schrödinger equation for the potential

V (x) = −�
2
‹

“

ma2 cosh2 x

a

”

.

Hint: Introduce y = x/a, make the ansatz

ψ(y) = eiky ϕ(y) ,

and substitute z = tanh y. The resulting equation can be solved in elementary
fashion by a power series together with a condition for the series to terminate.
Discuss the solutions that occur.
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3.7 (a) Calculate the bound state and the scattering states for the one-dimensional
potential

V (x) = −λ δ(x)
with λ ≥ 0 .

(b) Prove the completeness relation for these states.

3.8 In the manner described in the introduction to Problem 3.5, it is possible to
manufacture “double heterostructures”. Consider as the simplest realization of this
an infinitely high potential well containing a δ-barrier (see schematic figure).

(a) Determine the normalized eigenfunctions and give a formula for the energy
eigenvalues.

(b) Discuss the limiting cases λ→ 0 and λ→ ∞.

(c) Discuss the special case a = b.

3.9 A one-dimensional, narrow Gaussian wave packet is scattered from a high po-
tential barrier V0 of width 2a.

p2
0

2m
� V0 ,

Δp

p0
� 1 .

Compute the time tp required for the packet to penetrate the potential barrier.
Hint: Expand the transmission coefficient in the limit

a
p

2m(V0 − E)/� 	 1 .

Result:

tp =
�√
V0E

3.10 For a general, one-dimensional wave packet

ψ(x, t) =

Z

dp

2π�
g(p) exp{i[px −E(p)t+ �α(p)]/�} ,

whose real weighting function g(p) is symmetric about its maximum at p0 and
which differs substantially from zero only in a region |p − p0| ≤ Δp, calculate
the expectation values 〈p〉, 〈p2〉, 〈x〉, and 〈x2〉. It is advisable to carry out the
computation of the positional uncertainty in the momentum representation.
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3.11 (a) Calculate (ψm, xψn) and (ψm, pψn) for the linear harmonic oscillator.

(b) Calculate (ψm, p
2ψn) and Δp for the linear harmonic oscillator.

3.12 What are the energy levels and the eigenfunctions for a potential of the form

V (x) =

(

∞ x ≤ 0
mω2x2

2
x > 0

?

3.13 Compute the transmission coefficient for the potential barrier

V (x) =

(

V0 for |x| ≤ a

0 for |x| > a

if the energy E exceeds the height V0 of the barrier. Plot the transmission coefficient
as a function of E/V0 (up to E/V0 = 3) for

p

2mV0a2/�2 = 0.75.

3.14 Carry out the integration and expansion leading to (3.74).

3.15 Using the uncertainty relation, find an estimate of the ground state energy of
a particle (mass m) located in a potential V (x) = cx4.

3.16 Using the approximate formula given in (3.73), calculate the transmission
coefficient for electrons from a metal under the action of a large electric field Ex
(“cold emission” or “field emission”).

Use the potential shown in the figure: V (x) = −eExx = e0Exx. Compute the trans-
mission coefficient for Eel = −4.5 eV and for fields Ex = −5×106 V/cm, −107 V/cm,
and −5×107 V/cm. (Remark: This calculation also plays a role in the derivation of
the current–voltage characteristics of a Schottky diode in semiconductor physics.)

3.17 Given a potential V (x) of the form shown in the figure, explain qualitatively
why every energy eigenvalue E with 0 < E < V1 is allowed.
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3.18 A particle of mass m moves in the potential

V (x) = −λ δ(x− a) − λ δ(x+ a) , λ > 0 .

(a) Give the (transcendental) equations for the two bound states of the system and
estimate the difference of their energy levels for large a.

(b) Calculate the transmission coefficient for the above potential for λ < 0.

3.19 Determine the transmission amplitude S(E) for the one-dimensional attrac-
tive δ-potential V (x) = −λ δ(x). Determine the poles of S(E) and discuss their
physical significance.

3.20 Calculate the transmission coefficient S(E) for scattering from the potential

V (x) = −V0Θ(a− |x|) + λ (δ(x− a) + δ(x+ a)) ,

where λ ≥ 0 and Θ(x) is the step function. (The δ-peaks simulate Coulomb barri-
ers in realistic problems.) Investigate the change in the form of the resonances in
comparison with the case λ = 0 and discuss |λ/V0| → ∞.



4. The Uncertainty Relation

4.1 The Heisenberg Uncertainty Relation

4.1.1 The Schwarz Inequality

Theorem 1. For the scalar product of two wave functions, the Schwarz
inequality

|(ϕ, ψ)|2 ≤ (ϕ, ϕ)(ψ, ψ) (4.1)

holds.

Proof:

(i) For ϕ = 0, the inequality is obviously satisfied.
(ii) For ϕ �= 0, we decompose ψ into a part parallel to ϕ and a part perpen-

dicular to ϕ : ψ = zϕ + χ with (ϕ, χ) = 0. It then follows that (ϕ, ψ) =
z(ϕ, ϕ), and thus for the proportionality factor z = (ϕ, ψ)/(ϕ, ϕ). Fur-
thermore,

(ψ, ψ) = (zϕ + χ, zϕ + χ) = z∗z(ϕ, ϕ) + (χ, χ) ≥ z∗z(ϕ, ϕ) .

Substitution of z gives

(ψ, ψ) ≥ |(ϕ, ψ)|2
(ϕ, ϕ)

q.e.d.

The equal sign holds only for χ = 0, i.e., for ψ = zϕ.

4.1.2 The General Uncertainty Relation

Let two Hermitian operators H1 and H2 and an arbitrary state ψ be given.
We define the operators Ĥi by subtracting from Hi the expectation value in
the state ψ:

Ĥi = Hi − 〈Hi〉 = Hi − (ψ,Hiψ) , (4.2)

and we substitute Ĥ1ψ and Ĥ2ψ into the Schwarz inequality (4.1):



98 4. The Uncertainty Relation

(Ĥ1ψ, Ĥ1ψ)(Ĥ2ψ, Ĥ2ψ) ≥ |(Ĥ1ψ, Ĥ2ψ)|2 . (4.1′)

Using Hermiticity, we obtain

(ψ, Ĥ2
1ψ)(ψ, Ĥ2

2ψ) ≥ |(ψ, Ĥ1Ĥ2ψ)|2 . (4.3)

By means of the anticommutator

{A,B} = AB + BA , (4.4)

we decompose the product Ĥ1Ĥ2 into a Hermitian and an anti-Hermitian
part

Ĥ1Ĥ2 = 1
2{Ĥ1, Ĥ2} + 1

2 [Ĥ1, Ĥ2] ,

where

{Ĥ1, Ĥ2}† = {Ĥ1, Ĥ2}
is Hermitian and

[Ĥ1, Ĥ2]† = −[Ĥ1, Ĥ2]

is anti-Hermitian. The expectation value of a Hermitian operator is real, that
of an anti-Hermitian operator is purely imaginary. The decomposition of an
operator into Hermitian and anti-Hermitian parts implies for the expectation
value a decomposition into real and imaginary parts:

|(ψ, Ĥ1Ĥ2ψ)|2 = 1
4 (ψ, {Ĥ1, Ĥ2}ψ)2 + 1

4 |(ψ, [Ĥ1, Ĥ2]ψ)|2 . (4.5)

Since expectation values 〈Hi〉 are ordinary numbers, one has

[Ĥ1, Ĥ2] = [H1, H2] ,

and it thus follows from (4.5) that

|(ψ, Ĥ1Ĥ2ψ)|2 ≥ 1
4 |(ψ, [H1, H2]ψ)|2 . (4.6)

The uncertainty ΔA is defined as the root-mean-square deviation, i.e., the
positive square root of the mean-square deviation (also called variance), which
in turn is defined by

(ΔA)2 = (ψ, (A− 〈A〉)2ψ) . (4.7)

Thus we obtain from (4.3) and (4.6) for the product of the uncertainties

ΔH1ΔH2 ≥ 1
2 |〈[H1, H2]〉| . (4.8)

This inequality represents the general formulation of the Heisenberg uncer-
tainty relation for noncommuting operators. An important special case of
(4.8) is the position–momentum uncertainty relation
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H1 = xi, H2 = pj ,

ΔxiΔpj ≥ �

2
δij . (4.9)

Remark: Under what conditions does the product of the uncertainties attain a
minimum?

In the Schwarz inequality (4.1′), the equal sign holds when

Ĥ2ψ = zĤ1ψ . (4.10)

The equal sign in the estimate of 〈Ĥ1Ĥ2〉 in (4.6) holds when the expectation value
of the anticommutator vanishes:

(ψ, Ĥ1Ĥ2ψ) + (ψ, Ĥ2Ĥ1ψ) = 0 .

Substitution of (4.10) leads to

0 = (ψ, Ĥ1zĤ1ψ) + (zĤ1ψ, Ĥ1ψ) = (z + z∗)(Ĥ1ψ, Ĥ1ψ) ,

that is, z must be pure imaginary. Substituting into (4.10), one finds that the
condition for the state ψ to minimize the uncertainty product ΔH1ΔH2 is

Ĥ2ψ = iλĤ1ψ , λ real . (4.11)

For the operators H1 = x and H2 = p, the differential equation

„

�

i

∂

∂x
− 〈p〉

«

ψ = iλ(x− 〈x〉)ψ (4.12)

results. The solution of this equation is a Gaussian wave packet. At the initial time,

this has a minimal uncertainty product. Depending on the potential, it disperses

more or less rapidly, deforms, and ΔxΔp will no longer be minimal. Only for the

harmonic oscillator do the minimal wave packets coincide with the coherent states

and remain minimal in the course of the time development of the system.

4.2 Energy–Time Uncertainty

The uncertainty relations considered up to now concern fluctuations of ob-
servables at a particular time and result from their commutators. In addition
to these, there are also uncertainty relations concerning energy and time,
whose derivation cannot be given in this simple, formal manner. Here, Δt
usually refers to a time interval, and ΔE to the difference between energies
at times separated by Δt. In any case, one should specify precisely in what
sense these quantities are defined. Since t is only a parameter in quantum
theory, and since the energy at a particular time can be measured with ar-
bitrary precision, it is clear that energy–time uncertainty relations can only
hold in this modified sense. We would like to present a few variants of the
energy–time uncertainty relation.
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4.2.1 Passage Time and Energy Uncertainty

The energy uncertainty of a free wave packet is ΔE = p0Δp/m. We define
the time uncertainty Δt as the time during which the particle can be found
at the position x, i.e., the time that a wave packet with the linear extension
Δx needs to pass through the point x:

Δt =
Δx

v0
=

mΔx

p0
.

With this, the product becomes

ΔEΔt = ΔxΔp � � . (4.13)

The physical meaning of energy–time uncertainty is different from that of,
e.g., position–momentum uncertainty. Position and momentum are observ-
ables to which Hermitian operators are assigned and which are measured at
a particular time t. The time merely plays the role of a parameter. The un-
certainty ΔE of the dynamic variable E in the inequality (4.13) is connected
with a characteristic time interval Δt for changes in the system.

The energy–time uncertainty relation (4.13) can also be found by analyz-
ing a wave packet at a fixed position:

ψ(x, t) =
∫

dp

2π�
ϕ(p) exp

{
i
�
(px− Et)

}

=
∫

dE

2π�
ϕ̃(E, x) exp

{

− i
�
Et

}

.

Here, ψ(x, t) is the Fourier transform of

ϕ̃(E, x) = Θ(E)
∑

± exp
{± i

√
2mEx/�

}× ϕ(±
√

2mE)
√

m/2E

and vice versa, i.e., the energy uncertainty ΔE and the time spent Δt at the
position x are related by (4.13). If ϕ(p) is restricted to positive momenta,
then only the “+” part contributes to ϕ̃(E, x).

4.2.2 Duration of an Energy Measurement
and Energy Uncertainty

An energy measurement with accuracy ΔE requires at least a time Δt =
�/ΔE, for the following reason: The measuring time required to determine
the properties as for instance the energy distribution of a wave packet is at
least as large as the time the packet needs to pass the set up

Δt � Δx

v0
≥ �

Δp v0
=

�

ΔE
.
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Fig. 4.1. Momentum transfer to a pointer

Figure 4.1 shows an idealized momentum or energy measurement. The
measuring apparatus has momentum zero before the measurement; the mo-
mentum transferred to the apparatus (mass M) in the course of the measure-
ment is 2p. The apparatus traverses during the time T a distance 2pT/M .
In order to measure the “pointer displacement”, it must be larger than the
position uncertainty:

2p
M

T > Δx >
�

Δp
=

�(p/M)
ΔEmeas

.

Since the energy uncertainty ΔEmeas of the measuring apparatus is propor-
tional to the energy uncertainty ΔE of the particles (ΔEmeas ≈ ΔE), one
obtains from this inequality

ΔE T = ΔEΔt � � .

4.2.3 Lifetime and Energy Uncertainty

A connection also exists between the average lifetime τ of an excited state
(e.g., an excited atom, a radioactive nucleus, or an unstable elementary par-
ticle) and the energy width ΔE of the particle emitted in the transition:

ΔE ∼ �

τ
. (4.14)

We can see this intuitively from the previous discussion if we regard the
emitted particle as a measuring apparatus which interacts with the unstable
object only during the period τ and therefore acquires the energy difference
of the “bare” (noninteracting) levels only up to the precision �/τ . Quanti-
tatively, this relation follows from time dependent perturbation theory. The
probability of a transition after the time t from energy level E to E′ with the
emission of a quantum of energy ε (Fig. 4.2) is proportional to (see Sect. 16.3)

Fig. 4.2. Transition of an excited state E into
the state E′ and emission of a quantum with
energy ε



102 4. The Uncertainty Relation

sin2

[

(E − (E′ + ε))
t

�

]

/(E − (E′ + ε))2 ;

after a time t, the typical energy difference is

|E − E′ − ε| ∼ �

t
.

If we replace the time by the characteristic lifetime, we then recover (4.14).

4.3 Common Eigenfunctions
of Commuting Operators

Let two Hermitian operators A and B be given. Let the ψn(x) be eigen-
functions of A with eigenvalues an. Let the state of the physical system be
described by the wave function ψ(x), which can be represented in terms of
eigenfunctions of A:

ψ(x) =
∑

n

cnψn(x) .

According to Sect. 2.9, in a measurement of the observable represented by A,
the probability of measuring the eigenvalue an is just |cn|2. For cn = δnn0 ,
one measures with certainty an0 ; i.e., if the system is in an eigenstate of A,
the corresponding observable has a precise value, namely the eigenvalue.

Under what conditions are the ψn(x) eigenfunctions of B as well, and
under what conditions do A and B both have precise values?

Theorem 2. If [A,B] = 0, then A and B have a common set of eigenfunc-
tions.

Proof:

(i) Let ψ be a nondegenerate eigenfunction of A:

Aψ = aψ . (4.15)

Since A and B commute,

ABψ = BAψ

and with (4.15)

A(Bψ) = a(Bψ) .

Since ψ is the only eigenfunction of A with eigenvalue a, Bψ must be pro-
portional to ψ. Let us denote the proportionality factor by b. The result is
then

Bψ = bψ , (4.16)

just the eigenvalue equation of the operator B.



4.3 Common Eigenfunctions of Commuting Operators 103

(ii) Let the eigenvalue a be m-fold degenerate:

Aψj = aψj , j = 1, . . . ,m , (4.17a)

whereby

(ψj , ψk) = δjk . (4.17b)

It then follows from the vanishing of the commutator

ABψj = BAψj

and the eigenvalue equation (4.17a) that

A(Bψj) = a(Bψj) .

Thus, Bψj is also an eigenfunction of A with the eigenvalue a and thus a
linear combination of the functions ψj ; i.e.,

Bψj =
∑

k

Cjkψk with coefficients Cjk = (ψk, Bψj) = C∗
kj . (4.18)

The matrix (Cjk) is Hermitian and can be diagonalized by a unitary trans-
formation U :

U †CU = CD with U †U = UU † = 1l . (4.19)

From this it follows that CU = UCD, or, in components,
∑

j

CijUjk = UikCDk (4.20a)

and
∑

i

U∗
irCik = CDrU

∗
kr . (4.20b)

This means that the kth column vector of the matrix U, i.e.,
⎛

⎜
⎝

U1k

...
Umk

⎞

⎟
⎠ ,

is an eigenvector of the matrix C with eigenvalue CDk.
Multiplying (4.18) by U∗

jr, one finds using (4.20b)
∑

j

BU∗
jrψj =

∑

j,k

U∗
jrCjkψk =

∑

k

CDrU
∗
krψk . (4.21)

The linear combinations

ϕr =
∑

k

U∗
krψk (4.22)
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of the degenerate eigenfunctions ψk therefore represent eigenfunctions of both
A and B. The eigenvalues of B are given by the diagonal elements CDr of
the diagonal matrix CD.

Theorem 3. Let a complete set of eigenfunctions ψn(x), n = 1, 2 . . . of
operators A and B be given, with eigenvalues an and bn, respectively. Then
A and B commute.

Proof:

Since [A,B]ψn = (AB − BA)ψn = (anbn − bnan)ψn = 0, it follows for
arbitrary ψ =

∑
n cnψn that

[A,B]ψ = 0

and thus

[A,B] = 0 .

From Theorem 2 and Theorem 3 it follows that observables represented by
commuting operators can simultaneously possess precise values, such that
measurements of these quantities give unique results. Examples of commuting
operators are x1, x2, x3 or p1, p2, p3 or x1, p2, p3, but not x1, p1.

Definition 1. A complete set of eigenfunctions of the operator A is called a
basis of A.

Definition 2. (Complete set of operators or equivalently complete set of
observables.) The set of Hermitian operators A,B, . . . ,M is called a com-
plete set of operators if these operators all commute with each other and if
the common set of eigenfunctions is no longer degenerate. These eigenfunc-
tions can then be characterized by the corresponding eigenvalues a, b, . . . ,m:
ψa,b, ... ,m.

Remark: If for a given set of operators the eigenstates are still degenerate, there

exists an additional symmetry of these operators and the generator of this symmetry

operation also commutes with this set of operators.

Examples of complete sets of operators are:

– for one-dimensional potentials: x or p,
– for three-dimensional potentials: x, y, z or px, py, pz,
– for three-dimensional spherically symmetric potentials: x, y, z or px, py, pz

or H,L2, Lz,
– for one-dimensional reflection symmetric potentials (V (x) = V (−x)): x

or p or H,P .
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The preceding theorems imply:

Theorem 4. If O is a function of the operators A,B . . . of a complete set,
then the basis of the complete set is also a basis for O.

Theorem 5. An operator O that commutes with a complete set of operators
is a function of these operators.

Since O commutes with the complete set of operators, it also has their
basis

Oψa,b ... = o(a, b, . . . )ψa,b, ... .

Since the operator function o(A,B, . . . ) possesses the same eigenvalues
o(a, b, . . . ), it thus follows that O = o(A,B, . . . ), i.e., O is a function of
the operators A,B . . . .

We return again to the fact that commuting operators have common
eigenfunctions. In such an eigenstate they simultaneously have precise, unique
values, i.e., their eigenvalues. One refers to this by saying that “A and B are
simultaneously measurable”. In a measurement, the system is influenced, and
in general the state is changed. If we consider an observable A with eigen-
functions ψn and eigenvalues an and if the state is given by ψ =

∑
cnψn,

then we measure the value an with the probability |cn|2. After this mea-
surement, the state must have changed to ψn, because only then would any
further measurement again give an. This is called “reduction of the wave
function”. We will analyze this situation in more detail in our discussion of
the Stern–Gerlach experiment as an example of a measurement (Chap. 20).

If A and B do not commute, and if the system is in an eigenstate ψn of A,
then a measurement of A produces the value an. A subsequent measurement
of B will change the state of the system, because after an ideal measurement
whose accuracy allows the unique determination of an eigenvalue of B, the
state of the system will change to the corresponding eigenstate of B. For the
results of a further measurement of A, only probabilistic statements can be
made, which are determined by the expansion of the eigenstate of B thus
obtained in terms of eigenfunctions of A. This explains the above expres-
sion “simultaneously measurable” for commuting operators. Only if A and
B commute can sharp values be assigned to both of them simultaneously
and measurements of the corresponding observables do not disturb (interfere
with) each other. One expresses this also by saying that the two observables
are compatible.
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Problems

4.1 (a) Solve the differential equation (4.12), the condition for a minimal uncer-
tainty product for the operators x and p.

(b) Why isn’t the Gaussian wave packet of a free particle a minimal wave packet
for finite times?

4.2 For a Gaussian wave packet, calculate the energy uncertainty ΔE and ΔEΔt,
where Δt is the characteristic time for the wave packet to pass through the point x.



5. Angular Momentum

For application to centrally symmetric potentials, we would now like to in-
vestigate properties of the angular momentum, which is also decisive in such
problems in classical mechanics.

5.1 Commutation Relations, Rotations

The orbital angular momentum operator is defined in vector and component
form by

L = x × p =
�

i
x × ∇ or Li = εijkxjpk . (5.1)

In the second expression, the Einstein summation convention is employed:
the expression is summed over repeated indices. εijk is the completely anti-
symmetric tensor of the third rank

εijk =

⎧
⎪⎨

⎪⎩

1 for even permutations of (1 2 3)
−1 for odd permutations of (1 2 3)

0 otherwise
.

The following commutation relations hold:

[Li, Lj] = i�εijkLk , (5.2a)
[Li, xj ] = i�εijkxk , (5.2b)
[Li, pj] = i�εijkpk . (5.2c)

One can show this by direct calculation. The similarity of the commuta-
tors (5.2a)–(5.2c) suggests a general reason for this structure, which we would
now like to find. To this end, we first show:

Theorem. The angular momentum L is the generator of rotations.
By this one means that the unitary operator

Uδϕ ≡ exp
{

i
�
δϕ ·L

}

≈ 1 +
i
�
δϕ · L (5.3)

(for small δϕ) generates infinitesimal rotations.
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Proof:

(i) The unitarity of the operator Uδϕ is seen immediately, since by the Her-
miticity of L

U †
δϕ = exp

{

− i
�
δϕ · L

}

= U−1
δϕ (5.4)

holds and thus the relation U †
δϕUδϕ = UδϕU

†
δϕ = 1 is fulfilled.

(ii) One sees that the operator Uδϕ acts as a rotation (Fig. 5.1), by letting it
act on an arbitrary state ψ(x):

Uδϕψ(x) =
(

1 +
i
�
δϕ ·

(

x × �

i
∇
))

ψ(x) = (1 + (δϕ × x) · ∇)ψ(x)

= ψ(x+ δϕ × x)

to first order in δϕ (Taylor expansion). The transformation of ψ(x) is thus

Uδϕψ(x) = ψ(x′) (5.5)

with

x′ = x+ δϕ × x or x′
i = xi + εijkδϕjxk . (5.6)

This in fact represents a rotation, which proves the assertion. We would
like to illustrate this geometrically. For an arbitrary vector v, the rotated
vector is v′ = v + δϕ × v. One can view the rotation actively: The vector
v is transformed by a rotation through δϕ into the vector v′ (Fig. 5.2a), or
passively: The coordinate system S′ results from the rotation of S through
−δϕ (Fig. 5.2b).

Fig. 5.1. Rotation about δφ

We consider the rotation to be a passive transformation. The wave func-
tion ψ(x) is transformed into the wave function ψ(x′) which lies with respect
to the coordinate system S′ just as ψ(x) does with respect to S, as illustrated
by the level curves in Fig. 5.2b.
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Fig. 5.2. v′1 = v1 − δϕv2, v
′
2 = v2 + δϕv1 (a) Active rotation; (b) passive rotation

How do the operators look in the rotated system? We begin with Aψ(x) =
ϕ(x). “Inserting” U †U = 1 and multiplying the equation by U ≡ Uδϕ on
the left, we obtain

UAU †(Uψ(x)) = Uϕ(x) UAU †ψ(x′) = ϕ(x′) .

Thus,

A′ = UAU † (5.7a)

is the operator in the rotated coordinate system, since it has the same action
on the transformed state ψ(x′) as A on ψ(x). Expanding (5.7a) up to first
order in δϕ, it follows immediately that

A′ = A +
i
�
δϕl[Ll, A] . (5.7b)

A few special cases are of general interest.

(i) Let A be a scalar (rotationally invariant) operator. Then A′ = A, and
it follows from (5.7b) that

[Li, A] = 0 for i = 1, 2, 3 . (5.8)

Example: rotationally invariant Hamiltonian H = p2/2m+V (r),L2,p2,
etc.

(ii) Let v be a vector operator. The quantity v transforms as a vector under
rotations according to v′ = v + δϕ × v. Setting this equal to (5.7b)
component by component

vj + εjlkδϕlvk = vj +
i
�
δϕl[Ll, vj ]

shows

[Li, vj ] = i�εijkvk . (5.9)

Examples : L, x, p.

With this, (5.2) is proven in general.
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Remarks:

(i) The unitary operator Uϕe = eiϕe ·L generates a finite rotation about the
unit vector e through the angle ϕ. This follows by decomposition into
a sequence of infinitesimal rotations about e.

(ii) Momentum and translations: We note that the momentum operator
p = (�/i)∇ is the generator of translations

eia ·p/�ψ(x) = ea ·∇ψ(x) = ψ(x+ a) . (5.10)

The middle part of Eq. (5.10) represents the Taylor expansion of ψ(x+a)
around x in compact form. The wave function ψ(x) is shifted by −a.
In the coordinate system S′ which is shifted by −a with respect to S,
i.e., x′

i = xi + ai, the wave function ψ(x+ a) has the same position as
ψ(x) in S. The generators of symmetry operations are summarized in
Table 8.1.

5.2 Eigenvalues of Angular Momentum Operators

The derivations of this section require only the algebraic properties of the an-
gular momentum (the commutation relations (5.2a)) and thus hold not only
for the orbital angular momentum, but for any angular momentum (spin,
total angular momentum). Because different components of the angular mo-
mentum do not commute, they cannot be simultaneously diagonalized; thus,
there is no common basis for all three components. However, since L2 is a
scalar, then according to (5.8) one has

[L2, Li] = 0 for i = 1, 2, 3 , (5.11)

and thus we can diagonalize L2 and one component of L. We would now like
to determine the eigenvalues of the common eigenfunctions of L2 and Lz.

We first define two new operators

L± = Lx ± iLy (5.12)

with the following properties:

(L±)† = L∓ , (5.13a)

[Lz, L±] = i�Ly ± �Lx = ± �L± , (5.13b)

[L+, L−] = −2i[Lx, Ly] = 2�Lz , (5.13c)

[L2, L±] = 0 , (5.13d)
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because of (5.11),

L+L− = L2
x + L2

y − i[Lx, Ly] = L2
x + L2

y + �Lz ,

and therefore

L2 = L2
x + L2

y + L2
z = L+L− − �Lz + L2

z = L−L+ + �Lz + L2
z. (5.13e)

Now let ψlz be an eigenfunction of Lz:

Lzψlz = lzψlz .

With (5.13b) we find

LzL±ψlz = L±Lzψlz ± �L±ψlz ,

and thus

Lz(L±ψlz) = (lz ± �)L±ψlz .

This means that if ψlz is an eigenfunction of Lz with eigenvalue lz, then
L±ψlz is an eigenfunction of Lz with eigenvalue lz ± � or, put more briefly,
L± raises (lowers) the eigenvalue lz by �.

From now on we will denote the eigenfunctions of L2 and Lz by ψlm,
where

L2ψlm = �
2l(l + 1)ψlm , l ≥ 0 ,

Lzψlm = �mψlm . (5.14)

Evidently, we can represent any eigenvalue of the positive semidefinite oper-
ator L2 and of the operator Lz in this form. We know already that L± raises
(lowers) m by 1. From (5.13d) it further follows that

L2(L±ψlm) = L±L2ψlm = �
2l(l + 1)(L±ψlm) .

L±ψlm is thus an eigenfunction of L2 with the same eigenvalue as ψlm.
Further information can be obtained from the normalization using (5.13a),

(5.13e) and (5.14),

(L±ψlm, L±ψlm) = (ψlm, L∓L±ψlm) = (ψlm, (L2 − L2
z ∓ �Lz)ψlm)

= �
2(l(l + 1) −m2 ∓ m) ,

where we assume that ψlm is normalized. From this it follows that

L±ψlm = �

√
l(l + 1) −m(m ± 1)ψl,m± 1 , (5.15)

where the phase factor is set to unity. Since the norm is non-negative,

(L±ψlm, L±ψlm) = �
2(l(l + 1) −m(m ± 1)) ≥ 0 .
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Therefore, the restrictions

for m > 0 : l(l + 1) ≥ m(m + 1) ,

for m < 0 : l(l + 1) ≥ m(m− 1) = (−m) (−m + 1) = |m| (|m| + 1) ,

follow, that is l(l + 1) ≥ |m|(|m| + 1) and thus |m| ≤ l.
Now let l be a fixed value and M the maximal corresponding m. In order

that L+ψlM not be an eigenfunction with the larger eigenvalue M + 1, the
condition L+ψlM = 0 must hold. From the normalization equation above, it
follows immediately that l(l+1) = M(M +1) and therefore M = l. The case
where μ is the minimal m is handled analogously. In order that L−ψlμ not
be an eigenfunction with smaller eigenvalue μ− 1, L−ψlμ = 0 must hold and
thus μ = −l. Now one can obtain all the values of m recursively:

L−ψll ∼ ψl,l−1 , (L−)2ψll ∼ ψl,l−2 , etc. ,

with eigenvalues m = l, l − 1, etc. In order for this to give −l, the equation
l − k = −l must hold, where k is a non-negative integer. With this it follows
that l = k/2. Summarizing, using only the algebraic structure of the commu-
tation relations for angular momentum, we now obtain the following result
for the eigenvalue spectrum:

l = 0, 1, 2, 3, . . . or l = 1
2 ,

3
2 ,

5
2 , . . . (5.16)

with the corresponding values for m

m = l, l− 1, . . . − l + 1,−l .

The angular momentum eigenvalues l are either integral or half integral, and
the eigenvalues m range in integer steps from l to −l.

5.3 Orbital Angular Momentum in Polar Coordinates

We now leave these general considerations and determine the particular eigen-
values and eigenfunctions of the orbital angular momentum. Because of the
intimate connection with rotations it is advantageous to transform to spher-
ical polar coordinates (Fig. 5.3).

With x = rer and

∇ = er
∂

∂r
+ eϑ

1
r

∂

∂ϑ
+ eϕ

1
r sin ϑ

∂

∂ϕ
(5.17)

one obtains after a simple calculation

Lx =
�

i

(

− sin ϕ
∂

∂ϑ
− cos ϕ cot ϑ

∂

∂ϕ

)

, (5.18a)
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Fig. 5.3. Polar coordinates

Ly =
�

i

(

cos ϕ
∂

∂ϑ
− sin ϕ cot ϑ

∂

∂ϕ

)

, (5.18b)

Lz =
�

i
∂

∂ϕ
, (5.18c)

L± = � e± iϕ

(

± ∂

∂ϑ
+ i cot ϑ

∂

∂ϕ

)

, (5.18d)

L2 = −�
2

[
1

sin ϑ

∂

∂ϑ

(

sin ϑ
∂

∂ϑ

)

+
1

sin2 ϑ

∂2

∂ϕ2

]

. (5.18e)

The eigenvalue equations (5.14) are thus as follows:
[

1
sin2 ϑ

∂2

∂ϕ2
+

1
sin ϑ

∂

∂ϑ

(

sin ϑ
∂

∂ϑ

)]

ψlm = −l(l + 1)ψlm (5.19a)

and

∂

∂ϕ
ψlm = imψlm . (5.19b)

For ψlm we use the separation ansatz

ψlm(ϑ, ϕ) = Φ(ϕ)Θ(ϑ) . (5.20a)

From (5.19b) it follows immediately that

Φ(ϕ) = eimϕ . (5.20b)

The continuity of the wave function demands Φ(ϕ + 2π) = Φ(ϕ); for this
reason, m must be an integer and, as a result, l as well, thus:

l = 0, 1, 2, 3, . . . ; m = −l,−l + 1, . . . , 0, . . . , l − 1, l . (5.21)

Substituting ψlm = exp {imϕ}Θ(ϑ) into (5.19a) we obtain the differential
equation

[
1

sin ϑ

∂

∂ϑ

(

sin ϑ
∂

∂ϑ

)

− m2

sin2 ϑ
+ l(l + 1)

]

Θ(ϑ) = 0 , (5.20c)
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whose solutions are well known functions of mathematical physics, so that one
finally gets for the eigenfunctions of the simultaneously diagonalizable opera-
tors L2 and Lz of the orbital angular momentum in the polar representation
the spherical harmonics whose definition and most important properties are
summarized here:

ψlm(ϑ, ϕ) = Ylm(ϑ, ϕ) = (−1)(m+|m|)/2Pl|m|(cos ϑ)eimϕ

×
[
2l + 1

4π
(l − |m|)!
(l + |m|)!

]1/2
. (5.22)

Here, the associated Legendre functions:

Plm(ξ) = (1 − ξ2)m/2
dm

dξm
Pl(ξ) =

(−1)l

2l l!
sinm ϑ

dl+m(sin2l ϑ)
d cosl+m ϑ

(5.23)

enter, where m ≥ 0, ξ = cos ϑ, and where the Legendre polynomials are given
by

Pl(ξ) =
1

2ll!
dl

dξl
(ξ2 − 1)l =

(−1)l

2l l!
dl sin2l ϑ

d cosl ϑ
. (5.24)

The Pl(ξ) are lth order polynomials in ξ, and the Plm(ξ) are thus (l −m)th
order polynomials in ξ, multiplied by (sin ϑ)m. They have l−m nodes in the
interval −1 < ξ < 1.

The Legendre polynomials fulfil the following recursion relations:

(l + 1)Pl+1 = (2l + 1)ξPl − lPl−1 , (5.25a)

(1 − ξ2)
dPl
dξ

= l(Pl−1 − ξPl) . (5.25b)

The lowest Legendre polynomials are

P0 = 1 , P1 = ξ , P2 = 1
2 (3ξ2 − 1) , P3 = 1

2 (5ξ3 − 3ξ) , . . . .

The associated Legendre functions satisfy the differential equation
[

(1 − ξ2)
d2

dξ2
− 2ξ

d

dξ
+ l(l + 1) − m2

1 − ξ2

]

Plm(ξ) = 0 (5.26)

and have the properties

Plm(−ξ) = (−1)l+mPlm(ξ) , (5.27)
∫ +1

−1

dξ Plm(ξ)Pl′m(ξ) =
2

2l + 1
(l + m)!
(l −m)!

δll′ (m ≥ 0) ; (5.28)

in particular, one has

Pl0(ξ) = Pl(ξ) , Pll(ξ) = (2l − 1)!! (1 − ξ2)l/2 . (5.29)

(Double factorial is defined by (2l − 1)!! = (2l− 1)(2l− 3) . . . 1.) From this,
the following properties of the spherical harmonics can be derived:
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Orthogonality:
∫ π

0

dϑ sin ϑ

∫ 2π

0

dϕYlm(ϑ, ϕ)∗Yl′m′(ϑ, ϕ) = δll′δmm′ . (5.30)

Completeness:

∞∑

l=0

+l∑

m=−l
Ylm(ϑ, ϕ)Ylm(ϑ′, ϕ′)∗ = (sin ϑ)−1δ(ϑ− ϑ′)δ(ϕ− ϕ′) . (5.31)

Addition theorem:
l∑

m=−l
Ylm(ϑ, ϕ)Ylm(ϑ′, ϕ′)∗ =

2l + 1
4π

Pl(cos Θ) (see Fig. 5.4) , (5.32)

where cosΘ = cosϑ cosϑ′ + sinϑ sinϑ′ cos(ϕ− ϕ′).

Yl,−m(ϑ, ϕ) = (−1)mYlm(ϑ, ϕ)∗ . (5.33)

A few spherical harmonics explicitly:

Y00 =
1√
4π

; Y10 =

√
3
4π

cos ϑ , Y11 = −
√

3
8π

sin ϑ eiϕ ;

Y20 =

√
5

16π
(3 cos2 ϑ− 1) ,

Y21 = −
√

15
8π

sin ϑ cos ϑ eiϕ , Y22 =

√
15
32π

sin2 ϑ e2iϕ . (5.34)

The corresponding Yl,−m are obtained from the Ylm with the help of (5.33).1

Fig. 5.4. Illustration concerning the
addition theorem for spherical har-
monics

Fig. 5.5. Reflection

1 The angular momentum eigenfunctions can be determined also algebraically as
shown in Appendix C.
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What is the behavior of the Ylm(ϑ, ϕ) under reflection (Fig. 5.5)? The
parity operator P transforms the position vector x into −x, or, acting on
a state ψ, one has Pψ(x) = ψ(−x). The vector −x has polar coordinates
π − ϑ, ϕ + π.

Because of cos (π − ϑ) = − cos ϑ we can write

PYlm(ϑ, ϕ) = Ylm(π − ϑ, ϕ + π) = eimπ(−1)l+|m|Ylm(ϑ, ϕ) , (5.35a)

or

PYlm(ϑ, ϕ) = (−1)lYlm(ϑ, ϕ) . (5.35b)

The Ylm are eigenfunctions of the parity operator with eigenvalues (−1)l,
i.e. Ylm is even for even l and odd for odd l. By (5.30) and (5.31), the
Ylm form a complete orthonormal set of eigenfunctions of the orbital an-
gular momentum operators L2 and Lz. The eigenvalues of L2 are �

2l(l + 1)
with l = 0, 1, 2, 3, . . . . For each fixed value of l, there exist (2l + 1) values
m = −l,−l+1, . . . , l for the eigenvalue of the z-component Lz of orbital an-
gular momentum. The components Lx and Ly are not diagonal in the states
Ylm. They have expectation value zero and the uncertainties ΔLx and ΔLy,
respectively; for the states Yll for example, one has

ΔLx = ΔLy = �

√
l/2 . (5.36)

The states Yll are concentrated mainly in the xy-plane. From (5.36) we see
that the relative fluctuation ΔLx/l decreases as 1/

√
l with increasing l.

States with orbital angular momentum quantum number l = 0 are known
as “s-orbitals”, states with l = 1 as “p-orbitals”, with l = 2 as “d-orbitals”
and with l = 3 as “f -orbitals”.

So-called polar diagrams are often used, in which the value of |Ylm(ϑ, ϕ)|2
= (Θ(ϑ))2 is plotted as a function of angle ϑ (Fig. 5.6); this value can be read
off from the radial distance of the curve from the origin of the diagram. Be-
cause of the ϕ-independence, such representations have rotational symmetry
about the z-axis. The diagrams for m and −m are identical (compare (5.33)).
The functions |Yll|2 (i.e., for maximal values of m!) are strongly concentrated
about the xy-plane.

Linear combinations of the states Ylm are also important. For example,
one refers to (Fig. 5.7)

px =
−1√

2
(Y11 − Y1,−1) =

√
3
4π

sin ϑ cos ϕ ,

py =
−1√
2 i

(Y11 + Y1,−1) =

√
3
4π

sin ϑ sin ϕ (5.37)

as “px-orbitals”, “py-orbitals”, respectively. The “pz-orbital” is identical to
Y10.
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Fig. 5.6. Polar diagrams of the orbital angular momentum eigenfunctions Ylm with
l = 0, 1, 2, 3

Fig. 5.7. Three-dimensional polar representations of the absolute value of the
angular functions for the s-orbital and the three p-orbitals
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Problems

5.1 (a) Show that for the eigenstates of Lz the expectation values of L+, L−, Lx,
and Ly vanish.

(b) Determine the average square deviation (ΔLi)
2 for the components of the

angular momentum operator in the states Yll and check the uncertainty relation.

(c) Show that for the eigenstates of L2 and Lz the expression (ΔLx)
2 + (ΔLy)

2 is
minimal if m = ±l.

5.2 Show that the spherical harmonics satisfy the completeness relation (5.31). Use
the addition theorem and the generating function for the Legendre polynomials

1√
1 − 2u cos ϑ + u2

=
∞
X

l=0

ulPl (cosϑ) ,

and prove that your result has the defining properties of the δ(2)-function.

5.3 Show that (ψ,L2ψ) = 0 also implies (ψ,Lkψ) = 0.

5.4 Show that the relation [a ·L, b ·L] = i �(a × b) ·L holds under the assumption
that a and b commute with each other and with L .

5.5 Show the following:

(a) For a vector operator V (x,p), [L2,V ] = 2i� (V × L − i�V ).

(b) [Li, pj ] = i�εijk pk.

5.6 (a) Find the eigenfunction ψ of L2 and Lx with eigenvalues 2�
2 and �, re-

spectively. (Hint: Represent the eigenfunctions of L2 and Lz of interest in terms of
Cartesian coordinates, and determine ψ by a rotation through π/2.)

(b) Express ψ as a linear combination of eigenfunctions of L2 and Lz.

5.7 Show that the eigenvalues l of the orbital angular momentum are non-negative
integers by showing that the eigenvalues of Lz are integers.
Hint: Express by means of the transformation

xi =

r

�

2mω

`

ai + a†i
´

,

pi = − i

r

�mω

2

`

ai − a†i
´

(with arbitrary m and ω) the operator Lz in terms of creation and annihilation op-
erators. Bring Lz by means of a linear transformation to new annihilation operators
b1 and b2 into the form

Lz = �
`

b†2b2 − b†1b1
´

.

(See also Appendix C.)
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In this chapter, we will consider motion in central potentials. We first re-
duce the time independent Schrödinger equation to a one-dimensional (ra-
dial) problem. We then determine the bound states for the most important
case of an attractive Coulomb potential. Finally, we transform the two-body
problem into a one-body problem with a potential, so that our treatment of
motion in a Coulomb potential also covers the nonrelativistic hydrogen atom.

6.1 Spherical Coordinates

We now study three-dimensional motion in a central-force field, which is
characterized by the fact that the potential energy V (r) only depends on the
distance r = |x| from the origin. The Hamiltonian takes the form

H =
1

2m
p2 + V (r) . (6.1)

In classical mechanics ,

L2 = (x × p)2 = x2p2 − (x · p)2 ,

and thus

p2 =
L2

r2
+ p2

r

holds, if pr ≡ (x/r) · p designates the radial component of the momentum.
On the other hand, in quantum mechanics the noncommutativity of

position and momentum operators must be kept in mind

L2 = x2p2 − (x · p)2 + i�x · p . (6.2)

Remark: This follows from

L2 =

3
X

i=1

L2
i = εijkxjpkεirsxrps = xjpkxjpk − xjpkxkpj

= x2p2 − i�x · p − xjxkpkpj + 3i�xjpj

= x2p2 − i�x · p − xjpjxkpk − i�xjpj + 3i�xjpj ,
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where we have used εijkεirs = δjrδks − δjsδkr, pkxj = xjpk − i�δjk, and pkxk =

xkpk − 3i� in the intermediate steps.

Because of the rotational symmetry of the potential, one transforms to
spherical coordinates. Since by (5.17) the projection of the momentum oper-
ator on the position operator is given by

x · p =
�

i
x · ∇ =

�

i
r
∂

∂r
, (6.3)

it follows from (6.2) that

p2 =
1
r2
L2 − �

2

r2

((

r
∂

∂r

)2

+ r
∂

∂r

)

. (6.4)

If one considers the action on a function f(r), one easily sees that the following
expressions for the differential operator in the second term are equivalent:

1
r

∂

∂r
r
∂

∂r
+

1
r

∂

∂r
=

∂2

∂r2
+

2
r

∂

∂r
=
(

1
r

∂

∂r
r

)2

=
1
r

∂

∂r

∂

∂r
r . (6.5)

With this, (6.4) can be brought into the form

p2 = −�
2

(
∂2

∂r2
+

2
r

∂

∂r

)

+
1
r2
L2 = p2

r +
1
r2
L2 , (6.4′)

where, in contrast to the expression (�/i)∂/∂r that one might naively expect,
the radial component of the momentum operator is given by

pr =
�

i
1
r

∂

∂r
r =

�

i

(
∂

∂r
+

1
r

)

. (6.6)

The operators pr and r obey the commutation relation

[r, pr] =
[

r,
�

i

(
∂

∂r
+

1
r

)]

= i� ; (6.6′)

pr is Hermitian.

Proof of Hermiticity

(i)

Z ∞

0

dr r2ϕ∗ �

i

1

r
ψ = −

Z ∞

0

dr r2
„

�

i

1

r
ϕ

«∗
ψ .

(ii)

Z ∞

0

dr r2ϕ∗ �

i

∂

∂r
ψ =

�

i
r2ϕ∗ψ

˛

˛

˛

˛

∞

0

− �

i

Z ∞

0

dr

„

∂

∂r
r2ϕ∗

«

ψ

=

Z ∞

0

dr r2
„

�

i

∂

∂r
ϕ

«∗
ψ + 2 ·

Z ∞

0

dr r2
„

�

i

1

r
ϕ

«∗
ψ .

The sum (i) + (ii) implies the Hermiticity of pr; (�/i)∂/∂r by itself would not be

Hermitian. In (ii), the boundary conditions of p. 122 were used.
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If we substitute (6.4′) into the Hamiltonian (6.1), we obtain for the time
independent Schrödinger equation

[

− �
2

2m

(
∂2

∂r2
+

2
r

∂

∂r

)

+
L2

2mr2
+ V (r)

]

ψ(r, ϑ, ϕ) = Eψ(r, ϑ, ϕ) . (6.7)

Since we already know the eigenfunctions of L2 we introduce the separation
ansatz

ψ(r, ϑ, ϕ) = R(r)Ylm(ϑ, ϕ) . (6.8)

If this is substituted into the differential equation (6.7), then using (5.14) and
(5.21) a differential equation for the radial part R(r) immediately follows:

[

− �
2

2m

(
∂2

∂r2
+

2
r

∂

∂r

)

+
�

2l(l + 1)
2mr2

+ V (r)
]

R(r) = ER(r) . (6.9)

In the separation ansatz for the wave function, we encounter a general princi-
ple. Since H as a scalar is invariant under rotations, i.e., possesses rotational
symmetry, then according to (5.9), [H,L] = [H,L2] = 0, which means that
H,Lz, and L2 are simultaneously diagonalizable. As in the present situation
in which the conservation of angular momentum L follows from the rota-
tional symmetry of the Hamiltonian, a continuous symmetry always leads to
a corresponding conservation law.

In any case, we now would like to continue the investigation of (6.9),
which, although it depends only on one coordinate, does not yet take the
form of a one-dimensional Schrödinger equation. In order to bring it into this
form, we substitute

R(r) = u(r)/r , (6.10)

and note that by (6.5) one has
(

∂2

∂r2
+

2
r

∂

∂r

)

R(r) =
(

1
r

∂

∂r
r

)2
u

r
=

1
r

∂2

∂r2
u ,

and therefore
[

− �
2

2m
d2

dr2
+

�
2l(l + 1)
2mr2

+ V (r)
]

u(r) = Eu(r) . (6.11)

Thus, the central potential problem has been reduced to a one-dimensional
problem; (6.11) is a one-dimensional Schrödinger equation with the effective
potential (Fig. 6.1)

Veff(r) = V (r) +
�

2l(l + 1)
2mr2

. (6.12)

This is in complete analogy to classical mechanics, in which the central po-
tential is also modified by a repulsive centrifugal term (second term in (6.12)).
We now must determine boundary and normalization conditions for u(r).
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Fig. 6.1. The effective potential of the radial Schrö-
dinger equation for an attractive Coulomb potential

1. From normalizability
∫

d3x|ψ(x)|2 =
∫ ∞

0

dr r2 1
r2

|u(r)|2 < ∞

it follows for bound states that

lim
r→∞ |u(r)| ≤ a

r(1/2+ε)
with ε > 0 .

Thus, u(r) must decrease for large r more strongly with r than 1/
√
r.

2. Behavior for r → 0 : For V (r) �= δ(3)(x), the boundary condition u(0) = 0
must further hold, since otherwise Δψ = ∇2u(0)/r ∼ δ(3)(x)u(0), in
contradiction to (6.11).

6.2 Bound States in Three Dimensions

We now pose the question of what general statements can be made concerning
the existence of bound states. Let us first consider the orbital angular momen-
tum l = 0, where one has Veff(r) = V (r). According to (3.58), the boundary
condition u(0) = 0 means that the equivalent one-dimensional problem has
the potential (Fig. 6.2)

V1(x) =

{
V (x) x > 0
∞ x < 0

.

Fig. 6.2. The effective one-dimensio-
nal potential for l = 0, V1(x). The
eigenfunctions are identical to the
odd eigenfunctions of Ṽ1(x) (dashed)
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As a reference, we also define the symmetric potential Ṽ1(x) ≡ V (|x|). We
know from Chap. 4 that symmetric, one-dimensional problems always possess
at least one even bound state. However, an odd bound state exists only if
the potential reaches a minimum strength. The ground state of the potential
V1(x) coincides, for positive x, with the first excited state, i.e., the lowest odd
bound state of Ṽ1(x). Therefore, V (r) must exceed a minimum strength, in
order that in three dimensions a bound state exist. The centrifugal term is
increasingly repulsive with increasing l. If a potential has no bound state for
l = 0, then it certainly has none for l > 0.

At this point, we would like to gain further information about the behavior
of u(r) from a consideration of the radial Schrödinger equation (6.11) in
limiting cases , before we finally turn to the Coulomb problem in the next
section.

Limit r → 0

For potentials like the Coulomb potential or the square-well potential, the
centrifugal term dominates for decreasing r compared to (V (r) − E), so
that (6.11) becomes

[

− �
2

2m
d2

dr2
+

�
2l(l + 1)
2mr2

]

u(r) = 0 .

This differential equation of second order has the general solution

u(r) = Arl+1 + B r−l .

Because of the boundary condition u(0) = 0, the B term is not permitted, so
that in the limit r → 0 , u(r) → a0r

l+1, and one can in general take

u(r) = rl+1(a0 + a1r + . . . ) . (6.13a)

Remark: For potentials V (r) ∼ 1/r and V (r) ∼ r0 (Coulomb potential, square

well), r = 0 is a “regular singular point” of the differential equation (6.11).1

Limit r → ∞
In this case, Veff is negligible and (6.11) approaches

− �
2

2m
d2

dr2
u = Eu .

For bound states (E < 0) one obtains the solutions exp{± κr} with

κ =
1
�

√
2m(−E) ,

1 See for instance P. Dennery and A. Krzywicki: Mathematics for Physicists
(Harper & Row, New York 1967) or E.T. Whittaker and G.N. Watson: A Course
of Modern Analysis (Cambridge University Press 1963)
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where because of the normalization condition only the exponentially decreas-
ing solution is relevant for u(r), i.e.,

u(r) = Ce−κr for r → ∞ . (6.13b)

This result suggests the introduction of the dimensionless variable � = κr in
the differential equation (6.11)

[
d2

d�2
− l(l + 1)

�2
− V (�/κ)

|E| − 1
]

u(�) = 0 . (6.14)

6.3 The Coulomb Potential

We now make our investigations concrete by considering an electron in the
field of an atomic nucleus. For this purpose we choose for V (r) the Coulomb
potential

V (r) = −e2
0Z

r
, (6.15)

e0 = 4.803 × 10−10 esu (elementary charge). We define

�0 =
e2
0Zκ

|E| =

√
2m
|E|

Ze2
0

�
, (6.16)

and thus
V

|E| = −�0

�
.

Equation (6.14) then becomes
[
d2

d�2
− l(l + 1)

�2
+

�0

�
− 1
]

u(�) = 0 . (6.17)

For u(�) we now make a substitution which takes into account the asymptotic
behavior derived in (6.13a) and (6.13b):

u(�) = �l+1e−�w(�) . (6.18)

Substituting into (6.17), we thus obtain the following second-order differential
equation for w(�):

�
d2w

d�2
+ 2(l + 1 − �)

dw

d�
+ (�0 − 2(l + 1))w = 0 . (6.19)

For w(�) we introduce the power series expansion

w(�) =
∞∑

k=0

ak�
k , (6.20)
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and find from (6.19)

∞∑

k=0

ak[k(k − 1)�k−1 + 2(l + 1)k�k−1

− 2k�k + (�0 − 2(l + 1))�k] = 0 . (6.21)

The coefficients of each power of � must vanish, and thus for �k

[(k + 1)k + 2(l + 1)(k + 1)]ak+1 + [−2k + (�0 − 2(l + 1))]ak = 0 .

This leads to a recursion relation, which allows calculation of the next higher
coefficient ak+1 from ak :

ak+1 =
2(k + l + 1) − �0

(k + 1)(k + 2l + 2)
ak . (6.22)

For convergence, the ratio of successive coefficients in the limit of large k is
crucial. Equation (6.22) gives

ak+1

ak
→ 2

k
for k → ∞ .

If this is compared to the exponential series

e2� =
∞∑

k=0

1
k!

(2�)k ,

in which the ratio of successive coefficients also satisfies

2k+1/(k + 1)!
2k/k!

=
2

k + 1
≈ 2

k
,

one sees that w(�) behaves like e2�. In order that (6.18) not lead to u(r) ∼
e� = eκr for large r, the series must terminate. If the series terminates after
the Nth term, then w(�) is a polynomial of Nth order. The termination
condition aN+1 = aN+2 = . . . = 0 leads, using (6.22), to

�0 = 2(N + l + 1) , N = 0, 1, 2, . . . . (6.23)

The quantity N is called the “radial quantum number”. The energy eigenval-
ues of the bound states of the Coulomb potential result from (6.23) and (6.16):

E = −2mZ2e4
0

�2
0�2

= − mZ2e4
0

2�2(N + l + 1)2
. (6.24)



126 6. The Central Potential I

Table 6.1. Quantum numbers and energy eigenvalues

n = 1 l = 0 (s-orbital) m = 0 E1 (1-fold)

n = 2 l = 0 (s) m = 0

l = 1 (p) m = −1, 0, 1

)

E2 (4-fold)

n = 3 l = 0 (s) m = 0

l = 1 (p) m = −1, 0, 1

9

>

=

>

;

E3 (9-fold)

l = 2 (d) m = −2,−1, 0, 1, 2

n = 4 l = 0 (s) m = 0

l = 1 (p) m = −1, 0, 1

l = 2 (d) m = −2,−1, 0, 1, 2
l = 3 (f) m = −3,−2,−1, 0, 1, 2, 3

9

>

>

>

=

>

>

>

;

E4 (16-fold)

If we introduce the “principal quantum number” n,

n = N + l + 1 , (6.25)

we obtain

En = −mZ2e4
0

2�2 n2
, n = 1, 2, 3, 4, . . . . (6.24′)

The energy eigenvalues En depend only on the combination n = N+l+1. For
a given, fixed n, the angular momentum quantum numbers l = 0, 1, 2, . . . , n−
1 are possible. If one further remembers that for each l there are 2l+1 distinct
values of m, then by

n−1∑

l=0

(2l + 1) = 2
n(n− 1)

2
+ n = n2

the energy eigenvalue En is n2-fold degenerate.
Table 6.1 gives an overview of the assignment of quantum numbers to the

individual energy eigenvalues.
In (6.24) we determined the energy eigenvalues for the Coulomb poten-

tial and, using the recursion relation (6.22), we could also calculate the cor-
responding wave functions. Instead of pursuing this line further, we would
like to establish a connection between the radial Schrödinger equation (6.19)
with the eigenvalues we have found and a differential equation which has
been thoroughly investigated in mathematics, and we will make use of its
known solutions. For this purpose, we multiply (6.19) by 1/2 and, using (6.23)
and (6.25), we substitute �0 = 2n, with the result

(2�)
d2w

d(2�)2
+((2l+1)+1− (2�))

dw

d(2�)
+((n+ l)− (2l+1))w = 0 . (6.26)
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This is the Laguerre differential equation. In order to see this, and for com-
pleteness, we insert a short overview of the most important (for our purposes)
properties of the Laguerre polynomials .

The Laguerre polynomials2 enter as coefficients in the power series expan-
sion of the following generating function:

1
1 − s

exp
{

− x
s

1 − s

}

=
∞∑

r=0

Lr(x)
sr

r!
. (6.27)

Partial differentiation of this relation with respect to x gives

− s

(1 − s)2
exp

{

− x
s

1 − s

}

=
∑

L′
r(x)

sr

r!
,

or, upon substitution of the power series (6.27),

−
∑

Lr
sr+1

r!
=
∑

L′
r(x)

1
r!

(sr − sr+1) .

Finally by comparison of the coefficients of sr,

− 1
(r − 1)!

Lr−1 = L′
r

1
r!

− L′
r−1

1
(r − 1)!

,

one obtains the following recursion relation:

(i) L′
r = r (L′

r−1 − Lr−1) . (6.28)

A second recursion relation results in complete analogy by partial differ-
entiation with respect to s:

(ii) Lr+1 = (2r + 1 − x)Lr − r2 Lr−1 . (6.29)

From the recursion relations, we note (without proof) that the Laguerre
differential equation

xL′′
r + (1 − x)L′

r + r Lr = 0 (6.30)

follows. The associated Laguerre polynomials are given by the definition

Lsr =
ds

dxs
Lr(x) . (6.31)

They can also be represented in the form

Lsr =
ds

dxs
ex

dr

dxr
e−xxr (6.32a)

and are polynomials of order r− s with r− s distinct real zeros. The explicit
representation of these polynomials is

Lsr(x) =
r−s∑

k=0

(−l)k+s
(r!)2

k! (k + s)! (r − k − s)!
xk . (6.32b)

2 When using the literature for Laguerre polynomials one should be aware of the
fact that differing definitions and notations are in use.
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In addition, they obey the normalization relation
∫ ∞

0

dxxs+1e−x[Lsr(x)]2 =
(2r − s + 1) (r!)3

(r − s)!
. (6.33)

If (6.30) is differentiated s times with respect to x using the product rule,
one gets

xLs
′′
r + sLs

′
r + Ls

′
r − xLs

′
r − sLsr + r Lsr = 0 ,

that is, the following differential equation for the associated Laguerre poly-
nomials:

xLs
′′
r + (s + 1 − x)Ls

′
r + (r − s)Lsr = 0 . (6.34)

Now we see by comparison of (6.26) and (6.34) that the w(�) are solutions
of the differential equation for the associated Laguerre polynomials with
s = 2l + 1, r = n + l, that is,

w(�) = AL2l+1
n+l (2�) , � = κ r . (6.35)

One can easily convince oneself that the coefficients (6.32b) of the polynomial
L2l+1
n+l (2�) satisfy the recursion relation (6.22) with (6.23) and (6.25).

Let us summarize: With (6.8), (6.10), (6.18), (6.35) and corresponding
normalization according to (6.33), the bound stationary states of the Coulomb
potential become

ψnlm(r, ϑ, ϕ, t) = e−itEn/� Rnl(r)Ylm(ϑ, ϕ) , (6.36)

where

Rnl(r) =
u(r)
r

= −
[
(n− l− 1)!(2κ)3

2n((n + l)!)3

]1/2
(2κr)l e−κr L2l+1

n+l (2κr) (6.37)

and

κ =

√
2m|E|
�

=
mZe2

0

�2n
,

and thus

κ =
Z

na
, (6.38)

provided the Bohr radius is defined by

a =
�

2

me2
0

= 0.529 × 10−8 cm . (6.39)

According to (6.24′), the corresponding energy eigenvalues are

En = −mZ2e4
0

2�2n2
= − (Ze0)2

2an2
= −mc2

2
α2 Z2

n2
. (6.24′′)
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Here, mc2 = 0.510 98 MeV stands for the rest energy of the electron and

α =
e2
0

�c
=

1
137.037

(6.40)

is the Sommerfeld fine-structure constant .
From this, one obtains for the binding energy in the ground state of the

hydrogen atom (Z = 1), which is equivalent to the negative of the ionization
energy of the hydrogen atom,

E1(Z = 1) = −13.6 eV = −1 Ry (Rydberg) . (6.41)

Since ψnlm(r, ϑ, ϕ, t) was normalized both in the angular and in the radial
part, the orthonormality relation
∫

d3xψ∗
nlmψn′l′m′ = δnn′δll′δmm′ (6.42)

holds.

Remarks:

(i) Due to the properties of the associated Laguerre polynomials, the radial
part Rnl has N = n− l − 1 positive zeros (nodes).

(ii) Rnl does not depend on the quantum number m.
(iii) |ψnlm(r, ϑ, ϕ, t)|2r2dr dΩ expresses the position probability in dr and

dΩ. The radial position probability is obtained by angular integration.
It is the probability of finding the particle in the interval dr at a distance
r from the origin. Because of the normalization of the angular part,
Ylm(Ω), the radial position probability is given by |Rnl(r)|2r2dr .

We give the lowest radial wave functions:

n = 1, l = 0 (“K-shell, s-orbital”):

R10(r) = 2
(
Z

a

)3/2

e−Zr/a

n = 2, l = 0 (“L-shell, s-orbital”):

R20(r) = 2
(

Z

2a

)3/2 (

1 − Zr

2a

)

e−Zr/2a

l = 1 (“L-shell, p-orbital”):

R21(r) =
1√
3

(
Z

2a

)3/2
Zr

a
e−Zr/2a (6.43)
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n = 3, l = 0 (“M -shell, s-orbital”):

R30(r) = 2
(

Z

3a

)3/2 [

1 − 2Zr

3a
+

2(Zr)2

27a2

]

e−Zr/3a

l = 1 (“M -shell, p-orbital”):

R31(r) =
4
√

2
3

(
Z

3a

)3/2
Zr

a

(

1 − Zr

6a

)

e−Zr/3a

l = 2 (“M -shell, d-orbital”):

R32(r) =
2
√

2
27

√
5

(
Z

3a

)3/2(
Zr

a

)2

e−Zr/3a.

One recognizes that the states with l = 0 are finite at the origin, whereas the
states with l ≥ 1 vanish there. The functions Rnl(r) and the radial probability
densities r2 R2

nl are shown graphically in Fig. 6.3.

Fig. 6.3a,b. The radial wave function Rnl(r) for the attractive Coulomb potential
(Z = 1). (a) The radial wave function Rnl. (b) The radial probability density r2R2

nl

The energy levels can be represented conveniently in the form of an energy
level diagram. This is shown for hydrogen in Fig. 6.4.

Atomic spectra arise due to transitions between the discrete levels; in the
hydrogen atom, the energy change in a transition from the initial state m
into the final state n is given by

�ωmn = Em − En = 1 Ry
(

− 1
m2

+
1
n2

)

. (6.44)

We have thus found the quantum mechanical basis for the combination princi-
ple formulated by Ritz in 1905. The best known spectral series, characterized
by the particular final state (n) of the transition, are given for the hydrogen
atom in Table 6.2.
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Fig. 6.4. The energy level
diagram for the Coulomb po-
tential

Table 6.2. Spectral series of the H-atom

Series Final state Orbitals of Characteristic
transition wavelength

Lyman n = 1 p → s Ultraviolet about 100 nm

Balmer n = 2 s → p Ultraviolet up to
visible (400–600 nm)

Paschen n = 3 d → p

Bracket n = 4 f → d

9

>

=

>

;

Infrared

Pfund n = 5 (1000–7000 nm)

The energy eigenvalues of the Coulomb Hamiltonian exhibit, as we saw
earlier, multiple degeneracy in the quantum numbers l and m. To what degree
does this depend on the special features of the physical situation investigated
here?

(a) For central potentials, i.e., whenever V = V (r), the energy eigenval-
ues are always independent of m.

To this end, we consider a rotationally symmetric Hamiltonian, that is
[H,Li] = 0 for i = 1, 2, 3. In this case, H,L2, and Lz are simultaneously
diagonalizable, i.e., they have common eigenfunctions, and in addition one
has [L±, H ] = 0. Let ψ. lm be an eigenfunction3 of H : Hψ. lm = Eψ. lm. We
now operate on this equation with L+.

HL+ψ. lm = L+Hψ. lm = EL+ψ. lm ,

3 The dot refers to further quantum numbers of H , e.g. n in the case of the
Coulomb potential.
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or, because

L+ψ. lm ∝ ψ. lm+1 ,

Hψ. lm+1 = Eψ. lm+1 .

However, this implies that if ψ. lm is an eigenfunction with the eigenvalue E
then this also holds for ψ. lm+1. Thus, as a consequence of rotational symme-
try, the energy eigenvalues are independent of m, as one sees in elementary
fashion on the basis of the m-independence of the radial Schrödinger equa-
tion (6.9).

(b) The degeneracy of the energy eigenvalues with respect to l represents
a specific property of the 1/r-potential.

The reason for this is that for the Coulomb potential the Lenz vector

A =
1

2m
(p × L−L × p) − e2

0

r
x

is an additional conserved quantity (A·L = L·A = 0; [A, H ] = 0). Classically
the implication of this is that the major axis of the elliptical orbit is spatially
fixed.

The degree of degeneracy of the energy eigenvalues was determined ear-
lier as n2; if one additionally takes into account the double occupancy of
each state by two electrons of opposite spin, this becomes 2n2. In line with
spectroscopic notation, we will later designate the 2 (2l+1) states with fixed
values of n and l as a “shell”.

The position expectation values and uncertainties in the eigenstates of the
Coulomb Hamiltonian are also of interest. One obtains for the expectation
value of the radial distance in the state ψnlm, using the recursion relation for
the Laguerre polynomials,

〈r〉nl =
∫

d3x ψ∗
nlmrψnlm =

1
2

a

Z
(3n2 − l(l + 1)) . (6.45)

In particular, 〈r〉n,n−1 = (a/Z)n (n + 1/2).
Analogously,

〈r2〉n,n−1 =
a2

Z2
n2(n + 1)

(

n +
1
2

)

. (6.46)

For the state ψn,n−1,m this gives a radial uncertainty of

Δr =
√
〈r2〉n,n−1 − (〈r〉n,n−1)2 =

an

Z

√
1
2

(

n +
1
2

)
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and thus a relative fluctuation of

Δr

〈r〉n,n−1
=

1√
2n + 1

. (6.47)

One sees that for n → ∞ , this fraction approaches 0, i.e., the orbitals are
very well defined for high energies.

The states with angular momentum quantum number l = 0 are propor-
tional to

ψn00 ∝ e−κrL1
n(2κr) .

They have n − 1 nodes and are non vanishing at r = 0 (ψn00(0, ϑ, ϕ) �= 0).
Additionally, the states ψn00 are independent of angle, i.e., spherically sym-
metric, because of Y00(ϑ, ϕ) = 1/

√
4π, whereas classically motion with orbital

angular momentum L = 0 runs along a straight line through the center.
In contrast, according to (6.37), the states with maximal orbital angular

momentum, i.e. l = n− 1, have the radial dependence

Rn,n−1(r) =
(2κ)3/2

((2n)!)1/2
(2κr)n−1e−κr, (Fig. 6.5).

Fig. 6.5. A radial eigenfunction with maximal l,
shown here for n = 5

The maximum of the radial probability density

p(r) =
∫

dΩr2|ψn,n−1,m|2 = C r2n e−2κr

is found by differentiation

dp(r)
dr

∝ r2ne−2κr

(
2n
r

− 2κ
)

,

to be at the position r0 = n/κ = n2a/Z; this value grows with increasing n.
In addition, we calculated in (6.47) the relative fluctuation, which falls off
with increasing n. Classically, for a given energy, the orbits with maximal
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orbital angular momentum L are circular. By superposition of the states
ψn,n−1,n−1 for large n, one can construct wave packets which represent ex-
actly the classical circular orbits and fulfill Kepler’s third law (radius ∝ n2

0,
orbital period ∝ n3

0; see the end of this section).
Whereas L2 and Lz assume well defined values in the eigenstates ψnlm,

this is not true of the angular momentum components Lx and Ly. Because
of the symmetry properties of the ψnlm in angular coordinates, one finds for
the expectation values

〈Lx,y〉l,m = (ψnlm, Lx,yψnlm) = (Ylm, Lx,yYlm) = 0 . (6.48)

With L2
x + L2

y = L2 − L2
z one further obtains

〈L2
x〉l,m = 〈L2

y〉l,m =
(
Ylm, L2

xYlm
)

= 1
2

(
Ylm,

(
L2 − L2

z

)
Ylm
)

= 1
2�

2[l(l + 1) −m2]

and hence

ΔLx = ΔLy =
√
〈L2

y〉l,m − 〈Ly〉2l,m = �

√
l(l + 1) −m2

2
. (6.49)

The uncertainties therefore do not vanish here, but they are minimal for
|m| = l

ΔLx
∣
∣
l,± l

= ΔLy
∣
∣
l,± l

= �

√
l/2 , (6.50)

that is, as expected, in the states with the strongest z-orientation of the
orbital angular momentum. For large l, the relative fluctuation becomes

ΔLx
〈L2〉1/2 ∼ l−1/2 .

In order to get a feeling for atomic orders of magnitude, we now show that
we can obtain the ground state energy and the Bohr radius by minimizing
the energy while taking into account the uncertainty relation. With the help
of the uncertainty relation, one can estimate the ground state energy without
further knowledge of what the state looks like. If in the Hamiltonian

H =
p2

2m
− e2

0Z

r

p is replaced by Δp and r by Δr, then with the help of the uncertainty
relation (ΔpΔr ≈ �) the result is

E =
�

2

2m(Δr)2
− e2

0Z

Δr
.
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Differentiating,

dE

d(Δr)
= − �

2

m(Δr)3
+

e2
0Z

(Δr)2
,

one determines the position of the energy minimum to be

(Δr)0 =
�

2

me2
0 Z

=
a

Z
,

and then the minimal energy compatible with the uncertainty relation takes
the value

Emin =
�

2

2m(Δr)20
− e2

0Z

(Δr)0
= −mZ2e4

0

2�2
,

which (remarkably) is in complete agreement with the ground state energy
calculated exactly.

We add a few remarks concerning the characteristic lengths that arise
in the atomic domain and their connection with the fine-structure constant
α = e2

0/�c. These are:

(i) the Compton wavelength

λ̄c =
�

mc
,

which entered in Chap. 1 in the scattering of γ-quanta from electrons,
and which also can be interpreted as the de Broglie wavelength of highly
relativistic electrons;

(ii) the Bohr radius (6.39) as the characteristic extension of atomic electron
states

a =
�

2

me2
0

=
1
α
λ̄c ;

(iii) the typical wavelength 2πλ̄ of the light emitted in quantum transitions.
At a transition energy of the order ΔE = e2

0/a, corresponding to a
frequency of ω = ΔE/�, one gets

λ̄ =
1
k

=
c

ω
=

c�

ΔE
=

c�a

e2
0

=
a

α
;

(iv) the classical electron radius defined by e2
0/re = mc2; thus

re =
e2
0

mc2
= αλ̄c .

For these four quantities, the sequence of ratios can be given as

re : λ̄c : a : λ̄ = α3 : α2 : α : 1 .
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From the uncertainty relation, the typical velocity of the electron in the
atom is v = Δp/m = Z�/am = Zαc.

In our treatment of the Coulomb potential in the above sections, we have
occasionally referred to the hydrogen atom. To what extent is this justified?
Indeed, it turns out that in very accurate experiments, deviations were dis-
covered which result from the following effects, which will be treated in later
chapters.

(i) First of all, the hydrogen atom is a two-body system consisting of a
nucleus of mass mN and an electron. In the next section we will show
that the transformation to center-of-mass and relative coordinates leads
to a one-body problem with the reduced mass

μ =
mmN

m + mN
=

m

1 + m/mN
.

In hydrogen, this gives a correction in the fourth decimal place, that
is, 1 + me/mN = 1.00054463, whereas for example in positronium the
change is considerable: mN = me+ = me, and therefore μ = me/2 .

(ii) Relativistic effects give rise to the so-called “fine structure” and are of
order α2 in comparison to the original levels. These include the relativis-
tic correction to the electron mass, the Darwin term and the spin–orbit
coupling (Chap. 12).

(iii) The Lamb shift, a quantum electrodynamic phenomenon, is of order
α3 lnα in comparison to the original energy levels.

(iv) The hyperfine structure, which results from the interaction between the
electron and the nuclear spin, is smaller by a factor of about me/mN

≈ 1/2000 than the fine structure.

Time dependence: circular Keplerian orbits. We now discuss the classical limit
mentioned on p. 133 more precisely and in particular we derive Kepler’s third law
of planetary motion from quantum theory. Considering our experience with the
classical limit of the harmonic oscillator at the end of Sect. 3.1, we expect that
we have to construct a superposition of states with large quantum numbers. We
restrict consideration to circular orbits. In classical mechanics, circular orbits have
the maximal allowed angular momentum corresponding to a given energy. This
means that we must superimpose states ψn,n−1,n−1(r, ϑ, ϕ), since l = n − 1 is the
maximal angular momentum quantum number to n. Moreover, we know from (5.36)
that the orbital plane is best defined for m = l, and therefore we have set m = n−1.
We thus arrive at the following superposition:

ψ(r, ϑ, ϕ, t) =
X

n

c′n ψn,n−1,n−1 (r, ϑ, ϕ) e −itEn/� . (6.51)

Suppose that the coefficients c
′
n have their maximum at some large value n0 and

are concentrated about this value. We write

n = n0 + ε
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and expand the quantities occurring in (6.51) in ε, which according to the above
assumption is small compared to n0. In particular, we obtain for the energy eigen-
values (6.24′) of the hydrogen atom (Z = 1 and Ry = me40/2�

2)

En = −Ry
1

n2
= −Ry

` 1

n2
0

− 2ε

n3
0

´

+ O (ε2)

and for the wave packet

ψ(r, ϑ,ϕ, t) =
X

ε

c′n
1√

πn!nna3/2

`− r

a
sin ϑ

´n−1
e−r/na

× exp

j

i (n0 + ε− 1)ϕ+ i
tRy

�

„

1

n2
0

− 2ε

n3
0

«ff

, (6.51′)

where we have used (C.9). From (6.51′) it is again clear that for large n0 the
wave packet is completely concentrated within ϑ = π/2. We now absorb all the
normalization constants into a new expansion coefficient cε and get for the radial
and angular dependence of the wave packet in the orbital plane (ϑ = π/2)

ψ

„

r,
π

2
, ϕ, t

«

∝
X

ε

cε r
n−1 e −r/na exp

j

i ε

„

ϕ− 2 Ry

�n3
0

t

«ff

. (6.52)

By appropriate choice of cε, e.g., a Gaussian, one obtains a wave packet having
the form ψ(r, π/2, ϕ, t) = g(ϕ− tν) with respect to azimuthal angular dependence
and circulating with the frequency ν = 2Ry/�n3

0. Concerning the permissibility
of superimposing energy eigenstates with distinct principal quantum numbers, we
note that

〈r〉n,n−1 =
a

Z
n

„

n+
1

2

«

, (6.53)

which yields in the limit of large n

〈r〉n+1,n − 〈r〉n,n−1

〈r〉n,n−1
=

2n+ 3/2

n2 + n/2
≈ 2

n
→ 0 . (6.53′)

For large n0 and ε� n0 the relative uncertainty of the orbital radius is vanishingly
small.

We can summarize the result as follows. We obtain wave packets moving on

circular orbits and sharply concentrated with respect to both r and ϕ. The orbital

radius is 〈r〉 = an2
0, and the orbital period is ν = 2Ry/�n3

0. Hence, we have derived

Kepler’s third law from the classical limit of quantum mechanics. This result is of

interest for Rydberg states of the hydrogen atom. Of course, it is also instructive

to go from the Coulomb interaction to the gravitational interaction by e20 →MmG

(G is the gravitational constant, M and m are the mass of celestial bodies such as

the sun and a planet). One can apply the result to planetary motion and compute,

for example, n0 for the earth or for a satellite orbiting the earth and estimate

the aforementioned uncertainties. We have restricted consideration here to circular

orbits; the calculation of quantum mechanical wave packets in elliptical orbits turns

out to be more complicated.4

4 M. Nauenberg: Phys Rev. A 40, 1133 (1989); J.-C. Gay, D. Delande, A. Bommier:
Phys. Rev. A 39, 6587 (1989).
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6.4 The Two-Body Problem

If we consider the motion of an electron about the atomic nucleus or that
of the earth about the sun, then (forgetting for the moment about other
electrons or planets) we are faced with a two-body problem. In general, the
Hamiltonian of a two-body problem involves the sum of the kinetic energies
of both particles and their interaction, which is assumed to depend only on
the separation vector:

H =
p2

1

2m1
+
p2

2

2m2
+ V (x1 − x2) . (6.54)

Since the potential here depends only on the relative separation, one intro-
duces relative and center-of-mass coordinates in the form

xr = x1 − x2 ; pr = μ(v1 − v2) =
m2p1 −m1p2

m1 + m2

xcm =
m1x1 + m2x2

m1 + m2
; pcm = p1 + p2 (6.55)

with reduced mass

μ =
m1m2

m1 + m2
(6.56a)

and total mass

M = m1 + m2 . (6.56b)

Since [xνi, pμj ] = i�δijδνμ (ν, μ = 1, 2 particle index; i, j = 1, 2, 3 Cartesian
component index), the canonical commutation relations also hold for pr, pcm

and xr, xcm:

[xri, prj] = i�δij = [xcmi, pcmj ] , (6.57)

while the remaining commutators of these operators vanish. It follows from
this property that the momentum operators pr and pcm satisfy

pr =
�

i
∇r , pcm =

�

i
∇cm . (6.58)

As in classical mechanics, one has

p2
1

2m1
+
p2

2

2m2
=
p2

r

2μ
+
p2

cm

2M
, (6.59)

so that using (6.54) one obtains for the time independent Schrödinger equa-
tion for the two-body problem
[
p2

r

2μ
+
p2

cm

2M
+ V (xr)

]

ψ(xr,xcm) = Êψ(xr,xcm) . (6.60)



6.4 The Two-Body Problem 139

Since the potential depends only on xr, the separation ansatz

ψ(xr,xcm) = eikcm ·xcmψ(xr) (6.61)

brings (6.60) into the form
[
p2

r

2μ
+ V (xr)

]

ψ(xr) = Eψ(xr) (6.62)

with the energy eigenvalues E = Ê − �
2k2

cm/2M or

Ê = E +
�

2k2
cm

2M
. (6.63)

By the introduction of relative and center-of-mass coordinates, the two-body
problem has thus been successfully reduced to a one-body problem: (6.62)
corresponds precisely to the situation discussed earlier, which was represented
by the Hamiltonian (6.1). Here, we have separated off the free motion of the
center-of-mass with energy Ecm = �

2k2
cm/2M and wave function

ψcm(xcm, t) = exp
{

− i
�
Ecmt + ikcm · xcm

}

.

Aside from the trivial term Ecm in the energy eigenvalues Ê, a modification of
the earlier one-particle energy eigenvalues E also enters, in that the reduced
mass μ replaces the particle mass m in (6.62). With this modification, we can
therefore apply the results of Sect. 6.3 to the nonrelativistic hydrogen atom.

Similarly, one may start from the time dependent Schrödinger equation

i�
∂

∂t
ψ(xr,xcm, t) = Hψ(xr,xcm, t) (6.64)

and introduce the separation ansatz

ψ(xr,xcm, t) = ψr(xr, t)ψcm(xcm, t) , (6.65)

where ψcm(x, t) is a solution of the center of mass Schrödinger equation

i�
∂

∂t
ψcm(xcm, t) = − �

2

2M
∇2

cmψcm(xcm, t) . (6.66)

This leads to

i�
∂

∂t
ψr(xr, t) =

[
p2

r

2m
+ V (xr)

]

ψr(xr, t) . (6.67)

for the relative motion.
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Problems

6.1 To the Coulomb problem: Derive the differential equation for w(�), (6.19) start-
ing from (6.17).

6.2 Show that for the associated Laguerre polynomials

Lsr(x) = (d/dx)s Lr(x) ,

Lr(x) = ex (d/dx)r e−xxr ,

the following relations hold:

(a) Lsr(x) =

r−s
X

k=0

(−1)k+s
[r!]2xk

k! (k + s)! (r − k − s)!
,

(b)
(−1)m e−xt/(1−t)

(1 − t)m+1
=

∞
X

n=0

tr

(r +m)!
Lmr+m(x) .

6.3 Prove the following recursion formula for the matrix elements of rk

〈rk〉 = 〈nl|rk|nl〉
in the hydrogen atom:

(k + 1)

n2
〈rk〉 − (2k + 1)a〈rk−1〉 +

k

4

ˆ

(2l + 1)2 − k2
˜

a2〈rk−2〉 = 0 .

Hint: It is easier to formulate the equation first for the dimensionless variable � = κr
with κ =

√−2mE/� and, for the computation of the 〈�k〉, to begin with the
differential equation

»

d2

d�2
− l(l + 1)

�2
+

2n

�
− 1

–

u(�) = 0 .

Multiplying this equation by �k+1 u′
nl(�) and �ku , respectively, and partially inte-

grating, you can prove the claim.

6.4 Calculate the following expectation values for the hydrogen atom:

(a) 〈nl|r2|nl〉 ,

(b) 〈nl|r|nl〉 ,

(c) 〈nl|r−1|nl〉 ,

(d) 〈nl|r−2|nl〉 ,

(e) 〈nl|r−3|nl〉 ,

(f) 〈nlm|δ(3)(x)|nlm〉 .

Note concerning (a–e): Consider the recursion formula proven in the preceding
exercise. You then need only compute one expectation value directly.

6.5 Determine the probability density of the momentum values for the ground state
of the hydrogen atom.
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6.6 Calculate the electrostatic potential of a charge distribution corresponding to
the probability density of the hydrogen electron in the ground state. Be sure to
take the nuclear potential into account, and use the Poisson equation.

6.7 The potential acting on an electron near the surface of liquid helium can be
approximately described by the sum of an infinitely high potential threshold (repul-
sive action of the He-surface) and an attractive potential due to the mirror charge
(problem of a point charge in front of a dielectric half-space)

V (x) =

8

<

:

∞ for x ≤ 0

− Ze2

x
for x > 0

.

Here, x is the coordinate of the electron perpendicular to the surface, and Z =
(ε− 1)/4(ε+ 1), where for He ε = 1.05723 .

(a) Determine in analogy to the H-atom the energy eigenstates and eigenvalues.

(b) Give the value of the ground state energy.

Hint: Separate variables with respect to the coordinate x and the coordinates par-
allel to the surface.

6.8 (a) Determine the quantum number n0 corresponding to the motion of the
earth about the sun.

(b) Determine the radial uncertainty.
Hint: Approximate the earth’s orbit by a circular orbit.

6.9 (a) Show that the parity operator P is a Hermitian operator.

(b) Show that P 2 = 1 and [H,P ] = 0 for a particle in a central potential.

(c) What are the eigenvalues of the parity operator for the eigenfunctions of

the one-dimensional harmonic oscillator?

6.10 Express
−�

2

2m1
∇2

1− �
2

2m2
∇2

2 in terms of relative and center-of-mass coordinates.

6.11 Compute (Δr)2 (Δpr)
2 for the ground state of the H-atom, i.e., for ψ1,0,0 .

6.12 Compute 〈z2〉 and 〈z2〉/〈r〉2 for ψn,n−1,n−1 .

6.13 The Hermitian vector operator A corresponding to the Lenz vector is

A =
1

2m
(p ×L −L × p) − Ze2

r
r .

Show that A† = A and that A, as in classical theory, is a constant of motion and
is normal to L, i.e.,

[A, H ] = 0 , A ·L = L ·A = 0 ,

where H is the Hamiltonian of the hydrogen atom.
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7.1 The Hamiltonian

We now consider a particle of mass m and charge e in an electromagnetic
field. The representation of the field by the vector potential A and the scalar
potential Φ

E = −1
c

∂A

∂t
− ∇Φ ; B = ∇ × A (7.1)

and the classical Hamiltonian

H =
1

2m

(

p− e

c
A(x, t)

)2
+ eΦ(x, t) (7.2)

is known from electrodynamics. By the correspondence principle (Sect. 2.5.1),
the replacement of p by the momentum operator turns (7.2) into the Hamil-
tonian operator, and the time dependent Schrödinger equation takes the form

i�
∂

∂t
ψ =

[
1

2m

(
�

i
∇ − e

c
A

)2
+ eΦ

]

ψ . (7.3)

Expanding the square on the right-hand side of the Schrödinger equation,
one obtains for the mixed term

− �e

2imc
(∇ ·A+A · ∇)ψ =

ie�
mc
A · ∇ψ ,

where the Coulomb gauge condition1 ∇ ·A = 0 has been imposed. The result
in this gauge is

i�
∂

∂t
ψ = − �

2

2m
∇2ψ +

i�e
mc
A · ∇ψ +

e2

2mc2
A2ψ + eΦψ . (7.3′)

1 We recall that in the Coulomb gauge the wave equations take the form

∇2Φ = −4π� �A =
4π

c
j − 1

c
∇ ∂

∂t
Φ =

4π

c
jtrans ,

where
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7.2 Constant Magnetic Field B

For a constant magnetic field B, the vector potential can be written as

A = − 1
2 [x × B] , (7.4a)

since

(curl A)i = εijk∂j(− 1
2εkstxsBt) = εijkεkjt(− 1

2 )Bt = Bi . (7.4b)

Let us now consider more carefully in this special case the terms in (7.3′)
that depend on the vector potential. The second term in the Schrödinger
equation (7.3′) has the form

i�e
mc
A · ∇ψ =

i�e
mc

(− 1
2 )(x × B) · ∇ψ

=
i�e
2mc

(x × ∇) ·Bψ = − e

2mc
L ·Bψ ,

where L is the orbital angular momentum operator. With (7.4), the third
term in the Schrödinger equation (7.3′) can also be written in the form

e2

2mc2
A2ψ =

e2

8mc2
(x × B)2ψ =

e2

8mc2
(x2B2 − (x ·B)2)ψ

=
e2B2

8mc2
(x2 + y2)ψ ,

where without loss of generality B ‖ ez has been imposed. The second
term (−e/2mc)L ·B contributes to paramagnetism, whereas the third term
e2B2(x2 + y2)/8mc2 is responsible for diamagnetism.

We now compare the order of magnitude of these two terms for electrons
in atoms:

(e2/8mc2)〈x2 + y2〉B2

| − (e/2mc)〈Lz〉B|
∼= e0

4c
a2B2

�B
=

e2
0

4�c

B

e0/a2

= 1.1 × 10−10 B (in gauss) .

Here, 〈x2 + y2〉 ∼ a2, involving the Bohr radius, and 〈Lz〉 ∼ � have been
used.

� =
1

c2
∂2

∂t2
− ∇2 (D’Alembert operator)

and

jtrans =
1

4π
∇ × ∇ ×

Z

d3x′ j

|x − x′| .

As has been done up to now, all calculations are performed in the cgs system.
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The order of magnitude is the fine-structure constant times the ratio of
B to atomic electric field strengths. Experimentally, fields of about 105 G are
achievable. Thus, the quadratic term in A is negligible whenever 〈Lz〉 �= 0.
Therefore, under laboratory conditions, diamagnetic effects are smaller than
paramagnetic effects for electrons bound in atoms. However, there do exist
situations in which the diamagnetic and paramagnetic terms can be of com-
parable magnitude. This is the case for metal electrons, and in particular for
free electrons a comparison of the susceptibilities for Landau diamagnetism
and Pauli paramagnetism yields

χLandau = − 1
3χPauli .

The diamagnetic term is also important in the treatment of matter under
conditions such as those prevailing on the surfaces of neutron stars: there,
fields up to 1012 gauss occur, which leads to a considerable change in the
atomic structure. (See also the end of Sect. 14.1.)

Finally, we would like to compare the paramagnetic term with the
Coulomb energy:

(−e/2mc)〈Lz〉B
e2/a

∼= (−e/2mc)�B
e2/a

=
a2αB

2e0

= 2 × 10−10 B (in gauss) ,

i.e., the change in the energy levels due to laboratory fields is very small.

7.3 The Normal Zeeman Effect

The estimates of Sect. 7.2 suggest that we take as a Hamiltonian for the
hydrogen atom in a constant magnetic field

H = H0 − e

2mc
BLz , (7.5)

where the magnetic field is chosen parallel to the z-axis. Here, H0 is the
Coulomb Hamiltonian [(−�

2/2m)∇2 − e2
0/r], whose eigenfunctions ψnlml

we
know.2 How does the total Hamiltonian (7.5) act on ψnlml

?

2 To avoid confusion with the particle mass we use ml here for the eigenvalue of
Lz/� instead of m as in previous chapters. Because of (7.7) one calls ml also the
magnetic quantum number.
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Hψnlml
=
(

−Ry
n2

− e�B

2mc
ml

)

ψnlml
. (7.6)

Thus, the Coulomb wave functions are also eigenfunctions of H with the
energy eigenvalues

Enlml
= −Ry

n2
+ �ωL ml , (7.7)

where

ωL = − eB

2mc
=

e0B

2mc
(7.8)

is the Larmor frequency. The magnetic field removes the (2l+ 1)-fold degen-
eracy of the energy levels. By (7.7), a level with angular momentum quantum
number l is split into (2l+1) equidistant levels. The magnitude of the splitting
is

e0�B

2mc
= 13.6 eV × (4 × 10−10 B (in gauss)) ,

and it is independent of l.
This splitting leads to additional transitions, which, however, are re-

stricted by the selection rule Δml = −1, 0, 1. This equidistant splitting caused
by the magnetic field is called the “normal” Zeeman effect (Fig. 7.1). Indeed,
in the hydrogen atom the splitting is completely different, and in fact there
is an even number of levels, as if the angular momentum were half integral.
This will lead us in Chap. 9 to an additional kind of angular momentum, the
spin.

Fig. 7.1. Level splitting in
the “normal” Zeeman effect

In many-electron atoms, L refers to the total angular momentum and l to
the corresponding quantum number. For historical reasons, one speaks of the
“normal” Zeeman effect if the splitting is determined by the orbital angular
momentum alone and is given by (7.7). In fact, as in the hydrogen atom, the
situation is usually more complicated and cannot be explained purely by the
orbital angular momentum (the “anomalous” Zeeman effect). In Chap. 14
this will be discussed in more detail.
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We note in passing that, according to the general definition of the mag-
netic moment μ ≡ −∂H/∂B, it follows for the paramagnetic part that

μ =
e

2mc
L = −μBL/�, (7.9)

where

μB =
e0�

2mc
= 0.927 × 10−20 erg/G (7.10)

is the Bohr magneton. The paramagnetic term leads to the following contri-
bution to atomic magnetism:

|〈μ〉| = μB|〈L〉|/� ≈ μB .

If the paramagnetic contribution is zero, the diamagnetic part becomes no-
ticeable:

〈μ〉 = − e2B

4mc2
〈x2 + y2〉 ≈ − e2B

6mc2
a2 .

The paramagnetic part must be augmented by the spin contribution (Chap. 9).

7.4 Canonical and Kinetic Momentum,
Gauge Transformation

7.4.1 Canonical and Kinetic Momentum

In Appendix B, the concept of canonical and kinetic momentum from classical
mechanics is reviewed. The quantity p is the canonical momentum, whereas

mẋ = p− e

c
A (7.11)

is the kinetic momentum. The corresponding operators satisfy the following
commutation relations:

[xi, pj ] = i�δij , [xi, xj ] = [pi, pj ] = 0 , (7.12a,b)

[xi,mẋj ] = i�δij , [mẋi,mẋj ] = i�
e

c
εijkBk (7.13a,b)

with −Ai,j + Aj,i = εijkBk and Ai,j = ∂Ai/∂xj .
The fact that the components of the kinetic momentum do not commute

among themselves has important consequences for motion in a magnetic field.
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7.4.2 Change of the Wave Function
Under a Gauge Transformation

The Lorentz force (B.3) depends only on B (see Appendix B), whereas the
Schrödinger equation (7.3) contains the vector potentialA. The question thus
immediately arises as to whether the wave function ψ depends on the gauge
and whether charged particles react to B or A (possibly only to its gauge
invariant part).

To answer this question, we first study the influence of a gauge transfor-
mation

A → A′ = A+ ∇Λ Φ → Φ′ = Φ− 1
c

∂

∂t
Λ , (7.14)

where Λ(x, t) is a scalar function. The Schrödinger equation in the first gauge
takes the form

[
1

2m

(
�

i
∇ − e

c
A(x, t)

)2
+ eΦ(x, t)

]

ψ(x, t) = i�
∂

∂t
ψ(x, t) . (7.15)

We would like to show now that the wave function ψ′(x, t) in the second
gauge, characterized by the primed potential, is

ψ′(x, t) = exp
{

ie
�c

Λ(x, t)
}

ψ(x, t) . (7.16)

Multiplication of the Schrödinger equation (7.15) from the left by the factor
exp {(ie/�c)Λ(x, t)} and using the identity

ef(y) ∂

∂y
=
(

∂

∂y
− ∂f

∂y

)

ef(y) (7.17)

twice, leads to
[

1
2m

(
�

i
∇ − e

c
A− �

i
ie
�c

∇Λ

)2
+ eΦ

]

exp
{

ieΛ
�c

}

ψ

= i�
(

∂

∂t
− ie

�c

∂Λ

∂t

)

exp
{

ieΛ
�c

}

ψ .

This is evidently identical to
[

1
2m

(
�

i
∇ − e

c
A′
)2

+ eΦ′
]

ψ′ = i�
∂

∂t
ψ′ , (7.18)

the Schrödinger equation with the primed potentials. The gauge transfor-
mation introduces an additional space and time dependent phase factor into
the wave function. However, the change in gauge has no observable physical
consequences, since |ψ|2 does not change.3 Matrix elements of x and mẋ and
functions thereof remain unchanged.

3 However, the energy eigenvalues of extended stationary states may depend on A.
This can be seen for free particles in the presence of a uniform vector potential
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7.5 The Aharonov–Bohm Effect

7.5.1 The Wave Function in a Region Free of Magnetic Fields

We now consider the motion of an electron in the presence of a time in-
dependent magnetic field B(x). Let this field vanish within some region of
space

B = curl A = 0 , (7.19)

as is the case outside of an infinitely long coil (Fig. 7.2). In this region, A
can be expressed as the gradient of a scalar field Λ :

A = ∇Λ , (7.20a)

Λ(x) =
∫ x

x0

ds ·A(s) . (7.20b)

Fig. 7.2. The field of an infinitely
long coil is zero on the exterior;
see (7.19) and (7.20)

Here, x0 is an arbitrary initial point in the field-free region. The wave function
in this region can be found either from

1
2m

(
�

i
∇ − e

c
A

)2
ψ + V ψ = i�

∂

∂t
ψ , (7.21)

or from the gauge transformed equation in which the vector potential

A′ = A+ ∇(−Λ) = 0

does not appear, that is

1
2m

(
�

i
∇
)2
ψ′ + V ψ′ = i�

∂

∂t
ψ′ . (7.22)

A obeying periodic boundary conditions – a problem equivalent to Problems 7.4
and 7.5. Wave packets constructed from such stationary states with and without
A are related by a combined gauge and Galilei transformation (Problem 16.8).
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If we replace Λ in (7.16) by −Λ , we obtain the following connection between
these two wave functions:

ψ = ψ′ exp
{

ie
�c

Λ

}

= ψ′ exp
{

ie
�c

∫ x

x0

ds ·A(s)
}

, (7.23)

where ψ′ is the wave function in the potential V with fieldB ≡ 0 (identically
zero) in all space. (Since no electric field acts, we have set Φ = 0. The potential
V (x) is intended to represent influences which are not electric in origin.) At
this point we recall from electrodynamics that

∫ x

x0
ds · A(s) of Eq. (7.20b)

depends only on the end points but not on the paths, as long as the loop
formed by a pair of different paths does not enclose a magnetic flux.

7.5.2 The Aharonov–Bohm Interference Experiment

We would now like to investigate whether an electron moving only in regions
of nonvanishing A(x) but vanishing B(x) feels anything of the existence of
the magnetic field in the inaccessible region. To this end, we now consider
the interference experiment shown in Fig. 7.3 in which the magnetic field
is restricted to the interior of the “infinitely” long coil, perpendicular to the
plane of Fig. 7.3 and depicted by a circle. It is assumed that the coil is screened
by a wall of the double slit device and thus the electrons are restricted to
the region B = 0. The lack of penetration of ψ into the field region can be
represented formally by an infinitely high potential barrier.

In order to find the solution as a function of the field, we determine first
the solutions with only one slit open at a time and then linearly superimpose
them. Let ψ1,B(x) be the wave function when only slit 1 is open. By (7.23),
it can be obtained from the field-free wave function ψ1,0 and becomes

ψ1,B(x) = ψ1,0(x) exp
{

ie
�c

∫

1

ds ·A(s)
}

, (7.24a)

where the line integral runs from the source through slit 1 to x. Similarly,
for the wave function when only slit 2 is open, we have

Fig. 7.3. The Aharonov–Bohm
interference experiment. The
electrons cannot penetrate into
the field region (very long sole-
noid, perpendicular to the plane
depicted by the circle)
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ψ2,B(x) = ψ2,0(x) exp
{

ie
�c

∫

2

ds ·A(s)
}

, (7.24b)

where now the line integral runs from the source to x through slit 2. If both
slits are open, we superimpose (7.24a) and (7.24b) to obtain

ψB(x) = ψ1,0(x) exp
{

ie
�c

∫

1

ds ·A(s)
}

+ψ2,0(x) exp
{

ie
�c

∫

2

ds ·A(s)
}

.

The relative phase of the two terms, caused by the magnetic field, is related
to
∫

1

ds ·A(s) −
∫

2

ds ·A(s) =
∮

ds ·A(s) =
∫

da · curlA = ΦB ,

where da is the area element and ΦB is the magnetic flux. Thus, we have

ψB(x) =
(

ψ1,0(x) exp
{

ie
�c

ΦB

}

+ψ2,0(x)
)

exp
{

ie
�c

∫

2

ds ·A(s)
}

. (7.25)

The phase relation between ψ1 and ψ2 changes under a change in the enclosed
magnetic flux ΦB , and thus the interference pattern is also shifted.

Remark: If we consider in detail the cylindrical waves leaving the slits in (7.25),

ψ1,0 =
eikr1

√
r1

, r1 = |x − xslit1| ,

ψ2,0 =
eikr2

√
r2

, r2 = |x − xslit2| ,

the condition for constructive interference in the presence of a magnetic field is

kr1 +
e

�c
ΦB − kr2 = 2πn ,

where n is an integer, and from this

r1 − r2 =
λ

2π

„

2πn− eΦB
�c

«

(7.26)

follows.

The positions of the interference maxima are shifted due to the variation
in ΦB, although the electron does not penetrate into the region of finite
magnetic field. This is known as the Aharonov–Bohm effect4. The unit of
flux entering here is

2Φ0 =
2π�c

e0
= 4.135 × 10−7 G cm2 . (7.27)

4 Y. Aharonov, D. Bohm: Phys. Rev. 115, 485 (1959)
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The first experimental demonstration using a magnetic one-domain iron
whisker was given by Chambers5.

A related phenomenon (Fig. 7.4) can be found in a SQUID (supercon-
ducting quantum interference device)6. The maximum current that can pass
through two Josephson junctions in parallel,

Imax = 2I0| cos
πΦB
Φ0

| , (7.28)

shows the interference pattern of Fig. 7.5. This results if one maximizes the
sum of the Josephson currents

I = I0(sin γA + sin γB)

subject to the constraint6

γA − γB =
2πΦB
Φ0

.

Fig. 7.4. The SQUID: Two Joseph-
son contacts, A and B, connected in
parallel with enclosed flux ΦB

Fig. 7.5. Maximal current as a func-
tion of flux

The Aharonov–Bohm interference oscillations were also observed recently in
normally conducting metal rings.

Summarizing: Classically, E and B are the physically relevant quantities,
since they determine the Lorentz force. In regions where E = B = 0 the par-
ticle feels no force. The potentials A and Φ serve in classical physics only as
auxiliary quantities. In quantum mechanics, A(x) is the fundamental phys-
ical field; however, the wave function always has the property that physical
quantities and effects depend only on gauge invariant quantities.

5 R.C. Chambers: Phys. Rev. Lett. 5, 3 (1960); see also H. Börsch, H. Hamisch,
K. Grohmann, D. Wohlleben: Z. Phys. 165, 79 (1961)

6 J.E. Zimmerman, J.E. Mercereau: Phys. Rev. Lett. 13, 125 (1964); R.C. Jaklevic,
J.E. Lambe, J.E. Mercereau, E.H. Silver: Phys. Rev. 140, A 1628 (1965); M.
Tinkham: Introduction to Superconductivity (McGraw-Hill, New York 1975) p.
202
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7.6 Flux Quantization in Superconductors

Many metals and, as discovered recently, many oxidic semiconductors be-
come superconducting below a critical temperature Tc characteristic for each
particular substance. The electrons form Cooper pairs. We consider a type-
I superconductor in the form of a hollow cylinder in an external magnetic
field taken parallel to the axis of the cylinder. It is found experimentally (the
Meissner effect) that the magnetic field is expelled from the superconductor
and thus vanishes within it (except for a thin boundary layer). The doubly
charged Cooper pairs thus move in a field-free region, and therefore the wave
function (7.23) can be used to describe them. If the wave function of the
Cooper pairs in the absence of a field is given by ψ0(x) , then in the presence
of a field it becomes according to (7.23)

ψB(x) = exp
{

i2e
�c

∫ x

x0

ds ·A(s)
}

ψ0(x) . (7.23′)

The vector potential in (7.23′) has the property that within the superconduc-
tor curl A = 0 (i.e., for any curve within the superconductor which can be
shrunk to a point,

∮
ds ·A(s) = 0), whereas ΦB =

∫
da · curlA =

∮
ds ·A(s)

gives the magnetic flux through the hollow cylinder (i.e., for curves encircling
the cavity,

∮
ds ·A(s) = ΦB). A closed path about the cylinder starting at

the point x0 (Fig. 7.6) gives

ψB(x0) = ψ0(x0) = exp
{

i2e
�c

∮
ds ·A(s)

}

ψ0(x0) .

Fig. 7.6. Flux quantization

The requirement that the wave function ψB(x) be single valued implies the
quantization of the enclosed flux:

ΦB = Φ0n , n = 0,± 1, . . . ,

Φ0 =
�cπ

e0
= 2.07 × 10−7 G cm2 (the flux quantum) .
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This quantization has also been observed experimentally7. The occurrence
of twice the electronic charge in the quantization represents an important
test of the existence of Cooper pairs, which are the basis of BCS (Bardeen–
Cooper–Schrieffer) theory.

7.7 Free Electrons in a Magnetic Field

We now investigate free electrons in a magnetic field oriented in the x3-
direction. The vector potential (7.4a) has only components perpendicular to
B, so that the p3-contribution to the kinetic energy is the same as that of
free particles, and the Hamiltonian is given by

H = H⊥ +
p2
3

2m
. (7.29a)

Expressed in terms of the components of the kinetic momentum (7.11), the
transverse part of the Hamiltonian takes the form

H⊥ =
m

2
(ẋ2

1 + ẋ2
2) . (7.29b)

The second term in (7.29a) is diagonalized by exp {ip3x3/�}, corresponding to
free motion in the x3-direction, which can be separated off, since p3 commutes
with the ẋi . We now turn to the transverse part, which contains the magnetic
effects. For electrons, e = −e0, and the commutation relations

[mẋ1,mẋ2] = i�
eB

c
, [ẋ1, ẋ1] = [ẋ2, ẋ2] = 0 , (7.30)

suggest the introduction of

πi =
mẋi√
e0B/c

. (7.31)

Now, these operators satisfy the commutation relations

[π2, π1] = i� , [π1, π1] = [π2, π2] = 0 , (7.32)

and, in analogy to position and momentum, they represent canonical variables
with the Hamiltonian

H⊥ =
1
2
e0B

cm
(π2

1 + π2
2) . (7.33)

According to the theory of the harmonic oscillator (Sect. 3.1) using

a =
π2 + iπ1√

2�
, (7.34)

7 R. Doll, M. Näbauer: Phys. Rev. Lett. 7, 51 (1961); B.S. Deaver, Jr., W.M.
Fairbank: Phys. Rev. Lett. 7, 43 (1961)
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this can be brought into the standard form

H⊥ = �ωc(a†a + 1
2 ) , (7.35)

where

ωc =
e0B

mc
(7.36)

is the cyclotron frequency. Consequently, the energy eigenvalues of (7.29b)
are

En = �ωc(n + 1
2 ) , (7.37)

with n = 0, 1, . . . . We have thus found the energy levels for free electrons
in a homogeneous magnetic field – also known as Landau levels . These play
an important role in solid state physics. The problem is not yet completely
solved, since for example we have not yet determined the degeneracy and
the wave function of our particles. Formally it is clear that, beginning with
the four canonical operators x1, x2, p1, p2, we need two more operators,
in addition to π1, π2 introduced above, for a complete characterization. In
Sect. 8.6 we will show in the Heisenberg representation that these are given
by

X = x− 1
ωc

τẋ ,

where

τ =
(

0 1
−1 0

)

.

In classical mechanics, X is the center of the circular orbits (x − X)2 =
ẋ2/ω2

c = const. In quantum mechanics, X1 and X2 are canonical variables
and cannot simultaneously be specified with arbitrary accuracy. X is also
referred to as the “guiding center”.

Problems

7.1 Let the Hamiltonian be

H =
1

2m

„

p − e

c
A(x, t)

«2

+ eΦ(x, t) .

Prove the continuity equation (∂/∂t)ψ∗ψ + ∇ · j = 0, with

j ≡ �

2mi

»

ψ∗∇ψ − (∇ψ∗)ψ − 2ie

�c
A(x, t)ψ∗ψ

–

≡ 1

2m

„

ψ∗
„

�

i
∇ − e

c
A(x, t)

«

ψ + c.c.

«

.
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7.2 Determine the energy eigenfunctions and eigenvalues for a charged particle in
a homogeneous, constant magnetic field oriented along the z-axis.

Hint: Use the Coulomb gauge A = − 1
2
x×B. Transform to cylindrical coordinates;

for the wave function, use the separation ansatz ψ(x) = Rm (�) e imϕ eikz . Justify

and use the ansatz R(�) = �|m| e−c

2
w(�) with c > 0, an appropriate constant.

The substitution y = �2 in the differential equation for w(�) leads to the Laguerre
differential equation.

Compare the result with Sect. 8.6.

7.3 Consider a particle with mass m and charge e in a homogeneous electro-
magnetic field B = (0, 0, B),E = (E, 0, 0) with |E| < |B|. Take the gauge
A = (0, Bx, 0). Determine the eigenfunctions and eigenvalues for the Hamiltonian

H =
1

2m
(p − e

c
A)2 − eEx .

In the case E = 0, discuss also the degeneracy of the energy levels.

7.4 Consider a plane rotator of radius a described in cylindrical coordinates (r,ϕ, z)
by the Hamiltonian

H0 =
p2
0

2m

with

p0 =
�

i

1

a

∂

∂ϕ
.

A plane rotator is a particle of mass m moving on a circumference of radius a.

(a) Determine the energy eigenfunctions and eigenvalues, imposing periodic bound-
ary conditions.

(b) Calculate the wave functions and energy levels for the plane rotator in the
presence of a vector potential

A = eϕ

8

>

<

>

:

B

2
r for r ≤ r0

(B/2)r20
r

for r ≥ r0

,

where r0 < a .

(c) Now consider the vector potential

A
′
= A + ∇χ .

For the particular choice

χ = −Br
2
0

2
ϕ ,

calculate the vector potential A′ and the magnetic field B′. Pay careful attention
to the behavior of B′ at the origin. Does the transformation A → A′ represent a
gauge transformation?
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(d) Find the wave functions and the energy eigenvalues for A .

(e) Compare the results of (b) and (d) and explain why the Aharonov–Bohm effect
is not contradicted by the transformation from A to A′.

7.5 Consider again the plane rotator

H0 =
p2
0

2m
, p0 =

�

ia

∂

∂ϕ
.

Start from the stationary states obeying periodic boundary conditions. Investigate
the transformation

p0 → ps = e−is(ϕ)/� p0 eis(ϕ)/� , etc.

and calculate ps, Hs, and the new wave functions. Show that the latter in general
no longer obey periodic boundary conditions.
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8.1 Matrices, Vectors, and Unitary Transformations

In the following sections, we write all relations, to the extent that a spec-
ification is necessary at all, for one spatial dimension. All formulae can of
course be rewritten in three dimensions with the replacements x → x and
dx → d3x.

Let a complete orthonormal set of functions {ψn(x)} and an arbitrary
operator A be given. Then the matrix representation of A in the basis {ψn(x)}
is defined as

Anm = (ψn, Aψm) . (8.1)

The matrix Anm may be finite or, more generally, infinite dimensional, de-
pending on the number of basis functions ψn(x). We now list a few properties
of the matrix Anm.

(i) If A is Hermitian, A† = A, then Anm is a Hermitian matrix, i.e.,

A∗
nm = Amn . (8.2)

Proof:

A∗
nm = (ψn, Aψm)∗ = (Aψm, ψn) = (ψm, Aψn) = Amn .

(ii) If {ψn(x)} is a basis of A, then

Anm = anδnm (8.3)

holds, where the an are the eigenvalues of A corresponding to ψn(x),
i.e.,

Aψn(x) = anψn(x) .

Since {ψn(x)} is a complete, orthonormal system, any arbitrary state ψ(x)
can be represented as

ψ(x) =
∑

n

cnψn(x) (8.4a)
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with

cn = (ψn, ψ) . (8.4b)

We now consider a second complete, orthonormal system {ψ′
n(x)}. One can

also represent the operator A and the state ψ(x) in this new basis system:

A′
nm = (ψ′

n, Aψ′
m) , (8.2′)

ψ(x) =
∑

n

c′nψ
′
n(x) (8.3′)

with

c′n = (ψ′
n, ψ) . (8.4′)

Our goal is now to find the relationship between these two representations.
For this, we first remark that the ψ′

n(x) can be expanded in terms of the
system of functions {ψn(x)} according to

ψ′
n(x) =

∑

m

Smnψm(x) (8.5a)

with

Smn = (ψm, ψ′
n) =

∫
dxψ∗

m(x)ψ′
n(x) . (8.5b)

(iii) The transformation matrix Snm is unitary, i.e.,

SS† = S†S = 1l , (8.6)

(1l = unit matrix) or equivalently
∑

n

SmnS
∗
m′n =

∑

n

S∗
nmSnm′ = δmm′ . (8.6′)

Proof:
∑

n

SmnS
∗
m′n =

∑

n

∫
dx

∫
dy ψ∗

m(x)ψ′
n(x)ψm′(y)ψ′∗

n (y)

=
∫

dx

∫
dy δ(x − y)ψm′(y)ψ∗

m(x) = δmm′ ,

where the completeness relation for the {ψ′
n(x)} and orthonormal-

ity of the {ψn(x)} have been used. Analogously, one can show that∑
n S

∗
nmSnm′ = δmm′ by utilizing the completeness relation for {ψn(x)}

and the orthonormality of the {ψ′
n(x)}.

Thus, the following transformation laws result:

(iv) c′n =
∑

m

(S†)nmcm , (8.7a)

and, since S is unitary,
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cm =
∑

n

Smnc
′
n . (8.7b)

In matrix notation, these equations take the form
⎛

⎜
⎝

c′1
c′2
...

⎞

⎟
⎠ = S†

⎛

⎜
⎝

c1
c2
...

⎞

⎟
⎠ ;

⎛

⎜
⎝

c1
c2
...

⎞

⎟
⎠ = S

⎛

⎜
⎝

c′1
c′2
...

⎞

⎟
⎠ .

Proof:

c′n = (ψ′
n, ψ) =

∑

m

(Smnψm, ψ) =
∑

m

S∗
mn(ψm, ψ)

=
∑

m

S∗
mncm =

∑

m

(S†)nmcm .

For the matrix representation of the operators, we have

(v) A′
nm =

∑

l,k

S∗
lnAlkSkm (8.8a)

or in matrix notation

A′ = S†AS . (8.8b)

Proof:

A′
nm = (ψ′

n, Aψ′
m) =

∑

l,k

S∗
ln(ψl, Aψk)Skm =

∑

l,k

S∗
lnAlkSkm

=
∑

l,k

(S†)nlAlkSkm ,

where (8.5a) has been used.

Summarizing: Operators can be represented by matrices and states by
vectors. The representations in different basis systems are related by unitary
transformations.

To illustrate this, we give three examples:

1. Energy eigenfunctions of the harmonic oscillator. In Sect. 3.1, we found
for the one-dimensional harmonic oscillator the complete set of energy
eigenfunctions

ψn(x) = (2nn!
√
πx0)−1/2 exp

{

− 1
2

(
x

x0

)2}

Hn(x/x0) (8.9)

with (ψn, ψn′) = δnn′ . In this basis, the position operator x (for example)
takes the form (see (3.5a))

xnm =
x0√

2

{√
n δn,m+1 +

√
n + 1 δn,m−1

}
. (8.10)
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2. Momentum eigenfunctions. The eigenfunctions ψp of the momentum op-
erator (�/i) ∂/∂x are

ψp =
1√
2π�

eipx/� , (8.11)

�

i
∂

∂x
ψp = pψp .

The eigenvalue spectrum of the momentum operator is continuous, and
the orthonormality relation in this case is

(ψp, ψp′) =
∫

dx

2π�
ei(p′−p)x/� = δ(p− p′) .

3. Position eigenfunctions. In Sect. 2.9, we found the position eigenfunctions

ψξ(x) = δ(x− ξ) (8.12a)

which satisfy

xψξ = ξψξ . (8.12b)

The spectrum is once again continuous, and one has

(ψξ, ψξ′) =
∫

dx δ(x − ξ)δ(x − ξ′) = δ(ξ − ξ′) .

Remark:

As always, the index on the wave functions indicates the eigenvalue as well
as the operator to which it belongs.

We now calculate the matrix representation of a few important opera-
tors with respect to the momentum and position eigenfunctions, using the
following notation:

App′ = (ψp, Aψp′) , Aξξ′ = (ψξ, Aψξ′) . (8.13)

With this, one obtains

xξξ′ =
∫

dx δ(x− ξ)xδ(x − ξ′) = ξδ(ξ − ξ′) , (8.14a)

pξξ′ =
∫

dx δ(x − ξ)
�

i
∂

∂x
δ(x− ξ′) =

�

i
∂

∂ξ
δ(ξ − ξ′) , (8.14b)

xpp′ =
∫

dx
e−ipx/�

√
2π�

x
eip′x/�

√
2π�

= −�

i
∂

∂p

∫
dx

ei(p′−p)x/�

2π�
= −�

i
∂

∂p
δ(p− p′) , (8.14c)
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ppp′ =
∫

dx
e−ipx/�

√
2π�

�

i
∂

∂x

eip′x/�

√
2π�

= p′δ(p− p′) = pδ(p− p′) , (8.14d)

(p2)ξξ′ = −�
2 ∂2

∂ξ2
δ(ξ − ξ′) , (8.14e)

V (x)ξξ′ = V (ξ)δ(ξ − ξ′) . (8.14f)

Functions of position are diagonal in the coordinate representation, func-
tions of momentum in the momentum representation. Note the similarity
between (8.14a) and (8.14d) as well as between (8.14b) and (8.14c).

To conclude this section, we discuss the expansion of an arbitrary state
ψ(x) in momentum and position eigenfunctions.

(i) Expansion in position eigenfunctions

ψ(x) =
∫

dξ cξψξ(x) =
∫

dξ ψ(ξ)ψξ(x) . (8.15a)

We know from (2.100) that the expansion coefficient here is precisely
the wave function

cξ = (ψξ, ψ) = ψ(ξ) . (8.15b)

(ii) Expansion in momentum eigenfunctions

ψ(x) =
∫

dp cpψp(x) . (8.16a)

Comparison with (2.5),

ψ(x) =
∫

dp

2π�
ϕ(p)eipx/� ,

shows that

cp = (ψp, ψ) =
1√
2π�

ϕ(p) . (8.16b)

Up to the factor (2π�)−1/2, cp is the Fourier transform ϕ(p) of the
wave function. The probability of finding the value p in a momentum
measurement is given by |cp|2.

As emphasized in Sect. 2.9, in our axiomatic system we can dispense with
the intermediate hypothesis (which was convenient in the didactic develop-
ment) that |ψ(x)|2 and |ϕ(p)|2 are respectively the probability density for
position and momentum. This is a consequence of the form of the position
and momentum operators and the general results for the probability densities
of observables in Sect. 2.9.
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8.2 State Vectors and Dirac Notation

It is often useful and more transparent to formulate a theory independently
of a particular basis system. This can be illustrated in the case of three-
dimensional vectors v in the space IR3 (generally IRn).

One can characterize a vector v ∈ IR3 in some basis {ei} or in another
basis {e′i} of the infinitely many bases rotated relative to the first one by its
projections onto the respective coordinate axes (Fig. 8.1):

v =
∑

i

viei , vi = ei · v ,

v =
∑

i

v′ie
′
i , v′i = e′i · v .

(8.17)

The vector v itself does not change; only its components with respect to the
coordinate axes change under the transformation from the basis {ei} to the
basis {e′i} according to the transformation law

v′i =
∑

j

vje
′
i · ej =

∑

j

Dijvj . (8.18)

The matrix S† of Sect. 8.1 corresponds here to the matrix D. Instead of
characterizing a vector v by its components vi with respect to a particular
coordinate system, it is often more convenient to use the coordinate indepen-
dent vector notation v.

Fig. 8.1. Coordinate transformation

Analogously, in quantum mechanics one can represent the state ψ(x) in
various basis systems:

ψ(x) =
∑

n

cnψn(x) =
∫

dξ cξψξ(x) =
∫

dp cpψp(x) = . . . . (8.19)

These representations are called the energy, coordinate, and momentum rep-
resentations (and so on), where the respective basis system is formed by
the energy eigenfunctions ψn, the position eigenfunctions ψξ, the momentum
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eigenfunctions ψp, etc. The expansion coefficients cn, cξ, cp, etc. characterize
the state ψ equally well. Instead of giving one or another set of infinitely
many components, we introduce a vector notation for the state (Dirac nota-
tion) which is independent of the basis:

ψ(x) → |ψ〉 . (8.20)

Here, |ψ〉 is a vector in an infinite-dimensional space. For particular states
we will use the abbreviated notation

ψp(x) → |p〉 , ψξ(x) → |ξ〉 ,

ψn(x) → (|ψn〉) → |n〉 , ψa → |a〉 . (8.21)

For a general (arbitrary) state, we will write for brevity | 〉. The sum of state
vectors and multiplication by complex numbers is defined by

ψc = αψa + βψb → |c〉 = α|a〉 + β|b〉 . (8.22)

In particular, from this it follows for multiplication by 1 that

1ψ = ψ → 1 |ψ〉 = |ψ〉

and for the addition of the zero element

ψ + 0 = ψ → |ψ〉 + 0 = |ψ〉 .

Since the wave functions ψ(x) form a linear space, the vectors | 〉 also form a
linear space.

Remark: We collect here the mathematical definitions of a linear space. A linear
space S is defined by the following properties1:

1a) If |a〉, |b〉 ∈ S, then also the sum |a〉 + |b〉 ∈ S.
b) For |a〉 ∈ S, α ∈ C: α|a〉 ∈ S.
c) There exists a zero element 0 with |a〉 + 0 = |a〉.
d) For each |a〉 ∈ S, the inverse element |a′〉 ∈ S exists, with |a〉 + |a′〉 = 0.

2) For all |a〉, |b〉, |c〉 ∈ S and complex numbers α, β ∈ C, one has the following
properties of addition and multiplication:
a) |a〉 + |b〉 = |b〉 + |a〉 (Commutativity)

(|a〉 + |b〉) + |c〉 = |a〉 + (|b〉 + |c〉) (Associativity)
b) 1 |a〉 = |a〉
c) α (β|a〉) = (αβ)|a〉 (Associativity)

(α+ β)|a〉 = α|a〉 + β|a〉 (Distributivity)
α(|a〉 + |b〉) = α|a〉 + α|b〉 (Distributivity)

1 P. Dennery, A. Krzywicki: Mathematics for Physicists (Harper & Row, New York
1967) p. 104



166 8. Operators, Matrices, State Vectors

The scalar product of two state vectors |a〉 and |b〉 is introduced by the
definition

〈a|b〉 = (ψa, ψb) . (8.23)

The dual vector space

Corresponding to the assignment

ψ →

⎛

⎜
⎝

c1
c2
...

⎞

⎟
⎠ → |ψ〉 , (8.24a)

we assign

ψ∗ → (c∗1, c
∗
2, . . . ) → 〈ψ| . (8.24b)

The vector 〈ψ| is called “the dual vector to |ψ〉”. The space of 〈ψ| is called
the dual space2. The sum in dual space results from the mapping

ψ∗
c = α∗ψ∗

a + β∗ψ∗
b → 〈c| = α∗〈a| + β∗〈b| . (8.25)

The dual vectors also form a linear space.
We now define the product of the dual vector 〈a| with the vector |b〉. We

denote it by 〈a‖b〉, usually abbreviated 〈a|b〉, and define it by

〈a|b〉 = (ψa, ψb) . (8.23′)

The quantity 〈a|b〉 can be read as the product of 〈a| and |b〉 or as the scalar
product of |a〉 and |b〉.

Properties of the product (scalar product)

〈a|b〉∗ = 〈b|a〉 , (8.26a)

〈a|a〉 ≥ 0 , 0 if and only if |a〉 = 0 , (8.26b)

|〈a|b〉|2 ≤ 〈a|a〉〈b|b〉 (Schwarz inequality) . (8.26c)

For |c〉 = α|a〉 + β|b〉 one has

〈d|c〉 = α〈d|a〉 + β〈d|b〉 , (8.26d)

〈c|d〉 = α∗〈a|d〉 + β∗〈b|d〉 . (8.26e)

The product is linear in both the right and the left factor.
From the word “bracket” and the notation 〈a|b〉 for the product, the

expressions bra-vector and ket-vector have been introduced, standing for 〈 |
and | 〉, respectively (Dirac notation).

2 To be mathematically precise, one introduces the dual vectors by means of the
linear functionals ψ∗ → fψ(ϕ) = (ψ,ϕ). These functionals are linear: fψ(αϕa +
βϕb) = αfψ(ϕa) + βfψ(ϕb) and form a linear space: α∗ψ∗ + γ∗�∗ → fαψ+γ
 =
α∗fψ + γ∗f
. With the notation fψ ≡ 〈ψ| the product fψ(ϕ) ≡ 〈ψ|ϕ〉 results.
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A few important scalar products are

〈n|m〉 = δnm , 〈ξ|ξ′〉 = δ(ξ − ξ′) , 〈p|p′〉 = δ(p− p′) , (8.27)

〈ξ|ψ〉 = ψ(ξ) , 〈ξ|p〉 =
eipξ/�

√
2π�

, 〈p|ξ〉 =
e−ipξ/�

√
2π�

. (8.28)

The expansion of a state in terms of basis vectors is represented in Dirac
notation as follows:

|ψ〉 =
∑

cn|n〉 , cn = 〈n|ψ〉

=
∫

dξ ψ(ξ)|ξ〉 , ψ(ξ) = 〈ξ|ψ〉

=
∫

dp cp|p〉 , cp = 〈p|ψ〉 . (8.29)

Operators

We now need to introduce operators acting on the states of our general state
space. Given an operator A on the space of wave functions (in coordinate
space), let it transform the wave function ψa into ψb, i.e.,

Aψa = ψb . (8.30a)

We then write this in basis independent notation as

A|a〉 = |b〉 . (8.30b)

The action of the operator A in the vector space is obtained from its action
in the coordinate representation (8.30a) as follows:

A|a〉 =
∑

n

|n〉〈n|b〉 =
∑

n

|n〉(ψn, Aψa) , (8.31)

where |n〉 is an arbitrary basis.

Projection operators

An important class of operators are the projection operators, characterized
by the property

P 2 = P . (8.32)

The projection operator which projects an arbitrary state |ψ〉 onto the
normalized state |a〉 (〈a|a〉 = 1) is denoted Pa:

Pa|ψ〉 = 〈a|ψ〉|a〉 = |a〉〈a|ψ〉 .

Therefore, we can represent Pa by

Pa = |a〉〈a| . (8.33)
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Pa is indeed a projection operator, since P 2
a = |a〉〈a|a〉〈a| = |a〉〈a| = Pa. We

call |n〉 a complete, orthonormal set, if the ψn(x) form a complete, orthonor-
mal set. For a complete, orthonormal set, one has

〈n|m〉 = δnm , (8.34a)
∑

n

|n〉〈n| = 1l , (8.34b)

where 1l is the unit operator. The orthogonality relation follows from the
definition of the scalar product and the orthogonality of the ψn, while the
completeness relation follows from the possibility of expanding an arbitrary
state |ψ〉:

|ψ〉 =
∑

n

|n〉(ψn, ψ) =
∑

n

|n〉〈n|ψ〉 =
(∑

n

|n〉〈n|
)

|ψ〉 .

From the completeness relation (8.34b), one can immediately rederive that
of the wave functions:
∑

n

ψn(x)ψ∗
n(x′) = 〈x|

(∑

n

|n〉〈n|
)

|x′〉 = 〈x|x′〉 = δ(x − x′) .

In the continuum case, one has in analogy
∫

dξ | ξ〉〈ξ| = 1l ,

∫
dp |p〉〈p| = 1l . (8.35)

Using the completeness relation (8.34b) twice, we can represent an arbitrary
operator A by its matrix elements:

A =
∑

n,m

|n〉〈n|A|m〉〈m| =
∑

n,m

〈n|A|m〉|n〉〈m| =
∑

n,m

Anm|n〉〈m| . (8.36)

Up to now, in a matrix element of the type 〈c|A|a〉, the action of A is
only defined to the right. We define 〈c|A by

〈c|A =
∑

n

〈c|A|n〉〈n| . (8.37)

Thus, the action of an operator to the left derives from its action to the right.
Together with the completeness relation, this implies

(〈c|A)|a〉 = 〈c|(A|a〉) . (8.38)

Definition of the adjoint operator

The adjoint operator B† to B is defined by

〈a|B|b〉∗ = 〈b|B†|a〉 . (8.39)

It then follows from the equation

|d〉 = B|c〉 =
∑

n

|n〉〈n|B|c〉 (8.40a)
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that for bra vectors

〈d| =
∑

n

〈n|〈n|B|c〉∗ =
∑

n

〈n|〈c|B†|n〉 = 〈c|B† . (8.40b)

Example: For the annihilation and creation operators a and a† of the
harmonic oscillator, one has

a|n〉 =
√
n |n− 1〉 and a†|n〉 =

√
n + 1 |n + 1〉 .

From the preceding relation, it follows that

〈n|a =
√
n + 1 〈n + 1| ,

i.e., the annihilation operator a acts to the left in the same way as the creation
operator acts to the right.

Definition. The operator A is called Hermitian if A† = A.

8.3 The Axioms of Quantum Mechanics

The foundations of quantum mechanics may be summarized in the following
axioms:

I. The state of a system is described by the state vector |ψ〉.
II. The observables are represented by Hermitian operators A, with func-

tions of observables being represented by the corresponding functions of
the operators.

III. The expectation value of the observable A – represented by the operator
A – is given by 〈A〉 = 〈ψ|A|ψ〉.

IV. The time evolution is determined by the Schrödinger equation3

i�
∂

∂t
|ψ, t〉 = H |ψ, t〉 . (8.41)

V. If in a measurement of A the value an is found, then the state of the
system changes to the corresponding eigenstate |n〉.4

From II and III and Sect. 2.9, it follows that if a system is in the state

|ψ〉 =
∑

n

cn|n〉 with cn = 〈n|ψ〉 ,

3 We could also use the ordinary time derivative here, since in the state |ψ, t〉 the
time t is the only independent variable occurring.

4 This is called reduction of the state. See Sect. 20.3, in particular 20.3.4.
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where |n〉 are the eigenstates of A, A|n〉 = an|n〉, then |cn|2 expresses the
probability that, in a measurement of A, the eigenvalue an will be found.5

This also implies the probability interpretation of the wave function ψ(x).
For stationary states

|ψn, t〉 = e−iEnt/�|ψn〉 (8.42a)

(8.41) yields the time independent Schrödinger equation for |ψn〉,

H |ψn〉 = En|ψn〉 . (8.42b)

If at time zero the state is |ψ〉, then, as in (2.77), the expansion in terms
of stationary states reads

|ψ, t〉 =
∑

n

〈ψn|ψ〉e−iEnt/�|ψn〉 . (8.43)

We now derive various representations of the Schrödinger equation from the
basis independent version (8.41).

8.3.1 Coordinate Representation

The spatial wave function is obtained by projection onto |x〉 (8.28) as

〈x|ψ, t〉 = ψ(x, t) .

The position eigenvector 〈x| is time independent. We multiply the Schrödinger
equation (8.41) by this on the left,

i�
∂

∂t
〈x|ψ, t〉 =

∫
dx′〈x|H |x′〉〈x′|ψ, t〉

=
∫

dx′
[

− �
2

2m
∂2

∂x2
δ(x− x′) + V (x)δ(x − x′)

]

ψ(x′, t) ,

where we have used (8.14e) and (8.14f); thus

i�
∂

∂t
ψ(x, t) =

[

− �
2

2m
∂2

∂x2
+ V (x)

]

ψ(x, t) . (8.44)

This is our well known Schrödinger equation for the wave function.

5 Here we use the same symbol A for the operator as for the observable. (See also
Remark (i), Sect. 2.9.4.)
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8.3.2 Momentum Representation

With

〈p|ψ, t〉 = cp(t) = ϕ(p, t)/
√

2π�

it follows that

i�
∂

∂t
cp(t) =

∫
dp′〈p|H |p′〉〈p′|ψ, t〉 .

Using (8.14d) and (8.14f),

〈p|H |p′〉 =
p2

2m
δ(p− p′) +

∫
dx dx′〈p|x〉〈x|V (x)|x′〉〈x′|p′〉

=
p2

2m
δ(p− p′) +

∫
dxV (x)e−i(p−p′)x/�/2π� ,

and introducing the Fourier transform

Ṽ (q) =
∫

dx e−iqx/�V (x)

of the potential, we obtain the Schrödinger equation in the momentum rep-
resentation,

i�
∂

∂t
ϕ(p, t) =

p2

2m
ϕ(p, t) +

∫
dp′

2π�
Ṽ (p− p′)ϕ(p′, t) . (8.45)

This is in general an integro-differential equation. We can also write the
potential term using

e−ipx/�V (x) = V

(

− �

i
∂

∂p

)

e−ipx/�

in the form
∫

dx

∫
dp′e−i(p−p′)x/�V (x)ϕ(p′, t)/2π�

= V

(

− �

i
∂

∂p

) ∫
dx dp′

2π�
e−i(p−p′)x/�ϕ(p′, t)

= V

(

− �

i
∂

∂p

)

ϕ(p, t) ,

and we obtain from (8.45)

i�
∂

∂t
ϕ(p, t) =

[
p2

2m
+ V

(

− �

i
∂

∂p

)]

ϕ(p, t) . (8.46)



172 8. Operators, Matrices, State Vectors

8.3.3 Representation in Terms of a Discrete Basis System

Projecting the state onto a discrete basis system, we obtain

〈n|ψ, t〉 = cn(t) ,

i�
∂

∂t
〈n|ψ, t〉 =

∑

m′
〈n|H |m′〉〈m′|ψ, t〉 .

The Schrödinger equation then consists of the following linear system of equa-
tions:

i�
d

dt
cn(t) =

∑

m′
Hnm′cm′(t) . (8.47)

For a basis with a discrete and a continuous spectrum,
∑

m′
should be replaced

by S
m′

.

8.4 Multidimensional Systems
and Many-Particle Systems

Up to now, only one-dimensional systems have been treated in this chapter.
The state space was spanned by the position eigenvectors |ξ〉, and an arbitrary
state was given by

|ψ〉 =
∫

dξ ψ(ξ)|ξ〉 .

In three-dimensional systems, we have for the three Cartesian components
the basis vectors

|ξx〉 , |ξy〉 , |ξz〉 . (8.48)

A state characterizing a particle located at the position ξ is given by the
direct product of these basis vectors

|ξ〉 = |ξx〉|ξy〉|ξz〉 . (8.49)

We have

xi|ξ〉 = ξi|ξ〉 , i = x, y, z ,

〈ξ|ξ′〉 = δ(3)(ξ − ξ′) . (8.50)

A general state is given by

|ψ〉 =
∫

d3ξ ψ(ξ)|ξ〉 . (8.51)
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If |ξi〉 i = 1, 2, . . . , N are one-particle position eigenstates, one can then
write the N -particle state as

|ξ1, ξ2, . . . , ξN 〉 = |ξ1〉|ξ2〉 . . . |ξN 〉 . (8.52)

The corresponding orthonormality relation is

〈ξ1, ξ2 . . . ξN |ξ′1, ξ′2 . . . ξ′N 〉 = δ(3)(ξ1 − ξ′1) . . . δ(3)(ξN − ξ′N ) .

Arbitrary states are obtained by superposition of the position eigenstates
(8.52). It is thus clear that the formulae of the previous sections of this
chapter also hold for higher spatial dimensions and many-particle systems,
where ξ, x etc. stand for the whole set of variables.

Remark: Additional points concerning the direct product: Let v
(1)
i , i = 1, . . . N1

be elements of an N1-dimensional vector space and v
(2)
j , j = 1, . . . N2 be elements of

an N2-dimensional vector space, then their direct product v
(1)
i v

(2)
j spans an N1N2-

dimensional space. In the state space 1 of the states |1〉 let operators A1 act, and in
the state space 2 of the states |2〉 let operators A2 act. In the direct product space
of the states |1, 2〉 = |1〉|2〉 the operators A1 ⊗A2 then act, where

〈1, 2|A1 ⊗A2|1′, 2′〉 = 〈1|A1|1′〉〈2|A2|2′〉 .

This corresponds to the definition of the direct product of matrices. The operator

A1 corresponds to A1 ⊗ I2 in the product space, and the operator A2 corresponds

to I1 ⊗A2 in the product space, where Ii is the unit operator in the state space i.

One has A1B1 ⊗ C2D2 = (A1 ⊗ C2)(B1 ⊗D2).

8.5 The Schrödinger, Heisenberg
and Interaction Representations

8.5.1 The Schrödinger Representation

We assume that the Hamiltonian H is time independent. The generalization
to a time dependent H will be treated in Chap. 16. The time evolution of
the state vector |ψ, t〉 is then determined by the Schrödinger equation

i�
∂

∂t
|ψ, t〉 = H |ψ, t〉 , (8.53)

which has the formal solution

|ψ, t〉 = e−iHt/�|ψ, 0〉 . (8.54)

This representation of quantum theory, which we have employed up until
now, is called the Schrödinger representation, or Schrödinger picture. The
state vectors depend on time, while the operators corresponding to physical
observables are independent of time, aside from explicit time dependence. In
particular, operators such as x, p, L, etc. are time independent.
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8.5.2 The Heisenberg Representation

In the Heisenberg picture, on the other hand, the operators obey an equation
of motion. Starting with operators A in the Schrödinger picture, one defines
the Heisenberg operators

AH = eiHt/�A e−iHt/� . (8.55)

By an elementary calculation, one obtains from this definition the Heisenberg
equation for the operator AH

d

dt
AH =

i
�
[H,AH] +

∂

∂t
AH . (8.56)

The last term ∂AH/∂t enters only if the operator A depends explicitly on
time, as is the case for example in the presence of an external field which is
periodic in time. In the last term,

eiHt/�

(
∂

∂t
A(x, p, . . . , t)

)

e−iHt/�

=
∂

∂t
A(xH(t), pH(t), . . . , t) =

∂AH

∂t
(8.57)

has been used. Here, we have expanded the operator function A in a power
series (with the powers written as products) and inserted

1 = exp
{−i

�
Ht

}

exp
{

i
�
Ht

}

between successive factors.
The Heisenberg state vector is defined by

|ψ〉H = eiHt/�|ψ, t〉 . (8.58)

Comparison with (8.54) shows that |ψ, t〉H is identical to the initial value of
the Schrödinger state vector |ψ, 0〉 and is therefore time independent, which,
incidentally, can also be seen from

∂

∂t
|ψ〉H =

i
�
HeiHt/�|ψ, t〉 + eiHt/�

1
i�

H |ψ, t〉 = 0 . (8.59)

These two descriptions are related by a unitary transformation and of course
give the same physical results. Thus, the expectation value of the observable
A is given by

〈ψ, t|A|ψ, t〉 = 〈ψ|HAH(t)|ψ〉H ,

where again exp {−iHt/�} exp {iHt/�} = 1 has been inserted. The time
dependence of the expectation value comes from the state vector in the
Schrödinger picture and from the operator in the Heisenberg picture.
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We can also write the Heisenberg equation of motion (8.56) in the form

d

dt
AH =

i
�
[HH, AH] +

∂

∂t
AH , (8.56′)

since evidently

HH = eiHt/�H e−iHt/� = H . (8.60)

If we additionally make use of the fact that H is a function of x, p, etc., it
then also follows that

HH = H(x, p) = H(xH(t), pH(t)) . (8.61)

Let us consider the example of the one-dimensional harmonic oscillator,

H =
1

2m
p2 +

mω2

2
x2 .

Here, the equations of motion are

ẋH =
i
�
[HH, xH] =

1
m

pH

ṗH =
i
�
[HH, pH] = −mω2xH , (8.62)

analogous in structure to the classical ones.

Conservation laws

As in classical mechanics, if appropriate symmetries are present, then con-
servation laws hold for the Hamiltonian, the angular momentum, and the
momentum. In Table 8.1, these conservation laws are listed together with the
pertinent symmetry operations, see also Eqs. (5.5), (5.10) and (8.54).

The angular momentum and the momentum of N particles are defined by

LH =
N∑

n=1

xnH × pnH , PH =
N∑

n=1

pnH . (8.63)

For translationally invariant systems, the theorem regarding uniform mo-
tion of the center of mass holds in the form

RH(t) =
1
M
PH t +RH(0) , (8.64)

where

RH(t) =
1
M

N∑

n=1

mnxnH(t)
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Table 8.1. Conserved quantities and generators of the symmetry operations

Conserved Generator of
quantity

for time- time translation
H

d

dt
HH =

i

�
[HH,HH] = 0 independent Hamil-

tonian e−iHt/�

for rotationally rotation
L

d

dt
LH =

i

�
[HH,LH] = 0 invariant pro-

blem eiϕ·L/�

for transla- translation
P

d

dt
P H =

i

�
[HH,P H] = 0 tionally invariant

problem eia·P /�

and

M =
N∑

n=1

mn

are the center-of-mass operator and the total mass, respectively.

8.5.3 The Interaction Picture (or Dirac Representation)

For problems whose Hamiltonian

H = H0 + V (t) (8.65)

can be separated into a time independent part H0 and a (possibly time de-
pendent) perturbation V (t), the interaction picture is convenient as a point
of departure for time dependent perturbation theory (Sect. 16.3).

The state vectors and the operators in the interaction picture are defined
by

|ψ, t〉I = eiH0t/�|ψ, t〉 (8.66)

and

AI(t) = eiH0t/�A(t)e−iH0t/� . (8.67)

These satisfy the following equations of motion:

i�
∂

∂t
|ψ, t〉I = VI(t)|ψ, t〉I (8.68)

and
d

dt
AI(t) =

i
�
[H0, AI(t)] +

∂

∂t
AI(t) . (8.69)
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The interaction picture lies in a certain sense between the Schrödinger
and Heisenberg pictures, since both the state vectors and the operators are
time dependent. The state vectors evolve due to the perturbative part of the
Hamiltonian, the operators due to the free part H0.

8.6 The Motion of a Free Electron in a Magnetic Field

As an example of the use of the Heisenberg representation, and in order to
complete our discussion of free motion in a magnetic field, we take up where
we left off in Sect. 7.7. We omit the index H . The Hamiltonian

H =
1

2m

(
p− e

c
A(x)

)
2 , (8.70)

together with the commutation relations (7.12a,b) and (7.13a,b), leads to the
equations of motion

mẋ =
i
�
[H,mx] = p− e

c
A(x) , (8.71)

mẍ =
i
�
[H,mẋ] =

e

c
ẋ × B . (8.72)

From (8.71), it is now clear from a quantum theoretical point of view why
we referred to this quantity as the kinetic momentum.

We take B to point in the z-direction, B = (0, 0, B), and consider only
the motion perpendicular to B. Then both equations of motion

mẍ1 =
eB

c
ẋ2 , mẍ2 = −eB

c
ẋ1 (8.73)

can be written compactly in the form

ẍ = −ωcτẋ , (8.73′)

where

x ≡
(
x1

x2

)

and τ =
(

0 1
−1 0

)

, ωc =
B(−e)
mc

=
Be0

mc
. (8.74)

The first integral in (8.73′) becomes, because of τ2 = −1l,

ẋ(t) = e−ωcτtẋ(0) = (cos ωct− τ sin ωct)ẋ(0) , (8.75a)

and the solution is then

x(t) = X + ω−1
c τe−ωcτtẋ(0) . (8.75b)

From (8.75a) one sees that ẋ(t)2 = ẋ(0)2, which is a consequence of energy
conservation. The solution is formally identical to the classical one, except
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that the integration constant X is an operator. In the classical case, X =
(
X1
X2

)

is the center of circular motion

(x(t) −X)2 = ω−2
c ẋ(0)2 . (8.76)

We will shortly see that X1 and X2 do not commute, and therefore the center
of the orbit cannot be defined quantum mechanically with arbitrary precision.
If we work in the gauge

A =
B

2

(−x2

x1

)

, (8.77)

using (8.71), (8.75a), and (8.75b), the operators ẋ and X become

mẋ =
(
p1

p2

)

− eB

2c

(−x2

x1

)

=
(
p1

p2

)

+
mωc

2

(−x2

x1

)

, (8.78)

X = x− ω−1
c τẋ =

(
x1

x2

)

− τ

mωc

[(
p1

p2

)

+
mωc

2

(−x2

x1

)]

=
1
2

(
x1

x2

)

− 1
mωc

(
p2

−p1

)

. (8.79)

Besides the commutation relations familiar from (7.30),

[mẋ1,mẋ2] =
i�eB
c

, (8.80a)

one also has

[X1, X2] =
i�

mωc
, [Xi, ẋj ] = 0 . (8.80b)

Thus, instead of the canonical variables x1, p1 and x2, p2, one can also use
ẋ2, ẋ1 and X1, X2. This led us in Sect. 7.7 to the introduction of

a =
π2 + iπ1√

2�
=

m(ẋ2 + iẋ1)√
2�ωcm

. (8.81)

We then are again confronted with the harmonic oscillator

H = �ωc

(
a†a + 1

2

)
(8.82)

with eigenstates

|0〉, . . . , |n〉 =
1√
n!

(a†)n|0〉 , . . . . (8.83)

In order to calculate a explicitly, we introduce the definitions

x± =
x2 ± ix1√

2
, p± =

p2 ∓ ip1√
2

. (8.84)
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These operators also satisfy canonical commutation relations

[x±, p±] = i� , [x±, p∓] = 0 . (8.85)

From (8.78) and (8.81), it follows that

a =
1√

�ωcm

(

p− − imωc

2
x+

)

=
1√

�ωcm

(
�

i
∂

∂x−
− imωc

2
x+

)

,

and with the magnetic length

r0 =
√

�

mωc
≡
√

�c

e0B

one finally has

a =
1

2r0
1
i

(

x+ + 2r2
0

∂

∂x−

)

(8.86a)

and

a† =
i

2r0

(

x− − 2r2
0

∂

∂x+

)

. (8.86b)

For the ground state,

a|0〉 = 0 or
(

∂

∂x−
+

x+

2r2
0

)

ψ0 = 0 ,

the result for the wave function is

ψ0 = exp
{

− x−x+

2r2
0

}

f(x+) . (8.87)

We cannot take ψ to be a common eigenfunction of both X1 and X2, but
only an eigenfunction of

X2
1 + X2

2 = 2X+X− + r2
0 . (8.88)

Here,

X± =
X2 ± iX1√

2
, (8.89)

and

[X+, X−] = −r2
0 . (8.90)

The quantity X+ corresponds to a creation operator (compare (3.6)), which
raises the eigenvalue of X2

1 + X2
2 by 2r2

0.
The eigenfunctions belonging to the smallest eigenvalue of X2

1 + X2
2 ,

namely r2
0, are determined from the condition

X−|n〉 = 0 . (8.91)
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Since X and ẋ commute, this is equivalent to X−|0〉 = 0. With

X± =
(

1
2
x± ∓ r2

0

∂

∂x∓

)

it then follows that

X−ψ0 = 0 =
(

1
2
x− + r2

0

∂

∂x+

)

exp
{

− x−x+

2r2
0

}

f(x+) .

The solution is

f(x+) = const ,

ψ0 = N e−�
2/4r20 , (8.92)

where N is a normalization factor and � = (x2
1 + x2

2)
1/2. Applying a† gives

(a†)nψ0 ∼
(

x− − 2r2
0

∂

∂x+

)n
exp

{

− �2

4r2
0

}

∼ (2x−)n exp
{−�2

4r2
0

}

,

ψn = N
1√
n!

1
rn0

einϕ�n exp
{

− �2

4r2
0

}

, with x− = −i�eiϕ . (8.93)

The remaining eigenfunctions are obtained by applying X+:

Xk
+ψn , k = 1, 2, . . . . (8.94)

These are degenerate and belong to the Landau level with the energy eigen-
value

En = �ωc(n + 1
2 ) . (8.95)

The radial position probability in the states (8.93) is

�|ψn|2 ∼ �2n+1e−�
2/2r20 ,

whose maximum is determined from

d

d�
(�|ψn|2) ∼ 2n + 1

�
− �

r2
0

= 0

i.e.,

� = r0
√

2n + 1 . (8.96)

Classical circular orbits are described by an appropriate wave packet of the
form
∫

dn exp {−in(tωc − ϕ)}g(n)�n exp
{

− �2

4r2
0

}

,

for which it follows that the velocity satisfies v = ωc�.



Problems 181

Problems

8.1 For Schrödinger operators A, B, and C, let [A,B] = C. What is the commu-
tation relation for the corresponding operators in the Heisenberg representation?

8.2 Derive the Heisenberg equations of motion for the one-dimensional harmonic
oscillator

H =
1

2m
p2 +

1

2
mω2x2 .

Compare with the classical equations of motion. Calculate the time dependence of
the operators aH, a†

H, pH, and xH. Determine aH(t) from the equation of motion
and directly by use of the Baker–Hausdorff formula.

8.3 A charged particle moves in a homogeneous electric field described by the po-
tential ϕ(x) = −Fx. Determine the wave function for energy E in the momentum
representation. The transformation to coordinate space yields the integral repre-
sentation of the Airy functions.

8.4 Calculate the matrix representation of the angular momentum operators Lx,
Ly , Lz, and L2 for the values l = 1/2, 1, 3/2, and 2 by using the formulae

〈l′,m′|L2|l, m〉 = �
2δll′ δmm′ l(l + 1) ,

〈l′,m′|Lz|l, m〉 = �δll′ δmm′m ,

〈l′,m′|L−|l,m〉 = �

p

(l −m+ 1)(l +m)δll′ δm−1,m′ ,

〈l′,m′|L+|l, m〉 = �

p

(l +m+ 1)(l −m)δll′ δm+1,m′ ,

−l ≤ m ≤ l .

8.5 Show [H,L] = 0, [H,P ] = 0, where

H =

N
X

n=1

p2
n

2mn
+

1

2

X

n,n′
V (|xn − xn′ |), L =

N
X

n=1

xn × pn, P =

N
X

n=1

pn,

(a) by evaluating the commutators

(b) by using that L and P generate rotations and translations respectively.
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9.1 The Experimental Discovery
of the Internal Angular Momentum

9.1.1 The “Normal” Zeeman Effect

In Sect. 7.3, we obtained for electrons in a magnetic field B the interaction
term

Hint = − e

2mc
B · L = −μ ·B . (9.1)

Here, the magnetic moment is

μ =
e

2mc
L (9.2)

and the quantity e/2mc is known as the gyromagnetic ratio. This contribution
to the Hamiltonian splits the 2l + 1 angular momentum states according to

μBBml , (9.3)

where ml runs over the values −l, . . . , l. Experimentally, however, one finds
that in atoms with odd atomic number Z, the splitting is as if ml were
half-integer. Moreover, in contrast to (9.3), the magnitude of the splitting is
different for different levels.

9.1.2 The Stern–Gerlach Experiment

In the Stern–Gerlach experiment, an atomic beam traverses an inhomoge-
neous magnetic field (Fig. 9.1). By (9.1), the force on an atom is

F = ∇(μ ·B) ∼= μz
∂Bz
∂z

ez . (9.4)

From the preceding, one would expect a splitting into an odd number of
beams (more precisely, 2l + 1). The experiment was carried out by O. Stern
and W. Gerlach in 1922 with silver atoms. Silver has a spherically symmetric
charge distribution plus one 5s-electron. Thus, the total angular momentum
of silver is zero, i.e., l = 0; no splitting should occur. If the electron from
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the fifth shell were in a 5p-state, one would then expect a splitting into three
beams. The experiment gives a splitting into two beams. Consequently, the
electron must possess an internal angular momentum (spin) with correspond-
ing gyromagnetic ratio e/mc.

Fig. 9.1. The Stern–Gerlach ex-
periment

A few historical remarks: Pauli: “The doublet structure of the alkali spectra,
as well as the violation of the Larmor theorem, occur due to a peculiar – and not
classically describable – ambiguity of the quantum theoretical properties of the
valence electron.”1

As early as 1921, Compton deduced from the properties of ferromagnetic ma-
terials that the electron must possess a magnetic moment.2

Uhlenbeck and Goudsmit: “The electron rotates about its own axis with angu-

lar momentum �/2. For this value of the angular momentum, there are only two

orientations of the angular momentum vector. The gyromagnetic ratio is twice as

large for the rotation about its own axis as for the orbital motion.”3

One can summarize by saying that the electron possesses an internal an-
gular momentum (called spin) which can assume only the values +�/2 and
−�/2 in an arbitrarily chosen direction. We will return to the magnetic mo-
ment in Sect. 9.5.

The other elementary particles also have spin. Fermions possess half-
integral spin, bosons integral spin (including zero) (see Sect. 13.1.1). In the
following, we will develop the theory for spin-1/2 fermions.

1 W. Pauli: Z. Phys. 31, 373 (1925)
2 A.H. Compton: J. Franklin Inst. 192, 144 (1921)
3 G.E. Uhlenbeck, S. Goudsmit: Naturwiss. 13, 953, (1925); Nature 127, 264

(1926)
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9.2 Mathematical Formulation for Spin-1/2

Let the spin operator be S = (Sx, Sy, Sz). Now, if e is a unit vector, then
according to Sect. 9.1 S · e has only the two eigenvalues ± �/2, i.e.

S · e|e,±〉 = ± �

2
|e,±〉 . (9.5)

Without loss of generality, one can choose e = e3 and introduce the following
notation:

|e3,±〉 =

{
|↑〉
|↓〉 . (9.6)

The eigenvalue equation then takes the form

Sz

( |↑〉
|↓〉
)

=
�

2

(
+ |↑〉
− |↓〉

)

. (9.7)

Since the spin is a physical observable, Sz is a Hermitian operator, and the
states |↑〉 and |↓〉 belonging to distinct eigenvalues are orthogonal, that is,

〈↑ |↓〉 = 0 . (9.8a)

We further normalize them to unity:

〈↑ |↑〉 = 〈↓ |↓〉 = 1 . (9.8b)

According to the postulate stated previously, the Si satisfy angular momen-
tum commutation relations

[Si, Sj ] = i�εijkSk , [Sz, S±] = ± �S± , [S+, S−] = 2�Sz . (9.9)

Here,

S± = Sx ± iSy (9.10a)

with the inversion

Sx =
1
2
(S+ + S−) , Sy =

1
2i

(S+ − S−) . (9.10b)

For spin S = 1/2, S2 has the eigenvalue 3�
2/4:

S2 |↑〉 = 3
4�

2 |↑〉 ,

S2 |↓〉 = 3
4�

2 |↓〉 . (9.11)

From (5.15) it follows with l → 1/2 and m → ± 1/2 that

S+ |↑〉 = 0 , S− |↑〉 = � |↓〉 ,

S+ |↓〉 = � |↑〉 , S− |↓〉 = 0 . (9.12)
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We can now represent the spin operators in the basis of the states |↑〉 and |↓〉
by the spin matrices

Si → Si =
( 〈↑|Si |↑〉 〈↑|Si |↓〉

〈↓|Si |↑〉 〈↓|Si |↓〉
)

. (9.13)

We immediately obtain from (9.12)

S+ = �

(
0 1
0 0

)

, S− = �

(
0 0
1 0

)

, Sz =
�

2

(
1 0
0 −1

)

. (9.14)

Introducing the Pauli spin matrices by

S =
�

2
σ , (9.15)

we obtain for them

σx =
(

0 1
1 0

)

, σy =
(

0 −i
i 0

)

, σz =
(

1 0
0 −1

)

. (9.16)

Here for the first time we have an example of a finite-dimensional state space.
In the basis |↑〉 , |↓〉, Sz is diagonal. If we had chosen as a basis the states
|ex,±〉 with ex = (1, 0, 0), then Sx would be diagonal.

9.3 Properties of the Pauli Matrices

We collect here the properties of the Pauli spin matrices:

σ2
x = σ2

y = σ2
z = 1l (1l = unit matrix) (9.17a)

[σx, σy] = 2iσz and cyclical permutations , (9.17b)

{σx, σy} = 0 and cyclical permutations , (9.17c)

σxσy = −σyσx = iσz and cyclical permutations , (9.17d)

σxσyσz = i · 1l , (9.17e)

tr σx = tr σy = tr σz = 0 , (9.17f)

det σx = det σy = det σz = −1 . (9.17g)

These relations can be proven without explicit use of the representation (9.16).
It follows from (9.7) that S2

z |↑〉 = (�/2)2 |↑〉 and likewise for |↓〉. Thus,
σ2
z = 1l. Since the unit matrix remains invariant under transformation to

another basis, and the z-direction is not preferred, the remaining identities
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in (9.17a) follow. Equation (9.17b) follows from the spin commutation rela-
tions, and (9.17c) can be seen from

0 = S2
+ = (Sx + iSy)2 = S2

x − S2
y + i{Sx, Sy} = i{Sx, Sy} .

Adding (9.17b) and (9.17c), one gets (9.17d). From (9.17d) and (9.17a) fol-
lows (9.17e). Since σz has vanishing trace and determinant −1, due to its
equal (in magnitude) and opposite eigenvalues, (9.17f) and (9.17g) follow.

The relations (9.17a,b,c) can be summarized compactly in the identity

σiσj = δij + iεijkσk , (9.18a)

from which

(σ · a)(σ · b) = 1la · b+ iσ · (a × b) (9.18b)

immediately follows for arbitrary vectors a and b which commute with σ.

9.4 States, Spinors

In the basis {|↑〉 , |↓〉} used up to now, a general spin state can be written as

| 〉 = α+ |↑〉 + α− |↓〉 (9.19)

with complex coefficients α±. Normalization requires

|α+|2 + |α−|2 = 1 . (9.20)

This general state | 〉 can also be represented by a two-component column
vector whose components are given by projection onto the basis {|↑〉 , |↓〉} :

χ =
(
α+

α−

)

, (9.21a)

α+ = 〈↑| 〉 , α− = 〈↓| 〉 . (9.21b)

The vector χ is known as a spinor. The basis spinors corresponding to |↑〉
and |↓〉 are then

χ+ =
(

1
0

)

, χ− =
(

0
1

)

. (9.22)

The completeness relation for the basis of spin-1/2 space can be written either
in the form

|↑〉 〈↑| + |↓〉 〈↓| = 1 (9.23a)

or in matrix representation as

χ+χ†
+ + χ−χ†

− =
(

1 0
0 1

)

. (9.23b)

The orthonormality relations were presented in (9.8a) and (9.8b).
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9.5 Magnetic Moment

As explained in Sect. 7.3, and as one knows from electrodynamics, a magnetic
moment

μorbit =
e

2mc
L (9.24)

is associated with the orbital angular momentum L of an electron. Now, there
is no reason to suppose that the magnetic moment due to spin μspin should
have the same ratio to S as that given in (9.24). We therefore write

μspin = g
e

2mc
S , (9.25)

where g is the Landé factor or gyromagnetic factor. The analysis of the Zee-
man effect given in Sect. 9.1.1, which will be discussed in detail in Chap. 14,
implies for electrons

g ≈ 2 . (9.26)

The total magnetic moment of the electron thus becomes

μ = μorbit + μspin =
e

2mc
(L+ 2S) =

e

2mc
(L+ σ�) , (9.27)

and the total interaction energy with the magnetic field is

Hint = −μ ·B = μB

(
L

�
+ σ
)

·B . (9.28)

Remarks:

(i) The Dirac equation4, the relativistic wave equation for spin-1/2 fermions,
predicts exactly g = 2.

(ii) The quantum electrodynamic correction up to O(α3) gives

g = 2

(

1 +
α

2π
− 0.328 478 445

(
α

π

)2
+ 1.183(11)

(
α

π

)3)

= 2.002 319 304 718(564) (9.29)

where α is the Sommerfeld fine structure constant. The experimental
value agrees with this up to the seventh decimal place, and the difference
can be attributed to α4-corrections.

The nuclear magneton is defined by

μN =
e0�

2mpc
, (9.30)

4 For references see page 225. See, e.g., F. Schwabl, QM II, Sect. 5.3.



9.6 Spatial Degrees of Freedom and Spin 189

where mp = 1.6726 × 10−24 g is the mass of the proton. Due to the
larger mass of the proton, μN = 0.505 × 10−23 erg/G ≈ 10−3μB is
about one-thousandth of the Bohr magneton. The quantity μN is the
characteristic quantity for nuclear magnetism and for the magnetic mo-
ments of nucleons. The gyromagnetic ratio of the strongly interacting
proton is gproton = 5.59. Neutral particles such as n,Λ,Σ0 also possess a
magnetic moment. It arises from the internal charge distribution, which
can be understood in light of the fact that the fundamental constituents
of hadrons are quarks. For the neutron,

μn = −3.83
e0

2mnc
S . (9.31)

For the deuteron, the nucleus of deuterium , μdeut = 0.86μN, i.e.,
μdeut ≈ μprot + μneut. The spins of the proton and the neutron are
parallel in the deuteron, i.e. the spin of the deuteron is 1; the antipar-
allel state does not give rise to binding.

9.6 Spatial Degrees of Freedom and Spin

Spin is an additional degree of freedom independent of the spatial degrees of
freedom. Spin and position (or momentum) can assume precise values simul-
taneously and independently of one another, i.e., the corresponding operators
commute:

[S,x] = 0 , [S,p] = 0 , [S,L] = 0 . (9.32)

The total state is constructed from the direct product of position and spin
eigenstates. The states |x〉 |↑〉 and |x〉 |↓〉 can be chosen as a basis. In this
basis, a general state |Ψ〉 is given by

|Ψ〉 =
∫

d3x (ψ+(x)|x〉 |↑〉 + ψ−(x)|x〉 |↓〉) . (9.33)

The projections onto position and spin eigenstates are

〈x|Ψ〉 = ψ+(x) |↑〉 + ψ−(x) |↓〉 , (9.34a)

〈↑| 〈x|Ψ〉 = ψ+(x) , 〈↓| 〈x|Ψ〉 = ψ−(x) . (9.34b)

The quantities |ψ+(−)(x)|2 express the probability of finding the particle at
the position x with spin in the positive (negative) z-direction. The normal-
ization condition is

〈Ψ |Ψ〉 =
∫

d3x(|ψ+(x)|2 + |ψ−(x)|2) = 1 . (9.35)
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As in Sect. 9.4, we can combine the two components ψ±(x) into a spinor

Ψ(x) =
(
ψ+(x)
ψ−(x)

)

. (9.36)

These two-component spinors are also called Pauli spinors.
We now write the Hamiltonian of an electron in an external magnetic field

without the spin–orbit interaction, which is to be discussed in Chap. 12:

H =
p2

2m
+ V (x) + μB

(
L

�
+ σ
)

·B . (9.37)

The Schrödinger equation,

i�
∂

∂t
|Ψ〉 = H |Ψ〉 , (9.38)

in component form is

i�
∂

∂t

(
ψ+(x, t)
ψ−(x, t)

)

=
[(

− �
2

2m
∇2 + V (x) +

μB

�
L ·B

)

1l + μBσ ·B
](

ψ+(x, t)
ψ−(x, t)

)

.

(9.39)

This nonrelativistic equation is also known as the Pauli equation.
In a time dependent, external electromagnetic field, the Hamiltonian in-

cluding the diamagnetic term is

H =
l

2m

[

p− e

c
A(x, t)

]2
+ eΦ(x, t) + μBσ ·B , (9.40)

and the Pauli equation reads

i�
∂

∂t

(
ψ+(x, t)
ψ−(x, t)

)

=

[(
1

2m

(
�

i
∇ − e

c
A(x, t)

)2

+ eΦ(x, t)

)

1l + μBσ ·B
] (

ψ+(x, t)
ψ−(x, t)

)

.

(9.41)
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Problems

9.1 Show that every 2 × 2 matrix can be represented in terms of the unit matrix
and the three Pauli matrices.

9.2 Prove the identity (9.18a) for the Pauli matrices and, using this, show (9.18b).

9.3 Show that the states

|e,±〉 = e−iαSy/� |↑〉
|↓〉

are eigenstates of the projection of the spin operator in the direction of

e = (sin α, 0, cos α) .

Hint: Compute S′ = e−iαSy/� SeiαSy/� and show that S
′
z = S · e .

9.4 For a spatial rotation through angle ϕ about an axis of rotation along a unit
vector n, transformations in spinor space are represented by

U = eiϕn · S/� .

(a) Show using (9.18b) that

U = cos ϕ/2 + i (n · σ) sin ϕ/2 .

(b) Using this formula for U and again exploiting the identities for the Pauli ma-
trices, show that

UσU† = n(n · σ) − n × [n × σ] cosϕ+ [n × σ] sinϕ .

(c) Discuss the special case n = ez and consider infinitesimal rotations.

(d) Finally, calculate for an arbitrary spinor
`

α+
α−

´

the transformed spinor defined

by
 

α
′
+

α
′
−

!

= U

 

α+

α−

!

for n = ez.

9.5 Consider the precession of the spin of an electron in a homogeneous magnetic
field (0, 0, B) .

(a) Using the Hamiltonian H = (e0/mc)S ·B, write down the equation of motion
for the spin operator in the Heisenberg picture and give the solution for the initial
condition S(t = 0) = S(0). The solution is

Sz(t) = Sz(0),

Sx(t) = cos ωtSx(0) − sin ωtSy(0),

Sy(t) = sin ωtSx(0) + cos ωtSy(0).
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(b) Given Ψ(0) =
`

a
b

´

, determine the state Ψ(t) at the time t.

(c) What is the probability of obtaining the value �/2 in a measurement of Sz at
the time t if at the time t = 0 the spin was oriented in the x-direction?

(d) The same as in problem (c) for a measurement of Sx.

(e) How can part (b) of this problem be derived from the Pauli equation?



10. Addition of Angular Momenta

10.1 Posing the Problem

In later sections it will be necessary to introduce the total angular momentum
J = L + S and, in the case of two electrons with their respective spins, S1

and S2, to consider the total spin S = S1 + S2. Generally, supposing that
we have two angular momentum operators, J1 and J2, the problem consists
in investigating the total angular momentum

J = J1 + J2 . (10.1)

Assuming that J1 and J2 correspond to distinct degrees of freedom, they
commute with each other:

[J1,J2] = 0 . (10.2)

Together with the angular momentum commutation relations of J1,2, this
gives for the components of J

[Ji, Jj ] = i�εijkJk . (10.3)

Thus, all the properties of angular momenta and their eigenstates hold for
the total angular momentum J .

We begin with the states |j1,m1〉 and |j2,m2〉, where the two quantum
numbers j1 and j2 are fixed, and the mi take the values −ji, . . . , ji. From
these states, we can construct the product states

|j1m1j2m2〉 = |j1m1〉|j2m2〉 , (10.4)

which are eigenstates of the operators

J2
1 , J1z , J

2
2 , J2z (10.5a)

with eigenvalues

�
2j1(j1 + 1) , �m1 , �

2j2(j2 + 1) , �m2 . (10.5b)

The product states (10.4) are of course also eigenfunctions of Jz with eigen-
value �(m1 + m2), but not eigenfunctions of J2, since
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[J2, Jiz] �= 0 , i = 1, 2 . (10.6)

One sees this either by explicit calculation of the commutators or by realizing
that Jiz generates a rotation in the subspace i, and that J2 is only a scalar
for the total rotation generated by Jz = J1z+J2z. However, for the problems
mentioned above, we search for states in which J2 is also diagonal; more
precisely, we seek eigenfunctions

|jmjj1j2〉 (10.7)

of the four mutually commuting operators

J2 , Jz , J
2
1 , J

2
2 (10.8)

with eigenvalues �
2j(j + 1), �mj, �

2j1(j1 + 1), �2j2(j2 + 1).
At the same time, we have to find the values taken by j (the correspond-

ing mj are then −j, . . . , j), and we have to represent |jmjj1j2〉 as a linear
combination of the product states (10.4). We postpone the general problem
until Sect. 10.4 and treat for the moment the addition of two spins followed
by the addition of an orbital angular momentum to a spin.

10.2 Addition of Spin-1/2 Operators

This is the simplest case, which among other things will be required for the
treatment of the helium atom. Let S1 and S2 be the two spin-1/2 operators
and

S = S1 + S2 (10.9)

the total spin. The four states

|↑↑〉 = |↑〉 |↑〉 , |↓↓〉 = |↓〉 |↓〉 ,

|↑↓〉 = |↑〉 |↓〉 , |↓↑〉 = |↓〉 |↑〉 , (10.10)

in which the first (second) symbol refers to the first (second) spin, are eigen-
states of S2

1, S
2
2, S1z, S2z. It is reasonable to suppose that the total spin S

assumes the values 1 and 0. To show this, we compute

Sz |↑↑〉 = � |↑↑〉 , Sz |↑↓〉 = 0 ,

Sz |↓↓〉 = −� |↓↓〉 , Sz |↓↑〉 = 0 . (10.11)

Furthermore,

S2 = S2
1 + S2

2 + 2S1 · S2

= 3
2�

2 + 2S1zS2z + S1+S2− + S1−S2+ . (10.12)

Let us first consider the two maximally aligned states |↑↑〉 and |↓↓〉. For these,
we find from (10.12)
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S2 |↑↑〉 =

(
3
2

�
2 + 2

(
�

2

)2)

|↑↑〉 = 2�
2 |↑↑〉 (10.13a)

and

S2 |↓↓〉 = 2�
2 |↓↓〉 . (10.13b)

The states |↑↑〉 and |↓↓〉 therefore have total spin S = 1 and Sz = ± �. The
as yet missing spin-1 state with Sz = 0 is obtained by application of S− to
|↑↑〉:

1
�
√

2
S− |↑↑〉 =

1
�
√

2
(S1− + S2−) |↑↑〉 =

1√
2
(|↑↓〉 + |↓↑〉) . (10.14)

The resulting state has been normalized to unity by inserting the factor
1/�

√
2. By (10.11), it has Sz = 0. Thus, we have found all three S = 1 states.

Using the notation |S,m〉, in which S designates the total spin and m its
z-component, we have

|1, 1〉 = |↑↑〉 , |1, 0〉 =
1√
2
(|↑↓〉 + |↓↑〉) , |1,−1〉 = |↓↓〉 . (10.15)

There is an additional state, which is orthogonal to those given above:

|0, 0〉 =
1√
2
(|↑↓〉 − |↓↑〉) . (10.16)

For this state, evidently

Sz|0, 0〉 = 0 , (10.17a)

and, by (10.12),

S2|0, 0〉 =

(
3
2

�
2 − 2

(
�

2

)2
− �

2

)

|0, 0〉 = 0 . (10.17b)

As implied already in (10.16), this state has spin 0. Thus, we have found all
four eigenstates of S2 and Sz . The states (10.15) are also referred to as triplet
states and (10.16) as a singlet state. Occasionally it turns out to be useful to
introduce the projection operators

P1 =
3
4

+
1
�2
S1 · S2 , (10.18a)

P0 = 1 − P1 =
1
4
− 1

�2
S1 · S2 . (10.18b)

P1 projects onto the triplet space, since

P1|1,m〉 =
(

3
4

+
1
�2

1
2
(S2 − S2

1 − S2
2)
)

|1,m〉

=
(

3
4

+
1
2

(

2 − 3
4
− 3

4

))

|1,m〉 = |1,m〉
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and

P1|0, 0〉 =
(

3
4

+
1
2

(

0 − 3
4
− 3

4

))

|0, 0〉 = 0 .

Because of P0 = 1 − P1, P0 projects onto the singlet subspace.

10.3 Orbital Angular Momentum and Spin 1/2

Beginning with orbital angular momentum L and spin S, we define the total
angular momentum

J = L+ S . (10.19)

The 2(2l + 1) product states

|l,ml〉 |↑〉 and |l,ml〉 |↓〉 (10.20)

with ml = −l, . . . , l are eigenstates of L2, S2, Lz, Sz, but not of J2. We seek
eigenstates of J2, L2, S2, Jz . Presumably j, the quantum number to J2, has
the values

j = l + 1
2 , l − 1

2 ;

this would also give the right number of states:

2(l + 1
2 ) + 1 + 2(l − 1

2 ) + 1 = 2(2l + 1) .

For the following, recall (5.15)

L±|l,ml〉 = ((l ± ml + 1)(l ∓ ml))1/2�|l,ml ± 1〉
and the identity

J2 = L2 + S2 + 2LzSz + L+S− + L−S+ . (10.21)

For the eigenstates of J2, Jz, L2, and S2 we use the notation |j,mj , l〉,
without indicating S = 1/2, and claim as a point of departure that

|l + 1
2 , l +

1
2 , l〉 = |l, l〉 |↑〉 . (10.22)

We prove this by means of

Jz|l, l〉 |↑〉 = (Lz + Sz)|l, l〉 |↑〉 = �(l + 1
2 )|l, l〉 |↑〉 (10.23a)

and, using (10.21),

J2|l, l〉 |↑〉 = �
2(l(l + 1) + 3

4 + 2l 12 )|l, l〉 |↑〉
= �

2(l + 1
2 )(l + 3

2 )|l, l〉 |↑〉 . (10.23b)
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In order to obtain all the states |l + 1/2,ml+1/2, l〉, one need only apply
J− = L− + S− repeatedly to (10.22). We first find

J−|l, l〉 |↑〉 = (2l)1/2�|l, l− 1〉 |↑〉 + �|l, l〉 |↓〉 , (10.24a)

and, by normalizing the right-hand side to unity,

|l + 1
2 , l − 1

2 , l〉 =

√
2l

2l + 1
|l, l− 1〉 |↑〉 +

√
1

2l + 1
|l, l〉 |↓〉 . (10.24b)

Repeated application of J− leads to the following general result, which can
be easily verified by mathematical induction with respect to mj :

|l + 1
2 ,mj , l〉 =

√
l + mj + 1/2

2l + 1
|l,mj − 1

2 〉 |↑〉

+

√
l −mj + 1/2

2l + 1
|l,mj + 1

2 〉 |↓〉 , (10.25)

where mj takes the half-integer values l+1/2, . . . ,−(l+1/2). With (10.25),
the states belonging to j = l + 1/2 have been found. In order to determine
the remaining states, we remark that, beginning with (10.25) with mj =
l − 1/2, . . . , −(l − 1/2), one can immediately construct states which are
orthogonal to all the states of (10.25), that is,

|l − 1
2 ,mj , l〉 = −

√
l −mj + 1/2

2l + 1
|l,mj − 1

2 〉 |↑〉

+

√
l + mj + 1/2

2l + 1
|l,mj + 1

2 〉 |↓〉 (10.26)

with mj = l − 1/2, . . . ,−(l− 1/2).
Since

Jz |l − 1
2 ,mj, l〉 = �mj|l − 1

2 ,mj , l〉 (10.27a)

and

J2|l − 1
2 ,mj , l〉 = �

2(l − 1
2 )(l + 1

2 )|l − 1
2 ,mj , l〉 , (10.27b)

these are the eigenstates of J2 and Jz with j = l− 1
2 and mj. And of course

the states (10.25) and (10.26) are eigenstates of L2 and S2. Equation (10.27a)
follows without calculation, and (10.27b) is left to the reader as an exercise.

For l = 0, there is only the state |12 ,± 1
2 , 0〉. States |0− 1

2 ,mj , 0〉 of negative
j do not exist.

For later use, we write the total angular momentum states as follows:

|l ± 1
2 ,mj , l〉 = α±|l,mj − 1

2 〉 |↑〉 + β±|l,mj + 1
2 〉 |↓〉 ,

α± = ±
√

l ± mj + 1/2
2l + 1

= ± β∓ , (10.28)

β2
+ + β2

− = 1 .
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10.4 The General Case

After these introductory special cases, we now treat the general case of the
addition of two arbitrary angular momenta J1 and J2 to form a total angular
momentum J = J1 +J2. In Sect. 10.1, we introduced the two complete sets
of commuting angular momentum operators

J2
1 , J1z , J

2
2 , J2z , (10.5a)

J2 , Jz , J
2
1 , J

2
2 . (10.8)

The corresponding systems of eigenfunctions

|j1m1〉|j2m2〉 = |j1m1j2m2〉 , (10.4)

|jmj1j2〉 (10.7)

form complete orthonormal systems. Consequently, the states (10.7) can be
expanded in terms of (10.4). Here, the scalar products

〈j′1m1j
′
2m2|jmj1j2〉 ≡ 〈j′1m1|〈j′2m2|jmj1j2〉 (10.29)

enter as expansion coefficients. It is immediately clear that, because of

〈j′1m1j
′
2m2|(J2

i |jmj1j2〉) = (〈j′1m1j
′
2m2|J2

i )|jmj1j2〉 ,

one has

j′i(j
′
i + 1)〈j′1m1j

′
2m2|jmj1j2〉 = ji(ji + 1)〈j′1m1j

′
2m2|jmj1j2〉 .

Therefore, only the coefficients with j′1 = j1 and j′2 = j2 are nonvanishing. If
one further considers the matrix element of Jz = J1z + J2z,

〈j1m1j2m2|Jz|jmj1j2〉 = (m1 + m2)〈j1m1j2m2|jmj1j2〉
= m〈j1m1j2m2|jmj1j2〉 ,

one finds that the coefficients (10.29) are nonvanishing only for m = m1+m2.
Thus, the expansion of |jmj1j2〉 in the basis |j1m1j2m2〉 can be reduced to

|jmj1j2〉 =
∑

m1
m2=m−m1

|j1m1j2m2〉〈j1m1j2m2|jmj1j2〉 . (10.30)

The 〈j1m1j2m2|jmj1j2〉 are called Clebsch–Gordan coefficients. We now wish
to determine the values of j for given j1 and j2. The values of m1 and m2

corresponding to j1 and j2 are

m1 = j1, j1 − 1, . . . ,−j1 and m2 = j2, j2 − 1, . . . ,−j2 .

Since m = m1 + m2, the values of m and all the corresponding m1 and m2

can immediately be given. This is presented in Table 10.1, where we assume
without loss of generality j1 ≥ j2.
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Table 10.1. Values of m

m (m1,m2) Degeneracy
of m

j1 + j2 (j1, j2) 1
j1 + j2 − 1 (j1 − 1, j2), (j1, j2 − 1) 2
j1 + j2 − 2 (j1 − 2, j2), (j1 − 1, j2 − 1), (j1, j2 − 2) 3
.
.
.

.

.

.
. . .

.

.

.
j1 − j2 (j1 − 2j2, j2), . . . , (j1, j2 − 2j2) 2j2 + 1
j1 − j2 − 1 (j1 − 2j2 − 1, j2), . . . , (j1 − 1,−j2) 2j2 + 1
.
.
.

.

.

.
.
.
.

.

.

.
−(j1 − j2) (−j1, j2), . . . , (−j1 + 2j2,−j2) 2j2 + 1
−(j1 − j2) − 1 (−j1, j2 − 1), . . . , (−j1 + 2j2 − 1,−j2) 2j2
.
.
.

. . .
.
.
.

.

.

.
−(j1 + j2) (−j1,−j2) 1

Using Table 10.1, one can easily convince oneself that the degeneracy is
given according to Table 10.2.

Table 10.2. Degeneracy of m

m Degree of degeneracy

m ≥ |j1 − j2| j1 + j2 −m+ 1

−|j1 − j2| < m < |j1 − j2| j1 + j2 − |j1 − j2| + 1

m ≤ −|j1 − j2| j1 + j2 − |m| + 1

The possible j-values can now be determined by beginning with the max-
imally aligned states. Since j1 + j2 is the maximal m-value, j1 + j2 must also
be the largest value of the total angular momentum j. By the general prop-
erties of angular momentum operators, the corresponding m-values are then
j1 + j2, j1 + j2 −1, . . . ,−j1− j2. These values of m are thus already used up.
Since the value m = j1 + j2 − 1 is doubly degenerate, it now is the highest
value of m, so that the next highest value of the total angular momentum is
j = j1 + j2 − 1. The corresponding m-values are j1 + j2 − 1, . . . ,−j1 − j2 +1.
Since the value m = j1 +j2−2 has three-fold degeneracy, this m-value is now
the highest, so that one can take the next multiplet to be j = j1 + j2 − 2.
The argument can be continued in this manner, until one finally obtains the
multiplet structure shown in Table 10.3.

Table 10.3. Multiplets of j

Values of j Corresponding m-Values

j1 + j2 j1 + j2, . . . ,−(j1 + j2)

j1 + j2 − 1 j1 + j2 − 1, . . . ,−(j1 + j2 − 1)
...

...

|j1 − j2| |j1 − j2|, . . . ,−|j1 − j2|
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The possible values of j are thus given by the triangular relation

|j1 − j2| ≤ j ≤ j1 + j2 , (10.31)

where the values of j proceed in integer steps. Evidently, one obtains a half-
integral angular momentum upon adding an integral and a half-integral an-
gular momentum. The two limiting values in (10.31) correspond to angular
momenta aligned parallel and antiparallel.

Remark: As a check, we calculate the number of states |jmj1j2〉 for fixed values
j1 ≥ j2:

j1+j2
X

j=|j1−j2|
(2j + 1) =

2j2
X

k=0

2(j1 − j2 + k) + 1

= (2(j1 + j2) + 1)(2j2 + 1) − 2j2(2j2 + 1)

= (2j1 + 1)(2j2 + 1) ,

which clearly agrees with the number of states |j1m1〉|j2m2〉.

Instead of the Clebsch–Gordan coefficients, the Wigner 3j-symbol is also
used:
(

j1 j2 j3
m1 m2 m3

)

= (−1)j1−j2−m3
〈j1m1j2m2|j3 −m3j1j2〉√

2j3 + 1
. (10.32)

For the addition of spin and orbital angular momentum treated earlier j1 = l,
j2 = s = 1/2, j = l + 1/2, l − 1/2, and for this case we collect the Clebsch–
Gordan coefficients 〈jml 12 |lm1

1
2m2〉 for l ≥ 1 in Table 10.4.

Table 10.4. Clebsch–Gordan coefficients 〈jml 1
2
|lm1,

1
2
m2〉 for l ≥ 1

m2
1
2

− 1
2

j

l + 1
2

“

l+m+1/2
2l+1

”1/2 “

l−m+1/2
2l+1

”1/2

l − 1
2

−
“

l−m+1/2
2l+1

”1/2 “

l+m+1/2
2l+1

”1/2
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Problems

10.1 Let the Hamiltonian of a two-spin system be given by

H = A+BS1 · S2 + C (S1,z + S2,z) .

Determine the eigenvalues and eigenfunctions if the particles are identical and have
spin 1/2.

10.2 Suppose that a system consists of two distinguishable particles each with spin
S = 1/2 and is described by the Hamiltonian

H = −a+ b

2
(S1,z + S2,z)B − a− b

2
(S1,z − S2,z)B + JS1 · S2 ,

where a, b, and J are constants, and B represents the external magnetic field.
Determine the energy eigenvalues.

10.3 Derive (10.25).

10.4 Prove the validity of (10.27b).



11. Approximation Methods

for Stationary States

Although we have succeeded in solving some important and interesting quan-
tum mechanical problems, an exact solution is not possible in complicated
situations, and we must then resort to approximation methods. For the calcu-
lation of stationary states and energy eigenvalues, these include perturbation
theory, the variational method , and the WKB approximation. Perturbation
theory is applicable if the problem differs from an exactly solvable problem
by a small amount. The variational method is appropriate for the calculation
of the ground state energy if one has a qualitative idea of the form of the wave
function, and finally the WKB method is applicable in the nearly classical
limit.

11.1 Time Independent Perturbation Theory
(Rayleigh–Schrödinger)

Let the Hamiltonian H consist of two parts,

H = H0 + λH1 . (11.1)

Let the eigenvalues E0
n and eigenfunctions |n0〉 of the operator H0 be known

exactly,

H0|n0〉 = E0
n|n0〉 , (11.2)

and the “perturbation” λH1 be, in comparison to H0, a small additional
term. One seeks the discrete stationary states |n〉 and eigenvalues En of H ,

H |n〉 = En|n〉 . (11.3)

We now assume that the eigenvalues and eigenfunctions can be expanded in
a power series in the parameter λ

En = E0
n + λE1

n + λ2E2
n + . . . ,

|n〉 = |n0〉 + λ|n1〉 + λ2|n2〉 + . . . , (11.4)

where in both expansions the first term is the “unperturbed” one.
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Remarks:

(i) This series is frequently not convergent. However, in many cases it is an
asymptotic expansion1, i.e., the first few terms nevertheless give reliable
results. The crucial point is whether in the limit λ → 0, En → E0

n and
|n〉 → |n0〉 are valid. Perturbation theory works whenever the state with
finite λ does not differ qualitatively from the state with λ = 0.

(ii) In some cases, En and |n〉 are not expandable in λ. For example, the
binding energy of Cooper pairs is Δ ≈ ωD exp {−1/VN(0)}. The bound
states of a potential cannot be obtained from the continuum states by
means of perturbation theory.

(iii) The smallness of the perturbation is by no means always evident from
a small coupling parameter λ, but can be hidden in the structure of H1.

11.1.1 Nondegenerate Perturbation Theory

We first develop perturbation theory for nondegenerate unperturbed states
|n0〉 of the discrete part of the spectrum. From the time independent
Schrödinger equation (11.3) and from (11.4)

(H0 + λH1)(|n0〉 + λ|n1〉 + λ2|n2〉 + . . . )

= (E0
n + λE1

n + λ2E2
n + . . . )(|n0〉 + λ|n1〉 + λ2|n2〉 + . . . ) ,

one obtains for λ by comparison of the coefficients of λ0, λ1, λ2 . . .

H0|n0〉 = E0
n|n0〉 , (11.5a)

H0|n1〉 + H1|n0〉 = E0
n|n1〉 + E1

n|n0〉 , (11.5b)

H0|n2〉 + H1|n1〉 = E0
n|n2〉 + E1

n|n1〉 + E2
n|n0〉 . (11.5c)

...

It is most convenient to fix the normalization of |n〉 by

〈n0|n〉 = 1 , (11.6a)

i.e.,

λ〈n0|n1〉 + λ2〈n0|n2〉 + . . . = 0 ,

whence follows

〈n0|n1〉 = 〈n0|n2〉 = . . . = 0 . (11.6b)

1 An asymptotic expansion for a function f(λ), f(λ) =
Pm
k=0 akλ

k+Rm(λ), is char-
acterized by the following behavior of the remainder: limλ→ 0(Rm(λ)/λm) = 0,
limm→∞Rm(λ) = ∞.
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We would now like to determine the expansion coefficients. To this end, we
multiply (11.5b) by 〈n0| and use (11.5a), with the result

E1
n = 〈n0|H1|n0〉 . (11.7a)

Since the unperturbed states |m0〉 form a complete orthonormal set, by
(11.6b) we have the expansion

|n1〉 =
∑

m �=n
cm|m0〉 (11.8a)

with

cm = 〈m0|n1〉 . (11.8b)

Multiplying (11.5b) by 〈m0| (different from 〈n0|), we find

cm(E0
n − E0

m) = 〈m0|H1|n0〉

and thus the first correction to the state |n0〉 :

|n1〉 =
∑

m �=n

〈m0|H1|n0〉
E0
n − E0

m

|m0〉 . (11.8c)

The energy in second order is obtained by multiplying equation (11.5c) by
〈n0| and using (11.6b) and (11.8c):

E2
n = 〈n0|H1|n1〉 =

∑

m �=n

|〈m0|H1|n0〉|2
E0
n − E0

m

. (11.7b)

Remarks:

(i) For the ground state, the second-order shift E2
0 is negative.

(ii) If the matrix elements of H1 are of comparable magnitude, neighboring
levels make a larger contribution in second-order perturbation theory
than distant levels.

(iii) If an important (large matrix element, small distance) level E0
m lies

above E0
n, then En is pushed down and Em is pushed up; the levels

spread apart as if they repelled each other.
(iv) In (11.7b), in the continuous part of the spectrum, the sum over m

should be replaced by an integral.
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11.1.2 Perturbation Theory for Degenerate States

Let |n0
a〉, |n0

b〉, . . . , |n0
k〉 be degenerate, i.e.,

H0|n0
i 〉 = ε|n0

i 〉 . (11.9)

Since perturbation theory is an expansion in λ〈m0|H1|n0〉/(E0
n − E0

m), in
place of this basis a basis |n0

α〉 must be used in which

〈n0
α|H1|n0

β〉 = H
(α)
1 δαβ , (11.10)

thus vanishing for α �= β, in order that no zero energy denominators (which
would lead to divergences) occur.

The matrix elements

H1ij = 〈n0
i |H1|n0

j〉 (11.11)

form a Hermitian matrix. The new states

|n0
α〉 =

∑

i

ciα|n0
i 〉 (11.12)

appropriate for perturbation theory give matrix elements

H1αβ = 〈n0
α|H1|n0

β〉 =
∑

i,j

c∗iαH1ijcjβ . (11.13)

Since any Hermitian matrix can be diagonalized by a unitary transformation,
it is always possible to choose the ciα in such a way that (11.10) is satisfied.
In general, one must solve an eigenvalue problem, but often the correct states
can be guessed. From (11.10) and (11.13), one obtains
∑

i,j

c∗iαH1ijcjβ = H
(α)
1 δαβ , (11.14a)

and, multiplying by ciα and using unitarity (
∑

i c
∗
iαciβ = δαβ ,

∑
α ciαc

∗
jα

= δij), one obtains the eigenvalue equation
∑

j

H1ijcjβ = H
(β)
1 ciβ . (11.14b)

The solvability condition implies the vanishing of the secular determinant

det (H1ij −H
(β)
1 δij) = 0 . (11.14c)

From (11.14c) and (11.14b), one obtains the H
(β)
1 and ciβ in the usual way

and thus the appropriate unperturbed states (11.12) for the application of
the perturbation theory developed in Sect. 11.1.1.

Here, an additional remark may be of use. In any nontrivial problem, H0

and H1 do not commute. These two operators cannot therefore be diago-
nalized simultaneously. However, in the subspace of a group of degenerate
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states, the reduced matrix corresponding to H0 is a unit matrix, and hence
it is possible to find a new basis in this subspace in which H0 and H1 are
both diagonal. Of course, even after this transformation has been carried out,
there are still nonvanishing nondiagonal matrix elements of H1 for states of
differing E0

n.

11.2 The Variational Principle

For a Hamiltonian H with basis |n〉, one has for arbitrary |ψ〉

〈ψ|H |ψ〉 =
∑

n

〈ψ|n〉〈n|H |ψ〉 =
∑

n

En〈ψ|n〉〈n|ψ〉

≥ E0

∑

n

|〈ψ|n〉|2 = E0〈ψ|ψ〉

and thus

E0 ≤ 〈ψ|H |ψ〉
〈ψ|ψ〉 . (11.15)

The Ritz variational principle consists in specifying |ψ(μ)〉 to be a function
of one or more parameters μ and seeking the minimum of the expression

E(μ) =
〈ψ(μ)|H |ψ(μ)〉
〈ψ(μ)|ψ(μ)〉 . (11.16)

The minimum of E(μ) is then an upper bound for the ground state energy.
In this procedure, an error in the wave function manifests itself at

quadratic order in the energy; i.e., let

|ψ〉 = |n〉 + |ε〉 (11.17)

with 〈n|ε〉 = 0; then

〈ψ|H |ψ〉
〈ψ|ψ〉 =

En + 〈ε|H |ε〉
〈n|n〉 + 〈ε|ε〉 = En + O(ε2) . (11.18)

The energy is thus determined more accurately than the wave function under
application of a variational principle.

Aside from its function as an approximation method, the variational prin-
ciple is also an important tool in mathematical physics in the proof of exact
inequalities.
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11.3 The WKB (Wentzel–Kramers–Brillouin) Method

We now wish to consider the stationary states of a potential for energies suf-
ficiently high such that the typical wavelength of the state is small compared
to the characteristic distance over which the potential varies significantly. In
this “quasi-classical” limit, we expect that the wave function can be charac-
terized by a position dependent wave number.

To analyze this behavior systematically, we represent the wave function
by an amplitude A and a phase S,

ψ(x) = A(x)eiS(x)/� . (11.19)

Substituting this into the time independent Schrödinger equation

−�
2

2m
∇2ψ = (E − V (x))ψ ,

one finds

A(∇S)2 − i�A∇2S − 2i�(∇A)(∇S)− �
2∇2A = 2m(E − V )A . (11.20)

Comparing the first two terms, we expect that the quasi-classical region is
given by

(∇S)2 � �∇2S . (11.21)

We take the real and imaginary parts of (11.20):

(∇S)2 = 2m(E − V ) + �
2(∇2A)/A , (11.22a)

−∇2S = 2∇S · ∇ log A . (11.22b)

Below, we consider only one-dimensional problems, which of course also in-
clude radial motion in central potentials. One can then express (11.22b) in
the form

d

dx

(
1
2

log
dS

dx
+ log A

)

= 0 ,

and one finds

A =
C√
S′ . (11.23)

In (11.22a), we neglect the term �
2(d2A/dx2)/A compared to (dS/dx)2. The

resulting equation
(
dS

dx

)2
= 2m(E − V (x)) (11.24)
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can then easily be integrated:

S(x) = ±
∫ x

dx′√2m(E − V (x′)) . (11.25)

Substituting (11.25) and (11.23) into (11.19), one finds

ψ(x) =
∑

±

C±√
p(x)

exp {± i
∫

dx p(x)/�} (11.26)

with momentum

p(x) =
√

2m(E − V (x)) . (11.27)

For E < V, the situation in tunneling problems, the solutions (11.26) become
exponentially growing or decreasing, i.e.:

ψ(x) =
∑

±

C′±√
κ(x)

exp {∓
∫

dxκ(x)/�} (11.26′)

with

κ(x) =
√

2m(V (x) − E) . (11.27′)

We now wish to determine the bound states in the potential V (x). For the
energy E, let the classical turning points be b and a (Fig. 11.1, V (a) =
V (b) = E). By an appropriate choice of the coordinate system (V −E → V,
x − b → x) the potential near the turning point b (expansion to first order
in x) is

V = V ′x with V ′ < 0 . (11.28)

Fig. 11.1. Turning points b and a

The Schrödinger equation near b

d2

dx2
ψ = −c2xψ (11.29)

with

c = (−2mV ′)1/2/� (11.30)
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is solved by the Airy functions , which are linear combinations of

ψ(x) = x1/2J± 1/3

(
2c
3
x3/2

)

. (11.31)

Here, Jn(z) is the nth order Bessel function, which frequently arises in cylin-
drically symmetrical problems. It satisfies Bessel’s differential equation

[
d2

dz2
+

1
z

d

dz
+
(

1 − n2

z2

)]

Jn(z) = 0 . (11.32)

In the neighborhood of the turning point, the relevant characteristic
length is

l0 = (3/2c)2/3 ≈ (�2/m|V ′|)1/3 . (11.33)

Far from the turning point, that is for x � l0, the asymptotic behavior is

x1/2J± 1/3

(
2c
3
x3/2

)

∝ x−1/4 cos
(

2c
3
x3/2 ∓ π

6
− π

4

)

. (11.34)

For x → −∞, the quantity J± 1/3(i|x|3/2 . . . ) contains an exponentially grow-
ing and an exponentially decreasing part. The two solutions must be com-
bined in such a way that only the decreasing part remains. Since
∫

dx p(x)/� =
∫

dx
√

2m(−V ′)x/� = 2
3cx

3/2 , (11.35)

one can then determine the coefficients in (11.26). The result is

ψ(x) =
C

√
p(x)

cos
(

1
�

∫ x

b

dx′ p(x′) − π

4

)

. (11.36)

At the other turning point, reflection of (11.36) implies

ψ(x) =
C′

√
p(x)

cos
(

1
�

∫ a

x

dx′ p(x′) − π

4

)

=
C′

√
p(x)

cos
(

1
�

∫ x

b

dx′ p(x′) −
(

1
�

∫ a

b

dx′ p(x′) − π

4

))

.

(11.37)

The condition that (11.37) should agree with (11.36), where C′ = ±C, im-
plies for the loop integral of the momentum

1
2π�

∮
dx p(x) = n +

1
2

. (11.38)

This is the Bohr–Sommerfeld quantization condition, from which one can
determine the allowed energy levels of the bound states. According to our
original supposition, (11.38) is applicable for large number of nodes n.

We now discuss briefly the domain of validity of the WKB approximation.
In the transition from (11.22a) to (11.24), it was assumed that

�
2(d2A/dx2)/A � (dS/dx)2 . (11.39)
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The supposition (11.21) can also be written in the form
∣
∣
∣
∣
dp

dx

∣
∣
∣
∣ �

1
�
p2 = 2π

p

λ
(11.40)

with λ = 2π�/p. Using (11.23), one easily sees that (11.40) also implies the
validity of (11.39).

Remark: Using (11.27), one can also write the condition (11.40) in the form
m�|V ′|/p3 � 1. To the right of the turning point b, one has p =

p

2m|V ′|x1/2

and

�

(m|V ′|)1/2 � x3/2 .

This is identical to the domain of validity x	 l0 of the asymptotic expansion of the

Airy function. Thus, the two conditions are compatible. However, in this x-region,

V ′′x � |V ′| and in particular V ′′l0 � |V ′| must also hold. For atoms, V = Ze2/r,

V ′ ≈ −Ze2/a2, V ′′ ≈ Ze2/a3 and one obtains l0 � a. Since l0 ∝ Z−1/3, the

quasiclassical approximation is reliable for large Z.

11.4 Brillouin–Wigner Perturbation Theory

We now discuss the Brillouin–Wigner perturbation theory, in which the per-
turbation series for the stationary states contains the exact energy eigenval-
ues. We begin with the time independent Schrödinger equation

(En −H0) |n〉 = λH1|n〉 , (11.41a)

where we again fix the normalization of |n〉 by

〈n0|n〉 = 1 (11.41b)

and multiply (11.41a) by 〈n0|. This yields the following relation for the energy
eigenvalue En:

En = E0
n + λ〈n0|H1|n〉 . (11.42)

In order to determine the state |n〉, we now multiply (11.41a) by 〈m0|,
(
En − E0

m

) 〈m0|n〉 = λ〈m0|H1|n〉 . (11.43)

Substituting this into the expansion of |n〉 in unperturbed states

|n〉 = |n0〉 +
∑

m

′ |m0〉〈m0|n〉 , (11.44)



212 11. Approximation Methods for Stationary States

we obtain

|n〉 = |n0〉 +
∑

m

′ |m0〉 1
En − E0

m

λ〈m0|H1|n〉 . (11.44′)

The prime indicates that in the sum over m the term m = n is excluded. We
can solve this equation for the state |n〉, which appears on both the left and
right hand sides, by iteration (i.e., by repeatedly replacing |n〉 on the right
side by the entire right side):

|n〉 = |n0〉 + λ
∑

m

′ |m0〉 1
En − E0

m

〈m0|H1|n0〉

+ λ2
∑

j,m

′ |j0〉 1
En − E0

j

〈j0|H1|m0〉 1
En − E0

m

〈m0|H1|n0〉

+ . . . . (11.45)

Here, the exact energy En arises. If En is known – e.g., from a variational
calculation – the Brillouin–Wigner series for |n〉 provides a more rapidly con-
verging series than the Rayleigh–Schrödinger series for |n〉. If one substitutes
for En the Rayleigh–Schrödinger perturbation series, (11.45) again yields the
Rayleigh–Schrödinger series for |n〉.

Problems

11.1 For the anharmonic, one-dimensional oscillator described by the potential
energy

V (x) =
m

2
ω2x2 + bx3 + cx4 ,

compute the energy eigenvalues in first-order perturbation theory. Include second-
order perturbation theory with respect to the contribution ax3. Hint: The matrix
elements occurring here can be computed most simply by transforming the position
coordinate to a and a†.

11.2 Two coupled, identical rotators are described by the Hamiltonian

H = A
`

p2
Θ1 + p2

Θ2

´−B cos (Θ1 −Θ2) ,

where A and B > 0, pΘi = (�/i)∂/∂Θi, and Θi + 2π is equivalent to Θi. For the
case B � A�

2, calculate the energy eigenvalues using perturbation theory. In the
opposite case B 	 A�

2, assume that only small oscillations occur, and construct
the solution in analogy to the harmonic oscillator. Hint: Introduce new variables
x = Θ1+Θ2 and y = Θ1−Θ2. In terms of these variables, the Hamiltonian becomes

H = −2A�
2

„

∂2

∂x2
+

∂2

∂y2

«

−B cos y .
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11.3 In dimensionless variables
`

� = 1,m = 1, and thus pj = 1
i
∂
∂xj

´

the Hamilto-

nian of a two-dimensional oscillator takes the form

H =
1

2

`

p2
x + p2

y

´

+
1

2
(1 + δxy)(x2 + y2) ,

where we suppose that δ � 1. Determine the wave functions for the three lowest
lying energy levels in the case δ = 0. Calculate the shift of these levels for δ �= 0 in
first-order perturbation theory. Note the degeneracy which occurs.

11.4 A one-dimensional harmonic oscillator carrying charge e is located in an ex-
ternal electric field of strength E pointing in the positive x-direction:

H = − �
2

2m

d2

dx2
+
mω2

2
x2 − eEx .

Calculate the energy levels in second-order and the wave function in first-order
perturbation theory and compare with the exact result.

11.5 Estimate, using the variational principle, the ground state energy of the one-

dimensional harmonic oscillator. Use as a test function ψ(μ) = N e−μx
2
, where the

parameter μ > 0.

11.6 (a)Using the Bohr–Sommerfeld quantization rule, determine the energy lev-
els of a charged, spinless particle which is under the influence of a homogeneous
magnetic field.

(b) Show that the magnetic flux enclosed in a semi classical Bohr-Sommerfeld orbit
is a multiple of �c/e.

11.7 Consider the potential from Problem 3.13.

(a) Find the ground state energy by the variational ansatz

ψ0(x) = x e−κ0x .

(b) Find the energy of the first excited state by the variational ansatz

ψ1(x) = x(x− n) e−κ1x ,

where the coefficients are to be chosen such that ψ1 is orthogonal to ψ0.

(c) Compare with the exact result.

(d) What is the result of the variational ansatz

ψ0 = x e−κ0x
2

?

11.8 Motion of a particle in a gravitational field and reflecting floor: The potential
takes the form

V (z) =

(

gz z > 0

∞ z < 0
.

(a) Solve the corresponding Schrödinger equation exactly using the Airy functions.
(Remark: the same problem occurs in the motion of electrons in a semiconducting
half-space under the action of an electric field.)

(b) Carry out a variational ansatz as in Problem 11.7 for the ground state.
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11.9 The energy levels following from the secular equation (11.14c) are non degen-
erate in most cases. Consider a Hamiltonian H0 with two degenerate eigenstates
|a〉 and |b〉.
(a) Show that these remain degenerate iff 〈a|H1|a〉 = 〈b|H1|b〉 and 〈a|H1|b〉 = 0.

(b) To lift the degeneracy then one has to turn to second order. Derive from (11.5c)
a secular equation of the type (11.14b) with the replacement

H1ij → H1ij +
X

n�=a,b

〈i|H1|n〉〈n|H1|j〉
E0
i − E0

n

,

where E0
i ≡ E0

a = E0
b .



12. Relativistic Corrections

The relativistic corrections – also known as fine-structure corrections – consist
of the following contributions:

(i) relativistic kinetic energy
(ii) spin–orbit coupling
(iii) the Darwin term

These follow from the Dirac equation in an expansion in (v/c)2. According
to our estimate in Sect. 6.3, v/c ≈ Zα, these corrections are smaller than the
Coulomb energy by a factor of (Zα)2. We will discuss each of the terms
in turn by explaining their physical origin heuristically and by taking their
precise form from the theory of the Dirac equation.1

12.1 Relativistic Kinetic Energy

On the basis of the relativistic energy–momentum relation

E =
√
p2c2 + m2c4 = mc2 +

p2

2m
− 1

8
(p2)2

m3c2
+ . . . ,

in addition to the Hamiltonian of the hydrogen atom of Chap. 6

H0 =
p2

2m
− Ze2

r
, (12.1)

a perturbation

H1 = −1
8

(p2)2

m3c2
(12.2)

arises.
In comparison to p2/2m, H1 is smaller by a factor of p2/m2c2 = v2/c2 ≈

(Zα)2, i.e., H1 is only a small perturbation for small atomic number. With
the identity

H1 = − 1
2mc2

(

H0 +
Ze2

r

)2
(12.3)

1 For references see p. 225. See, e.g., F. Schwabl, QM II, Sect. 9.2.
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one obtains for the energy shift of the state |nlm〉 in first-order perturbation
theory

ΔEnlm = 〈nlm|H1|nlm〉

= − 1
2mc2

(

E2
n + 2EnZe2

〈
1
r

〉

nl

+ (Ze2)2
〈

1
r2

〉

nl

)

. (12.4)

With the expectation values
〈

1
r

〉

nl

=
Z

an2
, (12.4a)

〈
1
r2

〉

nl

=
Z2

a2n3(l + 1/2)
(12.4b)

determined at the end of Sect. 12.3 and (6.24′), (12.4) becomes

ΔEnlm = −mc2(Zα)2

2n2

(Zα)2

n2

(
n

l + 1/2
− 3

4

)

. (12.5)

Since H1 is negative definite, 〈H1〉nl < 0 holds for all n and l, as one easily
confirms in (12.5).

Remarks:

(i) The correction is of the order of magnitude Ryα2, where α is the fine-
structure constant,

α =
e2
0

�c
=

1
137.036

.

(ii) Perturbation theory with the states |nlm〉 is permissible since

〈nlm|H1|nl′m′〉 = 0 for l �= l′ or m �= m′ . (12.6)

Proof:

One has [H1,L
2] = 0, whence

�
2[l′(l′ + 1) − l(l + 1)]〈nlm|H1|nl′m′〉 = 0 (12.7a)

follows. Similarly, from [H1, Lz] = 0 the equation

�(m′ −m)〈nlm|H1|nl′m′〉 = 0 (12.7b)

follows. For the states |njjzls〉, to be introduced later, the nondiagonal matrix
elements of H1 vanish as well.
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12.2 Spin–Orbit Coupling

From the relativistic Dirac equation, the spin–orbit coupling

H2 =
1

2m2c2
S · L1

r

d

dr
V (r) (12.8)

follows, where V (r) = eΦ(r) is the potential energy in the electrostatic po-
tential Φ(r) of the nucleus. In order to understand (12.8) heuristically, we
note that the electric field of the nucleus is E = −∇Φ = −(x/r)dΦ/dr. In
the rest frame of the electron, the nucleus orbits about the electron, which
feels a magnetic field B = −v × E/c .

The energy of the magnetic moment of the electron is then

− e

mc
S ·B = − e

mc2
S · (v × x)

1
r

d

dr
Φ(r)

=
1

m2c2
S ·L1

r

d

dr
V (r) . (12.9)

However, this result is too large by a factor of 2 compared to (12.8). The
discrepancy occurs because the rest frame of the electron is not an inertial
frame. If one takes into account the effect of the Thomas precession2, an
additional kinematic term arises which together with (12.9) gives the correct
result (12.8).

For the hydrogen atom, the spin–orbit interaction is

H2 =
1

2m2c2
S · LZe2

r3
. (12.10)

It now turns out to be useful to use the total angular momentum studied in
Sect. 10.3

J = L+ S (12.11)

and to substitute

S ·L = 1
2 (J2 −L2 − S2) (12.12)

into (12.10). The states |l ± 1/2,mj, l〉 diagonalize the operator S · L:

S ·L|l ± 1
2 ,mj, l〉 =

�
2

2

(
l2 + 2l + 3/4 − 3/4 − l2 − l

l2 − 1/4 − 3/4 − l2 − l

)

|l ± 1
2 ,mj , l〉

=
�

2

2

(
l

−l− 1

)

|l ± 1
2 ,mj , l〉 . (12.13)

2 See for example, J.D. Jackson: Classical Electrodynamics, 2nd edn. (Wiley, New
York 1975).
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Because of the spin–orbit term H2 in the total Hamiltonian

H = H0 + H1 + H2 + H3 ,

Lz does not commute with H. Thus H,L2, Lz, S2, Sz do not form a complete
set of operators. Instead, the operators H,J2, Jz,L

2,S2 now form a complete
set, and the eigenfunctions can be characterized by their eigenvalues. H3 is
defined in (12.20).

The correct unperturbed states for perturbation theory are therefore

〈x|n, j = l ± 1
2 ,mj, l〉

= Rnl(r)
(
α±Ylmj−1/2(ϑ, ϕ) |↑〉 + β±Ylmj+1/2(ϑ, ϕ) |↓〉 ) .

(12.14)

The coefficients α± and β± are defined in (10.28). The states (12.14) are
eigenstates of H0 with energy eigenvalues En, which are 2n2-fold degenerate;
however, all the off-diagonal matrix elements of the perturbed part of the
Hamiltonian H1 + H2 + H3 vanish.

The correction from first-order perturbation theory yields

〈H2〉n,j=l± 1/2,l,mj
=

1
2m2c2

�
2

2

(
l

−l − 1

)

Ze2
0

〈
1
r3

〉

nl

. (12.15)

Substituting
〈

1
r3

〉

nl

=
Z3

a3n3l(l + 1/2)(l + 1)
=

m3c3α3Z3

�3n3l(l + 1/2)(l + 1)
, (12.16)

we obtain

〈H2〉n,j=l± 1/2,l =
mc2(Zα)4

4n3l(l + 1/2)(l + 1)

(
l

−l− 1

)

. (12.17)

Together with the term that resulted from the relativistic kinetic energy, this
gives

〈H1 + H2〉n,j=l± 1/2,l =
mc2(Zα)2

2n2

(Zα)2

n2

{
3
4
− n

j + 1/2

}

. (12.18)

Remark:

The states with l = 0 require further discussion; 〈1/r3〉 ∼ 1/l diverges for
l = 0. Because of the factor l in the matrix element of S·L, this divergence was
not manifest. If one assumes in place of the Coulomb potential an extended
nucleus, then 〈(1/r)dV/dr〉 is no longer singular for l = 0, i.e.,

〈H2〉n,j=1/2,l=0 = 0 . (12.19)

Therefore, (12.18) only holds for l ≥ 1.
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12.3 The Darwin Term

A further term results from the Dirac equation, the so-called Darwin term

H3 =
�

2

8m2c2
∇2V = − �

2

8m2c2
(4πeQnuclear(x))

=
π�

2Ze2
0

2m2c2
δ(3)(x) (12.20)

with nuclear charge density Qnuclear(x). This term can be understood from
the “Zitterbewegung” of the electron. According to the relativistic theory,
the position of a localized electron fluctuates with

δr =
�

mc
= λ̄c .

The electron therefore feels on the average a potential

〈V (x+ δx)〉 = V (x) + 〈δx∇V 〉 + 1
2 〈(δx∇)(δx∇)V (x)〉

= V (x) + 1
6 (δr)2∇2V (x) . (12.21)

The correction thus calculated is in qualitative agreement in form, sign, and
magnitude with the Darwin term (12.20).

Because of the δ-function, a contribution

〈H3〉n,j,l =
π�

2Ze2
0

2m2c2
|ψnl(0)|2 =

mc2(Zα)4

2n3
δl,0 (12.22)

arises for s-wave states only; 〈H3〉 is formally identical to 〈H2〉n,j=1/2,l=0,
from (12.17).

We thus have for the energy shift due to all three relativistic corrections
the result

ΔEn,j=l± 1/2,l =
RyZ2

n2

(Zα)2

n2

{
3
4
− n

j + 1/2

}

(12.23)

in first-order perturbation theory. Formally identical formulae were given by
Sommerfeld on the basis of the old quantum theory with only the p4-term.
However, in fact the correction is due to three effects.

Below, for a level with spin s, orbital angular momentum L, and total
angular momentum j, we use spectroscopic notation 2s+1Lj. In the hydrogen
atom, 2s + 1 = 2. Figure 12.1 shows the shift (kinetic relativistic energy less
than zero) and splitting of the levels with l ≥ 1 in j = l ± 1/2 (spin–orbit
coupling greater than zero for j = l + 1/2, less than zero for j = l − 1/2).

The levels 2S1/2 and 2P1/2 are still degenerate. This remains valid in
Dirac theory to all orders in α. The fine-structure splitting between 22P1/2

and 22S1/2 on the one hand and 22P3/2 on the other is 0.45 × 10−4 eV or
equivalently 1.09 × 104 MHz.
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Fig. 12.1. Splitting of the energy levels of the hydrogen atom in MHz due to
relativistic corrections, the Lamb shift, and the hyperfine structure

We now give the computation of the expectation values (12.4a,b) and
(12.16). These could be calculated directly using the Laguerre polynomials,
but the calculation is tedious. Here, we instead make use of algebraic meth-
ods3.

To calculate 〈1/r〉, we use the virial theorem for the Hamiltonian H =
p2/2m + V (x), which we now prove. We start from

[H,x · p] = −i�
(
p2

m
− x · ∇V (x)

)

. (12.24)

Since for eigenstates |ψ〉 of the Hamiltonian one has 〈ψ|[H,x · p]|ψ〉 = 0, the
virial theorem
〈

ψ

∣
∣
∣
∣
p2

m

∣
∣
∣
∣ψ

〉

− 〈ψ|x · ∇V (x)|ψ〉 = 0 (12.25)

results. Specializing to the Coulomb potential, one obtains from (12.25)

2〈ψ|H |ψ〉 +
〈

ψ

∣
∣
∣
∣
Ze2

r

∣
∣
∣
∣ψ

〉

= 0 , (12.26)

or 2En = −Ze2〈ψ|1/r|ψ〉, whence
〈

1
r

〉

nl

=
Z

an2
. (12.4a)

For the remaining expectation values, we write
〈

1
rk

〉

nl

=
∫ ∞

0

dr r2 1
rk

R2
nl =

(

unl,
1
rk

unl

)

(12.27)

3 R. Becker, F. Sauter: Electromagnetic Fields and Interactions II.Quantum The-
ory of Atoms and Radiation (Blackie, Glasgow 1964)
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and rewrite the radial Schrödinger equation (6.11) in terms of the dimension-
less variable y = r/a, obtaining

Hu(y) = εu(y) (12.28)

with

ε = −Z2/(N + l + 1)2

and

H = − d2

dy2
+

l(l + 1)
y2

− 2Z
y

. (12.29)

We now differentiate the Schrödinger equation (12.28) with respect to l,

∂H

∂l
u + H

∂u

∂l
=

∂ε

∂l
u + ε

∂u

∂l
,

and construct the scalar product with u,
(

u,
∂H

∂l
u

)

+
(

u,H
∂u

∂l

)

=
∂ε

∂l
+ ε

(

u,
∂u

∂l

)

. (12.30)

Substituting
(

u,H
∂u

∂l

)

=
(

Hu,
∂u

∂l

)

= ε

(

u,
∂u

∂l

)

, (12.31)

we obtain from (12.30)
(

u,
∂H

∂l
u

)

=
∂ε

∂l
. (12.32)

With
∂H

∂l
=

2l + 1
y2

and
∂ε

∂l
=

2Z2

n3

(12.32) yields
〈

1
r2

〉

nl

=
2Z2

(2l + 1)n3a2
. (12.4b)

We finally differentiate the Schrödinger equation with respect to y, ob-
taining

∂H

∂y
u + H

∂u

∂y
= ε

∂u

∂y
.

The scalar product with u is
(

u,
∂H

∂y
u

)

+
(

u,H
∂u

∂y

)

= ε

(

u,
∂u

∂y

)

and gives, using (12.28),
(

u,
∂H

∂y
u

)

= 0 . (12.33)
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Now, substituting

∂H

∂y
= −2l(l + 1)

y3
+

2Z
y2

,

into (12.33) and combining with (12.4b), we finally obtain
〈

1
r3

〉

nlm

=
2Z3

l(l + 1)(2l + 1)n3a3
. (12.16)

12.4 Further Corrections

12.4.1 The Lamb Shift

Due to the zero-point fluctuations of the quantized electromagnetic field, a
shift in the position of the electron occurs, causing a perturbation similar in
structure to the Darwin term, where here

〈(δx)2〉 ≈ 2α
π

(
�

mc

) 2

log
1
αZ

, (12.34)

ΔELamb ≈ 4
3π

mc2Z4α5

n3
log

1
αZ

δl,0 . (12.35)

This rough computation gives for hydrogen a shift of Δ ≈ 660 MHz
from 2S1/2 towards 2P1/2. The observed shift is 1057.862 ± 0.020 MHz4.
The complete quantum electrodynamic theory of radiative corrections gives
1057.864 ± 0.014 MHz5. Compared to the Darwin term, the radiative cor-
rections are smaller by a factor of α log 1/α. The radiative corrections also
include α(Zα)4-terms, which are numerically somewhat smaller, and shifts
of the levels l �= 0.

12.4.2 Hyperfine Structure

The nuclear spin I leads to a nuclear magnetic moment

M =
Ze0gN

2MNc
I , (12.36)

which generates a vector potential

A = −M × ∇(1/r) =M × x 1
r3

(12.37a)

and a magnetic field

4 W.E. Lamb, Jr., R.C. Retherford: Phys. Rev. 72, 241 (1947)
5 See for example, C. Itzykson, J.-B. Zuber: Quantum Field Theory (McGraw-Hill,

New York 1980) pp. 359, 80.
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B = ∇ ×A = −
{

M∇2 1
r
− ∇(M · ∇)

1
r

}

. (12.37b)

We consider first just the s-electrons. The interaction of the magnetic
moment of the electrons with the field B of the nucleus gives rise to the
hyperfine interaction

Hhyp =
e0

mc
S ·B =

Ze2
0gN

2mMNc2
S

[

− I∇2 1
r

+ ∇(I · ∇)
1
r

]

. (12.38)

Since ∇2(1/r) = −4πδ(3)(x) and
∫

d3x

[

∇(I · ∇)
1
r

]

(ψn,0(r))2 =
I

3

∫
d3x

(

∇2 1
r

)

(ψn,0(r))2

for s (radially symmetric) wave functions, as a first step in first-order per-
turbation theory the spatial expectation value in the state |n, j = 1/2, l = 0〉
becomes
〈

Hhyp

〉

n,1/2,0

=
4
3
gN

m

MN
(Zα)4mc2

1
n3

S · I
�2

. (12.39)

Comparison with (12.22) shows that 〈Hhyp〉 is smaller than the fine structure
by a factor of m/MN. It remains to evaluate the expectation value with
respect to the spin degrees of freedom.

Analogously to the total angular momentum J of the electron, which we
introduced in our discussion of the spin–orbit coupling in order to diagonalize
S ·L, we now introduce the total spin F

F = S + I .

We then have

1
�2
S · I =

1
2�2

(F 2 − S2 − I2) = 1
2 [F (F + 1) − 3

4 − I(I + 1)]

=

{
1
2I for F = I + 1

2

1
2 (−I − 1) for F = I − 1

2

.

For the hydrogen atom, gN = gP = 5.56 and I = 1/2. The s-wave states
in the hydrogen atom are therefore either in a singlet state (F = 0, ground
state) or in a triplet state (F = 1, excited state).

The splitting in the nth level for s-electrons is therefore

ΔEhyp
n,1/2,0 =

4
3
gN

m

MN
(Zα)4

mc2

n3

(2I + 1)
2

,

ΔEhyp
n,1/2,0 (H-atom, s-electron) =

4
3
5.56

1
1840

1
(137)4

mc2

n3
. (12.40)
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For the lowest levels, one has

1S1/2 : ν = 1420 MHz , λ = 21.4 cm ;

2S1/2 : ν = 1
8 × 1420 MHz = 177 MHz ;

2P1/2 : ν = 1
24 × 1420 MHz = 59 MHz .

The 21-cm radiation is very important in astronomy. From its intensity,
Doppler broadening, and Doppler shift, one obtains information concerning
the density, temperature, and motion of interstellar and intergalactic hydro-
gen clouds. Due to the hyperfine interaction, all of the levels in hydrogen are
split into doublets.

Hyperfine interaction including the orbital part

We begin once again with equations (12.36) and (12.37a,b). The interaction of
the orbital moment of the electron with the magnetic moment of the nucleus
is

Horbit =
i�e
mc
A · ∇ = − e

mc

M

r3
· x × p = − e

mc

1
r3
M ·L .

Using

B = −
{

Mδ(3)(x)
(−8π

3

)

+
M

r3
− 3(M · x)x

r5

}

, (12.41)

one finds for the total hyperfine interaction6

Hhyp = Horbit +
e0

mc
S ·B

and finally

Hhyp =
Ze2

0gN

2MNmc2

[
1
r3
I · L+

8π
3
δ(3)(x)I · S − I · S

r3
+

3(I · x)(S · x)
r5

]

.

(12.42)

Remark:

The magnetic field of a dipole is singular at the origin. Its effect can be decomposed

into a part within a small infinitesimal sphere with radius ε and a part outside this

sphere. The former is represented by the δ(3)(x)-function in (12.41)7 and leads

to the so called Fermi-contact interaction in (12.42). The latter is represented by

the last two terms of Eq. (12.42), and enters in all matrix elements with a factor

Θ(|x| − ε) excluding the infinitesimal sphere. The Hamiltonian (12.42) is the basis

6 H. A. Bethe, E. E. Salpeter: Quantum Mechanics of One- and Two-Electron
Atoms (Springer, Berlin, Heidelberg 1957). Measurement of the hyperfine split-
ting permits the determination of I and gN.

7 J. D. Jackson, Classical Electrodynamics, Second Edition, John Wiley & Sons,
New York, 1975, p. 184
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for important experimental methods in condensed matter physics such as nuclear

spin resonance, muon spin resonance etc.

Further reading:

The relativistic Dirac equation, which is outside the scope of this book, is treated in:

J. D. Bjorken, S.D. Drell: Relativistic Quantum Mechanics (McGraw-Hill, New
York 1964)

C. Itzykson, J.-B. Zuber: Quantum Field Theory (McGraw-Hill, New York 1980)
F. Schwabl, Advanced Quantum Mechanics (Springer, Berlin, Heidelberg, New York

3rd ed., 2005)

Problems

12.1 Relativistic corrections in positronium (bound state of electron and positron):
How do the (relative) orders of magnitude change (in comparison to the hydrogen
atom) for the corrections due to the relativistic mass, the spin–orbit interaction,
and the hyperfine splitting in positronium?

12.2 Study the influence of the spin–orbit interaction

H2 =
1

2m2c2
S · L1

r

dV (r)

dr

on the energy spectrum
`

En,l = �ω
`

l + 2n+ 3
2

´

, compare problem 17.1
´

of a three-dimensional isotropic harmonic oscillator. Discuss the degeneracy of
the energy levels without and with the spin–orbit interaction. Note: ψnlm(x) =
Rnl(r)Ylm(ϑ, ϕ).
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13.1 Identical Particles

13.1.1 Bosons and Fermions

We consider N identical particles (e.g., electrons, π-mesons). The Hamilto-
nian

H = H(1, 2, . . . , N) (13.1)

is symmetric in the variables 1, 2, . . . . Here, 1 ≡ x1, χ1 includes position and
spin degrees of freedom. Likewise, we write a wave function in the form

ψ = ψ(1, 2, . . . , N) .

The permutation operator Pij interchanges i ↔ j; its action on an arbitrary
N -particle wave function is

Pijψ( . . . i, . . . , j . . . ) = ψ( . . . j, . . . , i . . . ) . (13.2)

Since P 2
ij = 1, Pij has the eigenvalues ± 1. By the symmetry of the Hamilto-

nian, for every element P of the permutation group, the relation

PH = HP (13.3)

holds.

Remark: Every element P can be represented as the product of transpositions Pij .

An element P is called even (odd) if there are an even (odd) number of the Pij .

Let ψ(1, . . . , N) be an eigenfunction of H with eigenvalue E; this then
holds for Pψ(1, . . . , N) as well.

Proof: Hψ = Eψ → HPψ = PHψ = EPψ.

For any symmetrical operator S(1, . . . , N), one has by (13.3)

[P, S] = 0
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and1

〈Pψ|S|Pψ〉 = 〈ψ|P †SP |ψ〉 = 〈ψ|P †PS|ψ〉 = 〈ψ|S|ψ〉 .

The expectation value and, more generally, the matrix elements in the states
ψ and Pψ of a symmetrical operator S are equal.2 Since identical particles
are influenced equivalently by any physical process, all physical operators are
symmetric and thus the states

ψ(1, . . . , N) and Pψ(1, . . . , N)

cannot be distinguished from one another. The question then arises whether
all these states are realized in nature. On aesthetic grounds, one might suspect
that the completely symmetric states and the completely antisymmetric states
occupy a privileged position. They are defined by

Pijψ( . . . i, . . . , j . . . ) = ±ψ( . . . i, . . . , j . . . ) (13.4)

for all Pij , e.g., for two particles,

ψs(1, 2) = ψ(1, 2) + ψ(2, 1) , ψa(1, 2) = ψ(1, 2) − ψ(2, 1) . (13.5)

A completely (anti)symmetric state remains so for all time. (Perturbation V :
ψ → ψ+V ψ+. . . , PV ψ = V Pψ = ±V ψ. Quite generally Eq. (16.9′) ψ(t) =
T exp{i ∫ t0dt′H(t′)/�}ψ(0) implies Pψ(t) = T exp{i ∫ t0dt′H(t′)/�}Pψ(0).)

Experimental findings imply that there exist two types of particles, bosons
and fermions , whose states are completely symmetric and completely an-
tisymmetric, respectively. Fermions have half-integral spin, whereas bosons
have integral spin. This connection between spin and symmetry follows from
the spin-statistics theorem of quantum field theory. Significant consequences
of these two symmetries of many-particle physics are Fermi–Dirac statistics
and Bose–Einstein statistics.

fermions bosons
leptons νe, νμ, ντ mesons π, K, �, ω, . . .

e, μ, τ photon γ

baryons p, n
Λ, Σ, Ξ, Ω, . . .

1 For any permutation P and arbitrary ψ and ϕ one has 〈ψ|ϕ〉 = 〈Pψ|Pϕ〉 implying
〈ψ|ϕ〉 = 〈ψ|P †Pϕ〉 and the unitarity P † = P−1.

2 The opposite is also true. The requirement that a permutation of identical
particles must not have any observable consequences implies that observables
O are symmetric (permutation invariant). Proof: 〈ψ|O|ψ〉 = 〈Pψ|O|Pψ〉 =
〈ψ|P †O|Pψ〉 holds for arbitrary ψ and thus P †OP = O. Consequently PO =
OP .
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Table 13.1. The fundamental fermions

Charge Lepton doublets Antilepton doublets Charge

0 electron-neutrino νe νe electron-antineutrino 0
−1 electron e− e+ positron +1

0 muon-neutrino νμ νμ muon-antineutrino 0
−1 muon μ− μ+ anti-muon +1

0 tau-neutrino ντ ντ tau-antineutrino 0
−1 tau τ− τ+ anti-tau +1

Charge Quark doublets Antiquark doublets Charge

+2/3 up-quark u ū up-antiquark −2/3
−1/3 down-quark d d̄ down-antiquark +1/3

+2/3 charm-quark c c̄ charm-antiquark −2/3
−1/3 strange-quark s s̄ strange-antiquark +1/3

+2/3 top-quark (truth) t t̄ top-antiquark −2/3
−1/3 bottom-quark (beauty) b b̄ bottom-antiquark +1/3

The hadrons, i.e., baryons and mesons, are composed of quarks. The funda-
mental particles at this level are (see also Table 13.1)

leptons Yang-Mills gauge bosons3

quarks Higgs bosons

From Pijψ( . . . i, . . . , j . . . ) = ψ( . . . j, . . . , i . . . ) = −ψ( . . . i, . . . , j . . . ), it
follows for fermions that

ψ( . . . ,xσ, . . . ,xσ, . . . ) = 0 . (13.6)

Thus, two fermions in the same spin state cannot occupy the same position.
This is the Pauli exclusion principle4.

Remark: The completely symmetric and the completely antisymmetric N-particle

states form the basis of two one-dimensional representations of the permutation

group SN . This is seen from (13.4) and from the fact that every permutation can

be represented by products of transpositions. Since the Pij do not all commute

with each other for more than two particles, there are also wave functions for

which not all the Pij are diagonal. These are basis functions of higher-dimensional

representations of the permutation group. These states do not occur in nature.5

3 The Yang-Mills gauge bosons of the electroweak interaction are W+, W−, Z0

and the photon γ, and those of the strong interaction are the gluons.
4 W. Pauli: Z. Phys. 31, 765 (1925)
5 A.M.L. Messiah, O.W. Greenberg: Phys. Rev. 136, B 248 (1964); 138, B 1155

(1965)
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13.1.2 Noninteracting Particles

For N identical, noninteracting particles, the Hamiltonian

H =
N∑

i=1

H(i) (13.7)

is the sum of N identical one-particle Hamiltonians H(i). From the solutions
of the one-particle Schrödinger equation

H(i)ϕαi(i) = Eαiϕαi(i) , (13.8)

where αi numbers the one-particle states, we first form the product states

ϕα1(1)ϕα2(2) . . . ϕαN (N) , (13.9)

which are eigenstates of H with energy eigenvalue

E = Eα1 + . . . + EαN . (13.10)

The states (13.9) are in general neither antisymmetric nor symmetric. We
now construct states of these two types.

For fermions

For two particles, the antisymmetric state is

ψa(1, 2) =
1√
2
(ϕα1(1)ϕα2(2) − ϕα2(1)ϕα1(2)) , (13.11)

and generally for N particles

ψa(1, . . . , N) =
1√
N !

∑

P

(−1)PPϕα1(1) . . . ϕαN (N)

=
1√
N !

∣
∣
∣
∣
∣
∣
∣

ϕα1(1) · · · ϕα1(N)
...

...
ϕαN (1) · · · ϕαN (N)

∣
∣
∣
∣
∣
∣
∣

. (13.12)

These determinants of one-particle states are called Slater determinants. The
antisymmetry of (13.12) is immediately apparent, since interchange of any
two columns introduces a factor of –1. The normalization factor is 1/

√
N !,

because (13.12) consists of N ! mutually orthogonal terms. For even (odd)
permutations, (−1)P = ± 1. One has ψa(1, . . . N) = 0 for ϕαi = ϕαj . No
state may be multiply occupied (Pauli exclusion principle).

For bosons

ψs(1, . . . , N) =

√
N1!N2! . . .

N !

∑

P ′
P ′ϕα1(1) . . . ϕαN (N) , (13.13)

N1 is the multiplicity of α1, etc. The summation
∑
P ′ is only over permuta-

tions leading to distinct terms and includes N !/N1!N2! . . . different terms.



13.1 Identical Particles 231

Free particles in a box

Let N interaction-free particles be enclosed in a volume V = L3. The one-
particle wave functions for free particles are plane waves

ψp ∼ eip ·x/� ,

Ep =
p2

2m
, E =

N∑

1

p2
i

2m
. (13.14)

Choosing periodic boundary conditions, one obtains the discrete momentum
values

p = �
2π
L

(n1, n2, n3) ; ni integer .

The ground state of N bosons is given by

pi = 0 (13.15)

for all N particles, and the total energy is E = 0.
Fermions are subject to the Pauli exclusion principle, according to which

each momentum state can only be doubly occupied (sz = ± �/2). The ground
state is obtained by putting the N fermions one after another into the low-
est available states. By (13.14), the occupied states lie within a sphere in
momentum space inside of

|pi| ≤ pF , (13.16)

the Fermi sphere (Fig. 13.1), whose radius is denoted by pF.

Fig. 13.1. The Fermi sphere – the discrete mo-
mentum values have separation 2π�/L

The number of states within the Fermi sphere is given by

2
4π(pF/�)3/3

(2π/L)3
=

(pF/�)3

3π2
L3 = N .

Hence, the particle number density n = N/L3 is

n =
(pF/�)3

3π2
. (13.17)
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The ground state energy is obtained by summing up the one-particle energies

E = 2
∑

p

p2

2m
= 2
(

L

2π�

)3 ∫ pF

0

d3p
p2

2m
= N

3
5
εF . (13.18)

The quantities εF = p2
F/2m and pF are known respectively as the Fermi

energy and the Fermi momentum.
The crucial difference between bosons and fermions, which for free (= non-

interacting) particles is manifest in (13.15) and (13.16), leads to characteristic
differences in the low-temperature behavior of such particles (Bose–Einstein
condensation, linear specific heat, etc.)

Remarks: (i) First of all, concerning the boundary conditions: While counting
states, we used periodic boundary conditions ψp(x + L) = ψp(x). If instead we
assume infinitely high barriers, the wave functions are

ψp′ = sin
p′

�
x ,

p′

�
=
π

L
k , k = 1, 2, 3, . . . .

These momentum values are equivalent to

p′

�
=

8

>

<

>

:

2π

L
n for positive n

2π

L
n− π

L
for negative n

.

The densities of the momentum values for these two boundary conditions are thus
equal.

(ii) We now consider one-dimensional bosons in a ring of circumference L, so
that 0 ≤ ϕ < L. Is the state ψ = 1/

√
L compatible with the uncertainty relation

at all?
For this state

〈ψ|pϕ|ψ〉 = 〈ψ|p2
ϕ|ψ〉 = 0 ,

where pϕ = (�/i)∂/∂ϕ, or Δpϕ = 0, while 〈ϕ〉 = L/2, 〈ϕ2〉 = L2/3 and thus

ΔϕΔpϕ = 0 .

The apparent contradiction to the uncertainty relation can be explained as follows:
(�/i) ∂/∂ϕ is a Hermitian operator in the space of the periodic functions eiϕk,
k = 2π/L. However, the operator ϕ takes us out of the space of these functions,

ϕeiϕk|0 �= ϕeiϕk|L ,

and for such functions (�/i) ∂/∂ϕ is not Hermitian. Therefore, the proof of the

uncertainty relation does not hold for ϕ and (�/i) ∂/∂ϕ.

Composite particles

Example – the H-atom: An H-atom consists of two fermions: a proton p and
an electron e. In order to see whether the H-atom is a fermion or a boson,
we investigate what happens to the wave function ψ(p1, e1; p2, e2) when two
H-atoms are interchanged. Since p and e are fermions,
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ψ(p1, e1; p2, e2) = −ψ(p2, e1; p1, e2) = ψ(p2, e2; p1, e1) .

Hence, the H-atom is a boson.
In general, if the number of fermions in a composite particle is odd, then it

is a fermion, otherwise a boson; e.g., baryons consist of three quarks and are
thus fermions, while mesons consist of two quarks and are therefore bosons.
3He is a fermion, 4He a boson.

13.2 Helium

In this section, the simplest multielectron atom is treated, consisting of two
electrons in the field of a nucleus with nuclear charge Z. For helium, Z = 2,
and for H−, Z = 1. Neglecting for the moment the spin–orbit interaction and
the motion of the nucleus (mn � me), one can write the Hamiltonian in the
form

H =
1

2m
p2

1 +
1

2m
p2

2 −
Ze2

r1
− Ze2

r2
+

e2

|x1 − x2| . (13.19)

We introduce the abbreviations

H = H(1) + H(2) + V , (13.19a)

H(i) =
p2
i

2m
− Ze2

ri
, i = 1, 2 , (13.19b)

V =
e2

|x1 − x2| . (13.19c)

Here, H(i) is the hydrogenic Hamiltonian, i.e., that of a nucleus with nuclear
charge Z and only one electron, while V gives the electrostatic repulsion of
the two electrons.

13.2.1 Without the Electron–Electron Interaction

Neglecting for now the mutual electrostatic repulsion of the electrons, one
can write H as the sum of two one-particle Hamiltonians. The product states

|ψ〉 = |n1l1m1〉|n2l2m2〉
are then eigenstates of H, where the states |nilimi〉 are eigenstates of H(i),
i.e., hydrogenic states with Z = 2 (for He). This implies

[H(1) + H(2)]|ψ〉 = (En1 + En2)|ψ〉
with

En = −Z2 Ry
1
n2

(13.20)
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Table 13.2. Energy values of the He atom for various n1 and n2 (13.21)

n1 n2 E0(Ry) E0(eV)

1 1 −8 −108.8
1 2 −5 −68.0
1 3 −40/9 −60.4
...

...
...

...
1 ∞ −4 −54.5
2 2 −2 −27.2

and with energy

E0
n1,n2

≡ En1 + En2 . (13.21)

In Table 13.2, several values of the total energy are given for various
principal quantum numbers n1 and n2 (for Z = 2).

The ionization energy of a helium atom in the ground state is

E0
Ion = (E1 + E∞) − 2E1 = 4 Ry .

The (n1, n2) = (2, 2)-state has a higher energy than the singly ionized
(1, ∞)-state and is not a bound state, as is true of all the further ones.
In the bound, excited states, one of the electrons has the principal quantum
number 1. One sees the (2,2)-state however as a resonance in the He+– e
scattering cross section. The energy spectrum of Fig. 13.2 thus results.

Fig. 13.2. The energy spectrum of He,
neglecting the interaction of the electrons
(schematic); zero at the ionization energy

We must now take into account the Pauli principle, that is, the anti-
symmetry of the total wave function, which is the product of the coordinate
function and the spin state |S,ms〉. The spin states of the two electrons are
the three symmetric triplet states and the antisymmetric singlet state. The
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spatial part of the state must be respectively an antisymmetric or a symmet-
ric combination of the spatial eigenfunctions |n1l1m1〉|n2l2m2〉.

For historical reasons, the following designations for these two classes of
states are customary:

Parahelium: Spatial wave function symmetric, spin singlet (antisymmetric)

|0〉 = |100〉|100〉|0, 0〉 ,

1√
2
(|100〉|2lm〉+ |2lm〉|100〉)|0, 0〉 . (13.22a)

...

Orthohelium: Spatial part of the wave function antisymmetric, spin triplet
(symmetric). The antisymmetrization of |100〉|100〉 gives zero; therefore, the
lowest spin triplet state is

1√
2
(|100〉|2lm〉 − |2lm〉|100〉)|1,ms〉 . (13.22b)

Remark: The two Slater determinants

1√
2
(|100〉|2lm〉 |↑↓〉− |2lm〉|100〉 |↓↑〉) and

1√
2
(|100〉|2lm〉 |↓↑〉 − |2lm〉|100〉 |↑↓〉)

satisfy the Pauli principle as well, but they are not eigenfunctions of the total spin.

In both of these degenerate states, the Coulomb interaction V is not diagonal. In

contrast, the nondiagonal matrix elements of V vanish for the degenerate eigen-

states of the total spin (13.22a) and (13.22b). Therefore, (13.22a,b) are appropriate

unperturbed states for perturbation theory. See Sect. 11.1.2.

13.2.2 Energy Shift
Due to the Repulsive Electron–Electron Interaction

13.2.2.1 The Ground State

We now take into account the Coulomb repulsion of the electrons, (13.19c),
perturbatively. The energy shift ΔE of the ground state becomes in first-order
perturbation theory

ΔE = 〈0|V |0〉 = 〈100|〈100|V |100〉|100〉

= e2

∫
d3x1 d

3x2
|ψ100(x1)|2|ψ100(x2)|2

|x1 − x2| . (13.23)

The wave function ψ100 is given according to (6.43) by

ψ100(x) =
1√
π

(
Z

a

)3/2
e−Zr/a .



236 13. Several-Electron Atoms

One thus obtains

ΔE =
[
(Z/a)3

π

]2
e2

∫ ∞

0

dr1r
2
1e

−2Zr1/a

∫ ∞

0

dr2r
2
2e

−2Zr2/a

×
∫

dΩ1 dΩ2
1

|x1 − x2| . (13.24)

Using the formula, problem 13.1(a)
∫

dΩ1 dΩ2
1

|x1 − x2| = (4π)2
1

max(r1, r2)
,

one obtains the final result

ΔE =
5
4
Ze2

2a
=

5
4
Z
mc2α2

2
, (13.25)

ΔE = 2.5 Ry = 34 eV for Z = 2 . (13.26)

The total ground state energy E1,1 = E0
1,1 + ΔE becomes

E1,1 = −74.8 eV = −5.5 Ry , (13.27a)

while the experimental value is

(E1,1)exp = −78.975 eV = −5.807 Ry . (13.27b)

13.2.2.2 Excited States

The energy shift ΔEs,t
nl is given in first-order perturbation theory for singlet

and triplet states by

ΔEs,t
nl = 1

2

∫
d3x1d

3x2|ψ100(x1)ψnl0(x2) ± ψnl0(x1)ψ100(x2)|2 e2

|x1 − x2|

= e2

[ ∫
d3x1d

3x2
|ψ100(x1)|2|ψnl0(x2)|2

|x1 − x2|

±
∫

d3x1d
3x2

ψ∗
100(x1)ψ∗

nl0(x2)ψ100(x2)ψnl0(x1)
|x1 − x2|

]

≡ Jnl ± Knl . (13.28)

It suffices to compute ΔEs,t
nl for m = 0, since the result is independent of m

due to the vanishing commutator [L, 1/|x1 −x2|] = 0, where L = L1 +L2 is
the total angular momentum. The two terms in the energy shift Jnl and Knl

can be interpreted as follows: Jnl is the electrostatic interaction of the two
charge distributions |ψ100(x1)|2 and |ψnl0(x2)|2, and it is of course positive.
Knl is the exchange term, which comes from the antisymmetrization of the
wave function.
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Using

2S1 · S2/�
2 = S(S + 1) − 3

2 =

{
− 3

2 singlet
1
2 triplet

,

one can also write the energy shift (13.28) in the form

ΔEs,t
nl = Jnl − 1

2 (1 + σ1 · σ2)Knl . (13.29)

Because of the Pauli principle, the energy shift depends on the spin state.
However, this effective spin–spin interaction is of purely electrostatic origin.
The quantity Knl is also positive, since the antisymmetric spatial wave func-
tion must have lower energy due to the smaller electron–electron interaction.
This must of course be checked formally (see remark).

Remark: Substituting

|x1 − x2|−1 =
∞
X

l′=0

Pl′(cos ϑ)
min(r1, r2)

l′

max(r1, r2)l
′+1

and

Pl′(cos ϑ) =
4π

2l′ + 1

l′
X

m=−l′
Yl′m(Ω1)Y

∗
l′m(Ω2)

into (13.28), one finds using the orthogonality relation for the spherical harmonics

Knl =
e2

2l + 1

Z ∞

0

dr1r
2
1

Z ∞

0

dr2r
2
2R10(r1)Rnl(r2)R10(r2)Rnl(r1)

min(r1, r2)
l

max(r1, r2)l+1
.

Since Rn,n−1 does not have a node, it immediately follows that Kn,n−1 > 0; by

explicit computation, one arrives at the same result for other values of l.

13.2.2.3 Comparison of the 1s2s- and 1s2p-States
and the Influence of the Spin–Orbit Interaction

The main effect of the Coulomb repulsion of the electrons may be interpreted
in the following manner. The 2s and 2p electrons feel a Coulomb potential
screened by the 1s electron. Since the 2s electron has a nonzero probability of
being at the nucleus, it is effected by the screening less than the 2p electron,
E1s2p > E1s2s. The additional splitting of the 1s2s- and 1s2p-levels is caused
by the exchange interaction (13.29). See Fig. 13.3. The triplet levels are below
the corresponding singlets, due to the antisymmetric spatial wave functions
and consequent diminuation of the Coulomb interaction.

Due to the spin–orbit coupling S ·L = (J2 −L2 −S2)/2, the parahelium
levels are not split (2S + 1 = 1), whereas the orthohelium levels with L ≥ 1
are split threefold (2S + 1 = 3), e.g., L = 1, J = 2, 1, 0. In Fig. 13.3, we
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Fig. 13.3. The shift of the He levels
due to the Coulomb repulsion and the
spin–orbit interaction; inset : splitting
of the 3P2,1,0 levels

Fig. 13.4. Energy levels of helium, in-
cluding the Coulomb repulsion of the
electrons. The triplet levels 3P , 3D, 3F
are further split into 3 levels

illustrate the level shift and in Fig. 13.4, the level diagram up to the 4F
states. We use spectroscopic notation 2S+1LJ , where L is the total orbital
angular momentum, S the total spin, and J the total angular momentum.
The splitting by the exchange interaction is of O(10−1 eV) and by the spin–
orbit coupling O(10−4 eV).

The energy levels of helium, and in particular the absence of a triplet
1S-state, could not be understood at all in the context of Bohr’s theory; it
was not until the advent of quantum theory together with the Pauli principle
that an explanation became possible. In the early days of spectroscopy and
atomic theory, it was suspected that helium was a mixture of two kinds of
helium atoms. This came from the distinct splittings (singlet and triplet)
and from the fact that no radiative transitions were found between para-
and orthohelium. The triplet splitting of the radiative transitions within the
orthostates was easier to reconcile with the Bohr quantum theory; thus the
designation ortho and para. In Chap. 15 we will discuss the coupling to the
radiation field p · A(x, t). This does not contain the spin, and hence one
has for electric dipole and quadrupole, as well as magnetic transitions the
selection rule

ΔS = 0 ,
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where ΔS = Sf−Si is the difference between the spin quantum numbers after
(Sf) and before (Si) the transition. Transitions from ortho- to parahelium
are thus impossible, and in particular the 3S1 state is (meta-) stable. The
magnetic coupling of the spin to the radiation field

−μB

∑
Si ·B(xi, t) ,

which would allow a change in S, does not give a contribution in first order
either, since para- and orthohelium states have different spatial symmetry
and B is symmetric. It has already been mentioned that the (1s2s) 3S1 state
is metastable. We would like to indicate which further processes and higher
transitions of low transition probability are possible. Orthohelium can form
from parahelium due to bombardment with electrons. In the atmosphere it
is important that irradiation of parahelium with UV light takes the state
(1s1s) 1S0 into (1s2p) 1P1 (see Fig. 13.4). Collisions of (1s2p) 1P1 atoms can
give the orthohelium state (1s2p) 3P . This state can make an electric dipole
transition to the (1s2s) 3S1 level, because the electric dipole transitions are
restricted only by the selection rules

Δl = lf − li = ± 1 ,

Δm = mf −mi =

⎧
⎪⎨

⎪⎩

1 right circularly polarized
0 linearly polarized

−1 left circularly polarized .

The lowest ortholevel (1s2s) 3S1 is metastable with lifetime τ = 104 s. The
transition into the ground state occurs through a spin dependent, relativistic
magnetic dipole transition.6 The (1s2s) 1S0 level is also metastable with
the lifetime τ = 19.7 ms, since no electric dipole transition to (1s1s) 1S0

is possible. The most important decay mechanism is a two-photon electric
dipole transition.7

Remark illustrating the exchange interaction:

H = J − 1
2
K(1 + σ1 · σ2) = (J +K)|s〉〈s| + (J −K)|t〉〈t|

Ignoring the different spatial wave functions, the stationary states are

|s〉 = (|↑↓〉 − |↓↑〉) e−iωst

√
2

, ωs = (J +K)/� ,

|t〉 = (|↑↓〉 + |↓↑〉) e−iωtt

√
2

, ωt = (J −K)/� .

6 G. Feinberg, J. Sucher: Phys. Rev. Lett. 26, 681 (1971); G.W.F. Drake: Phys.
Rev. A3, 908 (1971)

7 R. S. Van Dyck, Jr., C. E. Johnson, H. A. Shugart: Phys. Rev. A4, 1327 (1971)
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A general state is constructed by superposition:

|ψ〉 = as|s〉 + at|t〉 .

Taking as = at = 1/
√

2, we find

|ψ〉 =
1√
2

j

“

e−iωst + e−iωtt
” 1√

2
|↑↓〉 +

“

− e−iωst + e−iωtt
” 1√

2
|↓↑〉

ff

= e−i(ωs+ωt)t/2
“

|↑↓〉 cos
“ωt − ωs

2
t
”

+ i |↓↑〉 sin
“ωt − ωs

2
t
””

.

In the course of time, an exchange of the two particles takes place between the two

spin states |↑↓〉 and |↓↑〉 with frequency K/�.

13.2.3 The Variational Method

The ground state energy can be calculated much more precisely by means
of the Ritz variational method of Sect. 11.2 than by means of perturbation
theory. In guessing an appropriate form for the wave function, we wish to
take into account the fact that each electron sees an effectively lower charge
number Z∗ due to screening by the other electron. We therefore make the
variational ansatz

|ψ〉 = |100〉|100〉|0, 0〉 ,

ψ100(x) =
1

π1/2

(
Z∗

a

)3/2

e−Z
∗r/a , (13.30)

with variational parameter Z∗. It is to be determined in such a way that
〈ψ|H |ψ〉 is minimized. From (13.19), it follows that

〈ψ|H |ψ〉 = 2E0(Z∗) − 2〈ψ|e
2(Z − Z∗)

|x1| |ψ〉 + 〈ψ| e2

|x1 − x2| |ψ〉 . (13.31)

Substituting

E0(Z∗) = −RyZ∗2 , (13.32a)

〈100|e
2Z∗

|x|
(Z − Z∗)

Z∗ |100〉 = 2 RyZ∗2 (Z − Z∗)
Z∗ , (13.32b)

〈ψ| e2

|x1 − x2| |ψ〉 = Ry
5
4
Z∗ (13.32c)

(see (13.25)) into (13.31), we find

〈ψ|H |ψ〉 = −2 Ry (−Z∗2 + 2Z∗Z − 5
8Z

∗) . (13.33)
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The minimum of (13.33) is at

Z∗ = Z − 5
16 ,

which gives for the ground state energy upon substitution into (13.33)

E0 = −2
(
Z − 5

16

)2 Ry =
[
−2Z2 + 5

4Z − 2
(

5
16

)2] Ry . (13.34)

The first two terms coincide with first-order perturbation theory, while the
third lowers the energy relative to first-order perturbation theory.

For Z = 2 (He), E0 = −5.7 Ry = −77.48 eV, is a significant improvement
compared to first-order perturbation theory (13.27a,b). However, for H−, the
result is still qualitatively wrong, because −0.945 Ry > −1Ry, i.e., H− would
be unstable to the decay H− → H + e−, whereas in fact H− is just barely
stable. Incidentally, in the framework of nonrelativistic quantum mechanics,
it can be proven exactly that H−− is unstable and H− is stable.

In order to improve the variational computation, one should take into
account the dependence of the wave function on the distance between the
particles. Such computations have been carried out using a large number of
variational parameters (∼ 200) with fantastic precision8. It is then also nec-
essary to take into account the motion of the nucleus. After transforming to
the center-of-mass frame, the electron mass is replaced by the reduced mass
(μ = Mm/(M + m)), and a term (1/M)P 1 · P 2 enters, in which M is the
nuclear mass. However, going beyond helium, the number of variational pa-
rameters gets larger and larger with increasing electron number, and instead
it turns out to be more efficient to utilize methods in which the influence of
the remaining electrons on a particular electron is represented by an average
field (potential).

13.3 The Hartree and Hartree–Fock Approximations
(Self-consistent Fields)

We now treat the most important aspects of the theory of (perhaps ionized)
atoms with N electrons and the nuclear charge number Z. Assuming a fixed
nucleus, we have the Hamiltonian

H =
N∑

i=1

(
p2
i

2m
− Ze2

ri

)

+
∑

i > j

e2

|xi − xj | , (13.35)

and the corresponding time independent Schrödinger equation for the N -elec-
tron wave function ψ(1, . . . , N),

Hψ(1, . . . , N) = Eψ(1, . . . , N) . (13.36)

8 H.A. Bethe, R. Jackiw: Intermediate Quantum Mechanics, Lecture Notes in
Physics (Benjamin, New York 1958)
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Considering our experience with the helium atom, it is hopeless to look for
an exact solution of the Schrödinger equation for more than two electrons.
The situation is simplest in atoms which are similar to hydrogen, i.e., exci-
tations of Li, Na, . . . or for highly excited states (Rydberg states). Such an
electron, because of screening due to the other electrons, moves effectively in
a Coulomb field with charge number 1. The corrections due to the extension
of the screening electron cloud lead to the replacement in (6.24′) for the hy-
drogen levels of n with n+Δl, where Δl depends only on l but not on n. We
will not go into this special case, which was important in the initial phase of
atomic physics, but now discuss the method of the self-consistent field, that
is, the Hartree and Hartree–Fock approximations.

One starts from the physical picture that an arbitrary electron of the atom
effectively feels, in addition to the nuclear potential, a potential due to the
rest of the electrons, so that each electron can be described by a one-particle
Schrödinger equation. The potential in these Schrödinger equations depends
on the wave functions of the other electrons and must be determined self-
consistently. In the Hartree approximation, the wave function is assumed to
take the form of a product of one-particle wave functions. The wave function
is not antisymmetric. The Pauli exclusion principle is taken into account to
the extent that all factors are distinct from one another. In the Hartree–Fock
approximation, the wave function is a Slater determinant.

13.3.1 The Hartree Approximation

Here one writes the wave function in the form of a product,

ψ(1, . . . , N) = ϕ1(1)ϕ2(2) . . . ϕN (N) , (13.37a)

where the one-particle wave functions

ϕi(i) = ϕi(xi)χi(msi) (13.37b)

are products of spatial and spin states. The state (13.37a) is not antisym-
metric. In order to take the Pauli exclusion principle at least partly into
account, the one-particle states must be distinct and orthogonal. We now de-
termine the wave function by means of the Ritz variational principle, where
the normalization
∫

d3x|ϕi(x)|2 = 1 (13.38)

constitutes a constraint, which is taken into account by a Lagrange multiplier
εi. We must then minimize

〈H̃〉 = 〈H〉 −
∑

i

εi

(∫
d3x|ϕi(x)|2 − 1

)

, (13.39)
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where the expectation value is formed using the Hartree state (13.37a). We
seek here the state which is stationary, not only under variation of parameters,
but also under variation of the one-particle wave functions. We must thus
construct the functional derivative δ/δϕi(x) of (13.39).

We recall the definition of the functional derivative

δG[ϕi(x′)]
δϕj(x)

= lim
ε→ 0

G[ϕi(x′) + εδijδ(x′ − x)] −G[ϕi(x′)]
ε

(13.40)

with the important special case

δϕi(x′)
δϕj(x)

= δ(x′ − x)δij . (13.41)

In (13.40), G[ϕi(x′)] designates a functional of the functions ϕi, i = 1, . . . , N ;
for example,

∫
dx′ F (ϕ1(x′), . . . , ϕN (x′)).

Substituting the Hamiltonian (13.35) and the wave function of (13.37a)
into (13.39), we find

〈H̃〉 =
∑

i

{∫
d3x

[

ϕ∗
i (x)

(

− �
2

2m
∇2 − Ze2

|x| − εi

)

ϕi(x)
]

+ εi

}

+
∑

i>j

∫
d3x

∫
d3y ϕ∗

i (x)ϕ∗
j (y)

e2

|x− y| ϕi(x)ϕj(y) . (13.42)

We can now easily form the functional derivative with respect to ϕ∗
i (x). This

gives the Hartree equations for the wave function ϕi:
(

− �
2

2m
∇2
i −

Ze2

ri
+ Vi(xi)

)

ϕi(xi) = εiϕi(xi) , (13.43)

where

Vi(xi) =
∑

j �=i

∫
d3xj

e2

|xi − xj | |ϕj(xj)|
2 . (13.44)

Equation (13.43) is easy to interpret and could have been guessed even with-
out the variational calculation. The first two terms are the kinetic energy and
the nuclear potential, and the third term is the electrostatic potential due to
the charge distribution of the other electrons. The Hartree equation for ϕi
contains in the potential all the other wave functions. These nonlinear equa-
tions can be solved self-consistently for atoms only by numerical methods, i.e.,
one assumes functions ϕ1 . . . ϕN , determines the Vi using (13.44), and then
solves (13.43). With the new wave functions, one again computes the Vi and
continues the iteration until no further change occurs. (The Hartree approxi-
mation is trivial only for translationally invariant problems.) A simplification
of the solution of the Hartree equations results if Vi(x) is approximated by
the spherically symmetric potential
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1
4π

∫
dΩiVi(xi)

with the element of solid angle dΩi.
The constants εi entered (13.39) as Lagrange multipliers; in the Hartree

equations, they have the appearance of one-particle energy eigenvalues. What
is their physical meaning?

Multiplying (13.43) by ϕ∗
i and integrating over x, we find

εi =
∫

d3x

(
�

2

2m
|∇ϕi(x)|2 − Ze2

r
|ϕi(x)|2

)

+
∑

j �=i

∫
d3x

∫
d3y|ϕi(x)|2|ϕj(y)|2 e2

|x− y| . (13.45)

Since εi consists of just those terms of 〈H〉 (see (13.42)) containing ϕi, the
quantity −εi represents the ionization energy under the approximative as-
sumption that the other states do not change when the electron in the one
particle state ϕi is removed. Using (13.42), (13.43), and (13.44), one finds for
the total energy

E ≡ 〈H〉 =
N∑

i=1

εi −
∑

i< j

∫
d3xd3y

e2

|x− y| |ϕi(x)|2|ϕj(y)|2 . (13.46)

13.3.2 The Hartree–Fock Approximation

In the Hartree–Fock approximation, the wave function including the spin
is assumed to take the form of a Slater determinant of one-particle wave
functions (or orbitals)

ψ(1, 2, . . . , N) =
1√
N !

∣
∣
∣
∣
∣
∣
∣

ϕ1(1) · · · ϕ1(N)
...

...
ϕN (1) · · · ϕN (N)

∣
∣
∣
∣
∣
∣
∣

, (13.47)

where the ϕi are again of the form (13.37b) and are normalized. The expec-
tation value of the Hamiltonian (13.35) in the state (13.47) is

〈H〉 =
∑

i

∫
d3x

[
�

2

2m
|∇ϕi(x)|2 − Ze2

r
|ϕi(x)|2

]

+
1
2

∑

ij

∫
d3xd3x′ e2

|x− x′| |ϕi(x)|2|ϕj(x′)|2

− 1
2

∑

ij

δmsi
msj

∫
d3xd3x′ e2

|x− x′|ϕ
∗
i (x)ϕi(x′)ϕ∗

j (x
′)ϕj(x) .

(13.48)
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Remark: To show (13.48), we first consider the expectation value of the kinetic
energy

 

ψ,

 

−
N
X

k=1

∇2
k

!

ψ

!

= −
N
X

i=1

(ϕi,∇2ϕi) =

N
X

i=1

Z

d3x|∇ϕi(x)|2 , (13.49)

where we use the fact that (13.47) contains N ! mutually orthogonal terms, and that
therefore the contribution with the wave function ϕi occurs N ! times in (13.49).
Similarly we see that

 

ψ,

N
X

k=1

1

|xk|ψ
!

=

N
X

i=1

Z

d3x
1

|x| |ϕi(x)|2 . (13.50)

After the expectation values of the one-particle operators, we calculate the expecta-
tion value of the Coulomb interaction, i.e., of a two-particle operator. For example,
consider a contribution 1/|x1 − x2| and a term in (13.47) depending on ϕ1 and ϕ2

with argument 1 or 2,

1√
N !

(ϕ1(1)ϕ2(2) − ϕ2(1)ϕ1(2)) . . . . (13.51)

The points refer to the remaining factors. The contribution of (13.51) to the ex-
pectation value of 1/|x1 − x2| is

1

N !

„

ϕ1(1)ϕ2(2) − ϕ2(1)ϕ1(2),
1

|x1 − x2| (ϕ1(1)ϕ2(2) − ϕ2(1)ϕ1(2))

«

. (13.52)

Now, each wave function pair such as ϕ1 and ϕ2 occurs exactly N !/2 times
in (13.47), so that the total expectation value is given by

 

ψ,
X

k> l

e2

|xk − xl|ψ
!

=
1

2

X

i,j

Z

d3x d3x′ e2

|x − x′|

×
“

|ϕi(x)|2|ϕj(x′)|2 − ϕ∗
i (x)ϕi(x

′)ϕ∗
j (x

′)ϕj(x)δmsi
msj

”

. (13.53)

The Kronecker delta comes from the spin scalar product of the mixed terms

in (13.52). Thus, (13.48) has been shown.

Using the Ritz variational procedure with the constraint (13.38), we find
by differentiating (13.48) with respect to ϕ∗

i the stationarity condition
(

− �
2

2m
∇2 − Ze2

r

)

ϕi(x) +
∫

d3x′ e2

|x− x′|
×
∑

j

ϕ∗
j (x

′)
[
ϕj(x′)ϕi(x) − ϕj(x)ϕi(x′)δmsi

msj

]
= εi ϕi(x) .

(13.54)

These are the Hartree–Fock equations. The Hartree–Fock equation for ϕi
differs from the Hartree equation by the term
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∫
d3x′ e2

|x− x′|

⎛

⎝|ϕi(x′)|2ϕi(x) −
∑

j

ϕ∗
j (x

′)ϕj(x)ϕi(x′)δmsi
msj

⎞

⎠

= −
∑

j �=i

∫
d3x′ e2

|x− x′| ϕ
∗
j (x

′)ϕj(x)ϕi(x′)δmsi
msj

. (13.55)

The first three terms in (13.54) excluding j = i can be interpreted as in the
Hartree equation as the Hamiltonian of an electron in the Coulomb potential
screened by the charge density of the other electrons. The fourth term is the
exchange term. This is a nonlocal term, since here ϕi occurs with argument
x′ �= x. The exchange term is nonzero only for msi = msj . The expression
in square brackets in (13.54) is then the probability amplitude for finding i
and j at the positions x and x′.

Remark: One easily sees that the Hartree–Fock states are orthogonal: The state
ϕi(xi)χi(msi) is orthogonal to all states with msj �= msi . The spatial wave func-
tions ϕj with msj = msi all satisfy a Schrödinger equation with exactly the same
potential,

„

− �
2

2m
∇2 + u(x)

«

ϕi(x) +

Z

dx′u(x, x′)ϕi(x
′) = εiϕi(x) ,

where

u(x, x′) =
X

j

ϕ∗
j (x

′)
−e2

|x− x′| ϕj(x) = u(x′, x)∗ .

Forming
R

dxϕ∗
j (x), one obtains

„

ϕj ,

„

− �
2

2m
∇2 + u(x)

«

ϕi

«

+

Z

dx

Z

dx′u(x, x′)ϕj(x)ϕi(x
′) = εi(ϕj , ϕi) .

Subtracting from this the equation in which i↔ j are interchanged, and using the
Hermiticity, one finds (ϕi, ϕj) = 0 for εi �= εj . For degenerate eigenvalues, one can
orthogonalize, so that one finally obtains

(ϕi, ϕj) = δij . (13.56)

We now show that −εi is also the ionization energy in Hartree–Fock the-
ory. For this, we form the scalar product of ϕi with the right and left side
of (13.54):

εi =
∫

d3x

(
�

2

2m
|∇ϕi|2 − Ze2

r
|ϕi|2

)

+
∫

d3xd3x′ e2

|x− x′|ϕ
∗
i (x)

×
∑

j

ϕ∗
j (x

′)
[
ϕj(x′)ϕi(x) − ϕj(x)ϕi(x′)δmsi

msj

]
. (13.57)

These are just the terms in 〈H〉 from (13.48) which contain the wave function
ϕi. Thus, −εi is the energy needed to remove a particle in the state ϕi

9, under

9 Koopmans-Theorem, T.H. Koopmans: Physica 1, 104 (1933)
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the assumption that the other wave functions do not change. The larger the
particle number, the better this is satisfied. A corresponding result was found
for εi in the Hartree theory. The Hartree–Fock equations give in comparison
to the Hartree equations an improvement of 10–20%. The exchange term
lowers the energy.

13.4 The Thomas–Fermi Method

For atoms with many electrons, computation of the Hartree or Hartree–Fock
wave functions is very tedious. On the other hand, physical considerations
give rise to a simplification. Because of the large number of electrons, each
one feels just the same effective potential, constant in time, arising due to
the other electrons and the nucleus. Furthermore, most of the electrons are in
states of high energy, i.e., large principal quantum number, so that the wave-
length is small and the change of the potential relative to its value is slight
within one wavelength. We can then utilize a semiclassical approximation
and assume that there are many electrons within volume elements in which
the potential is nearly constant, that their states are locally plane waves, and
that their distribution can be determined on the basis of the results (13.17)
for free fermions.

We start from the Hartree potential Vi(x), Eqn. (13.44), and, because of
the large number of electrons, we may include in the sum also the state ϕi(x).
Then one and the same potential acts on all electrons

V (x) =
∫

d3x′ e2

|x− x′|
∑

j

�j(x′) − Ze2

r
, i.e. (13.58a)

V (x) =
∫

d3x′ e2

|x− x′| n(x′) − Ze2

r
, (13.58b)

where �j(x) = |ϕj(x)|2 is the probability density of the jth electron and
n(x) =

∑
j �j(x) is the particle number density at the position x.

Locally, the states are semiclassical plane waves eip(x)·x/�, where �/|p(x)|
is small compared to the spatial variation of V (x), except in the vicinity of the
classical turning points. The connection between energy and local momentum
is

ε =
p2(x)
2m

+ V (x) . (13.59)

At each point x, the states with local momentum between 0 and a maximal
value |pF(x)| are occupied. Denoting the energy of the highest occupied state
by εF, we find for the Fermi momentum

|pF(x)| = (2m(εF − V (x))1/2 . (13.60)
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Fig. 13.5. The effective potential, Fermi energy, and
occupied states

The particle number density at the point x then becomes, according to
(13.17),

n(x) =
p3
F(x)

3π2�3
. (13.61)

We next determine εF. The atomic radius R is obtained from V (R) = εF.
Now, in a neutral atom, the electrons screen off the nuclear charge, and
V (r) = 0 must hold for r > R (Fig. 13.5), which implies εF = 0. (In the case
of an ion, V (r) = −(Z −N)e2/r for r > R.)

Below, we consider only neutral atoms. Substituting εF = 0 into (13.60)
and (13.61), we find

n(x) =
1

3π2�3
(−2mV (x))3/2 . (13.62)

The density or the potential must now be determined self-consistently. For
this purpose, one could solve the integral equation (13.58b) in conjunction
with (13.62). Equivalently, applying the operator ∇ to (13.58b) one derives
the Poisson equation

ΔV (x) = −4πe2n(x) + 4πZe2δ(3)(x) , (13.63)

which gives together with (13.62) n(x) or V (x), respectively. By radial sym-
metry, one has for finite r

1
r2

∂

∂r
r2 ∂

∂r
(−V (r)) =

4e2

3π�3
[−2mV (r)]3/2 . (13.63′)

Since V (r) must go over to the potential of the nucleus for small distances,
the boundary condition

lim
r→ 0

V (r) = −Ze2

r
(13.64)

results. We therefore introduce the substitution

V (r) = −Ze2

r
χ(x) (13.65)
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Fig. 13.6. Solution of the Thomas–
Fermi equation for neutral atoms

with

r =
bx

Z1/3
, b =

1
2

(
3π
4

)2/3
a = 0.885a (13.66)

and a = �
2/me2, the Bohr radius. We obtain the differential equation

d2χ

dx2
= x−1/2χ3/2(x) (13.67)

with boundary conditions χ(0) = 1, χ(∞) = 0. Numerical solution of (13.67)
gives (Fig. 13.6)

χ(x) =

⎧
⎨

⎩

1 − 1.59 x x → 0
144
x3

x → ∞
. (13.68)

The density n(x) resulting from (13.62) and (13.66) is

n(x) =
(2mZe2)3/2

3π2�3

(
1
r
χ

(
r

Z−1/3b

))3/2
. (13.69)

For small distances, the potential is

V (r) = −Ze2

r
+ 1.8Z4/3 e2

a
. (13.70)

The extension of the atom is infinite, an obviously unphysical feature. The
form of V (r) and n(r) is the same for all atoms, because χ is a universal
function. The typical length scale is ∼ Z−1/3. Numerical solution shows that
half of the electrons are within the radius 1.33 aZ−1/3.

We can now estimate the validity of the Thomas–Fermi approximation.
The radius is ∼ Z−1/3 and decreases with growing Z, the potential at a
fixed distance is ∼ Z4/3, and therefore, from (13.60), the typical wavelength
is ∼ Z−2/3. The characteristic length over which the potential changes sig-
nificantly is ∼ Z−1/3. Hence, the ratio of the latter two quantities is Z−1/3.
The larger Z, the smaller this ratio becomes. In this limit, the statistical
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Fig. 13.7. The radial distribution
function 4r2n(r) for mercury Hg;
( ): Thomas–Fermi,
(– – –): Hartree

treatment as a free electron gas is also better justified. Thomas–Fermi theory
becomes exact in the limit Z → ∞10.

The radial distribution function for the Thomas–Fermi approximation
D(r) = 4r2n(r) is shown in Fig. 13.7 and compared to the Hartree approxi-
mation.

The total energy of the Thomas–Fermi atom is given by E = Ekin+Epot =
1/2Epot, where the virial theorem has been used. The potential energy is
composed of two parts:

Epot = −Ze2

∫
d3x

n(x)
r

+
1
2
e2

∫∫
d3xd3x′n(x)n(x′)

|x− x′| ;

by
∫
d3xn(x) = Z, one finds the proportionality E ∼ Epot ∼ −Z7/3. Numer-

ical computation gives E = −20.8Z7/3 eV.
Thomas–Fermi theory has the following shortcomings: It is inaccurate

for small r, since the variation of the potential is too strong there. It is
also inaccurate for large distances, since there the wavelength is no longer
small, because the difference between the energy and the potential goes to
zero. Moreover, the density gets small, and a statistical treatment becomes
unjustified. This is the origin of the unphysical infinitely large atomic radius.
However, most of the electrons lie in the region a/Z < r < a, and in this
region Thomas–Fermi theory is reliable.

One can also build exchange effects into Thomas–Fermi theory; the result
is then the Thomas–Fermi–Dirac equation11:

χ′′ = x

(√
χ

x
+ β

)3
, (13.71a)

10 E. Lieb, B. Simon: Adv. Math. 23, 22 (1977)
11 H.A. Bethe, R. Jackiw: Intermediate Quantum Mechanics, Lecture Notes in

Physics (Benjamin, New York 1958)



13.4 The Thomas–Fermi Method 251

Fig. 13.8. One-electron energy levels in a modified Thomas–Fermi–Dirac
potential12

with

β =

√
b

aZ4/3

1
π
√

2
= 0.2118Z−2/3 . (13.71b)

For Z → ∞, it is identical to the Thomas–Fermi equation. The solutions
of (13.71) are no longer universal, but rather depend on Z. We also mention
a computation of the one-electron states as a function of Z for the Thomas–
Fermi(–Dirac) potential12. The energy of the orbitals for the Thomas–Fermi-
Dirac potential is shown in Fig. 13.8 as a function of Z. This theory shows
the filling of the energy levels with increasing Z in the order 1s, 2s, 2p, 3s,
3p, 4s, 3d. One also sees the approximate degeneracy of 4s and 3d in the
region 20 < Z < 30 (iron group). The filling of the levels continues between
Z = 31 (Ga) and Z = 36 (Kr) with the 4p-shell. The 5s-shell then follows,
and then the 4d-shell. For the Thomas–Fermi potential, instead the 5p-shell
would be filled first after Z = 39.

12 R. Latter: Phys. Rev. 99, 510 (1955)
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13.5 Atomic Structure and Hund’s Rules

The effective potential of the Hartree and Hartree–Fock equations is not a
1/r-potential. In a good first approximation, however, the potential can be
assumed spherically symmetric. The energy eigenvalues εnl now depend on
l, and the one-electron wave functions are

ϕi = Rnl(r)Ylml
(ϑ, ϕ)χ(ms) ,

χ(ms) = χ± ,
(13.72)

where Rnl is to be determined (respectively) from the Hartree or Hartree–
Fock equations. The eigenfunctions with angular momentum l are labeled
with increasing energy by n (n = l + 1, l + 2, . . . ) (Fig. 13.9).

Fig. 13.9. Numbering of energy levels

For each fixed pair of n and l, there are (2S + 1)(2l + 1) = 2(2l + 1)
different states (orbitals) (Table 13.3). The set of these 2(2l+1) one-electron
states is called a shell. (Notation: (n, l), where, as in the hydrogen atom, for
l = 0, 1, 2, . . . one uses the symbols s, p, d, . . .). For example, the 1s-shell has
two states, 2p-shell six states, etc.

By filling the orbitals one after the other in successive shells, one gets
all the elements of the periodic table. See page 413. The electronic state
of an atom is characterized by specifying the occupied orbitals, or, as it is
often called, the configuration. For example, in carbon C (1s)2(2s)2(2p)2 two
electrons are in the 1s-shell, two in the 2s-shell and two in the 2p-shell. The
configurations of the lightest elements are

H 1s
He (1s)2

Li (1s)22s
Be (1s)2(2s)2

B (1s)2(2s)22p.

Table 13.3. Degree of degeneracy of the first shells

l s, 0 p, 1 d, 2 f, 3

Degeneracy 2 6 10 14
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For given n, orbitals s, p, . . . are successively filled. The smaller l is, the larger
the probability density at the nucleus, and the less the electron in question
is affected by the screening due to the other electrons. Below, we no longer
give the orbitals of the inner filled shells. Continuing the configurations of
the periodic table begun above, we skip the elements carbon C to fluorine F,
in which the 2p-shell is successively filled. With neon, the 2p-shell is closed:
Ne (2p)6.

From sodium Na to argon Ar the 3s and 3p-shells are filled, in analogy
to 2s and 2p. However, the further progression does not begin with the 3d-
shell, but rather at potassium K a 4s-electron follows, and the periodic table
proceeds further in the following manner (E4s ≈ E3d):

K 4s
Ca (4s)2

Sc (4s)23d.

In the transition metals of row IV, from scandium Sc to zinc Zn, the 3d-
shell is filled. Now, after all the orbitals with n = 3 have been used up,
the occupation continues with the 4p-shell. The corresponding elements are
chemically similar to the 3p-elements above them in the periodic table.

Row V of the periodic table is filled analogously, i.e., the 4f -states remain
empty at first.

Row VI begins with Cs 6s, Ba 6s2, La 6s25d; however, it is not continued
with the completion of the 5d-shell but rather the 4f -shell is successively
built up. The first element after lanthanum is Ce 6s25d 4f . After this filling
process has been completed with Lu 6s25d 4f14, the transition metals of the
5d-shell are formed in the sequence from Hf 6s25d24f14 onwards.

The structure of row VII corresponds to that of row VI. After actinium
Ac 7s26d, from protactinium Pa 6d 5f2 onwards the 5f -shell is filled in com-
petition with 6d.

The elements in which d or f -shells are being filled are called transition
elements . The elements in which the d-shells are being filled are called tran-
sition metals (3d-iron group, 4d-paladium group and 5d-platinum group).

The elements following lanthanum are the lanthanides or rare earths,
and those following actinium are the actinides. Note that in the rare earth
elements Gd and Tb a 5d-orbital is again occupied. The important point is
that the chemical behavior of the transition elements is determined by the
most distant s-electrons. A consequence of this is that the rare earths are
closely related chemically and are easily substituted in crystals. In general,
chemical behavior is determined by the outer electrons and is therefore similar
in a given column of the periodic table.

We now discuss the ionization potential, which is the binding energy of
the most weakly bound electron.

Atoms with an s-electron outside of closed shells have the lowest binding
energy (H, Li, Na, . . . ). The second s-electron is more strongly bound (He,
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Fig. 13.10. The ionization potential as function of Z

Be, Mg, . . . ) because of the higher nuclear charge. The next electron occupies
the otherwise empty p-shell, which is associated with a drop in the binding
energy (B, Al). As the p-shell is built up, the binding energy grows at first,
until with the fourth electron, which must be added to the half-filled shell,
another drop occurs. This circumstance can be explained by the fact that up
to the third electron all the spins are aligned in parallel and thus the three
different spatial wave functions can become completely antisymmetric. The
fourth electron has oppositely aligned spin, and the spatial wave function is
no longer totally antisymmetric. From Ga on, a similar picture again occurs
(Fig. 13.10).

Now that we know the electron configurations of the elements, we must
determine the quantum number L of the total orbital angular momentum

L =
N∑

i=1

Li

and the quantum number S of the total spin

S =
N∑

i=1

Si .

If a shell is not completely filled, several values for S and L are possible.
For the moment, we ignore the spin–orbit coupling, so that the Hamil-

tonian is given by (13.35); then the angular momentum commutes with the
Hamiltonian, [H,L] = 0, and L is thus a good quantum number. The eigen-
states of H are simultaneously eigenstates of L2 and Lz; by rotational invari-
ance, the energy does not depend on Lz.
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Although [H,Si] = 0 for every single Si, after antisymmetrization the
eigenfunctions are only eigenfunctions of S2 and Sz. The energy also depends
on S, because the larger S, the more antisymmetric the spatial wave function
and the smaller the mutual Coulomb repulsion among the electrons.

Thus far, only the Coulomb interaction has been taken into account. With
spin–orbit coupling, the quantum numbers are L, S, J , where J = L + S is
the total angular momentum. The values of J are L+S, . . . |L−S|. These are
2S + 1 values for L > S and 2L+ 1 for L < S. For L ≥ S, the multiplicity of
the energy terms with orbital angular momentum L is 2S+1. Since the energy
depends on J , the levels belonging to an L and S split into a 2S+1-multiplet.

Which of these states has the lowest energy? The answer is important for
an understanding of the magnetic properties of atoms and ions. By means
of the Hund’s semiempirical rules, which are based on simple physical argu-
ments, one can determine the ground state.

Hund’s Rules

Taking into account the Pauli exclusion principle, the states are occupied
such that

1. S is maximal,
2. L is maximal,
3. for shells, not more than half-filled 2S+1LJ=|L−S|, while for more than

half-filled shells 2S+1LJ=L+S.

We indicate the reasons for Hund’s rules.

1. The larger the spin, the more antisymmetric the spatial part of the
wave function and the smaller the Coulomb interaction, since the spatial
wave function vanishes for vanishing particle separation, which is where the
Coulomb interaction would have been strongest.

2. The larger the total orbital angular momentum, L, the farther the
electrons are separated from the center and therefore from each other as well.
Since the Coulomb interaction decreases with 1/r, the Coulomb repulsion
becomes smaller, though not as markedly as in 1.

3. According to (12.8), the spin–orbit interaction is of the form

VSO =
∑

i

αiLi · Si with αi =
�

2

2m2c2ri

dV (ri)
dri

,

where V (ri) is the potential energy of the self-consistent field.
Calculating first-order perturbation theory, one finds for a state with

quantum numbers L and S

〈Li〉 ∝ 〈L〉 , 〈Si〉 ∝ 〈S〉 .
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The Hamiltonian is thus equivalent to VSO = AS ·L with coefficient A. From

S · L = 1
2 [J(J + 1) − L(L + 1) − S(S + 1)]

it follows that for A > 0 the most favorable value of J is |L−S|, whereas for
A < 0 the most favorable value of J is L + S. In computing A, we note that
the αi are positive and independent of ml. If only one shell is incompletely
filled, and if this one is at most half full, then according to Hund’s first rule
the spins are parallel, i.e., Si = S/n, where n is the number of electrons.
Hence, the spin–orbit Hamiltonian becomes

VSO =
∑

i

αiLi · S/n ∼ 1
n
αL · S .

Therefore

A =
α

n
=

α

2S
> 0 .

For a shell which is more than half full, we imagine the empty configurations
to be first completed and then removed again. For the filled shell, one would
have VSO = 0. There remains VSO = −∑i αiLiSi, where one sums over the
holes. The total spin and the total angular momentum are S = −∑i Si
and L = −∑iLi. By the same argument as previously, it follows that A =
−α/2S. For an at most half-filled shell, A > 0 and J = |L − S|, whereas for
a more than half-filled shell, A < 0 and J = L + S. For a half-filled shell
of orbitals with angular momentum l, one has according to the first two of
Hund’s rules S = (2l + 1)/2 and L = 0, and therefore L + S = |L− S| = S.

Let us apply Hund’s rules to a few examples:

– He (1s)2: In the ground state, S = 0, because of the antisymmetrization,
rather than S = 1, i.e., 1S0.

– B (1s)2(2s)22p: The closed 1s and 2s shells have J = L = S = 0. Thus,
S = 1/2 and L = 1; it remains to compare 2P1/2 and 2P3/2. Since the
2p-shell is less than half full, one finds according to Hund’s third rule
2P1/2.

– C (1s)2(2s)2(2p)2: Hund’s first rule demands S = 1. Now, by the Pauli
exclusion principle, L cannot be 2, since the two orbital angular momen-
tum quantum numbers ml must differ from one another. With ml = 0
and 1 as the maximal L, the value L = 1 results. Since the shell is less
than half full, Hund’s third rule selects from J = 0, 1, 2 the smallest value,
i.e., 3P0.

– N (1s)2(2s)2(2p)3: The maximal value of the spin is 3/2. The possible
values of L are 3, 2, 1, 0. Since the spin function is completely symmetric,
the spatial wave function must be completely antisymmetric, for which
one requires all three wave functions with ml = 1, 0,−1. Thus L = 0 and
J = 3/2 , i.e., 4S3/2.
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Fig. 13.11. Splitting of the energy levels (schematic); the energy scale increases
to the right

The splitting of the levels within a configuration comes from the Coulomb
interaction of the electrons and the spin–orbit interaction. The splitting is
illustrated schematically in Fig. 13.11.

In the above discussion, we have assumed that the Coulomb interaction of
the electrons is much larger than the spin–orbit coupling. In that case, L and
S are good quantum numbers and one speaks of L – S coupling or Russel–
Saunders coupling. This situation obtains in light atoms. If the spin–orbit
coupling dominates compared to L and S dependent parts of the Coulomb
energy, then each electron is characterized by its total angular momentum j.
The j are combined to form a J of the atom. This is called j–j coupling. The
j–j coupling is never realized in its pure form, even in heavy atoms.

Further Literature:

B. H. Bransden and C. J. Joachain: Physics of Atoms and Molecules (Longman, New
York 1983)

H.A. Bethe and E.E. Salpeter: Quantum Mechanics of One- and Two-Electron
Atoms (Plenum, New York 1957)

H. Friedrich: Theoretical Atomic Physics, 3rd. ed. (Springer, Berlin, Heidelberg
2005)

L.D. Landau and E.M. Lifshitz: Quantum Mechanics: Nonrelativistic Theory
(Addison-Wesley, Reading, Mass. 1958)
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Problems

13.1 On the perturbation theory of the helium atom:

(a) Show that
Z

dΩ

|x1 − x2| =
4π

max{r1, r2}
for the integral over solid angle (ri ≡ |xi|).
(b) Starting from (13.24), compute the energy shift (13.25) for the ground state
due to the electron–electron interaction.

13.2 Show that for l = n− 1 the exchange term defined in (13.28),

Knl =

Z

d3x1

Z

d3x2
ψ∗

100(x1)ψ
∗
nl0(x2)ψ100(x2)ψnl0(x1)

|x1 − x2|
is positive by completing the computational steps in the remark on p. 237.

13.3 With the aid of Hund’s rules, determine the values of the total spin S, the
total orbital angular momentum L, and the total angular momentum J for the
3d-shells of the transition metals Cu, Ni, Co, Fe, Mn, Cr, V, Ti, and Sc.

13.4 Explain on the basis of Hund’s rules why the ground state of carbon is 3P0

and that of oxygen is 3P2.

13.5 Let the one-particle states ϕαi(i) form a complete orthonormal set. Show
that the states ψa(1, . . . , N) and ψs(1, . . . , N) of (13.12) and (13.13) form complete
orthonormal sets in the state space of purely antisymmetric and purely symmetric
states.

13.6 Consider an “atom” described by the Hamiltonian

H = T + V ,

T =
X

i

p2
i

2mi
, V = −

X

i

eieN
|xi| +

1

2

X

i �= j

eiej
|xi − xj | .

Let |ψ〉 be a stationary state, i.e., H |ψ〉 = E|ψ〉. Prove the virial theorem

〈ψ|T |ψ〉 = −1

2
〈ψ|V |ψ〉 ,

〈ψ|H |ψ〉 =
1

2
〈ψ|V |ψ〉 .

Hint: Apply the dilatation operator

U(β)−1 xU(β) = xeβ ,

U(β)−1 pU(β) = pe−β

to the Hamiltonian. Consider the derivative of the transformed Hamiltonian with
respect to β at β = 0.

13.7 Find an explicit representation for the dilatation operator of Problem 13.6.
Hint: Employ the Baker–Hausdorff relation.



14. The Zeeman Effect and the Stark Effect

We now return to our treatment of the theory of atomic levels in a magnetic
field. In Sect. 7.3, we took only the orbital magnetic moment into account.
The lack of agreement of the so-called normal Zeeman effect with experiment
led to the discovery of spin. We now consider the complete theory of the
Zeeman effect, first for the hydrogen atom, and then for multi-electron atoms.
In addition, the effect of an electric field on the energy levels of atoms will
be investigated in this chapter.

14.1 The Hydrogen Atom in a Magnetic Field

The Hamiltonian

H = HCoul + Hrel + HZ (14.1)

consists of the Coulomb term HCoul from (12.1), the relativistic corrections
Hrel = H1 + H2 + H3 from Chap. 12, and the Zeeman term

HZ = − e

2mc
(Lz + 2Sz)B = − e

2mc
(Jz + Sz)B , (14.2)

where we choose the magnetic field to point along the z-direction.
We will either work in a basis system in which the spin–orbit term S ·L

contained in Hrel is diagonalized, treating the Zeeman term perturbatively,
or else the other way around, depending on the strength of the magnetic field.

We recall that, in first-order perturbation theory, Hrel leads to a fine-
structure energy shift

ΔE0
n,j =

mc2(Zα)4

2n4

{
3
4
− n

j + 1/2

}

; (14.3)

the states which arise here are

|n, j = l ± 1
2 ,mj , l〉 . (14.4)



260 14. The Zeeman Effect and the Stark Effect

14.1.1 Weak Field

If the magnetic field is weaker than 105 G, the Zeeman term can be regarded
as a perturbation compared to the relativistic corrections. The appropriate
parent states are then the states (14.4). The fine-structure shift of the hydro-
gen levels due to the second term of H is given in (14.3).

Using (10.28), we find

〈n, j = l ± 1
2 ,mj , l|Sz|n, j = l ± 1

2 ,mj , l〉
=

�

2
(α2

± − β2
±) = ± �mj

2l + 1
. (14.5)

Since Jz has the eigenvalue �mj in the states (14.4), the Zeeman splitting in
first-order perturbation theory becomes

〈HZ〉l± 1
2 ,mj,l = μBBmj

(

1 ± 1
2l + 1

)

. (14.6)

All degenerate levels are split due to the magnetic field. In contrast to the
“normal” Zeeman effect, the magnitude of the splitting depends on l. The
Zeeman splitting is illustrated schematically in Fig. 14.1.

Fig. 14.1. The “Anomalous”
Zeeman effect. The levels
l ± 1/2 are split by the field
into 2l + 2 and 2l levels

We note that it was permissible to use nondegenerate perturbation theory.
For degenerate j, as for example in the case of the 2S1/2 and 2P1/2 levels,
the two spatial wave functions (here l = 0 and 1) have different parity and
vanishing matrix element of HZ.

14.1.2 Strong Field, the Paschen–Back Effect

If the field is so strong that the Zeeman energy is large compared to that of
the relativistic correction term, we begin with the states

|n, l,ml〉|ms〉 with |ms〉 = |↑〉 or |↓〉 ,

which diagonalize HCoul and also HZ.
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The energy splitting of the hydrogen levels is then

ΔEZ
n,l,ml,ms

=
e0�

2mc
(ml + 2ms)B = μB(mj + ms)B . (14.7)

The relativistic corrections can then be taken into account within first-order
perturbation theory:

〈Hrel〉n,l,ml,ms = −mc2(Zα)4

2n4

(
n

l + 1/2
− 3

4

)

+ ζ(n, l)mlms ,

ζ(n, l) =
Ze2

0�
2

2m2c2

〈
1
r3

〉

n,l

=
mc2(Zα)4

2n3l(l + 1/2)(l + 1)
. (14.8)

14.1.3 The Zeeman Effect for an Arbitrary Magnetic Field

After these limiting cases, we now treat the hydrogen atom for an arbitrary
field. For fields lying between the two extremes we have to apply degener-
ate perturbation theory to the sum Hrel + HZ. That is, we must find linear
combinations of the states

|n, j = l ± 1
2 ,mj , l〉

for which the off-diagonal elements of Hrel + HZ vanish. We start with

|n, j = l ± 1
2 ,mj , l〉

because in these states the complicated part, Hrel, is diagonal (14.3). We
must also compute the matrix elements of HZ. These vanish for differing n
and l; for example, from [L2, Jz + Sz] = 0, the relation

(l(l + 1) − l′(l′ + 1))〈 . . . l|(Jz + Sz)| . . . l′〉 = 0

follows, so the matrix element of Jz + Sz can differ from zero only for l′ = l.
From [HCoul, Jz + Sz] = 0, the validity of the assertion also follows for the
quantum number n. From [Sz, Jz] = 0 one further has the relation

(m′
j −mj)〈 . . . mj . . . |Sz| . . . m′

j . . . 〉 = 0 ,

so that all the matrix elements with differing mj vanish. The structure of the
matrix Jz + Sz is characterized in Fig. 14.2 for (n ≥ 2) S1/2, P1/2, P3/2 by
dots for the non-zero matrix elements.

Using (10.28), the non-vanishing matrix elements are thus the diagonal
elements

〈n, l ± 1
2 ,mj , l|(Jz + Sz)|n, l ± 1

2 ,mj , l〉 = �mj

(

1 ± 1
2l + 1

)

(14.9)
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Fig. 14.2. The structure of the matrix Jz + Sz

and the nondiagonal elements

〈n, l + 1
2 ,mj , l|(Jz + Sz)|n, l − 1

2 ,mj , l〉

= − �

2l + 1

√(

l +
1
2

)2
−m2

j . (14.10)

The states S1/2, mj = ± 1/2 and P3/2, mj = ± 3/2 occur only in diagonal ele-
ments and therefore for them there is no admixture due to HZ. Consequently,
for these states, and in general for

|n, j = l + 1
2 ,mj = ± (l + 1

2 ), l〉 ,

the energy shift is consequently given by (14.6), which reduces to

(ΔEZ)n,j=l+1/2,mj=± (l+1/2),l = ±μBB(l + 1) . (14.11)

For the remaining states (|mj | < l + 1/2), we have to find those linear
combinations

| ± 〉 =
∑

(±)

a±|n, l ± 1
2 ,mj , l〉 (14.12)

which diagonalize Hrel +HZ in the 2 × 2 subspaces. The coefficients a± and
the energy shift ΔE due to Hrel + HZ are obtained using (14.3), (14.9), and
(14.10) from the eigenvalue equation
⎛

⎝
ΔE0

n,l+1/2 + μBBmj
2l+2
2l+1 −ΔE −μBB

√
(l + 1

2 )2 −m2
j/(2l + 1)

−μBB
√

(l + 1
2 )2 −m2

j/(2l + 1) ΔE0
n,l−1/2 + μBBmj

2l
2l+1 −ΔE

⎞

⎠

×
(
a+

a−

)

= 0 . (14.13)

Introducing the fine-structure splitting

Δ = ΔE0
n,l+1/2 −ΔE0

n,l−1/2 =
mc2(αZ)4

2n3l(l + 1)
, (14.14)
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we find as a solution of the characteristic equation of (14.13)

ΔE± = ΔE0
n,l−1/2 + μBBmj +

Δ

2

±
√

Δ2

4
+ ΔμBB

mj

2l + 1
+

1
4
(μBB)2 . (14.15)

From this we can recover the two limiting cases:

(i) Δ � μBB :

ΔE± = ΔE0
n,l± 1/2 + μBBmj

(

1 ± 1
2l + 1

)

± 1
4
μ2

BB
2

Δ

(

1 − 4m2
j

(2l + 1)2

)

. . . , (14.16)

in agreement with the sum of (14.3) and (14.6).
(ii) Δ � μBB :

ΔE± = ΔE0
n,l−1/2 + μBB

(

mj ± 1
2

)

+
Δ

2

(

1 ± 2mj

2l + 1

)

± Δ2

4μBB

(

1 − 4m2
j

(2l + 1)2

)

. (14.17)

Substituting mj = ml ± 1/2, ms = ∓ 1/2 and using (14.3) and (14.14),
one finds agreement with (14.8).

For n = 2, l = 1, P3/2 and P1/2, for B → 0 one has

Δ =
mc2(Zα)4

32
,

ΔE0
2,3/2

Δ
= −1

4
,

ΔE0
2,1/2

Δ
= −5

4
.

The energy shift for all P3/2 and P1/2 levels is shown in Fig. 14.3.

Fig. 14.3. The relative energy
shift ΔE /Δ as a function of the
reduced magnetic field μBB/Δ
for n = 2 and P1/2, P3/2



264 14. The Zeeman Effect and the Stark Effect

In this treatment, the diamagnetic term e2

8mc2 [x × B]2 (see Sects. 7.2
and 7.7) was not taken into account. This is justified as a rule for atoms
under laboratory conditions. As mentioned in Sect. 7.2, magnetic fields such
as those that prevail on the surface of neutron stars lead to significant changes
in atomic structure because of the diamagnetic term.

These effects are also important at shallow donor levels in semiconduc-
tors. A singly charged defect in a semiconductor binds an electron quite in
analogy to the hydrogen atom. However, the strength of Coulomb potential is
decreased by the dielectric constant of the semiconductor, V (r) = −e2

0/(εr),
and the mass of the electron should be replaced by the effective mass m∗.
Therefore, the Rydberg constant is replaced by Ry = m∗e4

0/2ε
2
�

2, and
the cyclotron frequency by �ωc = e0�B/m∗c. In InSb (indium-antimonide),
m∗ = m/77 and ε = 15. The ratio �ωc/Ry is thus increased by (ε/m∗)2 =
(15 × 77)2 ≈ 1.3× 106 compared to the free hydrogen atom. It is not difficult
to obtain a ratio of �ωc/Ry ≈ 10, thus entering the regime in which the the-
ory of hydrogen-like atoms in strong magnetic fields1 becomes relevant under
laboratory conditions.

14.2 Multielectron Atoms

For multielectron atoms, we begin with the total orbital angular momentum
L and the total spin S of all electrons and their sum J = L+S. The Zeeman
Hamiltonian is

HZ =
e0

2mc
(Lz + 2Sz)B =

e0

2mc
(Jz + Sz)B . (14.18)

14.2.1 Weak Magnetic Field

For a weak magnetic field, the appropriate unperturbed states are

|J,MJ , L, S〉 . (14.19)

These are eigenstates of J2, Jz,L
2 and S2, but not of Sz, and we need 〈Sz〉.

We cannot fall back on the Wigner–Eckhardt theorem here, which would
immediately give the ratio 〈Jz〉/〈Sz〉, but rather we must make use of a short
elementary computation. We begin with the identity

S(L · S) − (L · S)S = −i�S ×L , (14.20)

1 The hydrogen atom in a strong magnetic field is treated for example in the fol-
lowing papers: C. Alderich, R.L. Greene: Phys. Stat. Sol. (b) 93, 343 (1979); H.
Hasegawa: in Physics of Solids in Intense Magnetic Fields, ed. by E.D. Haide-
menakis (Plenum, New York 1969) p. 246.
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which follows from [Si, Sj ] = i�εijkSk, and form its exterior product with J :

S × J(L · S) − (L · S)S × J = −i�(S ×L) × J
= −i�{L(S · J) − S(L · J)} = i�{−J(S · J) + SJ2} . (14.21)

Taking the expectation value of (14.21) in the state |J,MJ , L, S〉 and using
the fact that L · S is diagonal, we find that the left side vanishes and that

〈SJ2〉 = 〈J(S · J)〉 . (14.22)

With S · J = (J2 + S2 −L2)/2,

〈Sz〉 = 〈Jz〉(J(J + 1) + S(S + 1) − L(L + 1))/2J(J + 1) (14.23)

results and the energy shift becomes

ΔE = μBgJMJB , (14.24)

where

gJ = 1 +
J(J + 1) + S(S + 1) − L(L + 1)

2J(J + 1)
, (14.25)

is the Landé g-factor , which lies between 1 and 2.

Remark: This result corresponds to the classical picture that J is constant and
oriented along B, and S and L precess about J (Fig. 14.4):

μ =
e

2m
J(L · J + 2S · J)/J2

=
e

2m
J( 1

2
(L2 + J2 − S2) + S2 + J2 − L2)/J2

=
e

2m
J

j

1 +
J(J + 1) + S(S + 1) − L(L+ 1)

2J(J + 1)

ff

.

Fig. 14.4. Classical interpretation of the Landé g-factor

In the special case of hydrogen, S = 1/2, L, J = L± 1/2, (14.25) leads to the
earlier result (14.6).
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14.2.2 Strong Magnetic Field, the Paschen–Back Effect

If the Zeeman energy exceeds the relativistic splitting, the appropriate basis
states are |L,ML, S,MS〉, in which L2, Lz,S

2, and Sz are diagonal and HZ

is as well. The energy splitting is then

ΔE = μBB(ML + 2MS) + ζ(n,L, S)MLMS . (14.26)

This corresponds to the classical picture (Fig. 14.5) that S and L rotate
independently of one another about B, so that S, Sz, L, Lz, and Jz, but not
J , remain constant. Here as well, the second term originates from the spin–
orbit interaction.

Fig. 14.5. Classical vector addition for a strong
magnetic field

14.3 The Stark Effect

We now investigate the influence of an external electric field on the energy
levels of the hydrogen atom. The unperturbed Hamiltonian HCoul is given
in (12.1), and the perturbation

H1 = −eE · x = −eEz (14.27)

represents the interaction of the electron with the electric field E , taken to
point in the z-direction. Since the atomic electric field is of the order of mag-
nitude E0/ea ≈ 1010 Vm−1, perturbation theory can certainly be applied
for fields which are achievable in the laboratory.

We begin with a few statements, following from symmetry, concerning the
matrix elements 〈n, l,m|z|n′, l′,m′〉 in the basis of eigenstates |n, l,m〉 of the
Coulomb potential. From [Lz, z] = 0 it follows that

〈n, l,m|[Lz, z]|n′, l′,m′〉 = (m−m′)〈n, l,m|z|n′, l′,m′〉 = 0 ,

and hence one has the selection rule

m′ = m . (14.28a)
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By considering the effect of a reflection, one sees that the matrix element
〈n, l,m|z|n′, l′,m′〉 can only be finite for states of different parity. In connec-
tion with electric dipole radiation, it is shown in Chap. 16 that

l′ = l ± 1 . (14.28b)

Only when the “selection rules” (14.28a,b) are satisfied can the matrix ele-
ment of z differ from zero.

14.3.1 Energy Shift of the Ground State

By (14.28b), the contribution from first-order perturbation theory vanishes
for the ground state of the hydrogen atom. The second order is

E2
1 =

∞∑

n=2

e2E2 |〈n, 1, 0|z|1, 0, 0〉|2
E1 − En

, (14.29)

where the selection rules (14.28a,b) have already been included, and where
the En denote the unperturbed energy levels of HCoul. Considering the typical
magnitude of atomic quantities, these energy shifts must be of order E2

1 ≈
−a3E2, where a stands for the Bohr radius. The precise value is

E2
1 = − 9

4a
3E2 . (14.30)

Comparison with (−1/2)αpE2 immediately yields for the polarizability of the
hydrogen atom in the ground state

αp = 9
2a

3 . (14.31)

Summarizing, we have that in the ground state there is no first-order Stark
effect, but only a second-order Stark effect (first and second order in E).

14.3.2 Excited States

The n = 2 states of the hydrogen atom |2, 0, 0〉, |2, 1, 0〉, |2, 1, 1〉, |2, 1,−1〉
are four-fold degenerate. We must use degenerate perturbation theory and
transform to a basis in which the nondiagonal elements of z vanish.

By (14.28a) the two states |2, 1, ± 1〉 have no off-diagonal elements with
the other three states, and they remain unchanged in the new basis. Moreover,
since by (14.28b)

〈2, 1, ± 1|z|2, 1, ± 1〉 = 0 ,

they are not shifted to first order in E and give only a quadratic Stark effect.
It remains to diagonalize the matrix formed from |2, 0, 0〉 and |2, 1, 0〉, which



268 14. The Zeeman Effect and the Stark Effect

leads to the eigenvalue equation

−eE
(
〈2, 0, 0|z|2, 0, 0〉 〈2, 0, 0|z|2, 1, 0〉
〈2, 1, 0|z|2, 0, 0〉 〈2, 1, 0|z|2, 1, 0〉

)(
c1

c2

)

= E1

(
c1

c2

)

. (14.32)

The diagonal elements vanish by parity considerations (14.28b). The remain-
ing matrix element is

〈2, 0, 0|z|2, 1, 0〉 =
1

8a4

∫ ∞

0

dr r4e−r/a
(
1 − r

2a

) ∫ 1

−1

dη η2 = −3a . (14.33)

Hence, the eigenvalue equation (14.32) becomes
(

E1 −3eaE
−3eaE E1

)(
c1
c2

)

= 0 .

Its eigenvalues are

E1 = ± 3e0aE , (14.34)

where e = −e0 has been inserted, and the corresponding eigenvectors are

1√
2

(
1

−1

)

and
1√
2

(
1
1

)

. (14.35)

For these states, there exists a Stark effect of first order. The splitting in O(E)
is illustrated schematically in Fig. 14.6. A hydrogen atom in the first excited
state behaves as if it had a dipole moment of magnitude 3ae0 orientable
parallel or antiparallel to the field together with two states with no component
along the field.

Fig. 14.6. Splitting of n = 2 states in first order in E

We add a few remarks:

(i) The perturbation (14.27) breaks the rotational invariance. One has
[L2,x] �= 0, and therefore states with differing l are mixed.

(ii) The fine structure need not be taken into account for field strengths
greater than 103 V/cm, since in this case the splitting due to the electric
field is larger than the fine-structure splitting. For weaker fields, one should
begin with the eigenstates of J . In linear combinations of the states 2S1/2

and 2P1/2 one then also finds a first-order Stark effect.
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Fig. 14.7. The potential for the
Stark effect, e = −e0

(iii) There is a fundamental objection to the use of perturbation theory
for the Stark effect: Strictly speaking, as is evident from Fig. 14.7, the bound
states are not stable, but only metastable. However, the tunneling probability
is so minute that perturbation theory suffices to compute the location of these
metastable levels.

(iv) Finally, we wish to draw some general conclusions from the results
for the hydrogen atom. For nondegenerate levels there is no permanent dipole
moment, but only an induced one. For degenerate states of different parity,
permanent dipole moments can occur. In any case, exact degeneracy is present
only in the Coulomb potential because of the additional symmetry generated
by the Lenz vector.

On the other hand, it is clear physically that in the case of closely spaced
levels of different parity, a permanent dipole moment is in effect present. This
is the situation in molecules like HCl and NH3. The ground state of these
molecules is symmetric. The antisymmetric state lies barely higher in energy.
From these two states, it is possible to form a linear combination with finite
dipole moment d, which actually occurs if the energy Ed is much larger than
the aforementioned energy difference.

Problems

14.1 On the Stark effect: Calculate the second-order energy shift for the ground
state of hydrogen E2

1 , Eqs. (14.29)–(14.30).

Hint: Instead of carrying out the summation in (14.29), derive a differential equation
for the first-order perturbative correction to the wave function (method of Dalgarno
and Lewis: A. Dalgarno and J. T. Lewis, Proc. Roy. Soc. (London) A233, 70 (1955)).
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15.1 Qualitative Considerations

The basic building blocks of molecules are nuclei and electrons; however, since
they dissociate into atoms if energy is supplied, it seems reasonable to regard
them as bound states of atoms. The determination of the energy levels and
even the ground states of molecules is considerably more complicated than
in the case of atoms. The electrons move in an attractive, non-rotationally
symmetric potential generated by the nuclei. One should also think about to
what extent the motion of the nucleus should be taken into account. Here, an
important simplification occurs for the theory of molecules, due to the small
ratio of the electron mass m to the nuclear mass M :1

m

M
≈ 10−3 − 10−5 . (15.1)

Therefore the nuclei move more slowly, have a small zero-point energy, and
hence are well localized. At any time, the electrons “see” effectively a static
potential. The electronic wave functions are adiabatically deformed by the
vibrations of the nuclei.

The nuclei of a molecule can carry out the following motions: translation,
rotation, and vibration. In order to estimate the typical energies of these
motions, we first consider the typical electronic energy of a valence electron,
that is, an electron whose wave function extends over the whole molecule. If
the linear dimension of the molecule is a, then according to the uncertainty
relation and the virial theorem,

Eel ≈ p2

2m
=

(�/a)2

2m
=

�
2

2ma2
. (15.2)

In estimating the vibrational energy, we note that the potential energy for
every normal mode of oscillation (eigenoscillation of the molecule) takes the
oscillator form Mω2R2/2, where M is roughly the nuclear mass and R is the
amplitude of the oscillation. For R ≈ a, the energy would be about Eel, that
is

Mω2a2

2
≈ �

2

2ma2
.

1 me = 0.911 × 10−27 g, mp = 1.6725 × 10−24 g.
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Hence, one obtains for the vibrational frequency

ω ≈
(

m

M

)1/2
�

ma2
,

and the corresponding energy is

Evib = �ω ≈
(

m

M

)1/2
Eel . (15.3)

The rotational energy of the molecule is

Erot =
�

2l(l + 1)
2I

≈ �
2

Ma2
=

m

M
Eel , (15.4)

where I = Ma2 has been inserted for the moment of inertia. Hence, the
ratios of electronic to vibrational and vibrational to rotational energy are
(m/M)1/2.

The frequencies of the transitions between electronic levels lie in the visible
and ultraviolet, the vibrational transitions in the infrared, and the rotational
transitions in the far infrared. From the vibrational frequency, we can also
estimate the typical nuclear velocity and the amplitude of the vibrations (the
mean-square deviation). The zero-point energy is composed in equal measures
of kinetic and potential energy, that is,

P 2

2M
=

Mω2R2

2
=

�ω

2
, or P =

(
M

m

)1/4
�

a
.

Hence, the nuclear velocity becomes

vN =
P

M
=
(

m

M

)3/4
�

ma
=
(

m

M

)3/4
vel (15.5)

and the vibrational amplitude

R =
(

�

Mω

)1/2
=
(

m

M

)1/4
a , (15.6)

i.e., vN/vel ≈ 10−3 and R/a ≈ 10−1. The velocity of the nuclei is much
smaller than that of the electrons, and the deviations R from their equilibrium
positions are smaller than the molecular dimension a.
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15.2 The Born–Oppenheimer Approximation

The total Hamiltonian for electrons and nuclei is given by

H = Te + TN + Vee + VeN + VNN (15.7a)

with

Te =
∑

i

p2
i

2m
, TN =

∑

N

P 2
N

2MN
. (15.7b)

The first two terms in H stand for the kinetic energy of the electrons and
nuclei, while the next three stand for the interaction of the electrons, the
interaction of the electrons with the nuclei, and the interaction of the nuclei,
respectively. The momenta and coordinates of the nuclei are PN and XN,
and those of the electrons are pi and xi.

Before considering the total wave function of the electrons and the nuclei,
let us first ignore the nuclear motion completely, i.e., we fix the coordinates
X. The wave function of the electrons ψ(x|X) for fixed nuclear positions X
is then determined by

(Te + Vee + VeN)ψ(x|X) = Eel(X)ψ(x|X) . (15.8)

In the wave function ψ(x|X) and in Eel(X), the nuclear positions enter only
as parameters. We introduce

ε(X) = VNN(X) + Eel(X) ,

the sum of the interaction energy of the nuclei and the energy eigenvalue of
the interacting electrons in the nuclear potential.

For the wave function of the whole molecule, we make the ansatz

Ψ(x,X) = ψ(x|X)Φ(X) , (15.9)

which is the product of a wave function for the nuclei and the wave function
of the electrons for fixed nuclei. From HΨ = EΨ follows

ψ(x|X)(TN + VNN(X) + Eel(X))Φ(X) = ψ(x|X)EΦ(X)

−
∑

N

−�
2

2MN
[Φ(X)∇2

Xψ(x|X) + 2∇XΦ(X)∇Xψ(x|X)] . (15.10)

We multiply (15.10) by ψ(x|X)∗ and integrate over x. Ignoring the terms
following from the second line, we find the Born–Oppenheimer equation,

(TN + ε(X))Φ(X) = EΦ(X) . (15.11)

The Born–Oppenheimer equation, the effective Schrödinger equation for the
nuclei, contains – aside from the Coulomb repulsion – the energy of the elec-
trons, which depends on the nuclear positions. The equilibrium coordinates
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of the nuclei are obtained from the minima of the ε(X). The nuclei arrange
themselves in such a way that the sum of their Coulomb repulsion and the
electronic energy attains a minimum. The oscillation frequencies of the nuclei
are obtained from the second derivatives of ε(X).

We must now estimate the terms neglected above. The second term in
the second line of (15.10) is
∫

d3xψ(x|X)∗
∂

∂Xi
ψ(x|X) ∼ ∂

∂Xi

∫
d3x |ψ(x|X)|2 = 0 ,

since bound state wave functions can always be taken as real, and the norm
is independent of X. The first term is estimated for the most unfavorable
case of strong coupling, ψ(x|X) = ψ(x−X):

− �
2

2M
Φ(X)

∫
d3xψ(x|X)∗ ∇2

Xψ(x|X)

= −�
2Φ(X)

2M

∫
d3xψ(x−X)∗ ∇2

xψ(x−X)

=
m

M
Eel

kinΦ(X) � |Eel|Φ(X) .

In the above derivation of the Born–Oppenheimer approximation, only a
single electronic state ψ(x|X) was taken into account. However, one should
investigate whether the admixture of other electronic states could play a role.
For instance, in the evalution of the nuclear motion in the electronic ground
state, matrix elements with excited states might be important. The starting
point for a systematic treatment is the completely general expansion

Ψ(x,X) =
∑

α

ψα(x|X)Φα(X) , (15.12)

where the states ψα(x|X) satisfy the Schrödinger equation

(Te + Vee + VNe)ψα(x|X) = Eel
α (X)ψα(x|X) . (15.13)

The Schrödinger equation for the wave function (15.12) is
∑

α′
ψα′(x|X)[TN + VNN + Eel

α′(X) − E]Φα′(X) (15.14)

= −
∑

N

∑

α′

(

− �
2

2MN

)
(
2∇XΦα′ ∇Xψα′(x|X) + Φα′ ∇2

Xψα′(x|X)
)
.

Multiplying this equation by ψα(x|X)∗ and integrating over the coordinates
of the electrons, one finds

(TN + VNN + Eel
α (X) − E)Φα(X) = 0 . (15.15)

Here, we have neglected the terms originating from the right side of (15.14).
These are now to be estimated. The second term contains
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1
M

∇2
Xψα′(x|X) =

m

M

1
m

∇2
xψα′(x|X)

and therefore is smaller than the electronic kinetic energy by a factor of m/M .
In order to estimate the first term, we substitute, in place of the nuclear wave
function, the oscillator wave function exp{−(X −X0)2Mω/2�}:

∇XΦα′(X)∇Xψα′(x|X)

∼ (X −X0)
Mω

�
exp

{

− (X −X0)2Mω

2�

}

∇Xψα′(x|X)

∼ Mω

�
Φα′(X)(X −X0)∇Xψα′(x|X) .

Let δ =X −X0 be a typical nuclear displacement; it then follows that

(X −X0)∇Xψα′ ≈ ψα′(x|X + δ) − ψα′(x|X)
≈ ψα′(x− δ|X) − ψα′(x|X) .

Hence, these terms are of the order of magnitude

Mω

�

�
2

2M
≈ �ω ≈

(
m

M

)1/2
Eel .

The neglected matrix elements are smaller than the electronic energy by
factors of m/M and (m/M)1/2. They are therefore much smaller than the
separations of the electronic levels and lead merely to a negligible correction.

Neglecting terms in this manner, we have recovered in (15.15) the Born–
Oppenheimer equation. The nuclei move in an effective potential composed of
the nuclear repulsion and the electronic energy. Hence we obtain independent
Born–Oppenheimer equations for Φα(X) corresponding to each ψα(x|X).
The energy eigenvalues of the molecule Eαn following from (15.15) depend
on α and are enumerated by n, and the corresponding stationary states of
the molecule are of the form

Ψαn(x,X) = ψα(x|X)Φαn(X) .

In the following, we will compute the electronic energy for fixed nuclear
positions. The minima yield the molecular bound states.

15.3 The Hydrogen Molecular Ion (H
+

2 )

We first consider the ionized H2 molecule; there, a single electron moves in
the attractive potential of two protons at the fixed positions XA and XB

(Fig. 15.1). The Hamiltonian for the electron takes the form

H = −�
2∇2

2m
− e2

|x−XA| −
e2

|x−XB| +
e2

|XA −XB| . (15.16)
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Fig. 15.1. The ionized hydrogen molecule

This problem is exactly solvable2; nevertheless, we will be satisfied here with
a qualitative variational solution. As a variational ansatz, we take the super-
position of 1s atomic wave functions, which are symmetric or antisymmetric
by reflection symmetry:

ψ± = C±[ψA(x) ± ψB(x)] . (15.17)

The two 1s wave functions concentrated about nucleus A and B are

ψA
B

(x) = (πa3)−1/2 exp{−|x−XA
B
|/a} . (15.18)

The normalization constants are obtained from the overlap of the wave func-
tions ψA and ψB:

1 =
∫

d3x |ψ±(x)|2 = C2
±(2 ± 2S(R)) (15.19a)

with

S(R) =
∫

d3xψA(x)ψB(x) =
(

1 +
R

a
+

R2

3a2

)

e−R/a , (15.19b)

where R = |XA−XB| is the nuclear separation and S(R) represents the over-
lap integral. The expectation value of the Hamiltonian in the states (15.17)
is

〈H〉± = (2 ± 2S)−1(〈A|H |A〉 + 〈B|H |B〉 ± 2〈A|H |B〉)
= (1 ± S)−1(〈A|H |A〉 ± 〈A|H |B〉) , (15.20)

where

〈A|H |A〉 =
∫

d3xψA(x)HψA(x) = E1 +
e2

R
−
∫

d3xψ2
A(x)

e2

|x−XB|
= E1 +

e2

R

(

1 +
R

a

)

e−2R/a . (15.21)

Here, E1 = −1 Ry is the ground state energy of a hydrogen atom. Further-
more,

2 One can separate variables by using spheroidal coordinates. See, for instance,
J.C. Slater: Quantum Theory of Molecules and Solids. I. Electronic Structure of
Molecules (McGraw-Hill, New York 1974).
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〈A|H |B〉 =
∫

d3xψA(x)HψB(x)

=
(

E1 +
e2

R

)

S(R) −
∫

d3xψA(x)ψB(x)
e2

|x−XB| ,

(15.22)

where the exchange integral is defined by

A(R) =
∫

d3xψA(x)ψB(x)
e2

|x−XB | =
e2

a

(

1 +
R

a

)

e−R/a (15.23)

and
∫

d3xψ2
A(x)

e2

|x−XB| =
e2

R

(

1 − e−2R/a

(
R

a
+ 1
))

has been used. From this, one obtains for ε±(R) ≡ 〈H〉±

ε±(R) = (1 ± S)−1

[

E1 +
e2

R

(

1 +
R

a

)

e−2R/a

±
(

E1 +
e2

R

)

S ∓ e2

a

(

1 +
R

a

)

e−R/a
]

. (15.24)

In Fig. 15.2 ε±(R) is shown as a function of the separation R. Now, ε+(R) has
a minimum, but ε−(R) does not. From this one can see that the symmetric
wave function leads to binding and the antisymmetric wave function does not.
In the region between the nuclei, ψ+(x) is larger than ψ−(x), which vanishes

Fig. 15.2. ε+(R) (—) and ε−(R) (- - -)
as functions of R; 1 Å = 10−8 cm

Fig. 15.3. ε±(R) − e2/R (notation
as in Fig. 15.2)
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in the plane bisecting the line connecting the nuclei. The difference in the
electronic energies is explained by the fact that the potential energy there is
relatively strongly attractive due to the positive superposition of the nuclear
potentials. For further illustration, in Fig. 15.3 ε±(R) − e2/R is shown, that
is, the purely electronic energy without the Coulomb repulsion of the nuclei.
The state ψ+ is called a bonding orbital and ψ− an antibonding orbital.

The exact ground state energy is lower than ε+(R). The values of the
binding energy and the nuclear separations of H+

2 are 2.79 eV and 1.06 Å,
compared to the variational results of 1.76 eV and 1.32 Å, respectively.3

15.4 The Hydrogen Molecule H2

The Hamiltonian for the two electrons of the hydrogen molecule reads (Fig.
15.4)

H = − �
2

2m
∇2

1 −
�

2

2m
∇2

2 −
e2

|x1 −XA| −
e2

|x1 −XB |
− e2

|x2 −XA| −
e2

|x2 −XB| +
e2

|x1 − x2| +
e2

|XA −XB | . (15.25)

Fig. 15.4. The hydrogen molecule

From the point of view of one of the two electrons, the following picture
emerges: In addition to the potential of the nuclei, there is a repulsive poten-
tial of the other electron. If the other electron is in a symmetric state, then a
weaker symmetric potential results. The wave function of the electron under
consideration is either symmetric or antisymmetric. Here as well, there are
antisymmetric (antibonding) and symmetric (bonding) wave functions (or-
bitals). If a particular symmetric, molecular, one-electron state is occupied
by two electrons with oppositely aligned spins, one expects for the binding
energy of the hydrogen molecule EH2 the result

|EH2 | < 2|EH+
2
| ,

where EH+
2

is the binding energy of the ionized hydrogen molecule.

3 The binding energy E
H+

2
is given relative to the dissociated state, p + H, i.e.:

E
H

+
2

= Emin + 1Ry, where Emin is the energy at the minimum (Fig. 15.2).

Because of (11.15), the above calculation gives an upper bound to the bind-
ing energy. This can be improved by introducing the variational parameter Z∗

into (15.18) (see Problem 15.1).
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There exist two basic approximation schemes for treating the H2 problem:
One method consists in the construction of molecular orbitals, that is, one-
particle wave functions for the molecule, which are occupied by electrons. The
other approach is the Heitler–London method, which consists in construct-
ing the two-particle wave functions from the one-electron wave functions of
(isolated) hydrogen atoms.

The molecular orbital method

Here, the ansatz for the wave function of the two electrons is

ψs(1, 2) = [ψA(x1) + ψB(x1)][ψA(x2) + ψB(x2)]
× χsing/2[1 + S(R)] . (15.26)

The spatial part is the product of the H+
2 molecule wave functions ψ+(x1)

and ψ+(x2). The spins are in the singlet state because of the Pauli exclusion
principle. A triplet state can only be constructed by

[ψ+(x1)ψ−(x2) − ψ−(x1)ψ+(x2)]χtrip/
√

2 .

It contains an antibonding orbital and has higher energy.
The ansatz (15.26) has the following shortcomings: For small distances,

the wave function is a product of 1s hydrogen wave functions instead of
helium wave functions. For larger distances, a further weakness becomes ap-
parent. For this we consider the fully expanded expression

ψs(1, 2) ∝ [ψA(x1)ψA(x2) + ψB(x1)ψB(x2)]
+ [ψA(x1)ψB(x2) + ψA(x2)ψB(x1)] .

In the terms within the first pair of square brackets, both electrons are con-
centrated about the same atom. However, for large separations only the sec-
ond pair of brackets should be present, because H + H is energetically more
favorable than p + H−. Nevertheless, this wave function gives a reasonably
accurate upper bound for the binding energy, since for this quantity only the
behavior in the vicinity of the actual molecular separation of the nuclei is of
relevance.

The Heitler–London method

Here, the ansatz for the singlet and triplet states

ψs(1, 2) =
1

√
2(1 + S2)

[ψA(x1)ψB(x2) + ψB(x1)ψA(x2)]χsing , (15.27a)

ψt(1, 2) =
1

√
2(1 − S2)

[ψA(x1)ψB(x2) − ψB(x1)ψA(x2)]χtrip (15.27b)
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is given by the symmetric and antisymmetric superposition of single-atom
states. For large distances |XA −XB|, these states describe separated hy-
drogen atoms, which represents an improvement over the method of molecular
orbitals. For small distances, the same criticism as in the method of molecu-
lar orbitals applies. The quantitative difference in the binding energies of the
states (15.26) and (15.27a) is relatively small.

The expectation value of the Hamiltonian H in the Heitler–London
states (15.27a,b) gives the following upper bound for the true energy:

εs
t
= 〈H〉s

t
= (〈AB|H |AB〉 ± 〈AB|H |BA〉)/(1 ± S2) . (15.28)

Here, we define

〈AB|H |AB〉 =
∫

d3x1d
3x2 ψA(x1)ψB(x2)HψA(x1)ψB(x2)

= 〈BA|H |BA〉 , (15.29a)

〈AB|H |BA〉 =
∫

d3x1d
3x2 ψA(x1)ψB(x2)HψB(x1)ψA(x2)

= 〈BA|H |AB〉 . (15.29b)

Using the Schrödinger equation for the 1s wave functions
(

− �
2

2m
∇2

1
2
− e2

|x1
2
−XA

B
|

)

ψA
B

(x1
2
) = E1 ψA

B
(x1

2
) , (15.30)

one can represent (15.29a) in the form

〈AB|H |AB〉 = 2E1 + Q , (15.31)

where we have introduced the Coulomb energy Q.

Q =
∫

d3x1

∫
d3x2 ψA(x1)2 ψB(x2)2

×
[

e2

|x1 − x2| −
e2

|x1 −XB | −
e2

|x2 −XA|
]

+
e2

R

= −2
∫

d3x1
e2

|x1 −XB |ψA(x1)2

+
∫

d3x1d
3x2 ψA(x1)2

e2

|x1 − x2|ψB(x2)2 +
e2

R
. (15.32)

The terms following the second equals sign are, respectively: twice the
Coulomb interaction of the electron concentrated about A with the nucleus
B, which is equal to the Coulomb interaction of the electron concentrated
about B with A; the Coulomb repulsion of the electrons; and the Coulomb
repulsion of the nuclei.
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For (15.29b), one obtains using (15.25) and (15.30)

〈AB|H |BA〉 = S2 2E1 + A . (15.33)

The exchange energy A is defined by

A = S2 e
2

R
+
∫

d3x1d
3x2 ψA(x1)ψB(x2)ψA(x2)ψB(x1)

×
[

e2

|x1 − x2| −
e2

|x1 −XB| −
e2

|x2 −XA|
]

= S2 e
2

R
+
∫

d3x1d
3x2 ψA(x1)ψB(x2)

e2

|x1 − x2|ψB(x1)ψA(x2)

− 2S
∫

d3x1
e2ψA(x1)ψB(x1)

|x1 −XA| . (15.34)

It is a measure of the square of the overlap of the wave functions, weighted
by the potential energies. The exchange energy results from the interplay of
quantum mechanics (Pauli principle) and the Coulomb interaction.

We now substitute (15.29–15.34) into (15.28) and obtain for the energies
in the singlet and triplet states

εs
t

= 2E1 +
Q ± A

1 ± S2
. (15.35)

The Coulomb and exchange energy depend on the nuclear separation. The
Coulomb energy Q is positive and everywhere small. Except for very small
distances, the exchange energy is negative and exceeds the Coulomb energy;
thus, the singlet state is binding, but not the triplet state. Physically, this
results from the fact that for the singlet function the spatial probability den-
sity is large in between the two nuclei, whereas in the triplet state it has a
node in the midplane bisecting the line connecting the nuclei. Although the
Coulomb repulsion of the electrons in the singlet state is larger, this is over-
compensated by the attraction of the charge distribution in the internuclear
region by the nuclei to the left and right. Quantitatively, this computation
is unsatisfactory; for the nuclear distance, one finds R0 = 0.8 × 10−8 cm in
place of the experimental value 0.7395 × 10−8 cm. Nevertheless, it shows the
origin of the homopolar bonding of the hydrogen molecule.

Remark: The explicit expressions for Q and A are4

Q =
e2

a�
e−2


„

1 +
5

8
�− 3

4
�2 − 1

6
�3

«

, (15.36)

4 Y. Sugiura: Z. Phys. 45, 484 (1927)
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A =
e2

a

j

S2

�

»

1 +
6

5
(C + ln �)

–

− e−2


„

11

8
+

103

20
�+

49

15
�2 +

11

15
�3

«

+
6M

5�
[M Ei(−4�) − 2S Ei(−2�)]

ff

,

C = 0.57722 ,

Ei(x) = −
Z ∞

−x

e−ξ

ξ
dξ ,

M = (1 − �+ 1
3
�2)e
 ,

S =

„

1 + �+
�2

3

«

e−
 .

At this point, of course, a further discussion of covalent (homopolar) bond-
ing might be warranted. However, since this discussion could only be quali-
tative, we will refrain from carrying it further. To conclude this section, we
give a summary of the orders of magnitude of binding energies occurring in
solids for the various bonding types:

Homopolar = covalent bonding 10 eV
Ionic bonding 10 eV
Van der Waals bonding 0.1 eV
Metallic bonding 1–5 eV
Hydrogen bonding 0.1 eV

15.5 Energy Levels of a Two-Atom Molecule:
Vibrational and Rotational Levels

In the two preceding sections, we determined the effective potential energy
of the nuclei and its minimum. Of course, one can just as well compute the
excited states of the nuclei from the Born–Oppenheimer equation. In the
following, we would like to determine the oscillatory and rotational states
of two-atom molecules such as HCl. In this case, the Born–Oppenheimer
equation (15.11) is a two-particle Schrödinger equation, which as in Sect. 6.4
can be reduced to a one-particle Schrödinger equation by introducing center-
of-mass and relative coordinates and separating off the center-of-mass part.
We denote the relative coordinate of nucleus 1 and 2 by x = X1 −X2. The
Born–Oppenheimer equation (15.11) then yields

[

− �
2

2m
Δ + ε(r)

]

ψ(x) = Eψ(x) . (15.37)

Here, we have introduced the reduced mass m = M1 M2/(M1 + M2), and
we recall that the effective potential energy depends only on the separation
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r = |x| of the nuclei. In (15.37) we are again confronted with a rotationally
symmetric problem.

With the ansatz ψ(x) = Rnl(r)Ylm(ϑ, ϕ) one obtains
[

− �
2

2m

(
d2

dr2
+

2
r

d

dr

)

+ ε(r) +
�

2l(l + 1)
2mr2

]

Rnl(r) = ERnl(r) . (15.38)

Here,

Veff(r) = ε(r) +
�

2l(l + 1)
2mr2

(15.39)

enters as a new effective potential. As in previous chapters, the substitution

Rnl(r) =
unl(r)

r
(15.40)

leads to
[

− �
2

2m
d2

dr2
+ Veff(r)

]

unl(r) = Eunl(r) . (15.41)

For small l, Veff has a minimum depending on the angular momentum quan-
tum number l, which we denote by rl. In the neighborhood of this minimum,
we can expand Veff in a Taylor series,

Veff = Veff(rl) + 1
2mω2

l (r − rl)2 + . . . , (15.42)

where mω2
l = (d2Veff/dr

2)|rl
. For small displacements, we can cut off (15.42)

after the harmonic term, and we obtain from (15.41) after introduction of
x = r − rl,

[

− �
2

2m
d2

dx2
+ ε(rl) +

�
2l(l + 1)
2mr2

l

+
mω2

l

2
x2

]

u = Eu , (15.43)

which is the Schrödinger equation of a harmonic oscillator. Its energy eigen-
values are

E = ε(rl) +
�

2l(l + 1)
2Il

+ �ωl

(

n +
1
2

)

, (15.44)

in which the effective moment of inertia Il = mr2
l enters. The corresponding

stationary states are

unl = AnHn

(
x

x0l

)

exp

{

− 1
2

(
x

x0l

)2
}

(15.45)

with x0l = (�/mωl)1/2. Although the wave functions unl do not satisfy the
condition u(r = 0) = 0, the accuracy of the energy eigenvalues is not im-
paired, since the exponent of u(0) ∝ exp{−(rl/x0l)2/2} contains the square
of the ratio of nuclear separation to oscillation amplitude (see (15.6)) and is
therefore exponentially small.
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The energy eigenvalues (15.44) consist of contributions from the effective
electronic energy, the rotational energy, and the vibrational energy.

The rotational levels correspond to a wavelength of λ = 0.1 – 1 cm and lie
in the far infrared and microwave regions, whereas the vibrational levels lie
at a wavelength of λ = 2 × 10−3 – 3 × 10−3 cm in the infrared. The quantum
nature of these excitations manifests itself in a macroscopic property of gases,
the specific heat. The classical specific heat is 7kB/2 (three translational, two
rotational, and two vibrational degrees of freedom). This value is only found
at high temperatures. Experimentally, and on the basis of quantum statistics,
one finds that when the temperature is lowered, the vibrations freeze out first
at 103 K followed then by the rotations.

15.6 The van der Waals Force

This is important in the noble gases (He, Ne, Ar, Kr, Xe) and in compounds
of large molecules. The charge distribution of the noble gases is spherically
symmetric, but not static; for this reason, an interaction of fluctuating dipole
moments occurs.

Qualitatively, we can imagine how the van der Waals interaction arises
between two atoms in the following manner: The fluctuating dipole moment
of the first atom induces a dipole moment in the second atom (Fig. 15.5).
The potential of the first atom is p1 · x/r3, and the electric field of the first
atom is

1
R3

[

− p1 + 3
(p1 ·R)R

R2

]

.

This causes an induced dipole moment in the second atom,

p2 =
α2

R3

[

− p1 + 3
(p1 ·R)R

R2

]

(α2 is the polarizability). The interaction energy of the two dipole moments
is

W =
1
R3

[

p1 · p2 − 3
(p1 ·R)(p2 ·R)

R2

]

= −α2

R6
p1i(δij + 3δi1δj1)p1j < 0 .

This yields an attractive interaction ∼ −e2r5
0/R

6.

Fig. 15.5. The van der Waals interaction of two hydrogen
atoms: separation of the nuclei R, electrons e−
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We now turn to the quantum mechanical theory of the van der Waals
interaction. We formulate this for two hydrogen atoms, and we denote the
coordinates and momenta of the two electrons by x1(x2) and p1(p2) and
the separation vector of the two nuclei by R. The Hamiltonian of the two
electrons is

H = H1(x1) + H2(x2) + W (x1,x2,R) , (15.46)

where

H1
2

=
1

2m
p2

1
2
− e2

0

|x1
2
| (15.47a)

and

W (x1,x2,R) =
e2
0

R
+

e2
0

|R+ x2 − x1| −
e2
0

|R+ x2| −
e2
0

|R − x1| . (15.47b)

The expansion

(1 + x)−1/2 = 1 − 1
2x + 3

8x
2 + . . .

yields for large distances the dipole interaction

W (x1,x2,R) =
e2
0

R3

(

x1 · x2 − 3
(x1 ·R)(x2 ·R)

R2

)

. (15.47b′)

The influence of W will now be determined by perturbation theory. The
hydrogen eigenstates |n1〉 and |n2〉 satisfy

H1|n1〉 = En1 |n1〉 , H2|n2〉 = En2 |n2〉 . (15.48)

The change in the ground state energy is

ΔE(R) = 〈00|W |00〉+
∑

n1n2

′ |〈00|W |n1n2〉|2
E0

00 − E0
n1n2

. (15.49)

Here, E0
n1n2

= En1 +En2 , and the prime on the summation symbol indicates
that the sum is not taken over n1 = n2 = 0. For atoms without a dipole
moment, such as hydrogen atoms in the ground state or noble gases, the
first term vanishes. The second term is always negative; we estimate it for
hydrogen atoms. ChoosingR in the x-direction, we can write the second term
in the form −e4

0A/R6 with

A =
∑

n1n2

′ |〈00|w|n1n2〉|2
E0
n1n2

− E0
00

(15.50)

and w = (−2x1x2 + y1y2 + z1z2).
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The ground state wave function of the hydrogen atom is spherically sym-
metric, as in the noble gases. Thus,

〈00|w|0n2〉 = 〈00|w|n10〉 = 0 .

In the intermediate state, both electrons must go into an excited state. The
energy denominator

E0
n1n2

− E0
00 = (− 1

2 + 2)Ry . . . (0 + 2)Ry

therefore varies between +3/2 Ry and +2 Ry. Therefore, it follows approxi-
mately that

A ≈ a

e2
0

∑

n1n2

′|〈00|w|n1n2〉|2 =
a

e2
0

〈00|w2|00〉 ,

where a is the Bohr radius. Using

〈0|x2|0〉 =
1
3
〈0|r2|0〉 =

4π
3

∫
dr r4 e−2r/a

4πa3
= a2 ,

〈00|w2|00〉 = 6a4 ,

one then finds from (15.49) the attractive van der Waals interaction

V (R) = −6e2
0a

5

R6

∼ −e2
0

a

α1α2

R6
, αi ∼ a3 (polarizability) . (15.51)

The precise evaluation of the sum (15.50) by London and Eisenschitz gave
in place of the factor 6 in (15.51) the value 6.47. The van der Waals force
is weaker than the covalent binding forces by a factor of 1000. But it is
responsible for the formation of crystals of the noble gases and the binding
of large molecules.

The calculation presented here is based on the static Coulomb potential.
In fact, the electric interaction occurs via the exchange of photons, and thus it
is not instantaneous but propagates with the speed of light c. The propagation
time of the light is τlight = 2R/c, and the characteristic time for one revolution
of the electron in the atom is τ = 1/me4. For small distances,

τlight � τ , R � λ

(

≈ e2a

�c
∼ 10−6 cm

)

,

and thus V (R) ∝ −1/R6, as above.
For large distances (R � λ), retardation effects become important, and

instead of (15.51) one finds

V (R) = − 23
4π

�c
α1α2

R7
, (15.52)
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i.e., R7 replaces R6. (In other words, in (15.51) the energy of the atoms e2
0/a

is replaced by �c/R, the energy of photons of wavelength R.)5

Further reading:

J.C. Slater: Quantum Theory of Molecules and Solids, Vol. I, Electronic Structure

of Molecules (McGraw-Hill, New York 1963)

M. Weissbluth: Atoms and Molecules (Academic Press, New York 1978)

Problems

15.1 Calculate the ground state energy of the H+
2 molecule by introducing the

variational parameter Z∗ into the electron wave function

ψ =

„

Z∗

πa3

«1/2

e−Z
∗r/a .

15.2 Calculate the integrals S and A – (15.19b), (15.23) – introduced for the H+
2

molecule.

15.3 Show that the He3+
2 molecule does not exist.

15.4 Consider Problem 3.18 as a simple model for a molecule consisting of two
nuclei at the positions x = +a and x = −a and an electron. Assume additionally
that a repulsive potential of the form VNN(a) = ελ/(2a) (ε > 0) is present between
the two nuclei. The total energy of the system as a function of the separation of
the nuclei is given by the sum of the energy of the electron and the potential of
the nuclei. Show that the state of even parity is stable for sufficiently small ε.
Hint: Show qualitatively that the total energy as a function of the separation has
a minimum.

15.5 Solve the preceding exercise by a variational ansatz analogous to the H+
2

problem treated in Sect. 15.3. Note: As an ansatz, use the sum and difference of
the solutions for the individual δ-potentials and determine which functions yield
the smaller expectation value of the energy

„

d

dx
sgn x = 2δ(x)

«

.

15.6 The interaction of the nuclei in a two-atom molecule can be described by

V (r) = V0

„

a2

r2
− 2a

r

«

, V0 > 0 and a > 0 .

Solve the Schrödinger equation for the bound states and find the energy eigenvalues.
Think about analogies to the hydrogen atom. Note: As in the H-atom, set ψ = u/�,

5 H.B.G. Casimir, D. Polder: Phys. Rev. 73, 360 (1948); E.A. Power: Advances in
Chemical Physics XII, ed. by J.O. Hirschfelder (Interscience, London 1967)
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� = r/a and factor out the behavior of the solution for �→ ∞ and �→ 0 in u. The
resulting differential equation takes the form

„

z
d2

dz2
+ (c− z)

d

dz
− a

«

F = 0 ,

and the solutions regular at the origin are the confluent hypergeometric functions
F (a, c, z).

15.7 Compare the rotational levels with the vibrational levels for a 1H−35Cl
molecule with the potential

V (r) = 4ε

"

„

d

r

«12

−
„

d

r

«6
#

, ε = 3.1 × 10−12 eV , d = 3.3 Å .

Hint: Since the equilibrium separation rl depends only weakly on the angular mo-
mentum, one can expand the effective potential about r0. It is advantageous to
compute b = �

2/md2 and to express the potential in terms of b and x0 = r0/d.
Represent both the rotational and the vibrational energy as functions of the quan-
tities x0, b, ε, and l. Give the energies in eV, Hz, and K.

15.8 The Hamiltonian for a rigid body is given by

H =
3
X

α=1

1

2I ′
α

“

L
′
α

”2

,

where L
′
α are the components of the angular momentum in the corotating frame

of reference. Determine the eigenvalues for a two-atom molecule. Hint: [L
′
α, L

′
β] =

−i�εαβγ Lγ . Introduce Lα = −Lα′ and use rotational symmetry about the axis.

15.9 Solve the time independent Schrödinger equation for the Kronig–Penney
model

V (x) = λ
X

n

δ(x− na) .

Here, n takes values over all integers, and a is the lattice constant.



16. Time Dependent Phenomena

16.1 The Heisenberg Picture
for a Time Dependent Hamiltonian

Up to now we have studied problems which could be represented by a time
independent Hamiltonian. Once the stationary states had been found, the
quantum mechanical initial value problem was solved by

|ψ, t〉 = e−iHt/�|ψ, 0〉 =
∑

n

e−iEnt/�〈n|ψ, 0〉|n〉 . (16.1)

If the Hamiltonian has, in addition to a time independent part H0, a time
dependent part V (t),

H(t) = H0 + V (t) , (16.2)

we can either try to solve the Schrödinger equation

i�
∂

∂t
|ψ, t〉 = H(t)|ψ, t〉 (16.3)

or else the Heisenberg equations to be discussed shortly. The solution of the
Schrödinger equation (16.3) can be represented formally by

|ψ, t〉 = U(t, t0)|ψ, t0〉 . (16.4)

The quantity U(t, t0) expresses the time development of an arbitrary initial
state |ψ, t0〉. Substitution into the Schrödinger equation gives the following
equation determining U(t, t0):

i�
∂

∂t
U(t, t0) = H(t)U(t, t0) , (16.5)

which is to be solved subject to the initial condition

U(t0, t0) = 1 . (16.6)

For time independent H , we find immediately

U(t, t0) = exp
{

− i
�
H(t− t0)

}

,
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a result which is known from Sect. 8.5 and is equivalent to (16.1). For in-
finitesimal time differences, the Schrödinger equation implies

|ψ, t + dt〉 =
(

1 − i
�
H(t)dt

)

|ψ, t〉 (16.7)

and thus generally

U(t + dt, t) = 1 − i
�
H(t) dt . (16.8)

We can now represent U(t, t0) as a product of infinitesimal time development
operators (16.8):

U(t, t0) = exp
{

− i
�
H(t0 + Δ(n− 1))Δ

}

. . . exp
{

− i
�
H(t0)Δ

}

,

(16.9)

where the time interval (t−t0) is decomposed into n infinitesimal subintervals
Δ = (t − t0)/n, n → ∞. From (16.9), one immediately sees that U(t, t0) is
unitary:

U(t, t0)†U(t, t0) = U(t, t0)U(t, t0)† = 1 . (16.10)

We now define the Heisenberg operator OH(t) corresponding to the Schrö-
dinger operator O by

OH(t) = U(t, t0)† OU(t, t0) . (16.11)

Since U(t, t0) satisfies the same differential equation as exp {−iHt/�} in the
time independent case, just as in Sect. 8.5 the equation of motion (Heisenberg
equation) follows:

d

dt
OH(t) =

i
�
[HH(t), OH(t)] +

∂

∂t
OH(t) . (16.12)

The last term in (16.12) arises only for operators

OH(t) = O(xH(t),pH(t),SH(t), . . . ; t) (16.13)

depending explicitly on time (last argument in (16.13)). The Heisenberg state
is defined by

|ψ〉H = U(t, t0)†|ψ, t〉 . (16.14)

Thus, |ψ〉H = |ψ, t0〉 and is therefore independent of the time:

d

dt
|ψ〉H = 0 . (16.15)

Just as in (8.59), the matrix elements of operators are given by

〈ψ, t|O|ϕ, t〉 = 〈ψ|HOH(t)|ϕ〉H . (16.16)
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Remark: We note that (16.9) can also be written compactly in the form

U(t, t0) = T exp

j

− i

�

Z t

t0

dt′H(t′)
ff

, (16.9′)

where T is the time-ordering operator, which orders subsequent factors from right
to left consecutively in time, e.g.:

T
`

H(t1)H(t2)
´

= Θ(t1 − t2)H(t1)H(t2) +Θ(t2 − t1)H(t2)H(t1) .

Then (16.9) may be rewritten as

U(t, t0) = T
˘

e−
i
�
H(t0+Δ(n−1))Δ · · · e− i

�
H(t0)Δ

¯

= T e−
i
�
{H(t0+Δ(n−1))+···+H(t0)}Δ .

Here we have used the fact that the operators H
`

t0+Δ(n−1)
´

, H
`

t0+Δ(n−2)
´

, . . .

can be treated as commuting within a time ordered product and that for commuting

operators eAeB = eA+B. Thus, in the limit Δ → 0 one obtains (16.9′).

For time dependent H(t), the solution of the Schrödinger equation or
of the Heisenberg equations is only possible in special cases, e.g., for har-
monic oscillators or low-dimensional systems such as the motion of a spin of
magnitude 1/2 in a magnetic field. As a rule, however, one is forced to use
approximation methods.

16.2 The Sudden Approximation

As an illustration of the domain of applicability of this approximation
method, we give the following example: An atomic nucleus emits an α-
particle. The electrons must adjust to the new nuclear charge, which is two
units smaller. Here, the characteristic time for the restructuring of the elec-
tronic cloud is much larger than the duration of the α-decay. Thus, the elec-
trons still find themselves immediately after the decay in the same state as
before it. For example, the question arises as to the probability that the
electrons will be in the ground state afterwards. The general problem can be
posed as follows: Let the Hamiltonian (16.2) for t ≤ 0 be independent of time,
H = H0. Suppose it is changed within the “switching time” τs to H = H0+V
and that it thereafter remains time independent (Fig. 16.1). Suppose that τs
is much shorter than the characteristic time τch for the restructuring of the
system, i.e., τs � τch. In this sense, the change is “sudden”. How large for
example is the probability that afterwards the system is in an excited state
of the new Hamiltonian if it was originally in the ground state?

Let the (original) stationary states of H0 be

|n0, t〉 = e−iE0
nt/�|n0〉 ,
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Fig. 16.1. Sudden change of the time dependent
part of the Hamiltonian (16.2)

and the stationary states of H0 + V (afterwards) be

|n, t〉 = e−iEnt/�|n〉 .

If the system was in the state |ψ, t〉 before the change, then by the assumption
τs � τch, it remains in this state just after the change. The further time
development satisfies

|ψ, t〉 =
∑

n

e−iEnt/�|n〉〈n|ψ, 0〉 . (16.17)

The probability that a transition from |ψ〉 to |n〉 takes place is

Pψ→n = |〈n|ψ, 0〉|2 . (16.18)

The sudden approximation is only applicable for transitions between discrete
states. In transitions into the continuum, the condition τs � τch is not ful-
filled.

16.3 Time Dependent Perturbation Theory

16.3.1 Perturbative Expansion

We now suppose that the time dependent part V (t) in the Hamiltonian (16.2)
is small compared to H0 and can be regarded as a perturbation. Suppose also
that V (t) = 0 for times t ≤ t0.

For t ≤ t0, let the system be in the state |ψ0, t〉 satisfying the Schrödinger
equation

i�
∂

∂t
|ψ0, t〉 = H0|ψ0, t〉 . (16.19)

After the perturbation has been switched on, the state evolves into |ψ, t〉,
which must satisfy the new Schrödinger equation

i�
∂

∂t
|ψ, t〉 = [H0 + V (t)]|ψ, t〉 (16.20)
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and the initial condition

|ψ, t〉 = |ψ0, t〉 for t ≤ t0 . (16.21)

For the systematic development of perturbation theory, it is convenient to
separate off that part of the time evolution which occurs due to H0 and which
is supposed to be known from the outset. For this purpose, we transform
to the interaction picture (also called the Dirac picture). The states in the
interaction picture |ψ, t〉I are defined by (Sect. 8.5.3)

|ψ, t〉I = eiH0t/�|ψ, t〉 . (16.22)

The equations of motion in the interaction picture are obtained by differenti-
ating (16.22) with respect to time and using the Schrödinger equation (16.20):

i�
∂

∂t
|ψ, t〉I = −H0|ψ, t〉I + eiH0t/�[H0 + V (t)]|ψ, t〉 ,

or

i�
∂

∂t
|ψ, t〉I = VI(t)|ψ, t〉I . (16.23)

Here, the perturbation operator in the interaction picture is defined by

VI(t) = eiH0t/�V (t)e−iH0t/� . (16.24)

Instead of (16.20), we can solve the Schrödinger equation in the interac-
tion picture (16.23). The time integration yields

|ψ, t〉I = |ψ, t0〉I +
1
i�

∫ t

t0

dt′ VI(t′)|ψ, t′〉I , (16.25)

an integral equation which gives by means of iterative substitution the fol-
lowing series expansion in VI(t):

|ψ, t〉I = |ψ, t0〉I +
1
i�

∫ t

t0

dt′ VI(t′)|ψ, t0〉I

+
1

(i�)2

∫ t

t0

dt′
∫ t′

t0

dt′′ VI(t′)VI(t′′)|ψ, t0〉I + . . . . (16.26)

This expansion is known as the Neumann series. In principle, it allows one
to calculate the state up to arbitrary order in the perturbation, provided the
assumptions of perturbation theory are satisfied. We will restrict ourselves
here to those applications in which the series can be truncated after the first
term.
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16.3.2 First-Order Transitions

Let the system be initially in the eigenstate

|m, t〉 = e−iH0t/�|m〉 = e−iEmt/�|m〉
of the unperturbed Hamiltonian H0. We seek the probability of finding the
system at the time t in the state

|n, t〉 = e−iH0t/�|n〉 = e−iEnt/�|n〉
after the action of V (t). The probability amplitude for this transition is

〈n, t|ψ, t〉 = 〈n|eiH0t/�|ψ, t〉 = 〈n|ψ, t〉I . (16.27)

Substituting the initial state

|ψ0, t〉I = eiH0t/�|m, t〉 = |m〉
into (16.26), we find to first order in VI(t)

|ψ, t〉I = |m〉 +
1
i�

∫ t

t0

dt′VI(t′)|m〉 . (16.28)

Hence, the transition amplitude becomes

〈n, t|ψ, t〉 = δn,m +
1
i�

∫ t

t0

dt′〈n|VI(t′)|m〉

= δn,m +
1
i�

∫ t

t0

dt′ei(En−Em)t′/�〈n|V (t′)|m〉 . (16.29)

The transition probability Pmn(t) for the transition of |m〉 to another orthog-
onal state |n〉 is the square of the modulus of this expression:

Pmn(t) = |〈n, t|ψ, t〉|2 =
∣
∣
∣
∣
1
�

∫ t

t0

dt′ ei(En−Em)t′/� 〈n|V (t′)|m〉
∣
∣
∣
∣

2

. (16.30)

16.3.3 Transitions into a Continuous Spectrum, the Golden Rule

We now apply (16.30) to transitions into a continuous spectrum of final states.
Examples of this are:

(a) Scattering: Here, the momentum k of a particle goes over to k′. First-
order perturbation theory leads to the Born approximation of scattering
theory.

(b) α-decay: Here as well, the final states, i.e., the momenta of the α-
particles, lie in a continuum.

(c) Optical transitions: An excited state makes a transition to a lower state
by emitting a photon, whose momentum varies continuously.
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Fig. 16.2. The function δt(α)

We will take up these concrete examples again later, but for now let us
formulate the general theory of such transitions.

We consider first a perturbation that is switched on at the time t = 0 and
subsequently remains unchanged:

V (t) = V Θ(t) . (16.31)

We cannot utilize the sudden approximation here, since transitions to states
within a continuum occur in an arbitrarily short time.

Substituting (16.31) into (16.30), we find

Pmn(t) =
1
�2

∣
∣
∣
∣

∫ t

0

dt′ei(En−Em)t′/�〈n|V |m〉
∣
∣
∣
∣

2

=
1
�2

∣
∣
∣
∣
eiωnmt − 1

ωnm
〈n|V |m〉

∣
∣
∣
∣

2

=
1
�2

[
sin (ωnmt/2)

ωnm/2

]2
|〈n|V |m〉|2 (16.32)

with

ωnm = (En − Em)/� . (16.33)

In order to evaluate (16.32) further, we consider the sequence of functions

δt(α) =
sin2 αt

πα2t
, (16.34a)

which is illustrated in Fig. 16.2 as a function of α. It has the properties

δt(α)

{
= t/π for α = 0
≤ 1/πα2t for α �= 0

, (16.34b)
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and
∫∞
−∞ dy sin2 y/y2 = π. For a test function F (α), one has

lim
t→∞

∫ ∞

−∞
dα δt(α)F (α) = lim

t→∞

∫ ∞

−∞
dy

sin2 y

πy2
F
(y
t

)
= F (0) , (16.34c)

and thus the sequence of functions δt(α) is a representation of the δ-function:

lim
t→∞ δt(α) = δ(α) . (16.34d)

For long times, we thus obtain from (16.32)

Pmn(t) = t
2π
�

δ(En − Em)|〈n|V |m〉|2 . (16.35)

From this, one obtains the transition rate, that is, the transition probability
per unit time,

Γmn =
2π
�

δ(En − Em)|〈n|V |m〉|2 . (16.36)

Since we are treating transitions into states of a continuous spectrum, the
transition rate to a group of states is of interest; in scattering, for example, to
all of the states with wave numbers in a certain angular region. We suppose
that the matrix element for all of these final states is equal and introduce the
density of states �(En). The quantity �(En)dEn gives the number of states
in the interval dEn. The transition rate into this set of states is then
∑

n

Γmn =
∫

dEn �(En)Γmn = �(Em)
2π
�
|〈n|V |m〉|2 . (16.37)

The energy of the final state |n〉 entering the matrix element of (16.37) must
be equal to Em.

The formulae (16.36, 16.37) and their analogs for periodically varying
potentials V (t) were derived by Pauli in 1928, and, because of the multitude
of applications, Fermi coined the phrase “golden rule”1.

We now add a few remarks concerning the validity of the golden rule.
For this, we must go back to our original representation of the δ-function
δt[(En −Em)/2�] in (16.34a). For every finite t, the width of this function is
4π�/t. In order for this function to be replaceable by a δ-function, the width
of the energy distribution of the final states ΔE must be much larger than
2π�/t (Fig. 16.3). The second condition is that many states must lie within
this δ-like function, because only then can we characterize this set of states
by a density of states. Denoting the separation of the energy levels by δε, we
thus have the condition

ΔE � 2π�

t
� δε , or

2π�

ΔE
� t � 2π�

δε
.

1 W. Pauli: Über das H-Theorem vom Anwachsen der Entropie vom Standpunkt
der neuen Quantenmechanik. In Probleme der modernen Physik, Arnold Som-
merfeld zum 60. Geburtstag (Hirzel, Leizpig 1928); E. Fermi: Nuclear Physics
(Univ. Chicago Press, Chicago 1950) p. 148.
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Fig. 16.3. The function δt((En − Em)/2�), the state density �(En), and the sep-
aration of the final states

16.3.4 Periodic Perturbations

We now extend the golden rule to the case where the perturbation which has
been switched on at t = 0 varies periodically with time. This can occur for
example in the case of a periodic external electric field. In general,

V (t) = Θ(t)(F e−iωt + F †eiωt) , (16.38)

where F is an operator. For the coupling to the electromagnetic field, which
will be treated later, V is given in (16.43). The transition matrix element is
then (Fig. 16.4)

〈n, t|ψ, t〉 =
1
i�

∫ t

0

dt′
[
ei(ωnm−ω)t′〈n|F |m〉 + ei(ωnm+ω)t′〈n|F †|m〉

]
.

(16.39)

Fig. 16.4. The frequency depend-
ence of the transition matrix elem-
ent, schematic

Because the two δ-like functions do not overlap, the cross terms in the
square of the modulus of (16.39) do not contribute:

|〈n, t|ψ, t〉|2 = t
2π
�2

[δ(ωnm − ω)|〈n|F |m〉|2 + δ(ωnm + ω)|〈n|F †|m〉|2] .

Hence, the transition rate becomes

Γmn =
2π
�

[δ(En − Em − �ω)|〈n|F |m〉|2

+ δ(En − Em + �ω)|〈n|F †|m〉|2] . (16.40)
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16.4 Interaction with the Radiation Field

16.4.1 The Hamiltonian

An important application of time dependent perturbation theory, and in par-
ticular of the golden rule, is the theory of processes in which photons are
emitted and absorbed. The familiar Hamiltonian of an electron in an electro-
magnetic field is

H =
1

2m

[
p− e

c
A(x, t)

]2
+ eΦ(x, t) + V (x) , (16.41)

disregarding the spin in this section. For multielectron atoms2, this yields the
unperturbed Hamiltonian

H0 =
∑

i

(
1

2m
p2
i + V (xi)

)

(16.42)

as well as the the time dependent interaction term

V (t) =
∑

i

(

− e

2mc
{pi,A(xi, t)} +

e2

2mc2
A2(xi, t) + eΦ(xi, t)

)

, (16.43)

where we sum over the electrons. Defining the particle number density and
current density3 by

�(x) =
∑

i

δ(x− xi) (16.44a)

and

j(x) =
1
2

∑

i

{pi
m

, δ(x− xi)
}

, (16.44b)

we can also write V (t) in the form

V (t) =
∫

d3x

[

− e

c
j(x) ·A(x, t) +

e2

2mc2
�(x)A2(x, t) + e�(x)Φ(x, t)

]

.

(16.45)

2 The index i labels the electrons.
3 The electric current density is

J(x) = −cδH
δA

=
e

2m

X

i

nh

pi −
e

c
A(xi, t)

i

, δ(x− xi)
o

.
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16.4.2 Quantization of the Radiation Field

Electromagnetic waves are oscillations of the electromagnetic field. We will
quantize them in analogy to the one-dimensional harmonic oscillator. For a
one-dimensional oscillator q, we know from Sect. 3.1 that the Hamiltonian

H =
mq̇2

2
+

mω2

2
q2 (16.46a)

can, by means of the transformation

q =

√
�

2mω
(ae−iωt + a†eiωt) , (16.46b)

[a, a†] = 1 , (16.46c)

be brought into the form

H = �ω(a†a + 1
2 ) . (16.46d)

For the free radiation field, we use the transverse gauge div A = 0, also
designated the Coulomb gauge. It then follows, because of the absence of
sources, that Φ = 0 and

E = −1
c
Ȧ , B = ∇ × A . (16.47a)

Because of the absence of external currents,A satisfies the free wave equation.
We can now expand the radiation field in a Fourier series

A(x, t) =
∑

k

Ak(t)eik ·x . (16.47b)

The individual oscillation amplitudesAk(t) will be decomposed as in (16.46b)
into sums of annihilation and creation operators. For this, it remains only to
find out what to insert for m and ω. We can read off this information from
the energy of the radiation field, which is given by

Hrad =
1
8π

∫
d3x (E2 +B2) =

V

8π

∑

k

(
1
c2
|Ȧk|2 + |k × Ak|2

)

. (16.48)

Comparison of (16.48) with (16.46a) shows that ck should be substituted for
ω and 1/4πc2 for m. Finally, representing the vector field Ak by the two
polarization vectors εk,λ (λ = 1, 2) orthogonal to k and to each other, we
obtain

A(x, t) =
∑

k,λ

√
2π�c

kV

(
ak,λεk,λeik ·x−iωkt + a†k,λε

∗
k,λe

−ik ·x+iωkt
)

.

(16.49)

Here, we have introduced the frequency ωk = ck and the volume V , on whose
boundaries we assume periodic boundary conditions, thus fixing the values
of k.
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In analogy to the oscillator, we demand

[ak,λ, a
†
k′,λ′ ] = δk,k′δλ,λ′ , [ak,λ, ak′,λ′ ] = [a†k,λ, a

†
k′,λ′ ] = 0 . (16.50)

Then, a†k,λ(ak,λ) creates (annihilates) a quantum of wave number k and po-
larization λ. Substituting the expansion (16.49) of A(x, t) into (16.48), one
then obtains for the Hamiltonian of the free radiation field4

Hrad =
∑

k,λ

�ck
(
a†k,λak,λ + 1

2

)
. (16.51a)

The operators

n̂k,λ = a†k,λak,λ

have eigenvalues nk,λ = 0, 1, 2, . . . , and their eigenstates are of the form

|nk,λ〉 =
1

√
nk,λ!

(
a†k,λ

)nk,λ |0〉 ,

where |0〉 is the vacuum state, the state without photons. The eigenstates of
the Hamiltonian Hrad are direct products of the above states

| . . . , nk,λ, . . .〉 =
∏

ki

∏

λi

|nki,λi〉

with energy

∑

k

∑

λ

�ωk

(

nk,λ +
1
2

)

.

The operator ak,λ reduces the occupation number nk,λ of the mode k, λ by
one, while all other occupation numbers remain unchanged,

ak,λ| . . . , nk,λ, . . .〉 =
√
nk,λ| . . . , nk,λ − 1, . . .〉 .

Accordingly, the energy is lowered by �ωk. Thus we refer to ak,λ as an an-
nihilation (or destruction) operator, which annihilates a photon in the mode
k, λ, i.e., with momentum �k, polarization vector εk,λ and energy �ωk. Cor-
respondingly, a†k,λ is the creation operator of photons with these quantum
numbers:

a†k,λ| . . . , nk,λ . . .〉 =
√

nk,λ + 1| . . . , nk,λ + 1, . . .〉 .

4 The sum of the zero point energies in (16.51a) diverges. In quantum field the-
ory the products in (16.48) are defined in normal ordered form, i.e. all creation
operators are placed to the left of the annihilation operators. Then the Hamilto-
nian (16.51a) no longer contains any zero point energies, while otherwise remain-
ing unchanged (see F. Schwabl, Advanced Quantum Mechanics, 3rd ed., Springer,
Berlin, Heidelberg 2005).
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The total Hamiltonian of matter coupled to the quantized radiation field
reads

H = H0 + Hrad + H1 . (16.51b)

Here H0 and Hrad are the Hamiltonians of the electrons and of the free
radiation field , given by (16.42) and (16.51a), respectively. The interaction
Hamiltonian following from (16.45) reads

H1 =
∫

d3x

[

−e

c
j(x) ·A(x) +

e2

2mc2
�(x)A2(x)

]

. (16.51c)

In the Schrödinger picture, j(x) and �(x) are given in (16.44a,b) and the
field operator A(x) by (16.49), with t replaced by t = 0. In the interaction
picture, A(x) is to be replaced by A(x, t) of (16.49), and (�(x), j(x)) by
eiH0t/�(�(x), j(x)) e−iH0t/�.

The first term of the interaction Hamiltonian (16.51c) gives rise to pro-
cesses in which one photon is annihilated or created. The second term leads
to the annihilation (creation) of two photons and also to the simultaneous
annihilation and creation of a photon.

16.4.3 Spontaneous Emission

We now consider the spontaneous emission of a photon by an atom; an atomic
electron makes a transition from its initial state |m〉 to the state |n〉 and
emits a photon of wave number k and polarization λ. Let the radiation field
be initially in the ground state – also known as the vacuum state – which we
denote by |0〉. The initial state of the complete system is then |0〉|m〉, and its
final state is a†k,λ|0〉|n〉. The perturbative operator inducing the transition is
given by the first term in (16.45) (or (16.51c)), where we substitute (16.49);
it is of the form (16.38). Because of ak′,λ′ |0〉 = 0 and the oscillator (Bose)
commutation relations, only the second term contributes in the golden rule
for the transition rate (16.40):

Γm→n,k,λ =
(2π)2e2

kc
δ(Em − En − �ck)

×
∣
∣
∣
∣〈n|

∫
d3xj(x) · ε∗k,λ

e−ik ·x
√
V

|m〉
∣
∣
∣
∣

2

. (16.52)

From this we can determine the power dPλ radiated into the solid angle
dΩ. For this, we recall that in a volume element d3k of k-space, there are
d3k V/(2π)3 states, and we write d3k = k2dk dΩ. Introducing now the Fourier
transform of the current density

jk =
∫

d3x j(x)e−ik ·x , (16.53)
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we finally find

dPλ =
∑

k∈dΩ
�ckΓm→n,k,λ

= dΩ

∫
dkk3

�

(2π)3
(2π)2

k
e2|〈n|jk · ε∗k,λ|m〉|2δ(Em − En − �ck) ,

(16.54)
dPλ
dΩ

=
ω2e2

2πc3
|〈n|jk · ε∗k,λ|m〉|2 . (16.55)

Because of energy conservation, implied by the δ-function in (16.54), the
frequency is ω = (Em−En)/�, and the wave number k in the matrix element
is restricted to |k| = ω/c.

Remarks: Before evaluating this quantum mechanical formula, we would like to
gain an overview of the orders of magnitude occurring in it. The energy of a photon
emitted in atomic transitions is �ω ∼ mc2(Zα)2 ∼ (Ze)2/a, and therefore the
wavelength is λ̄ = λ/(2π) = c/ω ≈ a/(Z2α), where a is the Bohr radius, α the
fine-structure constant (see Sect. 6.3), and τ ≈ 2πa/Zv ≈ 2πa/(Z2α c) � 2π/ω
the classical period. In order to determine the lifetime ΔT or the duration of the
optical transition, we take from classical electrodynamics the power emitted by an
accelerated charge e in all spatial directions:

P =

Z

dP =
2e2

3c3
ẍ2 .

For atomic dimensions, we can estimate this as

P ∼ ω4e2

c3

“ a

Z

”2

∼ ω
1

λ̄3

e2

a

a3

Z2
∼ �ω2α3Z2 .

In order of magnitude, the power must also be equal to the ratio of �ω to ΔT , i.e.,
P ≈ �ω/ΔT , and therefore

ΔT ≈ 1

Z2
ω−1α−3 ∼ ω−1α−3 . (16.56)

With this, we can also estimate the coherence length of the emitted light wave

ΔL = cΔT . For visible light, 1/λ = 1.3 × 104 − 2.8 × 104 cm−1, i.e., ω ≈ 1015 Hz,

and therefore ΔT ≈ 10−9 s. This corresponds to a coherent wave train of length

ΔL ≈ 10 – 20 cm.

We now return to the expression (16.55) for the power radiated per unit
solid angle in the direction of k. Since for atoms

k · x ≈ ka = a/λ̄ ≈ α � 1 , (16.57)

we may expand the exponential function of (16.53):

〈n|jk|m〉 = 〈n|
∫

d3x (1 − ik · x+ 1
2 (ik · x)2 + . . . )j(x)|m〉

= 〈n|j0|m〉 − i〈n|
∫

d3x (k · x)j(x)|m〉 + . . . . (16.58)
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The terms in (16.58) give, respectively, electric dipole transitions, magnetic
dipole transitions, electric quadrupole transitions, etc.

16.4.4 Electric Dipole (E1) Transitions

These come from the terms of zeroth order in (16.58). The Fourier transform
of the current density at k = 0 is, according to (16.53) and (16.44b),

j0 =
1
m
P , (16.59)

where

P =
∑

i

pi (16.60)

is the total momentum. The equation of motion for the center of mass

X =
∑

i

xi (16.61)

is just

1
m
P =

i
�
[H0,X] , (16.62)

by means of which the matrix element required in (16.58) can be obtained:

〈n|j0|m〉 =
i
�
〈n|[H0,X]|m〉

=
i
�
(En − Em)〈n|X |m〉 . (16.63)

We define the dipole matrix element

dnm = 〈n|X|m〉 (16.64)

and finally obtain for the radiated power of photons with polarization λ

dPλ
dΩ

=
ω4e2

2πc3
|dnm · ε∗k,λ|2 . (16.65)

The radiated power is proportional to the fourth power of the frequency
ω = (En − Em)/� of the radiated light. The amplitude of the emitted light
is proportional to the projection of dnm onto ε∗k,λ, and the intensity is pro-
portional to its square. The matrix element ednm of the dipole operator eX
determines which electric dipole transitions are possible.

16.4.5 Selection Rules for Electric Dipole (E1) Transitions

Statements concerning vanishing or possibly nonvanishing matrix elements
dnm are called selection rules. In order to derive them, we begin with

[Lz, Z] = 0 , [Lz, X ± iY ] = ± (X ± iY )� , (16.66a,b)
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where

L =
∑

i

(xi × pi) (16.67)

is the total angular momentum and X, Y, and Z are the components of the
center of mass defined above. We assume that the initial (final) states are
eigenstates of L2 and Lz with quantum numbers l(l′) and m(m′). It then
follows from (16.66a,b) that

〈l′,m′|Z|l,m〉(m′ −m) = 0 , (16.68a)

〈l′,m′|(X + iY )|l,m〉(m′ −m− 1) = 0 , (16.68b)

〈l′,m′|(X − iY )|l,m〉(m′ −m + 1) = 0 . (16.68c)

Electric dipole transitions are only possible if one of the dipole matrix elem-
ents is finite, that is, according to (16.68a–c), if one of the selection rules

m′ =

{
m

m ± 1
(16.69)

is satisfied.
By means of the commutator

[L2, [L2,X]] = 2�
2{X,L2}

one can show in complete analogy that

〈l′,m′|X|l,m〉(l + l′)(l + l′ + 2)[(l − l′)2 − 1] = 0 .

The last factor yields the selection rule

l′ = l ± 1 . (16.70)

Since l′ and l are both nonnegative, the third factor cannot vanish, and the
second can only vanish for l′ = l = 0. However, this selection rule cannot be
satisfied, since the states with l′ = l = 0 are independent of direction, and
therefore these matrix elements of X vanish. Formally, one easily shows this
using the parity operator P (see (5.35)),

〈0|X|0〉 = 〈0|PXP |0〉 = −〈0|XP 2|0〉 = −〈0|X|0〉 ,

that is, 〈0|X|0〉 = 0.
We now discuss the polarization of the emitted light. For transitions with

m unchanged, m′ = m, (16.68) yields dmn ∼ ez. For such transitions, the
emitted light is linearly polarized according to (16.65) in the k − ez-plane
(see Fig. 16.5a). There is no radiation in the z-direction.

For electric dipole transitions with m′ = m ± 1, the matrix elements of
X ± iY are finite, and, by (16.68b,c),

〈l′,m′|(X ∓ iY )|l,m〉 = 0 , i.e., 〈l′,m′|Y |l,m〉 = ∓ i〈l′,m′|X |l,m〉 .
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Moreover, since by (16.68a) the Z-component vanishes, we find

d ∼
⎛

⎝
1
∓ i
0

⎞

⎠ . (16.71)

If the wave vector k of the emitted photon points in the z-direction, then
by εr(l) = ε1 ∓ iε2 it is right (left) circularly polarized, and its helicity is
negative (positive), corresponding to spin −� (+�) in the direction of k, which
it must carry off because of the conservation of the z-component of angular
momentum. On the other hand, light emitted in the “equatorial” xy-plane
is linearly polarized. For all other k-directions it is elliptically polarized (see
Fig. 16.5b).

Fig. 16.5a,b. Polarization for electric dipole transitions

The selection rules considerably restrict the optical transitions. For ex-
ample, an H atom cannot make a direct transition from one of the Rydberg
states with large principal quantum number n into the ground state if in
addition l = n− 1, but only stepwise by means of dipole transitions from one
level to the next. The same thing happens in the capture of muons, which
first enter a highly excited state, i.e., l ≈ n (see Fig. 16.6).

Fig. 16.6. Transitions of n, n− 1 states
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16.4.6 The Lifetime for Electric Dipole Transitions

We are now in a position to compute the transition probability per unit time
and determine the lifetime of an excited state. The transition probability per
unit time with a photon emitted into the solid angle dΩ is given by

dwλ =
∑

k∈dΩ
Γm→n,k,λ . (16.72)

In comparison with the radiated power of Eq. (16.54) the factor �ck is absent.
Hence, for electric dipole transitions the same steps leading to Eq. (16.55)
give

dwλ =
ω3e2

2πc3�
|dnm · εk,λ|2dΩ

=
ω3e2

2πc3�
|dnm|2 cos2 θλdΩ . (16.73)

Here θλ is the angle enclosed by dnm and ε∗k,λ. From Fig. 16.7 one sees
cos θ1 = sinϑ cosϕ and cos θ2 = sinϑ sinϕ. Thus summing over both polar-
izations the integration over all directions of the emitted photon gives

∫
dΩ(cos2 θ1 + cos2 θ2) =

∫
dΩ sin2 ϑ = 2π

1∫

−1

d(cosϑ) sin2 ϑ =
8π
3
.

Fig. 16.7. The orientation of dnm and the po-
larization vectors

Then one finds from (16.73) the total transition probability per unit time
from a state m into a state n

w =
4ω3e2

3c3�
|dnm|2 . (16.74)

In analogy to (3.75a) concerning the α-decay the lifetime τ is related to w by

1
τ

=
∑

n

w , (16.75)
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where the sum extends over all allowed final states. For instance the transition
from the hydrogenic state nlm into n′l′m′, where m′ = m,m ± 1, gives a
contribution

∑

m′=0±1

w(nlm, n′l′m′) =
4ω3e2

3c3�

{
l+1
2l+1

l
2l+1

}∣∣
∣
∣
∣
∣

∞∫

0

drr3Rn′l′(r)Rnl(r)

∣
∣
∣
∣
∣
∣

2

for l′ =

{
l + 1
l − 1

. (16.76)

In particular, this transition rate may be computed easily for the transition
of the hydrogenic 2p into the 1s state leading to the lifetime τ(2p → 1s) =
1.6 × 10−9 sec.

16.4.7 Electric Quadrupole and Magnetic Dipole Transitions

The electric quadrupole transitions (E2) and the magnetic dipole transitions
(M1) result from the second term in (16.58) for the expansion of the current
density. We first symmetrize with respect to the wave number and polarization

−i
∫

d3x (k · x)(j(x) · ε∗k,λ)

= −i
∫

d3x
[

1
2

{
(k · x)(j(x) · ε∗k,λ) − (ε∗k,λ · x)(j(x) · k)

}

+ 1
2

{
(k · x)(j(x) · ε∗k,λ) + (ε∗k,λ · x)(j(x) · k)

}]
. (16.77)

The first term can also be brought into the form

−i 1
2

∫
d3x(k × ε∗k,λ)(x × j(x)) = − i

2m
(k × ε∗k,λ) · L . (16.78)

Because of the proportionality to the orbital angular momentum and thus to
the orbital part of the magnetic moment operator, the resulting transitions
are called magnetic dipole transitions (M1). The matrix element

1
2m

〈l′,m′|(k × ε∗k,λ) · L|l,m〉
is only different from zero if the selection rules

m′ −m =

{
0
± 1

and l′ − l = 0 (16.79)

for magnetic dipole transitions are fulfilled. The former follows from the
known properties of the angular momentum, and the latter follows from
[L2,L] = 0. For the second term in (16.77), one finds using (16.44b)5

5 The index i again labels the electrons. Einstein’s summation convention is used
for the indices j and l, which label the Cartesian vector components.
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1
2ε

∗
k,λlkj

∫
d3x (jl(x)xj + xljj(x))

= 1
2ε

∗
k,λlkj

1
2m

∑

i

({pil, xij} + {xil, pij}) . (16.80)

Using

[xjxl, H0] =
i�
m

(xjpl + pjxl) , (16.81)

one therefore finds the matrix element for quadrupole transitions

1
2i

Em − En
�

〈n|
∑

i

(k · xi)(ε∗k,λ · xi)|m〉 .

Here, xlxj is the quadrupole moment operator. From (16.58), because of the
additional factor k · x, it is evident that the amplitudes of the M1 and E2
transitions are smaller than those of the E1 transitions by ka ≈ α = 1/137.
Of course, one also sees this immediately from the matrix elements. The
higher-multipole transitions, corresponding to the term of higher order in
k · x ∼ α in (16.58), are even weaker and are thus only noticeable if the
lower-order transitions are forbidden due to selection rules.

Since the perturbation Hamiltonian in the form (16.45) or (16.51c) does
not contain the spin of the electrons, the transitions discussed up till now
conserve the spin, i.e., they satisfy the additional selection rule

ΔS = S′ − S = 0 . (16.82)

According to our discussion in Chap. 5, however, there is also a coupling of
the radiation field to the spin. By (9.28) and (9.25), we have for this the
additional perturbation operator

− ge

2mc

∑

i

Si ·B(xi, t)

= − ge

2mc

∑

i

Si · ∇ ×
⎧
⎨

⎩

∑

k,λ

√
2π�c

k

[

ak,λεk,λ
ei(k·xi−ωkt)

√
V

+ h.c.
]
⎫
⎬

⎭

= − ge

2mc

∑

i

Si · ik ×
⎧
⎨

⎩

∑

k,λ

√
2π�c

k

[

ak,λεk,λ
ei(k ·xi−ωkt)

√
V

− h.c.
]
⎫
⎬

⎭
,

(16.83)

where we use A(x, t) in the representation (16.49). As one sees, this also
leads to a matrix element smaller than the matrix element of the electric
dipole transition by a factor of �k/p ≈ ka ≈ α. For the spin-dependent
dipole transitions, the selection rule (16.82) no longer holds. One might think
that (16.83) would give a transition for He from the triplet state 1s2s 3S1

into the singlet state 1s2 1S0. However, the spatial part of the matrix element
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is zero, since |100〉|100〉 and
∑
i exp {ik ·xi} are symmetric and (|100〉|2lm〉−

|2lm〉|100〉) is antisymmetric.

16.4.8 Absorption and Induced Emission

As our final example of the interaction of atomic electrons with the radiation
field, we briefly study the absorption of photons and induced emission.

Let us first consider the absorption of a photon with wave number and
polarization (k, λ). We assume that in the initial state there are just nk,λ

photons of the kind (k, λ) present. Then the final state consists of nk,λ − 1
such photons. Let the initial state of the atom be |n〉 and the final (higher)
state |m〉: The process described results from the first term in (16.51c) and
the annihilation operator contained therein. The transition amplitude is given
by the matrix element

〈m|〈nk,λ − 1|H1|nk,λ〉|n〉 = −e

√
2π�nk,λ

V ωk
〈m|εk,λ · j−k|n〉 . (16.84)

If this is inserted into the golden rule, one finds for the absorption rate (ab-
sorption per unit time)

Γ abs
n→m = nk,λ

(2π)2e2

V ck
δ(Em − En − �ck)|〈m|εk,λ · j−k|n〉|2 , (16.85)

in full analogy to (16.52). The absorption rate increases linearly with the
number of incident photons.

Next we discuss the emission process. Now the initial state of the atom
is |m〉 and the final state is |n〉. Again there are nk,λ photons incident on
the atom, but the final state contains nk,λ + 1 such photons. The relevant
matrix element now comes from the creation operator contained in the first
term of (16.51c)

〈n|〈nk,λ + 1|H1|nk,λ〉|m〉

= −e

√
2π�(nk,λ + 1)

V ωk
〈n|ε∗k,λ · jk|m〉 . (16.86)

Employing the golden rule again, one finds for the emission rate

Γ emiss
m→n = (nk,λ + 1)

(2π)2e2

V ck
δ(En + �ck − Em)|〈n|ε∗k,λ · jk|m〉|2 . (16.87)

First we note that the dependence on the atomic matrix elements is the same
in (16.85) and (16.87)

|〈n|ε∗k,λ · jk|m〉|2 = |〈m|εk,λ · j−k|n〉|2 .

If there are no photons present initially, i.e. nk,λ = 0, the emission rate (16.87)
reduces to the rate for spontaneous emission (16.52) evaluated in Sect. 16.4.3.
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The nk,λ-dependent contribution to Γ emiss
m→n is the rate of induced (or stim-

ulated) emission and is equal in magnitude to the absorption rate Γ abs
n→m.

This equality is referred to as detailed balancing. In the quantum field theo-
retic description of the radiation field developed in this section, spontaneous
emission and induced emission are just facets of one and the same theoretical
treatment.

Equations (16.85), (16.87) are the basis for the relation between the famous

“A and B coefficients” of Einstein. Suppose that the atomic levels En and Em are

thermally populated according to the Boltzmann factors e−En/kT and e−Em/kT ,

respectively. Then the condition that the emission (gain) and absorption (loss)

processes balance each other leads to the Planck radiation law (1.2) for black-body

radiation at temperature T .

Problems

16.1 A hydrogen atom is located in a homogeneous electric field E = (0, 0, E(t))
with

E(t) =
Bτ

πe

1

τ 2 + t2
.

Let the atom be in the ground state at t = −∞. Calculate the probability of finding
the atom at the time t = ∞ in the 2p-state.

16.2 An electrically charged linear harmonic oscillator in the ground state is sud-
denly acted upon by a homogeneous electric field E, constant in time from then on.
Determine the probability of exciting the particle into the nth state by means of
the “sudden approximation”. Hint: The potential corresponding to the electric field
takes the form ϕ(x) = −eEx. Determine first the wave functions for the harmonic
oscillator under the influence of this potential. The matrix elements occurring in
the transition probability can be computed with the help of the generating function
for the Hermite polynomials.

16.3 In β-decay, the nuclear charge number Z of a (Z − 1)-times ionized atom
changes suddenly to Z+1; the effect on the electron wave function can be described
with the help of the “sudden approximation”. Using the wave functions for an
electron in the Coulomb potential of the nucleus, calculate the probabilities for the
transition of the electron into the 2s- and 3s-states, provided that the electron was
in the ground state before the β-decay.

16.4 A magnetic field (0, 0, Bz) which is constant in time acts on a spin of magni-
tude �/2. In addition, the spin is acted upon by a transverse impulse (δ(t)λBx, 0, 0).
Solve the Pauli equation

i�Ψ̇ = HΨ

for this problem, where

H = − �e

2mc
(Bzσz + λδ(t)Bxσx) ≡ H0 + V (t) .
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Hint: Transform to the interaction picture

ΨI(t) = eiH0t/�Ψ(t) ,

and solve the resulting equation of motion. By transforming back, obtain the desired
wave function.

16.5 A harmonic oscillator

H =
p2

2m
+
m

2
ω2x2

is acted upon by an external force described by the potential V = −xf(t), where

f(t) =

8

>

<

>

:

0 −∞ ≤ t ≤ t1

D cos Ωt t1 ≤ t ≤ t2

0 t ≥ t2

.

Determine the probability for a transition from the ground state (t < t1) to the
nth excited state (t > t2). Hint: Use the Heisenberg representation and introduce
for x and p creation and annihilation operators.

16.6 Prove the two equations following (16.69), which lead to the selection rule
(16.70).

16.7 An electron moves in the (one-dimensional) potential V (x) = −λδ(x). At the
time t = 0, the strength of the potential changes suddenly to the value μ (λ, μ > 0).
Using the sudden approximation, calculate the probability of a transition from the
old ground state to the new ground state. Consider the special case μ = λ/2 and
discuss μ/λ 	 1 and μ/λ� 1.

16.8 Galilei transformation: Consider the Schrödinger equation in two inertial sys-
tems S and S′, whose coordinates are related by

x = x′ + vt ,

t = t′ .

Let the solution of the wave equation in the system S be ψ(x, t). Show that the
solution in the system S′ is given by

ψ′ = ψ exp

»

i

�

„

−mv · x +
mv2t

2

«–

= ψ(x′ + vt′, t′) exp

»

i

�

„

−mv · x′ − mv2t′

2

«–

.

Hint: Transform the Schrödinger equation in S′ to coordinates x and t; the result
then follows in analogy to the gauge transformation.

16.9 The nucleus of a hydrogen atom previously at rest experiences a sudden jolt
by which it obtains a velocity v. Let the orbital electron be in the ground state
before the collision. What is the probability for the electron to make a transition
to the nth excited state due to this collision? Hint: Use the result of the previous
problem and expand up to first order in v.
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16.10 Prove for a particle in one dimension the oscillator strength sum rule
(Thomas–Reiche–Kuhn sum rule)

X

n

(En − Ea)|〈n|x|a〉|2 =
�

2

2m
.

Hint: Consider 〈a|[ẋ, x]|a〉 and compute this expression by direct use of [p, x] = −i�
on the one hand and by substitution of ẋ = i[H,x]/� on the other hand.

16.11 (a) Prove, assuming potentials depending only on coordinates, the f -sum-
rule for N particles,

ˆ

[H, �q ], �q

˜

= −Nq2
�

2/m ,

where �q =
PN
i=1 e−iq ·xi is the particle density operator in the momentum repre-

sentation.

(b) Consider the limit q → 0 and, by forming the expectation value in the state
|a〉, derive the Thomas–Reiche–Kuhn sum rule

X

i,k

X

n

(En − Ea)〈a|q · xi|n〉〈n|q · xk|a〉 = N
q2

�
2

2m
.

Compare with the special case in Problem 16.10.
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17.1 The Schrödinger Equation
for a Spherically Symmetric Square Well

In this chapter we will study the spherically symmetric square well (Fig. 17.1),

V (r) =

{
−V0 r < a

0 r > a
. (17.1)

Firstly, it serves as a simple model of a short-range potential as required in
nuclear physics, and secondly, in the course of the discussion we will encounter
some of the mathematical preparation for the scattering theory of the next
chapter.

The Schrödinger equation for the radial component of the wave function
is

{

− �
2

2m

[
d2

dr2
+

2
r

d

dr
− l(l + 1)

r2

]

+ V (r)
}

R(r) = ER(r) . (17.2)

The potential is piecewise constant. We first determine the solution in an
interval of constant potential with E > V and define

k =
√

2m(E − V )/� . (17.3)

Hence (17.2) becomes
[
d2

dr2
+

2
r

d

dr
− l(l + 1)

r2
+ k2

]

R(r) = 0 , (17.4)

and, after substitution of � = kr,
[
d2

d�2
+

2
�

d

d�
− l(l + 1)

�2
+ 1
]

R(�) = 0 . (17.4′)

Fig. 17.1. A spherical square well potential
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17.2 Spherical Bessel Functions

The differential equation (17.4′) can be solved by elementary methods and
leads to the spherical Bessel functions. We first consider the case l = 0,

d2

d�2
(�R0) + �R0 = 0 , (17.5)

and obtain two linearly independent solutions, one regular at � = 0,

R0 =
sin �

�
, (17.6a)

and one singular at � = 0,

R0 = −cos �

�
. (17.6b)

For l �= 0, considering the behavior found in (17.6a) at small distances,
we introduce the substitution

Rl = �lχl (17.7)

and obtain from (17.4′) the differential equation

χ′′
l +

2(l + 1)
�

χ′
l + χl = 0 . (17.8)

We now attempt to find a recursion relation for the solutions. If χl is a
solution of the differential equation (17.8), what is the equation satisfied by
χ = (1/�)χ′

l?
To this end, we differentiate the differential equation (17.8) once, giving

χ′′′
l +

2(l + 1)
�

χ′′
l +

[

1 − 2(l + 1)
�2

]

χ′
l = 0

and obtain

(�χ)′′ +
2(l + 1)

�
(�χ)′ +

[

1 − 2(l + 1)
�2

]

�χ = 0 ,

from which we find

χ′′ +
2(l + 2)

�
χ′ + χ = 0 .

This is the differential equation for l + 1 ! Hence,

χl+1 =
1
�

d

d�
χl (17.9)

and

χl =
(

1
�

d

d�

)l
χ0 , (17.10)

where χ0 is given in in (17.6a) and (17.6b).
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We summarize the solutions of the differential equation (17.4′) in the
following definitions. Starting from (17.6a), we define the spherical Bessel
functions

jl(�) = (−�)l
(

1
�

d

d�

)l sin �

�
(17.11a)

and starting from (17.6b) the spherical Neumann functions

nl(�) = −(−�)l
(

1
�

d

d�

)l cos �

�
. (17.11b)

The factor (−1)l is conventional. The lowest spherical Bessel and Neumann
functions are

j0(�) =
sin �

�
, n0(�) = −cos �

�
,

j1(�) =
sin �

�2
− cos �

�
, n1(�) = −cos �

�2
− sin �

�
, (17.12)

j2(�) =
(

3
�3

− 1
�

)

sin �− 3
�2

cos � ,

n2(�) = −
(

3
�3

− 1
�

)

cos �− 3
�2

sin � .

For � → 0, these functions behave like

jl(�) =
�l

1 × 3 × 5 × . . . × (2l + 1)
,

nl(�) = −1 × 3 × 5 × . . . × (2l − 1)
�l+1

,

(17.13)

whereas the asymptotic behavior for � � 1, � � l is given by

jl(�) � 1
�

sin
(

�− lπ

2

)

, nl(�) � −1
�

cos
(

�− lπ

2

)

. (17.14)

The spherical Hankel functions are linear combinations of the spherical
Bessel and Neumann functions. The first Hankel function is defined by

h
(1)
l (�) = jl(�) + inl(�) (17.15a)

and the second by

h
(2)
l (�) = h

(1)
l (�)∗ . (17.15b)
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Inversion gives

jl(�) = 1
2 (h(1)

l + h
(2)
l ) = Re h

(1)
l , (17.16a)

nl(�) =
1
2i

(h(1)
l − h

(2)
l ) = Im h

(1)
l . (17.16b)

In comparison to plane waves, jl, nl, and h
(1)
l correspond to sin kx, cos kx,

and exp {ikx}.
The lowest Hankel functions are

h
(1)
0 (�) =

ei�

i�
,

h
(1)
1 (�) = −ei�

�

(

1 +
i
�

)

,

h
(1)
2 (�) =

iei�

�

(

1 +
3i
�
− 3

�2

)

.

(17.17)

The asymptotic behavior is given by

h
(1)
l (�) � − i

�
ei(�−lπ/2) . (17.18)

In Chap. 18, we will use the abbreviated notation hl ≡ h
(1)
l together

with (17.15b).

17.3 Bound States of the Spherical Potential Well

If the energy lies in the interval −V0 < E < 0, the radial Schrödinger equation
becomes

[
d2

dr2
+

2
r

d

dr
− l (l + 1)

r2
+
(

q2

−κ2

)]

R = 0 , (17.19)

where

q =
√

2m(V0 + E)/� , κ =
√

2m(−E)/� (17.20)

have been introduced inside and outside the well. The solution regular at the
origin is

R(r) = Ajl(qr) , 0 ≤ r ≤ a . (17.21a)

Outside the well, due to the normalizability of the wave function, only the
solution which decreases exponentially for r → ∞ is admissible,

R(r) = Bh
(1)
l (iκr) , a < r . (17.21b)
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The continuity conditions give

Ajl(qa) = Bh
(1)
l (iκa) , (17.22a)

Aj′l(qa)q = Bh
(1)′

l (iκa)iκ . (17.22b)

After division of (17.22b) by (17.22a), we obtain for the logarithmic deriva-
tives

q
d log jl

d�

∣
∣
∣
∣
qa

= iκ
d log h

(1)
l

d�

∣
∣
∣
∣
iκa

. (17.23)

For l = 0, the solution is

u(r) = rR(r) =

{
A sin qr for r < a

B e−κr for r > a
. (17.24)

The continuity of R(r) and R′(r) implies that u(r) and u′(r) must also be
continuous; hence, one immediately obtains the continuity condition

cot qa = − (2m|E|)1/2
�q

. (17.25)

Consistent with our general considerations in Sect. 6.2, the energy eigen-
values following from (17.25) coincide with those of the odd states of the
one-dimensional potential well, Sect. 3.4.2. In order for a bound state to ex-
ist, the potential must have, according to Eq. (3.91), a minimum strength
of

V0 min =
π2

8
�

2

ma2
. (17.26)

One bound state exists for π/2 = 1.57 <
√

(2mV0a2)/�2 < 3π/2, two bound
states exist for 3π/2 = 4.71 <

√
(2mV0a2)/�2 < 5π/2 = 7.85, etc., see

Fig. 17.2.

Fig. 17.2. A square well potential V (r) (thin)
possessing two s-bound states u(r) (thick)
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17.4 The Limiting Case of a Deep Potential Well

We now assume qa � l. One can then use the asymptotic formula (17.14) on
the left-hand side of the transcendental equation (17.23), and using

d

d�

sin (�− lπ/2)
�

= − 1
�2

sin
(

�− lπ

2

)

+
cos (�− lπ/2)

�
,

one obtains the condition

−1
a

+ q cot
(

qa− lπ

2

)

= iκ
d log h

(1)
l (�)

d�

∣
∣
∣
∣
iκa

.

The right-hand side of this equation does not depend on V0. Thus, for V0 �
|E|, the factor multiplying q must be close to zero, i.e., cot (qa− lπ/2) ≈ 0,
in order that in the limit V0 → ∞ the term q cot (qa − lπ/2) remain finite.
Hence, for this limiting case,

qa− lπ

2
≈ (n + 1

2 )π . (17.27)

For large q, or |E| � V0, we can expand q, in (17.20), in terms of E. If we
truncate after the linear term,

q ≈
(

2mV0

�2

)1/2(

1 +
E

2V0

)

,

we obtain from (17.27)

E

2V0
= −1 + π

(
�

2

2mV0a2

)1/2 (

n +
1
2

+
l

2

)

. (17.28)

One sees immediately that in this limit the states with equal n + l/2 are
degenerate. Formula (17.28) holds only for large n, since only then is the
assumption qa � l satisfied. However, in order to obtain a rough overview,
we can calculate (17.28) even for small n, as is summarized in Table 17.1.
From this, the following order of the energy levels would result: 1S; 1P ; 1D,
2S; 1F , 2P ; 1G, 2D, 3S; . . . . Degenerate eigenvalues are separated only by
commas.

Table 17.1. Values of (n+ l/2)

l 0 1 2 3
n

1 1 3/2 2 5/2
2 2 5/2 3 7/2
3 3 7/2 4 9/2
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For the infinitely deep potential well

V (r) =

{
0 r < a

∞ r > a
, (17.29)

the stationary solutions of the Schrödinger equation simplify to

R(r) =

{
Ajl(qr) for r < a

0 for r > a
, (17.30)

where

q =
(

2mE

�2

)1/2
. (17.31)

The continuity condition is then given by the transcendental equation

jl(qa) = 0 , (17.32)

i.e., the wave function vanishes at the infinitely high barrier. The permissible
values of qa and thus the energy eigenvalues (�q)2/2m are obtained from the
zeros of the Bessel functions. These are known, and we list the lowest ones
in Table 17.2. The quantity N labels the sequence of zeros; it also gives the
number of nodes for this wave number and corresponds to the radial quantum
number of the Coulomb wave functions.

Table 17.2. Zeros of the Bessel functions, qa

l S P D F G H
N 0 1 2 3 4 5

1 3.14 4.49 5.76 6.99 8.18 9.36
2 6.28 7.73 9.10 10.42
3 9.42

We label the eigenvalues for each l consecutively by the radial quantum
number N = 1, 2, . . .. The following sequence of energies results:

1S, 1P, 1D, 2S, 1F, 2P, 1G, 2D, 1H, 3S, 2F .

Atomic nuclei consist of nucleons, that is, protons and neutrons. In the shell
model of nuclear structure, one assumes that every nucleon moves in a short
range, rotationally symmetric potential generated by the other nucleons. Let
us assume as the simplest model a spin independent, deep potential well.
Since nucleons are fermions, the occupation number of every energy level can
reach 2 × (2l + 1). A shell for protons (neutrons) is filled on the basis of the
sequence of energy levels found in Table 17.1 for proton (neutron) number 2,
8 (= 2 + 2 × 3), 18 (= 2 + 2 × 3 + 2 × 5), 20 (= 18 + 2), 34 (= 20 + 2 × 7),
40, 58, 68, 90, 106. These numbers are called “magic numbers”. Nuclei with
magic proton number and neutron number N are called doubly magic nuclei.
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These are especially stable. In comparison to their neighboring nuclei, they
have an anomalously small tendency to bind a further nucleon, and their
excited states lie anomalously high.

In nature, things are of course more complicated due to the effective spin–
orbit interaction of the nucleons. The levels are shifted for this reason and
the true magic numbers are1

2, 8, 20, 28, 50, 82 and 126 .

With the nomenclature A
ZElN , A = Z + N , 4

2 He2, 16
8 O8, 40

20 Ca20, 208
82 Pb126,

are doubly magic. The 4 He nucleus (identical to the α-particle) cannot bind
an additional nucleon. The next stable nuclei are 6

3 Li3, 7
3 Li4.

17.5 Continuum Solutions for the Potential Well

As preparation for the scattering theory of the next chapter, we also study the
continuum states of the spherical potential well. For E > 0, (17.3) and (17.4)
yield the wave function

Rl(r) =

{
Ajl(qr) r < a

Bjl(kr) + Cnl(kr) r > a
, (17.33)

where

k =
√

2mE/� and q =
√

2m(E + V0)/� . (17.34)

The matching condition at a is

q
djl/d�

jl

∣
∣
∣
∣
�=qa

= k

[
Bdjl/d� + Cdnl/d�

Bjl + Cnl

]

�=ka

. (17.35)

This yields the ratio C/B. Asymptotically, one has

Rl(r) =
B

kr

[

sin
(

kr − lπ

2

)

− C

B
cos
(

kr − lπ

2

)]

.

Introducing for the amplitude ratio the notation C/B = − tan δl(k), we find
for the asymptotic form of Rl(r)

Rl(r) =
B

cos δl(k)
1
kr

sin
(

kr − lπ

2
+ δl(k)

)

. (17.36)

In comparison to a free spherical wave without potential, this is a phase-
shifted spherical wave.

1 E. Segré: Nuclei and Particles, 2nd edn. (Benjamin, New York, Amsterdam 1977)
p. 281
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Fig. 17.3a,b. Wave functions u(r) = rR0. (a) For attractive potential V < 0;
δ0 > 0, the wave function is pulled in. (b) For a repulsive potential, V > 0, δ0 < 0,
the wave function is pushed out; (- - -): indicates the wave function for V = 0

For l = 0, one can easily calculate the phase shift δ0. From (17.35) one
obtains

q cot qa = k
B cos ka + C sin ka

B sin ka− C cos ka
= k

cos ka cos δ0 − sin ka sin δ0
sin ka cos δ0 + cos ka sin δ0

= k cot (ka + δ0) ,

and hence

δ0 = arctan
(
k

q
tan qa

)

− ka . (17.37)

From (17.37) one obtains the phase shift as a function of energy and potential
strength. The sign of the phase shift can be understood even without com-
putation by physical considerations. For negative potential, the wave number
inside of the potential is raised and the wave function in the exterior region is
pulled in, i.e., δ0 > 0. For a repulsive potential, the wave number is decreased
in the interior, and the wave function is pushed out in comparison with the
force-free wave function. This is shown in Fig. 17.3 for s-waves.

17.6 Expansion of Plane Waves
in Spherical Harmonics

We now derive the expansion of plane waves in spherical harmonics, which is
important for the theory of scattering and diffraction. It is of course possible
to expand plane waves in spherical solutions of the free Schrödinger equation:

eik ·x =
∞∑

l=0

l∑

m=−l
clm(k) jl(kr)Ylm(ϑ, ϕ) (17.38)
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with expansion coefficients clm(k) to be determined. We first specialize to
the case k ‖ ez , i.e. k · x = k cosϑ. Since the left-hand side then no longer
contains ϕ, only

Yl0(ϑ, ϕ) =
(

2l + 1
4π

)1/2
Pl(cos ϑ) (17.39)

occurs on the right:

eikr cos ϑ =
∞∑

l=0

(
2l + 1

4π

)1/2
Al jl(kr)Pl(cos ϑ) . (17.40)

Using the orthogonality relation for the Legendre polynomials, which follow
from (5.28),
∫ 1

−1

d cos ϑPl(cos ϑ)Pl′ (cos ϑ) =
2δll′

2l + 1
, (17.41)

and multiplying (17.40) by Pl(cos ϑ), and integrating over ϑ, we obtain

Aljl(kr) = 1
2 [4π(2l + 1)]1/2

∫ 1

−1

dz Pl(z)eikrz . (17.42)

Since Al is independent of r, we can go to the limiting case of small r and
compute the leading term for kr → 0. The right-hand side becomes, upon
repeated use of (5.24) and (17.41),
∫ 1

−1

dz Pl(z)eikrz =
∫ 1

−1

dz Pl(z)
[

. . . +
(ikrz)l

l!
+

(ikrz)l+1

(l + 1)!
+ . . .

]

= (ikr)l
2ll!
(2l)!

∫ 1

−1

dz Pl(z)Pl(z) + O((kr)l+1)

=
(ikr)l 2l+1 l!

(2l + 1)!
+ O((kr)l+1) .

With (17.13), the left-hand side of (17.42) is in the limit of small kr

Al
2ll!

(2l + 1)!
(kr)l ,

and hence Al becomes

Al = il[4π(2l + 1)]1/2 . (17.43)

This yields the expansion

eikr cos ϑ =
∞∑

l=0

il(2l + 1)jl(kr)Pl(cos ϑ) . (17.44)

As a side result, we obtain the integral representation for jl(x),

jl(x) = (−i)l 12

∫ 1

−1

dz Pl(z)eixz . (17.45)



17.6 Expansion of Plane Waves in Spherical Harmonics 323

For an arbitrary direction k, one substitutes the addition theorem for the
spherical harmonics, Eq. (5.32),

Pl(cos ϑ) =
4π

2l + 1

l∑

m=−l
Ylm(Ωk)∗ Ylm(Ωx)

into (17.44) and finds for a general plane wave

eik ·x = 4π
∞∑

l=0

l∑

m=−l
iljl(kr)Ylm(Ωk)∗Ylm(Ωx) . (17.46)

Here, the polar angles of x are written as Ωx = (ϑ, ϕ) and likewise for k:
Ωk = (ϑk, ϕk).

Relation to the Bessel functions

We claim that

jl(�) =
√

π

2�
Jl+1/2(�) , (17.47)

where Jl+1/2 is the Bessel function of index l + 1/2.
Substituting this and the derivatives

j′l =
√

π

2

(

− 1
2
�−3/2Jl+1/2 + �−1/2J ′

l+1/2

)

,

j′′l =
√

π

2

(
3
4
�−5/2Jl+1/2 − �−3/2J ′

l+1/2 + �−1/2J ′′
l+1/2

)

into the differential equation (17.4′) for jl, one finds

J ′′
l+1/2 +

1
�
J ′
l+1/2 +

[

1 − (l + 1/2)2

�2

]

Jl+1/2 = 0 . (17.48)

This is the differential equation for the Bessel functions, (11.32), whereby the
assertion (17.47) has been shown. The Bessel functions occur in cylindrically
symmetric problems.

The following orthogonality and completeness relations hold:
∫

dr r2 jl(kr)jl(k′r) =
2π

(2k)2
δ(k − k′) , (17.49)

∫
dr r2dΩ jl(kr)Y ∗

lm(Ω) jl′ (k′r)Yl′m′(Ω) =
2π

(2k)2
δ(k−k′)δll′δmm′ , (17.50)
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∫
dk k2

∞∑

l=0

l∑

m=−l
ψlm(r,Ω; k)ψlm(r′, Ω′; k)∗

=
1

r2 sin ϑ
δ(r − r′)δ(ϑ− ϑ′)δ(ϕ − ϕ′) , (17.51)

where

ψlm(r,Ω; k) =
2k√
2π

jl(kr)Ylm(Ω) . (17.52)

Problems

17.1 Determine the stationary states and the energy eigenvalues for the three-
dimensional spherical harmonic oscillator

V (r) =
mω2

2
x2 .

(a) by using creation and annihilation operators,

(b) by going over to polar coordinates.

17.2 Investigate the bound states of the δ-shell potential

V (r) = −λ �
2

2m
δ(r − a) .

It is useful to introduce the dimensionless variables y = r/a, ξ = ka, and g = λa.
It turns out that there is at most one bound state for each l.

(a) Determine the s-wave function. Show that a bound state exists only for g > 1.

(b) Show that there is at most one bound state corresponding to each l.

(c) Show for general l that the minimum strength of the potential for the existence
of a bound state is g = 2l + 1.

17.3 A particle moves under the influence of the nonlocal, separable potential

V (x,x′) = λ�(|x|) �(|x′|) ,

where
R

d3x �(|x|) = 1 and
R

d3x |�(|x|)|2 < ∞ are assumed. The potential term in
the Schrödinger equation then has the form

R

d3x′ V (x,x′)ψ(x′), so that the time
independent Schrödinger equation becomes

−�
2

2m
∇2ψ(x) +

Z

d3x′ V (x,x′)ψ(x′) = Eψ(x) .

Determine the bound states and the condition for the existence of a bound state,
and show that at most one bound state exists. Hint: It is useful to go over to the
momentum representation.



18. Scattering Theory

To gain information about the structure of matter, ranging from elementary
particles to solids, one studies the scattering of particles (electrons, neutrons,
He atoms, photons) (Fig. 18.1).

The particle incident on the target will be represented by a wave packet.
This must be large compared to the dimensions of the scatterer, but small
compared to the remaining spatial dimensions, in order not to overlap simul-
taneously with the scatterer and the detector. Its width in momentum space
must be sufficiently narrow, so that the spreading during the experiment is
negligible, Eq. (2.108). After the interaction, the wave function consists of an
unscattered part propagating in the forward direction as well as a scattered
part. In what follows, we consider a single scattering center described by a
potential V (x), which is taken to be situated at the origin of coordinates.

Fig. 18.1. The scattering of a wave packet: (a) before, (b) after the scattering

18.1 Scattering of a Wave Packet and Stationary States

18.1.1 The Wave Packet

Suppose that the incident wave packet leaves the source, far to the left of the
potential, at time t0 and is represented by

ψ0(x, t0) =
∫

d3k

(2π)3
eik ·xak . (18.1)
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Suppose the maximum of ak lies at k0, so that the wave packet moves with
the velocity v = �k0/m towards the target. We seek the wave function ψ(x, t)
for later times, in particular, after the interaction with the scattering center.

Let ψk(x) be the exact eigenstates of the Hamiltonian for the potential
V (x) with energy

Ek =
�

2k2

2m
≥ 0 , (18.2a)

[

− �
2

2m
∇2 + V (x)

]

ψk(x) = Ekψk(x) . (18.2b)

Instead of plane waves, we can also expand ψ0(x, t0) using the eigenstates
ψk(x) as:

ψ0(x, t0) =
∫

d3k

(2π)3
ψk(x)Ak . (18.3)

Here, we have introduced new expansion coefficients Ak, which we will deter-
mine later. In expansion (18.3), only states corresponding to a wave incident
from the left and an outgoing scattered wave appear. No bound states occur,
since these fall off exponentially.

Starting with (18.3), we immediately find the time evolution of ψ0(x, t0)

ψ(x, t) =
∫

d3k

(2π)3
ψk(x)Ake−iEk(t−t0)/�. (18.4)

18.1.2 Formal Solution
of the Time Independent Schrödinger Equation

We must now determine the general structure of the stationary states ψk(x).
To this end, we add and subtract terms in (18.2b) in such a way as to inter-
change the second term on the left-hand side and the term on the right-hand
side. We then are confronted with a wave equation with an inhomogeneity
(source term) dependent on ψk(x):

(∇2 + k2)ψk(x) =
2m
�2

V (x)ψk(x) . (18.2b′)

In order to obtain a formal solution, or, more precisely, in order to transform
to an integral equation, we make use of the retarded Green’s function G+(x)
of the free Schrödinger equation (wave equation, see also Appendix A.3)

(∇2 + k2)G+(x) = δ(3)(x) , (18.5)

and hence obtain from (18.2b′)

ψk(x) = eik ·x +
2m
�2

∫
d3x′G+(x− x′)V (x′)ψk(x′) . (18.6)
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Fig. 18.2. The path of integration for the retarded Green’s function

The first term on the right-hand side is a solution of the free Schrödinger
equation. Thus, ψk(x) is the sum of an incident plane wave and a scattered
wave. We now compute G+(x):

G+(x) =
∫

d3q

(2π)3
eiq ·x

k2 − q2
= − 1

4π2ir

∫ +∞

−∞

dq qeiqr

q2 − k2
. (18.7)

The expression after the first equality is verified by applying the operator
(∇2 + k2) to (18.5) or by Fourier transformation of (18.5). The poles of the
integrand lie in the complex q-plane at q = ± k. The path of integration
is shown in Fig. 18.2. Since r > 0, one can close the path in the upper
half-plane. As discussed in more detail in Appendix A.3, the path along the
real q-axis in Fig. 18.2 is chosen in such a way that, in accordance with the
physical situation, an outgoing spherical wave results. Indeed, by means of
the residue theorem, we immediately obtain

G+(x) = − 1
4π

eikr

r
. (18.7′)

The quantity G+(x−x′) represents an outgoing spherical wave emitted from
x′.

Substituting (18.7′) into (18.6), we find

ψk(x) = eik ·x − m

2π�2

∫
d3x′ eik|x−x′|

|x− x′| V (x′)ψk(x′) , (18.8)

an integral equation for ψk(x), from which general conclusions concerning
the structure of the scattering phenomenon can be drawn. On considering
the time dependence, by inserting the factor exp {−iEkt/�}, one sees that
(18.8) is the sum of a plane wave incident from the left and a wave moving
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outward. The detectors are located far from the scatterer, i.e., |x| � |x′|, so
that

k|x− x′| = k
√
x2 − 2x · x′ + x′2 ≈ kr − k

x

r
· x′ = kr − k′ · x′ ,

where

k′ = k
x

r
.

Thus, far from the scatterer, by (18.8), the stationary solution ψk(x) takes
the form

ψk(x) = eik ·x +
eikr

r
fk(ϑ, ϕ) , (18.9)

where

fk(ϑ, ϕ) = − m

2π�2

∫
d3x′e−ik′ · x′

V (x′)ψk(x′) (18.10)

has been defined as the scattering amplitude It depends only on the direction
x/r, i.e. ϑ and ϕ, but not on the distance and has the dimensions of a length.
Computing the current density for the wave function exp {ikr}/r:

er
�

m
Im
(

ψ∗ ∂

∂r
ψ

)

=
�k

mr2
er ,

one sees that the second term in (18.9) is an outgoing spherical wave. Equa-
tion (18.9) constitutes the general form of the stationary scattering solutions.

18.1.3 Asymptotic Behavior of the Wave Packet

We can now continue with the calculation of the time evolution of the wave
packet (18.4). We first determine the coefficients Ak entering the expan-
sion (18.3) of the wave packet in terms of the exact eigenfunctions ψk(x)
of the scatterer. For this, we express exp{ik · x} in (18.1) in terms of the
solution (18.8):

ψ0(x, t0) =
∫

d3k

(2π)3
ak

[

ψk(x) +
m

2π�2

∫
d3x′ e

ik|x−x′|

|x− x′| V (x′)ψk(x′)

]

.

(18.11)

Since k0 � |k − k0|, we can write approximately

k =
√

(k0 + k − k0)2 ≈
√

k2
0 + 2k0 · (k − k0) ≈ k̂0 · k ,

where k̂0 = k0/k0.



18.1 Scattering of a Wave Packet and Stationary States 329

The second term in (18.11) contains the k-integral
∫

d3k

(2π)3
akeik|x−x′|ψk(x′) ≈

∫
d3k

(2π)3
akeik · k̂0|x−x′|ψk0(x

′)

= ψ0(k̂0|x− x′|, t0)ψk0(x
′) = 0 .

The first factor vanishes, since the vector k̂0|x − x′| is to the right of the
potential, while the wave packet is localized at the source at time t0. Hence,
by (18.11) and (18.3),

ψ0(x, t0) =
∫

d3k

(2π)3
akψk(x) and Ak = ak . (18.12)

Substitution into (18.4) gives for the wave packet

ψ(x, t) =
∫

d3k

(2π)3
akψk(x)e−iEk(t−t0)/� . (18.13)

For large distances from the scatterer, we can substitute the asymptotic for-
mula (18.9) into (18.13),

ψ(x, t) = ψ0(x, t)

+
∫

d3k

(2π)3
ak

exp {i(kr − Ek(t− t0))/�}
r

fk(ϑ, ϕ) , (18.14)

where the first term

ψ0(x, t) =
∫

d3k

(2π)3
ak exp {ik · x− iEk(t− t0)/�}

≈ ψ0(x− v(t− t0), t0) (18.15)

is identical to the wave packet which would result at time t in the absence of
the scatterer. Recall Eq. (2.105). Again using the above approximate expres-
sion for k ≈ k0 · k, the second term in (18.14) can be rearranged , so that
using fk(ϑ, ϕ) ≈ fk0(ϑ, ϕ) we gain altogether

ψ(x, t) = ψ0(x, t) +
fk0(ϑ, ϕ)

r
ψ0(k̂0r, t) . (18.16)

In the radial direction, ψ0(k̂0r, t) has the the same shape as the incident wave
packet. The wave function after the scattering is a linear superposition of the
transmitted wave packet and the scattered wave, deflected to all solid angles
according to fk0(ϑ, ϕ)/r (Fig. 18.1). Equation (18.16) does not hold in the
following circumstances

(a) if narrow scattering resonances are present, causing a strong deformation
of the wave packet (see Sect. 3.7);

(b) for the long-range Coulomb potential, for which a different r-dependence
results (see Sect. 18.11.2).
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18.2 The Scattering Cross Section

The differential scattering cross section gives the number of particles scat-
tered into the element of solid angle dΩ around Ω, divided by dΩ and by the
number of incident particles per cm2:

dσ

dΩ
=

dN(Ω)
NindΩ

. (18.17)

Here, Nin signifies the number of incident particles and dN(Ω) the number
of particles scattered into the element of solid angle dΩ,

Nin =
∫ ∞

−∞
dt jin , dN(Ω) =

∫ ∞

−∞
dt jrr

2dΩ , (18.18)

where jin is the incident current density,

jin =
�

2mi
(ψ∗

0∇ψ0 − ψ0∇ψ∗
0) ≈ �k0

m
|ψ0(x, t)|2 . (18.19)

As a consequence,

Nin =
�k0

m

∫ ∞

−∞
dt |ψ0(xsource, t)|2 . (18.20)

The outgoing radial component of the current density is1

jr =
�

m
Im
(
f∗

r
ψ0(k̂0r, t)∗

∂

∂r

f

r
ψ0(k̂0r, t)

)

=
�k0

m

|fk0(Ω)|2
r2

|ψ0(k̂0r, t)|2 , (18.21)

and therefore

dN(Ω) =
∫ ∞

−∞
dt jrdΩ r2 = |fk0(Ω)|2dΩ �k0

m

∫ ∞

−∞
dt |ψ0(k̂0r, t)|2. (18.22)

Neglecting the spreading of the wave packet, one sees that the two integrals
in (18.20) and (18.22) are equal, and it follows from (18.17) that

dσ

dΩ
= |fk0(ϑ, ϕ)|2 . (18.23)

1 ∂

∂r
ψ0(k̂0r, t) =

∂

∂r

Z

d3k

(2π)3
exp {ik · k̂0r}ak exp {−iEk(t− t0)/�}

=

Z

d3k

(2π)3
ik · k̂0 exp {ik · k̂0r}ak exp {−iEk(t− t0)/�}

= ik0ψ0(k̂0r, t) .
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The total scattering cross section σ is given by the integral of (18.23) over
all angles:

σ =
∫

dΩ|fk0(ϑ, ϕ)|2 . (18.24)

Remark: The derivation of the differential scattering cross section is shorter for a
stationary solution. The incident plane wave has the current density

I =

˛

˛

˛

˛

�

2m
(e−ik · x∇eik · x − eik ·x∇e−ik ·x)

˛

˛

˛

˛

=

˛

˛

˛

˛

�k

m

˛

˛

˛

˛

. (18.25a)

The radially outgoing current density, determined after (18.10), is

jr =
�2ik

2mi

1

r2
|fk(ϑ, ϕ)|2 =

1

r2
�k

m
|fk(ϑ,ϕ)|2 (18.25b)

and from the ratio of r2jr and I one finds

dσ

dΩ
= |fk(ϑ, ϕ)|2 . (18.25c)

18.3 Partial Waves

We now suppose that the potential V (x) = v(r) is spherically symmetric. To
start with, the formal scattering solution ψk(x) of (18.9) will be expanded
in spherical harmonics. Our goal in this section is to investigate stationary
solutions which are also eigenfunctions of the angular momentum (partial
waves). We will characterize the asymptotic behavior of these partial waves
by phase shifts. Comparison of the formal scattering solution (18.28) with the
equivalent expansion in partial waves allows one to represent the scattering
amplitude and the scattering cross section in terms of the phase shifts.

We first recall the expansion (17.44) of a plane wave in spherical harmon-
ics,

eik ·x =
∞∑

l=0

il(2l + 1)jl(kr)Pl(cos ϑ) , (18.26)

where we assume that the incident plane wave is in the z-direction (Fig. 18.3).
Due to the spherical symmetry of v(r) the scattering is cylindrically sym-

metric. By rotational invariance about ez, the scattering amplitude (18.10)
and the wave function ψk(x) (18.9) are independent of the azimuthal angle ϕ:

fk(ϑ, ϕ) = fk(ϑ) =
∞∑

l=0

(2l + 1)flPl(cos ϑ) . (18.27)

The expansion coefficients fl are called partial wave scattering amplitudes.
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Fig. 18.3. Scattering: the plane wave and the spherical wave

Inserting (18.26) and (18.27) in (18.9), one finds by means of (17.14) for
large r

ψk(x) �
∞∑

l=0

(2l + 1)
kr

Pl(cos ϑ)

×
[

il

2i

(
ei(kr−lπ/2) − e−i(kr−lπ/2)

)
+ kfleikr

]

. (18.28)

According to chapter 6 the stationary states for a potential v(r) take
the form Rl(r)Ylm(ϑ, ϕ), where the radial wave functions obey the radial
Schrödinger equation (6.9)
[

d

dr2
+ k2 +

l(l + 1)
r2

]

rRl(r) =
2m
t21

v(r)rRl(r) . (18.29)

The stationary states ψk(x) can be expanded in terms of these radial
eigenfunctions and spherical harmonics as:

ψk(x) =
∞∑

l=0

il(2l + 1)Rl(r)Pl(cos ϑ) . (18.30)

Because of the rotational symmetry emphasized above (ϕ-independence),
only Yl0 ∼ Pl(cos ϑ) appears in (18.30). Separating off (2l + 1) in (18.27)
and (18.30) will simplify later formulas. One refers to (18.30) as the partial-
wave expansion. We first study the individual partial waves for large r. At
distances r, for which v(r) = 0 or at least v(r) < 1/r2, the radial solution
Rl(r) behaves like

Rl(r) = Bl

(
h

(2)
l (kr) + Sl(E)h(1)

l (kr)
)

, (18.31)

i.e. it is a superposition of spherical Hankel functions, Eqs. (17.15a)–(17.18).
These have the asymptotic behaviour

h
(1)
l ∼ −iei(kr−lπ)/kr and h

(2)
l ∼ ie−i(kr−lπ)/kr . (18.32)
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The first term in (18.31) corresponds to an incident spherical wave, the second
to an outgoing spherical wave. The coefficients Bl and Sl(E) have now to be
determined.

According to (18.9) or (18.28), ψk consists of a plane wave and an out-
going spherical wave. The plane wave is, by (18.26), the sum of incident and
outgoing spherical partial waves. The incident partial waves in (18.31) must
coincide with those in (18.28); this fixes the amplitude Bl as

Bl = 1
2 . (18.33)

The quantity Sl(E) is an amplitude dependent on k or equivalently on the
energy. (In the framework of general scattering theory, the Sl(E) are eigen-
values of the S-matrix.)

Potential scattering is elastic. Due to the conservation of the probability
density, for each individual partial wave, the radial component of the current
density must satisfy jr = 0. If we imagine a spherical shell of radius r, there
must be as many particles passing through this shell outward as inward,
which implies |Sl(E)| = 1, a property one refers to as unitarity.

Formally, this follows from

jr =
�

m
Im
(

R∗
l

∂

∂r
Rl

)

=
�k

m
Im(hlh∗′

l + |Sl(E)|2h∗
l h

′
l + 2 Re(hlSlh′

l))

∼ − �

mkr2
(1 − |Sl(E)|2) (18.34)

on using the asymptotic formulae (18.32), the abbreviation hl ≡ h
(1)
l and one

leaves out the factor |Pl(cosϑ)|2 ≥ 0.
Thus, Sl(E) must be of the form

Sl(E) = e2iδl(E) . (18.35)

Thus, the partial waves of (18.31) take the form

Rl(r) =
1
2

(
h

(2)
l (kr) + e2iδl(E)h

(1)
l (kr)

)
. (18.36a)

Expressing Rl in terms of Bessel and Neumann functions, we obtain

Rl(r) = eiδl(jl(kr) cos δl − nl(kr) sin δl) . (18.36b)

At large separations, the influence of the potential is manifest in the phase
shifts δl(E) of the outgoing waves. These must be found by solving the Schrö-
dinger equation (18.29), subject to the boundary condition (rRl(r))|r=0 = 0.

We can now express the scattering amplitude in terms of the phase shifts.
From (18.30), one obtains with the help of (18.36a) and (18.32) the asymp-
totic expression for the partial wave expansion of ψk(x):

ψk(x) =
∑ il(2l + 1)

kr2i

(
ei(kr−lπ/2+2δl) − e−i(kr−lπ/2)

)
. (18.36c)
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The comparison of the formal scattering solution (18.28) with (18.36c) yields
the following representation of the partial wave scattering amplitudes in terms
of the phase shifts:

fl =
e2iδl − 1

2ik
=

eiδl sin δl
k

. (18.37)

Substituting this into the scattering amplitude (18.27)

fk(ϑ) =
1
k

∞∑

l=0

(2l + 1)eiδl sin δl Pl(cos ϑ) , (18.38)

we finally find for the differential scattering cross section

dσ

dΩ
=

1
k2

∑

l,l′
(2l + 1)(2l′ + 1)ei(δl−δl′) sin δl sin δl′ Pl(cos ϑ)Pl′ (cos ϑ) .

(18.39)

Whereas there are interference terms of the various partial waves in the dif-
ferential scattering cross section, in the total scattering cross section

σ =
∫

dΩ
dσ

dΩ
=

∞∑

l=0

σl (18.40)

the contributions of the partial waves

σl =
4π
k2

(2l + 1) sin2 δl (18.41)

are additive.

Remarks:

(i) The contribution of a partial wave to the total scattering cross section
σ is

4π
k2

(2l + 1) sin2 δl ≤ 4π
k2

(2l + 1) .

The equal sign holds for δl = (n + 1/2)π.
(ii) In the sum (18.40), only l with l � ka contribute, where a is the

range of the potential. Classically, one sees this condition immediately
from the fact that scattering only occurs if the impact parameter d
is smaller than the range of the potential, i.e., d < a and L = pd =
�kd. Quantum mechanically, the argument is as follows: For r > a,
only the centrifugal potential �

2l(l + 1)/2mr2 acts. For the energy E =
�

2k2/2m, the classical turning radius is rcl =
√

l(l + 1)/k. For r < rcl,
the wave function falls off exponentially. If rcl > a, then the particle
“feels” nothing from the potential. The particle is thus only scattered
for rcl ≤ a, i.e.,

√
l(l + 1) ≈ l ≤ ka.
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18.4 The Optical Theorem

Taking the imaginary part of (18.38)

Im fk(ϑ) =
1
k

∞∑

l=0

(2l + 1) sin2 δl Pl(cos ϑ) ,

comparing with (18.40), and using Pl(1) = 1, we obtain the optical theorem:

σ =
4π
k

Im fk(0) . (18.42)

This relationship between the total scattering cross section and the imaginary
part of the scattering amplitude in the forward direction is a consequence of
the conservation of probability density.

Remark: To show this for a wave packet, we compute the radial current density

jr =
�

m
Im

„

ψ∗ ∂ψ
∂r

«

(18.43)

after scattering. Starting from (18.16), we use2

∂ψ0(x, t)

∂r
≈ ik0 · x

r
ψ0(x, t) ,

∂ψ0(k̂0r, t)

∂r
≈ ik0ψ0(k̂0r, t) .

The derivative of the 1/r-factor can be neglected. The radial current density

jr = jr,0 + jr,scat + jr,int (18.44a)

consists of the transmitted current density

jr,0 =
�k0

m
· x
r
|ψ0(x, t)|2 , (18.44b)

the scattered current density

jr,scat =
�k0

m

1

r2
|ψ0(k̂0r, t)|2|f |2 , (18.44c)

and the interference current density of scattered and transmitted wave functions

jr,int =
�

m
Im

»

ik0 · x
r
ψ0(x, t)

f∗

r
ψ∗

0(k̂0r, t) +
f

r
ik0ψ0(k̂0r, t)ψ

∗
0(x, t)

–

≈ �k0

m
2 Re

»

fk0(ϑ, ϕ)

r
ψ0(k̂0r, t)ψ

∗
0(x, t)

–

. (18.44d)

2
Z

d3k eik ·xψ(k, t)ik · x
r

≈ ik0 · x
r
ψ0(x, t)

Z

d3k eik · (k̂0r)ψ(k, t)ik · k̂0 ≈ ik0ψ0(k̂0r, t) .
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Here, we have k0 ·x/r ≈ k0, since the transmitted packet ψ0(x, t) is concentrated
to the right of the scatterer for times after the scattering event. The total scattered
current is by (18.44c)

Z

dΩjr,scat =

Z

dΩ|fk0(ϑ,ϕ)|2 �k0

m

Z ∞

−∞
dt|ψ0(k̂0r, t)|2 . (18.45)

For the total interference current, we need the following integral:

Z

dΩ jr,int =
�k0

rm
2 Re

»

ψ0(k̂0r)

Z

dΩ fk0(ϑ, ϕ)ψ∗
0(x, t)

–

,

Z

dΩ fk0(ϑ, ϕ)ψ∗
0(x, t) ≈ fk0(0)

Z

dΩ ψ∗
0(x, t) = fk0(0)

Z

dΩ

Z

d3k

(2π)3
e−ik ·xa∗k

= fk0(0)

Z

d3k

(2π)3
a∗k2π

(e−ikr−eikr)

−ikr
≈ fk0(0)

Z

d3k

(2π)3
a∗k2π

 

e−ik·k̂0r − eik·k̂0r

−ik0r

!

= fk0(0)
2π

(−i)k0r
[ψ0(k̂0r, t)

∗ − ψ0(−k̂0r, t)
∗] .

Since ψ0(k̂0r, t)ψ0(−k̂0r, t)
∗ = 0, it follows that

Z

dΩ jr,int =
4π�k0

k0r2m
Re
h

i|ψ0(k̂0r, t)|2fk0(0)
i

.

Hence, the total interference current becomes

Z

dt

Z

dΩ r2jr,int = −4π�

m
Im

„

fk0(0)

Z

dt|ψ0(k̂0r, t)|2
«

. (18.46)

The integrals of jr,0 and jin are equal from (18.44b) and (18.20). Thus, from the
equality of the incident current with the sum of transmitted, scattered (18.45), and
interference (18.46) currents, one has

σ =
4π

k0
Im fk0(0) . (18.42′)

The interference of the scattered wave with the transmitted wave ψ0(x, t)
leads to a decrease of the current in the forward direction. This interference
term is proportional to Im fk0(0). Since this decrease just gives the total
scattering cross section, the optical theorem again follows, valid also for non-
spherical potentials.
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18.5 The Born Approximation

Substituting (18.30), (17.46), and (5.30) into (18.10), one finds

fk(ϑ, ϕ) = − m

2π�2

∫
d3x′e−ik′ ·x′

v(r′)ψk(x′)

= − m

2π�2

∫
d3x′4π

∞∑

l=0

l∑

m=−l
(−i)lYlm(Ωk′)Y ∗

lm(Ωx′)jl(kr′)v(r′)

×
∞∑

l′=0

il
′
(2l′ + 1)Pl′(cos ϑ′)Rl′(r′)

= −2m
�2

∞∑

l=0

(2l + 1)Pl(cos ϑ)
∫

dr r2v(r)jl(kr)Rl(r) ,

independent of ϕ, and thus one obtains for the partial wave scattering am-
plitudes

fl = −2m
�2

∫
dr r2v(r)jl(kr)Rl(r) .

If the potential is weak and the effect on Rl is small, then Rl ≈ jl(kr), and
δl is small (see (18.36b)). It is then possible to expand (18.37) in δl, i.e.,
δl ≈ kfl, and from the preceding equation one obtains

δl ≈ −2mk

�2

∫ ∞

0

dr r2 v(r) [jl(kr)]2 . (18.47)

This is the Born approximation for the partial wave l.
The Born approximation is good for large l. Classically, large l implies

a large impact parameter �l = dp = d�k, or that the particle is incident
far from the scatterer and hardly influenced. See remark (ii) at the end of
Sect. 18.3.

If the influence of the potential on all partial waves is small, one can
replace the wave function ψk(x) in the integral representation for fk(ϑ, ϕ)
(18.10) directly by exp {ik ·x}. An important form of the Born approximation
is then

fk(ϑ, ϕ) = − m

2π�2

∫
d3x′ei(k−k′) · x′

v(x′) = − m

2π�2
ṽ(k′ − k) , (18.48)

in which the scattering amplitude is proportional to the Fourier transform of
the potential.

As an illustration, we consider the scattering from the Yukawa potential,

v(x) = a
e−μr

r
, (18.49)
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whose Fourier transform takes the well known form

ṽ(p) =
4πa

p2 + μ2
. (18.50)

Using

(k − k′)2 = k2 + k′2 − 2k · k′ = 2k2(1 − cos ϑ) =
(

2k sin
ϑ

2

)2
,

where, according to the definition of k′ preceding (18.9), one has |k′| = |k|,
we find for the scattering cross section

dσ

dΩ
=

m2

(2π�2)2
(4πa)2

[(2k sin ϑ/2)2 + μ2]2

=
a2

(4Ek sin2 ϑ/2 + �2μ2/2m)2
. (18.51a)

In the limit μ → 0 this reduces to scattering from a Coulomb potential . Al-
though here the partial wave expansion must be modified, as we will sketch
at the end of this chapter, and although the conditions for the Born approx-
imation are not satisfied, remarkably (18.51a) still gives the exact scattering
cross section. I.e., for v(r) = Z1Z2e

2

r one obtains the Rutherford formula

dσ

dΩ
=

Z1Z2e
2

16E2
k sin4 ϑ/2

. (18.51b)

The classical computation also gives the exact result. This circumstance,
which is related to the homogeneity of the Coulomb potential and the scat-
tering cross section as a function of the momentum transfer, was quite con-
ducive to the correct interpretation of experiments in the initial phase of
atomic theory.

We now give an estimate of the validity of the Born approximation: For
short-range potentials, the wave function ψk(x) only enters the scattered
wave of (18.8) at small distances. We therefore calculate ψk(x) for small x
in the Born approximation and set x = 0 in the second term of (18.8):

ψk(x) ≈ eik ·x − m

2π�2

∫
d3x′ e

ik|x′|

|x′| v(r′)eik ·x′
.

Here the second term can be neglected in comparison to the plane wave term
whenever
∣
∣
∣
∣
2m
�2

∫
dr′ r′2

eikr′

r′
v(r′)

sin kr′

kr′

∣
∣
∣
∣� 1

is satisfied. The Born approximation is thus valid for weak potentials and
large incident energy because of the factor k−1.
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18.6 Inelastic Scattering

In (18.35), it followed from the conservation of particle flux that |Sl(E)| = 1.
However, if absorption processes take place, in which the scatterer is excited
or particles are annihilated and/or generated, then

Sl(E) = sl(E)e2iδl(E) with 0 ≤ sl(E) ≤ 1 . (18.52)

The amplitude of the lth partial wave is thus

fl =
Sl − 1
2ik

=
1
2k

[sl sin 2δl + i(1 − sl cos 2δl)] , (18.53)

and the total elastic scattering cross section becomes

σel = 4π
∑

l

(2l + 1)|fl|2 =
π

k2

∑

l

(2l + 1)(1 + s2
l − 2sl cos 2δl) . (18.54)

For the calculation of the total inelastic cross section (= reaction cross sec-
tion), we require the total elastic flux

−
∫

dΩ r2jr = −
∫

dΩ r2
∑

l,l′
i−l+l

′
(2l + 1)(2l′ + 1)PlPl′

�

m
ImR∗

l

d

dr
Rl′

= Re
iπ�r2

m

∞∑

l=0

(2l + 1)R∗
l

d

dr
Rl

= Re
4π�

km

∞∑

l=0

(2l + 1)[eikr− (−1)lS∗
l e

−ikr][e−ikr + (−1)lSleikr]

= −�k

m

π

k2

∑

l

(2l + 1)(−1 + |Sl|2) . (18.55)

This is just the flux lost due to inelastic processes. The inelastic cross section,
also called the reaction cross section, is defined as the ratio of this quantity
to the incident flux �k/m:

σinel =
π

k2

∑

l

(2l + 1)(1 − s2
l ) . (18.56)

The sum of (18.54) and (18.56) gives the total scattering cross section

σtot = σel + σinel =
2π
k2

∑

l

(2l + 1)(1 − sl cos 2δl) . (18.57)

Comparing this with (18.53) and using f(0) =
∑

l(2l + 1)fl, we obtain the
optical theorem

Im f(0) =
k

4π
σtot . (18.58)
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The optical theorem thus holds even in the presence of inelastic scattering.

Remarks:

(i) For sl = 1, by (18.42), there is no inelastic scattering. For sl = 0,

σinel =
π

k2

∑

l

(2l + 1) = πa2 and σel = πa2 ,

where a is the extension of the scattering object (see computation pre-
ceding (18.100), where the sum is replaced by an integral). There is also
elastic scattering! (Although Sl = 0, one also has fl = i/2k.) The phys-
ical reason is the shadow scattering , which we will later discuss in the
context of high-energy elastic scattering.

(ii) Examples of inelastic processes are inelastic scattering, absorption pro-
cesses, particle capture, and particle decay processes. The latter reac-
tions can only be treated in quantum field theory. The effect on the
elastic scattering amplitude can be simulated phenomenologically in the
Schrödinger equation by means of a complex potential. The potential
V (x) = V1(x) + iV2(x) leads to the absorption of particles. Here, the
continuity equation takes the form

∂�(x, t)
∂t

+ ∇ · j(x, t) = −2V2

�
�(x, t) .

18.7 Scattering Phase Shifts

Next, we compute the phase shifts in order to derive important properties of
the scattering cross section. We assume a short range potential which vanishes
for r > a. The following conclusions are valid even if, at large distances, only
the weaker assumption v(r) < r−2 is satisfied.

For r > a, the partial wave takes the form

R>l (r) = 1
2 [h∗

l (kr) + e2iδlhl(kr)] , hl ≡ h
(1)
l . (18.59)

For r < a, we designate the partial wave by R<l (r), which may be found
analytically or determined numerically. In the following, only the logarithmic
derivative at the position a matters,

αl ≡ d log R<l
dr

∣
∣
∣
∣
r=a

. (18.60)

This k-dependent quantity enters the continuity condition

d/dr(h∗
l (kr) + e2iδlhl(kr))

h∗
l (kr) + e2iδlhl(kr)

∣
∣
∣
∣
r=a

= αl , (18.61)
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whence

e2iδl − 1 =
2(djl/dr − αljl)
αlhl − dhl/dr

∣
∣
∣
∣
a

, (18.62)

and

cot δl =
dnl/dr − αlnl
djl/dr − αljl

∣
∣
∣
∣
a

. (18.62′)

As an example, we consider the scattering from a hard sphere of radius a,
which is used as a model for low-energy nuclear scattering experiments. One
then has Rl(a) = 0 and αl = ∞. Here, (18.62′) takes the form

cot δl =
nl(ka)
jl(ka)

. (18.63)

From this and (17.12), the phase shift of the s-waves then becomes

δ0 = −ka . (18.64)

For a repulsive potential, the phase shift is negative.

Behavior of δl for small k (i.e., small energy)

The expansion of (18.62′) for small k gives, with the aid of (17.13),

tan δl(k) =
(2l + 1)

[(2l + 1)!!]2
(ka)2l+1 l − aαl

l + 1 + aαl
. (18.65)

For ka → 0 the wave number dependence of the scattering phase shift be-
comes

δl ∼ k2l+1 . (18.66)

For sufficiently small energy, the partial waves with l ≥ 1 therefore do not
contribute. One then has pure s-wave scattering :

dσ

dΩ
=

sin2 δ0
k2

and σ = 4π
sin2 δ0

k2
. (18.67)

For low-energy scattering from a hard sphere, (18.67) and (18.64) yield in
the limit as k approaches zero

σ = 4πa2 = 4 × (classical scattering cross section) . (18.68)

For sufficiently small energy, the scattering is purely isotropic. Compare re-
mark (ii) at the end of Sect. 18.3.
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We now show that exp {2iδl} − 1 has poles at the energies of the bound
states. For a bound state with angular momentum l, (17.21b) and hl ≡ h

(1)
l ,

the wave function outside the potential is

R>l (r) = hl(iκr) with Eb = −�
2κ2

2m
. (18.69)

The logarithmic derivative is then given by

αl(E) =
1

hl(iκr)
d

dr
hl(iκr)

∣
∣
∣
∣
r=a

. (18.70)

Substituting this expression into (18.61), one sees that exp {2iδl} − 1 has a
simple pole at k = iκ.

18.8 Resonance Scattering from a Potential Well

For a spherical potential well of radius a and depth V0 (Fig. 18.4), i.e.,

v(r) = −V0Θ(a− r) , (18.71)

the scattering solutions with energy E inside the well, by (17.33), are given
by

R<l (r) = jl(qr) , q =

√
2m(V0 + E)

�
,

αl = q
j′l(qa)
jl(qa)

. (18.72)

We return now to (18.64) for the phase shift δl in the limit of low energy,
i.e. small k. If the resonance condition

l + 1 + aαl(E) = 0 (18.73)

is satisfied, then δl(k) = (n + 1/2)π, and the partial-wave scattering cross
section takes its maximum value

σl(k) =
4π(2l + 1)

k2
(18.74)

Fig. 18.4. The spherical potential well
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(resonance scattering). Since for other k-values the phase shifts δl ∼ (ka)2l+1,
these resonances become very sharp for large l.

Now, we investigate resonance scattering in detail for small energies and
a very deep potential well:

ka � l � qa . (18.75)

We can then substitute the asymptotic formula for jl(qa), Eq. (17.14),
into (18.72) and the resonance condition (18.73) to obtain

l

qa
= − cot

(

qa− lπ

2

)

, (18.76)

giving approximately

qa− lπ

2
≈
(

n +
1
2

)

π +
l

qa
. (18.76′)

This condition is equivalent to the equation determining bound states in the
potential well, (17.27). We are dealing here with virtual levels, rather than
bound states, since E > 0.

Aside from the determination of the position of the resonances, all of the
considerations of this section also hold for other short-range potentials.

We now determine the energy dependence of the phase shift and scattering
cross section near the resonance energy ER. Expanding (18.65), we find for
the phase shift

tan δl(k) = −γ(ka)2l+1

E − ER
+ O[(ka)2l+1] , (18.77)

where we define γ = −[(2l−1)!!]−2[aα′
l(ER)]−1. At resonance, the phase shift

takes the value π/2. One can show generally that γ > 0, see Problem 18.3.
Furthermore, we introduce the abbreviation Γk = 2(ka)2l+1γ. The partial
scattering cross section then becomes

σl =
4π(2l + 1)

k2

(Γk/2)2

(E − ER)2 + (Γk/2)2
. (18.78)

This is the Breit–Wigner formula for resonance scattering (Fig. 18.5).
We can find the scattering amplitude most simply by writing (18.37) in

the form

fl(k) =
tan δl

k(1 − i tan δl)
. (18.79)

Hence, using (18.77), one finds

fl(k) =
−Γk/2

E − ER + iΓk/2
. (18.80)
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Fig. 18.5. The qualitative behavior of the phase shift and the scattering cross
section in the region near a resonance

The scattering amplitude has a pole at

E = ER − iΓk/2 (18.81)

in the lower half–plane of the second Riemannian sheet (k =
√
E). Because of

the k-dependence of the width, γ(ka)2l+1, the low-energy resonances for l ≥ 1
are very sharp. For s-waves, the width is proportional to k, and therefore res-
onances are, if present at all, not as sharp. Whether or not a maximum occurs
in σ0 depends on α′

0(E). The condition for the occurrence of a maximum in
σ0 is |∂α0/∂k

2| > 1/
√

2k for k =
√

2mER/�.
Finally, using (18.62) and (18.41), we give in Figs. 18.6 and 18.7 the wave

number dependence of the phase shift of the lowest partial waves and the

Fig. 18.6. The phase shift δl(k) for the
spherically symmetric square well potential
of strength ζ = 6.25; (- - -): l = 0, (−−−−):
l = 1, (− · − · −): l = 2. For ka→ ∞, these
phase shifts fall to zero, δl(∞) = 0

Fig. 18.7. The differential scatter-
ing cross section σl(k) for the spher-
ically symmetric square well poten-
tial of strength ζ = 6.25; (− − −):
σ0, (− ·− ·−): σ1, (−−−−): σ0 + σ1
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scattering cross section for the potential strength ζ = 6.25, defined by

ζ =
√

2mV0a

�
. (18.82)

Remark: Very briefly, we introduce here the concept of the Jost function3. If
instead of the scattering solutions one considers regular solutions of the radial
Schrödinger equation for which

lim
r→ 0

r−l−1ul(k, r) = 1 ,

then these have the asymptotic behavior

ul(k, r) =
1

2ik
[fl(k)e

ikr − fl(−k)e−ikr] . (18.83)

The functions fl(k) = f∗
l (−k∗) are known as Jost functions. Comparison with

(18.31) shows that the S-matrix element of the lth partial wave (18.35) can be
expressed by

Sl(k) = (−1)l
fl(k)

fl(−k) . (18.84)

The zeros and poles of Sl(k) are thus determined by the zeros of fl(± k). As a

function of energy, the Riemann surface of Sl(E) always has a
√
E-branch cut

along the positive real axis. Poles on the negative real axis in the first (physical)

sheet correspond to bound states (see (18.70)). Furthermore, the poles in the second

sheet occur in pairs located mirror symmetrically above and below the Re E-axis. At

these positions, Sl(E) has zeros in the first sheet. Poles in the lower half-plane of the

second sheet lying near the positive real axis correspond to resonances (Fig. 18.8).

Fig. 18.8. Poles and zeros
of Sl(E) on the Riemannian
sheets

3 C.J. Joachain: Quantum Collision Theory (North-Holland, New York 1975);
R. Omnès, M. Froissart: Mandelstam Theory and Regge Poles (Benjamin, New
York 1963);
H.M. Nussenzveig: Causality and Dispersion Relations (Academic Press, New
York 1972)
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18.9 Low Energy s-Wave Scattering;
the Scattering Length

For s-waves within a spherical potential well,

u<(r) = rR<(r) = sin (qr) , with q =

√
2m(E + V0)

�
, (18.85)

and thus (18.60) yields for l = 0

α0 = q cot (qa) − 1
a

. (18.86)

Substituting now (17.12) and (18.86) into (18.62′), we obtain for the s-wave
phase shift

tan δ0(k) =
(k/q) tan (qa) − tan (ka)

1 + (k/q) tan (qa) tan (ka)
= tan (pa− ka) . (18.87)

In order to rewrite the original identity, we have defined the auxiliary variable
p via tan (pa) = (k/q) tan (qa), and we have used the addition theorem for
the tangent. Hence, the phase shift becomes, as in (17.37),

δ0(k) = arctan
(
k

q
tan (qa)

)

− ka . (18.88)

For low energies, unless tan qa = ∞ we obtain

δ0(k) ≈ ka

(
tan (qa)

qa
− 1
)

mod π . (18.89)

We next study the dependence of the phase shift δ0(k) on the well depth
V0 (Fig. 18.9). We recall equation (17.25), determining the binding energies

Fig. 18.9. The Levinson theo-
rem (18.88) as a function of ζ
for ka = 0.2
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tan (qa) = −�q/(2m|E|)1/2. As V0 gets larger, for ζ ≡ √
2mV0a2/� ≥ π/2,

3π/2, . . . the potential has one, two, . . . bound states.
For the values ζ = (2n+1)π/2, exactly one of the bound states has energy

E = 0. In this case, tan (qa) = ∞, and it is evident from (18.88) that the
phase is δ0 = π/2 mod π.

Every time an additional bound state occurs, the phase passes through
π/2 and increases by π. This is an example of the Levinson theorem:

δ0(0) = nbπ , (18.90)

where nb is the number of bound states. For the sake of completeness we note
that if for l = 0 the Jost function obeys f0(0) = 0, then (18.90) is replaced
by δ0(0) = (nb + 1/2)π.

The general prof of Levinson’s theorem4 proceeds by evaluating a contour
integral of f ′

l (z)/fl(z) in the complex plane, where fl(z) are the Jost functions
mentioned at the end of Sect. 18.8. The result is

δl(0) =

{
nbπ for l �= 0 or l = 0, f0(0) �= 0
(nb + 1

2 )π for l = 0, f0(0) = 0.
(18.91)

Starting from (18.89), we can derive the Ramsauer–Townsend effect for
the scattering of electrons from the noble gases Ar, Kr, Xe, which have closed
shells and together with the nucleus provide an attractive short range poten-
tial. Substituting the low-energy phase shift (18.89) into the scattering cross
section, we find

σ ≈ 4πa2

[
tan (qa)

qa
− 1
]2

. (18.92)

When the energy of the incident electrons has the value E ≈ 0.7 eV, the
condition tan (qa)/qa = 1 is fulfilled and σ vanishes, and at these small
energies partial waves with l ≥ 1 do not play any role. The phase shift is
δ0 = π for this energy.

We now return to (18.65) to investigate this relation further for very small
energies and to introduce the concept of scattering length. For small energy,
one can expand (18.65):

k cot δ0(k) = − 1
a0

+
1
2
r0k

2 . (18.93)

In this expansion, a0 is called the scattering length and r0 the effective range
of the potential. It can be proven for arbitrary short-range potentials that
the second term in the expansion is ∝ k2. From the low-energy expansion
discussed earlier it follows that

4 See Joachain, p. 258, and Nussenzveig, p. 207, quoted in footnote 3
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1
a0

=
1
a

1 + aα0(0)
aα0(0)

and sin2 δ0 = (ka0)2 + O(k4). The scattering cross section thus becomes

σ = 4πa2
0 + O(k2) . (18.94)

The scattering length thus determines the low-energy scattering cross section.
We see that

e2iδ0 − 1 =
2i

cot δ0 − i
=

2ka0

i − ka0
(18.95)

has a pole for k = i/a0. For positive a0 � a, this pole corresponds to a bound
state of energy Eb = −�

2κ2/2m and κ = 1/a0. Since the bound state is of
the form exp {−κr}/r, its extension is κ−1. Thus, the scattering length is
about as large as the extension of the bound state. The scattering amplitude
becomes

f0 =
2ka0

i − ka0

1
2ik

≈ −a0 for k � 1/a0 . (18.96)

Finally, we note that, from (18.95), the energy dependence of the scattering
cross section becomes

σ =
2π�

2/m

−Eb + E
(18.97)

and that its low-energy behavior is completely determined by the bound state
lying (as we assumed) near the continuum.

We would now like to see how to read off the scattering length from the
wave function. For the wave function outside the potential, (18.36b),

R>0 (r) = eiδ0 [j0(kr) cos δ0 − n0(kr) sin δ0]

one has in the limit of small k

u>(r) = rR>(r) ∝
(

− 1
ka0

sin kr + cos kr

)

∝
(

1 − r

a0

)

. (18.98)

In the last proportionality, we have used kr � 1. We see from (18.98) that
the extrapolation of u>(r) intersects the r-axis at a0.

In Fig. 18.10, one recognizes that the scattering length is negative for an
attractive potential without a bound state, while the phase shift is positive.
If the potential gets stronger, a0 → −∞ and δ → π/2. As the potential
increases further, one then has a bound state. As long as the binding energy
remains small, the scattering length, which now is positive, is very large.
The phase shift in this regime is negative or equivalently lies between π/2
and π.
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Fig. 18.10. The scattering length for a potential without a bound state, with a
bound state at E = 0, and with a bound state at finite energy

For a repulsive potential, the phase shift is negative, while the scattering
length is always positive and comparable to the width of the potential. In
this case, poles do not occur at negative energies.

18.10 Scattering at High Energies

We consider the scattering from a hard sphere of radius a. At high ener-
gies, (18.63) together with (17.14) implies for the phase shift

δl = −ka +
lπ

2
. (18.99)

Inserting this into (18.40) and rearranging the terms pairwise, we find

σ =
4π
k2

{[
sin2 ka + sin2

(
ka− π

2

) ]

+ 2
[
sin2

(
ka− π

2

)
+ sin2(ka− π)

]
+ . . .

}

=
4π
k2

ka∑

l=0

l =
4π
k2

1
2
ka(ka + 1) .

Hence, it follows for high energies, i.e., ka � 1, that

σ = 2πa2 , (18.100)

and not, as perhaps expected, πa2. The quantum mechanical scattering cross
section at high energies is double the classical scattering cross section. The
reason is the diffraction of the wave. This can be seen from the differential



350 18. Scattering Theory

scattering cross section at high energies5:

dσ

dΩ
=

1
4
a2

[

1 + cot2
ϑ

2
J2

1 (ka sin ϑ)
]

, (18.101)

(J1 is the Bessel function of first order) with

J1(x) −→
x→ 0

1
2
x , J1(x) −→

x→∞

(
2
πx

)1/2
cos
(

x− 3
4
π

)

.

The first term is isotropic and corresponds to the classical differential scat-
tering cross section a2/4, while the second term is sharply concentrated in
the forward direction and describes diffraction effects. Half of the the total
scattering cross section is due to classical reflection scattering, the other half
to diffraction.

This can also be understood as follows: The wave function ψ = ψin+ψscat

is the sum of the incident and the scattered wave. Immediately behind the
sphere, in the shadow, ψscat must be just equal to ψin in magnitude and oppo-
site in sign. The flux of ψscat is equal to that part of the flux of ψin obscured
by the sphere (Fig. 18.11). The shadow results from the interference of the
scattered wave in the forward direction with the incident wave. This inter-
ference must remove precisely as much intensity from the ray propagating in
the forward direction as is reflected off into finite angles. For large distances,
this additional contribution to the scattering amplitude is concentrated in
the forward direction. Classically, one regards only the part reflected off the
sphere as scattering.

Fig. 18.11. Shadow scattering

5 P.M. Morse, H. Feshbach: Methods of Theoretical Physics (New York, McGraw-
Hill 1953), pp. 1485, 1551.
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18.11 Additional Remarks

18.11.1 Transformation to the Laboratory Frame

Let us now establish the connection between the results of potential scattering
and the scattering of two particles in the laboratory frame (L) as opposed to
the center-of-mass frame (CM). In the laboratory frame, one of the particles
is at rest prior to the scattering and is bombarded by the other particle.
In the center-of-mass frame, the center of mass of the two particles is at
rest. The former system usually corresponds to the experimental situation
(e.g., scattering of electrons or photons from atoms). The latter system is
immediately accessible to theory, because – to the extent that the interaction
of the two particles can be represented by a potential – scattering in the
center-of-mass frame is identical to potential scattering, provided the mass is
replaced by the reduced mass of the two particles.

The relations between the differential scattering cross section dσ/dΩ in
the center-of-mass frame and that of the laboratory frame dσ/dΩL and be-
tween the deflection angles ϑ and ϑL are the kinematical relations familiar
from classical mechanics (Fig. 18.12):

dσ

dΩ
=

M2
2 (M2 + M1 cos ϑ)

(M2
1 + M2

2 + 2M1M2 cos ϑ)3/2
dσ

dΩL
,

cos ϑL =
M1 + M2 cos ϑ

√
M2

1 + M2
2 + 2M1M2 cos ϑ

. (18.102)

Fig. 18.12. Transformation from the center-of-mass system to the laboratory sys-
tem: The differential scattering cross section for the scattering of hard spheres of
equal mass (M2 = M1) is isotropic in the center-of-mass system. The angular de-
pendence in the laboratory system follows from the kinematic relations, which for
equal masses reduce to dσ/dΩL = 4 cos ϑLdσ/dΩ and cos ϑL = cosϑ/2
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18.11.2 The Coulomb Potential

We found in the case of the Coulomb potential that the classical scattering
cross section dσ/dΩ is identical to the scattering cross section in the Born
approximation and, remarkably, also to the exact quantum mechanical re-
sult. One additional remark concerning the exact form of the Coulomb wave
functions: For large separation r, we found for the bound states (Z = 1)

Rnl ∼ rn−1e−κr

instead of

e−κr

r
,

valid for short-range potentials, where

E = − me4
0

2�2n2
= −�

2κ2

2m
.

Hence it follows that

n =
me2

0

�2κ

and

Rnl ∼ 1
r

exp {−κr + n log r} =
1
r

exp
{

− κr +
me2

0

�2κ
log r

}

.

From this, replacing κ by ik, one obtains the scattering states. Because of the
infinite range of the Coulomb potential, the scattering states are not spherical
waves, but contain additionally a phase shift depending logarithmically on r.

Problems

18.1 In the case where the resonance condition

1 + aα0(ER) = 0

(18.73) is satisfied, calculate the scattering cross section for s-wave scattering in the
neighborhood of these resonances. Prove that a zero ER of the s-wave resonance
condition leads to a maximum of the scattering cross section σ0 only if the inequality

˛

˛

˛

˛

∂α0

∂k2

˛

˛

˛

˛

≥ 1√
2kR

is satisfied for kR =
√

2mER/�. (See page 344.)
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18.2 Investigate the scattering from the δ-shell potential of Problem 17.2

v(r) = −λ �
2

2m
δ(r − a) ,

using the notation introduced there.

(a) Calculate the scattering phases δl(k).

(b) Give the scattering cross section for s-waves.

(c) Determine the condition for the maxima of the s-wave scattering cross section.

(d) From here on, assume g 	 π. Determine the maxima for ka� g.

(e) Show that there are sharp and broad resonances. Show that the Breit–Wigner
formula holds near the sharp resonances.

(f) Determine the poles of e2iδl − 1 on the negative real E-axis and compare with
Problem 17.2.

18.3 Prove that

∂

∂E
αl(E) < 0 ,

where, according to (18.60),

αl(E) =
∂

∂r
log R<l (r)

˛

˛

r=a
.

Hint: Rewrite the Schrödinger equation for ul(r) = rR<l (r) in the form

− ∂

∂r

»

u2
l
∂2 log ul
∂(k2)∂r

–

= u2
l

and integrate this expression.

18.4 Calculate the total cross section for s-wave scattering on a completely impen-
etrable sphere, i.e., for

v(r) =

(

∞ , r < a

0 , r > a
.

18.5 Calculate the phase shift δ0 from s-wave scattering states for an attractive
and for a repulsive square-well potential.

18.6 Consider the potential of Problem 17.3, V (x,x′) = λ �(|x|) �(|x′|) and deter-
mine the scattering states. Show that this potential leads only to s-wave scattering.

18.7 To complete the discussion after (18.101), calculate the integral

lim
ka→∞

Z

dΩ cot2
ϑ

2
J2

1 (ka sin ϑ) .
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19.1 Generalized Ladder Operators

We recall the treatment of the harmonic oscillator by means of ladder oper-
ators a and a† and pose the following question: Can one also represent other
Hamiltonians as the “absolute square” of an operator and then construct
their solutions algebraically?

Let the Hamiltonian H0

H0 = −1
2

d2

dx2
+ V 0(x) (19.1)

be given, where without loss of generality V 0(x) is chosen in such a way that
the ground state energy is zero. The ground state ψ0 then satisfies

H0ψ0 ≡
[

− 1
2

d2

dx2
+ V 0(x)

]

ψ0 = 0 , (19.2)

whence

V 0(x) =
1
2
ψ′′

0

ψ0
(19.3)

and

H0 =
1
2

[

− d2

dx2
+

ψ′′
0

ψ0

]

(19.4)

follow, and this suggests the introduction of the operators

Q± =
1√
2

[

∓ d

dx
− ψ′

0

ψ0

]

. (19.5)

One has

2Q±Q∓ = − d2

dx2
±
[

d

dx
,
ψ′

0

ψ0

]

+
(
ψ′

0

ψ0

)2

= − d2

dx2
± d

dx

ψ′
0

ψ0
+
(
ψ′

0

ψ0

)2

= − d2

dx2
± ψ′′

0

ψ0
+ (1 ∓ 1)

(
ψ′

0

ψ0

)2

. (19.6)

Defining

V 1(x) = V 0(x) − d

dx

ψ′
0

ψ0
(19.7)
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and

H1 = −1
2

d2

dx2
+ V 1(x) , (19.8)

it then follows that

H0 = Q+Q− , (19.9a)

H1 = Q−Q+ . (19.9b)

One refers to H1 as the supersymmetric (SUSY) partner of H0.
By virtue of

Q+ = (Q−)† , (19.10)

we have again represented the Hamiltonian H0 as an absolute square. How-
ever, in the case of potentials which are not harmonic, the commutator of
the operators Q± is a function of x:

[Q−, Q+] = − d

dx

ψ′
0

ψ0
= H1 −H0 . (19.11)

We first demonstrate a few identities.

Q−ψ0 = 0 . (19.12)

Proof:

From (19.9a) and (19.2) it follows that Q+Q−ψ0 = 0 and 〈ψ0|Q+Q−|ψ0〉 = 0,
and (19.10) implies the vanishing of the norm of Q−|ψ0〉 and thus of Q−ψ0

itself.

Multiplying (19.9a) and (19.9b) by Q+ and Q−, one further obtains the
relations

Q+H1 −H0Q+ = 0 , Q−H0 −H1Q− = 0 . (19.13)

Let a state ψ0
n be given with eigenvalue E0

n of H0:

Q+Q−ψ0
n = E0

nψ
0
n .

Multiplying by Q−, one finds

Q−Q+(Q−ψ0
n) = E0

n(Q−ψ0
n) .

Thus, Q−ψ0
n is an eigenstate of H1 with eigenvalue E0

n, except for the ground
state ψ0

0 , by (19.12).
Let ψ1

n be an eigenstate of H1 with eigenvalue E1
n,

Q−Q+ψ1
n = E1

nψ
1
n .
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Multiplication by Q+ yields

Q+Q−(Q+ψ1
n) = E1

n(Q+ψ1
n) .

Hence, Q+ψ1
n is an eigenfunction of H0 with eigenvalue E1

n.
The spectra of the two Hamiltonians can be derived from each other (see

Fig. 19.1). This is especially useful if one of the problems is exactly solvable or
can be treated more easily than the other by controlled approximations (that
is, approximations whose accuracy can be verified by independent means).

Fig. 19.1. Energy levels of H0 and H1

Let us now consider the normalization. From 〈ψ1
n|Q−Q+|ψ1

n〉 = E1
n〈ψ1

n|ψ1
n〉

one sees the following: If |ψ1
n〉 is normalized to unity, then

|ψ0
n〉 =

1
√

E1
n

Q+|ψ1
n〉 (19.14a)

is also normalized to unity. An analogous relation holds for |ψ0
n〉:

|ψ1
n〉 =

1
√

E0
n

Q−|ψ0
n〉 . (19.14b)

With the modified notation for the ground state wave function ψ0
0 (con-

taining the upper suffix 0) of H0, we define

Φ = −ψ0′
0

ψ0
0

, (19.15)

whereupon (19.5) yields

Q± =
1√
2

[

∓ d

dx
+ Φ(x)

]

, (19.16)

and from (19.3) and (19.7) it follows that

V 0 = 1
2 (−Φ′ + Φ2) , V 1 = 1

2 (Φ′ + Φ2) . (19.17)

We can express the two Hamiltonians compactly by combining them into a
matrix
(
H1 0
0 H0

)

=
1
2
p2 +

1
2
Φ2 +

1
2
σzΦ

′ . (19.18)
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The part H1 is known as the Fermi sector, and the part H0 is called the Bose
sector (Sect. 19.3).

Integration of (19.15) gives

ψ0
0 = N exp

{

−
∫

dxΦ

}

, (19.19)

where N follows from the normalization of ψ0
0 .

We can invert the procedure by specifying a function Φ, seeing which
Hamiltonians result, and then making use of the above results.

19.2 Examples

19.2.1 Reflection-Free Potentials

We first investigate

Φ = tanh x . (19.20)

For this case, according to (19.17), one has the two potentials

V 0 =
1
2

(

1 − 2
cosh2 x

)

, V 1 =
1
2

. (19.21)

The potential −1/ cosh2 x has the constant potential 1/2 as a supersymmetric
partner, corresponding to a free particle.

The normalized ground state wave function of H0 follows from (19.19)
together with

∫
dx tanh x = log cosh x:

ψ0
0(x) =

1
cosh x

1√
2

. (19.22)

The ground state energy is E0
0 = 0.

The eigenstates ψ1
k of H1 and the energy eigenvalues E1

k are

ψ1
k = eikx and E1

k = 1
2 (1 + k2) . (19.23)

Thus, by means of the operators

Q±
1 =

1√
2

(

∓ d

dx
+ tanh x

)

(19.24)

and Eqn. (19.14a), the remaining normalized eigenfunctions of H0 are given
by:

ψ0
k =

1
√

E1
k

Q+
1 ψ1

k =
(−ik + tanh x)√

1 + k2
eikx . (19.25)
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The corresponding energy eigenvalues are also E1
k. The continuum states

(19.25) have the remarkable property of possessing no reflected waves. Po-
tentials of the type (19.21) are therefore called reflection-free potentials. (See
also Problem 3.6, where the eigenstates are determined by elementary meth-
ods.)

Remark: Why is there no state satisfying Q−Q+ψ = 0 ?

For a normalizable wave function, this would lead to Q+ψ = 0. This implies ψ =

cosh x, a non-normalizable wave function. Since this contradicts the assumption,

no state of the problem H1 exists with energy E = 0. Moreover, for the examples

investigated here, V 1(x) ≥ V 0(x), i.e., V 1 is more repulsive. This is in complete

analogy to the nonexistence of eigenstates of a† in the case of the harmonic oscillator

(see Chap. 3).

For more general Φ,

Φ = n tanh x ,

Φ2 = n2 tanh2 x = n2 cosh2 x− 1
cosh2 x

, Φ′ =
n

cosh2 x
,

(19.26)

we find

V 0 =
1
2
(Φ2 − Φ′) =

1
2

[

n2 − n(n + 1)
cosh2 x

]

,

V 1 =
1
2
(Φ2 + Φ′) =

1
2

[

n2 − n(n− 1)
cosh2 x

]

. (19.27)

The two SUSY partners are the reflection-free potentials −1/ cosh2 x with
amplitudes n(n− 1)/2 and (n+ 1)n/2, where the continuum begins at n2/2.
Thus, by successive application of SUSY quantum mechanics, one can obtain
the eigenstates of the reflection-free potential −n(n + 1)/2 cosh2 x from the
free motion of a particle. The number of bound states is n.

From (19.19) and
∫
dxΦ = n log cosh x), one obtains for the ground state

ψ0
0(x) ∝ 1

coshn x
. (19.28)

The ground state energy is 0. The remaining (n−1) eigenvalues are identical
to those of the problem V 1. The eigenfunctions may be obtained by applying
Q+
n = (−d/dx + n tanh x)/

√
2.

We note the close connection to classical nonlinear dynamics, where the
solutions (19.22) and (19.25) occur as translational modes and as harmonic
oscillations about a soliton. The case n = 1 is related to sine–Gordon theory,
and n = 2 is related to φ4-theory1.

1 J. Rubinstein: J. Math. Phys. 11, 258 (1970); R. Rajaraman: Phys. Rep. 216,
227 (1975)
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Reflection-free potential n = 2

For n = 2, one has the two potentials

V 0 = 2 − 3
cosh2 x

, V 1 = 2 − 1
cosh2 x

(19.29)

and the operators

Q∓
2 =

1√
2

(

± d

dx
+ 2 tanh x

)

. (19.30)

We solved the problem V 1 for n = 2 earlier. Except for a shift of the zero of
the energy by 3/2, it is identical to V 0 for the n = 1 case. From the scattering
states, we obtain

Q+
2 ψ1

k =
1√
2

(

− d

dx
+ 2 tanhx

)(−ik + tanhx√
1 + k2

)

eikx

=
1

√
2(1 + k2)

[

−ik(−ik + tanhx) − 1
cosh2 x

− 2ik tanhx + 2 tanh2 x

]

eikx

=
1

√
2(1 + k2)

(3 tanh2 x− 3ik tanhx− 1 − k2)eikx . (19.31)

Now, since the eigenvalues are

E2
k = 3

2 + 1
2 (1 + k2) = 2 + 1

2k
2 ,

the normalized scattering states become

ψ0
k =

3 tanh2 x− 3ik tanh x− 1 − k2

√
(4 + k2)(1 + k2)

eikx . (19.31′)

In addition to the ground state of energy 0 found in (19.28),

ψ0
0(x) =

√
3

2
1

cosh2 x
, E0

0 = 0 , (19.32)

we find from (19.14a), (19.22), and (19.30) as a second normalized bound
state

ψ0
1 =

√
2
3

1√
2

(

− d

dx
+ 2 tanh x

)
1√

2 cosh x
=

√
3
2

tanh x

cosh x
, (19.33)

with energy

E0
1 = 2 − 1

2 = 3
2 . (19.34)
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19.2.2 The δ-function

Choosing for Φ the step function

Φ = ε(x) = Θ(x) −Θ(−x) , (19.35)

we find

Φ2 = 1 , Φ′ = 2δ(x) ,

V 0 = −δ(x) + 1
2 ,

V 1 = δ(x) + 1
2 . (19.36)

The two supersymmetric partners are the attractive and the repulsive δ-
potential.

19.2.3 The Harmonic Oscillator

From

Φ = ωx , (19.37)

one finds two harmonic oscillators

H0 = −1
2

d2

dx2
+

1
2
ω2x2 − 1

2
ω ,

H1 = −1
2

d2

dx2
+

1
2
ω2x2 +

1
2
ω (19.38)

with the zero point of energy shifted by ω. Using (19.12),

√
2Q−ψ0

0 =
(

d

dx
+ ωx

)

ψ0
0 = 0 ,

the ground state of H0 becomes

ψ0
0 = e−ωx

2/2 , E0
0 = 0 . (19.39)

Since H1 differs from H0 only by the shift ω, its lowest eigenstate is also

ψ1
1 = e−ωx

2/2 , E1
1 = ω . (19.40)

In order to obtain the first excited state of H0, we need only to apply Q+ to
ψ1

1 ≡ ψ0
0 :

Q+e−ωx
2/2 , E0

1 = ω . (19.41)

This procedure is then iterated. Thus, we have again derived the algebraic
solution of the harmonic oscillator given in Sect. 3.1.
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19.2.4 The Coulomb Potential

As a further example for the treatment of problems solvable in an elementary
way by means of SUSY quantum mechanics, we consider the bound states of
the Coulomb potential. After introduction of the substitution Rnl = unl/r,
the radial Schrödinger equation becomes

Hl unl =
[

− 1
2

d2

dr2
+

l(l + 1)
2r2

− γ

r

]

unl =
m

�2
Enl unl , (19.42)

γ =
Ze2m

�2
. (19.43)

We claim that (19.42) can be formulated as a problem of SUSY quantum
mechanics with the operators

Q±
l =

1√
2

[

∓ d

dr
− l + 1

r
+ κ

]

(19.44)

and that the corresponding Φ is given by

Φ = − l + 1
r

+ κ .

This expression yields

Φ2 =
(l + 1)2

r2
− 2κ(l + 1)

r
+ κ2 , Φ′ =

l + 1
r2

,

and from (19.17) one finds the two SUSY partners

V 0 =
1
2

[
l(l + 1)

r2
− 2κ(l + 1)

r
+ κ2

]

(19.45a)

and

V 1 =
1
2

[
(l + 1)(l + 2)

r2
− 2κ(l + 1)

r
+ κ2

]

. (19.45b)

Comparison of (19.45a) with (19.42) gives for the constant κ

κ =
γ

l + 1
. (19.46)

Introducing the abbreviation

ηl =
1
2

(
γ

l + 1

)2

(19.47)

we obtain from (19.45a,b), (19.42), and (19.9a,b)
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Q+
l Q

−
l = Hl + ηl (19.47a)

and

Q−
l Q

+
l = Hl+1 + ηl . (19.47b)

Thus, we have succeeded in representing Hl and Hl+1 as a supersymmet-
ric pair. One can immediately read off the commutator of Q−

l and Q+
l

from (19.47a,b):

[Q−
l , Q

+
l ] = Hl+1 −Hl =

l + 1
r2

.

We label the states unl by the principal quantum number n ≥ l + 1.
By (19.47a), the lowest stationary state with angular momentum quantum
number l, that is ul+1,l, is the eigenstate of Q+

l Q
−
l of eigenvalue zero. This

satisfies the linear differential equation

√
2Q−

l ul+1,l =
(

d

dr
− l + 1

r
+ κ

)

ul+1,l = 0 . (19.48)

Rewriting this as

d

dr
log ul+1,l =

l + 1
r

− κ

we find

ul+1,l = Nrl+1e−κr . (19.49a)

Here, N is a normalization constant. The energy eigenvalue follows from
(19.42) and (19.47a)

El+1,l = −ηl
�

2

m
= − Z2e4m

2(l + 1)2�2
. (19.49b)

In (19.49a), we have found for each l the lowest state (see Fig. 19.2). The
states un,l with n > l + 1 are now to be determined.

Fig. 19.2. The action of the ladder operators on
the bound states of the Coulomb potential
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For this, we need only examine the action of the ladder operators Q±
l .

In relations (19.47a,b), the same constant ηl enters, and therefore all the
algebraic results for the operators H0 and H1 of the preceding section can
be applied to Hl and Hl+1. In particular,

Hl unl =
[

− 1
2

d2

dr2
+

l(l + 1)
2r2

− γ

r

]

unl =
m

�2
Enlunl (19.42)

yields the Schrödinger equation

Hl+1 (Q−
l unl) =

m

�2
Enl (Q−

l unl) . (19.50)

Hence, Q−
l unl is an eigenfunction of Hl+1 with eigenvalue mEnl/�

2. One can
immediately convince oneself of (19.50) directly by replacing Hl by (19.47a)
in (19.42), multiplying by Q−

l , and substituting (19.47b). Similarly,

Hl+1 un,l+1 =
m

�2
En,l+1 un,l+1 (19.51)

yields the eigenvalue equation

HlQ
+
l un,l+1 =

m

�2
En,l+1 Q

+
l un,l+1 . (19.52)

Hence, Q+
l un,l+1 is an eigenfunction of Hl.

We must now determine the value of the principal quantum numbers
of Q−

l un,l and Q+
l un,l+1. We will see that this is also n. Beginning with

ul+1,l, l ≥ 1, we can construct Q+
l−1ul+1,l, with energy eigenvalue El+1,l =

−ηl�
2/m. The ground state for l− 1, ul,l−1, has energy El,l−1 = −ηl−1�

2/m.
We claim that no further state lies between these two, i.e., Q+

l−1ul+1,l ∝
ul+1,l−1. Suppose that there were another state lying between these two. One
could then apply the operator Q−

l−1 to it and would then obtain an eigenstate
of Hl with eigenvalue below El+1,l, which is impossible. Continuing this line
of argument, one obtains

Q+
l un,l+1 ∝ un,l . (19.53)

Now that all the bound states and eigenvalues, beginning with ul+1,l, can be
determined (see Fig. 19.2), it then also follows that

Q−
l un,l ∝ un,l+1 (n > l + 1) .

We now express these results in terms of the principal quantum number n.
Starting with (19.49), the state un,n−1, we obtain all the states with principal
quantum number n:

un,n−1 , Q+
n−2un,n−1 , Q+

n−3Q
+
n−2un,n−1 , . . .

. . . , Q+
0 · · ·Q+

n−2un,n−1 . (19.54)
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These all have energy

En,l = −ηl=n−1
�

2

m
= −Z2e4m

2n2�2
. (19.55)

Hence, without a great deal of effort, we have recovered the bound states of
the Coulomb potential and their energies.

19.3 Additional Remarks

Supersymmetric quantum mechanics, which has a close relationship to super-
symmetric field theory, is the study of quantum mechanical systems whose
Hamiltonian H is constructed from anticommuting charges Q which are the
square root of H :

2H = {Q,Q†} = QQ† + Q†Q , (19.56)

0 = {Q,Q} . (19.57)

This implies

[Q,H ] = 0 ; (19.58)

i.e., the charge is conserved. This type of Hamiltonian contains coordinates
which are quantized by commutators and anticommutators. These are mixed
by supersymmetry transformations. For a particle with spin, the position and
spin orientation form a pair of such coordinates. The explicit realization of
Q and Q† is then

Q = (p + iΦ(x))ψ̂† , Q† = (p− iΦ(x))ψ̂ , (19.59)

in which x and p are Bose degrees of freedom, whereas ψ̂ and ψ̂† are Fermi
degrees of freedom, with the corresponding commutation (anticommutation)
relations (� = 1)

[x, p] = i ,

{ψ̂†, ψ̂} = 1 , {ψ̂, ψ̂} = {ψ̂†, ψ̂†} = 0 . (19.60)

This yields {Q†, Q†} = {Q,Q} = 0 and

H = 1
2p

2 + 1
2Φ

2(x) − 1
2 [ψ̂†, ψ̂]Φ′(x) . (19.61)

Using the (2 × 2) representation

ψ̂† = σ− =
(

0 0
1 0

)

, ψ̂ = σ+ =
(

0 1
0 0

)

,

[ψ̂†, ψ̂] = −σz , (19.62)
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we find from (19.61)

H = 1
2 (p2 + Φ2(x)) + 1

2σzΦ
′(x) . (19.63)

Equation (19.63) is identical to the previous matrix representation of the
two Hamiltonians H0 and H1. The sectors H0 and H1 are known as Bose and
Fermi sectors, respectively. These two sectors have the same energy levels.
The only exception is the case in which the ground state of the Bose sector
has zero energy and is thus nondegenerate.

Remark: Finally, it deserves to be mentioned that the supersymmetry transfor-
mations are represented by the unitary operator2

U = exp {εQ+ ε†Q†} (19.64)

with anticommuting c-numbers ε and ε† (Grassmann algebra).
Supersymmetric one-particle quantum mechanics serves as a model for the in-

vestigation of spontaneous breaking of supersymmetry, which is supposed to occur
in supersymmetric field theories.2 The ground state |0〉 is invariant with respect to
supersymmetry transformations provided U |0〉 = |0〉. This is satisfied if and only
if Q|0〉 = Q†|0〉 = 0, i.e., if the ground state energy is zero. If the ground state
energy is greater than zero, supersymmetry is spontaneously broken. An example
of spontaneously broken supersymmetry is

Φ = g(x2 − a2) ,

H =
p2

2
+
g2

2
(x2 − a2)2 + gxσz . (19.65)

The two potentials V 0 and V 1 satisfy

V 0(−x) = V 1(x) . (19.66)

There is no normalizable state in this case with E0
0 = 0, since

Z

dxΦ(x) = g( 1
3
x3 − a2x) .

The ground state energy then is positive (QQ†!) and degenerate.

The following literature is recommended for further study:

F. Cooper, B. Freedman: Annals of Physics (N.Y.) 156, 262 (1983)

P.A. Deift: Duke Math. Journ. 45, 267 (1978)

L. Infeld, T.E. Hull: Rev. Mod. Phys. 23, 21 (1951)

A. Joseph: Rev. Mod. Phys. 37, 829 (1967)

G. Junker: Supersymmetric Methods in Quantum and Statistical Physics (Springer,

Berlin, New York 1995)

2 See, for example, D. Lancaster: Nuov. Cim. 79, 28 (1984)
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D. Lancaster: Nuov. Cim. 79, 28 (1984)

E. Schrödinger: Proc. Roy. Irish Acad. A46, 9 (1940), 183 (1941)

J. Wess, B. Zumino: Nucl. Phys. B 70, 39 (1974)

E. Witten: Nucl. Phys. B 185, 513 (1981); 202, 253 (1982)

Problems

19.1 Solve the spherical harmonic oscillator using supersymmetric quantum mech-
anics.

19.2 We are given the potential

V (x) =

8

<

:

“π

a

”2
„

1

sin2 πx
a

− 1

2

«

for 0 < x < a

∞ otherwise

.

Calculate the energy spectrum with the aid of supersymmetric quantum theory.
Hint: Set � = m = 1.

19.3 Find the stationary states for the potential

V 0(x) =
9

2
− 6

cosh2 x

by means of supersymmetric quantum mechanics.

19.4 Calculate the hydrogen states u2,l by means of supersymmetric quantum
mechanics.



20. State and Measurement

in Quantum Mechanics

20.1 The Quantum Mechanical State, Causality,
and Determinism

“There was a time when newspapers said that only twelve men understood
the theory of relativity. I do not believe that there ever was such a time.
. . . On the other hand, I think it is safe to say that no one understands
quantum mechanics.”

R.P. Feynman
The Character of Physical Law (1967) p. 1291

Here, “to understand” does not mean just the mastery of the mathematical
formalism, but rather an understanding within the framework of our concep-
tual ideas acquired on the basis of classical and nonrelativistic phenomena.
Indeed, one can understand (in this sense of the word) such consequences
of special relativity as the Lorentz contraction or time dilation as soon as
one has a clear notion of the relativity of simultaneity in coordinate systems
which are in motion with respect to one another. Although the Newtonian
equations are indeed modified in relativity theory, so that the resulting equa-
tions are covariant with respect to Lorentz transformations, the concept of a
state – specification of position and velocity – is not altered.

In contrast, the conceptual changes in quantum theory are considerably
more incisive. For one thing, the state is given by a vector in a linear, infinite-
dimensional space, and the observables are represented by in general non-
commuting operators, which ultimately leads to decisive consequences for
the measurement process. Let us recall the axioms of quantum theory:

I. The state is described by a vector |ψ〉 in a linear space.
II. The observables are represented by hermitian operators, and f(ob-

servable) is represented by f(operator).
III. The expectation value of an observable is 〈ψ|operator|ψ〉.
IV. The dynamics are given by the Schrödinger equation

i�∂|ψ〉/∂t = H |ψ〉.
V. In a measurement of the observable A with the result a, the original state

changes into |a〉.
1 Cited according to J.G. Cramer: Rev. Mod. Phys. 589, 647 (1986)
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From axioms II and III it follows that a measurement of A gives the
eigenvalues a with probability |ca|2, where

|ψ〉 = S
a
ca|a〉 and A|a〉 = a|a〉 .

By classical determinism one means the concept that position and momen-
tum, which of course define the state in classical mechanics, can be specified
with arbitrary accuracy. In quantum theory, position and momentum do not
simultaneously take precise values, but rather, depending on the wave func-
tion, one has a statistical distribution. This situation is nondeterministic. On
the other hand, classical physics and quantum mechanics are causal in the
following sense: For initial values x, p, the values x(t), p(t) at a later time can
be computed from the Newtonian equations; if the initial wave function ψ(x)
is given, the wave function ψ(x, t) follows from the Schrödinger equation. The
change of the state in a measurement, axiom V, is occasionally regarded as
noncausality. What enters here, however, is not so much a lack of causal-
ity, but rather a manifestation of the nondeterministic quantum mechanical
state.

Here lies one of the root causes of the conceptual difficulties. One must
also be aware that the uncertainty relation, which results from the noncom-
mutivity of the observables, cannot be circumvented, no matter how clever
the experimental setup. Furthermore, in an experiment the state is changed,
the change depending on the type of experiment. For example, let us con-
sider the Heisenberg thought experiment for the determination of position by
means of a microscope with resolving power Δx = λ/ sin ϕ (Fig. 20.1). The
uncertainty of the recoil is given by

Δpx =
(

2π�

λ

)

sin ϕ → ΔxΔpx ∼ 2π� .

Fig. 20.1. The Heisenberg thought experiment
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Can the impact of the photon onto the lens be used for a measurement
of px? For this purpose, one would have to know the momentum of the lens
more precisely than (2π/λ)� sin ϕ. The position of the lens would become
correspondingly imprecise (the mass of the lens does not enter). Since then
the principal maximum and the secondary maxima of the image would be
blurred, the position of the observed particle would then become uncertain.
Here, we also see that, depending on the type of measurement, the state will
be changed.

In the course of this chapter, the following problems will be addressed:
Clarification of the concept of a state, investigation of the question of whether
quantum theory can be extended by hidden variables, and to what extent
axiom V can be derived by a quantum mechanical treatment of the whole
system. The chapter is subdivided into three main parts: first, consideration
of the density matrix, a mathematical scheme for describing the questions
posed; second, analysis of an idealized Stern–Gerlach experiment; and third,
a look at the Bell inequality and experiments proving the impossibility of
local hidden variables.

We remark at the outset that the conceptual difficulties which are inherent
in the quantum mechanical state do not imply a weakness of quantum theory,
whose validity has never encountered limitations, but only a weakness of our
imagination.

20.2 The Density Matrix

20.2.1 The Density Matrix for Pure and Mixed Ensembles

The density matrix is of prime significance for the formulation of quantum
statistics. In this field, the terms “statistical operator” and “density operator”
are used interchangeably for the density matrix.

Let the system be in the state |ψ〉. In this state, the observable A has the
expectation value

〈A〉 = 〈ψ|A|ψ〉 . (20.1)

The structure of the expectation value suggests that we define the density
matrix

� = |ψ〉〈ψ| . (20.2)

One has

〈A〉 = tr (�A) , (20.3a)

tr � = 1 , (20.3b)

�2 = � (20.3c)
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and

�† = � . (20.3d)

Here, the definition of the trace is

tr X =
∑

n

〈n|X |n〉 , (20.4)

where {|n〉} is an arbitrary complete orthonormal system.

Remark: Proofs of (20.3a–c):

tr �A =
X

n

〈n|ψ〉〈ψ|A|n〉 =
X

n

〈ψ|A|n〉〈n|ψ〉 = 〈ψ|A|ψ〉 ,

tr � = tr �1 = 〈ψ|1|ψ〉 = 1 ,

�2 = |ψ〉〈ψ|ψ〉〈ψ| = |ψ〉〈ψ| = � .

Let {|n〉} and {|m〉} be two different basis systems. One then has

tr X =
X

n

〈n|X|n〉 =
X

n

X

m

〈n|m〉〈m|X|n〉 =
X

m

X

n

〈m|X|n〉〈n|m〉

=
X

m

〈m|X|m〉 ,

and thus the trace is independent of the basis.

If the systems or objects under investigation are all in one and the same
state |ψ〉, one speaks of a pure ensemble, or one says that the system is in a
pure state.

In order to verify the probability predictions contained in the wave func-
tion |ψ〉 experimentally, one must in fact investigate an ensemble of identically
prepared objects. If for example

|ψ〉 =
∑

n

cn|n〉 , (20.5)

the eigenvalue an will result in an ensemble of N such objects Nn times. The
larger N , the more precisely Nn/N approaches the probability |cn|2, i.e.,

|cn|2 = lim
N→∞

Nn

N
, (20.6)

and the expectation value correspondingly becomes

〈A〉 =
∑

n

|cn|2an = lim
N→∞

1
N

∑

n

Nnan . (20.7)
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In addition to this inherent statistical character residing in the states
themselves, an ensemble can also contain a statistical distribution of states.
If an ensemble with distinct states is present, one refers to this as a mixed
ensemble, a mixture, or one speaks of a mixed state. Suppose that, of the
N representatives of the ensemble, N1 are in the state |ψ1〉, . . . ,Ni in the
state |ψi〉, . . . ; then the probability that an arbitrarily chosen element of the
ensemble is in the state |ψi〉 is given by pi = Ni/N , with
∑

i

pi = 1 .

The expectation value of A is then

〈A〉 =
∑

i

pi〈ψi|A|ψi〉 . (20.8)

This expectation value can also be represented by the density matrix, which
we now define as

� =
∑

i

pi|ψi〉〈ψi| . (20.9)

One has

〈A〉 = tr �A , (20.9a)

tr � = 1 , (20.9b)

�2 �= � and tr �2 < 1 , if pi �= 0 for more than one i , (20.9c)

and

�† = � . (20.10)

Remark: Proofs of (20.9a–c):

tr �A =
X

n

X

i

pi〈ψi|A|n〉〈n|ψi〉 =
X

i

pi〈ψi|A|ψi〉 = 〈A〉 .

This additionally yields, with A = 1, (20.9b).

�2 =
X

i

X

j

pipj |ψi〉〈ψi|ψj〉〈ψj | �= � .

For each |ψ〉, the expectation value of �,

〈ψ|�|ψ〉 =
X

i

pi|〈ψ|ψi〉|2 ≥ 0 ,

is positive semidefinite. Since � is Hermitian, the eigenvalues Pm of � are positive
real:
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�|m〉 = Pm|m〉 ,

� =
∞
X

m=1

Pm|m〉〈m| ,

Pm ≥ 0 ,
∞
X

m=1

Pm = 1 , 〈m|m′〉 = δmm′ . (20.11)

In this basis, �2 =
P

m P
2
m|m〉〈m|, and evidently tr �2 =

P

m P
2
m < 1, if more than

one state is present.
One can also show (20.9c) directly from (20.9), provided at least two distinct,

but not necessarily orthogonal, states occur in (20.8):

tr �2 =
X

n

X

i,j

pipj〈ψi|ψj〉〈ψj |n〉〈n|ψi〉

=
X

i,j

pipj |〈ψi|ψj〉|2 <
X

i

pi
X

j

pj = 1 .

The criterion for a pure or a mixed state is tr �2 = 1 or tr �2 < 1,
respectively.

For the density matrix (20.9), the expectation value of a projection oper-
ator |n〉〈n| is

tr (|n〉〈n|�) =
∑

i

pi|〈n|ψi〉|2 =
∑

i

pi|c(i)n |2 , (20.12a)

that is, it is equal to the probability of obtaining the state n as the result of
a measurement. For projection operators with a continuous spectrum, as in
the case of projection onto position eigenfunctions, one has

tr (|x〉〈x|�) =
∑

i

pi|〈x|ψi〉|2 =
∑

i

pi|ψi(x)|2 . (20.12b)

Let the system consist of two subsystems 1 and 2 with orthonormal states
{|1n〉} and {|2m〉}. A general pure state in the direct product space is then

|ψ〉 =
∑

n,m

cnm|1n〉|2m〉 ,
∑

n,m

|cnm|2 = 1 (20.13)

and the corresponding density matrix is

� = |ψ〉〈ψ| =
∑

n,m

∑

n′,m′
cnmc∗n′m′ |1n〉|2m〉〈1n′|〈2m′| . (20.14)

If we carry out measurements concerning only subsystem 1, that is, if the
operators corresponding to the observables A under investigation only act on
the states |1n〉, then

〈A〉 = tr1 tr2 �A = tr1 [(tr2 �)A] . (20.15)
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Here, tri signifies taking the trace over subsystem i. Thus, the pertinent
object for discussing these questions is the density matrix

�̂ = tr2 � =
∑

n

∑

n′

∑

m

cnmc∗n′m|1n〉〈1n′| , (20.16)

i.e., � averaged over subsystem 2. Its square is

�̂2 =
∑

n

∑

n′

∑

m

cnmc∗n′m

∑

n1

∑

n′
1

∑

m1

cn1m1c
∗
n′

1m1
|1n〉〈1n′|1n1〉〈1n′

1|

=
∑

n,n′,n′
1

(∑

m

cnmc∗n′m

)(∑

m1

cn′m1c
∗
n′

1m1

)
|1n〉〈1n′

1| .

In general, �̂2 �= �̂. Only if the cnm take the form

cnm = bndm with
∑

n

|bn|2 = 1 and
∑

m

|dm|2 = 1

is �̂2 = �̂. Under this assumption,

|ψ〉 =
(∑

n

bn|1, n〉
)(∑

m

dm|2,m〉
)

is thus the direct product of two pure states of the subspaces 1 and 2. One
also sees from

tr1 �̂2 =
∑

n,n′

(∑

m

cnmc∗n′m

)(∑

m1

cn′m1c
∗
nm1

)

that tr1 �̂2 = 1 holds only under the above assumption, whereas otherwise
�̂ represents the density matrix of a mixed ensemble. If the information of
a subspace is ignored, the pure state becomes a mixed state. Although the
total system is in the pure state (20.13), the density matrix �̂, which yields
all expectation values pertaining only to subsystem 1, in general represents
a mixed ensemble.

Projection operators

The projection operator in subspace 2, |2m〉〈2m|, projects onto the state
|2m〉. Application to the state (20.13) yields

|ψ〉 → |2m〉〈2m|ψ〉 =
∑

n

cnm|1n〉|2m〉 . (20.17a)

Under projection onto the state |2m〉, the density matrix is changed as follows:

� → |2m〉〈2m|�|2m〉〈2m|
tr1〈2m|�|2m〉 . (20.17b)

If � represents a pure ensemble, then this is also the case for the projected
density matrix.

Filters can be represented mathematically by the application of projection
operators onto the density matrix.
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20.2.2 The von Neumann Equation

We now derive the equation of motion for an arbitrary density matrix (20.9).
The Schrödinger equation

i�
∂

∂t
|ψi〉 = H |ψi〉 , −i�

∂

∂t
〈ψi| = 〈ψi|H

yields

∂

∂t
� =

∑

i

pi(|ψ̇i〉〈ψi| + |ψi〉〈ψ̇i|) =
1
i�

∑

i

pi(H |ψi〉〈ψi| − |ψi〉〈ψi|H ) ,

and thus finally

∂

∂t
� = − i

�
[H, �] . (20.18)

This is the von Neumann equation, which also holds for time dependent
Hamiltonians. It describes the time evolution of the density matrix in the
Schrödinger picture. Note that the equation of motion for � should under no
circumstances be confused with the equation of motion for operators in the
Heisenberg representation, see Sect. 8.5.2. The von Neumann equation is the
quantum mechanical analog of the Liouville equation of classical statistical
mechanics.

From (20.18), for an arbitrary density matrix at initial time t0, the formal
solution (16.4) of the Schrödinger equation

|ψ(t)〉 = U(t, t0)|ψ(t0)〉 (20.19)

yields, together with (16.5), the solution of the initial-value problem

�(t) = U(t, t0)�(t0)U(t, t0)† . (20.20)

Theorem. The quantity tr �2 is time independent. Hence, a pure (mixed)
state remains pure (mixed).

Proof:

tr �2(t) = tr U�(t0)U †U�(t0)U † = tr �2(t0) ,

by the cyclic invariance of the trace.

The density matrix in the Heisenberg representation

�(t0) = U(t, t0)†�(t)U(t, t0) (20.21)

is time independent.
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The expectation value of the observable A is given in these two represen-
tations by

〈A〉 = tr (�(t)A) = tr (�(t0)AH(t)) , (20.22)

where AH(t) = U †(t, t0)AU(t, t0) is the Heisenberg operator. The time de-
pendence of the expectation value derives, in the Schrödinger picture, from
the density matrix, and, in the Heisenberg picture, from the operator.

20.2.3 Spin-1/2 Systems

The situation is especially transparent in state spaces of low dimension. In
particular, we consider spin-1/2 systems. The states |↑〉, i.e.,

χ+ =
(

1
0

)

,

and |↓〉, i.e.,

χ− =
(

0
1

)

,

are eigenstates of σz ; (σzχ± = ±χ±).
We will use both Dirac notation and the spinor representation, depending

on what is convenient, and we recall the Pauli spin matrices (9.14).
Let us first discuss rotations in spin space. A rotation through an angle

ϑ about the axis n̂ is represented by the unitary transformation

U = exp
{

i
2
ϑn̂ · σ

}

= 1l cos
ϑ

2
+ in̂ · σ sin

ϑ

2
. (20.23)

Indeed, with the help of (9.18b), one sees that

UσU † = n̂(n̂ · σ) − n̂ × (n̂ × σ) cos ϑ + n̂ × σ sin ϑ . (20.24)

For rotations about the x-axis, (20.23) and (20.24) simplify to

Ux = 1l cos
ϑ

2
+ i
(

0 1
1 0

)

sin
ϑ

2
(20.23′)

and

UxσU
†
x =

⎛

⎝
1 0 0
0 cos ϑ − sin ϑ
0 sin ϑ cos ϑ

⎞

⎠

⎛

⎝
σx
σy
σz

⎞

⎠ . (20.24′)

With the help of the rotation operation (20.23′), we can now determine the
eigenstates of t̂ ·σ, i.e., the eigenstates in the direction t̂ = (0,− sin ϑ, cos ϑ).

From (20.24′) it follows that

Uxt̂ · σU †
x = (0,− sin ϑ, cos ϑ)

⎛

⎝
σx

cos ϑσy − sin ϑσz
sin ϑσy + cos ϑσz

⎞

⎠ = σz . (20.25)
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Applying (20.25) to χ±, we find

Ux(t̂ · σ)U †
xχ± = σzχ± = ±χ±

and hence (t̂ · σ)(U †
xχ±) = ± (U †

xχ±).
The two eigenfunctions of t̂ · σ are therefore given by

U †
xχ+ =

(
cos ϑ/2

−i sin ϑ/2

)

, U †
xχ− =

(−i sin ϑ/2
cos ϑ/2

)

. (20.26)

We now present a few special cases.
For ϑ = −π/2, one obtains the eigenfunctions of σy:

χy+ =
1√
2

(
1
i

)

=
1√
2
(χ+ + iχ−) ,

χy− =
1√
2

(
i
1

)

=
1√
2
(iχ+ + χ−) . (20.27a)

Analogously, the eigenfunctions of σx are

χx+ =
1√
2

(
1
1

)

, χx− =
1√
2

(
1

−1

)

. (20.27b)

A rotation through ϑ = 2π gives U = −1l and χ → −χ. In a rotation through
360◦, the spinor changes its sign. It takes a rotation through ϑ = 4π to
produce U = +1l and χ → +χ. This illustrates the spinor properties of χ±,
whereas (20.24′) expresses the vector character of σ.

We now return to the density matrix and discuss its spin part. For defi-
niteness, we can imagine that we are dealing with electron beams. An electron
beam of spin ↑ has the density matrix �↑ = |↑〉〈↑|, while an electron beam of
spin ↓ has the density matrix �↓ = |↓〉〈↓|. If one mixes the two beams in the
ratio 50:50, the density matrix is

�M = 1
2 (|↑〉〈↑| + |↓〉〈↓|) . (20.28)

This is indeed a mixed state, since

�2
M = 1

2�M . (20.29)

Let us compare this to the pure state

| 〉 =
1√
2
(|↑〉 + eiα |↓〉) , (20.30)

consisting of the linear superposition of |↑〉 and |↓〉. The corresponding density
matrix is

�α = 1
2 (|↑〉〈↑| + |↓〉〈↓| + e−iα |↑〉〈↓| + eiα |↓〉〈↑|) . (20.31)

In contrast to �M, here, interference terms occur. Let us also give the matrix
representation
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�nm = 〈n|�|m〉 (20.32)

with n,m =↑, ↓ for the two density matrices (20.28) and (20.31):

�M =
1
2

(
1 0
0 1

)

, �α =
1
2

(
1 e−iα

eiα 1

)

. (20.33a,b)

The difference between the two density matrices also makes itself felt in the
expectation values and thus has measurable consequences. For the pure state,

〈A〉α = 1
2 (〈↑|A |↑〉 + 〈↓|A |↓〉 + 2 Re eiα 〈↑|A |↓〉) , (20.34)

whereas for the mixture

〈A〉M = 1
2 (〈↑|A |↑〉 + 〈↓|A |↓〉) (20.35)

holds. In both cases, the expectation value of σz is zero; in contrast, the
expectation value of σx for the pure state is Re exp {iα} = cos α and thus is
not equal to zero for α �= π/2, whereas it vanishes for the mixture.

Interference terms are present in the density matrix and in the expectation
values of the pure state. Comparison of the two density matrices shows that
the mixture arises by superposition of the �α or averaging over the phases:

�M =
1
2π

∫ 2π

0

dα �α . (20.36)

Polarization of spin-1/2 particles

The most general density matrix in spin space is

� = 1
2 (1l + b · σ) , (20.37)

since every 2 × 2-matrix can be represented as a linear combination of the
unit matrix and the Pauli matrices, and furthermore tr 1l = 2 and tr σi = 0.
Choosing b to point in the z-direction, we find

� =
1
2

(
1 + b 0

0 1 − b

)

.

Since (1 ± b)/2 are probabilities, |b| ≤ 1 must hold. When does � characterize
a pure case? For this we compute �2 using (9.18b):

�2 =
1
4
(1l + 2σ · b+ (σ · b)(σ · b)) =

1
2

(
1 + b2

2
1l + σ · b

)

.

Thus |b| = 1 is a pure case. Finally let us also compute the expectation value
of σ using tr σiσj = 2δij :

〈σi〉 = tr �σi = tr [12 (1l + bjσj)σi] = bi . (20.38)

The expectation value of σ is just b, and the degree of polarization is charac-
terized by b = |b|. The case b = 0 represents an unpolarized beam, whereas
the pure state with b = 1 represents a completely polarized beam.
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20.3 The Measurement Process

20.3.1 The Stern–Gerlach Experiment

Let a beam of atoms or electrons move through the inhomogeneous field of a
magnet. Because of the force mz(∂Bz/∂z), (1.9), the beam is split depending
on the values of the magnetic moment mz. The experimental setup is shown
schematically in Fig. 20.2.

Fig. 20.2. The Stern–Gerlach experiment; the cross section of the magnet in the
beam direction

In the following, we assume that the total angular momentum, later desig-
nated for brevity as the spin, is 1/2. The motion in the y-direction is force-free
and can be separated off. The Hamiltonian which remains is

H =
p2
z

2m
+ B(z)μBσz ≈ p2

z

2m
+ (B + B′z + . . . )μBσz , (20.39)

describing the motion in the z-direction and the spin in the strong and in-
homogeneous magnetic field oriented along the z-direction. Here, we have
expanded B(z) in a Taylor series. The motion is then determined by the
Pauli equation

i�
∂

∂t
Ψ = HΨ , Ψ =

(
u+

u−

)

. (20.40)

With respect to the z-dependence, the problem is equivalent to free fall in a
gravitational field,

i�
∂

∂t
u± =

(
p2
z

2m
± BμB ± B′μBz

)

u± . (20.41)

Let the spatial wave function be a wave packet f(z) concentrated about the
z-axis before entering the magnetic field at the time t = 0. At the time t, it
is then approximately

u±(z, t) = f(z ± Ct2)e∓ iαt . (20.42)

The particles of spin ↑ and ↓ are deflected downwards and upwards, respec-
tively. The constant



20.3 The Measurement Process 381

C =
B′μB

2m
(20.43)

corresponds, in the case of the earth’s gravitational field, to g/2, one-half the
acceleration of gravity, and here

α = BμB/� . (20.44)

20.3.2 The Quasiclassical Solution

Although the precise derivation of (20.42) is not important for what follows,
we briefly explain how this classical motion follows from the Schrödinger
equation. We start with the WKB solution for a general potential V (z). The
stationary states corresponding to the energy E are

exp
{

± i
�

∫
dz
√

2m(E − V (z)) − iEt/�

}

. (20.45)

We construct a wave packet from states of different energy. The phase is
stationary for (see Sect. 2.10.1)

0 =
∂

∂E

(

±
∫

dz
√

2m(E − V (z)) − Et

)

= ±
∫

dz

√
m

2(E − V (z))
− t. (20.46)

One must replace E by its value where the wave packet has a maximum.
Thus the center of the wave packet follows the classical orbit, because one
knows from classical mechanics that

mẋ2

2
+ V (x) = E , (20.47)

ẋ = ±
√

(−V (x) + E)
2
m

,

∫
dt = ±

∫
dx

√
2(E − V (x))/m

. (20.48)

The heavier the particle and the larger the energy, the better the quasiclas-
sical approximation.

20.3.3 The Stern–Gerlach Experiment
as an Idealized Measurement

We now utilize the Stern–Gerlach experiment as a model for the process of
measurement in quantum mechanics. Here, the object being measured is the
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spin of the particle and the measuring apparatus is the position of the particle
after traversing the field. We know from (20.42) that

for ↑ , z < 0 , and for ↓ , z > 0 .

This apparatus, whose readout (position of the pointer) is the z-coordinate of
the particle, is thus appropriate for distinguishing ↑ from ↓ (and – by means
of the amount of deflection – for determining the size of the moment). The
requirement that the z-coordinate of the particle serve as the pointer of a
measuring instrument implies that the deflections must be macroscopically
distinguishable. Formally, this implies that the overlap of the two wave pack-
ets f(z + Ct2) and f(z − Ct2) in (20.42) must be negligible. After having
calibrated the apparatus in this way, we can now investigate general states.

Let us consider the initial state

Ψ(z, 0) =
1√
2
(χ+ + χ−)f(z) , (20.49)

which after traversing the field becomes

Ψ(z, t) =
1√
2

[
χ+f(z + Ct2)e−iαt + χ−f(z − Ct2)eiαt

]
. (20.50)

The polarization and the pointer (the z-coordinate) are coupled. There is a
unique correlation between the state of the spin and the state of the pointer.
Neither the spin nor the pointer is in an eigenstate. In the basis of the states
|z〉|±〉, the density matrix

�zz′ = 〈±|〈z|ψ(t)〉〈ψ(t)|z′〉|±′〉 (20.51)

of the state (20.50) is given by

�zz′ =
1
2

(
f(z + Ct2)f(z′ + Ct2)∗ f(z + Ct2)f(z′ − Ct2)∗e−i2αt

f(z − Ct2)f(z′ + Ct2)∗ei2αt f(z − Ct2)f(z′ − Ct2)∗

)

.

(20.52)

Measurement of spin observables: After the spin-1/2 particle has passed
through the Stern–Gerlach apparatus, suppose that its spin is measured.
The measurement can take place (i) ignoring the pointer position z or (ii) for
a particular pointer position z.

(i) If one ignores the pointer position, then � is equivalent to

�̂ ≡
∫

dz〈z|�|z〉 =
1
2

(
1 0
0 1

)

, (20.53)

where the second equality follows from the nonoverlapping of the pointer wave
functions f(z+Ct2) and f(z−Ct2). For an observable F (σ), depending only
on spin operators,

trz,σ (�F (σ)) = trσ (�̂F (σ)) . (20.54)
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The density matrix �̂ corresponds to a mixed ensemble (see (20.33a)). The
pure ensemble (�) is replaced by the mixed ensemble (�̂).

(ii) Filtering out a “pointer” position: We now consider only the particles
with pointer position “z-positive”, i.e., we construct

trz>0 � =
∫ ∞

0

dz �zz =
1
2

(
0 0
0 1

)

.

Because of the normalization, the density matrix is then
(

0 0
0 1

)

≡ �↓ . (20.55)

The particles deflected up have the spin wave function |↓〉.
For a measurement with the result z-positive (spin negative) the state

goes over to |↓〉. This is consistent with axiom V, which was postulated earlier
from the requirement that repeated experiments give the same result. For this
simple experiment the time dependent Schrödinger equation for object and
apparatus can be solved explicitly, and axiom V follows from axioms I–IV
of quantum mechanics.

The fact that the particles which have been filtered off at a particular
pointer position are in that eigenstate corresponding to the eigenvalue meas-
ured is known as reduction of the wave function. Going over from � to �̂
with respect to all observables related to the spin can also be regarded as
a reduction of the wave function. The density matrix �̂ (20.53) describes an
ensemble composed of 50% spin-up and 50% spin-down states. If N particles
are subjected to this Stern–Gerlach experiment, then as far as their spin
properties are concerned they are completely equivalent to N/2 particles in
the state |↑〉 and N/2 particles in the state |↓〉.

20.3.4 A General Experiment and Coupling to the Environment

We now investigate a general experiment. Let O be the object and A the
apparatus including its readout. At the time t = 0, let the state of the whole
system consisting of object and apparatus be

|ψ(0)〉 =
∑

n

cn|O, n〉|A〉 . (20.56)

The |O, n〉 are object states, and |A〉 is the (metastable) initial state of the
apparatus. At a later time t, after the interaction of the object with the
measuring apparatus, the state

|ψ(t)〉 =
∑

n

cn|O, n〉|A(n)〉 (20.57)
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is realized, where the final states of the apparatus |A(n)〉, n = 1, 2, . . . ,
must be macroscopically distinguishable. The density matrix for the (pure)
state (20.57) is

�(t) = |ψ(t)〉〈ψ(t)| . (20.58)

If we do not read off the result of the measurement, the density matrix for
observables relevant to the object O is

�̂ = trA(n) �(t) =
∑

n

|cn|2|O, n〉〈O, n| . (20.59)

The fact that the final states of the apparatus are macroscopically distin-
guishable, and thus do not overlap, enters here: 〈A(n)|A(m)〉 = δnm. If we
do not read off the result of the measurement, a mixture thus occurs with
respect to O.

If on the other hand we read off a particular value, e.g., A(m), the density
matrix which then applies is

|O,m〉〈O,m| . (20.60)

The probability of measuring the value A(m) on the apparatus is, by (20.57),
|cm|2.

The fact that in a measurement with the result A(m) the density matrix
changes from (20.58) to (20.60) is known as reduction of the wave packet
(state).

We now take into account the fact that the object and the apparatus
are never completely isolated from the environment, and we take E to be an
additional variable representing all further macroscopic consequences which
couple to the state A of the apparatus. The initial state is then

|ψ(0)〉 =
∑

n

cn|O, n〉|A〉|E〉 , (20.56′)

and after passage through the apparatus this evolves into

|ψ(t)〉 =
∑

n

cn|O, n〉|A(n)〉|E(n)〉 . (20.57′)

A correlation of the object and the apparatus with the environment devel-
ops. If we do “not read off E”, which always happens in practice, since we
cannot keep track of all the macroscopic consequences, the pure density ma-
trix |ψ(t)〉〈ψ(t)| has to be traced over the environmental degrees of freedom
E. Assuming 〈E(n)|E(n′)〉 = δnn′ , because of the different influence of the
states n and n′ on the environment the density matrix of the object and the
apparatus becomes the mixture

ˆ̂� =
∑

n

|cn|2|A(n)〉|O, n〉〈O, n|〈A(n)| . (20.61)
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The subsystem object + apparatus is thus in a mixed state. N such sub-
systems behave like N |c1|2 subsystems in the state |O, 1〉|A(1)〉, N |c2|2
subsystems in the state |O, 2〉|A(2)〉, . . . , N |cn|2 subsystems in the state
|O, n〉|A(n)〉, . . . . We emphasize the difference between the density matrix
(20.61) resulting from tracing over the environmental degrees of freedom
E, which no longer contains any offdiagonal elements, and the pure density
(20.58) without coupling to the environment.

(i) If we do not read off A(n) either, then ˆ̂� is equivalent to

�̂ =
∑

n

|cn|2|O, n〉〈O, n| .

(ii) If we read off A(n), then the probability of obtaining the particular
reading A(m) is

trO,A (|A(m)〉〈A(m)| ˆ̂�) = |cm|2 .

And in this case, the density matrix which then applies is

|A(m)〉|O,m〉〈O,m|〈A(m)| .

From then on, it does not matter if we disregard A. Taking the trace
over A(n) yields for the observable O the density matrix |O,m〉〈O,m|.

The key problem in the theory of measurement is the reduction of the wave
function and in particular the question of when it takes place. This problem
is illustrated quite drastically by means of “Schrödinger’s cat”: Suppose that
a cat within a closed box is killed by a |↑〉-particle but not by a |↓〉-particle.
Now consider the effect of the state (|↑〉 + |↓〉), which for instance can be
produced by a Stern–Gerlach apparatus. Suppose that a particle in the state
(|↑〉 + |↓〉) hits the cat. The state of the spin and the cat makes a transition
to |↑〉 |dead cat〉 + |↓〉 |living cat〉, a pure state. When is it decided whether
the cat is dead or alive? Just when the observer opens the cat’s box? – An
objective statement independent of the conscious mind of the observer would
be impossible. – What is the consequence of including the observer himself
in the quantum mechanical description?

According to the point of view presented above in connection with (20.56′)
to (20.61), the cat (together with the mechanism for killing it which was not
mentioned above) is linked to other macroscopic objects. These are influenced
differently in the two final states so that their respective wave functions do
not overlap. For everything that follows, these macroscopic consequences are
not recorded; they are traced over. The final state of the cat is described by
a mixture of states, Eq. (20.61),

ˆ̂ρ =
1
2

(
|↑〉 |dead〉 〈dead| 〈↑| + |↓〉 |living〉 〈living| 〈↓|

)
,
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containing the states of a dead cat and a living cat. The cat is thus either
dead or alive and not in a pure state |dead cat〉 + |living cat〉, which would
include both possibilities.

This concludes the essential part of our consideration of measurements;
the two following sections (20.3.5, 20.3.6) just give a few illustrations.

Remark: Generalizing the above considerations to arbitrary macroscopic systems
the following picture emerges. Suppose we prepared a macroscopic system in a linear
superposition of orthogonal states which would lead to distinguishable consequences
in the environment. The interaction with the environment would then cause the
offdiagonal elements of the density matrix of the system to go to zero. The system
considered by itself would finally find itself in one of these states with a probability
which follows both from the initial superposition as well as the density matrix.

The interaction and the entanglement of the object with the environment leads
to mixed density matrices for the subsystems (often paraphrased as a local disap-
pearance of phase relations). For this phenomenon the term “decoherence” is now
generally used.

Linear superpositions of quantum states of macroscopic systems would be af-
fected by decoherence within extremely short times, so that such superpositions
would never be observed in practice. Hence, the interaction with the environment
in effect imposes superselection rules onto the possible quantum states of macro-
scopic systems. The kind of quantum states which arise because of decoherence are
determined by the nature and the form of the interactions the object experiences.
For example, the scattering processes by molecules of a gas or by photons lead
to localisation of an object. The coherence between macroscopically different posi-
tions is rapidly destroyed by scattering processes2. Classical properties emerge in a
practically irreversible manner through the unavoidable and ubiquitous interaction
with the environment.

The interaction with the “environment” leads to the emergence of a preferred
set of states3 of the system amongst which no phase relations (i.e., no linear su-
perpositions) or nondiagonal terms in the density matrix survive. These states
belong to the basis of operators which commute with the interaction Hamiltonian
of the system and the environment and they can be distinguished through their
effect on the environment. The continuous interaction with the environment leads
to a rapid destruction of superpositions of these states. This again, leads us to the
environment-induced superselection rules and the ensuing classical properties.

The term superselection rule used above has been introduced by Wick, Wigner
and Wightman to denote fundamental restrictions on the linear superposition of
states. For example, the superposition of states with different electric charge or
integer and half-odd-integer spin is excluded. In the case of decoherence the super-
selection rules are generated dynamically by the interaction with the environment,
and possess a range of approximate validity dependent on the specific situation.

Returning again to (20.56′) to (20.61), we may interpret the transition from the

pure state (20.56′) (designated in this context as “coherent”) to the mixture (20.61)

as follows: Due to the entanglement of the object-apparatus states with those of

2 E. Joos and D. Zeh, Z. Phys. B, Cond. Mat., 59, 223 (1985)
3 J. P. Paz, J. Habib and W. H. Zurek, Phys. Rev. D 47, 488 (1993)
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the environment states, the coherence of the wave function of the object-apparatus

disappears locally. Nevertheless, the extended system (object, apparatus and envi-

ronment) is still in a pure state and there has been no reduction (collapse) of the

overall wave function. Yet, for the object and the apparatus considered by itself, the

consequences of the coupling to the environment are, for all practical purposes, as

though the environment had acted as an “observer” without revealing the outcome.

20.3.5 Influence of an Observation on the Time Evolution

In order to further analyze the measurement process and its impact, let us
return to the Stern–Gerlach experiment and consider the following additional
setup. After the atomic beams have traversed the Stern–Gerlach apparatus,
we recombine them by means of a complicated field configuration in such a
way that all of the deformation and spreading of the wave function is carefully
undone, i.e., the state

f(z)(c1eiϕ+χ+ + c2eiϕ−χ−) (20.62)

is formed. This again is essentially the initial wave function – up to the free
motion in the y-direction, which is suppressed here. The phases ϕ± which
have been inserted characterize path length differences.

Now, in the region where the beams + and − are macroscopically sep-
arated, we can set up a real measuring device whose pointer Z reacts to z
by an interaction U(z − Z), so that positive (negative) z leads to positive
(negative) Z. We then have for the initial state

|ψa〉 = f(z)(c1χ+ + c2χ−)|Z = 0〉 , (20.63)

for the intermediate state

|ψc〉 = c1χ+f(z + Ct2)|Z = −1〉 + c2χ−f(z − Ct2)|Z = +1〉 , (20.64)

and for the state after traversing the entire setup

|ψe〉 = f(z)(c1χ+eiϕ+ |Z = −1〉 + c2χ−eiϕ− |Z = +1〉) . (20.65)

The pointer positions are described by |Z = 0〉 and |Z = ± 1〉.
We can now compare the following two situations:

I. We turn on the coupling to the measuring device Z and obtain the final
state (20.65).

II. We turn off the coupling to the measuring device Z and obtain the final
state (20.62), multiplied by |Z = 0〉.

The resulting density matrices are quite different. Although the state
(20.65) is a pure state, it is equivalent to a mixture, as far as statements
relating only to the particle are concerned. This is due to the fact that the
macroscopic states |Z = ± 1〉 do not overlap. In situation II, both the total
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state and the state of the atom are pure states. In situation I, the final state
of the total system atom + pointer (characterized by spin, z, and Z) is a
pure state, whereas the density matrix of the subsystem (spin, z) is mixed,
unless c1 or c2 vanish.

Evidently the physical situation differs according to whether the interac-
tion U(z−Z) between system and pointer is turned on or not. Even if we do
not read off the result, U still influences the atomic system.

In order to further illustrate the back-reaction of the experiment on
the object, we consider the following thought experiment.4 We connect two
Stern–Gerlach devices in series (Fig. 20.3). Let the initial state of the atoms
in the atomic beam be |a〉, let {|e〉} be a basis for the final states, and let
{|c〉} be a basis for the intermediate states. We now determine the probabil-
ity of a transition to the final state |e〉, by representing this in terms of the
transition amplitudes U

(1)
ac and U

(2)
ce of |a〉 to |c〉 and |c〉 to |e〉.

Fig. 20.3. Two Stern-Gerlach apparatuses SG1 and
SG2 in series

For an isolated system, the transition probability is

P I
a→ e =

∣
∣
∣
∣
∑

c

U (1)
ac U (2)

ce

∣
∣
∣
∣

2

, (20.66)

because
∑
c UacUce = Uae holds in an isolated system.

On the other hand, one could also say that the transition probability is
the product of the probabilities |U (1)

ac |2|U (2)
ce |2, summed over all intermediate

states c:

P II
a→ e =

∑

c

|U (1)
ac |2|U (2)

ce |2 . (20.67)

The probabilities (20.66) and (20.67) correspond to different experiments.
P II
a→ e: Here, there is a measurement in the intermediate region, and this

introduces unknown phase factors exp {iϕc} which have to be averaged over.

Experiment 1. Between SG1 and SG2, the atoms remain unperturbed.
There is no coupling to the external world, and the transition probability
is P I

a→ e from (20.66).

4 W. Heisenberg: The Physical Principles of the Quantum Theory (Dover, New
York 1950)
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Experiment 2. Between SG1 and SG2, there is an influence on the atoms,
making possible a determination of the stationary state. However, the result
of the measurement is not recorded, and a mixture is formed. The transition
probability is P II

a→ e from (20.67).

Experiment 3. Between SG1 and SG2 an influence on the atoms occurs
making possible a determination of the stationary state. Let us assume that
c is found. The probability for state e behind SG2 is then given by |U (2)

ce |2.

20.3.6 Phase Relations in the Stern–Gerlach Experiment

It was pointed out earlier that the change of the density matrix of a pure
ensemble into that of a mixed one corresponds to averaging over the phases.
Let us make an order-of-magnitude analysis of the Stern–Gerlach experiment
in order to understand qualitatively why the phase relations between spin-up
and spin-down components are lost. We consider a beam with velocity v and
width b which is split in the field of the Stern–Gerlach setup (see Fig. 20.4).

The deflection angle of the upper atomic beam is classically

ϕ =
μBB

′t2

2mvt
=

μBB
′t

2p
.

Fig. 20.4. The bending angle in the Stern–
Gerlach experiment

The quantum mechanical spreading of the wave packet in the z-direction after
a time t is, by (2.12) and (2.16), Δz ≈ �t/bm. Therefore, the uncertainties
of the beam angles are

Δϕ =
Δz

vt
≈ �

bp
, (20.68)

corresponding to a spread of Δϕ ≈ λ/b.
The condition that the two atomic beams be separable is ϕ > Δϕ. Hence,

the inequality

μBB
′tb

2�
> 1 (20.69)

follows. The position dependent part of the Larmor energy is given by μBB
′z.

Substituting the beam width b for z and multiplying by t/�, we obtain the
phase uncertainty of the exp {iEt/�}-dependence of the wave function:

Δα =
μBB

′bt
�

.
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Together with the preceding inequality, one finds

Δα > 2 ; (20.70)

the phase relations are completely smeared out.5

20.4 The EPR Argument, Hidden Variables,
the Bell Inequality

20.4.1 The EPR (Einstein–Podolsky–Rosen) Argument

The nondeterministic character of quantum mechanics is unfamiliar to the
imagination, which is trained in classical phenomena6. Hence, there were re-
peated attempts to replace quantum theory by a statistical theory. According
to these, there exist hidden variables, whose values prescribe the values of
all observables for any particular object, except that the hidden variables
are unknown to the experimenter, thus yielding the probabilistic character
of the theory. The probabilistic character of quantum mechanics would then
be quite analogous to that of classical statistical mechanics, where one can
imagine that the motion of all particles is in principle known. For example,
let us consider a particle of spin 1/2 in an eigenstate of Sx with eigenvalue
�/2. According to quantum mechanics, the z-component is not fixed. If one
measures it for a very large number of such particles, one finds 50% of the
time �/2 and 50% of the time −�/2. According to the idea of hidden vari-
ables, for each particle, parameters unknown to us would determine whether
+�/2 or −�/2 results. These hidden variables would prescribe ± �/2 each
50% of the time.

5 In order to visualize the consequence of this, we imagine that we recombine the
two partial beams along the y-axis by means of an additional device – without
attempting to remove the spreading and the associated variation of the phase,
so that the result will not be the state (20.62). Then the density matrix would
still be equivalent to that of a mixture for spin measurements. Indeed, this hap-
pens not as in (20.53) because of the nonoverlapping of the two beams, but
rather because there is an effective averaging over all phases in the z-integration
(compare (20.36)).

6 Einstein expressed his rejection of quantum theoretical indeterminism by the
remark “God does not play dice”. Another often cited remark, which reflects
Einstein’s rejection of the fact that the value of a nondiagonal observable is fixed
only when an experiment is performed, is the question: “Is the moon there when
nobody looks?”
Even Schrödinger, one of the founders of quantum theory, who sought to con-
struct a classical continuum theory of the microworld, was dissatisfied with the
probability interpretation: “If we have to keep these damned quantum jumps, I
regret that I ever had anything to do with quantum theory.”
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By means of a number of thought experiments, Einstein attempted to
demonstrate the incompleteness of the quantum mechanical description and
to get around the indeterminism and the uncertainty relation. Each of these
arguments was refuted in turn by Bohr.

An argument – sometimes referred to as a paradox – due to Einstein,
Podolsky, and Rosen (EPR), played a pivotal role in the discussion of inde-
terminism and the existence of hidden variables; we consider this argument
as reformulated by D. Bohm.

Let two spin-1/2 particles in a singlet state

|0, 0〉 =
1√
2
(|↑〉|↓〉 − |↓〉|↑〉) (20.71)

be emitted from a source and move apart. Even if the two particles are
separated by an arbitrarily large distance and can no longer communicate
with one another, one finds in the state (20.71) the following correlations in a
measurement of the one-particle spin states: If one measures the z-component
of the spin and finds for particle 1 spin up, particle 2 then has spin down. If one
finds for particle 1 spin down, particle 2 has spin up. If instead one measures
Sx, then +�/2 for particle 1 implies the value −�/2 for particle 2, etc.

This expresses the nonlocality of quantum theory. The experiment on
particle 1 influences the result of the experiment on particle 2, although they
are widely separated. The nonlocality is a consequence of the existence of
correlated many-particle states such as the direct product |↑〉|↓〉 and the fact
that one can linearly superimpose such states. The nonlocality of quantum
mechanics does not lead to contradictions with relativity theory. Although a
measurement of a spin component of particle 1 immediately reveals the value
of that component for particle 2, no information can be transmitted in this
way. Since particle 1 takes values ± �/2 50% of the time, this remains true
for particle 2, even after the measurement of particle 1. Only by subsequent
comparison of the results is it possible to verify the correlation.

Einstein, Podolsky, and Rosen7 gave the following argument in favor
of hidden parameters in conjunction with the EPR thought experiment:

7 The original argumentation of EPR does not refer to singlet states, but to two
identical particles, say decay products, moving apart in opposite directions with
equal speeds. If the position of particle 1 is measured and the value x is found,
then particle 2 has position −x. If the momentum of particle 1 is measured with
value p, then particle 2 has the momentum −p. Here as well, the position and
the momentum are fixed neither for particle 1 nor for particle 2, but there is
a nonlocal entanglement (Verschränkung)8 between the values for particles 1
and 2. The significance of the reformulated variant of the EPR thought exper-
iment consists in the experimental realization and the possibility of testing the
existence of hidden variables.

8 States such as (20.71), (20.57) and (20.57′) are examples of superpositions of
nonoverlapping product states of two or more different degrees of freedom. These
cannot be factorized into a single direct product. Following Schrödinger (see
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Through the measurement of Sz or Sx of particle 1, the values of Sz or
Sx of particle 2 are known. Because of the separation of the particles, there
was no influence on particle 2, and therefore the values of Sz , Sx etc. must
have been fixed before the experiment. Thus, there must be a more complete
theory with hidden variables. In the EPR argument, the consequences of the
quantum mechanical state (20.71) are used, but the inherent nonlocality of
quantum theory is denied.

There is no room here to go into the various stages of hidden-variable
theories and their connection to the von Neumann counterargument and
Bohm’s new formulation of the guide wave interpretation, implying classical
equations of motion with an additional quantum potential. We refer the in-
terested reader to the book by Baumann and Sexl9.

In what follows, we will consider local hidden variables. These would pre-
determine which value each of the components of S of particle 1 has and
likewise for particle 2. Each of the particles would carry this information
independently of the other.

20.4.2 The Bell Inequality

We now show that such local hidden variables lead to results different from
those of quantum mechanics. We then compare with experiment.

To this end, we consider a correlation experiment in which a particle of
total spin zero decays into two particles each with spin 1/2. At a sufficiently
large distance from the source, a rotatable polarizer and a detector are set up
for each particle (see Fig. 20.5), so that the particles can be registered and
investigated for a correlation of the spin orientation. Polarizer 1 with angular
setting α only lets particle 1 through if its spin in the direction n̂α takes the
value +�/2, and polarizer 2 with angular setting β lets particle 2 through
only if its spin in the direction n̂β takes the value +�/2. Two detectors 1
and 2 register the particles. If they respond, the spin is positive, otherwise
negative.

literature at the end of this chapter) they are called entangled (verschränkt) for
the following reason. For any of the degrees of freedom the outcome of an exper-
iment is uncertain and only characterized by a probability amplitude. Yet, if one
of the degrees of freedom is measured, the other is known too. The investiga-
tion of entangled states has been fundamental in the study of the measurement
process and other basic questions of quantum theory. Recently, the possibility of
using entangled states for applications in quantum information processing has
been focused on: quantum cryptography, quantum teleportation and quantum
computing. In fact the appearance of decoherence represents one of the basic
difficulties to the experimental realization of quantum computers.

9 K. Baumann, R.U. Sexl: Die Deutungen der Quantentheorie (Vieweg, Wiesbaden
1984). See also F. Selleri (ed.): Quantum Mechanics versus local Realism (Plenum
Press, New York 1988)
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Fig. 20.5. The EPR correlation experiment, with source, polarizers P1 and P2

oriented perpendicular to the beams, and detectors D1 and D2

We consider the correlation between various angular settings of the polar-
ization experiment. A measure of the correlation is N(α;β), defined by the
relative number of experiments resulting in particle 1 at angle α positive and
particle 2 at angle β positive.

Quantum mechanics gives

N(α;β) ≡ 〈0, 0|δσ1·n̂α,1δσ2·n̂β ,1|0, 0〉
= 〈0, 0|12 (1 + σ1 · n̂α)1

2 (1 + σ2 · n̂β)|0, 0〉
= 〈0, 0|12 (1 + σ1 · n̂α)1

2 (1 − σ1 · n̂β)|0, 0〉
= 1

4 (1 − n̂α · n̂β) , (20.72)

since 〈0, 0|σ1|0, 0〉 = 0 in the singlet state |0, 0〉. For coplanar detectors (2.72)
reduces to

N(α;β) =
1
2

sin2 β − α

2
. (20.72′)

If hidden variables were really present in nature, we could represent N(α;β)
by the following sum:

N(α;β) = N(αγ;β) + N(α; γβ) . (20.73)

Here, N(αγ;β) is the relative number of particle pairs in which particle 1 has
positive spin at the angles α and γ and negative spin at β, while N(α;βγ) is
the relative number of particle pairs in which instead particle 1 has negative
spin at γ. In theories with hidden variables, all of these quantities are avail-
able. Now, one has N(αγ;β) ≤ N(γ;β), since N(γ;β) = N(αγ;β)+N(γ;βα)
and since both quantities on the right-hand side are nonnegative; similarly,
N(α; γβ) ≤ N(α; γ). Hence, (20.73) implies

N(α;β) ≤ N(α; γ) + N(γ;β) . (20.74)

This is a simple version of the Bell inequality.
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Remarks:

(i) In experiments one often works with the correlation defined by

P (α;β) = 〈0, 0|σ1 · n̂α σ2 · n̂β |0, 0〉
= 4N(α; β) − 1 , (20.75)

instead of N(α; β) itself. Quantum mechanics (20.72′) yields for coplanar po-
larizers

P (α− β) ≡ P (α;β) = − cos (α− β) . (20.72′′)

In terms of these quantities the Bell inequality reads

P (α;β) − 1 ≤ P (α; γ) + P (γ;β) .

(ii) The limit prescribed by the Bell inequality can be determined as follows.
In (20.74) one substitutes for α, β, γ the values 0, π, π/2, respectively:

N(0; π) ≤ N
“

0;
π

2

”

+N
“π

2
;π
”

.

In the singlet state, N(0; π) = 1
2

and N(0; π
2
) = N(π

2
;π); hence N(0; π

2
) ≥ 1

4
.

Additional values are obtained by successive combination of angles.

Fig. 20.6. (a) The Correlation P (θ) ≡ P (θ; 0) according to quantum mechanics
(20.72′′) and the Bell inequality. (b) Experimental results on the spin correlation
of the proton pairs in experiments carried out by Lamehi-Rachti and Mittig in
comparison with quantum mechanics (QM) and the limits of Bell’s inequality (×) 10

10 M. Lamehi-Rachti, W. Mittig, Phys. Rev. D 14, 2543 (1976)



20.4 The EPR Argument, Hidden Variables, the Bell Inequality 395

Finally, we contrast the consequences of the Bell inequality with quan-
tum mechanics and compare with experiments. To this end, we compute
N(α;β), N(α; γ), and N(γ;β) for the three angles α = 0, γ = 45◦, and β =
90◦ according to the quantum mechanical formula (20.72′): (1/2) sin2 45◦,
(1/2) sin2 22.5◦, (1/2) sin2 22.5◦. Substituting into the Bell inequality (20.74),
one would obtain for these probability densities the inequality

sin2 45◦ ≤ 2 sin2 22.5◦

or 0.5 ≤ 0.29, which is evidently violated. Hence, quantum mechanics and lo-
cal hidden variables are incompatible. The comparison of quantum mechanics
and the Bell inequality is illustrated in Fig. 20.6(a). The violation of the Bell
inequality was demonstrated experimentally by Lamehi-Rachti and Mittig
with pairs of protons and by Aspect et al. with photons; see Fig. 20.6(b).
Experiment provides decisive evidence in favor of quantum mechanics and
against local hidden variables.
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E. Schrödinger: “Die gegenwärtige Situation der Quantenmechanik”, Die Naturwis-

senschaften 23, 807, 823, 844 (1935)
F. Selleri: Die Debatte um die Quantentheorie (Vieweg, Wiesbaden 1983)
F. Selleri (ed.): Quantum Mechanics versus Local Realism (Plenum, New York 1988)
R. F. Streater and A. S. Wightman, TCP, Spin and Statistics and all That

(Addison-Wesley, Reading 1964)
E. Wigner: “The Problem of Measurement”, Am. J. Phys. 31, 6 (1963)
E. Wigner: “On Hidden Variables and Quantum Mechanical Probabilities”, Am. J.

Physics 38, 1005 (1970)
W. H. Zurek: “Decoherence and the transition from Quantum to Classical”, Phys.

Today 44, No. 10, 36 (1991)

Problems

20.1 Show that the singlet state (20.71) takes the form

|0, 0〉 =
1√
2

(|e,+〉|e,−〉 − |e,−〉|e,+〉)

in an arbitrary basis (Recall (9.5)).

20.2 (a) Show the property

tr AB = tr BA .

(b) Show that: tr Pa = 〈a|a〉, where Pa = |a〉〈a|.

20.3 Investigate the following EPR experiment. Let the two analyzers be oriented
at the angles 0◦, 120◦, or 240◦ and suppose that these orientations are independently
set completely stochastically.

(a) What does the Bell inequality say?

(b) What does quantum theory give?

(c) Let Nequ (Nopp) be the average number of measurements in which the two
analyzers give the same (opposite) values for the spin components. Calculate Nequ−
Nopp:

(α) according to quantum theory Nequ −Nopp =
P

i

P

j〈0, 0|(âi ·S1)(âj ·S2)|0, 0〉
and

(β) under the assumption of hidden variables. Here, âi, i = 1, 2, 3, are unit vectors
with the orientations 0◦, 120◦, 240◦.

20.4 Consider a system with Hamiltonian H0 acted upon by an external, time
dependent field F (t), so that the total Hamiltonian is given by

H = H0 +BF (t) .



Problems 397

B is an operator, F a classical field. Solve the von Neumann equation with the aid of
time dependent perturbation theory under the assumption that F (t → −∞) van-
ishes. For t = −∞, � thus has the usual equilibrium form. What is the expectation
value for an operator A at the time t in first order in F ?

20.5 Consider a general entangled state, (20.13). Show that two orthogonal basis
systems exist, such that

|ψ〉 =
X

k

ck|1k〉|2k〉

is just given by a single sum. Find the solutions which determine
˘|1k〉¯ and

˘|2k〉¯.
These two bases are termed a biorthogonal system or a Schmidt basis.

E. Schrödinger, Proc. Cambridge Phil. Soc. 31, 555 (1935); E. Schmidt, Math. An-
nalen 63, 433 and 64, 161 (1907)
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A. Mathematical Tools for the Solution
of Linear Differential Equations

A.1 The Fourier Transform

Let f(t) be continuous with at most finitely many discontinuities of the first
kind (i.e., f(t + 0) and f(t− 0) exist) and
∫ +∞

−∞
dt |f(t)| < ∞ .

Then the Fourier transform

f̃(ω) =
∫ +∞

−∞
dt eiωtf(t) (A.1)

exists, and the inverse transform gives

∫ +∞

−∞

dω

2π
e−iωtf̃(ω) =

⎧
⎪⎨

⎪⎩

f(t) at continuous points
1
2 (f(t + 0) + f(t− 0))

at the discontinuities.
(A.2)

A.2 The Delta Function and Distributions

This section is intended to give a heuristic understanding of the δ-function
and other related distributions as well as a feeling for the essential elements
of the underlying mathematical theory.

Definition of a “test function” F (x), G(x), . . .: All derivatives exist and
vanish at infinity faster than any power of 1/|x|, e.g., exp {−x2}. In order to
introduce the δ-function heuristically, we start with (for arbitrary F (x))

F (x) =
∫ +∞

−∞

dω

2π
e−iωx

∫ +∞

−∞
dx′eiωx′

F (x′) ,

and exchange – without investigating the admissibility of these operations –
the order of the integrations:

F (x) =
∫ +∞

−∞
dx′F (x′)

∫ +∞

−∞

dω

2π
eiω(x′−x) =

∫ +∞

−∞
dx′F (x′)δ(x′ − x) .
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From this, we read off

∫ +∞

−∞

dω

2π
eiω(x′−x) = δ(x′ − x) =

{
0 for x′ �= x

∞ for x′ = x
. (A.3)

This “function” of x′ thus has the property of vanishing for all x′ �= x and
taking the value infinity for x′ = x, as illustrated schematically in Fig. A.1.

Fig. A.1. The δ-function, schematic representa-
tion of (A.3)

It is thus the analogue for integrals of the Kronecker-δ for sums,
∑

n′ Kn′δn,n′ = Kn .

The Dirac δ-function is not a function in the usual sense. In order to give it
a precise meaning, we consider in place of the above integral (A.3) one that
exists. We can either allow the limits of integration to extend only to some
finite value or else introduce a weighting function falling off at infinity. Ac-
cordingly, we define the following sequence of functions parameterized by n,

δn(x) =
∫ +∞

−∞

dω

2π
exp

{

iωx− 1
n
|ω|
}

=
1
π

1/n
x2 + (1/n)2

(A.4a)

with the following properties:

I. lim
n→∞ δn(x) =

{
∞ for x = 0
0 for x �= 0

, (A.4b)

II. lim
n→∞

∫ b

−a
dx δn(x)G(x) = G(0) . (A.4c)

Proof of II:

lim
n→∞

∫ bn

−an
dy

1/π
y2 + 1

G
( y
n

)
= G(0)

∫ +∞

−∞
dy

1/π
y2 + 1

= G(0) .

We thus define the δ-function (distribution) by

∫ b

−a
dx δ(x)G(x) = lim

n→∞

∫ b

−a
dx δn(x)G(x) . (A.5)



A. Mathematical Tools for the Solution of Linear Differential Equations 401

This definition suggests the following generalization.
Let a sequence of functions dn(x) be given whose limit as n → ∞ does

not necessarily yield a function in the usual sense. Let

lim
n→∞

∫
dx dn(x)G(x)

exist for each G. One then defines the distribution d(x) via
∫

dx d(x)G(x) = lim
n→∞

∫
dx dn(x)G(x) . (A.6)

The generalization (A.6) allows one to introduce additional definitions of
importance for distributions.

(i) Definition of the equality of two distributions: Two distributions are
equal,

a(x) = b(x) , (A.7a)

if
∫
dx a(x)G(x) =

∫
dx b(x)G(x) for every G(x).

(ii) Definition of the sum of two distributions:

c(x) = a(x) + b(x) ; (A.7b)

c(x) is defined by cn(x) = an(x) + bn(x).
(iii) Definition of the multiplication of a distribution by a function F (x):

d(x)F (x) is defined by dn(x)F (x) . (A.7c)

(iv) Definition of an affine transformation:

d(αx + β) is defined by dn(αx + β) . (A.7d)

(v) Definition of the derivative of a distribution:

d′(x) is defined by d′n(x) . (A.7e)

From these definitions, one has that the same linear operations can be
performed for distributions as for ordinary functions. It is not possible to
define the product of two arbitrary distributions in a natural way.

Properties of the δ-function:
∫ +∞

−∞
dx δ(x − x0)F (x) = F (x0) , (A.8)

∫ +∞

−∞
dx δ′(x)F (x) = −F ′(0) , (A.9)

δ(x)F (x) = δ(x)F (0) , (A.10)

δ(xa) =
1
|a|δ(x) . (A.11)
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Remark: Proof of (A.11):

Z +∞

−∞
dx δ(xa)F (x) = lim

n→∞

Z +∞

−∞
dx δn(xa)F (x) = lim

n→∞

Z +∞

−∞
dx δn(x|a|)F (x)

= lim
n→∞

1

|a|
Z +∞

−∞
dy δn(y)F

„

y

|a|
«

=
1

|a|F (0) .

δ(f(x)) =
∑

i

1
|f ′(xi)|δ(x− xi) , xi simple zeros of f . (A.12)

From (A.10) and (A.11), it follows that

xδ(x) = x2δ(x) = . . . = 0 , (A.13)

δ(−x) = δ(x) . (A.14)

Fourier transform of the δ-function:
∫ +∞

−∞
dx e−iωxδ(x) = 1 . (A.15)

Three-dimensional δ-function:

δ(3)(x− x′) = δ(x1 − x′
1)δ(x2 − x′

2)δ(x3 − x′
3) . (A.16a)

In spherical coordinates:

δ(3)(x− x′) =
1
r2

δ(r − r′)δ(cos ϑ− cos ϑ′)δ(ϕ− ϕ′) . (A.16b)

Step function:

Θn(x) =
1
2

+
1
π

arctan nx ,

Θ′
n(x) = δn(x) ,

→ Θ′(x) = δ(x) . (A.17)

Other sequences which also represent the δ-function:

δn(x) =
1
πx

sin nx =
∫ n

−n

dk

2π
eikx , (A.18)

δn(x) =

√
n2

π
e−n

2x . (A.19)

If a sequence dn(x) defines a distribution d(x), one then writes symbolically

d(x) = lim
n→∞ dn(x) .
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Integral representations

We conclude this section by giving a few integral representations for δ(x) and
related distributions:

δ(x) =
1
2π

∫ +∞

−∞
dk eikx , (A.20)

Θ(x) = lim
ε→ 0

1
2πi

∫ +∞

−∞
dk

eikx

k − iε
. (A.21)

We also define the distributions

δ+(x) =
1
2π

∫ ∞

0

dk eikx , (A.22a)

δ−(x) =
1
2π

∫ 0

−∞
dk eikx . (A.22b)

These can also be represented in the form

δ±(x) = ∓ 1
2πi

lim
ε→ 0

1
x ± iε

. (A.23)

Further, one has

lim
ε→ 0

1
x ± iε

= P
1
x

∓ iπδ(x) , (A.24)

where P designates the Cauchy principal value,

P

∫
dx

1
x
G(x) = lim

ε→ 0

(∫ −ε

−∞
+
∫ ∞

ε

)

dx
1
x
G(x) . (A.25)

The distributions δ± have the properties

δ±(−x) = δ∓(x) , (A.26)

xδ±(x) = ∓ 1
2πi

, (A.27)

δ+(x) + δ−(x) = δ(x) , (A.28)

δ+(x) − δ−(x) =
i
π
P

1
x

. (A.29)

Further literature concerning sections A.1 and A.2:

M.J. Lighthill: Introduction to Fourier Analysis and Generalised Functions (Cam-
bridge University Press, Cambridge 1958)

I.M. Gel’fand, G.E. Shilov: Generalized Functions, Vol. 1–5 (Academic Press, New

York 1968)
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A.3 Green’s Functions

Starting from a linear differential operator D and a function f(x), we study
the linear inhomogeneous differential equation

Dψ(x) = f(x) (A.30)

for ψ(x).
Replacing the inhomogeneity by a δ-distribution located at x′, one finds

DG(x, x′) = δ(x− x′) . (A.31)

The quantity G(x, x′) is called the Green’s function of the differential operator
D. For translationally invariant D, G(x, x′) = G(x− x′).

Using the Green’s function, one finds for the general solution of (A.30)

ψ(x) = ψ0(x) +
∫

dx′ G(x, x′)f(x′) , (A.32)

where ψ0(x) is the general solution of the homogeneous differential equation

Dψ0(x) = 0 . (A.33)

Equation (A.32) contains a particular solution of the inhomogeneous differ-
ential equation (A.30), given by the second term, which is not restricted to
any special form of the inhomogeneity f(x). A great advantage of the Green’s
function is that, once it has been determined from (A.31), it enables one to
compute a particular solution for arbitrary inhomogeneities.

In scattering theory, we require the Green’s function for the wave equation

(∇2 + k2)G(x− x′) = δ(3)(x− x′) . (A.34)

The Fourier transform of G(x− x′)

G̃(q) =
∫

d3y e−iq ·yG(y) (A.35)

becomes, with (A.34),

(−q2 + k2)G̃(q) = 1 . (A.36)

Inverting (A.35) and using (A.36), one first obtains for the Green’s function

G(y) =
∫

d3q

(2π)3
eiq ·y 1

−q2 + k2
. (A.37)

However, because of the poles at ± k, the integral in (A.37) does not exist
(k > 0). In order to obtain a well defined integral, we must displace the poles
by an infinitesimal amount from the real axis:

G±(x) = − lim
ε→ 0

∫
d3q

(2π)3
eiq ·x

q2 − k2 ∓ iε
. (A.38)
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In the integrand of G+, the poles are at the locations q = ± (k + iε/2k), and
in the integrand of G−, they are at q = ± (k− iε/2k). From this one sees that
the shift of the poles of G+ in the limit ε → 0 is equivalent to deforming the
path of integration along the real axis as shown in Fig. 18.2. After carrying
out the angular integration, one finds

G±(x) = − 1
4π2ir

∫ +∞

−∞
dq

qeiqr

q2 − k2 ∓ iε
. (A.39)

Since r = |x| > 0, the path of integration can be closed by an infinite
semicircle in the upper half-plane, so that the residue theorem then yields

G±(x) = −e± ikr

4πr
. (A.40)

The quantity G+ is called the retarded Green’s function. The solution (A.32)
is composed of a free solution of the wave equation and an outgoing spherical
wave.

The quantity G− is called the advanced Green’s function. The solu-
tion (A.32) then consists of a free solution of the wave equation and an
incoming spherical wave.

B. Canonical and Kinetic Momentum

In this appendix, we collect some formulae from the classical mechanics of
charged particles moving in an electromagnetic field.

We first recall that the Hamiltonian

H =
1

2m

(
p− e

c
A(x, t)

)2

+ eΦ(x, t) (B.1)

leads to the classical equations of motion (B.3). For this, we compute (note
the summation convention)

ẋi =
∂H

∂pi
=

1
m

(
pi − e

c
Ai(x, t)

)
, (B.2a)

ṗi = −∂H

∂xi
= − 1

m

(
pj − e

c
Aj(x, t)

) (
− e

c
Aj,i

)
− eΦ,i

= ẋj
e

c
Aj,i − eΦ,i (B.2b)

with f,i ≡ ∂f/∂xi. From (B.2a,b), the Newtonian equation of motion

mẍi = ṗi − e

c
Ai,j ẋj − e

c
Ȧi =

e

c
ẋjAj,i − eΦ,i − e

c
Ai,j ẋj − e

c
Ȧi

follows, i.e.,

mẍi =
(e
c
ẋ × B + eE

)

i
. (B.3)
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Here, we have also used

(ẋ × B)i = εijkẋjεkrsAs,r = ẋj(Aj,i −Ai,j)

and

(curl A)k = Bk, E = − grad Φ− 1
c

∂A

∂t
.

One refers to p as the canonical momentum and mẋ from (B.2a) as the
kinetic momentum.

From (B.1) and (B.2), we obtain the Lagrangian

L = pẋ−H = mẋ2 +
e

c
Aẋ− m

2
ẋ2 − eΦ ,

L =
m

2
ẋ2 +

e

c
Aẋ− eΦ . (B.4)

The Lagrange equations of motion

d

dt

∂L

∂ẋ
=

∂L

∂x

with

∂L

∂ẋ
= mẋ+

e

c
A ,

(
∂L

∂x

)

i

=
e

c
ẋjAj,i − eΦ,i ,

and

d

dt

(
∂L

∂ẋ

)

i

= mẍi +
e

c
Ai,j ẋj +

e

c
Ȧi

lead again to Newton’s second law with the Lorentz force:

mẍ = eE +
e

c
ẋ × B .

C. Algebraic Determination
of the Orbital Angular Momentum Eigenfunctions

We now determine the eigenfunctions of orbital angular momentum alge-
braically. For this we define

x± = x ± iy . (C.1)

The following commutation relations hold:

[Lz, x±] = ± �x±, [L±, x±] = 0 , [L±, x∓] = ± 2�z ,
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[L2, x+] = Lz�x+ + �x+Lz + �
2x+ − 2�zL+

= 2�x+Lz + 2�
2x+ − 2�zL+ , (C.2a)

where

L2 = L2
z + �Lz + L−L+ (C.2b)

has been used.
From (C.2a), (C.2b) and relations (5.14) and (5.15), which were also

shown algebraically, it follows that

Lzx+|l, l〉 = x+Lz|l, l〉+ �x+|l, l〉 = �(l + 1)x+|l, l〉 (C.3a)

and

L2x+|l, l〉 = �
2l(l + 1)x+|l, l〉+ 2�

2(l + 1)x+|l, l〉
= �

2(l + 1)(l + 2)x+|l, l〉 . (C.3b)

The quantity x+ is thus the ladder operator for the states |l, l〉,
x+|l, l〉 = N |l + 1, l + 1〉 . (C.4)

Hence, the eigenstates of angular momentum can be represented as follows:

|l,m〉 = N ′Ll−m− (x+)l|0, 0〉 . (C.5)

N and N ′ in (C.4) and (C.5) are constants. Since L|0, 0〉 = 0, it follows that
(compare (5.4))

〈x|Uδϕ|0, 0〉 = 〈U−1
δϕ x|0, 0〉 = 〈x|0, 0〉 ,

and thus

ψ00(x) = 〈x|0, 0〉 (C.6)

does not depend on the polar angles ϑ, ϕ. The norm of |0, 0〉

〈0, 0|0, 0〉 =
∫

dΩ〈0, 0|x〉〈x|0, 0〉

is unity for

ψ00(x) =
1√
4π

. (C.7)

The norm of the state |l, l〉 ∝ (x+/r)l|0, 0〉, whose coordinate representation
is

〈x|
(
x+

r

)l
|0, 0〉 =

1√
4π

sinl ϑ eilϕ ,
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becomes

〈0, 0|
(
x−
r

)l(
x+

r

)l
|0, 0〉 = 〈0, 0|

(
x2 + y2

r2

)l
|0, 0〉 = 〈0, 0|

(

1 − z2

r2

)l
|0, 0〉

= 〈0, 0| sin2l ϑ|0, 0〉

=
∫ 2π

0

dϕ

∫ π

0

dϑ sin ϑ
1
4π

sin2l ϑ

=
1
2

∫ 1

−1

d(cos ϑ) sin2l ϑ = Il ,

Il =
∫ 1

0

dη(1 − η2)l = η(1 − η2)l
∣
∣
∣
∣

1

0

+ 2l
∫ 1

0

dη η(1 − η2)l−1η

= −2lIl + 2lIl−1 ,

Il =
2l

2l + 1
Il−1 =

2l
2l + 1

2(l − 1)
2(l − 1) + 1

. . .
2 × 1
2 + 1

I0

=
2l(2l− 2) . . . 2

(2l + 1)(2l− 1) . . . 3
=

22l(l!)2

(2l + 1)!
,

I0 = 1 .

One thus has

ψll(x) =
1√
4πIl

sinl ϑ eilϕ (C.8)

and the definition of the spherical harmonics

Yll(ϑ, ϕ) = (−1)l
√

(2l + 1)!
4π

1
2ll!

sinl ϑ eilϕ . (C.9)

Yll(ϑ, ϕ) can also be found directly from the equations

LzYll = �l Yll and L+Yll = 0 = eiϕ

(
∂

∂ϑ
+ i cot ϑ

∂

∂ϕ

)

eilϕf(ϑ) .

The first implies

Yll = eilϕf(ϑ) ,

and the second implies

∂

∂ϑ
f(ϑ) = l cot ϑf(ϑ) ,

df

f
= l cot ϑdϑ ,

log |f | = l log sin ϑ + A ,

f = α sinl ϑ q.e.d .
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The remaining eigenfunctions are obtained by application of L−:

(L−)l−m|l, l〉 = N ′|l,m〉 . (C.10)

In order to determine N ′, we start from

L−|l,m〉 = �

√
(l + m)(l −m + 1)|l,m− 1〉 ;

hence,

(L−)l−m|l, l〉 = [2l × 1 × (2l − 1) × 2 . . . (l + m + 1)(l −m)]1/2�
l−m|l,m〉

=
(

(2l)!(l−m)!
(l + m)!

)1/2
�
l−m|l,m〉 ,

and

Ylm(ϑ, ϕ) =

√
(l + m)!

(2l)!(l−m)!
(L−/�)l−mYll(ϑ, ϕ) . (C.11)

We now apply the operator L−:

(L−/�)f(ϑ)eimϕ = e−iϕ

(

− ∂

∂ϑ
+ i cot ϑ

∂

∂ϕ

)

f(ϑ)eimϕ

= ei(m−1)ϕ(−1)(f ′(ϑ) + m cot ϑf) .

Comparing this with

d

d cos ϑ
(f sinm ϑ) = −(f ′ + mf cot ϑ) sinm−1 ϑ ,

we see that

(L−/�)f(ϑ)eimϕ = ei(m−1)ϕ sin1−m ϑ
d(f sinm ϑ)

d cos ϑ
.

Applying L− (l −m) times yields

(L−/�)l−meilϕ sinl ϑ = eimϕ sin−m ϑ
dl−m sin2l ϑ

(d cos ϑ)l−m
(C.12)

and

Ylm(ϑ, ϕ) = (−1)l
√

(l + m)!(2l + 1)
(l −m)!4π

1
2ll!

eimϕ sin−m ϑ
dl−m sin2l ϑ

(d cos ϑ)l−m
(C.13)

= (−1)l+m
1

2ll!

√
(l −m)!(2l + 1)

(l + m)!4π
eimϕ sinm ϑ

dl+m sin2l ϑ

(d cos ϑ)l+m
.

(C.13′)

This is in accord with (5.22), and the spherical harmonics obey

Yl,m(ϑ, ϕ) = (−1)mY ∗
l,−m(ϑ, ϕ) . (C.14)

This concludes the algebraic derivation of the angular momentum eigenfunc-
tions.
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Remark: In going from (C.13) over to the conventional representation (C.13′), we
have used the fact that the associated Legendre function

Pml (η) =
1

2ll!
(1 − η2)m/2

dl+m

dηl+m
(η2 − 1)l (C.15)

satisfies the identity

P−m
l = (−1)m

(l −m)!

(l +m)!
Pml . (C.16)

For the derivation of this identity, we note that both Pml and P−m
l are lth-order

polynomials in η for even m; for odd m, they are polynomials of order (l−1), multi-
plied by

p

1 − η2. Further, the differential equation for Pml contains the coefficient
m only quadradically, and therefore P−m

l is also a solution and must be propor-
tional to the regular solution Pml which we began with. In order to determine the
coefficient of proportionality, we compare the highest powers of η in the expressions
for P−m

l and Pml , multiplied by (1 − η2)m/2:

(1 − η2)m/2P−m
l =

1

2ll!

dl−m(η2 − 1)l

dηl−m
=

(2l)!

2ll!(l +m)!
ηl+m + . . .

and

(1 − η2)m/2Pml =
(1 − η2)m

2ll!

dl+m(η2 − 1)l

dηl+m
=

(2l)!(−1)m

2ll!(l −m)!
ηl+m + . . . ,

which yields (C.16).
We now prove algebraically that for the angular momentum operator the quan-

tum number l is a nonnegative integer. (A shorter derivation is studied in Prob-
lem 5.7.) To this end, we construct a “ladder operator”, which lowers the quantum
number l by 1; for half-integral l-values, it would then take us out of the region
l ≥ 0. We introduce the definition

a(l) = ix̂ × L − �lx̂ = i

8

>

<

>

:

x̂yLz − x̂zLy

x̂zLx − x̂xLz − �lx̂ ,

x̂xLy − x̂yLx

(C.17)

where x̂ = x/|x| is the radial unit vector. It turns out to be useful to introduce the
decomposition

a
(l)
± = a(l)

x ± ia(l)
y = ∓x̂zL± ± x̂±(Lz ∓ �l)

a(l)
z = x̂−L+ + x̂z(Lz − �l) − x̂ · L = x̂−L+ + x̂z(Lz − �l) ,

(C.18)

where we have used x̂ ·L = 0, a property which is valid specifically for the orbital
angular momentum, and where we have defined x̂± = x̂x ± ix̂y. The commutation
relations read

[a
(l)
+ , a

(l)
− ] = 2�x̂2Lz = 2�Lz , (C.19a)

[L+, a
(l)
− ] = 2�a(l)

z , (C.19b)

[Lz, a
(l)
− ] = −�a

(l)
− . (C.19c)

Equations (C.18) and (5.15) then imply

a
(l)
+ |l, l〉 = 0 (C.20a)
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and

a(l)
z |l, l〉 = 0 . (C.20b)

Together with the commutator (C.19a), this yields

a
(l)
+ a

(l)
− |l, l〉 = 2�

2lx̂2|l, l〉 . (C.21)

Multiplication of (C.21) by 〈l, l| thus yields a
(l)
− |l, l〉 �= 0 for all l �= 0. For the state

|0, 0〉, both (C.18) and (C.21) imply

a
(0)
− |0, 0〉 = (x̂zL− − x̂−(Lz + 0))|0, 0〉 = 0 .

We now determine the eigenvalues of the state a
(l)
− |l, l〉: Using (C.19b) and (C.20b),

one finds

L+a
(l)
− |l, l〉 = a

(l)
− L+|l, l〉 + 2�a(l)

z |l, l〉 = 0 (C.22)

and, from (C.19c),

Lza
(l)
− |l, l〉 = �(l − 1)a

(l)
− |l, l〉 . (C.23)

With L2 = L−L+ + �Lz + L2
z, we obtain from (C.23) and (C.22)

L2a
(l)
− |l, l〉 = �

2((l − 1) + (l − 1)2)a
(l)
− |l, l〉 = �

2l(l − 1)a
(l)
− |l, l〉 . (C.24)

In summary, (C.23) and (C.24) imply

a
(l)
− |l, l〉 ∝ |l − 1, l − 1〉 . (C.25)

In Sect. 5.2, it was already shown that the algebra of angular momentum operators
inevitably leads to half-integral or integral l. If half-integral l were to occur, then
starting from |l, l〉 with a

(l)
− |l, l〉 ∝ |l − 1, l − 1〉, . . . a(l−1)

− a
(l)
− |l, l〉 ∝ |l − 2, l − 2〉,

and so on, one would eventually encounter negative half-integral l. This contradicts
the inequality l ≥ 0 derived in Sect. 5.2! Together with (5.16), this implies that
the orbital angular momentum eigenvalues l are given by the nonnegative integers
0, 1, 2, . . ..1

1 Further literature concerning this appendix can be found in C.C. Noack: Phys.
Bl. 41, 283 (1985). A different algebraic proof is presented in F. Schwabl, Quan-
tenmechanik, 7. Auflage (Springer, Berlin Heidelberg 2007).
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D. The Periodic Table
and Important Physical Quantities

Conversion factors:

1 eV = 1.60219 × 10−19 J

1 N = 105 dyn

1 J = 1 × 107 erg

1 C = 2.997925 × 109 esu = 2.997925 × 109
p

dyn cm2

1 K b= 0.86171 × 10−4 eV

1 eV b= 2.4180 × 1014 Hz b= 1.2399 × 10−4 cm

1 T = 104 gauss (G)

1 Å = 10−8 cm
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Absorption, 339
Absorption of radiation, 298–301,

309–310
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Adiabatic approximation, 271
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Alpha decay, 67–70
Angular momentum, 107–118
– algebraic treatment, 406–411
Angular momentum addition, 193–201
Angular momentum commutation

relations, 107
Angular momentum operator, 107
Angular momentum, orbital, in polar

coordinates, 112–117
Angular momentum quantization,

10–11, 110–112
Angular momentum quantum number,

126, 363
Angular momentum states, 113, 332,

406–411
Annihilation operator, 51, 299
Anticommutator, 98, 365
Antiquark, 89
Atomic theory, 8–11, 227–258, 338
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Axioms of quantum theory, 40, 169, 369

Baker-Hausdorff formula, 26
Balmer formula, 9
Balmer series, 131
Baryon, 228, 233
Basis, 104
Basis system, 172, 388
Bell inequality, 392–396
Bessel functions, 210, 323, 350

– spherical, 314–316, 319, 323–324, 333

Binding energies, 282

Black-body radiation, 3–5
Bohr magneton, 147

Bohr postulates, 9
Bohr radius, 128, 135

Bohr-Sommerfeld quantization, 9–10,
44, 210

Boltzmann constant, 4

Born approximation, 337–338, 352
Born-Oppenheimer approximation,

273–275

Bose sector, 358, 366

Bose-Einstein condensation, 232
Bose-Einstein statistics, 228

Boson, 184, 228
Bound state, 78–80, 84, 122–124, 210,

275, 281, 316, 360, 363
Boundary condition, 4, 64, 75

Bra, 166
Breit–Wigner formula, 86, 89, 343

Brillouin–Wigner perturbation theory,
211

Canonical variable
– commutation relations, 24

Canonical variables, 24
Cathode ray, 8

Causality, 369–371

Center-of-mass frame, 241, 282, 351
Central potential, 119–141, 313–324

Centrifugal potential, 121, 334
Characteristic function, 36

Clebsch-Gordan coefficients, 198–201

Coherent states, 56
Cold emission, 95

Combination principle, Ritz’s, 130
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Commutation relations, 29, 48, 365,
406

Commutator, 24, 29, 48, 356
Compatibility of measurements, 105
Complete orthonormal set, 34, 44, 168,

372
Complete set of operators, 104
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tions, 34
Completeness relation, 34, 39, 53,

323–324
Composite particles, 232
Compton effect, 7
Compton-wavelength, 7, 135
Configuration, 252
Conjugation, 77
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Continuity conditions, 60, 65, 72, 317,

319, 340
Continuity equation, 31, 61
Continuous spectrum, 9, 38–40
Continuum state, 43, 320, 359
Cooper pairs, 71
Coordinate representation, 40, 170, 407
Correspondence principle, 27
Coulomb barrier, 68–70, 88
Coulomb gauge, 143, 299
Coulomb potential, 124–137, 338, 352,

362–365
– bound states, 128
– scattering, 338, 352
Coulomb wave function, 319, 352
Covalent bonding, 281, 282
Creation operator, 51, 299
Current density, 16, 298, 301, 328, 330
Cyclotron frequency, 155
– in semiconductors, 264

Darwin term, 219–222
Davisson-Germer experiment, 7
de Broglie wavelength, 8
Decay probability, 68
Decay rate, 91
Decoherence, 386
Defect, screened, 71
Degeneracy, 34, 131, 132, 199, 318
Delta function, 38, 59, 296, 399
Delta-potential, 94, 96
Delta-shell potential, 324, 353

Density matrix, 371–379
Determinism, 369–371
Deuterium, 70, 189
Deuteron, 189
Diagonal matrix, 34
Diamagnetism, 144, 145
Diffraction, 7, 349
Diffraction experiment, 13
Dilatation operator, 258
Dipole moment, 268, 284
Dipole radiation, 239, 303
Dirac equation, 2, 215, 225
Dirac notation, 164–169
Dirac representation, 176, 293
Discontinuity, 58
Distribution, 399–403
Donor levels, shallow, 264
Double slit, 13
Duality, 7

Ehrenfest adiabatic hypothesis, 9
Ehrenfest theorem, 28–30, 61
Eigenfunction, 33, 52, 56, 76
– common, 102–105
– radial, 332
Eigenstate, 37, 50, 356–358
Eigenvalue, 33, 356–358, 372
– physical significance, 36–41
Eigenvalue equation, 33–35
Einstein–Podolski–Rosen argument,

390–392
Electric dipole transitions, 303, 306
Electric quadrupole transitions, 307
Electrical current density, 298
Electrodynamics, 1, 2, 10
Electromagnetic transitions, 303–310
Electron, 5–10, 229
Electron–Electron interaction, 235–237
Electron emission, 5, 67, 71
Electrons in a magnetic field, 154–155,

177–180
Elementary charge, 8
Elementary particle, 88, 228
Emission of radiation, 296–301, 309–310
Energy density, 5
Energy eigenstate, 51
Energy eigenvalue, 38, 72
Energy flux density, 5
Energy level, 9, 357
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Energy level diagram, 131
Energy measurement, 100
Energy-time uncertainty, 99–101
Energy uncertainty, 99–101, 296
Ensemble
– mixed, 371–375
– pure, 371–375
Entanglement, 391
Environment, 383–387
EPR argument, 390–392
erg, 2
Exchange term, 236, 240, 246, 250, 277,

281
Expansion in eigenfunctions, 34, 163
Expectation value, 29, 40, 169, 369,

373, 375, 379

f -sum rule, 312
Fermi-Dirac statistics, 228
Fermi energy, 232
Fermi momentum, 232
Fermi sector, 358, 366
Fermi sphere, 231
Fermion, 184, 228, 319
Field, electromagnetic, 405
Fine structure, 136, 215–225
Fine-structure constant, 129, 216
Fine-structure splitting, 219
Flux quantization, 153–154
Four-dimensional scalar product, 7
Four-momentum, 6
Four-vector, 7
Fourier transform, 399
Franck–Hertz experiment, 9
Function, characteristic, 36
Functional derivative, 243

Galilei transformation, 311
Gauge transformation, 148
Gauge, transverse, 299
Gauss integral, 17
Gauss’s integral theorem, 16, 31
Gaussian distribution, 17
Geiger-Nutall rule, 69
Gluons, 228
Golden rule, 294–296
Gravitational field, 380
Green’s function, 326, 404–405
– advanced, 405

– retarded, 326, 327, 405
Ground state, 232, 355, 366
Ground state energy, 54, 355
Group velocity, 17, 42
Gyromagnetic ratio, 183

H2 molecule, 278–282
H+

2 molecule, 275–278
Hadrons, 89, 228
Half-life, 69
Half-width, 19
Hamiltonian, 27, 47, 355
Hamiltonian, classical, 27, 47
Hankel functions, spherical, 315–316
Hartree approximation, 242–244
Hartree-Fock approximation, 242,

244–247
Heisenberg equation of motion, 290
Heisenberg microscope, 21, 370
Heisenberg operator, 174, 290
Heisenberg representation, 174–176,

289–291, 376
Heisenberg uncertainty relation, 97–98
Heitler-London method, 279–282
Helicity, 305
Helium, 233–241
Hermite polynomials, 47, 52–53
Hermiticity, 25
Hertz dipole, 9
Hidden variables, 390–396
Homopolar bonding, 281–282
Hund’s rules, 252, 255–257
Hydrogen atom, 9, 130–137
Hydrogen bonding, 282
Hydrogen molecule, 278–282
Hyperfine interaction, 223
Hyperfine structure, 136, 222–224

Identical particles, 227–233
Impact parameter, 334, 337
Indeterminism, 370, 390
Induced emission, 309–310
Integral representation, 403
Interaction
– dipole, 285
– electromagnetic, 228
– electron–electron, 235–237
– retarded, 286
– strong, 228
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– van der Waals, 282, 284–287
– weak, 228
– with radiation field, 298–310
Interaction picture, 176–177, 293
Interference, 7, 14, 42, 83, 350
Interference current density, 335
Interference term, 14, 334, 336, 378
Ionic bonding, 282
Ionization energy, 234, 244, 246, 254
Ionization potential, 253
Iron group, 253

j-j coupling, 257
Josephson effect, 71
Jost functions, 345, 347

Keplerian orbits, 136, 137
Ket, 166
Kronecker symbol, 38, 400
Kronig-Penney model, 288

L2-space, 23
Laboratory frame, 351
Ladder operators, 355–358, 406–411
Lagrangian, 406
Laguerre polynomials, 127–128
– associated, 127–128
Lamb shift, 136, 222
Landau diamagnetism, 145
Landau levels, 155
Landé factor, 188, 265
Lanthanides, 253
Larmor frequency, 146
Legendre functions, associated, 114
Legendre polynomials, 114, 322
Lenz vector, 132, 141
Lepton, 228–229
Levinson theorem, 346, 347
Lifetime, 69, 88, 101, 302, 306
Lorentz curve, 83, 86
Lorentz force, 406
Low-energy scattering, 341, 346–349
L-S coupling, 215, 217–218, 237, 254,

257
Lyman series, 131

Magic numbers, 319
Magnetic dipole transitions, 307
Magnetic field, inhomogeneous, 10, 380

Magnetic moment, 10, 147, 188–189,
222, 380

Many-particle systems, 28, 172–173,
227–233, 247–257

Mass, reduced, 136, 138, 241, 282, 351
Matching condition, 65, 320
Matrix element, 290
Matrix mechanics, 9
Matrix representation, 357, 365, 378
Matrix, Hermitian, 34, 159
Mean squared deviation, 18, 54
Measurable quantity, 27, 33
Measurement, ideal, 38, 40, 369
Measuring process, 38, 369–396
Mechanics, classical, 1, 28, 370, 381,

405
Meson, 228, 233
Metallic bonding, 282
Millikan experiment, 8
Model, atomic
– Rutherford, 9
– Thomson, 8
Molecular-orbital method, 279
Molecules, 271–288
Moments of a probability distribution,

36
Momentum, 19–22, 26
– canonical, 147, 405–406
– kinetic, 147, 405–406
Momentum eigenfunctions, 38, 162
Momentum expectation value, 20
Momentum operator, 22, 24
Momentum representation, 171
Momentum uncertainty, 20, 43
Motion, equation of, 15, 27, 29, 290,

293
Multiplet, 199, 229
Multipole transitions, 303, 307
Muon, 229, 305

Neumann functions, spherical, 315
Neumann series, 293
Neutron, 319
Nodes, 53, 80
Non-commutativity, 369
Normalizability, 32, 43, 71, 316, 366
Normalization, 15, 357, 383
– time independence, 32
Normalization volume, 44
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Nuclear physics, 88, 313
Nuclear spin, 222
Nucleon, 319
Nucleus, 68, 319–320
Number of nodes, 73–75, 319

Observable, 27, 33, 40, 41, 369
Occupation number, 300
Occupation number operator, 48, 300
Operator, 22–28, 167–169
– adjoint, 25, 168
– annihilation, 299
– creation, 299
– dipole, 303
– Heisenberg picture, 290
– Hermitian, 25, 40, 369, 373
– interaction picture, 293
– linear, 23
– matrix representation, 159, 161
– Schrödinger picture, 290
– unitary, 366
Operators, commuting, 102–105
Optical theorem, 335–336, 339
Orbital, 116–117, 252
Orbital structure of the atoms, 252
Orthogonality relation, 34, 38, 53, 322
Orthogonalization procedure, 35
Orthohelium, 235
Oscillator, harmonic, one-dimensional,

4, 47–55, 355, 359, 361
– spherical, 324
Overlap, 382
Overlap integral, 276

Paladium group, 253
Parahelium, 235
Paramagnetism, 144, 145
Parity, 76
Parity operator, 76, 116
Parseval’s theorem, 20
Partial wave, 331–334
Partial wave amplitude, 331–334
Particle concept, 8
Particle current density, 298
Particle density, 231, 298
Particle flux, 61, 339
Particle number conservation, 61, 339

Particle, classical, 2, 17
Paschen-Back effect, 260, 266
Pauli equation, 190, 380
Pauli exclusion principle, 229
Pauli paramagnetism, 145
Pauli spinors, 190
Pauli-spin matrices, 186, 377
Periodic perturbation, 297
Periodic table, 252–255, 413
Permutations, 227, 229
Perturbation theory
– Brillouin-Wigner, 211
– for degenerate states, 206
– nondegenerate, 204
– Rayleigh-Schrödinger, 203
– time-dependent, 292–297
– time-independent, 203–207
Phase, 41–43
Phase factor, 41, 148
Phase shift, 86, 320, 331–334
Phase velocity, 17
Photoelectric effect, 5–6
Photon, 5–7, 228, 301
– annihilation operator, 300
– creation operator, 300
– vacuum state, 301
Physics, atomic, 9
Planck radiation law, 4
Planck’s constant, 2
Plane rotator, 156
Platinum group, 253
Poisson brackets, 29
Poisson equation, 248
Polar diagram, 116–117
Polarizability, 267, 286
Polarization, 4, 299, 304, 379, 382
Poles
– of the scattering amplitude, 344, 345
– of the transmission coefficient, 83–85
Position, average value of, 18
Position, determination of, 21
Position eigenfunction, 39, 162
Position-momentum uncertainty, 98
Position uncertainty, 18, 43
Potential
– attractive, 321, 348
– complex, 340
– long-range, 329
– reflection free, 81, 358–360
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– repulsive, 321, 341, 349
– rotationally symmetric, 319
– screened, 242, 246
– short-range, 313, 319, 340–343, 347
Potential barrier, 64–68
Potential scattering, 333, 351
Potential step, 58–64
– infinitely high, 64
Potential well
– infinitely deep, 74, 319
– one-dimensional, 47, 71, 81–91, 317
– spherical, 316, 320, 331, 342–345
Principal quantum number, 126, 363
Probability, 14, 27, 36
Probability current density, 31, 60
Probability density, 15, 31, 41, 61, 335
– in coordinate space, 40
– in momentum space, 20, 39
– radial, 130
Probability distribution, 14
Probability interpretation, 13–15, 390
Probability, position, 40, 91
– classical, 55
– radial, 129
Probability theory, concepts of, 36
Product, direct, 172, 375
Projection operator, 167–168, 374–375
Proton, 319

Q-value, 70
Quadrupole transitions, 238, 303,

307–309
Quantization, 5, 8, 299
Quantum information processing, 392
Quantum number, radial, 125, 319
Quantum theory, supersymmetric,

355–367
Quark, 89, 228, 233
Quasiclassical approximation, 381

Radial wave function, 121, 129, 313
Radiation field, 298–310
– Hamiltonian, 298, 301
– interaction Hamiltonian, 298, 301
– quantization, 299–301
Radiation law, 4
Radiative correction, 222
Radius, atomic, 248
Ramsauer effect, 347

Random variable, 36
Range, effective, 347
Rare earths, 253
Rayleigh–Jeans law, 3
Reaction cross section, 339
Reduced mass, 136, 241, 282, 351
Reduction of the wave function (wave

packet), 105, 383
Reflection, 60, 63, 350
Reflection amplitude, 63
Reflection coefficient, 60, 82
Reflection operator, 76
Reflection symmetry, 71, 76
Relative coordinates, 282
Relativistic corrections, 215–225
Relativity theory, special, 1, 6, 369, 391
Resonance, 81, 87–91, 329, 342–345
Resonance condition, 342
Resonance energy, 84, 90
Resonance scattering, 342–345
Riemannian sheet, 85, 344–345
Ritz variational principle, 207, 240, 242
Rotation in coordinate space, 107–109,

176
Rotation in spin space, 377
Rotational invariance, 331
Rotations, 271, 282–284
Russell-Saunders Coupling, 257
Rutherford formula, 338
Rydberg atoms, 242, 305
Rydberg–Ritz combination principle, 9
Rydberg states, 242, 305

S-matrix, 333, 345
s-wave, 321, 341, 344, 346–349
Scalar product, 24, 166
Scattering
– elastic, 334, 339
– inelastic, 339–340
Scattering amplitude, 86, 328, 331–334
– analytic properties, 343–345
Scattering cross section
– classical, 341, 349
– differential, 330, 334, 344, 350
– elastic, 334, 339
– inelastic, 339–340
– total, 88, 331, 334
Scattering length, 347–348
Scattering solution, 80
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Scattering state, 326–328, 360
Scattering theory, 325–353, 404
Schrödinger equation, 1, 13–45, 77–81
– for many-particle systems, 28
– free, 15, 326
– in electromagnetic field, 143
– in momentum representation, 171
– radial, 121, 313, 316, 362
– time-dependent, 16
– time-independent, 32
– with potential, 27
Schrödinger representation, 173, 290,

376
Schrödinger’s cat, 385
Schwarz inequality, 97
Screening, 242, 246
Selection rules, 239, 266, 303–309
Self-consistent fields, 241–247
Separable potential, 324, 353
Separation, 32, 113, 121, 139
Shadow scattering, 340, 350
Shell model of the nucleus, 319
Singlet state, 195, 234, 391, 393
Slater determinant, 230, 244
Soliton, 81, 359
Space quantization, 10
Space, linear, 165–166
Specific heat, 284
Spectral series, 130–131
Spectroscopic symbols, 219, 238
Spectrum, 8, 38–40, 80
Sphere, hard, 341, 349, 351
Spherical harmonics, 114, 115, 321–324,

331, 408–411
Spherical oscillator, 324
Spherical waves, 320, 327, 332–333, 405
Spin, 11, 183–190, 365, 377–379
Spin–orbit interaction, 215, 217–218,

237–240, 255, 320
Spin-Statistics theorem, 228
Spinor, 187, 377
Spontaneous emission, 301–303
Spreading, 18, 43
Square-integrable functions, 23
Square-well potential, spherically

symmetrical, 313, 317, 342–345
SQUID, 152
Stark effect, 259, 266
State, 40

– antisymmetric, 228–230
– bound, 71, 78–80, 275, 281, 317
– coherent, 56–58
– even, 72
– excited, 50, 74, 361
– Heisenberg, 290
– macroscopic, 384
– metastable, 239, 383
– mixed, 373–379
– odd, 317
– pure, 372–379
– Schrödinger, 290
– stationary, 9, 32, 51, 80, 325–329,

332, 363, 381, 389
– symmetric, 228
– vacuum, 300
– virtual, 343
– with minimal uncertainty, 99
State density, 296
State vector, 164
Stationarity of the phase, 42, 87, 381
Step function, 361, 402
Stern–Gerlach experiment, 10–11,

183–184, 380–381
Structure, atomic, 227–258
Sudden approximation, 291
Sudden parameter change, 291
Superconductivity, 153–154
Superposition, linear, 14, 16, 43, 378
Superposition principle, 15
Supersymmetric partner, 356, 359–361
SUSY transformation, 365, 366
Symmetrization, 228
Symmetry, 228
Symmetry properties, 76

Taylor expansion, 110
Test functions, 399
Thomas–Fermi approximation, 247–251
Thomas–Fermi–Dirac equation, 250
Thomas precession, 217
Thomas–Reiche–Kuhn sum rule, 312
Time-dependent perturbation theory,

292–297
Time development operator, 289
Time evolution, 28, 40, 289–291
Time-ordering operator, 291
Time spent, 87
Total angular momentum, 193
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Total spin, 193, 194, 223
Trace, 372–375
Transformation matrix, unitary, 34, 160
Transition amplitudes, 294, 388
Transition elements, 253
Transition matrix element, 297
Transition metals, 253
Transition probability, 294, 388
Transition rate, 296–297
Translation, 110, 271
Translations, generator of, 176
Transmission, 66, 81–91
Transmission amplitude, 63, 66, 85
Transmission coefficient, 60, 66, 82, 86
– analytic properties, 83–87
Triplet state, 195, 235–237
Tunneling effect, 64–71
Tunneling, probability of, 67
Turning points, classical, 68, 209
Turning radius, classical, 334
Two-body system, 136–139

Ultraviolet catastrophe, 4
Uncertainty, 2
Uncertainty product, 54
Uncertainty relation, 9, 21, 97–105,

370, 391
Unit operator, 23

Van der Waals force, 282, 284–287
Variable, hidden, 390–395
Variational principle, 207, 240, 242
Vector space, dual, 166
Velocity operator, 175, 177
Vibrations, 271, 282–284

Virial theorem, 220, 258
Von Neumann equation, 376–377

Wave equation, 404
Wave function, 15–45, 84
– asymptotic, 315, 328, 331–334
Wave number, 59
Wave packet, 16–18, 41, 81, 87–91,

325–329, 380
– Gaussian, 16–17, 20, 43, 57
– near resonance, 87–91
Wave packet, center of mass, 87
Wave properties, 7, 13
Wavelength, 7
Waves
– electromagnetic, 2
– plane, 13, 16, 38, 316, 321–323, 331
Wien’s law, 4
Wigner 3j-symbol, 200
Wilson chamber, 8
WKB method, 68, 208–211, 381
Work function, 5

X-rays, 6

Yukawa potential, 337

Zeeman effect, 259–264
– anomalous, 146, 260
– normal, 145–147, 183
Zero operator, 23
Zero-point energy, 54
Zero-point fluctuations, 54, 222
Zitterbewegung, 219
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