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The Tower of Mathematics is the Tower of Babel inverted: its voices grow more
coherent as it rises. The image of it is based on Pieter Brueghel’s “Little Tower of
Babel” (1554).
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We have been unusually fortunate in our readers, who from four differ-
ent perspectives brought our book into focus. Jean Jones, Barry Mazur,
John Stillwell, and Jim Tanton put a quantity of time and quality of
thought into their comments, which made the obscure transparent and
the crooked straight. We are very grateful.

The community of mathematicians is more generous than most. Our
thanks to all who have helped, with special thanks to Andrew Ranicki
and Paddy Patterson.

No one could ask for better people to work with than Eric Simonoff
and Cullen Stanley of Janklow & Nesbit, who make the gears that turn
writing into reading mesh with ease; nor a better, more thoughtful edi-
tor than Peter Ginna, in whom all the best senses of wit unite.
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Less than All cannot satisfy Man.

—William Blake

We commonly think of ourselves as little and lost in the infinite stretches
of time and space, so that it comes as a shock when the French poet
Baudelaire speaks of “cradling our infinite on the finite seas.” Really? Is
it ourself, our mind or spirit, that is infinity’s proper home? Or might
the infinite be neither out there nor in here but only in language, a pretty
conceit of poetry?

We are the language makers, and what we express always refers to
something—though not, perhaps, to what we first thought it did. Talk
of the infinite naturally belongs to that old, young, ageless conversation
about number and shape which is mathematics: a conversation most of
us overhear rather than partake in, put off by its haughty abstraction.
Mathematics promises certainty—but at the cost, it seems, of passion.
Its initiates speak of playfulness and freedom, but all we come up against
in school are boredom and fear, wedged between iron rules memorized
without reason.

Why hasn’t mathematics the gentle touches a novelist uses to lure the
reader into his imagination? Why do we no longer find problems like
this, concocted by Mah�v�r� in ninth-century India:

One night, in a month of the spring season, a certain young lady
was lovingly happy with her husband in a big mansion, white as
the moon, set in a pleasure garden with trees bent down with flow-
ers and fruits, and resonant with the sweet sounds of parrots, cuck-
oos and bees which were all intoxicated with the honey of the
flowers. Then, on a love-quarrel arising between husband and wife,
her pearl necklace was broken. One third of the pearls were col-
lected by the maid-servant, one sixth fell on the bed—then half of
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what remained and half of what remained thereafter and again one
half of what remained thereafter and so on, six times in all, fell
scattered everywhere. 1,161 pearls were still left on the string; how
many pearls had there been in the necklace?

Talking mostly to each other or themselves, mathematicians have de-
veloped a code that is hard to crack. Its symbols store worlds of meaning
for them, its sleek equations leap continents and centuries. But these
sparks can jump to everyone, because each of us has a mind built to
grasp the structure of things. Anyone who can read and speak (which
are awesomely abstract undertakings) can come to delight in the works
of mathematical art, which are among our kind’s greatest glories.

The way in is to begin at the beginning and move conversationally
along. Eccentric, lovable, laughable, base, and noble mathematicians will
keep us company. Each equation in a book, Stephen Hawking once re-
marked, loses half the potential readership. Our aim here, however, is to
let equations—those balances struck between two ways of looking—
grow organically from what they look at.

Many small things estrange math from its proper audience. One is
the remoteness of its machine-made diagrams. These reinforce the mis-
taken belief that it is all very far away, on a planet visited only by graduates
of the School for Space Cadets. Diagrams printed out from computers
communicate a second and subtler falsehood: they lead the reader to
think he is seeing the things themselves rather than pixellated approxi-
mations to them.

We have tried to solve this problem of the too far and the too near by
putting our drawings in the human middle distance, where diagrams
are drawn by hand. These reach out to the ideal world we can’t see from
the real world we do, as our imagination reaches in turn from the shaky
circle perceived to the conception of circle itself.

Fuller explanations too will live in the middle distance: some in the
appendix, others—the more distant excursions—(along with notes to
the text) in an on-line Annex, at www.oup-usa.org/artoftheinfinite.

Gradually, then, the music of mathematics will grow more distinct.
We will hear in it the endless tug between freedom and necessity as play-
ful inventions turn into the only way things can be, and timeless laws are
drafted—in a place, at a time, by a fallible fellow human. Just as in lis-
tening to music, our sense of self will widen out toward a more than
personal vista, vivid and profound.

Whether we focus on the numbers we count with and their offspring
or the shapes that evolve from triangles, ever richer structures will slide
into view like beads on the wire of the infinite. And it is this wire, run-
ning throughout, that draws us on, until we stand at the edge of the
universe and stretch out a hand.

www.oup-usa.org/artoftheinfinite
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Things occupy space—but how many of them there are (or could be)
belongs to time, as we tick them off to a walking rhythm that projects
ongoing numbering into the future. Yet if you take off the face of a clock
you won’t find time there, only human contrivance. Those numbers,
circling round, make time almost palpable—as if they aroused a sixth
sense attuned to its presence, since it slips by the usual five (although
aromas often do call up time past). Can we get behind numbers to find
what it is they measure? Can we come to grips with the numbers them-
selves to know what they are and where they came from? Did we dis-
cover or invent them—or do they somehow lie in a profound crevice
between the world and the mind?

Humans aren’t the exclusive owners of the smaller numbers, at least.
A monkey named Rosencrantz counts happily up to eight. Dolphins and
ferrets, parrots and pigeons can tell three from five, if asked politely.
Certainly our kind delights in counting from a very early age:

One potato, two potato, three potato, four;
Five potato, six potato, seven potato, more!

Not that the children who play these counting-out games always get
it right:

Wunnery tooery tickery seven
Alibi crackaby ten eleven
Pin pan musky Dan
Tweedle-um twoddle-um twenty-wan
Eerie orie ourie
You are out!

This is as fascinating as it is wild, because whatever the misconcep-
tions about the sequence of counting numbers (alibi and crackaby may
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be eight and nine, but you’ll never get seven to come right after tickery),
the words work perfectly well in counting around in a circle—and it’s
always the twenty-first person from the start of the count who is out, if
“you” and “are” still act as numerals as they did in our childhood. We
can count significantly better than rats and raccoons because we not
only recognize different magnitudes but

know how to match up separate things with the successive
numbers of a sequence:

a little step, it seems, but one which will take us beyond the moon.
The first few counting numbers have puzzlingly many names from

language to language. Two, zwei, dva, and deux is bad enough, even with-
out invoking the “burla” of Queensland Aboriginal or the Mixtec “ùù”.
If you consult just English-speaking children, you also get “twa”,“dicotty”,
“teentie”,“osie”,“meeny”, “oarie”,“ottie”, and who knows how many oth-
ers. Why is this playful speciation puzzling? Because it gives very local
embodiments to what we think of as universal and abstract.

Not only do the names of numbers vary, but, more surprisingly, how
we picture them to ourselves. Do you think of “six” as 

or or or or ?

A friend of ours, whose art is the garden, has since childhood always
imagined the numbers as lying on a zigzag path:

What happens, however, if we follow Isobel’s route past 60? It contin-
ues into the blue on a straight line. Almost everyone lets the idiosyncra-
sies go somewhere before a hundred, as not numbers but Number recedes
into the distance. 3 and 7, 11 and 30 will have distinct characters and
magical properties, perhaps, for many—but is 65,537 anyone’s lucky
number? What makes mathematics so daunting from the very start is
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how its atoms accelerate away. A faceless milling crowd has elbowed out
the kindly nursery figures. Its sheer extent and anonymity alienate our
humanity, and carry us off (as Robert Louis Stevenson once put it) to
where there is no habitable city for the mind of man.

We can reclaim mathematics for ourselves by going back to its begin-
nings: the number one. Different as its names may be from country to
country or the associations it has for you and me, its geometric repre-
sentation is unambiguous: • . The notion of one—one partridge, a pear
tree, the whole—feels too comfortable to be anything but a sofa in the
living-room of the mind.

Almost as familiar, like a tool whose handle has worn to the fit of a
hand, is the action of adding. We take in “1 + 1”, as a new whole needing
a new name, so easily and quickly that we feel foolish in trying to define
what addition is. Housman wrote:

To think that two plus two are four
And neither five nor three
The heart of man has long been sore
And long ’tis like to be.

Perhaps. But the head has long been grateful for this small blessing.
With nothing more than the number one and the notion of adding,

we are on the brink of a revelation and a mystery. Rubbing those two
sticks together will strike the spark of a truth no doubting can ever ex-
tinguish, and put our finite minds in actual touch with the infinite. Ask
yourself how many numbers there are; past Isobel’s 60, do they come to
a halt at 65,537 or somewhere out there, at the end of time and space?
Say they do; then there is a last number of all—call it n for short. But
isn’t n + 1 a number too, and even larger? So n can’t have been the last—
there can’t be a last number.

There you are: a proof as profound, as elegant, as imperturbable as
anything in mathematics. You needn’t take it on faith; you need neither
hope for nor fear it, but know with all the certainty of reason that the
counting numbers can’t end. If you are willing to put this positively and
say: there are infinitely many counting numbers—then all those differ-
ences between the small numbers you know, and the large numbers you
don’t, shrink to insignificance beside this overwhelming insight into their
totality.

This entente between 1 and addition also tells you something impor-
tant about each point in the array that stretches, like Banquo’s descen-
dants, even to the crack of doom. Every one of these counting numbers
is just a sum of 1 with itself a finite number of times: 1 + 1 + 1 + 1 + 1 =
5, and with paper and patience enough, we could say that the same is
true of 65,537.
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These two truths—one about all the counting numbers, one about
each of them—are very different in spirit, and taken together say some-
thing about how peculiar the art of mathematics is. The same technique
of merely going on adding 1 to itself shows you, on the one hand, how
each of the counting numbers is built—hence where and what each one
is; on the other, it tells you a dazzling truth about their totality that over-
rides the variety among them. We slip from the immensely concrete to
the mind-bogglingly abstract with the slightest shift in point of view.

∞
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Does number measure time, or does time measure number? And in one
case or both, have we just proven that ongoing time is infinite? Like those
shifts from the concrete to the abstract, mathematics also alternates
minute steps with gigantic leaps, and to make this one we would have to
go back to what seemed no more than a mere form of words. We asked if
you were willing to recast our negative result (the counting numbers
never end) positively: there are infinitely many counting numbers. To
put it so seems to summon up an infinite time through which they are
iterated. But are we justified in taking this step?

To speak with a lawyerly caution, we showed only that if someone
claimed there was a last number we could prove him wrong by generat-
ing—in time—a next. Were we to turn our positive expression into a
spatial image we might conjure up something like a place where all the
counting numbers, already generated, lived—but this is an image only,
and a spatial image, for a temporal process at that. Might it not be that
our proof shows rather that our imaging is always firmly anchored to
present time, on whose moving margin our thought is able to make (in
time) a next counting number—but with neither the right, ability, nor
need to conjure up their totality all at once? The tension between these
two points of view—the potentially infinite of motion and the actual
infinity of totality—continues today, unresolved, opening up fresh ap-
proaches to the nature of mathematics. The uneasy status of the infinite
will accompany us throughout this book as we explore, return with our
trophies, and set out again.

Here is the next truth. We can see that the sizable army of counting
numbers needs to be put in some sort of order if we are to deploy it. We
could of course go on inventing new names and new symbols for the
numbers as they spill out: why not follow one, two, three, four, five, six,
seven, eight, and nine with kata, gwer, nata, kina, aruma (as the Oksapmin
of Papua New Guinea do, after their first nine numerals, which begin:
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tipna, tipnarip, bumrip . . .)? And surely the human mind is sufficiently
fertile and memory flexible enough to avoid recycling old symbols and
follow 7, 8, and 9 with @, ¤, β—dare we say and so on?

The problem isn’t a lack of imagination but the need to calculate with
these numbers. We might want to add 8 and 9 and not have to remem-
ber a fanciful squiggle for their sum. The great invention, some five thou-
sand years ago, of positional notation brought the straggling line of
counting numbers into squadrons and regiments and battalions. After a
conveniently short run of new symbols from 1 (for us this run stops at
9), use 1 again for the next number, but put it in a new column to the left
of where those first digits stood. Here we will keep track of how many
tens we have. Then put a new symbol, 0, in the digits’ column to show we
have no units. You can follow 10 with 11, 12 and so on, meaning (to its
initiates) a ten and one more, two more, . . . Continue these columns on,
ever leftward, after 99 exhausts the use of two columns and 999 the use
of three. Our lawyer from two paragraphs ago would remind us that
those columns weren’t “already there” but constructed when needed.
65,537, for example, abbreviates

ten thousands thousands hundreds tens units
6 5 5 3 7 .

As always in mathematics, great changes begin off-handedly, the way
important figures in Proust often first appear in asides. Zero was only a
notational convenience, but this nothing, which yet somehow is, gave a
new depth to our sense of number, a new dimension—as the invention
of a vanishing point suddenly deepened the pictorial plane of Renais-
sance art (a subject to which we shall return in Chapter Eight).

But is zero a number at all? It took centuries to free it from sweeping
the hearth, a humble punctuation mark, and find that the glass slipper
fitted it perfectly. For no matter how convenient a notion or notation is,
you can’t just declare it to be a number among numbers. The deep prin-
ciple at work here—which we will encounter again and again—is that
something must not only act like a number but interact companionably
with other numbers in their republic, if you are to extend the franchise
to it.

This was difficult in the case of zero, for it behaved badly in company.
The sum of two numbers must be greater than either, but 3 + 0 is just 3
again. Things got no better when multiplication was in the air. 3 · 17 is
different from 4 · 17, yet 3 · 0 is the same as 4 · 0—in fact, anything times
0 is 0. This makes sense, of course, since no matter how many times you
add nothing to itself (and multiplication is just sophisticated addition,
isn’t it?), you still have nothing. What do you do when someone’s ser-
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vices are vital to your cause, for all his unconventionality? You do what
the French did with Tom Paine and make him an honorary citizen. So
zero joined the republic of numbers, where it has stirred up trouble ever
since.

Our primary mathematical experience, individually as well as collec-
tively, is counting—in which zero plays no part, since counting always
starts with one. The counting numbers (take 17 as a random example),
parthenogenetic offspring of that solitary Adam, 1, came in time to be
called the natural numbers, with N as their symbol. Think of them stroll-
ing there in that boundless garden, innocent under the trees. For all that
we have now found a way to organize them by tens and hundreds, they
seem at first sight as much like one another as such offspring would
have to be. Yet look closer, as the Greeks once did, to see the beginnings
of startling patterns among them. Are they patterns we playfully make
in the ductile material of numbers, as a sculptor prods and pinches shapes
from clay? Or patterns only laid bare by such probing, as Michelangelo
thought of the statue which waited in the stone? Of all the arts, math-
ematics most puts into question the distinction between creation and
discovery.

If you happened to picture “six” this way , its pleasing triangu-

lar shape might have led you to wonder what other natural numbers

were triangular too. Add one more row of dots— so 10 is

triangular. Or take a row away— : 3 is triangular too. 3, 6, 10 . . .

15 would be next, by adding on a row of five dots to the triangular 10;
then comes 21. We might even be tempted to push the pattern back to
one, • , as if it were a triangular number by default (extending the fran-
chise again).

Here are the first six triangular numbers:

1 3 6 10 15 21

Each is bigger than the previous one by its bottom row, which is the next
natural number. This pattern clearly undulates endlessly on.



�

�������	�
������	

Idly messing about—the way so many insights burst conventional
bounds—you might ask what other shapes numbers could come in:
squares, for example. 4 is a square number: and the next would be

9 , then 16 .

Again, by courtesy, we could extend this sequence backward to 1: • .
The first six square numbers, each gotten by adding a right angle of dots
to the last,

are 1, 4, 9, 16, 25, 36. Another endless rhythm in this landscape.
But isn’t all this messing about indeed idle? What light does it shed on

the nature of things, what use could it possibly be?
Light precedes use, as Sir Francis Bacon once pointed out. Think your-

self into the mind of that nameless mathematician who long ago made
triangular and square patterns of dots in the sand and felt the stirrings
of an artist’s certainty that there must be a connection between them:

If there was, it was probably well hidden. Perhaps he recalled what the
Greek philosopher Heraclitus had said: “A hidden connection is stron-
ger than one we can see.” Hidden how? Poking his holes again in the
sand, looking at them from one angle and another, he suddenly saw:
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each of these square numbers was the sum of two triangular ones! Then
the leap from seeing with the outer to the inner eye, which is the leap of
mathematics to the infinite: this must always be so.

Our insight sharpens: the second square number is the sum of the first
two triangular numbers; the third square of the second and third triangulars,
and so on. You might feel the need now for a more graceful vessel in which
to carry this insight—the need for symbols—and make up these:

2  = 1  + 2 3   = 2  + 3

so n+1  = n  + n+1

where that “always” is stored in the letter “n” for “any number”.
By itself this is a dazzling sliver of the universal light, and its discovery

a model of how mathematics happens: a faith in pattern, a taste for ex-
periment, an easiness with delay, and a readiness to see askew. How many
directions now this insight may carry you off in: toward other polygonal
shapes such as pentagons and hexagons, toward solid structures of pyra-
mids and cubes, or to new ways of dividing up the arrays.

As for utility, what if you wanted to add all the natural numbers from
1 to 7, for example, without the tedium of adding up each and every
one? Well, that sum you want is a triangular number:

We might try writing 7  = 7 – 6  and work our way backward—
but this will get us into an ugly tangle—and if it isn’t beautiful it isn’t
mathematics. Faith in pattern and easiness with delay: we want to look
at it somehow differently, with our discovery of page 9 tantalizingly in
mind. A taste for experiment and a readiness to see askew: well, that
triangle is part of a square in having a right angle at its top—what if we
tilt it over and put the right angle on the ground:
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Why? Just messing about again, to make the pattern look square-like;
but this feels uncomfortable, incomplete—it wants to be filled out (per-
haps another ingredient in the mix of doing mathematics is a twitchiness
about asymmetries).

If we complete it to a square, we’re back to what proved useless be-
fore. Well, what about pasting its mirror image to it, this way?

This doesn’t give us a 7 · 7 square but a 7 · 8 rectangle . . . and we want
only the unmirrored half of it—that is, (7 8)

2

� , which is—28! Is this it?

Is 1 + 2 + 3 = 
⋅(3 4)

2
? Yes, 6.

And 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 = 
(8 9)

2

⋅
 = 36!

Another way of saying—or seeing—this: in order to find the sum of the
first seven numbers, 7 , we took 7  and slid another 7  next to it,
upside-down—then took (of course!) half the result. When you straighten
out the triangles 7 7  you get a 7 by 8 rectangle, half the dots in which
give the desired 28.

So in general,

1 + 2 + 3 + . . . + n = n ·
+(n 1)

2

for any number n.

Or

n+1

n   =
n · n

=
 n 6

.
2 2

The sum of the first hundred natural numbers, for example, must be
(100 101)

2

� = 5,050. Experiments of light have yielded, as Bacon foretold, ex-
periments of fruit.

∞
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We could play in these pastures forever and never run out of discoveries.
But something came up in passing, just now, which suggests that a neigh-
boring pasture may have grass uncannily greener. Our abandoned at-
tempt to find 7  by looking at 7 – 6  brought up subtraction, which
isn’t at home among the natural numbers.

Aren’t negative numbers in fact ridiculously unnatural? Five-year-
olds—fresh from the Platonic heaven—will tell you confidently that such
numbers don’t exist. But after a childhood of counting games, years of
discretion approach with the shadows of commerce and exchange. I had
three marbles, then lost two to you, and now I have one. I lose that one
and am left with none, so I borrow one from a friend and proceed to
lose that too, hence owing him one. How many have I? Even recognizing
that I had one marble after giving up two is scaly, a snake in our garden,
the presage of loss.

How are we even to picture the negative numbers—by dots that aren’t
there?

Yesterday upon the stair
I met a man who wasn’t there.
He wasn’t there again today—
I wish that man would go away.

But the negative numbers won’t go away: Northerners are intimately
familiar with them, thanks to thermometers, and all of us, thanks to
debt.

Perhaps by their works shall you know them, through seeing the pal-
pable effects of subtracting. Look again at our triumphant discovery of
what the first n natural numbers added up to. If we subtract from these
numbers all the evens, what sum are we left with—what is the sum of
the odds?

1 + 3 = 4
1 + 3 + 5 = 9
1 + 3 + 5 + 7 = 16
1 + 3 + 5 + 7 + 9 = 25

It looks as if it might be the square of how many odd numbers we are
adding. And here is a wonderful confirmation of this, in the same visual
style as our last one—another piece of inspired invention. When we add
right angles of dots to the previous ones, as we did on page 9,
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1 1 + 3 1 + 3 + 5 1 + 3 + 5 + 7.

what are we doing but adding up the successive odd numbers? So of course
their sum is a square: the square of how many odds we have added up.

A thousand years of schoolchildren caught the scent of subtraction
in problems like this, as they studied their Introductio Arithmetica. It
had been written around A.D. 100 by a certain Nichomachus of Gerasa,
in Judea. His vivid imagination conjured up some numbers as tongue-
less animals with but a single eye, and others as having nine lips and
three rows of teeth and a hundred arms.

Subtracting—taking away the even numbers from the naturals—has
left us with the odd numbers. To people making change, subtraction turns
into what you would have to add to make the whole (“98 cents and 2
makes 1, and 4 makes 5”). But it is an act also of adding a negative quan-
tity: $5 and a debt of 98 cents comes to $4.02. Does the fact that we can’t
see the negative numbers themselves make them any less real than the
naturals? The reality of the naturals, after all, is so vivid precisely because
we can’t sense them: numbers are adjectives, answering the question “how
many”, and we see not five but five oranges, and never actually see 65,537
of anything: large quantities are blurs whose value we take on faith. If we
come to treat numbers as nouns—things in their own right—it is because
of our wonderful capacity to feel at home, after a while, with the abstract.
On such grounds the negatives have as much solidity as the positives,
and ramble around with them, like secret sharers, in our thought.

We extend the franchise to them by calling the collection of natural
numbers, their negatives and zero, the Integers: upright, forthright, in-
tact. The letter Z, from the German word for number, Zahl, is their sym-
bol, and –17 a typical member of their kind. And once they are
incorporated to make this larger state, we find not only our itch to sym-
metrize satisfied, but our sense of number’s relation to time widened. If
the positive natural numbers march off toward a limitless future, their
negative siblings recede toward the limitless past, with 0 forever in that
middle we take to be the present. It takes a real act of generosity, of course,
to extend the franchise as we have, because we so strongly feel the birth-
right of the counting numbers. “God created the natural numbers,” said
the German mathematician Kronecker late in the nineteenth century,
“the rest is the work of man.” And certainly zero and the negatives have
all the marks of human artifice: deftness, ambiguity, understatement. If
you like, you can preserve the Kroneckerian feeling of the difference
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between positives and negatives by picturing our present awareness as
the knife-edge between endless discovery ahead and equally endless in-
vention behind.

∞
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You pretty much know where you are with the integers. There may be
profound patterns woven in their fence-post-like procession over the
horizon, but they mark out time and space, before and behind, with
comforting regularity. Addition and multiplication act on them as they
should—or almost: (–6) · (–4) = 24: a negative times a negative turns
out, disconcertingly, to be positive. Why this should—why this must—
be so we will prove to your utter satisfaction in Chapter Three. Other-
wise, all is for the best in this best of all possible worlds.

Exhilarated by its widened conception of number, mind looks for new
lands to colonize and sees an untamed multitude at hand. For from the
moment that someone wanted to trade an ox for twenty-four fine loin-
cloths, or a chicken for 240 cowry shells, making sense of ratios became
important. You want to scale up this 2 by 4 wooden beam to 6 by—
what? Three of your silver shekels are worth 15 of your neighbor’s tin
mina: what then should he give you for five silver shekels?

The Greeks found remarkable properties of these ratios and subtle
ways of demonstrating them. If an architect wondered what length bore
the same relation to a length of 12 units that 4 bears to 7, a trip with his
local geometer down to the beach would have him drawing a line in the
sand 4 units long; and at any angle to that, another of 7 units, from the
same starting-point, A:

the urge for completion would lead them both to draw the third side,
BC, of their nascent triangle. But now the geometer continues the lines
AB and AC onward:
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and marks a point D on AB’s extension so that AD is 12 units long:

ingenuity and an intimacy with similar triangles now leads him to draw
from D a line parallel to BC, meeting AC at E:

AE will be in the same ratio to 12 as 4 is to 7.
At no time, you notice, was 4

7
 called a number, nor was a fraction like

x

12
 involved; no one solved 4

7
 = x

12
 for x to find x equal to 48

7
. Those
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expressions couldn’t be numbers to the early Greeks, for whom magni-
tudes were one thing, but their ratios another. Both were of vital impor-
tance to Pythagoras and his followers, who in southern Italy and Greece
from the fifth century B.C. onward revealed to their initiates the deep
secret that numbers are the origin of all things, and that their ratios
made the harmonies of the world and its music. For if a plucked string
gives middle C, then plucking a string half its length would give the oc-
tave above middle C. A string 2

3
 as long as the original C string would

give you its fifth, G; 3

4
 as long, its fourth, F—those intervals that are the

foundation of our scales. These ratios were propagated through the uni-
verse, making the accords that are the music of the spheres (we don’t
hear it because its sound is in our ears from birth). But 2

3
 or 3

4
 couldn’t

possibly be numbers, because numbers arose from the unit, and the unit
was an indivisible whole.

How nightmarish it would have been for a Pythagorean to think of
that whole fractured into fractions. It would mean that how things stood
to one another—their ratios—and not the things themselves were ulti-
mately real: and they could no more believe this than we would think
that adjectives and adverbs rather than nouns were primary. That would
have led to a world of flickering changes, of fading accords and passing
dissonances, of qualities heaped on qualities, where shadowy intima-
tions of what had been and what would be tunneled like vortices through
a watery present you never stepped in twice.

If Greek philosophers and mathematicians did not have fractions, it
seems their merchants did—picked up, perhaps, in their travels among
the Egyptians, for whom fractions (though only with 1 in their numera-
tors) dwelt under the hawklike eye of Horus.

Against this background of daily practice, insights into how ratios
behaved kept growing, until inevitably they too became embodied in
numbers. How could properties accumulate without our concluding that
what has them must be a thing—especially since we are zealous to make
objects out of whatever we experience? So they came to live among the
rest as pets do among us, each with its cargo of domestic insects:

Great fleas have little fleas
Upon their backs to bite ’em,
And little fleas have lesser fleas,
And so ad infinitum.
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For an uncanny property of these fractions is that they crowd endlessly
into every smallest corner. Between any two you will always find an-
other: 5

12
 lies between 1

3
 and 1

2
; between 5

12
 and 1

2
is 11

24
; between 11

24
 and

1

2
 is 23

48
. The average of the two ends falls between them, along with how

many other splinters of the whole, so that infinity not only glimmers at
the extremities of thought but is here in our very midst, an infinity of
fractions in each least cleft of the number-line.

So the franchise was hesitantly extended to ratios in the guise of frac-
tions, although uneasiness at splitting the atomic unit remained. The
fractions, preserving traces of their origin in their official name of Ra-
tional Numbers, were symbolized by the letter Q, for “quotient”. Does
this variety of names reflect the doubts about their legitimacy? To coun-
teract these worries, notice that the integers now can be thought of as
rationals too: each—like 17—is a fraction with denominator 1: 17

1
 (or, if

you have a taste for the baroque, 34

2
, 51

3
, and so on). And notice how this

new flood of intermediate numbers makes number itself suddenly much
more time-like: flowing with never a break, it seems, invisibly past or
through us.

We can conclude: numbers are rational, and a rational is an expres-
sion of the form a

b
, where a and b can be any integer. Or almost any: a

pinprick of the old discomfort remains in the fact that b, the denomina-
tor, cannot be 0. Tom Paine again, waving his Common Sense. Why it
makes sense (not so common, perhaps) that you cannot divide by zero
will be part of the harvest reaped in Chapter Three.

∞

����������	��


Fractions keep crowding whatever space you imagine between them, a
claustrophobe’s nightmare. Thought of as ratios, however, they are a
Pythagorean’s dearest dream: any two magnitudes, anywhere in the uni-
verse, would stand to one another as a ratio of two natural numbers.
Take the module of the way we count, the number 10. Is it a coincidence
that it is the triangular sum of the first four counting numbers?
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The Pythagoreans didn’t think so: 10 must have seemed to them as com-
pact of meaning as the genetic code, coiled within a cell, seems to us. For
not only did the individual numbers of this triangular ten—which they
called the tetractys—each carry a distinct significance (unity, duality,
the triangular, the square . . .), but their ratios, as you saw, expressed the
harmony which orders the universe. No wonder a Pythagorean’s most
sacred oath was by this tetractys, the Principle of Health and “fount and
root of ever-flowing nature.”

In this atmosphere their wonderful works of geometry grew: insights
others may previously have had, but based now for the first time on
proof. It was no longer a matter of faith. No mystical revelation, no au-
thority human or divine, authenticated these truths. Mind confronted
them directly through impartial logic, which lifted you up from the streets
of Tarentum or a hill overlooking the Hellespont to the timeless topog-
raphy of ideas: not the setting, you would have imagined, for the de-
struction of the Pythagorean attunements. Yet the tragic irony that runs
beneath all Greek thought burst out most catastrophically here, for the
wedding of insight to proof in Pythagoras’s prized theorem—that the
square on a right triangle’s hypotenuse equals in area that of the sum of
squares on the two sides

had a lame patricide as its offspring.
We have only the faintest echoes of the story, in late and unreliable

sources at that, since secrecy obsessed the Pythagoreans generally, but at
this moment most of all. A Pythagorean named Hippasus, they say, from
Metapontum, used that great theorem to prove there was a magnitude
which, when compared to the unit length, couldn’t make a ratio of two
natural numbers. But if this were so, where would the music of the spheres
and the harmony of things be? Where the whole, the tetractys, the moral
foundations of life?

a2 + b2 = c2
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Yet Hippasus’s proof had an iron certainty to it. Put in modern terms,
a right triangle both of whose legs are of length one has a hypotenuse of
length h, which the theorem lets us calculate.

We must have h2 = 12 + 12, that is, h2 = 2. So the length of h = 2 . You
need only look at a diagram to convince yourself that h as much de-
serves to be called a length as do the other two sides. If it isn’t a natural
number, it must, for a Pythagorean, be a ratio of natural numbers a and b:

a
2  .

b
=

This is already a little awkward, since ratios weren’t magnitudes for them,
as a length would have to be. But much worse lay ahead. If this ratio
wasn’t in lowest terms—if a and b, that is, have some common factor
like 2—cancel it out until the equivalent ratio is in lowest terms. Let’s
still denote it by a and b, knowing now that these two natural numbers
have no factor in common.

Hippasus let the desire to simplify, and a craftsman’s feel for arith-
metic, now take him where they would. It is this artistic motivation and
reckless commitment to whatever consequences follow that is the
mathematician’s real tetractys, the sign to kindred spirits across millen-
nia; and it is what makes for the glories and despairs of mathematics.

“ 2 ” is clumsy both as a symbol and a thought. If we square both
sides of our equation we come up with the simpler translation:

2

2

a
2  .

b
=

And since multiplication is in turn simpler than division, translate again
by multiplying both sides of this equation by b2:

2b2 = a2 .

At this point the Hippasus in each of us pauses to assess what has
happened. Since b is a natural number, so is b2; and twice a natural num-
ber, such as 2b2, is an even number. The even and odd, like left and right,
darkness and light, bad and good, were pairings immensely congenial to
the Pythagoreans, so the evenness of a2 would have struck them.



��

������	�
��	����
��
�	�

Only numbers that are themselves even can have even squares: an
odd squared (such as 5) will stay odd (25). Hence since a2 is even, a must
be too, which means it is twice some natural number n:

a = 2n .

Hence a2 = 4n2.
Carry this consequence carefully back to our last equation, 2b2 = a2,

and replace a2 there by 4n2:

2b2 = 4n2 .

Why do this? You might think of the initial impulse as experimental; or
perhaps intuition is flowing as surely as a river to the sea.

Once again let the aesthetic impulse to simplify lead our efforts, and
divide both sides of this latest equation by 2:

b2 = 2n2 .

The same reasoning as before shows us that b2 is even—hence, so is b.
The dénouement of this drama is on us before we have time to draw

breath. We have seen that a and b must both be even, so they have 2 as a
common factor. But we canceled out all common factors when we be-
gan! So a

b
 is a fraction which must be simultaneously in lowest terms

and not in lowest terms. We followed a path and it brought us to the
impossible, a contradiction—yet each of our steps was wholly logical.
The only possibility left must be that assuming in the first place that 2
was rational ( 2  = a

b
) was mistaken: 2  is not a ratio of natural num-

bers. It wasn’t, isn’t, and never can be a rational number; yet it clearly
exists, stretched out on the hypotenuse, just as much as do unit lengths.

The Pythagoreans couldn’t deny the validity of Hippasus’s proof. One
story has it that they were at sea when he told it to them, and they—or
the gods—drowned him for his impiety. The proof they could no more
drown than the infant Oedipus could be killed by his parents. Hence-
forth they had to live with 2  being irrational, or as they called it  ’α′λογος,
nameless. And they lived with it in dread, like priests who perform their
office knowing that God is dead. It was the secret deep within the nested
Pythagorean secrets.

There it grew, for any natural multiple of 2  must be irrational also.
If 7 2, for example, were rational—if 7 2 = 

p
q —then 2  would equal

p

7q , a rational again. Hippasus from Hades calls out that this cannot be.
The growth metastatized: any rational whatever (except, of course, 0)



��

������	
�����
�	


times 2  will be irrational, since if ( a

b
) · 2  = 

p
q , then 2  = bp

aq , which
is a ratio of natural numbers. The tight line of the rationals was now
peppered with these irrational offspring of 2 .

The darkness grew only deeper. 3  turned out to be irrational also
(the proof is very like Hippasus’s, but with a threefold classification of
naturals instead of the twofold distinction we had for 2 ). So, there-
fore, were all its numerous progeny. Then 5  followed suit, and 6 ,
and 7. In fact if a natural number wasn’t a square like those we saw on
page 9, its square root had to be irrational. Swarms of irrationals were
now loose in the land, with plagues to follow: cube roots of numbers not
perfect cubes are irrational too, and fourth roots of numbers not perfect
fourths (the fourth root, for example, of 81, 814 , is 3, but 804  and

824  are irrational)—and so terrifyingly on.
The terror lies in what seems our inability to accommodate all these

invaders. Remember how packed the line of rational numbers was to
begin with—as densely settled as the fabled midwestern town whose
built-up zones had a house between any pair of houses. The rationals
are dense, as we saw before, with a rational (their average, for example)
between any two rationals. Where then could all those irrationals possi-
bly fit?

If you claim they aren’t on the number line at all, gently lower the
hypotenuse of the triangle we began with, as if it were the boom of a
crane, until it rests on the line:

Its tip touches the line at a point somewhere between 1 and 2 (between
1.4 and 1.5 if you care to be more exact, or even more precisely, between
1.41 and 1.42), so this point has the irrational number 2  as its ad-
dress.

We will never be at ease with this, but at least we can try to grasp the
situation in another way: through decimals. If you turn a rational num-
ber into a decimal, that decimal will either peter out eventually to noth-
ing but zeroes ( 1

2
 = 0.5000 . . . —or we could put a bar above the 0 to

show it repeats forever: 0.50)  or it will begin to repeat. So 1

3  = 0.333 . . .
that is, 0.3,  and 1

7
 = 0.142857142857142857 . . . that is, 0.1

—
4
–
2
–
8
–
5
—
7. Why

must this be? Because you get the decimal by dividing the denominator
into the numerator, and at each step you get a remainder. If you are
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dividing by seven, the only possible remainders are 0, 1, 2, 3, 4, 5, and 6
(if you get a larger remainder, you could have divided 7 in one more
time). How many different remainders are there? Seven: there can’t be
any more. This means that after a while the remainders start recycling:

0.14285711
7 1.0000000000  . . .

7
=

–7
33 0
–28

32 0
–14

36 0
–56

34 0
–35

35 0
–49

31 0
–7
33

and we see the cycle beginning again.
Clearly the very nature of division forces the decimal representation

of a fraction to repeat. So if a decimal doesn’t repeat, it can’t represent a
rational number!

This tells us two very striking things at the same time. First, that be-
cause 2  is irrational, its decimal form can’t repeat:

2 = 1.41421356 . . .

No matter how long we go on, no cycle will emerge. Hippasus’s proof
that 2  is irrational guarantees that 2  lies not just between 1.41 and
1.42, but between 1.414 and 1.415, between 1.4142 and 1.4143, and so
on. Squeeze it as tightly as you like between two rationals, it will squeak
and scurry away down an infinite sequence of ever-narrowing cracks.

The second thing it tells us is that we needn’t confine ourselves to
various roots to find irrationals: we can now produce them at will. All
we need do is manufacture a decimal that never repeats. How do that in
a finite lifetime? We can’t just start writing out arbitrary strings of digits
after a decimal point:

0.180094051 . . .
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because we will eventually stop, and nothing guarantees that our string
won’t now or at some future time begin to replicate. As a matter of fact,
the string above is the beginning of the decimal representation of a per-
fectly good rational number,

429376501

2364179256

which, because of the size of its denominator, needn’t start repeating for
more than two billion decimal places.

We need a guarantee in the way we make it that our decimal can’t
repeat. In the midst of the chaos mind has released, the power of mind
to make order at one remove—its power over the infinite—emerges too.
For we can build into the very instructions that will produce our deci-
mal, the guarantee that it cannot repeat, so that it is indeed an irrational
number.

Picture a computer that will print out digits forever, one by one, after
an original 0 and decimal point. We program it with only three in-
structions:

1. print 5.
2. print one more 6 in a row than were printed before the “5” of the

previous step.
3. return to step 1.

Once we set the machine in motion it prints “5” after the 0. initially
there, giving us

0.5
then, because there were no 6s printed before the 5, it prints one 6:

0.56
and cycling back to its first order, prints 5 again:

0.565
now it will print two 6s

0.56566
then a 5, then three 6s

0.565665666 . . .

You see the pattern of this non-repeating pattern: the strings of sixes
grow ever longer, and no cycle can possibly occur. We have, with a few
words, cast an infinite line with an irrational hooked on its receding
end—an irrational which has a unique location, somewhere between

56

100
 and 57

100
.

The irrationals that such an algorithm can generate are mind-
bogglingly infinite in number: we could use any digits other than 5 and
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6; we could alter the instructions for the lengths of successive strings; we
could put any integer we like before the decimal point. The rationals are
everywhere—the irrationals are everywhere else.

Taken all together, the rationals and the irrationals came to be called
the Real Numbers, denoted by R. Extending the franchise to them all
means that from a distant enough standpoint they look alike: any one of
them can be expressed as a decimal (17, after all, is shorthand for 17.0);
some end in zeroes, some repeat, others are wild. They act and react
with each other according to the old rules of combination, which means
adding and subtracting, multiplying and dividing, and taking roots. But
why call them real? Are they as real as this page or the light falling on
it—or perhaps even more real, outlasting all? We come and go, but 2
and its ilk remain forever, and past them, the deep principles that show
in their constellations. Perhaps we call them real because only now does
their ensemble fully imitate time and space in their apparent continuity,
or because we sense that reality ever escapes our rational convergings.

∞
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You may find yourself now in the distracted state where mathematicians
notoriously live. The genie you rubbed from its bottle was much more
powerful than you thought: barely under control. You see not only its
huge, escaping shape, but—through the swirls—portents of forms even
more inimical. And yet you do have a sort of authority over these num-
bers, since you can call irrationals from the vasty deep by such algo-
rithms as you just saw. It is like being on how’s-it-going terms with the
local mob. The mathematician John von Neumann once said that in
mathematics we never understand things but just get used to them. That
can’t be quite right—yet our understanding must be stretched to the
breaking point before it becomes flexible enough to adjust to the un-
thinkable.

First you begin to doubt the reality of the reals. Are they actually al-
ready out there, each in its infinite splendor? Or have we instead only a
machine that can mint them on demand, but with their edges shaved to
varying tolerances? Thought of so, the mind resembles a totalitarian state,
owning the means of production but with unregenerate individualism
corrupting its inventories.

One glance, however, at the stroke of a line across a piece of paper
reminds you that there—or if not there, then in what that line stands
for—all of the points fully exist, rationals and irrationals alike. How could
we calculate any length were our ruler not brought right up against what



��

������	
�����
�	


is, taking its measure? Even if our measurements require astronomical
instruments, the distance from here to Alpha Centauri hasn’t waited for
us to bring it into being. The irrationals lay undiscovered in the body of
mathematics as the system of tectonic plates lay undiscovered in the
earth’s until recently: both were there to be found, and who knows what
other systems may still operate unknown?

Then you think to yourself: with just a handful of digits—some be-
fore a decimal point and some after—I can invent a number most likely
never thought of before. Invent or discover, discover or invent—or do
numbers evolve organically, like forms of life, when demands and con-
ditions coincide?

Since it was those decimally advantaged numbers, the irrationals, that
provoked these thoughts at the edge of reason, the weight of our per-
plexity falls on them. Should we really have accepted their existence with
such docility? All Hippasus showed was that 2 wasn’t rational—why
grant that it is something else, something at all, and not just a minute
gap in the number line? When we lowered the 2  hypotenuse a few
pages back, perhaps its tip hovered over a hole. Why might the number
line not turn out, on sufficient magnification, to be porous?

Let us focus the lens instead on how we have come up with our num-
bers. “One” seems there in the mind and its world, from the very start,
and zero as well: something and nothing. The action of adding then
gives us the naturals. Subtracting brings the negatives into the light; di-
viding, the rationals: and it is only when a new operation appears—the
taking of roots—that the irrationals show themselves. So there we are:
new numbers devised—or revealed—by operations on old ones; the fa-
miliar actions with their touring company of actors, a complete set of
plots and all the dramatis personae needed to enact them.

Or is it complete? Can all of our cast really perform in all of the scenes?
What about taking roots of negative numbers, such as –1 ? This sym-
bol stands for a number which times itself is negative one. Such a num-
ber can’t be positive, since a positive times a positive is positive. It can’t,
however, be negative, because as you remember and Chapter Three will
attest, a product of two negatives is positive too (going on with the story,
while putting a proof of one of its claims on hold, is part of that easiness
with delay we spoke of earlier).

Nowhere, then, on our real line—not at zero, nor to its left nor to its
right, not sheltered among the rationals, nor masquerading as an irra-
tional—can there be any number which is the square root of negative
one. It is at this point that a deep quality of the mathematical art
emerges—let’s call it the Alcibiades Humor. For Alcibiades was the enfant
terrible of ancient Athenian life at the time of Socrates: handsome and
willful, outrageous and heroic, arrogant and playful, disrupter of dis-
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course and envoy of passion to the feast of reason. Plutarch tells us that
even as a boy, dicing in the street, he dared an angry carter to run him
over—and of course the carter turned back.

The Alcibiades Humor in mathematics is just this hubris, this refusal
to stop playing when all seems lost. No square root of negative one?
Then let’s make it up! For imagination extends beyond the real. Give
this new number a name and its habitation will follow. Call it i, for imagi-
nary; let it be a number, a new sort of number whose only property is
that its square is –1:

2 2i i = i = ( –1) = –1 .⋅

Now tightrope thinking begins, that odd blend of eliciting and in-
venting at the heart of mathematics, extending the frontier and the fran-
chise. With so little to go on, what can we ask? In the spirit of i2, see what
i4 would have to be:

i4 = i2 · i2 = (–1) · (–1) = 1 ,

so i is, astonishingly, a fourth root of 1!
And i3?

i3 = i2 · i = (–1) · i = –i .

Now we have a little table of powers of this what-you-will:

i1 = i
i2 = –1
i3 = –i
i4 = 1

and i5? That is i4 · i, or 1 · i, so i again—and now we know that the pattern
of our table will cycle forever, allowing us to calculate what any power of
i must be. Just divide the power you have in mind by 4 (thus casting out
the cycles) and see what remainder is left—how powerful, in mathemat-
ics too, the saved remnant often is. Take i274, for example; 4 into 274
leaves a remainder of 2, so i274 is the same as i2, or –1.

We bring this alien slowly to earth by asking it to engage with the
terrestrials. i + i is 2i, and 13i means i added to itself 13 times. 13 + i is
just . . . 13 + i : the alien mixes with the natives on formal terms, keeping
his distance. In that remoteness he generates further imaginaries, as 1
generated the natural numbers. On a trajectory of their own they range
and play, as addition, subtraction, multiplication, and division draw them
endlessly out:
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But just in the midst of these eccentric, playful creatures is 0i, and
that is 0: a real number! It is where the trajectory of i strikes the real line,
so that we needn’t picture these two progressions as parallel or skew, but
intersecting—and therefore (so much created out of nothing and imagi-
nation) producing a plane of numbers where once a thin line had been.
The real line and the imaginary line need not, of course, meet at right
angles, but to give some familiarity to the representation of space, it’s
convenient to work with the one unique angle that divides the universe
into four equal quadrants (and while we are at it, to keep the grid square
by letting the units on both lines be the same length).

The Complex Plane

It might be a mistake to pause now and ask what these imaginaries
really are. They had been described as “sophistic” by Italian mathemati-
cians in the Renaissance; it was Descartes who dismissively first called
them “imaginary”. Newton held them to be impossible, and Leibniz said
that –1  was an amphibian between being and not-being. In 1629 the
Frenchman Albert Girard agreed: “Of what use are these impossible so-
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lutions? I answer: for three things—for the certitude of the general rules,
for their utility, and because there are no other solutions to certain equa-
tions.” Their use—how they behave, what they tell us about numbers
and the mind and the world—will be our way to understand them bet-
ter, for use and understanding combine in complex solutions to ques-
tions we ask too simply.

In fact, the combinations of real and imaginary numbers—hybrids such
as 3 + 5i or 7 – 4i—are called Complex Numbers with the letter C on
their caps. 17, for example, is shorthand for the complex number 17 + 0i.

Do you feel we have been hustling you through inadequate justifica-
tions, like confidence-tricksters more eager to persuade than explain?
We can’t after all just say that anything we choose is a number, or argue
like lawyers from precedent, or like prophets, from revelation. We have
to show that the franchise has been legitimately extended to these imagi-
naries, and that they can do work that none of the other citizens could
manage. But this we must do in the context of mathematical legitimacy
itself, which is the subject of the next chapter.

Like Sheherazade, let’s end one story as the next begins to edge for-
ward and say that our operations and what they operate on are at last
complete: the natural numbers are nested inside the integers, those in
the rationals and those within the reals—and the reals are no more than
a line on the infinite complex plane we drew on page 27. Were there
Pythagoreans today, these nests might serve instead of the tetractys as
the fount and root of ever-flowing nature:

The Talisman of the New Pythagoreans
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We knew as soon as we saw it that the sum of the first seven natural
numbers was half the number of dots in a 7 by 8 rectangle—and also
saw at once that this must be true in general:

n (n 1)
1 2 3  . . . n

2

⋅ ++ + + + = .

Of course this was a sophisticated kind of seeing, done less with the
body’s eye than the mind’s, focused at infinity. Somehow,  inexplicably,
we seem to jump in a moment out of time—or is it into a sort of time
with the breadth of space—is that where these figures lie?

We could show off by applying our insight to particular numbers:

(81 82)
1 2 3  . . . 81 3321.

2

⋅+ + + + = =

Such examples might strengthen our conviction, but no matter how many
of them encourage our belief, there are too many numbers for examples
ever to prove anything. The claim that no natural number is greater than
a million is, after all, confirmed by the first million test cases.

It is easy to ask how we know that a statement is always true, but very
hard to answer. A twelfth-century Indian proof of the Pythagorean Theo-
rem consists of no more than two puzzle-like diagrams with the single
explanatory word: “Look!” And on the next page is a thoroughly word-
less early proof from China.*

*These diagrams given in silence have the air of a rite of passage. The initiate must first remark
that since the two squares are the same size, their areas are equal; then, that the four triangles in
each, although differently situated, are all identical—hence the area remaining in each square
after removing them is the same. But that area is made up in the first diagram of two squares, one
on each of the triangle’s legs; and in the second, of a square on its hypotenuse—so that the sum of
the areas of the two squares equals the area of the third.
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And here indeed, looking leads to seeing. Is this because an exemplar rather
than an example—a particular case whose particularity doesn’t matter—
wakens our sense of analogy and the ability to recognize pattern?

In order to savor once more this all too fugitive experience, here is a
very different way of seeing that

n (n 1)
1 2 3  . . . n  .

2

⋅ ++ + + + =

Again we choose an example—say, 10. You look at the sum

1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10

and ingrained habits of reading from left to right, as well as being sys-
tematic, lead you to starting: 1 plus 2 is 3, and 3 makes 6, and 4 makes
10. . . But what if you look at it differently (and the secret of all math-
ematical invention is looking from an unusual angle)—what if you add
in pairs as follows:

1 + 10 = 11, 2 + 9 = 11, 3 + 8 = 11—in fact, all these pairs will add up to
11! And how many pairs are there? 5—that is, half of 10. So

10
1 2 3 4 5 6 7 8 9 10 (11) ,

2
 + + + + + + + + + = ⋅  

n
or (n 1) .

2
  ⋅ +  

Some people relish the geometric approach, some the symbolic. This
tells you at once that personality plays as central a role in mathematics
as in any of the arts. Proofs—those minimalist structures that end up on
display in glass cases—come from people mulling things over in strik-
ingly different ways, with different leapings and lingerings. But is it al-
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ways from the same premises that we explore? Is there some sort of com-
mon sense that is to reason what Jung’s collective unconscious used to
be to the psyche? One of these approaches, or some third, must have
been in the mind of the ten-year-old Gauss—the Mozart of mathemat-
ics—when, in his first arithmetic class, he so startled his teacher. It was
1787 and Herr Büttner was in the habit of handing out brutally long
sums like these, which the children had to labor over. When each one
finished he added his slate to the pile growing on the teacher’s desk. The
morning might well be over before all had finished. But Gauss no sooner
heard the problem than he wrote a single number on his slate and banged
it down. “Ligget se’!” he said, in his Braunschweig accent: “There it lies!”
And there it lay, the only correct answer in the lot.

Gauss may have had better access to his intuition than most of us do,
but isn’t it clear that what is common to us all is this very intuition? Yet
ever since the earth turned out not to be flat, our trust in the obvious
has been weakened. Insight and intuition were knocked off their pins by
Hippasus: his irrational shook the Greeks more profoundly than the
eruption of irrational passions through the sunlit surface of life.

Fear begets law. The jurist in the soul demands system to hem in the
disorder that the irrationals let loose. The remedy that Eudoxus, one of
Plato’s followers, came up with in the fourth century B.C. was to build up
even the most banal certainty on an armature of proof. This meant de-
ducing results by pure logic from as trim and tight a foundation as he
could find. These foundations were “axioms”, like the familiar “equals
added to equals make equals”—statements so weighty and worthy of
belief that we don’t even know how to doubt them. Their evolution is
curious, because we are such inveterate doubters.

Plato’s theory of recollection explained why we simply recognize truths
for what they are: the soul had seen them directly in its abstracter state,
among the eternal Ideas, before we were born. Aristotle hedged these
bets: some first principles were common to all the sciences, some were
justified by the consequences they begot. All came from generalizing
what we saw in the physical world. The Stoic philosophers a century
later spoke of a “recognizable impression” which gave us our basic cer-
tainties. Our apprehension first encounters an image as an open hand
would an object; then begins to close around it in assent; next grasps it
tightly—the fit of hand to object was “recognition”—and finally (here
the Stoic Zeno, teaching his students, would cap his clenched right fist
with his left hand) holds it as knowledge.
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When the Gnostics fastened onto the Pythagorean pairing of dark-
ness and light, putting it at the heart of everything, a belief began to
grow in something on a different plane from our animal instincts: an
inner or natural light which enhaloed the truth. By the time of St. Au-
gustine and later St. Thomas Aquinas, the two strands of recognizable
impression and natural light twined around each other to redefine “in-
tuition”, which gave us immediate truth.

Immediate: that was the test; and where but in France, so charmed by
élan , would immediacy be an irresistible force? Where but in France
would the graceful sweep of articulate thought guarantee its validity?
On November 10, 1619, the young Descartes had a dream in the midst
of the Lowland Wars, where he served with Prince Maurice of Orange.
In it he saw that authority counted for nothing in mathematics, whose
methods were able to find unimpeachable truths. When he wrote up the
principles of this method nine years later, in Règles pour la direction de
l’esprit, he said that in order to gain knowledge we must begin with what
we can intuit clearly and immediately, pass one by one through all the
relevant stages in a continuous and uninterrupted movement of thought,

to see in the end the truth directly
and transparently.

This trumpet call echoed as reso-
nantly through France as playing up
and playing the game did through
England. You hear it in 1810, when
the French geometer Gergonne
wrote that axioms were theorems
whose mere statement sufficed for
recognizing their truth. You hear it
at the end of the nineteenth century
in Rimbaud’s Une saison en enfer:
“We are dedicated to the discovery
of divine light. All the filthy memo-
ries are disappearing. . . . I will be
allowed to possess the truth in a
single soul and body.” (There is also

an echo here of the Stoic and Cartesian concern for purity, lest even
intuition fall into error.)

But what if metaphors of light or appeals to something as flighty as
imagination struck you as too flimsy a framework for the tower of
mathematics? A different prospect, from the world rather than the
mind, opened up with Locke and the enlightenment: a prospect whose
vanishing-point was self-evident truth. A paradox incriminates itself with-
out any help from others. Doesn’t a tautology, at the other extreme,

René Descartes (1596–1650), whose
interest in mathematics was sparked
by a problem he saw posted on a wall
in Holland in 1618.
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exonerate itself? You could doubt that the stars have fire, but there is no
way of doubting that a star is a star. Such truths, which literally “say them-
selves”, were seized on as axioms with Jeffersonian vigor.

Then came Kant. With one brilliant stroke he cut to the heart of the
matter, the fundamental peculiarity of mathematics: whatever we in-
vent in it at once seems independent of our inventing, as if it had instead
been discovered to have been there even before experience. This, he said,
was because we got our experiences from knitting our perceptions to-
gether in causal fabrics—but those perceptions had first been shaped by
our intuitions of space and time. It was this shaping that mathematics
studied (space in geometry, time in number), so of course these forms
registered as a priori: prior to experience. They were the one and only
way that mind made its perceptions (as the Stoic hand fitted its grasp to
what it encountered). The basic truths—the axioms of mathematics—
must therefore generate the unique set of conclusions that follow in our
probing of how these intuitions of space and time work.

∞

����������	�
��������


What were these truths—common, self-evident, a priori, simple, or im-
mediate—that mind apprehended in its out-of-mind state? They were
aphorisms such as this: the order in which you add or multiply two num-
bers makes no difference; the result will always be the same:

a + b = b + a

a · b = b · a .

Only someone bamboozled by the old shell game could doubt these
Commutative Laws, which you see in action whenever you watch the
wheeling formations of a marching band. 7 columns 4 abreast turn at
the drum major’s whistle into 4 columns of 7. Since these laws hold for
the natural numbers, the impulse of the time was to carry them through
to the outermost circles of the mathematical empire, past integers and
rationals, as satraps once carried the laws made in Persepolis to every
Persian province.

You find these axioms stated with growing sophistication during the
eighteenth and nineteenth centuries. In Germany, while Georg Ohm in
the 1820s was drafting his law that united electrical voltage, current,
and resistance, his younger brother Martin was making the laws for
weaving the numbers together through the operations on them, such
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as the Associative Law, which declared that regrouping couldn’t change
a sum or a product:

a + (b + c) = (a + b) + c

a · (b · c) = (a · b) · c .

It was all very well and wonderfully concise to express these laws about
numbers with letters, but how could we guarantee in a republic rather
than a monarchy that the letters could stand for any kind of number at
all? In England a man named George Peacock, who seemed able to be-
lieve six impossible things before breakfast, stated Peacock’s Principle of
Permanence in 1833: “Whatever form is algebraically equivalent to an-
other form expressed in general symbols, must continue to be equiva-
lent, whatever those symbols denote.” So if an operation made sense for
the natural numbers, it must—by Peacock’s
Principle—make sense for any kind of num-
ber. His Principle never stooped to ask why
this should be so, and in fact (as we shall see
on page 93), led to nonsense. Hidden in the
neutral word “form”, however, was the em-
bryo of an abstractly formalist point of view
that would utterly shift our understanding
of mathematics.

This changing way of looking was part of
the broader Romantic rebellion against En-
lightenment ideals. On his twenty-first birth-
day, June 8, 1831, Robert Schumann wrote
in his diary: “It sometimes seems to me that
my objective self wanted to separate itself completely from my subjec-
tive self, or as if I stood between my appearance and my actual being,
between form and shadow.” Form allied to appearance, actual being to
shadow: a disturbing pairing that catches not only the split in Schumann’s
personality and in his ghost-ridden music, but in the time itself. It be-
came possible to think that mathematics might rid itself of the subjec-
tive, of intuition, and find its justifications in form: in appearances that
had nothing more to them than their representing this form and dis-
playing its impersonal, formal rules. An extra incentive came from the
growing fascination with ingenious artifice, with clockwork that could
imitate or even surpass the organic (the mood had been set two centu-
ries before when Pascal invented the first “mathematical engine” and
remarked in awe that although it showed no trace of will, as animals did,
it approached nearer to thought than all the actions of animals). Even

George Peacock (1791–1858)
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the American Constitution, although kept folded up in a little tin box,
was fondly thought of as a machine that would go of itself.

So Peacock’s Principle of Permanence extended, on such alluringly
formal grounds, the Commutative and Associative Laws to all kinds of
numbers, as well as extending an important axiom that, in Ohm’s style,
tied together the operations of addition and multiplication:

a · (b + c) = a · b + a · c .

This Distributive Law says that you will get the same result if you first
add two numbers (b and c) and then multiply them by a third (a), or
first multiply each by  a  and then add the results.

Formalism—where relations hold among symbols that need have no
further referents—became an ideal shelter in the revolution that was
sweeping through mathematics itself in the nineteenth century. Every-
one had taken for granted, over the past two millennia, that Euclid’s
geometry described this precious only endless world in which we say we
live—or in Kant’s terms, the way mind must spatially conceive. Yet now
geometries were being invented by Frenchmen and Russians, Hungar-
ians and Germans, each different from Euclid’s but as cogent. Where
had the uniqueness gone? Wouldn’t the fall of Geometry’s house bring
Arithmetic’s down with it? One attempt followed another to end the
scandal and purify Euclidean geometry of its vulnerable elements; but
as in the French revolution that preceded this one, the cry kept sound-
ing for an ever purer to purify the pure.

If Formalism couldn’t save shape, it would save number. The axioms
began to coalesce, going on from the Associative, Commutative, and
Distributive—now elevated to the hollowly dignified status of “Laws”—
to include something important which had been omitted until then. For
those laws had said that if you had such-and-such numbers, then such-
and-such configurations held among them. But what guaranteed that
there were any numbers at all? An axiom was needed to assert that there
was something—and why not another axiom, while we were at it, about
nothing as well? Axioms, that is, which stated that “1” existed, and af-
firmed also the existence of “0”.

Questions about how to consider mathematical existence became the
special concern of David Hilbert, a German mathematician whose out-
look dominated much of the twentieth century. His was an existence
haunted by existence. At a meeting of mathematicians in Leipzig shortly
after World War I, Hilbert asked a young Hungarian whether one of his
colleagues was still alive. Yes, the Hungarian answered, and began to say
where he was teaching and what he was working on. Hilbert kept inter-
rupting: “But—”; the Hungarian went on: “And he was married a few
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years ago, and has three children, the oldest—” Hilbert burst out: “But I
don’t want to know all of that! I just asked: does he still exist?”

On the Portmanteau, if not the Permanence, Principle, 1 and 0 were
packed with other significant properties as well; and despite zero’s late
entry into history, by the early twentieth century 1 and 0 were installed
together at the beginning of mathematical creation, like Adam and Eve.

The axiom of additive identity: There is a number, “0”,
which when added to any other leaves the sum un-
changed:

a + 0 = a .

The axiom of multiplicative identity: There is a number,
“1”, which when multiplied by any other leaves the prod-
uct unchanged:

a · 1 = a .

And since it isn’t self-evident that these germinal numbers are different,
we have to legislate it in by adding to the last axiom:

and 1 ≠ 0 .

Each of these two axioms calls up a sibling that assures us we can
come back to 0, or 1, from just about anywhere on the number line.

The axiom of additive inverses: For any number a, there
is another number, written –a, such that

a + (–a) = 0 .

The axiom of multiplicative inverses: For any number a,
except 0, there is another number, written 1

a
, such that

1
a 1 .

a
⋅ =

In the interest of elegance and abbreviation,  “a + (–a)” is usually written
“a – a”. This treats the sign “ – ” for the adjective “negative” as if it stood
for the notion of subtracting: testimony, really, to Ohm’s dynamic view
that these are axioms for the operations as well as for what they operate
on. It was this spirit that animated Newton, a century and a half before,
not to ask futile questions about what gravity is, but to describe how it
acts (its form, that is, rather than its substance). Masses and forces were
on a par, as now were numbers and the forces on them.
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The lawyers of mathematics tend to be satisfied with this list, but their
clerks may insist on a prefatory pair to insure that the boiler-plate lan-
guage is impenetrable:

The axiom of closure under addition: If a and b are num-
bers, so is a + b.

The axiom of closure under multiplication: If a and b are
numbers, so is a · b.

Had you supposed that adding two numbers would produce a caterpil-
lar, or multiplying them, a butterfly? Such axioms verge on mere defini-
tion—almost beneath the dignity of self-evidence.

Schumann wasn’t alone in finding how shadowy objects become when
their forms are separated from them. You might well ask at this point,
“What are these the axioms of ?  Are these ‘numbers’ nouns or adjectives
or verbs? Are they processes or the products which processes yield?”

One thing is certainly clear: not all of these laws have been brought
from the inner sanctum of the natural numbers to the kingdom’s ex-
tremes, as the impulse described on page 33 suggested. Consult again
your New Pythagorean talisman on page 28: the axiom of additive in-
verses holds not in N but first in Z; the axiom of multiplicative inverses
not even in Z but first in Q. It is as if the long revolution had moved the
centers of power and interest out to the colonies, and the whole was now
being ruled from them.

In truly formalist style this collection of axioms wasn’t addressed to
one kind of number or another but thought of by its first formulators as
characterizing a self-standing whole: a body (Körper) as the German
mathematician Richard Dedekind tellingly called it. Schumann might
have brooded over this slight to any indwelling spirit, Pascal over the
missing will.

What was a body in German became the even less suggestive “field”
in English, the formalist point of view being that here was a list of laws
and whatever obeyed them—rational, real, or complex numbers, or
motions like the rotation of figures on a geometric plane, or chairs or
beer mugs—was a field (the lure of abstraction may make mathemati-
cians seem like a subspecies on the verge of evolving beyond lives steeped
in the senses). Further relations could be deduced from those funda-
mental ones, and other relations could be shown not to hold among
whatever obeyed them. It was the triumph of the container over the con-
tent: the slots stood to one another in specific ways; hence, so must any-
thing slotted into them.
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To take these laws in all at once, in a continuous sweep as Descartes
would have us do, here are the unbroken Tablets of the Law, as delivered
to us in 1893 by the equally abstract Heinrich Weber (a man about whom
much is, but little more need be, known).  They are expressed, only for
convenience, in terms of numbers (a pure Formalist would have said: “If
a, b, and c are elements of the field”, and so on).

The Axioms for a Field
if a, b, and c are numbers, then

Under Addition Under Multiplication
A0 a + b is a number Closure M0 a · b is a number
A1 a + (b + c) = (a + b) + c Associativity M1 a · (b · c) = (a · b) · c
A2 a + b = b + a Commutivity M2 a · b = b · a
A3 there is a number, 0, Identity M3 there is a number, 1,

such that a + 0 = 0 such that a · 1 = a; and
1 ≠ 0.

A4 for any number a there Inverse M4 for any number a,

is a number, –a, such except 0, there is

that a + (–a) = 0 a number, 1

a
, such

that  a ·
1

a
 = 1

D Distributivity:  a · (b + c) = a · b + a · c.

You may feel a need now for the axioms of subtraction and division—
but see with what Spartan economy they have been included. Subtrac-
tion isn’t a primary operation but is the inverse of addition; division,
similarly, is just the inverse of multiplication. Their respective axioms
let you balance the number line around 0 or 1.

We can also answer what seemed a merely rhetorical question in Chap-
ter One. We asked on page 7: “multiplication is just sophisticated addi-
tion, isn’t it?” The answer is: No. Certainly 3 · 4 means 4 added to itself 3
times, or 3 added to itself 4 times; but what does 3 · 2  mean? Three
copies of 2  added together. The commutative law helps you make some
sense of “ 2  copies of 3 added together,” but how could you explain at
all in terms of addition what 7 · 2   means? Addition and multipli-
cation are equally fundamental operations—Romulus and Remus (and
commonly suckled by the Distributive Axiom)—but ultimately inde-
pendent.

You might complain: “Where have you gotten this 2  and that 7
from? Since a field axiom gave us 1, another axiom produces 2, 3, and all
the naturals, another their negatives, and a third the rationals—but noth-
ing on the list accounts for the irrationals.” And you are right so to com-
plain:  we need some way to assert their existence, and merely invoking
different kinds of roots won’t do, since as you saw on page 23 we can
make irrationals in so many other ways.
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Much energy and imagination, much argument and ink were spent
on shaping something adequate and elegant enough to round out the
table. In the background moved Schumann-like shadows that separated
appearance ever further from being: for it is a trait of romantic enter-
prises that proxies beget proxies and what was stood in for turns out
itself to have been a stand-in. So numbers gradually came to be thought
of as secondary phenomena and sets emerged as fundamental. These, at
last, had no antecedent and needed no definition. Unlike different sorts
of numbers, we grasped sets at once and might call them “collections” or
picture them as bags containing distinct objects, but this was mere para-
phrase of what we knew without knowing (they weren’t defined in terms
of numbers or anything else, but now numbers could be defined in terms
of them). Sets and their doings put bedrock under what had been shift-
ing sands.

As early as 1835 the Irish mathematician William Rowan Hamilton—
chaotic in life, discoverer of unguessed-at order in thought—came up
with the idea that an irrational could be pinned down by dividing the
rational numbers into distinct sets; and this idea Richard Dedekind
brought to fulfillment later: he noted the date carefully in his diary (No-
vember 24, 1858), startled, perhaps, that a universal truth should enter
human experience on a winter evening in Switzerland; or struck by his
boldness at invoking completed
infinities, since “set”snaps up, as a
conceptual whole, an infinite array
as swiftly as it does three buttons.

His idea was that if you break up
the line of rationals into two dis-
tinct sets, with all those in the first
to the left of each one in the sec-
ond, the fracture between them is
itself a number. Make the left-hand
set all the rationals less than 2, for
example, and the right-hand set all
rationals greater than 2. Clearly 2
(which is a rational number: 2

1
) is

the line of division. Instead fill the
left-hand set now with all the negatives along with all the rationals whose
squares are less than 2, and the right-hand set with all whose squares are
greater than 2. Again there is a split between these two infinite sets: 2 .
Confer on this cut, says Dedekind, the status of number. Defining all the
reals via these “Dedekind Cuts” breathes life into the irrationals among
them, and the spirit of our laws is in that breath. For all that Dedekind’s
definition lacks the immediacy of our other terms, being as far above them

Richard Dedekind (1831–1916)
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in sophistication (using as it does infinite sets) as the closure axioms were
below, it wonderfully catches the character of the irrationals, sifting like
viruses through ever finer filters. As with all the best mathematical ideas,
it catches too—and refines—a common way of thinking: “I don’t know
where the line is, but I know this was over the line,” said a Boston detective
in a case of child abuse.

The rationals, Q, are a field, and enriched by Dedekind Cuts, so are
the reals, R. Add in –1  and we find ourselves in the broadest field of
the complex numbers, C. We know the ancient name of the field this
wall encloses: Eden.

∞

����

For now we have our axioms, and logic enough to water them. Austere
as these axioms seem, planted in a landscape as stark as biblical narra-
tive, the vast and colorful garden of mathematics will grow from their
seeds. You may wonder why we haven’t added to our axioms the fact that
a · 0 = 0 for any a. The answer is: because we can now prove it, beginning
to construct the tower of mathematics upward from the smallest pos-
sible base.

We start with 1 – 1. The Additive Inverse Axiom, A4, assures us that
this is 0. Multiply both sides of 0 = 1 – 1 by any number a:

a · 0 =  a · (1 – 1) .

Now apply the Distributive Axiom, D, to this equation’s left-hand side,
and you find that

a · (1 – 1) = a – a .

But once again, by A4,  a – a = 0. Shake these steps out in the right order
and you get:

a · 0 = a · (1 – 1) = a – a = 0 ,

so that crossing the bridge of equalities from left to right gives us what
we want:

a · 0 = 0  .

This is an appetizer: a foretaste of the proving art. In it you won’t
catch a whiff of the kitchen from which it came: the cook’s instinct for
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where to begin, the mise en place of the axioms and then their adroit use.
There is a touch of the showman in mathematical presentations, where
the deductions are made to look effortless.

Take, for example, a wild question whose answer nevertheless follows
from these axioms. What are all the solutions to the equation

y2 + y = x3 – x ?

A sketch of the answer begins to materialize by giving specific values to
x and then, using techniques derived from the axioms, finding what
y’s will produce these values. So for x = 1, y will have to be 0; and for
x = 53 , we have y2 + y = 5 – 53  or y2 + y – 5 + 53  = 0, and the y’s turn
out to be roughly 1.38 and –2.38. This sketch, filled in by yet further
descendants of the axioms, shows that the infinite number of solutions
lie on a “cubic curve”, which when plotted on the coordinate plane has
this curiously disjoint shape:

There you see all the real solutions to our equation.

But the Garden of Eden is famous for its snake, and the snake is the
desire for more precise knowledge. Are there specific pairs of integers,
those uniquely fundamental, ancient numbers, which satisfy this equa-
tion? Looked at again, you see that it can be rewritten as

y · (y + 1) = (x – 1) · x · (x + 1) ,

so that with integers in mind we are asking: are there any numbers which
can be expressed as a product of two consecutive integers (y and y + 1)
and at the same time as a product of three consecutive integers (x – 1, x,
and x + 1)? Not only has the question developed a profounder character
when posed in terms of integers, but strangely enough, the axioms for
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the reals can’t tell us enough to answer it! It isn’t even clear, at first glance,
how many integral solutions there are.

And yet, this isn’t so strange: the axioms describe (or prescribe) the
general life of the reals, not the specific mores of those living in Z, close
to the inner city of N. Other means, attuned to these cloistered citizens,
will have to be derived from their particular traits.*

Our understanding of the Pythagorean talisman has all at once to be
turned inside out. You could no more expect to govern the founding
city from the provinces than the Emperor Postumus could have hoped
to govern Rome from Trier. The rationals, the reals, the complex num-
bers no longer appear as successive approximations to what ultimately
is, but as ever more tenuous fictions flung in support around the cen-
tral keep.

Perhaps this is what Kronecker meant when he said that God made
the natural numbers and the rest was the work of man. You might even
hear in this an echo of ancient Democritus: “By convention sweet,” he
said, “by convention bitter; by convention hot, by convention cold, by
convention color: but in reality, atoms and void.”

What are these other means for understanding the natural numbers?
Rephrased in the Formalist style, what axioms describe them? The inge-
nious idea for proving properties peculiar to N is called Induction. Not
children’s induction: “Anything I say three times is true”; nor the pecu-
liar Roman legal procedure called ampliatio, where an undecided jury
could demand that all the evidence be repeated over (and over) again.
Not even the sort of induction used in science, which concludes from a
lot of test cases that a hypothesis probably holds. Certainty is the out-
come here, and from many more than three or even a lot of instances: in
fact, from all of them.

Inductive proofs work for statements about the natural numbers, by
sweeping through their array as if they stood like dominoes, each less
than a domino’s length away from the next. Push over the first and all
will tumble down. For the ingenious idea behind induction is this: prove
that the statement in question is true for the first natural number it ap-
plies to—typically 1 (that corresponds to knocking over the first
domino). Then show that if the statement is true for any natural number,
it must also be true for the next one (that’s the equivalent of checking that
the dominoes are close enough together to communicate the initial im-
pulse to all).

*The fact, for example, that there are exactly ten pairs of integers (x, y) that satisfy this equation is
a hard-won twentieth-century surprise. You might have guessed that one pair is x = 0 and y = 0 (0
· (0 + 1) = (0 – 1) · 0 · (0 + 1)) and another is x = 1 and y = –1: ((–1) · (–1 + 1) = (1 –1) · (1) · (1
+ 1)). But would you have come up with x = 6 and y = 14: that is, 5 · 6 · 7 = 14 · 15?
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It is this second step that sets the mind’s teeth on edge, since it looks
as if we were assuming what we wanted to prove. Not so: we assume only
that our statement is true for some number n, and then using that as-
sumption, strive to show it must be true for the next, n + 1. If we succeed,
then since the statement was proved to be true for 1, it must also be true
for 2; but true for 2 must mean it is true for 3; and so 4; and therefore
5—ad infinitum. This is seeing the world in two grains of sand.

An example will help. If you like, you may then adopt medical school
practice in mastering an operation: watch one, do one, teach one—a
kind of human induction.

Here is the proof by induction of our already secure conviction that

n (n 1)
1 2 3  . . . n  .

2

⋅ ++ + + + =

First we establish that the claim is true for n = 1. Yes,

1 2
1  .

2

⋅=

Now assume it is true for any natural number—call it “a” for “any”. We’re
assuming, that is, that

a (a 1)
1 2 3  . . . a  .

2

⋅ ++ + + + =

Using only logic, the bridges of equality, a few of our axioms, and this
assumption, we now want to prove that the claim is true for the next
natural number, which is a + 1—in other words, that

(a 1) (a 2)
1 2 3  . . . a (a 1)

2

+ ⋅ ++ + + + + + =

(a + 2 is the successor of a + 1: (a + 1) + 1 = (a + 2)).
By our inductive assumption we can rewrite the left-hand side as

a(a 1)
(a 1) .

2

+ + +
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Using the Distributive Law, we can take the common factor (a + 1)
out of these two terms, giving us

a
(a 1) 1  ,

2
 + ⋅ +  

which is the same as

(a 2)
(a 1)  .

2

+ + ⋅   

That is,

(a 2)
(a 1)  ,

2

++ ⋅

as desired. Magical, but watertight. And like a good piece of magic, the
proof doesn’t show us why the statement is true (as our two visual proofs
did), only that it is so.

This is peculiar. Induction has confirmed the truth of many an im-
portant mathematical insight, but that insight had to have come from
some other source. What induction does, in effect, is show that the in-
sight spreads contagiously from a first number to the rest of the naturals,
by making the insight clamp a number and its successor (n and n + 1)
together: “the empty form”, as it was called by a troubling figure of twen-
tieth-century mathematics, the Dutchman L. E. J. Brouwer. For him, this
is the form that remains when all the color is bleached from Before and
After: the form of Induction that comes from recognizing that 1 + 1 is a
new whole (Brouwer calls it “two-ity”).

Definitions like that about Dedekind Cuts might be hit on at a time
and in a place, but we tend to think of methods (and certainly one this
abstract) as timelessly there: part of our make-up. So in hefting a
neolithic hand-ax and feeling it slip easily into your grasp, you think:
“Of course—they made and used tools then as we do now.” Patterns of
use are immemorial. Yet induction too was invented by an embodied
someone, not a figure as abstract as the empty form he dealt with.
Francesco Maurolico was a Benedictine monk in sixteenth-century Sic-
ily. Well, you think, the contemplative life would suit such abstract
thoughts. Not a bit of it. He was head of the Mint; he was in charge of
the fortifications at Messina; he devised various ways for measuring the
circumference of the earth. He studied music, optics, magnetism, and
the varieties of Sicilian fish; he successfully predicted for John of Austria
what the weather would be like on the day of the Battle of Lepanto; he
wrote a history of Sicily; he first observed the supernova that Tycho
Brahe got credit for; in his spare time he translated Euclid, Apollonius,
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Archimedes—and in the midst of this one thing after another of a life,
he came up with Induction. When you look at the full moon you may
see his memorial: the crater Maurolicus is named after him (dead scien-
tists tend to become lunar and planetary features, dead mathematicians
e-mail servers).

The moon, aged fourteen days and
one hour, from a photograph made
through a telescope on October

27, 1890. The crater Maurolicus
is in the upper-left quadrant,

below Tycho. If this orientation
bothers you, it isn’t that the

moon has turned over in the
course of a century, but
that the telescope lens

inverted the image.

In his book Arithmetica, Maurolico proves by induction that the sum
of the first n odd numbers is n2: the theorem whose truth we constructed
on page 13. If you care to try an inductive proof yourself, remember the
tripartite form:

1. Prove the statement true for n = 1;
2. Assume that it is true for n = k, and then
3. Prove that it is true for k’s successor, k + 1.

You will probably also want to use the fact that the kth odd number has
the form 2k – 1 and the next one 2k + 1 (you can check your proof
against that in the Appendix).

 It tells you how risky this new kind of proof must have seemed to its
inventor that he actually checked the statement not only for 1 but for 3
and 5. It is as if we were witnessing scientific induction turning into
mathematical induction.

History isn’t inductive, since there never seems to have been a defini-
tive first instance of any notion you can name. In the south of France,
Levi ben Gerson, in 1321, used a process he called “rising step by step
without end,” which amounts to induction. Three centuries before him,
Abu Bakr al-Karaji, in Baghdad, proved that cubing each of the first ten
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naturals and then taking the sum, was the same as the square of the sum
of these naturals:

13 + 23 + . . . + 103 = (1 + 2 + . . . + 10)2 .

His proof has an inductive air to it, working back, as he does, from the
ten he wants to the truth that 13 = 12 (the n = 1 case). He “must have” had
induction in mind, just as Marie Antoinette “must have” thought long-
ingly of Vienna just before the guillotine’s blade fell. Arguments titillat-
ingly close to induction appear around the same time in Ibn al-Haytham
and al-Samaw’al (do they stop short with a sort of “et cetera”, not seeing
the pearl of price in their hands?)—and with hindsight we might even
make out inductive reasoning descending the infinite staircase of past
time, through and dimly beyond Euclid.

The clue that induction gave for axiomatizing the heart of the laby-
rinth, N, was picked up by Dedekind and followed in 1889 by an Italian
mathematician named Giuseppe Peano, who in the fervor of his purity
sought to purge his language even of words and to use symbols instead:
⊃ to mean “implies”, ∈ for “belongs to”, and so on. His students re-
belled. He tried to appease them by giving them all passing grades. It
wouldn’t do. He was forced to resign his professorship in Turin. The
axioms, however, kept their chairs and are in them still. They are few in
number, deceptively simple (may not all simplicity be deceptive?) and
once again allowed “set” to loom as the undefined term behind the equally
undefined “natural number”, “successor”, and “belong to”. If God cre-
ated the natural numbers, these were the words with which his prophet
Peano, at least, began.

Peano’s Axioms for the Natural Numbers

1. 1 is a natural number.
2. 1 is not the successor of any other natural number.
3. Each natural number n has a successor.
4. If the successor of n equals the successor of m, then n equals m.
5. [The key principle of induction] If a set S of natural numbers con-

tains 1, and if n belonging to S implies that the successor of n be-
longs to S, then S contains all of the natural numbers.

You see, then, how “1”and “+”, who walked hand in hand through the
first chapter, now take their solitary way from Eden.

∞
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We spoke in Chapter One of the Alcibiades Humor in every math-
ematician’s make-up: a brashness and daring that flouts convention and
whose motto might well be “Why not?” Here you have seen a very differ-
ent character developing: cautious, insistent on proof, neurotic with
doubt. The wide gap between insight and demonstration might lead you
to suspect that there were two sorts of mathematician, and you could
tell from a glance at their monastic cells which were Jeromes with a lion,
which Anthonys subduing demons.

It isn’t like that. Riemann said “Just give me the insights. I can always
come up with the proofs!” But his work is strung with diamonds of daz-
zling insights. The prolific eighteenth-century Swiss mathematician
Leonhard Euler was renowned for his insights—but his proofs are gems.
Both sorts live like two souls in the Faustian breast of each, not at war
but in conversation with one another.

We could try distinguishing the halves of the mathematical brain along
the lines of the character typologies you find in books with such charm-
ing titles as On the Psychology of Military Incompetence (impetuous, ca-
sual autocrats, riding to battle in old sweaters; obsessive, very clean
authoritarians, sending their troops by timetable into the mud). What
would we have?

Caricatures only, because of the immense variety of people who have
prospered in mathematics—the reticent and the contentious, the com-
panionable and the morose—and because this art is the birthright of us
all, so deep in the structure of our thought that it is no respecter of
origin or upbringing, of morality, age, even of sanity or madness. But
since in mathematics we often make headway in a difficult problem by
invoking extreme cases, let’s vivify the opposite poles of mathematical
activity—the drive toward insight, the urge to prove—by typifying each
in men we have already met: the bitter rivals Brouwer and Hilbert. Each
had profound insights, each produced stunning proofs—but Hilbert
longed to establish mathematics on unshakable, impersonal foundations,
Brouwer to free it from logic and even language, asserting the supremacy
of private intuition.

For language, Brouwer wrote, “only touches the outside of an automa-
ton.” The soul, taken from the deepest home of its still center, deterio-
rates toward the external world through successive metamorphoses, in
the last of which we merely enforce our wills on one another via lan-
guage. Mathematicians generally believe that for all they invent their
paths, the landscape through which those paths wander is out there, in-
dependent of them, its granite truths indifferent to their climbing.
Brouwer turned away from such a view in disgust. These truths, he said,
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are “fascinating by their immovability but horrifying by their lifeless-
ness, like stones from barren mountains of disconsolate infinity.”

Instead, he saw mathematics as rooted in the mathematician’s life and
mind, which held the monopoly on certainty. Experience, axioms, logic
itself had nothing to do with it, but intuition proceeded from primor-
dial elements to a free and limitless unfolding. He dismissed any con-
nection of intuition to the old Gnostic image of an inner light, or to any
sort of Collective Mind: it was the individual mind that mattered—in
fact, Brouwer’s mind.

When he enrolled at the University of Amsterdam at sixteen, in 1897,
he found himself surrounded by people who couldn’t understand him
and whom he couldn’t stand. He made solitary pilgrimages to Italy, walk-
ing there and back in his large, dark cloak. He retreated again and again
to his thatched hut in the forest, far from the world’s motley plurality, to
think mathematics directly, with eyes
closed. For this was a game played in si-
lence, as Brouwer’s follower Hermann
Weyl later put it. What the mind’s eye saw
were constructions fitting together. How
reminiscent this is not only of the Stoic
hand fitting the concept it grasped but
also of the ancient Greek philosopher
Xenophanes, who wrote that it wasn’t fit-
ting for God to move, but “without toil
he shakes all things by the thought of his
mind.”

By 1905 Brouwer realized that causal
thinking fell into mere low cunning and
was fundamentally immoral. Human na-
ture was the real villain: mankind was like a bird arrogantly gulping up
its own nest, as the Dutch had interfered with mother earth, gnawing
and mutilating her with their dykes. Driven and aided by their charac-
teristic human ability to reason, “some even start searching,” he wrote,
“for the foundations of their science . . . trouble increases and they go
completely crazy. Some in the end quietly give up . . . they grow bald,
short-sighted and fat, their stomachs stop working . . . ”

He had a remarkable ability to attack positions he himself held, as
though he had excluded any ground between contrary beliefs. A devotee
of “air and mud baths”, he wrote in 1905:

. . . these inept people then take air baths, and when they discover the
effect of sunrays they take to light baths and sun baths, and finally to
dusk baths, night baths, moon baths, star baths, forest baths and
meadow baths as soon as somebody proclaims them to be healthy.

L. E. J. Brower (1881–1966). Like
Descartes and Gauss, he had his
best insights in bed.
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Brouwer’s troubles increased through his combative life as he failed
to impose his will on his colleagues, lost his friends, and alienated all but
his docile wife and a shadowy secretary. In the end, although he remained
long-haired, lean, and fit, he quietly gave up promoting his revolution-
ary view of the way the mind builds up mathematics outside of lan-
guage: a view each of us shares at the moment of insight. What
Wordsworth wrote of Newton better fits Brouwer: his was

          . . . a mind for ever
Voyaging through strange seas of Thought alone.

Meanwhile, what of Hilbert and his opposite desire to release math-
ematics from the vagaries of personality into universal acceptance? The
field axioms made sense of what was built on them, but what made sense
of the axioms? Doubt, as racking as a dry cough, shook the body of
thought—for what did self-evident mean, after all? At best it implied
some sort of circular reasoning; the alternative was a regress of justifica-
tions like the endless tower of turtles supposed to support the world—
not an alluring infinity. And then, with the late nineteenth-century
reduction of mathematics to set theory, cracks in the form of paradoxes
began to open in the foundations themselves. The rot was everywhere.
Doubts increased about Euclidean geometry’s claim to the throne, with
the pretenders from France, Russia, Hungary, and Germany brandish-
ing their credentials. For each pictured space differently (Euclid’s sur-
faces were flat, the others’ differently curved), and nothing about them
revealed which was the correct portrait of actual space. And there was
the infinite. How could we, for example,
accept Dedekind’s claim that the irra-
tionals really existed when, like anything
in existence, they would have to take
shape in finite time—yet lack of a pat-
tern meant having to work out each of
their infinitely many decimal places?
Besides,  his cuts required treating the
sets that defined them as already com-
pleted infinities.

It would have been folly to beg these
questions by shifting the burden onto
some other subject, as if mathematics
were descriptive of the world so that
physics, say, or chemistry or the physi-
ology of the brain would be ultimately
responsible for its axioms—and in need
therefore of axioms in its turn. Nor

David Hilbert (1862–1943). From
a set of postcards of the
Mathematics Department sold
by the University of Göttingen
to tourists.
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could doubting simply be dismissed: it was as necessary a component of
the lust to know as aggression is of the sexual drive, though equally de-
structive in isolation.

But what about going back to the beginning of mathematics and re-
visiting and revising the Pythagorean vision? The harmony there could
be rethought in terms of a harmony among the axioms. If they were
consistent with one another, so that no paradox could follow from their
workings, a rounded body of connections would grow musically from
them. And if such axioms were also complete—sufficient, that is, for de-
ciding the truth of every coherent statement these workings produced—
then such a body would be a corpus of mathematics. Hilbert had already
shown that the rival geometries stood or fell together: if one was consis-
tent, they all were; if one harbored a contradiction, so did they all (see
the appendix to this chapter for how he did this). He showed too that
their consistency depended on that of the axioms for the natural num-
bers. The great project that he announced for the new century was there-
fore clear: logically to establish that these axioms were consistent and
complete, so that arithmetic would stand in solitary splendor—and phys-
ics or astronomy could later sort out which of the equally plausible ge-
ometries happened to fit the observable facts.

How wonderful to collect together a harmonious set of foundations
on which to build the edifice of mathematics. Nothing about this enter-
prise, however, guaranteed that the axioms would be an indubitable dis-
tillation of reality: that they were worthy of belief, as the word “axiom”
meant to the Greeks. They would now be more like legal stipulations, or
“postulates” in the Latin sense of agreements held merely for the sake of
the argument. There would be no more hope of chasing them back to
unquestionable truths than of following the etymology of “postulate” to
anything less fanciful than petitioning kings or nominating bishops or
wooing and praying.

To think of the axioms so is to recognize mathematics as a work of
art, the free play of human thought; and the counters in this play, finite
or infinite, would coexist in the harmony of consistency. But “play” is a
word with a double lid, like a magician’s hat: what goes in as the ace of
spades comes out a rabbit. Being the playthings of the gods, said Plato,
we should play the noblest games; yet games are what you are supposed
to put away with adulthood. Didn’t it trivialize our one contact with
certainty to make its foundations just coherent—as whimsical as are the
rules of Mah-Jongg? Wouldn’t mathematics thus be reduced to no more
than a meaningless system, the ultimate glass-bead game? Wasn’t that
where the Formalist impulse was driving us?

An equally frightening consequence lurked. If mathematics were
shown to be a flawless machine that spun gears of definition past levers
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of logic, what need was there for any human to do more than set it in
motion? The clockwork of 1900, the computer of 2000, could print out
its theorems without our organic interference. Where then would be the
glory of invention and the only claim our littleness has to the largeness
of things?

The Intuitionists attacked. Without saying where the axioms came
from, wrote the great French geometer, Poincaré, it would be as easy to
postulate one as another, leaving our efforts arbitrary and incomplete.
He himself suggested that our primary intuition was of mathematical
induction. Brouwer put his finger on the key issue: existence. Just be-
cause a mathematical system was consistent, did that make it exist? “A
false theory is false,” said Brouwer, “even if not halted by a contradiction,
just as a criminal act is criminal whether or not forbidden by a court.”
Only what thought can construct truly exists; and since what exists can’t
at the same time not exist, existence implies consistency. Hilbert’s for-
mal exercise might be ornate as a reliquary, but only the relic it housed—
the shard of intuition—worked the miracles of mathematics.

Someone with a medieval turn of thought might have brought up
what we’ll call “The Great Converse” in Hilbert’s defense. The medieval
view was that creatures—the created—glorify God; so if there were more
creatures, then the greater would be the glorification. Hence if some-
thing could possibly exist, it would exist. The world—as crowded with
beings as the Unicorn Tapestry—would then more loudly sing God’s
praise. In Hilbert’s terms this would translate to: since that which is con-
sistent can exist, therefore it must. From this medieval standpoint, prov-
ing consistency would be enough to guarantee existence. Is it conceivable
that Hilbert himself ever held this view? Could mathematical existence
have meant this much—not this little—to him? He wrote to the pro-
found logician Gottlob Frege on December 29, 1899:

You write: “I call axioms propositions that are true but are not
proved because our knowledge of them flows from a source very
different from the logical source, a source which might be called
spatial intuition. From the truth of the axioms it follows that they
do not contradict each other.” I found it very interesting to read
this sentence in your letter, for as long as I have been thinking,
writing, and lecturing on these things, I have been saying the exact
opposite: If the arbitrarily given axioms do not contradict each other
with all their consequences, then they are true and the things de-
fined by the axioms exist. For me this is the criterion of truth and
existence.

Of course you could see Hilbert as simply making sense of Peacock’s
Principle of Permanence. It didn’t matter what the objects of mathematics
were called or what the symbols stood for: the relations among them
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were the issue, and it was essential to guarantee that the axioms beget-
ting those relations led to no contradictions. If the basement of your
building is filling with water, you have to drain it before you can go back
to furnishing the rooms. Once the foundations were secure, imagina-
tion and meaning, the play of thought and the freedom of mind, could
return, and personality decorate the impersonal frame.

The arguments between Brouwer and Hilbert, at least, were soon
drained of content and degenerated into mere form. Brouwer walked
out of a dinner where Hilbert had been praised. Hilbert threw Brouwer
off the board of the journal they both edited. They skirmished over who
had published what first, and which mathematicians should go to a con-
ference in Bologna, embittered as only angels who fall out can be.

∞
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Listening to them as amplifiers of the two voices in everyone who does
mathematics, the message for us is important and complex. It has to do
with the entangled roots of certainty and imagination. After a century
such as the last you might cynically think that nothing indubitable was
left, nor anything that couldn’t be imagined. But imagination isn’t fan-
tasy: it means being able to focus ever more sharply on detail; and the
wonder remains that the mathematics we conjure up turns out to de-
scribe the singular world we find ourselves in. We will therefore need to
attend sympathetically to Hilbert and Brouwer, since it is from hardly
explored reaches in ourselves that their voices speak.

Below their antipathy lay a surprising accord, and their lines of thought
were more parallel than skew. As could happen in one of the new geom-
etries (you will see why in Chapter Eight), these parallel paths coincided
at their ends. Each began his career convinced that Kant was basically
right: mathematics grew from intuitions shaping what our senses took
in, even before we had any experiences—a shaping, in fact, that allowed
us to experience. But the growing variety of geometries meant that Kant
had to be wrong in some of the details. Gauss was the first to spot this:
the variety must show, he said, that our knowledge of space turns out to
depend on experience; but there are no competing systems of number
because it alone comes from an intuition prior to experience.

Hilbert agreed. As part of his doctoral examination in 1885 he de-
fended the a priori nature of arithmetical judgments (those, that is, about
the natural numbers). Forty-five years later, in the farewell address he
gave to his native city of Königsberg, he explained that after the dross
had been removed from Kant’s theory, “only that a priori will remain
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which also is the foundation of pure mathematical knowledge”—a foun-
dation, he said, of intuitive insight.

William Rowan Hamilton, the Irish mathematician we met briefly
before, wrote prophetically, as early as 1833, that the intuition of time
was the sole source of number. With space now banished away by the
purifiers, Kant’s symmetrical foundations were broken, and the asym-
metry took hold of the young Brouwer even more violently than it did
Hilbert. He too defended the remaining bastion, but went beyond Kant,
by turning intuition from passive stamp to active agent. He may never
have read Hamilton, but like him declared that time was the primordial
element from which mathematics came, and added that the Primordial
Happening was becoming aware of one’s existing in time. All of math-
ematics was made by detached and silent reflection on this Happening,
during which the intuiting mind grasped something of time’s reality.
For this intuition yielded the two species of time: the “1” and “2” from
“Then” and “Now” that gives us the natural numbers, and the continu-
ous flow, from the ever in-between, that gives us the rationals and Brou-
wer’s version of the reals, which for him exist only up through the decimal
places we have finished constructing.

Despite what sounds like the ascetic calm of that detached reflection,
Brouwer carried a world of capriccios darker than Goya’s back to his
hut. One had to be ever on guard against impurities that might creep
into one’s thought and nonintuitive germs that might be caught from
others. And while he wrote publicly of “the fullest constructional beauty,
the introspective beauty of mathematics,” he jotted down in his note-
book that “Mathematics and its application are sinful because of the
intuition of time which is directly experienced as sinful.”

He must, however, have been as blithe as Alcibiades in excluding con-
tradictions from his moods, to plunge as he did with such unremitting
vigor into the central task of his life. This was the need to prove his
fundamental theorem. Since most of mathematics grows by using func-
tions (think of them as rules or machines that  effectively convert nu-
merical inputs into numerical outputs), Brouwer had to show that
functions worked accurately on numbers as he conceived them: built up
in time. Natural numbers and rationals come well packaged, but
irrationals, as you saw on pages 22 and 23, trail off fizzing and sputter-
ing like the gauzy tails of comets. Brouwer’s irrationals have two parts:
the finite number of places we have made is like the comet’s bright head;
the rest is the tail we see fading away. His fundamental theorem would
prove that if such a comet-like number entered into a function, a spe-
cific and similarly comet-like number (with an equally finite head) would
come out. He hoped to prove that the output would depend only on the
input’s safely constructed head.
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But his hopes lie scattered like Melancholia’s tools around his aban-
doned building. What proofs he tried from 1923 onward all failed. The
silence into which he retreated, until he died in 1966, was broken only
now and again by fresh announcements of old programs, each ending
on the threshold of the theorem he couldn’t prove.

Hilbert meanwhile had all but finished his proof that the formal sys-
tem of arithmetic—Peano’s axioms—was consistent and complete, when
a young Austrian logician named Kurt Gödel conclusively showed in
1931 that no proof of consistency and completeness could ever be made
within the system to which it referred, as Hilbert’s was meant to—for
any system which was strong enough to deal with the mathematics of
the natural numbers. While such a proof might exist in a larger system
containing the first, its consistency would in turn have to be proven in a
yet larger—

And the great fleas themselves, in turn,
Have greater fleas to go on;
While these again have greater still,
And greater still, and so on.

There was no hope, then, of securing the axioms by Hilbert’s clever
outflanking maneuver. He and his rival had moved through time, intent
on its expression, to have their paths ultimately coincide in failure. Thou-
sands of years before, someone had written an inscription on the base of
the Egyptian statue of Neith: “I am all that was, that is, and that shall be,
and no man has lifted my veil.”

Was their failure inevitable because they had risen past the air that
mind must breathe? Or had their counter-strivings managed to raise
mathematics to a higher level? In his last publicly spoken words—a re-
cording of the 1931 radio broadcast still exists—Hilbert said there could
be no such thing in mathematics as an unsolvable problem. “Wir müssen
wissen. Wir werden wissen,” he concluded: we must know. We shall know.
And his biographer says that if you listen closely to the recording you
will hear, through the crackle, a faint sound: Hilbert laughing.

The tension between Brouwer and Hilbert draws large the contrary
poles in all who practice this art, showing mathematics’s tensile strength—
just as the weight of its compiled conclusions shows its compressive.
Their struggle reached its climax between the wars, but we are always
between two wars. The clamor over the foundations of mathematics only
sleeps.* In this meantime no one would ask for justification by faith—

*Looking back over the rhythms in this history you might think that we shuttled between a few
opposed positions. But the course of thought seems more of a spiral than a circle: new experi-
ences and insights return us always above the positions we held and abandoned.
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but might not justification by works serve? For when in the next chap-
ters we look at the theorems built on those foundations, we will see radi-
ant design and darting inspiration, the elegance of symmetry and
asymmetrical surprises, preludial playfulness and fugal solemnity. Will
this not be convincing evidence that the tower of mathematics is firmly
founded?
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Languages grew confused as the tower of Babel rose—perhaps because
its foundation in all the variety of a common speech was too broad. The
tower of mathematics is inverted, widening up and outward from its
few axioms. These unify a greater and greater diversity.

Having walked one turn up the spiral, we are now where the immedi-
ate consequences of the axioms live. Here the first questions that the
axioms give rise to can be answered. Is 0 the only additive identity and 1
the unique identity for multiplication? A proof as firm as a handshake
shows this is so, along with another, that each number has only one in-
verse (the proof isn’t in the eating but the Appendix). It is on this turn
that the proof you have already seen, that a · 0 = 0, is at home; and it is
here that the row about dividing by 0 is settled.

“I can more easily imagine cutting something up zero times than I
can a million times!”

“Only God can divide by zero.”
“You can multiply by zero, and division is paired with multiplication,

so you can divide by zero.”
The keeper of the axioms comes out of his shop holding his favorite

instrument, the proof by contradiction.
“Assume,” he says, “that you could indeed divide by 0. That means 0

has a multiplicative inverse, just like any other number. My axiom M4,
about multiplicative inverses, guarantees that

n 1
1 ,

n

⋅ =

so if n = 0,

1
0 1 .

0
⋅ =
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“Now choose a number, and I’ll choose a different one; I’ll call yours
a and mine b. So a ≠ b. If you feel that a card was forced on you, remem-
ber my third axiom of multiplication. It said that there were indeed at
least two different numbers: 1 ≠ 0; or if you’d rather align yourself with
Brouwer, 1 is different from 2.

“And now we will reach our goal together, in the way of mathematics,
by building on previous work. We know that a · 0 = 0 and b · 0 = 0, so

a · 0 = 0 = b · 0 ,

hence

a · 0 = b · 0 .

“Multiply each side of this equation by the supposed inverse of 0, 1

0
:

1 1
(a 0) (b 0)  .

0 0
⋅ ⋅ = ⋅ ⋅

Now use the Associative Axiom of Multiplication to shift the parentheses:

1 1
a 0 b 0  .

0 0
   ⋅ ⋅ = ⋅ ⋅      

But we saw that 0 · 1

0
 would have to be 1, so what we have is

a · 1 = b · 1 ,

in other words,

a = b ;

and this contradicts a being different from b. Since the logic of each step
was sound, the only thing that could have gone wrong was assuming
that 1

0
 exists—that is, that you could divide by 0.”

This sort of proof, like close-up magic, is over so quickly that it takes
walking slowly around it to convince yourself of its legitimacy and im-
portance. The arguments over the centuries about whether 0

0
 was 0 or 1,

indefinite or infinite, have been settled in a moment: none of the above.
Farther along this first tier lies the answer to a puzzle that has put too

many people off math forever, convinced that its dicta were arbitrary or
spiteful: for why should the product of two negative numbers be posi-
tive? We won’t be helped by remarking that two wrongs don’t make a
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right, and we can’t get no satisfaction from double negations being as-
sertions. J. B. Brown, writing in a 1936 Punch, speaks for us all:

Long ago, when a small scrubby schoolboy
A mixture of Etons and ink
(Eheu fugaces! How time simply races!
Said somebody, Horace, I think),
Whatever the lesson I read it and said it
Without the least trouble or fuss—
But I never could see how on earth it could be
That – plus – made –
But – times – made +

So, just as the ancient Achilles
Had his heel for opponents to pink,
The armour, it’s plain, of my versatile brain
Has its single assailable chink.
Must I always in ignorance wander? I ponder—
For ever be limited thus?
Or will it be clear ere I vanish from here
Why – plus – is –
But – times – is +?

Mathematics is synthetic, so again let’s build on our recent gains. In-
stead of a proof by contradiction, we will spin out from the axioms a
web fit to catch this mystery. If a and b are positive numbers, we want to
know whether (–a) · (–b) is negative, positive, or what.

We certainly sense that a positive times a negative is negative: owing 4
people $3 puts you $12 in debt, and the Commutative Law assures us
that 4 · (–3) is the same as (–3) · 4: a negative times a positive is negative.
You’ll find a more rigorous proof in the Appendix.

We are now ready to learn what (–a) · (–b) is. By the Additive Inverse
Axiom, b – b = 0. Multiply both sides of this equation by –a:

(–a) · (b – b) = (–a) · 0 .

Since anything times zero is zero, this simplifies to

(–a) · (b – b) = 0 .

Ignore the fact that (b – b) is 0: it won’t get us anywhere. Instead, look at
the equation from the different angle provided by the Distributive Axiom;
then it turns into

(–a) · b + (–a) · (–b) = 0 .
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From our previous discussion, we know that (–a) · b is –(a · b), so our
latest equation can be rewritten as

–(a · b) + (–a) · (–b) = 0 .

Pause for a moment to consider this. –(a · b) plus something—our
mystery guest—is zero. But we already know what you have to add to
–(a · b) in order to get zero: its additive inverse, the positive number a · b!

So

(–a) · (–b) is a · b in disguise:

(–a) · (–b) = a · b .

The product of our two negatives is positive, no matter how happy and
undeserving a may appear, or how wretched and meritorious b.

We can only hope that this became clear to J. B. Brown ere he van-
ished from here, and are grateful that the axioms have let us prove the
truth of what confounded our intuition. Have negative numbers defini-
tively moved mathematical thought into abstraction, where the dance
of symbols becomes vivid instead of figures? Or do you find the visual
proof in the appendix to this chapter not only convincing but illuminat-
ing? Notice that in our dances the same steps—axioms of additive and
multiplicative inverses, and distributivity—occur again and again. This
is because, like squaredances in the confines of a barn, little room to
maneuver leads to intricate patterns. The more elaborate these become,
each linking onto the last, the more such patterns will all seem to lodge
in a sense at once more ancestral and more abstract than sight. It is as if
the predominance in our brains of the visual cortex masked a different,
deeper apprehension—of time, then, or something akin to music: struc-
ture itself.

∞

��������	
������


Whatever we find as we spiral up the tower appears to be made by addi-
tion or multiplication. Addition you know like the back of your hand.
Its axioms wholly describe it and its basic building block is the number
1. Since the axioms for multiplication are all but the same as those for
addition, shouldn’t you know it as well as your palm? The two opera-
tions have different identity elements, 0 and 1; the roles they play in the
distributive axiom differ—and that’s all. But what are the building blocks
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of multiplication? The composite number 24 breaks down into a sum of
1s, but a product of what—2 and 12, or 3 and 8, or 4 and 6? If you look
for the atomic factors of 24 you end up with

2 · 2 · 2 · 3 ,

or 23 · 31. These factors are the atoms of multiplication because no fur-
ther factor (save the anonymous 1) divides them.

They are called the prime numbers, and simple as they are to describe,
nothing in all of mathematics has turned out to resist more stubbornly
our efforts at understanding. Here we are, wholly within the circle of the
natural numbers, where it is equally natural to ask: what pattern is there
to the primes, and how do they behave? Insights into these questions are
so few and far between that each is celebrated as a major victory, and
people otherwise lost to time are remembered for one telling conjecture
about them.

Even the most elementary question brings us up short: how many
primes are there? The first few are

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31. . . *

Looking at that line-up and consulting the inner oracle of your intu-
ition, you might be tempted to think that the primes went on forever,
since the natural numbers do, and these are among them. Or you might
reason that the farther out you go, the fewer there will be, since the larger
the number, the more factors pile up behind it—so after some point the
primes might simply give out. This argument is supported by a prelimi-
nary survey: there are 25 primes between 1 and 100, 6 between 1,000,000
and 1,000,100, but only 2 between 10,000,000 and 10,000,100. We are
wise enough in the vagaries of numbers by now, however, to sample
only as a geologist studies a pebble: not to deduce the mountain from it,
but to build up the evidence in his trays.

The very finite proof that in fact the number of primes is infinite
stands framed in Euclid—so it is at least 2,300 years old. It needs only the
briefest introduction. When we say “divides” in this chapter on Number
Theory we will always mean “without a remainder”—so 3 divides 9 but
not 10. Now we are prepared to follow, as if they were our own, the
thoughts of a mind so very far from ours in time and context.

*We omit 1 because although it fits the definition of “prime”—a natural number divisible just by
itself and 1—it would only clutter up the uniqueness of prime factorization: 24 could be written
as 1 · 23 . 31 or 1 · 1 · 1 · 1 · 23 · 31 or any number of useless 1s scattered among the substantial factors
of 2 and 3.
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Euclid wants to prove that there is no last prime. He does this by show-
ing that no matter how many primes you have, you are forced to pro-
duce another. For multiply together all the primes you can think of in
order, stopping at some prime p, and call the product of them all n:

2 · 3 · 5 · 7 · 11 · 13 · . . . · p = n .

Clearly, every single one of these primes divides n.
But if we have n, we must also have n + 1. This seriously large number

is very much greater than any prime in the collection, but it can’t be
divided by any of the primes from 2 to p, since division by any of them
would leave a remainder of 1.

You would like to conclude now, with glee, that n + 1 must therefore
be prime—but we have to attend first to a small point of order. n + 1
might not have any of the primes from 2 to p as a factor, yet it might still
be composite if it had a prime factor q somewhere in the great gulf be-
tween p and n + 1. Well and good: then q would be the new prime.

This flash of a proof lights up the infinite vista of natural numbers
enough for us to see that the primes in their niches are stationed end-
lessly there. Its beauty lies not only in the beam’s pure light, but in achiev-
ing so much with so little.

The twentieth-century mathematician Paul Erdos often spoke of “The
Book”: the book, he meant, in which God keeps all the most beautiful
proofs. “You don’t have to believe in God,” said Erdos, “but you do have
to believe in The Book.” Everyone has his own edition of this book, but
Euclid’s proof of the infinitude of primes is
likely to be in them all.

After such a breakthrough you would ex-
pect hordes of results about the primes to start
pouring in. We know that there are infinitely
many multiples of 3, and if asked for a for-
mula which would give us any particular one,
such as the eighteenth, could do so with ease
(54), by way of the expression 3n. Yet even this
we still can’t do for the primes. A clever Greek
named Erastosthenes, in the third century B.C.,
did make use of such patterns to sieve out the
primes in a purely mechanical way—not by a
formula but from what all formulas like 3n
left behind. This is the way it worked.

Write out the natural numbers from 2 on
for as long as you like, then cross out the mul-
tiples of 2, then of 3, then of 5—but leave 2, 3,

Erdos at eight. The book in
his hand is most likely not
yet The Book.
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and 5 themselves standing. The next number you come to has to be a
prime, so leave it in place but cross out all its multiples, and repeat the
process. What you are left with will be just the primes scattered through
your original table.

Before

During

After

Ingenious? Yes. A work of genius? No. Eratosthenes seems to have
been the first person for whom that English put-down was used, “a Beta
mind”. His device would allow slaves then and computers now to spell
out the primes, but without any insight into their structure—without
even any need to know multiplication tables. Repeatedly counting up to
three, up to five, up to seven, and so on suffices, and isn’t to be despised:
you will see in Chapter Nine how counting alone will open windows on
a landscape more dramatic than any in fantasy fiction.
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An enormous number of primes has been amassed since Eratos-
thenes’s day, and our casual statistics on page 60 seem to show them
dwindling away the farther along we go—yet now we can add: without
ever disappearing. Perhaps if you laid out regular intervals you would
find steadily fewer in each, like settlers in the first westward scatter past
the Appalachians. To test this, let’s look by hundreds at the stretch from
1 to 1000:

Between The Number of Primes Is

1 and 100 25
100 and 200 21
200 and 300 16
300 and 400 16
400 and 500 17
500 and 600 14
600 and 700 16
700 and 800 14
800 and 900 15
900 and 1000 14

This is faintly disquieting: the number of primes bumps down and up as
it declines. Perhaps it will even out as we move much farther along:

Between The Number of Primes Is

1,000,000 and 1,000,100 6
1,000,100 and 1,000,200 10
1,000,200 and 1,000,300 8
1,000,300 and 1,000,400 8
1,000,400 and 1,000,500 7
1,000,500 and 1,000,600 7
1,000,600 and 1,000,700 10
1,000,700 and 1,000,800 5
1,000,800 and 1,000,900 6
1,000,900 and 1,001,000 8

Curiouser and curiouser. As bumpy as before, but at least the numbers
are consistently lower. If we move up to the thousand-long stretch from
107, that is, 10,000,000, on, we might expect minor perturbations, but at
least we won’t see any interval with 10 primes in it again—or will we?
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Between The Number of Primes Is

10,000,000 and 10,000,100 2
10,000,100 and 10,000,200 6
10,000,200 and 10,000,300 6
10,000,300 and 10,000,400 6
10,000,400 and 10,000,500 5
10,000,500 and 10,000,600 4
10,000,600 and 10,000,700 7
10,000,700 and 10,000,800 10
10,000,800 and 10,000,900 9
10,000,900 and 10,001,000 6

The law governing the distribution of primes must be quite subtle—for
surely there is some law. At any rate, we haven’t found 25 primes in a
span of 100 numbers this far out, or any of those concentrations we saw
between 1 and 1000. Perhaps then the distribution of primes is settling
down toward some constant number in any hundred-unit run—two,
say, or three. We last looked at 107. By the time we accelerate away to the
trillions, for example, we might expect fewer than 6 in any patch of 100.
Disappointment again:

Between The Number of Primes Is

1012 and 1012 + 100 4
1012 + 100 and 1012 + 200 6
1012 + 200 and 1012 + 300 2
1012 + 300 and 1012 + 400 4
1012 + 400 and 1012 + 500 2
1012 + 500 and 1012 + 600 4
1012 + 600 and 1012 + 700 3
1012 + 700 and 1012 + 800 5
1012 + 800 and 1012 + 900 1
1012 + 900 and 1012 + 1000 6

After having so triumphantly proved so long ago that there are infi-
nitely many primes, why are we having such trouble in the twenty-first
century answering this simple question about their distribution? Per-
haps our approach has been wrong. Let’s ask instead if we will ever find
a gap larger than 6 between consecutive primes (6 was the gap between
23 and 29). There must be, since there is, for example, only one prime
between 1012 + 800 and 1012 + 900, hence a gap of at least 50.

The startling news is that there are stretches of numbers a thousand
long with not a single prime among them. More: there are primeless
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stretches a million long! Since the primes never end, you will come on
one eventually after such a span—which begins to give a horrifying sense
of how big very big numbers are, and how immeasurably bigger than big
the infinity of the natural numbers is.

Yet we have hardly begun. There is at least one run of natural num-
bers a trillion long where there are no primes whatsoever; and another
ten trillion long; and another—but you probably think that no human
could possibly know this for sure, or that it would take an equally gigan-
tic mind to understand it. In fact, the proof is at your fingertips, so per-
versely beautiful and innocently powerful is mathematics. This proof is
a variation played on Euclid’s theme.

We need a new symbol to help us, and the one commonly used is
appropriate to the astonishment of our theorem that there are strings of
numbers as long as you like that haven’t a single prime in them. This sym-
bol is !, called factorial. Written after a natural number it means: take the
product of all the natural numbers up to this one. So 3! = 1 · 2 · 3 = 6,
5! = 1 · 2 · 3 · 4 · 5 = 120, and n! = 1 · 2 · 3 · 4 · . . . · n.

Now choose any number n you like—n could be 7 or 93 or 65,537—
and make the much larger number n!. Consider the following string of
consecutive numbers:

n! + 2, n! + 3, n! + 4, n! + 5, . . . , n! + n .

We don’t start with n! + 1, since it might be prime; but n! + 2 can’t be,
since 2 divides each part and hence is a factor of the whole. In the same
way, 3 is a factor of the second number, 4 of the third—and so on, up to
the last, of which n is a factor. So none of these numbers—there are n –1
of them—can be prime! If you want, then, to make a string of numbers 78
octillion long which is guaranteed to be without a prime, let n be 78 octillion
plus one (78 · 1027 + 1 or 78,000,000,000,000,000,000,000,000,001), and
the required numbers will run from (78 octillion + 1)! + 2 to (78 octillion
+ 1)! + (78 octillion + 1). After that prime-free run, somewhere, there
will be another prime. . .

A proof like this makes you as giddy as does looking too long at the
night sky, where darkness and stars unequally recede:

This lonely hill was always dear to me,
And this hedgerow, that hides so large a part
Of the far sky-line from my view. Sitting and gazing,
I fashion in my mind what lie beyond—
Unearthly silences, and endless space,
And very deepest quiet; then for a while
The heart is not afraid. And when I hear
The wind come blustering among the trees
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I set that voice against this infinite silence:
And then I call to mind Eternity,
The ages that are dead, and the living present
And all the noise of it. And thus it is
In that immensity my thought is drowned:
And sweet to me the foundering in that sea.*

Just when you think you have come to terms with the inhuman di-
mensions of the primes, they deliver a shock with a shiver of intimacy in
it. For if you go back to the list on page 60 of the first few primes, you’ll
notice that there are some which are only two apart: 3 and 5, 5 and 7, 11
and 13, 17 and 19. By now you would expect such pairs—“twin primes”
as they’re called—to thin out and disappear in the outer reaches. Yet 101
and 103 are both prime—and so are 809 and 811, and 3,119 and 3,121,
10,005,427 and 10,005,429. It has long been suspected that although they
recede from one another like red-shifted stars, there is an infinite num-
ber of these twin primes. Like most of the questions in mathematics,
this one has yet to be answered, and all we can do thus far is come up
with new champions. The largest twin primes on record, to date, are
1,807,318,575 · 298,305 –1 and 1,807,318,575 · 298,305 + 1. Each would take
about thirteen of these pages to write out in full, and would likely make
tedious reading. The excitement lies in the acrobatics needed to find
them (a discovery made just as we were writing these pages. For the
actual announcement, see the on-line Annex).

Where does that leave the primes? Irregular surfacings, gigantic gaps,
occasional twins—we are so used to pattern coalescing at last from chaos
(reading the geological record from strewn fossils) that we proudly think:
where pattern is, our minds will find it. What if after all, then, there is no
pattern, and multiplication, unlike addition, is built—built by us!—on
utterly chaotic foundations? Could such slender differences in the axi-
oms of addition and multiplication lead to divergences this profound?

Since there seems to be no rhythm to the primes, let’s invert our way
of looking and ask if different rhythms carry different quantities of them.
A 3-rhythm starting with 3—

3, 6, 9, 12, . . .

has only one prime: that initial 3. What about a 3-rhythm starting with 2?

2, 5, 8, 11, 14, 17, . . .

where each number is one less than a member of the 3-times table—so
the rule is that the nth term of the sequence is 3n – 1.

*Leopardi, “The Infinite”, in John Heath-Stubbs’s translation.
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A proof, very like Euclid’s for the infinite number of primes, will show
that there is an infinity of primes even in this sequence. The proof slips
on like a glove. Assume there are only finitely many primes in the se-
quence 2, 5, 8, 11, 14, 17, . . . and so on, to a last one, p. Now multiply all
these numbers together, multiply that product by 3, and then subtract
one. Call this result m:

m = 3 · (2 · 5 · 8 · 11 · 14 · 17 · . . . · p) – 1 .

m is clearly much larger than p, the supposedly last prime in the se-
quence, and m is also in our sequence, because it is of the form 3n – 1.
Amazingly enough, any number of this form has at least one prime fac-
tor of the form 3n – 1 (consult the Appendix for a proof). Yet we know
from our little discussion, back in the innocent days of page 61, that
none of the primes up to p could be that factor, since each is already a
factor of 3 · (2 · 5 · 8 · 11 · 14 · 17 ·. . . · p) and hence would leave a
remainder of 2. So m is either prime and destroys p’s haughty claim to
be the largest prime of this form, or it has a prime factor somewhere in
the gap between p and m, and this prime factor would also have the
required form and be larger than p.

The story of how many primes there are in such sequences was finally
told in 1837 by a remarkable man named Johann Peter Gustav Lejeune-
Dirichlet (an ancestor, a young man from Richelet—“le jeune de Rich-
elet”—moved from Belgium to the Rhineland. Naturalization changed
the spelling over time but some ancient memory saw to it that, though
the “ch” became hard, the “let” is still pronounced as it was in French).
Johann married Mendelssohn’s sister Rebecca, and since everything is
connected to everything else, it should come as no surprise that Johann
was taught by Georg Ohm, whom we met in the second chapter, and in
turn taught Kronecker, whom we met in the first. What Dirichlet
proved—one of the landmarks in number theory—was that any sequence
of the form an + b will have infinitely many primes in it, as n goes from
1 through the natural numbers; all that is required of a and b is that they
have no common factor.

Once again we are at a loss in trying to see the structure of the primes:
no particular rhythm carries more of them than another. Yet if we as-
sume chaos we cannot but deduce despair. Since intuition and common
sense have left us stranded, we need an insight—and then a proof for it
to nestle comfortably into. Gauss—whom we saw as a schoolboy trium-
phantly writing on his slate—used to contemplate tables of primes for
sheer amusement, the way Russians always and the English on country
house weekends love browsing through railway timetables.
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He would while away spare hours
calculating in his head which num-
bers were prime in runs a thousand
long. This sort of rambling among
the naturals, like a lepidopterist out
with his net, was to gain him not only
a collection of iridescent creatures
but give him the basis, at last, for
something approaching their tax-
onomy.

His intimacy with the raw data led
him to mull over a question with a
statistical flavor: ignoring the stut-
tering way they pop up, might there
yet be some regularity in how the
sheer number of primes increases?
Let’s graph how many primes there
are up to the number x (in our diagrams the horizontal axis will be the
inputs: values for x; and the vertical axis the outputs: number of primes
less than or equal to x). This function is commonly called π(x), meaning
the number of primes less than or equal to x (that “π” has nothing to do
with the π from geometry, but was chosen so that the Greek p would
remind us of “prime”). So π(3) = 2, since there are two primes (2 and 3)
less than or equal to 3, π(4) is also 2, and π(8) = 4 (2, 3, 5, 7 are the
primes less than or equal to 8).

Carl Friedrich Gauss (1777–1855),
a mason’s son and the master builder
of mathematics.

Here is the graph of π(x) for x up to 100 (in order to accommodate
the slow growth of the primes, we have shrunk the units on the vertical
axis until those on the horizontal axis are about seven times their size, so
that the graph looks much steeper than it should):

Only the horizontal “treads” matter in this step-graph. The vertical “risers” are
conventionally put in just to give it a coherent shape.
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This rises by uneven steps, but on a staircase with at least a steady camber
to it, so that a brush stroke would make the rough places smooth—and a
smooth curve stands a good chance of representing a congenial function.

Now when you look at π(x) for x up to 50,000, you see such a curve:
the irregularities have startlingly been spirited away, as the remote full
moon makes a perfect circle in the sky.
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Yet smooth as the curve may be, we can’t predict how it will continue, or
understand what gives it the shape it has, unless we discover a function
which accounts for it: a function whose graph it is.

The amazing fifteen-year-old Gauss came up with such a function.
He looked at the data we saw on page 63 and realized that the ratio of x
to π(x) increased by roughly 2.3 from one power of 10 to the next. 2.3?
To someone utterly engrossed in mathematics this number will ring with
the familiarity that “To be or . . .” has for a reader of English: it is the
beginning of a famous exponent. There is a number e—an irrational
close to 2.7—which lies at the heart of biology and economics, because
it expresses organic growth. When e is raised to about 2.3 you get 10.
The eccentric Scottish mathematician John Napier cobbled together two
Greek words, logos and arithmos, to make “logarithm”, for talking about
what exponent is needed to raise a chosen number (the base) to reach
the number you want. Since “23 = 8” says you must raise the base 2 to the
power 3 in order to get 8, Napier wrote: the logarithm with base 2 of 8 is
3 (abbeviated ln

2
 8 = 3). The number you need to raise e to, in order to

get 10, is about 2.3 (ln
e
 10 ≈ 2.3; most people simply write ln 10 ≈ 2.3,

where “ln” by itself means with base e). A brief note in the Appendix
explains e and its logarithm.

Gauss therefore leapt to the conjecture—on the basis of how the
primes were distributed among the first 3,000,000 integers!—that
π(x) was closely followed by x

ln x
. You see here how well the two curves

match:

Logarithms and irrational numbers? How could these creatures of
realms so remote from the naturals have any bearing on the primes?
Perhaps because our looking is statistical; or because no sort of number
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is an island but each is a part of the main, and the sea of functions impli-
cates each in all.*

Gauss was unable to prove his conjecture, which did not become a
theorem until 1896, when it was proved independently in two very dif-
ferent ways by two very different men, who were born a year apart and
died a year apart, almost a century later; their lives were to diverge radi-
cally from their intersection at the proof of this conjecture. One, who
gloried in the name Charles Jean Gustave Nicolas de la Vallée Poussin,
was born, lived, and died in Louvain, in Belgium: a professor, like his
father before him, at the university there; survivor of two world wars
and fifty years of teaching. The other, Jacques Hadamard, was good in
all subjects but math when at school (“In arithmetic until the seventh
grade I was last or nearly last”); worked vigorously to clear his relative
Dreyfus; had two sons killed in the First World War, and fled from France
to America during the second. Each sought a solution to the clarion call
of this problem in the texture of ideas and techniques thickening around
it, and followed his separate clue out of the labyrinth.

You will notice that the graph of x

ln x
 stays below π(x) up to x = 50,000.

Gauss, endlessly fecund, came up with an even better approximation to
π(x), this one narrowly overestimating it, up to at least x = 1,000,000,000.
His new approximation, called Li(x), involved a notion at the heart of
calculus, the integral:

x

2

1
Li(x) dt .

ln t
= ∫

Here the eighteenth-century elongated S denotes the area between the
x-axis and the curve traced by the function (in this case that function is
the reciprocal of the logarithm function) between two vertical lines (here
set up at 2 and, to its right, at x).

*e is by no means the only irrational that lives with the primes. The π of geometry, which is an
irrational beginning 3.14159. . . , has pitched its tent in their midst. For if p

1
, p

2
, p

3
 and so on are

the primes in order, then the infinite product,
2

2 2 2 2 2 2
1 2 3

1 1 1 1 1 1
      . . . =       . . . =

1 1 1 1 1 1 61 1 1 1 1 1
2 3 5 p p p

π⋅ ⋅ ⋅ ⋅ ⋅ ⋅
− − − − − −

and π2 is irrational too. Euler first miracled this up. We still hardly understand all it implies.
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You see the remarkable accord between π(x) and Li(x) up to x = 50,000
(the area Li(x) measures, after all, grows as x grows, and like π(x), ever
more slowly):

On this scale you can’t even see the difference between them, yet up to
very large x, Li(x) always overestimates π(x). Gauss remarked that for x
= 400,000, π(x) = 33,859 and Li(x) ≈ 33,922.621995—a difference of
less than .2%. Does it always overestimate? Strangely enough, no. Some-
where very far out, π(x) becomes larger than Li(x). We don’t yet know
where this happens, but it has been shown to be past 1020, and is likely to
be around 1.39822 · 10316. This number, far greater than the number of
particles in the universe (a mere 1075 or so), is no more than a peak in
the mountainous landscape where number theorists stride. Once past
their first crossing, Li(x) and π(x) exchange places infinitely many times
as they draw closer and closer together.

The ratio 1

ln x
 that appears in this integral turns out to have a close

relative that tells us something about the distribution of twin primes—
even though we still have no proof that there are infinitely many of them!
A great deal of modern work allows us to say that for any number a, the
number of twin primes in a run of naturals from x to x + a will be close to

2

1.3a

(ln x)

(for purists, 1.3 is, somewhat more precisely, 1.3203236316. . .). This
estimate predicts 584 twin primes between 108 and 108 + 150,000, and
601 have been found. It predicts 166 between 1015 and 1015 + 150,000,
and 161 have been found.

Even the great gaps we saw yawning amid the primes can be mea-
sured by logarithms. The length of the largest prime-free gap up to the
number x—call this g(x)—is well approximated by (ln x)2:
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Looking at the distribution of the primes, the contemporary math-
ematician Don Zagier wrote that he had “the feeling of being in the pres-
ence of one of the inexplicable secrets of creation.” Certainly the need
to make excursions into mathematical continents so remote from the
naturals in order to bring back some understanding of them, has an
effect like music’s on our minds: how can vibrating brass and wire, gut
and air, set up such abstract poignancy within us?

What are the hints we should follow: which are beacons, which false
fires? Is it important to know if the number of twin primes is indeed infi-
nite? What about the primes that are “palindromic”, like 101, 373, and
929—does it matter if there is an infinite number of them too? Or the
“counting primes” such as 1,234,567,891 and 12,345,678,901,234,567,891
and (this way madness lies) 1,234,567,891,234,567,891,234,567,891?
The “topping and tailing” primes: you can remove digits from either
end of 739,397 and what’s left remains prime; you can take as many
digits as you like from the tail of 739,391,133 or from the top of
357,686,312,646,216,567,629,157 and each is still prime; do we care if
there is an infinity of these? Will hidden vistas open if we one day prove
the 250-year-old conjecture of Christian Goldbach, that every even num-
ber from 4 on is the sum of two primes? It is the sole memorial to the
dilettante son of a Königsberg pastor, who established the pattern for
the education of future Tsars, and corresponded in elegant French, Ger-
man, and Latin with every renowned mathematician of his era, asking
difficult questions (for it marks our kind that we know how to pose so
many more questions than we know how to answer). As of 1998, Gold-
bach’s conjecture was true up to 100,000,000,000,000—which is as noth-
ing compared with every even number.
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Knowing what creatures there are and what creatures there could be
in this crowd of primes must surely give us a presentiment of its struc-
ture, and some corner of the pattern may be the key that will turn it into
a living garden, where what is design will sort itself out from ornament.

To what, then, should we compare our present condition—as ice-
bound as was Shackleton at the Pole? Are we like those brilliant, autistic
people who understand that there must be something which facial ex-
pressions reflect and can with avid intelligence catch clues to correlate
some with others, yet have no idea what the cause of such effects might
be? Or more like those born blind who can yet just sense when they are
facing the light but can’t imagine what they will see when one day the
shutters are removed? Will it be, as we hope, glorious altogether and in
each part, or—with simplifying abstraction removed—speckled with
unguessed dust?
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I had removed the black earth’s boundary stones:
Once she had been enslaved and now was free.
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This is what Solon, the great Athenian lawgiver, wrote some twenty-five
hundred years ago. Taking boundaries away, however, can lead from fu-
sion to confusion and so to chaos. We know where we are when our
thoughts, like our words, are sharply defined.

The Greeks had a word for the infinite and it was apeiron (’α′πειρον),
which literally meant “without boundary” and translates equally well
into “indefinite”. Why should they, why should we, so concern ourselves
with the endless, when it may only amount to the vague? Anaximander,
who lived a hundred and fifty years before Socrates, recognized the fool-
ishness of claiming that one element or another—earth, air, fire, wa-
ter—was the source of everything else. Rather, he said, the source is the
apeiron—as if distinction rose out of indistinction, the way it does in so
many creation myths. We think this way still, seeing speciation on a grand
scale evolving from the unspecified, and minutely differentiated tissues
from stem cells.

The infinite disguised as the indefinite is our onlie begetter. But in
this same guise it is how we imagine the world truly to be: made up
ultimately not of separate objects, molecules, atoms, electrons, or quanta,
but, past the ever more granular, to be as partless as the ocean, where
our little prisms of selves spray up and soon enough submerge. Just as
we picture continuity in the material world by rocks between boulders,
stones between rocks, pebbles between stones, and sand to fill in the
crevices, so we see fractions in the spaces between integers—and for frac-
tions “ever smaller” means denominators becoming infinitely large. If
the heavens are full; if everything flows; if time is a river: then not only
how we began but how we go on is drenched in that ambiguous apeiron.
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“Tell me if ever anything was finished,” da Vinci scribbled again and
again over his late drawings of tumbling chaos. He tried to give some
form to this chaos by representing it as cascades and waves and whirl-
pools, since their immensity was at least shaped by comprehensible forces.
Our hope is to find some structure to the infinite, behind what might be
only superficial indefinition: regularities governing infinite ensembles;
powers, dominions, and thrones among its blurred degrees.

Mathematics is the art of the infinite because whatever it focuses on
with its infinite means discloses limitless depth, structure, and extent.
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Late in his life, Newton said: “I seem to have been only like a boy playing
on the seashore, and diverting myself in now and then finding a smoother
pebble or a prettier shell than ordinary, whilst the great ocean of truth
lay all undiscovered before me.” Although mathematics has grown ex-
ponentially since his time, we still find ourselves children standing on
the edge of the limitless unexplored.

Pick up a flat stone and skim it over the water; 7, 8, . . . 13 skips per-
haps, before it sinks? At least we can do better than this on the ocean of
numbers, following regular pulses past any horizon. Will their patterns
reflect deeper truths about the working of the world? Will the ways we
go about finding and confirming these patterns give insights into the
ways of the mind? Consider the sequence of natural numbers, 1, 2, 3, 4,
. . . and their successive sums—so familiar to us by now:

1, 1 + 2 = 3, 1 + 2 + 3 = 6, 1 + 2 + 3 + 4 = 10, . . .

n(n 1)
1 2 3  . . . n  .

2

++ + + + =

We’ve proved this three times already, in ways as concrete as making
patterns of dots and as abstract as induction, but have saved the most
beautiful proof for last. We want to know what 1 + 2 + . . . + n adds up to.
Write the sum down—and then write it again, below—but this time
backwards!

Sum = 1 + 2 + 3 + . . . + (n – 2) + (n – 1) + n

Sum Backward = n + (n – 1) + (n – 2) + . . . + 3 + 2 + 1

And then add the columns to get:

(n + 1) + (n + 1) + (n + 1) + . . . + (n + 1) + (n + 1) + (n + 1)
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There are n of these terms added up—so n · (n + 1)—but of course we
want only half that amount, because we’ve counted the sum twice; so

n (n 1)
 .

2

⋅ +

The Alcibiades impertinence of this is appealing, as also is its im-
provement on the head-and-tail coupling we used in the second proof
(on page 30). For we need here no special case when the number of
terms is odd (exceptions hint at incomplete understanding, and proof
by cases at an ideal beauty not yet attained). Appealing too is the way
this approach generalizes to a series of n terms beginning not with 1 but
with any natural number—call it a (notice that the second term will be
a + 1, the third a + 2 and in general the nth term will be a + (n – 1)) :

a + (a + 1) + (a + 2) + . . . + (a + (n – 1))

(a + (n – 1)) + (a + (n – 2)) + (a + (n – 3)) + . . . + a

which adds up to

2a + (n – 1) + 2a + (n – 1) + . . . + 2a + (n – 1)

or, since there are n terms,

n · (2a + (n – 1))

and again we want only half of this, so

a + (a + 1) + (a + 2) + . . . + (a + (n – 1)) = 
n (2a (n 1)

 .
2

⋅ + −

If, for example, a = 17 and n is 5 (the series 17 + 18 + 19 + 20 + 21),
the answer should be 5 (2 17 4)

2

+� �  = 5 (38)

2

�   = 95—and it is.
Why stop generalizing here? We’d like to take in every sort of sequence

with our widening powers, since the mind says “all” when the eye asks
“which?” What about sequences with any natural number acting as the
difference, d, and not just 1? If d = 3, for example, and we start with 1, we
get the sequence 1, 4, 7, 10, 13, 16 . . . and the sums

1 ,
1 + 4 = 5 ,

1 + 4 + 7 = 12 ,
1 + 4 + 7 + 10 = 22 . . .

Our new style of proof—leaving pictures behind and carefully ma-
neuvering with symbols—readily accommodates this greater scope:
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a + (a + d) + (a + 2d) + . . . + (a + (n – 2)d) + (a + (n – 1)d)

(a + (n – 1)d) + (a + (n – 2)d) + (a + (n – 3)d) + . . . + (a + d) + a .

These two rows add up to

n · (2a + (n – 1)d)

and taking the half we want,

a + (a + d) + (a + 2d) + . . . + (a + (n – 1)d) = 
n (2a (n 1)d)

 .
2

⋅ + −

In our example above, with a = 1 and d = 3, when n = 5 we should get

1 + 4 + 7 + 10 + 13 = 35

and in fact

(2 1 4 3)
5 5 7 35 .

2

⋅ + ⋅⋅ = ⋅ =

This proof is a joy forever. Its loveliness increases not only because
admiration for elegant symmetry never dies—an eternal monument to
its unknown inventor—but because, like the series it describes, it ripples
outward in ever new contexts. It gives us a finite grasp (in a single body
and soul, as Rimbaud desired) of an infinite sequence. There are some,
like the distinguished twentieth-century number theorist André Weil,
for whom a conjecture once proven, like a mountain climbed, becomes
no more than a trophy: another name on Don Giovanni’s list. In con-
trast, a piece of mathematics heard as music is inexhaustibly filled with
promises for the future and houses as well an inexhaustible presence,
like a fugue from the Well-Tempered Clavier.

Sequences such as these, with a constant difference between succes-
sive terms, are called Arithmetic Sequences, and the sum of their terms
from the first through the nth is an Arithmetic Series. The triangular
numbers are a hybrid: a sequence of numbers, as you saw, which are
successive sums in an Arithmetic Series. For the triangular numbers are
1, 3, 6, 10, . . . and so on, which are the successive sums of the sequence
that starts with first term a = 1 and has difference d = 1.

What about the sequence of square numbers, which every once in a
while coincides with that of the triangulars (at 1 and 36, for example)?
Remember that by a clever diagonal slice we found that any square num-
ber was the sum of two consecutive triangulars. But now that the
triangulars have a formal rather than visual embodiment, cleverness gives
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way to clockwork. For the (n – 1)th triangular number is (n 1)n

2

− , and the
next one, the nth, is n(n 1)

2

+ ; so multiplying each one out and adding them
to each other gives:

2 2 2
2n n n n 2n

n  .
2 2

− + + = =

Is the lost glory of ingenuity the price we must pay for the gains of
abstraction? Or could the interplay between the visual and the formal—
the geometric and algebraic—still be fruitful? Let’s follow the natural
drift of our curiosity from triangular and square on to the pentagonal
numbers:

1 5 12 22

so this sequence begins 1, 5, 12, 22, and goes on to 35, 51, 70 . . . Aren’t
these just the sums we saw on page 78? But why—why should this be so?
And what is the connection of the pentagonal shape to triangular num-
bers?

Clearly there will be no sum of two triangular numbers here, since we
can’t rebuild even 5 that way. But 5 = 1 + 4; 1 is triangular and 4 is
square—what if that’s the breakup we’re looking for? Visual ingenuity
to our aid again: let’s design our netted pentagons with triangles and
squares in mind. This only takes some pushing in at the sides.

1 1 + 4 = 5 3 + 9 = 12 6 + 16 = 22
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That is:

1  + 2  = 2 2  + 3  = 3 3 + 4  = 4

and indeed

4  + 5  = 10 + 25 = 35, which is 5  , and so, it seems, on.

Once we write out our discovery in formal terms, we can try proving
it. Since it looks as if the nth pentagonal number is the (n – 1)th triangular
plus the nth square, and since the (n – 1)th triangular is (n 1)n

2

− , our conjec-
ture is:

n  = n-1  + n  = 
2 2 2

2(n 1)n (n n 2n ) (3n n) n(3n 1)
n

2 2 2 2

− − + − −+ = = =

and for n from 1 to 7, this gives us the values we want:

1, 5, 12, 22, 35, 51, 70 .

We have our insight, but we can’t hope for a proof yet because we still
need to understand exactly how any pentagonal number is built up from
the previous one. Mere manipulation of letters rarely leads to seeing—
but looking does.

Let’s look then at how the third pentagonal number grows from the
second, and the fourth from the third.

In each case, two of the old sides were extended, and three new sides
fitted on to make the larger pentagon. There is one more dot per side in
this new pentagon, so it looks as if we have added 3 dots per side on
these 3 new sides of the third, 4 per side on the 3 new sides of the fourth.
But this can’t be quite right, since new sides share a dot at their corners,
so we have to subtract 2 dots, giving us
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Thus to go from the third pentagonal number to the fourth we could
calculate

4  = 3  + 3· 4 – 2

12 + 12 – 2 = 22, as desired.

In short, we must add 3n – 2 dots to n-1  to get n  .
We could now with relative ease prove by induction that indeed

n  = 
n (3n 1)

 ;
2

⋅ −

but we’ll go after bigger game.
With factoring a number into its primes still ringing in our ears from

the last chapter, you might by analogy wonder about reducing pentago-
nal numbers down to the basic triangular numbers—and of course we
can. Since we know that any square number is the sum of two triangular
ones, and since we saw that a pentagonal is a triangular plus a square,
any pentagonal number is the sum of three triangular numbers.

Does this suggest that any hexagonal number is the sum of 4
triangulars, and so on? Wonderful Gauss made this cryptic entry in his
diary on July 10, 1796:

Eureka! Num = ∆ + ∆ + ∆ .

Repeating Archimedes’s joyous exclamation, “I’ve found it!”, he meant
that he had found a (by no means easy) proof that every natural num-
ber is the sum of at most three triangular numbers.

Can we in turn follow our triumphs thus far by coming up with a
formula for the hexagonals? A kind of impatience begins to set in at this
point, however, because the work promises to be strenuous—and after
it we would have to begin all over again with the heptagonals, and so
endlessly on. The three formulas we already have are so different from
one another:

n  = 
n(n 1)

2

+

new sides dots per side shared dots
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n  = n2

n  = 
n (3n 1)

 ,
2

⋅ −

that you may suspect there will be no pattern to the patterns. Mind,
however, keeps clamoring for universal explanations.

Let’s act like mathematicians, with faith in design and confidence in
our powers to find it. Above all, let’s use the art of the infinite: going,
that is, for all the patterns at once. We want the general formula for what
any particular figurate number is—that is, for the nth term of any po-
lygonal sequence. The amazing thing is that this will be much easier—
and infinitely less time-consuming—than doing it for each kind of
polygon in turn. It is in this uncanny generalizing power that math-
ematics puts to shame the tailor who boasted of killing seven at a blow.

Because the formula we seek will deal with different terms of differ-
ent polynomial sequences, we will need another letter to stand for which
sort of polygon we have in mind. Let’s speak of k-gons, where k can be 3,
4, 5, and so on. So a 3-gon is a triangle, a 4-gon a square, a 5-gon a
pentagon. We already have a formula for the nth term of each of these,
and have set our sights on a formula for the nth term of any k-gonal
sequence. Having traded in the more colorful polygonal names for this
stark way of speaking, let’s make one concession more and represent the
nth term of a k-gonal sequence by k

nP .
This kind of naming and these sorts of symbols drive more people

away from mathematics than teachers who tell you you’re wrong be-
cause they say so. We are perfectly happy to think of someone as James
Smith or even James Topaz Smith, and if his son is James Topaz Smith
Junior we take that easily in stride. Should the son become a Doctor or
even the Right Reverend Doctor James Topaz Smith Junior we may smile,
but can handle it. Yet attach a pair of numbers to a letter and we beg for
mercy. The unfamiliarity of this kind of acronym is partly to blame, as is
suddenly having to read vertically—but it is the same style of naming.
Like Smith, P is the family name: Polygon. k gives the branch of the
family, n (like James Topaz) singles out the individual in that branch. So

3
5P  is the fifth triangular number, for example, 4

2P  is the second square
number, and the seventh pentagonal number is 5

7P .  What we pile on the
spine of this weedy symbol will save us an enormous amount of mental
energy.

Now we can indulge in the pleasures of the table once more, in hopes
of insight into what is actually happening. Here are the first few entries
for some k-gonal sequences:
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Old Name New Name First Second Third Fourth Fifth

triangular 3-gonal 1 3 6 10 15
square 4-gonal 1 4 9 16 25
pentagonal 5-gonal 1 5 12 22 35
hexagonal 6-gonal 1 6 15 28 45
heptagonal 7-gonal 1 7 18 34 55

The columns are interesting but the rows even more so. Each starts with
1, and the differences between columns in the first row are 2, 3, 4, 5, . . . .
In other words, the difference grows by 1 for each new column.

In the second row, the differences are 3, 5, 7, 9, . . . . Those grow by 2s.
The third row’s differences grow by 3s: 4, 7, 10, 13, . . . and the fourth row
differences—5, 9, 13, 17, . . .—grow by 4s. What matters here seems to be
this “growth number”; let’s call it g. Put in terms of each k-gonal se-
quence, the differences grow by

1 in the 3-gonal (g = 1)
2 in the 4-gonal (g = 2)
3 in the 5-gonal (g = 3)
4 in the 6-gonal (g = 4).

On this scanty evidence we hazard the conjecture that in a k-gonal se-
quence, g will be k – 2.

It looks, then, as if we have the same hybrids in every case that we had
with the triangular numbers: each term is a sum in an arithmetic series;
each series starts with a = 1; the respective g is k – 2.

k-gonal First Second Third Fourth Fifth

3-gonal 1 1+2 1+2+3 1+2+3+4 1+2+3+4+5
4-gonal 1 1+3 1+3+5 1+3+5+7 1+3+5+7+9
5-gonal 1 1+4 1+4+7 1+4+7+10 1+4+7+10+13
6-gonal 1 1+5 1+5+9 1+5+9+13 1+5+9+13+17
7-gonal 1 1+6 1+6+11 1+6+11+16 1+6+11+16+21

Look! The nth term of a polygonal sequence is the sum of the first n
terms of an arithmetic sequence where a = 1 and d = k – 2.

Using the formula for the sum of arithmetic sequences which we per-
fected on page 78: n(2a+(n-1)d)

2
,  with here a = 1 and d = k – 2, we get

k
n

n(2 (n 1)(k 2))
P  .

2

+ − −=



��

��������	�
���


This simplifies to

k
n

n (nk 2n k 4)
P  .

2

⋅ − − +=

You can check this, if you like, for some entry in our table—the fourth
column, say, of the fifth row, the fourth heptagonal number, which is 34.
And

7
4

4 (7 4 2 4 7 4)
P

2

⋅ ⋅ − ⋅ − +=  = 2 · (28 – 8 – 7 + 4) = 2 · 17 = 34 .

Right as rain, and sometimes even more so.
Does this remarkable general formula turn into the particular for-

mulas we got for triangular, square, and pentagonal numbers? With
squares, for example, is the nth square number really n2?

4 2
n

n (4n 2n 4 4) n 2n
P n

2 2

⋅ − − + ⋅= = =

and for pentagons, will we have the formula n (3n 1)

2

−� ?

5
n

n (5n 2n 5 4) n (3n 1)
P  .

2 2

⋅ − − + ⋅ −= =

This is a startling unity beneath such apparent diversity, which now
lets you calculate in a moment the number of dots—should you care to
know—in the 18th 201-gonal number, for example (321,801—a little
touch of personality in the crowd).

Of course we haven’t yet proved the conjecture we got by studying our
table. Lest you think that nothing could be more boring than proving
the obvious, it would be enough to remember that mathematics is the
one skyscraper of thought which rises above mere opinion to utter cer-
tainty. But we can add that a proof ’s performance is as full of contor-
tionists, jugglers, and high-wire acts as the world’s best circus. The proof,
with all its acrobatic providers, is in the on-line Annex.

Notice, here, how far we’ve moved from the Pythagorean tetractys
into a language and style of thought where symbols ( k

nP ) of symbols (3)
of symbols (  ) are casual familiars. When your former self complains—
as the English philosopher Thomas Hobbes did in 1656 to his contem-
porary John Wallis—that the page “is so covered over with the scab of
symbols, that I had not the patience to examine whether it be well or ill
demonstrated,” your present self can answer, with Wallis: “Is it not law-
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ful for me to write Symbols, till you can understand them? Sir, they were
not written for you to read, but for them that can.” Equations have come
to explain more easily than sentences the structures we work among. No
wonder mathematicians, like Rip van Winkle playing at bowls with the
little men up in the hills, lose all sense of self and time, and on returning
seem as alien as the world now seems to them.

∞

Arithmetic sequences and series have led us along bright rays into the
infinite. Even more dazzling, however, are their twins: the sequences and
series called Geometric. A Geometric Sequence also begins with any num-
ber, but its new terms come not by adding a constant d, but through
multiplying by a constant, usually called r (for “ratio”).

If a = 1 and r = 2, for example, you get the larger and larger numbers

1, 2, 4, 8, 16, . . . .

Geometric series add these all together, up to a certain term, say the
64th. Since each term is 2 raised to a power one greater than the previ-
ous one, this sum would be

1 + 2 + 22 + 23 + . . . + 263,

a finite but very large number, which anyone using the sure-fire Martin-
gale System of betting will know from nightmares. In this system you
keep doubling your bet until you win—then quit. Had you started with
a dollar, you might have to go home with two—but a really bad run of
luck, 64 tries long, would leave you owing more dollars than there are
atoms on the earth to make them with.

When the ratio shrinks to a positive number less than one, strange
and wonderful things begin to happen—especially if infinity enters again
as the number of terms. Let’s experiment with a = 1 and r = 1

2
.

1 + 
1

2
 + 

1

4
 + 

1

8
 + 

1

16
 + . . . .

The successive terms grow rapidly smaller, their sum grows steadily
larger—but will it ever become infinitely large, or as large as 19, or 3, or
2.07? In our experimental mood let’s look at partial sums:
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1 +
1

2
=

3

2

1 +
1

2
+

1

4
=

7

4

1 +
1

2
+

1

4
+

1

8
=

15

8

1 +
1

2
+

1

4
+

1

8
+

1

16
=

31

16

A reasonable conjecture at this point would be that the sum up to n

1

2
 will

be a fraction whose numerator is twice its denominator less 1: that is,

n 1

n

(2 1)
 .

2

+ −

If so, the sum keeps falling just short of 2, though by less and less. This
would mean that no matter how many terms we add on we will never
get to 19, or 3, or 2.07—or even 2; 2 will be the reach that always just
exceeds our grasp.

This is a peculiar situation, which gives us second thoughts about the
infinite: an infinite number of terms whose sum is shakily finite. Does
this happen only when r = 1

2
 ? Let’s experiment further, taking r = 1

3
:

1, 1

3
, 1

9
, 1

27
, 1

81
 . . . (remember: we get each new term through multiply-

ing the previous one by 1

3
).

The successive sums of these are

1 +
1

3
= 1

1

3

1 +
1

3
+

1

9
= 1

4

9

1 +
1

3
+

1

9
+

1

27
= 1

13

27

1 +
1

3
+

1

9
+

1

27
+

1

81
= 1

40

81

If this is settling down to some number, as the previous series seemed to
do, it is a bit more obscure—perhaps because the denominator is odd.
The fraction’s numerator keeps falling just short of half the denomina-
tor, as if the series were approaching 1 1

2
 or 3

2
.

As with triangular numbers, we grow impatient and ask for a pattern
to these patterns. Perhaps our asking is premature and the next example,
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with r = 1

4
, would help. The sequence is 1, 1

4
, 1

16
, 1

64
, 1

256
, . . . and the

successive sums are

1 +
1

4
=

5

4
= 1

1

4

1 +
1

4
+

1

16
= 1

5

16

1 +
1

4
+

1

16
+

1

64
= 1

21

64

1 +
1

4
+

1

16
+

1

64
+

1

256
= 1

85

256

and a shrewd guess would suggest that 1 1

3
 was the elusive she.

Stepping back, the glimmerings of a beautiful regularity dawn. Our
experimental results made 2, 3

2
, and 4

3
 the likely targets of series whose

ratios were, respectively, 1

2
, 1

3
, and 1

4
. If we think of 2 as 2

1
, then it

might well be that when the ratio is 1

n
, the sum of the infinite series

resulting is n

n 1− .
Two distinct difficulties immediately come up. How can we speak

of an “infinite sum” at all, especially on the basis of what must always
be finite approximations? And second, why are we even indulging in
the luxury of such a conjecture on the basis of so few trials: where is
the proof?

Given the two voices within us you would expect two answers (at
least) to the first question. The more cautious voice says that of course
those numbers we have come up with are never actually attained—but
they do seem like limits drawn ever closer to—as close as you like, given
sufficiently many terms. While the growing sums also get closer to num-
bers beyond their respective limits, these limits are the least such num-
bers approximated to from below but never reached. This voice assures
us that if we say “the limit as n goes to infinity is such-and-such” we
mean what we say: is on the way to but (like Chekhov’s three sisters and
Moscow) never gets there. Or if you like, we mean that the word “limit”
abbreviates the rather complicated idea we have just expressed.

The other voice damns such caution and adds infinity to what we
reckon with and on. 3

2
is what all the terms of the first series add up to,

just as language points to what it ultimately can’t say. The rational num-
bers, which we first understood as ratios of the seemingly more concrete
natural numbers, now stand revealed as embodiments of yet more fun-
damental, infinite processes. Remember that Brouwer saw even the
naturals as belonging to a limitless, fundamental sequence unfolding
through time; he also thought that the objects of the world—including
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other humans and even the body inhabited by the self—are no more
than sequences of sequences of sensations.

These voices of what seem like angelic spectators at our human play
fade out, as we come to the second question of proof. Play is, as always,
the key, in its many senses: fooling around, the freedom to invent, the
daring of Alcibiades and the loose play in a fitting that needs to be tight-
ened. The stakes being played for are these: to come up with a concise
way of understanding the sum of a geometric series—a way so tight that
it will bear the strain of extending our understanding to sums of an
infinite number of terms.

The series can start with any number a, and have as its fixed ratio any
number r between 0 and 1. The successive terms will be ar, (ar)r = ar2,
(ar2)r = ar3, ar4, and so on. The sum of the first n terms—let’s use S for
“sum” and call this S

n
—would therefore be

S
n
 = a + ar + ar2 + ar3 + . . . + arn-1.

So, for example, in the series on page 86, where a = 1 and r = 1

2
, the third

term, S
3
 = 7

4 .
The trick that worked so well before—adding to this the same sum

written backwards—won’t work now because we are multiplying by a
constant rather than adding one. Someone fought his way through to
the brilliant invention of multiplying both sides of that equation by r:

rS
n
 = ar + ar2 + ar3 + ar4 + . . . + arn

and then subtracting this equation from the first, after a deft realignment:

S
n
 = a + ar + ar2 + ar3 + . . . + arn-1

– rS
n

= ar + ar2 + ar3 + ar4 + . . . + arn

When subtracting we get the same effect that “canceling on the diago-
nal” had before, and

S
n

– rS
n
 = a – arn

that is,

S
n

· (1 – r) = a · (1 – rn) .

So
n

n

a (1 r )
S  .

(1 r)

⋅ −=
−
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The Egyptians and Babylonians may have known this. Euclid certainly
did, and gave a proof differently elegant from ours. If you find that such
a vaulting proof still needs a flying buttress or two of example, you might
try what the formula yields when a = 1 and r = 1

2
 or 1

3
.

Now the big question is: what will this tell us about the sum of an
infinite number of terms? In our current example, will we find that the
limit is 2?

With r = 1

2
, notice that raising r to greater and greater powers makes

it steadily smaller: ( 1

2
)n approaches 0 as n approaches infinity. Keeping

a = 1 and r = 1

2
, our formula is

( )

n n
1 1

2 2
n 11

22

1 1
S  .

1

   
   
   

− −
= =

−

Using the word “limit” and the symbol “∞”, we can express “the limit as
n goes to infinity” by lim

n→∞  and so can write

( )

n
1

2

1n 1 1

2 22

1 1 0 1limS  2 .
1

 
 
 

∞ →∞

− −= = = =
−

And with r = 1

3
?

( )

n
1

3

n 2 21

3 3 3

1 (1 0) 1 3limS   .
21

 
 
 

∞ →∞

− −= = = =
−

So in general, as long as r is between 0 and 1,

n

n

1 r 1 0 1limS   .
(1 r) (1 r) (1 r)

∞ →∞

− −= = =
− − −

We say that our infinite geometric series converges to this limit. This is
an astonishing victory for the finite mind over infinity.

The eye can share this triumph through a proof whose picture speaks
areas, if not volumes. All you need know is that two shapes are similar if
they have the same angles (i.e., one is a scaled-down version of the other);
that if two shapes are similar, their sides are in proportion (and vice versa)—
and that parallel lines meet a line crossing them at the same angle.
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Start by making a trapezoid PSUT, with right angles at S and U (so PS
and TU are parallel). Let PS = SU = 1 and UT = r.

Paste another trapezoid TUVW on its right with TU = UV = r, and
the line PT continued to meet the vertical from V at W.

These trapezoids are similar (right angles at their bases, equal angles
made by parallels meeting the top), so their sides are in proportion. This
means that

VW r

r 1
=

so VW = r2.
We go on making similar trapezoids in this way—their successive

right-hand sides and bases will be r3, r4, and so on—and the line PT will
eventually intersect SU’s extension at some point Z.

That base SZ is therefore the infinite sum

1 + r + r2 + r3 + r4 + . . .

Last, construct a triangle TQP, similar to ∆PSZ, by drawing a line l
from P parallel to SZ, and extending UT to meet it at Q. PQ has length 1,
and TQ = QU – TU = 1 – r.

Since ∆PSZ is similar to ∆TQP,

SZ PQ
 .

PS QT
=

That is,

2 3 4(1 r r r r  . . .) 1
 .

1 1 r

+ + + + + =
−

There it is: seen all at once and so naturally, so convincingly, that you
look back in wonder at all the sour wrangle over foundations and for-
mal proofs. Yet such pictures as this have their critics, who would cau-
tion us to speak of them instead as “more or less proofs”. Pictures can lie;
at the very least they can persuade the eye to take for granted what the
mind should examine in detail. How, for example, can we be sure that
the line from P though R hits the line extended from SV precisely at the
end of the infinite series? When the number theorist J. E. Littlewood
said of a drawing that it was all the proof needed for a professional, he
was suggesting that a professional would know where and how to grow
the connective tissue.
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Still, deductive chains descending from axioms can be so long, with
so many small links so artfully forged, that we lose the sense of the whole
and ache for the way a picture comprehensively, instantaneously, catches
what is true, and why. Lost in the tangle of tactics we agree with Descartes
that thought should move through a demonstration continuously and
smoothly. Aren’t we being tossed back and forth once again between the
intuitions of space and time: between the visual cortex and powers we
read as greater precisely because they work with the unembodied?

The different styles of proof you have just seen are more on a par
with one another than were those in Chapter One, where the visual
had it all over its algebraic equivalents. Is that because we are now more
experienced with the algebraic, or because our standards of proving
have grown higher—or is it just a matter of equal stimulation to dif-
ferent centers of pleasure in the mind? And could a visual proof still
trump an algebraic one?

Consider a maverick infinite sequence that is neither arithmetic nor
geometric:

1

2
 + 

2

4
 + 

3

8
 + 

4

16
 + 

5

32
 + . . .

where each term is of the form n
n

2
. What is its sum? If you picture this as

did Nicole d’Oresme, Bishop of Lisieux, around 1350, the answer sud-
denly stares disconcertingly back at you: the left-hand tower shows the
sequence vertically; the second shows the sum of each horizontal row in
turn—the third brings the second dramatically down to earth.

The sum is 2. What is not a little disturbing is that read from right to
left, a finite area is extended infinitely in space (those endlessly rising
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blocks). When three centuries later Evangelista Torricelli—the inventor
of the barometer—took this paradox one dimension higher by depict-
ing an infinite solid whose volume was in fact finite (the curve 1

x
 spun

around its axis, from 1 to infinity),

Thomas Hobbes wrote: “To understand this for sense, it is not required
that a man should be a geometrician or logician, but that he should be
mad.” To make Hobbes’s outrage more vivid, realize that a finite amount
of paint poured in would coat its infinite surface (a paradox for math-
ematicians only; physicists know that molecules of even the finest oil
will seep just so far down the trumpet’s diminishing diameter).

Going back to our geometric series, why should we have insisted that
r’s value lie between 0 and 1? Certainly in our visual proof only that
would make the line PT meet the base at Z. The choice of r, however,
didn’t trouble George Peacock, of the Principle of Permanence. It must
have been one day before breakfast when he reasoned that if r = 1, the
left-hand side of

1

1 r−
 = 1 + r + r2 + r3 + r 4 + . . .

became 1 1

1 1 0
=

− , which he was happy to call ∞, while the right-hand side
would be 1 + 1 + 1 + 1 + . . . forever, which is infinite indeed. And if r
were 2, for example, 1

1 r−  would be –1, and as for the right-hand side. . .
the right-hand side would be 1 + 2 + 4 + 8 + . . ., which he complacently
described as more than infinity. The third impossible thing he did that
morning was to accept this equality of –1 with “more than infinity”, and
the fourth was to say that therefore the equality sign had a meaning
beyond mere numerical identity. He went on to urge us to accept his
reasoning in order to avoid an embarrassing multiplicity of cases—and
sixth, he said that rejecting his point of view would deprive almost all
algebraic operations of their certainty and simplicity.

Peacock was writing at a time when astonishing revelations kept tum-
bling out of the study of sequences and series, like harvest from an up-
ended cornucopia. Since mathematics is freedom, why shouldn’t he have
felt that whatever isn’t expressly forbidden is allowed? But from that
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cornucopia had also fallen the opened Pandora’s box of divergent series:
series which, as you added up their terms, failed to converge toward any
limit but grew uncontrollably large; and which seemed to come wreathed
with the legend: “Everything is forbidden that isn’t expressly allowed.”

Geometrical series with r greater than 1 were a single example among
many. Could there be series whose successive terms grew smaller and
smaller, yet whose sum grew ever larger? The same common sense that
tells us the earth is flat also tells us this couldn’t be. Take for example the
sequence 1

n
, as n runs through the natural numbers:

1,
1

2
,

1

3
,

1

4
,

1

5
, . . .

If you look at the growing sum, called the Harmonic Series—

1 + 
1

2
 + 

1

3
 + 

1

4
 + 

1

5
 + . . .

it may very much remind you of our familiar

1 + 
1

2
 + 

1

4
 + 

1

8
 + 

1

16
 + . . .

whose limit is 2. What is the limit of this one? More than 2, since the first
four terms add up to 2 1

12
, but perhaps not very much larger: the first ten

terms—from 1 to 1

10
—give a total slightly less than 3, and every new

weight tips this balance less and less.
Freedom in mathematics is like freedom everywhere: under law. We

enter into the covenants expressed in our axioms in order to protect our
freedom. The perplexity is that as we explore and develop new territo-
ries, we don’t quite know what those laws are—for while we carry our
axioms into the wilderness with us, they may not contain charms to
subdue the strange creatures we meet. So with infinite series. It took a
combination of daring and nostalgia to master this sum of the terms 1

n
:

nostalgia in the instinct to compare it with what we know and daring in
the willingness to do so without reservations. And then, that Alcibiades
touch of ingenuity, to find among the familiar forms just those that would
give shape to this Proteus.

1 + 1

2
—part of our past. 1

3
—had the next term been 1

4
 we would

have been on home ground. Well, 1

3  is greater than 1

4 , so 1 + 1

2  + 1

3  is
just a touch greater than 1 + 1

2  + 1

4 . Ah—and 1 + 1

2  + 1

3  + 1

4   is precisely
that touch greater than 1 + 1

2
 + 1

4
 + 1

4
.  But 1

4
 + 1

4
 is 1

2
 again: and that

was the key to something uncanny which Nicole d’Oresme discovered.
The first four terms of our new series add up to more than 1 + 1

2
 + 1

2
.

Thinking in terms of successive halves, the next four terms are each greater
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than or equal to 1

8
, so their sum contributes more than 1

2
 to the total;

and the next eight (each being greater than or equal to 1

16
) contribute

more than 1

2
 again.

1 1 1 1 1 11
 . . .1

3 4 5 6 7 82
1 1 1 1

2 2 2

+ + + + + + + +

> >

�������

compare compare
each term each term

with 1

4
with 1

8

The next run of 16 terms will add its own total of more than a half, as
will the subsequent 32 terms. So this series must slowly edge its way up
and past any sum of halves, and hence past any number whatever: it is
unbounded and must diverge!

A wholly new set of instincts had to be developed now to cope with
these innocent-seeming infinite series. Which were enemies and which
were friends, and unto whom? Subtle and super-subtle tests were devised

to sniff out the series that converged;
and what they converged to; and how
much information could be extracted
from divergent series. You prayed that
the series you were exploring would
turn out to be convergent. There is a
story like a Biedermeier painting of
the famous Hermann Minkowski,
walking through the streets of Göt-
tingen, Hilbert’s Mecca for mathema-
ticians, in the early years of the
twentieth century. On Weenderstrasse
he saw a student he didn’t know, deep
in thought. Minkowski went up to
him, patted him on the back and said:
“It is sure to converge.”

Wonders appeared in these woods. Important numbers like π emerged
from the caterpillar of an infinite series:

π = 4(1 –
1

3
 + 

1

5
–

1

7
 + 

1

9
–

1

11
 + . . .)

and e—the base of the natural logarithms which we met in the last
chapter—is an irrational which is approximately

2.718281828459045 . . .

Hermann Minkowski (1864–1909)
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but is precisely the sum, as n goes from 1 to infinity, of 1

n!
 :

1 1 1
 . . . 

1! 2! 3!
+ + +

or, as it is more concisely written:

e = 
n 1

1
S

n

∞

= !

Yet there were creatures with talons here too; for while Goya was right
in saying that monsters arose when reason slept, Poincaré remarked in
1899 that “logic sometimes makes monsters.” He had in mind bizarre
functions that fluttered around awkward series. “The divergent series
are the work of the devil,” the Norwegian mathematician Niels Abel had
written more than half a century before; “. . . these series have produced
so many fallacies and paradoxes. . .”

It took more than a century to domesticate these grotesques. Even
some series that properly converge can have rowdy children. Here is a
telling example, uncomfortably close to those we have scraped an ac-
quaintance with. Instead of the harmonic series

1 + 
1

2
 + 

1

3
 + 

1

4
 + 

1

5
 + . . . ,

which we now know diverges, let’s look at its cousin, where every term
with an even denominator is negative:

1 –
1

2
 + 

1

3
–

1

4
 + 

1

5
–

1

6
 + . . .

this series actually does converge: the successive sums keep hopping right
and left, in ever-diminishing steps, around the limit they approach.*
Let’s call that limit x, so that

x = 1 –
1

2
 + 

1

3
–

1

4
 + 

1

5
–

1

6
 + . . .

Now using our Commutative Axiom for addition (A2) again and again,
rewrite the series with some terms interchanged as follows:

x = 1 –
1

2
–

1

4
 + 

1

3
–

1

6
–

1

8
 + 

1

5
–

1

10
–

1

12
 + 

1

7
– . . . ;

in other words, two negative terms in a row after each positive one.

*This idea of closing in on the limit from both sides suggests that in our geometric series we
could let r be negative, as long as it is greater than –1: a geometric series with ratio r converges as
long as –1 < r < 1.
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We can now group the terms (using the Associative Axiom A1) to
give us

                  

1
1 1 1 1 1 1 1 1 1 12x  . . .

2 4 3 6 8 5 10 12 7 14

 −       = − + − − + − − + −               
but (1 – 1

2
) = 1

2
, ( 1

3
– 1

6
) = 1

6
 and so on, so we get:

x = 
1

2
–

1

4
 + 

1

6
–

1

8
 + 

1

10
–

1

12
 + 

1

14
 . . .

we can factor 1

2
 out of each term of the right-hand side, so that

            

1 1 1 1 1 1
x 1 . . .

2 2 3 4 5 6
 = − + − + − +  

and then notice that what is in parentheses is the very series we began
with, x. Hence

1
x x .

2
 =   

The only number that satisfies this equation is x = 0.
But x couldn’t possibly be 0! The first two terms, 1 – 1

2
, give us 1

2
, and

successive pairs of terms ( 1

3
– 1

4
), ( 1

5
– 1

6
) only add more positive values

to it. We seem to have to conclude that 0 is somewhat bigger than 1

2
; easy

for Peacock, perhaps, but not for us. It took some time to understand
that our axioms for addition, which are always defined with combina-
tions of two or three terms, may not—do not—extend to an infinite
number of terms all at once. Here again, “an infinite number” is totally
different from “a great many”. Such a series as this can in fact be so rear-
ranged as to make it converge to any number you choose. We need to
accord with the character of new terrain as we edge our old ways into it,
just as those man-made rectangular plots you see in flying over the
American west yield to the givens of mountain and desert.

∞

Two series which look very much alike have behaved extremely dif-
ferently:

1 + 
1

2
 + 

1

4
 + 

1

8
 + 

1

16
 + . . .
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converges to 2.

1 + 
1

2
 + 

1

3
 + 

1

4
 + 

1

5
 + . . .

diverges.
What if, before we leave this forest, we look at one of the most fabu-

lous beings in it—a series akin to both of these:

1

2
 + 

1

3
 + 

1

5
 + 

1

7
 + 

1

11
 + . . . ,

the series whose terms are 1

p , for each prime p in succession. Does it
converge or diverge? How can we tell, when we have so feeble a grasp of
the succession of primes? The fact that each of its terms is less than the
corresponding terms of the divergent series 1 + 1

2
 + 1

3
 + 1

4
 + 1

5
 + . . .

gives hope that this one might converge. The fact that its terms begin, at
least, equal to the second and then larger than the third, fourth . . . terms
of the convergent series 1 + 1

2
 + 1

4
 + 1

8
 + . . . somewhat damps this hope.

It is out there in no-man’s-land, and something immensely crafty would
have to be done in order to wheedle its secret from it.

It was Euler who first gave a proof of its fate, and in the twentieth
century another, wonderful proof was put together from spare parts by
Paul Erdos—the man who spoke of The Book with the most beautiful
proofs in it. You will find in the Appendix a third, dashing proof and can
judge for yourself whether it belongs in The Book. The steep ascents
here and there in it will give you a good sense of what makes a proof
difficult; of why the difficulties are worth it; and of how piecemeal engi-
neering can be elevated to an art.

We will end this chapter with a smoother stone than ordinary, and
skipped in a different direction from those whose flight we have been
following. For here our sequence will take the form of infinitely tower-
ing exponents—the image of mathematics. It begins modestly enough:

xx

then (xx)x, and ((xx)x)x, and so up and up forever:
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We innocently ask: if this proud tower were equal to 2,

= 2 ,

will converge.

what would x have to be?
The most reasonable response to this question is to throw up your

hands in despair. It reverberates like the knocking at the gate in Macbeth:
danger and darkness without. At a second glance, however, you might
think: well, x at least can’t be 1, since ((11)1)1 and so on forever is just 1,
and hence is too small. Nor could x = 2, since 22 = 4, and 42 = 16, gallop-
ing from the very first past the 2 this tower is supposed to equal. So if x
is anything, it lies somewhere between 1 and 2. But then the waiting
darkness closes in, as with the series of reciprocals of primes, 1

2
 + 1

3
 + 1

5

+ 1

7
 + . . . . Perhaps there simply is no answer. Or—heeding Hilbert—

there may be one, but no human will ever have the wit to find it. Yet
listen to Hilbert fully: there is no problem that cannot be solved. It may
take art, ingenuity, insight to solve this one, but solve it we shall.

It may only take looking—and looking from an unusual angle. That
whole left side—that endless tower of x’s—is 2. Endless tower. . . but it is
just as endless if we begin at the second floor as at the first: in fact, the
tower without its base (the first x) is identical to the tower with it. This is
a time, then, when the strange ways of the infinite come to our aid: that
equality wouldn’t appear with any finite number of x’s, no matter how
large. This means that all those compiled x’s from the second on, being
exactly the same as the whole tower (so strange are the ways of the infi-
nite), must likewise equal 2 (since that’s what the whole tower is equal
to). Making this substitution, we have:

x2 = 2 .

So x would turn out to be the wild presence that haunted our first chap-
ter: 2 . And, indeed, when x = 2 , Minkowski’s reassurance won’t be
out of place: the sequence
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When the poet Robert Graves was a student at Oxford, his tutor was the
eminent classicist Gilbert Murray. “Once,” wrote Graves,

as I sat talking to him in his study about Aristotle’s Poetics, while he
walked up and down, I suddenly asked: “Exactly what is the prin-
ciple of that walk of yours? Are you trying to avoid the flowers on
the rug or are you trying to keep to the squares?” He wheeled around
sharply: “You’re the first person who has caught me out,” he said.
“No, it’s not the flowers or the squares; it’s a habit I have got into of
doing things in sevens. I take seven steps, you see, then I change
direction and go another seven steps, then I turn around. I con-
sulted Browne, the Professor of Psychology, about it the other day,
but he assured me that it isn’t a dangerous habit. He said: ‘When
you find yourself getting into multiples of seven, come to me again.’”

Since we seem ourselves to have gotten from numbers into sequences
of numbers, perhaps it is time to take Browne’s advice and switch to the
squares and flowers in the carpet: the delicate patterns of Euclidean plane
geometry. The touches you have seen already hint at its power and sweep,
its combination—like Greek architecture—of ingenuity and formality,
with a sense of proportion subduing matter to design.

What never emerged in those touches is a stunning peculiarity. In
order to reach conclusions about very finite figures, very near at hand,
Euclid has to make an assumption involving the infinite. The fifth of his
neat set of postulates says in effect that if l is a line and P is a point not
on it, then there will be one—and only one—line through P (call it m)
which is parallel to l .
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Parallel: that is, m and l will never intersect. Nowhere, through all the
infinite extent of the plane, will you ever come on a point common to
both.

This postulate made the Greeks uneasy. Expert seamen though they
were, their longest voyages always turned round; their longest epics might
take heroes to the Hesperides or the Phaeacians, but these were only a
sleep away. To invoke the infinite was to call up Formlessness and the
Void, to detach mind from experience. Yet there was no way around it:
you couldn’t prove as homely a truth as this, that the angles in a triangle
added up to a straight angle (or as we would say, to 180°), without the
parallel postulate to add divine strength to your mortal arm.

For if you picture triangle ABC with its base, BC, lying on line l :

and label its interior angles a, b, and c:

then using the parallel postulate you can draw the one and only line m
through A parallel to l�(in symbols, m � l�):

This creates two new angles—call them d and e—flanking a:
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and d, a, and e evidently add up to a straight angle. Now for a touch of
human devising. Extend the line making side BA upward—call this line n:

then by what we claimed on page 90—that parallel lines meet a line
crossing them at the same angle—the angle we have called f, between
lines n and m, must be the same as the angle b between lines n and l :

∠ f = ∠ b .

But when two lines, such as n and m, intersect at a point like A,

the “opposite angles” f and d are the same:

∠ d = ∠ f ,

so

∠ d = ∠ f = ∠ b ,
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that is,

∠ d = ∠ b .

In just the same way—extending side CA upward—form ∠ g:

∠ g = ∠ c, and ∠ e = ∠ g ,

so

∠ e = ∠ g = ∠ c ,

that is,

∠ e = ∠ c .

Since ∠ d + ∠ a + ∠ e is a straight angle, so is ∠ b + ∠ a + ∠ c: the sum
of the angles in a triangle (as the Pythagoreans may have been the first
to prove) is a straight angle (180°).

While you had to accept the parallel postulate as true (the caste mark
of postulates), there was no reason for you to believe us here, or on page
90, when we said that parallel lines meet a crossing line at the same angle;
or that opposite angles are equal. You could appeal to your intuition; or
you could work your way easily back from this theorem in Euclid to
those earlier ones, following in the steps of Thomas Hobbes (whom you
now meet for the third time):
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He was forty years old before he looked on Geometry; which hap-
pened accidentally. Being in a gentleman’s library. . . , Euclid’s Ele-
ments lay open, and ’twas the 47th El. libri I [the Pythagorean
Theorem]. He read the proposition. “By God!” said he (he would
now and then swear by way of emphasis), “this is impossible!” So
he reads the demonstration of it, which referred him back to such a
proposition; which proposition he read. That referred him back to
another, which he also read. Et sic deinceps [and so in order] that at
last he was demonstratively convinced of that truth—this made
him in love with geometry. . . . I have heard Mr. Hobbes say that he
was wont to draw lines on his thigh and on the sheets, abed, and
also multiply and divide.

Parallel lines give the Euclidean plane its character. Intersecting lines,
like those netted around our plain triangle, are tactical thought made
visible. And three lines setting off each on its separate mission, yet hap-
pening to concur at a single point, mark rare occasions: beams from a
beacon signaling a significant event. So too any pair of points lie on a
line (another postulate); but three differently defined points that hap-
pen to be collinear are the sign of deeper processes at work.

The beauty of Euclid’s approach lies in building up his geometry from
the simplest polygon there is: the triangle, that closed laboratory cut out
of the infinite plane. He begins by laying down when two triangles, how-
ever differently situated, are the same: “congruent”, in the patois of the
trade, written ≅. This means that their corresponding parts—side-lengths
and angle-measures—are equal, so that you could, if you wanted, fit one
on top of the other and see only a single copy.

Instead of having to check, every time, each of the three pairs of sides
and each of the three pairs of angles, Euclid sets down as a postulate (is
it self-evident?) that if just two pairs of corresponding sides and the
angles between them are equal, then the rest of the pairs must be equal
too: the triangles are congruent.

Here AB = DE, BC = EF, and ∠ B = ∠ E :
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So by this side-angle-side (SAS) postulate, ∆ABC ≅ ∆DEF. From this he
is able to deduce that angle-side-angle (ASA) will also be enough to guar-
antee congruence:

(∠ A = ∠ D, AB = DE, ∠ B = ∠ E, so ∆ABC ≅ ∆DEF by ASA)

This deduction is needed because some combinations don’t suffice,
such as SSA: two pairs of congruent sides and a pair of congruent angles
not lodged between them—because, as you see below, those conditions
allow you to create two noncongruent triangles: ABC and ABC′.

In the special case of right triangles, the equality of one pair of legs,
and of the respective hypotenuses, suffices:

(AB = DE, AC = DF, so right ∆ABC ≅ right ∆DEF)

Do these symbols and abbreviations help or hinder? They are meant
to make language transparent so that the ideas will shine through—but
at first they may act like a ratchet, catching at thought. As proofs lengthen
from a few to many steps, we trust more and more to the notation to
carry our concentration forward. As with written music, chess manuals,
or the shorthand of a trade, we come with practice to take in ever larger
sweeps at a glance. The aim is always to aid intuition, not to fossilize
insight into formalism.



���

�����	
����
���
�����
�

The letters, markings, angle signs, and congruence signs belong to
the proving, not to the triangles themselves. What have they in their
pockets save their angle sum? With triangles, what you see is what you
get. They may be embodied in a corner brace down in the basement, or
in three stars a million light-years away—but this atom of plane geom-
etry is as innocent of secrets as a baby’s face.

Of course, the faces of babies no longer seem quite as innocent as
they did in our pre-lapsarian youth, since their minute features must
develop as the genetic code threaded through them dictates—so not even
such metaphors can come close, it seems, to the emptiness of a triangle.
Its sides may lengthen or shrink, its angles narrow or widen, but these
infinite variations on its simplicity serve only to emphasize how thor-
oughly we know it, inside and out.

Let’s just tickle this emptiness a bit before moving on, to see if virtual
particles pop into its empty space. If you find the midpoint D of one of
a triangle’s sides, such as AB, and set up (see the Annex) a perpendicular
to AB there—call it l—(in symbols, l ⊥ AB),

then any point Q on l will be as far from A as it is from B, and conversely
any point equally far from them will lie on l. You can get a feel for why
this is so if you think of l as a flagpole and lines from Q to A and B as guy
wires, holding it steady. If you prefer a formal proof, Euclid will oblige.
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In this diagram (it looks like a specific triangle, but stands, as in a mo-
rality play, for All), ∆ADQ and ∆BDQ are congruent by SAS, because
AD = BD (since D is the midpoint of AB), QD is equal to itself, and the
angle trapped between these corresponding sides is in each case a right
angle (since that is what it means for one line to be perpendicular to
another). Hence AQ = BQ. Try proving the converse yourself.

Notice that nothing depended on a specific length for QD, so Q, as it
slides up and down l , always stays as far from A as from B. Well, what of
it? This is just artifice layered on empty form. True. But since there was
nothing special about the side AB, the same must hold for the perpen-
dicular bisector m of the side AC, erected at its midpoint E. l and m
can’t be parallel (if they were, CAB would be a straight line, i.e., ∠ A
would be a straight angle, which would blow our triangle apart), so they
must meet at a point O:

Once again, the same must be true for n, the perpendicular bisector
of BC, erected at its midpoint F. It will meet l at some point R and m at
some point S,

making a new little triangle ORS—but does such a triangle ORS really
exist? O is on l, so it is equally far from A and B. But O is also on m, so it
is equally far from A and C:
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This can only mean that O is equally far from B and C—so O must also
be on the perpendicular bisector of BC! This transitivity of equality,
nothing more, shows us that the triangle’s three perpendicular bisectors
are concurrent: one of those significant events. Any triangle of necessity
carries invisibly around with it a specific point that is equidistant from
its three vertices. This point may lie inside the triangle, as in our dia-
grams, or outside it, when the triangle is obtuse (i.e., has an angle greater
than a right angle, 90°):

As you might begin to suspect, in the third case—when one of the angles
is a right angle—this point O lies on a side: on the hypotenuse. This
important fact will play a key role later—its proof is in the Appendix.

Let a skeptical friend scatter three non-collinear points A, B, and C as
he chooses; you can always astound him by drawing an elegant circle
through them. Join those points by straight line segments, making a tri-
angle; erect the perpendicular bisectors of any two of these sides—and
where they meet at O will be the center of the circle you seek, whose
radius will be the length from O to any vertex, such as OA:
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This circle is called the triangle’s circumcircle, since it is circumscribed
about it; and O is therefore called the circumcenter. Wipe that tabula rasa
off the triangle’s face: it now comes equipped with its circumcenter, like
Orion with the Dog Star:

Has a triangle other dark stars just waiting to be made visible? Since
its only features are sides and angles and we’ve just looked at the side-
bisectors, let’s see how the angle-bisectors behave—perhaps they too
concur.

If l is the bisector of the angle at A, any point Q on it will be equally far
from the two sides AB and AC (a nice counterpoint to the side-bisectors).
As before, let’s give our intuition a formal basis. The distance from a
point to a line is the perpendicular to that line from the point, so the
distance from Q to AB is the length QD (since QD ⊥ AB) and from Q to
AC it is QE (QE ⊥ AC), where D and E are the feet of their respective
perpendiculars:

We want to show that QD = QE, and the easiest way to do this is to
make them corresponding parts of congruent triangles. In this situa-
tion, complementary to the first, we’ll use the complementary congru-
ence technique of ASA. ∠ a

1
 = ∠ a

2
 in ∆AQD and ∆AQE, and certainly

AQ = AQ. If we could just show that ∠ r = ∠ s . . . But the right angles are
equal, and the sum of the angles in each triangle is 180°, so

180° – (∠ a
1
 + right angle) = 180° – (∠ a

2
 + right angle),
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that is,

∠ r = ∠ s.

The two triangles are congruent by ASA, so their corresponding parts
are equal—among them, QD = QE. A point on the angle bisector is
equally far from the sides of the angle it bisects.

The bisector of ∠ B will meet l at some point I (as before, were they
parallel the triangle would, impossibly, have more than 180° in it):

With our newly acquired sophistication, let’s draw CI and hope it too
is an angle bisector—hope that any point on it is equally far from CA
and CB:

We’ll think transitively, as before, and see where it leads us.

Because I is on the bisector of ∠ A, it is equally far from AB and AC:
ID = IE. Because it is on the bisector of ∠ B, it is equally far from BA
and BC: ID = IF. So IE = IF. We want ∆CIE ≅ ∆CIF. We have a right angle
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in each, IE = IF and the hypotenuse IC is equal to itself—so by the
“hypotenuse-leg” theorem, ∆CIE ≅ ∆CIF.

This means their corresponding parts are equal—and among these
equal pairs, ∠ c

1
 = ∠ c

2
. Hence CI is indeed the bisector of ∠ C. Once

again, three lines with special functions are concurrent, and the point I
where they concur is called the triangle’s incenter, because with I as cen-
ter and ID, for example, as radius, you can draw the incircle, fitting snugly
inside the triangle, whose sides will just touch (be tangent to) it.

How minuet-like these reciprocal movements have been: side-
bisectors, the circumcircle and its circumcenter O; angle-bisectors, the
incircle and its incenter I. Remove the overlay of proof and what re-
mains are the triangle’s secret sharers.

Are there more stowaways under the decks? You might expect them
to be harder and harder to roust out. Well, what lines must accompany
a triangle? The line from a vertex to the midpoint of the opposite side,
for example, called a median. Here is the median l from A to the mid-
point D of BC.

Notice that the median is a new sort of line: it certainly isn’t, in general,
the perpendicular bisector of side BC, nor the bisector of ∠ A (though
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in the special case of an equilateral triangle it will be both). The median,
m, from C to the midpoint, E, of AB will meet l at some point—call it G:

We begin to suspect that the median from B to F, the midpoint of AC, will
pass through G, though there seems no immediate reason why it should.

For the sake of our intuition, let’s do something Euclid would never
have done and imagine our triangle actually cut out of a thin sheet of
metal, with its mass spread out uniformly; and then picture balancing
this triangular gusset on a knife-edge.

It just feels right that the knife-edge will run from a vertex, such a A, to
the midpoint D of the opposite side—in other words, will be the em-
bodiment of a median—because that way the gusset’s mass will be equally
divided.

This would be true if we ran our knife-edge from B to the midpoint F
of the opposite side—so these two knife-edges will intersect at a point G.

G is the triangle’s centroid, or center of gravity: you could spin the tri-
angle around on a pinpoint put under G; if you hung it from a thread
fastened at G it would lie level*, which means that the median knife-
edge from C on which the triangle balances must also pass through G.

*For a proof that any triangle has a centroid, through which all such mass-balancing knife-edges
must pass, see the Appendix.
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Metal and gussets and knife-edges don’t belong to mathematics—
nor does this “proof”. It was meant only to strengthen belief, not yield
certainty, as skirling pipes collect our powers for the battle ahead. Yet
while we are in the mode of physical analogy, let’s press it further to see
whether it can tell us just where this centroid is.

Unequal masses won’t balance at equal distances from a seesaw’s ful-
crum, but the “law of the lever” says they will balance when the distances
are adjusted so that the product of one mass times its distance from the
fulcrum equals the product of the second mass times its distance.

m
1

· d
1
 = m

2
· d

2

2 × 6 = 3 × 4

Keeping this in mind, let’s go back to our solid triangle and heat it so
much that the metal becomes molten, and then draw off the mass equally
to the three vertices. To keep the triangle’s shape, imagine thin wires
connecting the three blobs at A, B, and C, which have cooled into beads
that can slide on these wires:

Move the blobs B and C to the midpoint D of the wire between them,
and solder in a wire from A to D.

The centroid G is somewhere on this new wire. Where? D now has twice
the mass of A; so, by the law of the lever, the balance-point between D
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and A must be twice as far from A as from D: in other words, the cen-
troid G is two-thirds of the distance from A to D. This will be true for
any median: the centroid lies 2

3
 of the distance from the vertex to the

midpoint of the opposite side.

At this point you may say: no need to go on—we have our proof and
a nifty bit of thinking it was too! All of a sudden the enormous gap
between intuition and formal proof opens again—more vividly than
ever. On the one hand, you can feel the weight of conviction almost as
palpably as you can feel the weight of those metal beads. How could a
triangle not have a centroid, and how could it not be just where we found
it? On the other, temperate voices remind you that if visual proofs need
interpretation, physical ones need even more; that the “law of the lever”
doesn’t precede but follows from mathematics; that we have let too many
assumptions go unchallenged here (that mass can be replaced by masses
concentrated at points; that mass tells us about area, and area about
location of lines). Form itself lies behind shaped matter, and mathemat-
ics concerns itself with the play of form.

Like Archimedes, then—who looked to physics for his insights but to
mathematics for his proofs—let’s carry our insight back into geometry
and find a proof that a triangle’s medians are concurrent. We need only
borrow from Euclid two early results: (1) in a triangle, the line joining
the midpoints of two sides is parallel to, and half the length of, the
third side;

(here the line FD is parallel to AB, and half its length)

and (2) in that interesting shape, a parallelogram (a four-sided figure
with one pair of sides parallel and equal, or—what turns out to be the
same thing—the sides parallel in pairs), the diagonals bisect each other:
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(RG = GD, FG = GS)

Confident of the outcome, we now begin. In ∆ABC, with D and F the
midpoints of BC and AC, respectively, draw DF and the medians AD
and BF, intersecting at G.

Let R be the midpoint of AG, S the midpoint of BG, and draw FR, RS,
and SD.

Now we’ll make double use of result (1): in ∆ABC, DF � AB and DF = 1

2

AB; and in ∆AGB, RS � AB and RS = 1

2
 AB. By all-powerful transitivity,

DF � RS and DF = RS, so RSDF is a parallelogram.
We know from result (2) that its diagonals bisect each other, so RG =

GD. But R was the midpoint of AG, so in fact AR = RG = GD; that is, G
is 2

3
 of the way from A to D. If we repeat this construction with medians

AD and CE,
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we will get exactly the same result, with the diagonals intersecting 2

3  of
the way from A on AD. Since there is only one point on AD which is 2

3
 of

the distance from A, this point is again G: which means the median CE
passes through G, and we have shown not only that the medians are
concurrent but where they concur.

Part of the beauty of this proof lies in making such potent use of
such a simple fact as that a line-segment has only one point on it which
is two-thirds of the way from one of its ends; another part lies in how
it leans on—but then straightens up from—an intuition derived from
physics.

So rich is mathematics that more—and more various—proofs grow
in it than ways of making your point in rolling dice or devices for emerg-
ing from the middle game in chess. This means that taste, personal-
ity, and cast of thought can be accommodated. The proof you’ve just
seen suits lovers of symmetry; should you, however, have been se-
duced by infinite sequences, a custom-tailored proof is in the on-
line Annex.

However you choose to prove it, another star winks on in the night
sky. Our triangular Orion now, we see, is always accompanied by three
points:

Why stop here? the altitudes (those perpendicular lines from vertices
to the opposite sides) must also concur—it would be too strange if they
did not. Given the way our story has evolved, you would expect that to
prove this would be harder still. We’re always wrong-footed by math-
ematics: it will take only the audacity of Alcibiades and looking askew to
make this new truth appear.

The median proof in the Annex involved going down a tunnel inside
a triangle; this one—to prove that the three altitudes are concurrent—
reverses the direction. We’ll take our triangle ABC and build another
one around it.

The parallel postulate (once again vitally needed) guarantees that
through C there is one and only one line l parallel to AB—so let’s con-
struct it:
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(our little arrows here mean that the two lines they are on are parallel).

Do the same now at A and B: through A, the only line parallel to BC,
and through B, the only line parallel to AC:

These new lines form a new triangle; we’ll label its vertices R, S, and T.

The ingenious person who first came up with this proof built such an
enclosing triangle because it gave him two parallelograms, RCBA and
CSBA (each is a parallelogram because in each, the sides are parallel in
pairs). This guaranteed that RC = AB, and from the second parallelo-
gram, that CS = AB. So by transitivity again, RC = CS, making C the
midpoint of RS. You probably rightly sense that transitivity is as funda-
mental to our thought as triangles are to Euclidean geometry—that in
fact it is the mind’s triangle, showing us that going from one truth to
another via a third means that we can now go directly.

If we chase the other parallelograms around in the same way, we see
that A is the midpoint of RT and B of ST. Pretending that ∆ABC isn’t
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even there and looking at ∆RST only, erect (at A, B, and C, of course) the
perpendicular bisectors of the sides of ∆RST: w, x, and y. We know, from
the very first theorem of this chapter, that they meet at a point: the cir-
cumcenter of ∆RST—but here, let’s call this point H:

Of course, ∆ABC won’t go away, nor do we want it to. Since w is per-
pendicular to RT, it must also be perpendicular to BC, which is parallel
to RT. x is, for the same reason, perpendicular to AC and y to AB. Yes—
but this means that w, x, and y are the altitudes of ∆ABC, and we have
now proven them concurrent (at H), by thinking of them as lines serv-
ing another end in a different triangle. So the nimble mind coaxes new
insights from old with that economy that marks the noblest arts. H is
called the orthocenter of ∆ABC, the fourth fixed point coded into every
triangle’s DNA.

What we spoke of before as a minuet has turned out to be a quadrille:
a quietly formal dance on the otherwise empty triangular floor. And
what an intricate dance it is! Look again, for example, at a triangle ABC
and its orthocenter H:

Draw AH and BH: then C is the orthocenter of ∆AHB! Why? Just turn
your looking inside out: since an altitude is perpendicular to a side, the
side must also be perpendicular to the altitude, and the two can switch
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roles in this masquerade. Is this an utterly
unintuitive revelation, a tautology—or
both? Take pencil to diagram to decide.

These stars shone singly in Euclid’s sky.
By the Age of Enlightenment they sang in
glorious voice to Reason’s ear, when Euler
saw that the three points O, G, and H—the
circumcenter, centroid, and orthocenter—
are always collinear! The line they lie on is
called the Euler Line. The proof has his easy
genius to it.

∆ABC is either equilateral or not; if it is,
O = G = H, so of course this one point is on
a line. But if ∆ABC isn’t equilateral, then its
centroid won’t be its circumcenter, so draw
the line from O to G and extend it twice its
length to a point we hope will turn out to be H—so we’ll call it H*.

If we can prove that the altitudes all pass through H*, we will have proved
that H* = H and so O, G, and H will be collinear.

First draw CG, and since G is the centroid, when we extend CG to
meet AB at D, D will be the midpoint, since CGD is a median. And the
perpendicular bisector will go up from D through O, since O is the cir-
cumcenter.

Because we know from page 115 that the centroid is 2

3
 of the distance

from vertex to opposite side, we know that the ratio of CG to GD is 2 to
1. By the way we constructed it, that is also the ratio of H*G to GO.

Leonhard Euler (1707–1783),
father of thirteen and endlessly
productive in mathematics.
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The line begging to be drawn is from C to H*, continued to meet
AB at K.

The little winged figure trapped inside ∆ABC is made up of ∆DOG and
∆CH*G, which have to be similar, since they have a pair of angles equal
(the opposite angles ∠ CGH* and ∠ DGO), and the sides surrounding
this angle are in proportion.

This means that since OD is perpendicular to AB, so is CK: so CK is
the altitude from C, and it passes through H*. Reasoning similarly, the
other altitudes show up passing through H*, so H* is indeed H, the or-
thocenter—which therefore lies on a line with the centroid and the cir-
cumcenter.

Once again Heraclitus is right: hidden relations are more powerful
than those we see. These power-points of a triangle are subject to pow-
ers greater still.

Concurrent lines, collinear points—are there other fundamental
shapes that hover invisibly over a triangle? Yes—and to call up a very
surprising one we need only invoke one new figure to combine with
those we already know: if you have a right triangle like FDN, then it fits
neatly into—is inscribed in—a semicircle.

Long before Euclid was born, Thales proved that if a triangle is in-
scribed in a semicircle, then it is a right triangle—and sacrificed an ox to
celebrate his discovery. So says Pamphile; and although she lived more
than half a millennium later, it would be nice to believe her. It would be
equally nice—and not that hard—to believe that Thales proved the con-
verse too: “if a triangle is a right triangle then it can be inscribed in a
semicircle”—for this follows in one step from our proof in the Appendix
to page 108. Let’s be generous and call this result “Thales’s Converse”.
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Now we let our figures combine to recreate a discovery made by the
reclusive high school teacher Karl Wilhelm Feuerbach in 1822: that in
any triangle ABC, a seemingly random scatter of nine points—

the midpoints of the three sides, the feet of the three altitudes, and the
midpoints of the three line-segments connecting the orthocenter H to
the vertices—must all lie on a circle!

In our diagram these points are D, E, and F (the midpoints of the sides);
J, K, and L (feet of the three altitudes, with orthocenter H); and M, N,
and P, the midpoints of AH, BH, and CH, respectively.

The number of points involved and the late date of the discovery might
lead you to suspect that the proof will be difficult; yet it uses no more than
parallels and perpendiculars, parallelograms—and, as ever, transitivity.

1. By our first result on page 114, FE � AB (midpoints of sides in
∆ABC) and MN � AB (midpoints of sides in ∆HAB); so by transi-
tivity, FE � MN.

2. Likewise, EN � CH (midpoints of sides in ∆CBH) and FM � CH
(midpoints of sides in ∆CAH);

3. So by transitivity, FM � EN.
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4. This means that FENM is a parallelogram.
5. But since CHJ is an altitude, it is perpendicular to AB (CHJ ⊥ AB),

so by transitivity again (and again), FM ⊥ MN and EN ⊥ MN.
6. That turns the parallelogram FENM into a rectangle.
7. Thales’s Converse allows us to conclude that F, M, N, and E lie on a

circle with diameter FN and center R, the midpoint of FN.

We are a third of the way there. The next part of the proof is exactly
like the first, but looks at points F, D, N, and P. These too, and for the
same reasons, are the vertices of a rectangle:

One of its diagonals is FN, so these four points F, D, N, and P lie on a
circle with diameter FN and center R at its midpoint—the same circle,
therefore, as before, so that F, M, N, E, D, and P all lie on it:

But what about J, K, and L, the feet of ∆ABC’s altitudes? The diago-
nals of our two rectangles—FN, EM, and DP—are all diameters of this
circle with radius R.

Look at diameter FN. The right triangle FLN is built on it (since BNL
is an altitude, L is a right angle),
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so by Thales’s Converse once more, L lies on the circle with diameter FN
and center R—our circle.

Likewise the right triangle PJD is built on diameter PD, so J is on this
circle; and right triangle MKE is built on diameter EM, which means K
is on it.

So all nine points lie on this single circle, called by some the Nine-
Point Circle, others the Euler Circle—but most appropriately the Feuer-
bach Circle, especially since he also noticed that it is tangent to four
other important circles: externally to the three circles tangent to the sides
of the triangle, and internally to the incircle.

Will it surprise you to learn that R, the center of this wonderful circle,
lies on the Euler Line? And would you be surprised to learn that this
story is hardly over? For look at small triangles formed within the origi-
nal one by taking each vertex with the two adjacent feet of the altitudes:
each has, of course, its Euler Line (unless such a triangle is right or equi-
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lateral)—and these three lines are concurrent at a tenth point on the
Nine-Point Circle. Great fleas have little fleas . . . (to see them, look at the
Appendix).

Our brief glimpse at what seemed an empty triangle has uncovered
five points, a peculiar line, and now this circle that always accompany it,
invisible as familiars to all but those who know the spells to make them
appear.

∞

. . . stare
At nothing, intricately drawn nowhere
In shapes of shifting lineage . . .

Edna St. Vincent Millay wrote that in her sonnet “Euclid alone has
looked on Beauty bare.” Alone? Thales too, and Euler and Feuerbach,
Hobbes and how many others, doodling on telephone pads, heard the
call and learned how to look at this pregnant nowhere—or is it every-

where, these triangles that are only repre-
sented by diagrams but lie somehow
behind or beyond or within them? Isn’t
geometry, as Poincaré once said, “L’art de
bien raisonner sur des figures mal faites”—
the art of reasoning well from ill-drawn
figures?

These shapes seem so much more
concrete than numbers do; yet just how
elusive (remote and at the same time per-
vasive) they are, a last excursion will show.

What if you asked—as the amateur
mathematician Count Giulio Carlo de’
Toschi di Fagnano did in the 1700s—

whether there was a triangle of shortest perimeter that could be inscribed
in a given triangle: in effect, whether there is a least distance you could
run and still touch each of the triangle’s three walls.

Henri Poincaré (1854–1912)
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Would D to E, E to F, and F back to D be this shortest path?
The problem is interesting for many reasons. Logic says that of all

possible paths there ought to be a shortest, but our intuition fails to tell
us at once what the shortest path is—or even if there is a shortest (or if
you are a formalist, whether the existence of such a path could be proved,
even were the path itself not to be found). It is historically interesting
also, because, like the two-faced Janus stones with which Romans once
marked their frontiers, it looks both forward and back. Back, because
“shortest distance” always, in Euclidean geometry, means “straight line”,
which, along with “point”, is one of this geometry’s two most primitive
concepts. Ahead, because all questions about minimizing anything, such
as a path length, are chiefly at home in the mathematics Euclid never
dreamed of: calculus, which was the high point of seventeenth-century
invention.

Yet how could there be any question of a straight line here, except for
the obvious fact that each sprint across the triangle should be straight?
The whole path couldn’t possibly be. It is at this moment that the spirit
of Alcibiades awakes at its most pugnacious.

“Shortest distance means straight line, and that is what I mean to
have!”

“Ah, but you can’t!”
“Yes, but I will!”
Half the mathematical insights that enlighten the world come from

attending quietly to what the givens say; the other half—more riskily—
from imposing your will on them. Young Alcibiades, playing in the dust,
wouldn’t move out of the carter’s way and lived to tell the tale. Old
Archimedes, continuing to draw in the sand when the centurion sum-
moned him, didn’t.

Let’s go along with Alcibiades here and insist on a single straight
line. It can’t then be one that fits in the required triangle—but perhaps
it could later be folded to fit, like a carpenter’s rule. Yet how should we
start? The answer also has an Alcibiadean cheekiness to it: start any-
where. Start with the D, E, and F of the last diagram. But how could
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that help? Those points were chosen at random; no chance of them hav-
ing been the right ones—unless every path is equally short, which would
be disappointing, or there is no shortest, which would be perplexing.

Keeping those two extreme possibilities in mind, our hope neverthe-
less is to hit on the one true way, and our strategy—following Polonius’s
advice to Laertes—is by indirections to find directions out. The idea is
as clever as it is ancient: you will meet it even in the Rhind Papyrus,
which the scribe A’h-Mose transcribed around 1650 B.C. from an Egyp-
tian original some quarter millennium older. It acquired the name “false
position” (positio falsa) in the Middle Ages; you could think of it as a
tentative early adventure with x, the unknown.

The problem given in the Rhind Papyrus is to find a quantity such
that when it is added to a quarter of itself, the result is 15. The method
was this: choose any old number, and then adjust the result. Since we are
free to choose, let’s pick a number that will simplify our thinking: 4—
because it is easy to find a quarter of it: 1. That would give us 5 (= 1 + 4)
rather than the desired 15. Since 5 is a third of 15, our answer has fallen
short by a factor of 3, so multiply the 4 we chose by 3, giving us 12, and
behold! 12 when added to a quarter of itself, which is 3, yields 15. Any
choice, of course, would have worked: had you chosen 2 instead, then 2
+ 1

2
 falls 6 times short of 15, so you would have had to multiply 2 by 6—

and so get 12 again.
The geometric equivalent of positio falsa is to choose (as we did) any

points D, E, and F on the triangle’s sides. Now for the first of two world-
class insights: think of sides AC and BC as mirrors and reflect the point
D in each of them, to X and Y, respectively, outside the triangle:

 (“reflect” means drawing a perpendicular from D to T on AC and then
extending DT its own length to X—so X is the virtual image, through
the glass, of D. Do the same thing with a perpendicular to U on BC).

Now connect X to our random point E, and F to Y, giving the zigzag
path XEFY:
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The reason for this bizarre maneuver is that XE is the same length as
DE, part of our original, random, path: ∆TXE ≅ ∆TDE (by SAS: the shared
side ET, the right angles, and the equal sides TX and DT), so EX = ED.
Similarly, on the other flank, FY = FD. Hence XEFY is the same length as
the path from D to E to F and back to D.

Suddenly we see how to satisfy Alcibiades’s demand: if only XEFY
were a straight line, it would be the shortest distance from X to Y—and
therefore, so would the internal path it was reflected from. This means
we can abandon two of our three random choices, E and F, and for the
arbitrary point D get a shortest path as follows.

Reflect D in the “mirror” AC to X and in the “mirror” BC to Y; connect X
and Y by a straight line. It will meet AC (at M) and BC (at N). Then D to
M, M to N, and N back to D will be the shortest triangular path in-
scribed in the original triangle ABC—if we start at D.

Are we done? No, because although for a given D we now know where
to find the other two points, we don’t know where to station D along AB
so that DMN will be the shortest of all possible paths. Or to put it in
terms of a straight line: what choice of D will minimize the length XY?

This is where the second world-class insight appears (from what
heaven of invention?). It wasn’t Fagnano but Leopold Fejér whom the
fiery muse visited. He taught in Hungary in the early twentieth century
but almost didn’t, his appointment having been opposed by anti-Semites
on the faculty. One of them—knowing perfectly well that he had changed
his name from Weiss—asked: “Is this Leopold Fejér related to our dis-
tinguished colleague in the Faculty of Theology, Father Ignatius Fejér?”
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The eminent physicist Lóránd Baron von Eötvös answered at once: “Il-
legitimate son.” Opposition ceased.

Copy Fagnano’s construction with the falsely positioned D, and add
the lines CX, CD, and CY:

You might think of the see-saw XY hung by CX and CY from the balance
point C: for just as before (looking at congruent triangles ∆TXC and
∆TDC on one side, congruent triangles ∆UYC and ∆UDC on the other),
CX = CD = CY.

∠XCY can’t change (it will always be twice the original ∠C, made up
of ∠ ACD and ∠ BCD; and ∠ XCA = ∠ ACD, ∠ YCB = ∠ BCD), but CX
and CY could shorten, in effect pulling up and shortening XY. How short
can they get? Since each equals CD, it is just a question of when CD is
shortest—and since the shortest distance from a point to a line is the
perpendicular, this will be when CD is the altitude from C of ∆ABC! So
the inscribed triangle we first called DEF will have the least perimeter
when our contrived line XY is shortest, and XY is shortest when D is the
foot of the altitude from C.

Since there was nothing special about C and side AB, the same will be
true of the other two sides: E must be the foot of the altitude from B and
F the foot of the altitude from A: then D to E, E to F, and back again from
F to D will be the minimal triangular path inscribed in ∆ABC:

So the minimal path was built into the triangle’s genetic code all along,
a cousin of the altitudes whom we had just come to know. We discov-
ered how to construct it by playing a game of positio falsa in our familiar
old representative triangle, ABC.



���

�����	
���
�

Yet how representative was that triangle after all? A sudden doubt:
will our construction work if the triangle is obtuse? For then some of
the altitudes would meet not the opposite sides but their extensions:

and clearly the path DEF fails to lie within ∆ABC. In fact, with F as one
of the points on the path, where could the other two possibly be? For
every choice such as D and E—

we could get a shorter path by moving D and E closer to A:

If we think of D and E as points on a number line, with A as zero, we
know that for any choice we make we can always make a smaller—so
there seem to be shorter and shorter but no shortest triangular path in-
scribed in an obtuse triangle (the path AF from the vertex A meets AC
and AD at the same point, which only by an abuse of language fits our
requirements). We have the same problem with a right triangle:
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Since the feet of the perpendiculars are F and A, they give us no path
save AF; and any other points chosen on AC and AB will slide together,
approaching the single line AF as a limit, as they did in the obtuse tri-
angle. This plausible argument isn’t a proof but points to one, which
you will find in the Appendix.

What we have just witnessed in solving Fagnano’s Problem is an en-
counter found everywhere in mathematics: arrogance coming up against
the natural resistance of things. The problem is solved for all time in any
of the infinite kinds of acute triangle—solved by putting old objects in
new arrangements. It is unsolvable for right triangles and the infinite
varieties of obtuse triangles (or should we say: it is solved for these too,
by knowing that there is no shortest path, unless you are willing to settle
for a triangle with only one side?).*

“Arrogance” is what Alcibiades’s enemies called what his friends saw
as insouciant confidence. Intuition urges straight lines on a mind in
pursuit of least distance, and reason has to contrive how to form intu-
ition to fit the circumstances. Is this the way the two voices of Formalist
and Intuitionist harmonize in us? What we first hear of their concord is
this blithe, inventive tone. (A last marvelous example in the Appendix
will tell us more about this tone and about what we once mistook for
“innocent” triangles.)

How could the body’s eye, which sees only what is, ever match the
mind’s, which also sees what might be? How could any particular dia-
gram ever be adequate? The Formalist seems to have the last, cautionary
word: if anything is infinite, it is the subtlety of the world. Yes, the Intu-
itionist answers, and of the mind (since each is a part of the other).

*Having seen that false assumptions may lead to false conclusions, we look much more suspi-
ciously on the claims to generality of our old ∆ABC. Should you take our word that the other
properties we’ve proved are true for all triangles?
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In 1187 the Frankish Kingdom of Jerusalem was attacked by the Saracens.
Their leader, the Saladin, raised, they said, “an army without number,
like the ocean.” It was an army of 80,000 men. Nowadays we take that
number in with ease: the crowd at a good-sized football stadium. There,
of course, they have made their way through a turnstile and are sitting
in ordered seats, not swarming toward us with spears. But we have our
own versions of the countless: the midges at twilight, the sands on the
shore, all the leaves on all the trees that were or are to be. Countless
needn’t mean infinite, just uncounted or hard to count.

Yet how easily our thought slides away from the very many to the
infinite, as if we were anxiously eager to grasp infinity through an im-
age. The eagerness is anxious, however, because an ancient interdict lies
behind it: thou shalt not make graven images. Kenneth Clark explains:

The voice that spoke to Moses out of the burning bush, or the single
almighty being who spoke through the prophets, was infinite, and
to give him finite shape in visible form was blasphemy.

Why do we insist that our god be infinite? Why would being bound in
a nutshell world give us bad dreams? Why do we fear the cloister more
than the agora? Longing and love have always “the expansion of infinite
things,” as Baudelaire wrote, and the distant beloved her infinite variety.
The romantic in us wants always to be there, not here, at every possible
here, just as heaven is for our reach exceeding our grasp.

Longing prolongs. The more remote the object of our desire, the more
incomparable it seems. How could we even set about describing it? The
numerical faculty in us proposes images remote and vast enough to be
commensurable with our awe, not only because they have a sculptural
purity to them but because the abstract calls up in us a tension between
the distant and the near, very similar to what we feel for the remote be-
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loved. You sense it in watching the prolongation of parallels to that ul-
tima where they converge. It echoes in the series you see approaching its
limit ever more closely, making “ever” itself thinkable and the infinite a
diminishing fraction away.

Images grown abstract in geometry sidestep the Second Command-
ment, yet even in this rarified realm our infatuation with the infinite
propels us beyond the geometric to forms that have no shape: the letters
that stand for numbers, the numbers that stand for themselves. In its
transparent doings, algebra echoes with angelic exchange—or are the
promises algebra holds out to us diabolic (as the eminent mathemati-
cian Michael Atiyah suggests), since they may give us mere mechanism
when what we wanted was meaning? To the algebraist, his timeless equa-
tions offer the prospect of understanding not just the infinity of past
and future time, but the forms that hold time itself.

The totality of numbers strands midges and grains of sand at the start-
ing line—yet through induction we plane over this totality and grasp its
structure. Mathematics (the yearning halves of geometry and algebra
completed to a whole) lets us see what Ravel detected in eighteenth-
century French music: “Illimitable visions but of precise design, enclosed
in a mystery of sombre abstractions.” The abstractions of mathematics,
however, are shot through with light, for it is to this art that all music
aspires.
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Geometry sprawls as organically as a Gaudi apartment house, with
Euclid’s room tucked away down a corridor. Yet glancing through his
door in Chapter Five we caught sight of astonishing vistas, each shaped
from the simplest elements: points, lines, circles. When we suggested
you draw one or another of these you probably didn’t take us seriously,
knowing we would do it for you—or more deeply, because mathematics
lies in an enchanted world somewhere between reality and imagination.
You can’t make geometry’s figures—only poor paraphrases of them: its
lines have no thickness but infinite extent; its points have no dimension
to them at all; its circles are perfectly rounded. Only the golden compass
that William Blake’s Ancient of Days holds in his hand at the world’s
beginning would suffice. Yet in our splodgy points and wobbly lines we
know, without ever having seen them, just what is being represented,
and recognize Triangle and Square themselves in our caricatures.

What does it mean, then, when Euclid asks us to construct a triangle,
its circumcenter or circumcircle? What is being lifted up from those lines
of Archimedes in the dust or of Hobbes on his thigh? Isn’t it that we
want to see how the gods (as the Greeks would have put it) would do
this; or how (as we would say) our best efforts approximate ever more
closely to a limit?

It is just here that another—and singularly Greek—consideration
intrudes: the aesthetics of a frugal and seafaring people. If we can’t get
everything from nothing, let’s try to get as much as we can from as little
as possible. In this spirit the Pythagoreans, long before, compressed the
harmonies of the universe into the tetractys. Our kit of tools for con-
structing should be as elegantly minimal as a mariner’s. Euclid probably
knew of subtle devices for making sophisticated shapes, but confined him-
self to an unmarked straightedge and compass. With these alone, he hoped
to construct whatever came up in his geometry: certainly triangles and
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squares for a start, and why not five- and six-sided figures and in fact all
the polygons that come after, whether they have 7 or 17 or 65,537 sides?

We looked for the basic generators of the Natural Numbers in Chap-
ter Three and found the primes. In Chapter Five we saw that the triangle
was the fundamental unit of plane geometry. Now the issue is actually to
build anything in this geometry with Euclid’s basic means.*

That issue may strike you by turns as insultingly simple and mind-
bogglingly complex. Simple, because we know how to picture any such
polygon—especially if we go one step further and ask only about those
that are regular, in which all of the sides are equal. We can easily sketch a
regular seven-sided polygon—a heptagon—for example:

and filling in the cake slices from its center, can even say how many de-
grees must be in each such slice at the central vertex:

Since it takes 360° to circle around a point, the answer will be 360

7
 =

51.4
—

2
–
8
–
5
–
7
–
1
-
°. Given the dimensions of the slices we could calculate the

heptagon’s area and the length of its perimeter. Yes—but that’s not the
question. Can we in fact not sketch but construct it exactly with our two
ideal tools?

This is where the mind begins to boggle: just how should we go about
it, having no protractor? Even if we had one, the most delicate hand in
the world couldn’t capture the remoter digits of our endless decimal,

*Could one hope to go further? We have unfortunately not yet been able to read Juan Caramuel
Lobkowitz’s Mathesis Audax (1642), in which that Vicar General of England, Scotland, and Ire-
land seems to have resolved the major problems of logic, physics, and theology—above all, the
issues of Grace and Free Will—by ruler and compass construction.



���

�����	
����
���
���	

which the arithmetic mind so easily gauges. There must be a way, but it
doesn’t leap to the eye. Grown cautious over the course of the past five
chapters, we may even want to reserve judgment about whether there
always is a way. Mathematics seems ever to teach us two lessons: there is
no limit to our mind’s ingenuity; and there is even less of a limit to the
intransigence of the world.

Let’s begin our architectural work at the beginning and construct a
regular (equilateral) triangle. Easy enough: since Euclid cares only for
shape, not size, draw any length AB.

Now set your compass point at A, its pencil at B, and swing an arc:

Reverse this process, putting the point at B, the pencil at A, and swing a
second arc, meeting the first at C:

Now use your straightedge again to draw in line segments AC and BC.
All sides, being radii of the same circle, are equal; hence ∆ABC is equi-
lateral. With such an easy beginning, the rest of the regular polygons
should tumble to our will like induction’s dominoes.

A square: from Chapter Five we know how to construct a line per-
pendicular to a line segment at its midpoint—call it B:
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Now swing an arc with center B and radius BA, meeting this perpen-
dicular at C:

To conclude, swing two arcs with radius BA and centers A and C,
meeting at D; then with your straightedge construct AD and DC, com-
pleting the desired square.

This playing off of compass against straightedge made triangle and
square so easy to construct that you feel there must be something here
that will generalize from n to n + 1. What, therefore, does it tell us about
the pentagon? A deafening silence is all the answer we hear.

Let’s make a strategic retreat and ask (as we did about the heptagon)
how many degrees would have to be in each of its “central angles” α
(Greek letters for angles—as a tip o’ the hat to those who first told us
about them, and to avoid confusion with Roman letters for points and
lines):

α = 360

5

°  = 72°. That looks more promising than what we got for a hepta-
gon. If we could construct a 72° angle with straightedge and compass we
could then iterate it four times around and so have our regular penta-
gon. (Since size doesn’t matter, any circle from the center would put
points equally far along each spoke, and we would make the sides with
our straightedge between adjacent points.)
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One of the high-risk appeals of mathematics is that you never know
whether the next problem you stumble on might not lead you like Childe
Roland to a dark tower. Constructing this angle of 72° will plunge us
into a misty wood where everything seems a symbol instead of itself,
and legends at least as old as the Pythagoreans call up intimations of
mathematics as sorcery. It will take the eagle of algebra to rescue us from
our amazement and bring us back to the greater light of how things
intricately are.

It needs no more than drawing in the diagonals of our pentagon to
discover within it the pentagram dear to the black arts. Look at the
center of the pentagram: another pentagon! Draw its diagonals. . . Look
at our original pentagon and a pentagram begins to take shape around
it . . . tunnel one way, tower the other—moving in and out toward
infinity.

There is mystery enough just in our diagram: each diagonal divides
whichever diagonal it crosses into a Golden Ratio. Euclid defines it this
way: “As the whole line is to the greater segment, so the greater is to the
less.” We would now say:

1 x
 .

x (1 x)
=

−

(We say it so casually, yet what a leap in thought this invitation to alge-
bra involves, going one step beyond positio falsa and asking a letter to
stand in for an unknown quantity, so that manipulating mere forms will
reveal their content!) When the mask is lifted and we see the hidden
number, this relation yields perfectly proportioned rectangles
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which the far-sighted detect everywhere in the arts of their favorite cul-
ture (sides in a ratio of 2:3, 3:5, 5:8, 8:13, . . . better and better approxi-
mate this Golden Mean). Some musicians believe that the major sixth is
the most beautiful interval because the frequencies it lies between are
virtually in this ratio (or is it vice versa?). Since you can find it in shapes
as different as nautilus shells and pine cones, enthusiasts of occult de-
sign discover it throughout animate nature and behind the Master Plan
of Things. A significant (if not a golden) proportion of the Internet is
devoted to its lore. Kepler, astride two worlds, wrote that “Geometry has
two great treasures: one is the theorem of Pythagoras; the other, the di-
vision of a line into extreme and mean ratio. The first we may compare
to a measure of gold, the second to a precious jewel.” The Pythagoreans
used the pentagram as a secret sign among themselves and called it
“Health”. Variants of the story we heard in the first chapter about Hip-
pasus and his fate center around the pentagram rather than the irratio-
nality of 2 . The Tower of Mathematics, which is our frontispiece,
derives, inverted, from Breughel’s Tower of Babel. Its sides angled in, for
him, at 72°—no doubt with referential intent.

How does any of this help in constructing the pentagon? We will leave
it for a time and set off on a strategy at the heart of much of mathemat-
ics: let’s call it “fetching from afar”. Here the mathematician as Merchant
Adventurer travels to realms remote from his problem in order to re-
turn enriched with the means for solving it. The golden ratio will be
part of his cargo. You have seen this process at work before, as when we
found a triangle’s orthocenter by looking instead at the circumcenter of
a different triangle.

Shuffling around in the attic of insight we come on this thought: were
we able to construct a regular 10-gon (decagon), we would be able to
construct our pentagon, simply by joining together the decagon’s alter-
nate vertices:

The central angle, α, of each slice of a decagon is 360

10

°  = 36°, and since
we are interested in regular decagons, the base angles of each slice will
be equal, hence the familiar (180 36 )

2

°− °  = 72° each.
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If we take the side lengths to be one unit long, our task is to construct
the segment forming the base. Call its length t.

If we could do that, then we would draw a circle with center O and
radius 1, choose any point A on its circumference and with radius t
draw an arc intersecting the circle again at B. Doing this nine more
times around the circumference would give us the points to join by
straight lines, so making the decagon, and this in turn would yield our
pentagon.

Yet how construct t? This is the moment no mechanism can rise to:
only our prehensile minds. Imagine having our slice already con-
structed, and further imagine bisecting the angle at A, with a line meet-
ing BO at D:
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The 72° angle at A is now cut into two equal angles of 36°. ∠ADB is
therefore 180° – (36° + 72°) = 180° – 108° = 72°. If the base angles of a
triangle are equal, so are the sides opposite them (by a proof identical in
form to Pappus’s daring contrivance in the appendix to page 130), so
AB = AD: that is, both are of length t.

But ∠OAD = ∠AOD = 36°, so by the same theorem applied to ∆ADO,
AD = OD: OD is also of length t.

Since OB = 1, the segment DB = 1 – t.

Here is our ship sailing home: ∆OAB ∼ ∆DAB since their correspond-
ing angles are the same. Hence their sides are in proportion:

long long
 .

short short
=

In this case,

1 t
 ,

t (1 t)
=

−

the extreme and mean ratio!
Our task, however, is to construct the length t. How can we do this? It

is now that algebra brings us its little formal touches, anticipated so long
ago in Egypt, to free the unknown.

Multiply both sides of this equation by (1 – t) and then by t, turning
it into

1 – t = t2 .

Collect all terms on one side:

0 = t2 + t – 1 .

Now if we could only solve this quadratic equation in t . . . (you’ll find
two ways of solving quadratics in the Appendix), we’d discover that
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( 5 1)
t  .

2

−=

If we have a line segment, v, whose length is greater than 1 (and 5 is
greater than 1), we know geometrically how to subtract a length 1 from it:

QR has length v – 1. So if we could construct a line segment of length
5 , we could then construct another of length 5 – 1. And since we

are masters of bisecting line segments, we could then make our segment
t of length

( 5 1)
 .

2

−

∞
����������	
����	�

The Pythagorean world was shattered by Hippasus’s proof that there
were numbers, such as 2 , which weren’t the ratio of whole numbers.
Horrified though Pythagoras must have been by the monstrous progeny
of the simple straightedge and compass, might he (or we) not take com-
fort in the thought that regularity remained, but at one remove: the means
for making these monsters—the Euclidean tools—were still ideally
simple. A hidden regularity, revealed by reiterated applications of the
Pythagorean Theorem, lies too among the offspring:
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Harmony has been restored to the world—not on the level of its objects
but of their making.

But what if for some other polygon you needed 17 ? A slick way
to do the 2nth root of any natural follows from similar triangles and
Thales. For in a right triangle ABC we can drop the perpendicular to the
hypotenuse (meeting it at D). Two new triangles are thus formed, simi-
lar to the original one and hence (by transitivity) to each other:

∆ADC ∼ ∆ACB because each contains ∠A and has a right angle. Like-
wise ∆ACB ∼ ∆CDB (∠B in common and the right angle). Their paired
sides are therefore in proportion:

AD DC
 .

DC DB
=

Since we know from Thales’s Converse (page 120) that a triangle in-
scribed in a semicircle is a right triangle, let’s construct a circle of diam-
eter AB = 1 + 5 = 6, and on this diameter place D so that AD = 1 (our
given unit length). Then DB = 5.

Erect a perpendicular to AB at D, meeting the circle at C; and draw AC
and BC.

What is the length of DC (the mean proportional between 1 and 5)?

1 DC
 ,

DC 5
=

so (DC)2 = 5 and DC = 5 , as desired.
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Now we can construct our way backward to the length

5 1
t  ,

2

−=

hence to the regular decagon—

and therefore to the pentagon.

∞

The pentagon stretched our conceptual engineering. Will the hexa-
gon be proportionally harder to construct? No: it takes hardly any work
and no thought whatever, because we just fit six equilateral triangles
around a central point: 6 × 60° = 360°, and equilateral triangles give us
not only the central angles but the equal sides we need.
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Suddenly it becomes clear that we can construct a 12-sided polygon
(dodecagon) if we can bisect the central angles of the hexagon—

and indeed that we could have found the hexagon by bisecting the cen-
tral angles of the triangle:

so if we could bisect an angle, every constructed n-gon would give us a
2n-gon for free—and angle-bisection falls readily to compass and
straightedge. To bisect ∠AOB, swing any arc with center O, meeting AO
at P and BO at Q.

Then with radius PQ and center P, swing another arc, and do the same
with center Q; these two new arcs meet at R. OR is the bisector of ∠AOB,
since ∆ORP ≅ ∆ORQ: the paired sides are equal (a fourth way that Euclid
establishes triangle congruence, called SSS).

What vistas this opens up! Now that we can bisect angles, the triangle
will give us the hexagon, the hexagon the dodecagon, from that in turn
the 24-gon, and so on—in fact, any member of the sequence 2n · 3. The
square gives us all polygons with 2n · 4 sides, and now the pentagon all
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those with 2n · 5 sides. Infinitely many regular n-gons are constructible,
then—but the sophistication gained from Chapters Three and Four some-
what moderates our enthusiasm. 7, 9, and 15, for example, don’t appear
in any of these sequences, nor in fact do infinitely many others. The
story may not be quite over.

Since 15 = 3 × 5 and we can construct triangle and pentagon, perhaps
a little tinkering with them will give us the 15-gon. In a circle with center
O construct a regular pentagon ABCDE (easily said, and now, with crafts-
manship, done):

Starting at A, and with the circle’s radius OA, move around the circum-
ference marking off the points which would give the regular hexagon
(see page 143):
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Now from A connect every other vertex, a new and easy way of making
the equilateral triangle AFG:

Draw OA, OB, OF, and OC. The central angle of the triangle, ∠AOF,
contains 120° and the central angle of the pentagon, ∠AOB, contains
72°. So ∠BOF = 120° – 72° = 48°. ∠BOC is also 72°; that means ∠FOC
is 72° – 48° = 24°, the central angle of a 15-gon (since 24° = 360

15

° ). CF is
therefore the side of a regular 15-gon. Setting the compass to length CF
and swinging around the circumference will give us the rest of the 15-
gon’s vertices.

This technique will allow us to bring forth a new product-polygon
from any pair of constructed polygons whose number of sides have no
factors in common. We couldn’t get 9 out of 3 and 3, for example, be-
cause the two triangles would merge into one. A square and a pentagon
would give us a 20-gon, if we hadn’t already lazily produced one through
bisecting the angles of a decagon.

Even were we to go on constructing other hybrids, that wouldn’t do
away with the sort of irritation we’ve already felt when we were getting
dribs and drabs of results about polygonal numbers, nor would it satisfy
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our impatience for the infinite. We need to be more serious; we want to
be more systematic, and ask: precisely what can and can’t be constructed
with straightedge and compass? We want to join an Intuitionist’s relish
for making with a Formalist’s delight in legal elegance. If a polygon re-
quires lengths expressed by various kinds of numbers, can Euclid’s tools
really produce them? The way to find out is simply to build up the kinds
of lengths they can construct. Our program is therefore to find out what
kinds of things are constructible—to find a filter into which you can
pour all the real numbers, which lets through only those (and all those)
numbers that measure constructible lengths.

Let’s start with something we know goes through the filter: the num-
ber 1, measuring a unit length. And then we have to be able to do arith-
metic with it—adding it to itself any number of times to produce lengths
which can be added together, subtracted from one another, multipled,
and divided. We’ll also need (as we saw in the pentagon) to construct
lengths with square roots in them.

That unit length: since Euclid’s structures, as you know, are utterly
insensitive to scale, pick any length you like and grandly call it “1”. Or, to
satisfy a formalist, since Hilbert’s axioms for Euclid guarantee the exist-
ence of three non-collinear points, choose any two of them to mark the
unit on the line through them; then begin laying off, with our compass,
this unit length head to tail again and again, marking points that stand
for the natural numbers:

We can now add two naturals by laying out the second after the first, or
vice versa:

3 + 5 = 8.

Subtracting means laying off the length to be subtracted leftward from
the head of the first:

5 – 3 = 2.

Multiplication makes clever use of the fact that the sides of similar
triangles are in proportion. We first saw it off-handedly at work in
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Chapter One (on pages 14–15). To multiply 3 · 4, for example, with com-
pass and straightedge, lay out four units on our number line; then on a
line through 0 and that third point not collinear with our first two, draw
a second line:

and on it lay off three units. For convenience, let’s label the point mark-
ing zero A, the point at the end of those 3 units B, the point at 1 on the
original line C, and the point at the end of 4 units, D.

Since two points determine a line, construct the line through C and
B, and at D draw a line parallel to CB, meeting AB at E*:

These parallel lines make ∆ABC ∼ ∆AED, so

3 AE
 .

1 4
=

Multiplying both sides by 4,

 3 · 4 = AE = 12 .

This same canny device leads to division and therefore to seeing ra-
tios (for a Pythagorean) or constructing rational numbers (for us): a
length of 3

4
, say, follows from this arrangement:

*The easiest way to construct a line l ′ through a point
D, parallel to a given line l , is to construct a perpen-
dicular m from D to l and then a perpendicular l ′ to
m at D.
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Here we draw BD rather than BC, then CE parallel to it. Since ∆ACE ∼
∆ADB,

AE 3
 .

1 4
=

That is, AE is 3

4
 of a unit long.

This means we can now locate any positive rational a

b
 on our number

line. In the bliss of this dawn, and for the sake of what is to come, let’s
continue our number-line (page 147) leftward from 0. The negative
rationals will appear there as counterparts of the positives: – a

b
 will be

the same length away from 0 as a

b
, but in the opposite direction. These

new points, of course, mark negative numbers as positions on the end-
less number-line: we’re not talking about negative lengths.

Peacock would have been pleased: whatever we could do with the
natural numbers extends now effortlessly to the integers and rationals,
all of which—through the Adam and Eve of straightedge and compass—
obey every law for fields on Weber’s tablets for Fields (page 38). We spoke
of these numbers once as innocents in Eden but they seem more worldly
here, standing about in their field like the folk of Piers Plowman’s vi-
sion, which William Langland wrote five centuries before Weber.

A fair field full of folk I found
With all manner of men, the meaner and the richest,
Walking and wandering as the world demanded.

This multitude we used to call call Q (the rationals); but with this vision
in mind, let’s rechristen it F, for field.

Our aim is to find out what can and can’t be made with Euclidean
tools. Where are the irrationals? We have seen so recently how to con-
struct 5  with straightedge and compass, yet it is nowhere here, nei-
ther among those who, as Langland said, put them to the plough and
practiced hardship in setting and sowing, nor with those who prac-
ticed pride and quaint behavior, and came disguised in clothes and
features.

Let us invite them in, as the Old Masters would bring saints and an-
gels (only a little estranged by their lighting and bearing) into mortal
discourse on their canvases. We simply construct (as on page 142) a line-
segment of irrational length—let’s begin with that anchor of chaos, 2 —
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and drop it in amidst all the rational lengths of F. There let it go forth
and multiply, divide, add, and subtract with all those established lengths
and now with these new ones too, making every possible arithmetic com-
bination. These will make up a new and larger field, which contains F as
a subfield: a “square root extension field” of F, as it’s called, and written
F[ 2 ]. Since this is our first field extension, we refer to it as F

1
:

 F
1
 = F[ 2 ].

Notice that closure, which we dismissed in Chapter Two as almost infra
dig, turns out to be what matters here: F

1
 is closed under all the arith-

metic operations and square-rooting of 2 as well.
Every creature in this field will therefore have the two-part name a +

b 2 —even though some may not at first seem to. “17” is 17 + 0 2  in
disguise; “17 2 ” is 0 + 17 2  when it is at home. And 3 4 2

1 2

+
+

? It takes a
little clever encouragement to make it tell us its name. Multiply this quo-
tient by 

(1 2 )

(1 2 )

−
−  and look what we get:

3 4 2 1 2 3 4 2 3 2 8

1 2 1 2 1 2

+ − + − −⋅ =
+ − −

5 2

1

− +=
−

5 2
 :

1 1

−= +
− −

a is 5 and b is –1.
Although F

1
 contains everything in F and an infinite number of other

creatures besides—all of which we now see are constructible— 3  is
not among them. Why not? Because 3 , like 2 , is irrational, so can-
not lie in F. Nor can any arithmetic combination of rationals with 2
produce it (if in doubt, see the Appendix). That can’t stop us, however,
from building 3  in now. Since we know we can construct 3 ,
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we act as we did before and adjoin it to F
1
, to make the yet larger exten-

sion field F
2
 = F

1
[ 3 ].  F

2
, that is, has all the rationals in it, along with

2 , 3 , and all possible arithmetic combinations of these, with more
or less obvious examples, like 

3 7 2 4 3 3

4 19 13 2
3,  ,  2 3 6,  + − ⋅ = , which

we know we can construct.
Since we can construct the square root of any already constructed

number by the semicircle method, the program is clear. Whenever we
find a number that was in a previous field but whose square root wasn’t,
adjoin this square root to the later field, just as we have done, to make a
new field that will be the next link in our chain of fields—whose folk are
constructible lengths. This means that if a number is in F or any square
root extension field of F, then we can construct a line segment of that
length with Euclidean tools.

How like the medieval notion of the Great Chain of Being this is! Any
length in a square root extension field has been brought into existence
by straightedge and compass. If it lies in F, the length is rational; if in F

1
,

it is an arithmetic combination of rationals and 2  (or as people say, F
1

= F[ 2 ]); if in F
2
, of these and 3  (that is, F

2
 = F

1
[ 3 ]). We continue

like this every time we find a rational whose square root is irrational yet
lies in no previous field ( 6  is irrational but belongs, as you saw, to F

2
,

since 6  = 2 · 3 ; but 5 , for example, requires a new link). In
harmony with the medieval conception, this chain is infinitely long, since
each prime has an irrational square root which—like 3—can’t be de-
rived from combinations of rationals with the square roots of other
primes. In the language of a medieval metaphor, F begets F

1
, which in

turn begets F
2
 which is F

1
[ 3 ]—and so on:

F → F
1
 = F[ 2 ] → F

2
 = F

1
[ 3 ] → F

3
 = F

2
[ 5 ] → . . .

Is it awful or awesome that there are other links than these? For go
back to F

1
, containing all the rationals and all the arithmetic combina-

tions with 2 . Another length we could make, which isn’t among them,
is 2 , commonly called the fourth root of 2, or 4 2 .* We can construct
it out of old material in the usual way:

*Why is 4 22 =  ? Whatever 2  is, it is a number which, times itself, is 2 . Four copies of it
multiplied together will make 2 2 2⋅ = ; hence 42 2= .
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We therefore need a new link, which is F
1
 with 4 2  adjoined; and then

that will call up another, since now we can construct 8 2  = 4 2 , and
then 16 2 , 32 2 , and in fact a link for each 2nth root of 2, 2n 2 . The same
will be true for 4 3 , 8 3 , and so on, and the 2nth root of any prime.

Our vision is turning nightmarish: infinitely long chains now hang
down from each link of our infinitely long chain:

1 2 1 3 2

4 4 4
1,1 1 2,1 2 3,1 3

8 8 8
1,2 1,1 2,2 2,1 3,2 3,1

16 16 16
1,3 1,2 2,3 2,2 3,3 3,2

F F F[ 2] F F [ 3] F F [ 5]  . . .

F F [ 2] F F [ 3] F F [ 5]

F F [ 2] F F [ 3] F F [ 5]

F F [ 2] F F [ 3] F F [ 5]

→ = → = → = →
↓ ↓ ↓

= = =
↓ ↓ ↓

= = =
↓ ↓ ↓

= = =
↓ ↓ ↓

The bookkeeper closeted in every brain clutches his forehead and cries
out, “How shall I ever arrange all these in order?” We’ll mail him the
astonishing directions in Chapter Nine. What matters here is that we
don’t require his skills: these fields needn’t be stood to attention before
our undertakings, but can be marshalled on demand to suit our needs.

Say, for example, that you have to construct an awkward length such
as 745 · 32 5 – ( 14

3
) · 19 . To start with, we know that 745 and 14

3
 lie in

Q, our base field F. Suiting our actions to our needs, let’s first adjoin 5
to F, so that this time around F

1
 will be F[ 5 ]. We need to work our way

down to 532 :  F1,1will be F1[
4 5 ], F1,2will be F1,1[

8 5 ], F1,3 will be F1,2[
16 5 ],

and finally F
1,4

 will be F
1,3

[ 532 ]. Now all we need do is adjoin 19 , so
this time F

2
 = F

1,4
[ 19 ]—and it is in this F

2
 that the required length can

be constructed. What happened to 2  and 3 , you might ask, and
7 , 11 , 13 , and 17 ? We never needed them, and therefore built

this chain of extensions from F without them. So a carpenter, with his
templates and tools laid out in order, need only choose this one or that
for the job at hand; he doesn’t have to run through them all.

Lest you think, by the way, that every possible real number lies in some
square root extension of F, notice that some don’t: 3 10  isn’t rational (so it
isn’t in F) nor is it the square root, 4th, 8th, 16th, or any 2nth root of any
members in the square root extension chain from F. In fact, most of the
cube roots of numbers lie outside our fields. This is true too of most 5th
roots, 6th, 7th, 9th, 10th, and other roots not of the form 2n—not to men-
tion numbers like π, which aren’t any sort of root at all. Populous though
the links in our chain are, a vast array of numbers swarms outside them.

What matters to us, however, is that we have found our filter. Any
length that lies in a square root extension field of F can be constructed.
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But this criterion will help only if its converse is true as well: that any
length which can be constructed lies in such a square root extension
field. This is the second phase of our strategy and asks us to under-
stand just what it means to construct with straightedge and compass.
Fortunately the answer is clear: what we construct into existence are
only the points where two lines or two circles, or a line and a circle,
intersect. The particular points we have made thus far (in the penta-
gon, for example) have been so constructed—and have lain in F or one
of its square-root extension fields (t—the side-length of a pentagon—
is, as you remember from page 141, – 1

2
 + 5

2
, an element of that simple

extension, F[ 5 ]).
How can we be sure, however, that all the points made in one of these

three ways will belong to a square-root extension field of F? Let’s allow
ourselves a luxury Euclid never had: the coordinate plane that glimmered
in ancient Egypt and Greece, and that Fermat and Descartes brought fully
to light in the seventeenth century. We simply set up a second number line
perpendicular to the first, on each of which we can mark any point whose
distance from the zero where they cross is a number belonging to F.

It is as if we had first moved from a map that showed only how to go
eastward from home to one that extended westward as well; and here
added a north and south to give us the world on a plane. Any point on
this plane whose horizontal and vertical addresses both belong to F
can now be located (and we’ll always give the horizontal coordinate
first).

here is the point (3,2)

this is the point ( 3
2

, – 8
3

)
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The words “plane” and “field” call up such similar images that you might
think every point of the first belonged to the second. But keep in mind
that the coordinate plane contains every single point that has real coordi-
nates, while our square root extension fields are as exclusive as the parklands
of great estates. You could think of it this way. The field of rationals, F, lies
like a transparency on the Cartesian plane, with points all over it, corre-
sponding to points with rational coordinates. (

3

2 ,
–8
3 ) is on it, but neither

( 3

2
, 2 ) nor ( 3

2
, 11 5 ). The extension field F

1
 = F[ 2 ] is a second trans-

parency, with all the points of the first and now many more—all those
that have at least one coordinate with a 2  in it. ( 3

2
, 2 ) is here, but

( 3

2
, 511 ) is still missing. In fact, ( 3

2
, 511 ) won’t be in any of the subsequent

transparencies corresponding to links in the chain shown on page 152.
Nevertheless, the luxury of the coordinate plane will soon prove a

necessity to us, and the power of algebra will lift us up above field after
field, to see their ordered array. For it will let us find the form common
to all points on a given line, and in particular a line through two points
in one of our fields, and then the form common to all points on another
such line. This will let us see the form of the one point on both lines—
their point of intersection—and discover that it must have the form of a
point in the field. We will do the same for a circle, then for its intersec-
tion with another circle or line built in the same field; and those points
they have in common (their intersections) will turn out to be either in
that field or in a square root extension of it. This will bring our strategy’s
second phase to an end, showing that our criterion was all we had hoped
for: precisely those points that lie in F or some square root extension
field of it can be constructed with Euclidean tools.

“The form of all points on a line”: what does this mean? Not their
visual form, which dots, no matter how small, approximate, so badly,
but the form which is exact because abstract: their numerical coordinates
(so far has our thought evolved from Chapter One). We want to be able
to derive these coordinates from those of the two points the line was
originally drawn through.

Take for example the line through the points (2,6) and (4,12). What
form have the coordinates (x,y) of any point on this line in terms of 2
and 6, 4 and 12?
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We notice for a start that this line rises steadily, with a constant slope—
call it m—which is described by how far it moves vertically over a given
horizontal stretch:

rise
m  .

run
=

Since the vertical distance is the difference in the y-coordinates, and the
horizontal the difference in x-coordinates,

(12 6) 6
m 3 .

(4 2) 2

−= = =
−

Hence the y-coordinate of any point on this line will be three times its
corresponding x-coordinate:

y = 3x .

This particular line goes through the point (0,0). Any other line par-
allel to it must have the same slope, m = 3, but the y-coordinate of a
point on it will be increased or decreased from y = 3x according to where
such a line passes through the y-axis. The parallel line passing through
(0,2), for example (2 units above our original line), will have points whose
y-coordinates are given by

y = 3x + 2 .

The parallel through (0,–3) will give us

y = 3x – 3 .

In general, then, the y-coordinate of any point (x,y) on a line with
slope m, which intersects the y-axis at k, will be

y mx k= +
↑ ↑

.

slope y-intercept
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Now let’s apply these results to any two points with coordinates in our
field. Call these points (a,b) and (c,d). We can calculate m by taking the
difference in y-coordinates (d – b) over the difference in x-coordinates
(c – a):

(d – b)
m =  .

(c – a)

You might be tempted to interrupt, saying that we’re just lucky to
have natural numbers for our initial coordinates: instead of a, b, c, and d
we could have had rationals like r

s
 in F, or hideous combinations in a

square root extension field:  a  could have been r

s
 + t 2

u
, and c, d, and e as

bad. What an atrocious mess m would then be! But even were such in-
tricacies lovely, dark and deep, the promise we have to keep is simply to
show that two lines through points in a field intersect in another point
of the field, and we still have some way to go. Benign neglect is called for
here to avoid being sidetracked: a sort of blessed ignorance in which
mathematics (which would know all things) thrives. What we care about
is that m arises through some arithmetic combination of elements in
the field; in this case, we have used subtraction and division. Let a, b, c,
and d therefore stand for whatever those elements are; we need look no
more closely in order to gain our end.

We now have

d b
y x k

c a

− = ⋅ + − 

↑ ↑
slope y-intercept

and need to express k also in terms of our original four coordinates. We
do this simply by turning the game around on itself (will the upcoming
manipulations be exhausting or dreary? Neither: they afford the clock-
maker’s pleasure of watching the gears mesh). Since this equation puts y
in terms of x for any point (x,y) on the line, it certainly does so as well
for the original points (a,b) and (c,d). Choose one of them—say (a,b)—
and in the equation above replace  x  by  a  and  y  by  b, giving us
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d b
b a k .

c a

− = ⋅ + − 

Solving for k with just a touch of algebra,

d b
k b a .

c a

− = − ⋅ − 

Hence

d b d b
y x b a .

c a c a

− −   = ⋅ + − ⋅   − −   

We won’t let these ugly expressions rattle us; the only message we
want to carry away is that b – d b

c a

− 
 −  · a, like d b

c a

− 
 −   itself, is firmly within the

field we started with. This means that given an x in that field, y (which is
of course on the plane) will be in the field too. With this in mind, we can
return with confidence to the more congenial form

y = mx + k ,

knowing that m and k are just arithmetic combinations of elements in
our field.

We ask: if two lines arising from points of our field intersect, will
their intersection lie in the field as well? Let that second line give the y
coordinate of any point (x,y) on it by

y nx g .= +
↑ ↑

slope y-intercept

A firmer application of algebra will tell us the answer, since its aim is
to extract the unknown from whatever circumstances it finds itself in.
This is no trivial aim: “All the business of life,” said Napoleon’s conqueror,
the Duke of Wellington, “is the endeavour to find out what you don’t
know by what you do; that’s what I call ‘guessing what was at the other
side of the hill.’”
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Our hill here has y = mx + k on one side of it, y = nx + g on the
other. We are interested in the point (x,y) at the crest, where these two
lines meet. It is the same point (x,y) on both lines, so that y = y; by
transitivity,

mx + k = nx + g .

We want to find out the unknown, x, in terms of what we know: m, k, n,
and g. Well,

mx – nx = g – k

so

(m – n)x = g – k

and

g k
x  .

m n

−=
−

This is just an arithmetic combination of elements in the field, so x must
be in it as well; and we have already seen that if x is on a line derived
from our field, so is the y coordinated with it. The point made by inter-
secting two lines of the field lies in the field too.

We’ve now found that the form of a line is approximately

but is exactly   y = mx + k.
We next need to find the exact form of a circle. Our thanks for this go

back through Descartes and Fermat to Pythagoras, since his theorem
holds the key to its equation.
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Say we have a circle of radius 2 with its center at (0,0) and want to
know how the x- and y-coordinates of any point on it are related. As you
(wearing the spectacles of Pythagoras) see in the drawing,

x2 + y2 = 22

that is

x2 + y2 = 4

or

2y 4 x  .= −

The adjustment is easy should the circle have radius r instead of 2:

x2 + y2 = r2

or

2 2y r x  .= −

The final modification displaces the circle’s center from (0,0) to some
other point (h,k) on the plane:
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Now the circle’s equation is

(x – h)2 + (y – k)2 = r2

so

(y – k)2 = r2 – (x – h)2

which gives us

2 2y k r (x h)− = − −

or

2 2y k r (x h)  .= + − −

This is the algebraic form of a circle. It is the form latent in all the
circles drawn in sand, on paper, or on your thigh. Without sweating any
details we see that if x, r, h, and k lie in some square root extension field
F

i
, y will lie in at worst the next link from it.
Now we can take on the intersection of a circle and a line that both

arise from some F
i
. We hope that what points they have in common are

in F
i
 too, or in a square root extension link from it.

Because the equation for a circle is more complicated than that of a
line, the tactics for doing this will be more intricate than they were when
we looked at the intersection of two lines—but the strategy remains ex-
actly the same: to show that whatever happens, no more than arithmetic
combinations and square rooting will be involved.

Our circle is (x – h)2 + (y – k)2 = r2.
Our line is y = nx + g.
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By transitivity (in the specific form of substituting the second expres-
sion for y into the first equation),

(x – h)2 + (nx + g – k)2 = r2 .

Whatever we will now do to free x from its entanglements, we won’t go
beyond adding, multiplying, subtracting, dividing, and taking square
roots.

Like the sons of King Gama in Gilbert and Sullivan’s Princess Ida
who found their armor too heavy, we begin to remove the parts piece
by piece. Squaring the two terms on the left makes things look tempo-
rarily worse:

x2 – 2xh + h2 + n2x2 + 2ngx + g2 – 2knx – 2gk + k2 = r2 ;

but collecting like terms together,

(1 + n2)x2 + (–2h + 2ng – 2kn)x + (h2 + g2 – 2gk + k2) = r2 ,

we see that each of these expressions in parentheses is some arithmetic
combination of elements in the field we began with, hence is in this
field too—so call these three expressions A, B, and C, and off goes that
helmet:

Ax2 + Bx + C = r2 ,

or simply

Ax2 + Bx + C – r2 = 0 ,

and since C – r2 is also some element of the field—call it D—

Ax2 + Bx + D = 0 .

In steps the Quadratic Formula, and off goes that cuirass:

2B B 4AD
x  .

2A

− ± −=

The same move repeated: B2 – 4AD is also some element in the field—
call it E—so
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B E
x  .

2A

− ±=

x, stripped of its brassets and greaves, stands revealed in a square root
extension field of the F

i
 we began with, namely F

i
[ E ].

If you have been dreading the final case—the points where two circles
intersect—have no fear, but put yourself far enough above the battle to
enjoy it; or succumb to the song of the sirens that invited Odysseus to
their remote island:

Here may we sit and view their toil
That travail in the deep . . .

This travail is to solve “simultaneously”, as timeless algebra so coyly
puts it, the two equations

(x – h)2 + (y – k)2 = r2

and

(x – j)2 + (y – q)2 = s2

for the points (x,y) that are common to both.
Expand each equation, subtract the second from the first, carefully

collect like terms together (as we did on page 161) and discover the form
of a line hiding here:

2 2 2 2 2 2h j r j q s h k
y x  .

q k 2(q k)

 − + + − − −= ⋅ + − − 
↑↑

����������������

slope y-intercept
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A line? Where did that come from?

It is the “common chord” of the two circles, passing through their points
of intersection; its constants (h, j, q, k, and their arithmetic combina-
tions) lie wholly within the field we began with. So we are in the very
situation we found ourselves in before, looking for the intersection of a
line with a circle (here either circle)—and can confidently declare that
we know those intersections will lie in that field or a square root link
from it.

We are done. It has been like an exhilarating three-mile run—uphill.
What we come away with is the certainty that the algebraic form of what-
ever we can construct with Euclid’s tools has as its components only
rationals and their 2nth roots. You won’t find cube roots, fifth roots, or
such there (unless, exceptionally, one of those was a square root all
along—as 3 8  = 4 ; or masquerades as a more complicated member of
a square root extension field. So for example 3 7 5 2+  is 1 + 2  in
disguise). Now we see from aloft what we saw close at hand before: the
pentagon could be constructed precisely because the lengths of the five
sides involved nothing more exotic than 5 .

∞

It was Gauss—once again Gauss, whose name runs through the last
two centuries of mathematics like Louis Armstrong’s through the evo-
lution of jazz—who on March 30, 1796, when he was still eighteen, dis-
covered how to construct the 17-gon. No one had seen a way, or was
even sure that it could be done, in the two thousand years of thinking
about it before him.

By concentrated analysis I succeeded, during a vacation in Braun-
schweig, in the morning of the day, before I got up, to see [the gen-
eral idea so] clearly that I was able to make the specific application
to the 17-gon and to confirm it numerically right away.
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A proof, if one is needed, that adolescents should be allowed to get up
late during vacations.

We needed 5 1

2

−  to construct the pentagon. For the 17-gon Gauss
needed

1 17 17 3 1734 2 17 34 2 17 2 34 2 17  .
16 16 16 8

− + − − − +− + + +

The 17  hidden here looks more frightening than Frankenstein’s
monster (which was born from Mary Shelley’s pen only twenty years
later). But if you look at the whole expression structurally, you see it
belongs to some square root extension field not very far from F—and
that is what matters.

It was this breakthrough that decided Gauss once and for all to be-
come a mathematician (he had been equally attracted to philology, and
wrote such beautiful Latin that some regret his nationalist friends, hav-
ing persuaded him to write in German rather than the lingua franca of
scholarship).

He published his result two months later:

Besides the usual polygons there is a collection of others which are
constructible geometrically, for example the 17-gon. This discov-
ery is properly only a corollary of a not quite completed discovery
of greater extent which will be laid before the public as soon as it is
completed.

How near to glory we seem: for each of the regular polygons not yet
constructed we need only show that its side-length lies in some square
root extension field of F. Gauss tells us his construction of the 17-gon is
only a corollary of a much greater discovery. You may think that this bell
of “only” is pealing—but it is tolling: Gauss’s discovery, which he pub-
lished in 1801, was that in fact not all regular polygons can be constructed
with Euclidean tools: he found that the only ones which can, have a num-
ber of sides of a rather peculiar sort. When you break this number down
into its prime factors, each one will appear only once; moreover, these
primes will have a striking family resemblance: each will be of the form
22k

 + 1, for some natural number k. Of course once you construct a poly-
gon you can—as we saw—construct another with twice as many sides,
and twice again, and so on; hence some power of 2 will also be a factor
(perhaps just 20 = 1).* Any polygon whose number of sides doesn’t fit

*Easy as doubling the number of sides is, it can have surprising consequences. You saw at the end
of Chapter Four how an infinitely towering sequence of 2 s was miraculously equal to a finite 2.
If you would like to witness a companion miracle, brought to you by the repeated doubling of a
square’s sides, turn to the on-line Annex.



���

�����	
����
���
���	

this bill will have side-lengths whose equations will involve irreducible
cube or higher roots, and so be unconstructible. What an astonishing
and well-hidden unity behind the diversity of appearances.*

Which polygons do spring from primes of the form 22k
 + 1? The tri-

angle: 3 = 220
 + 1, and the pentagon: 5 = 221

+ 1; and, as we know, any
polygon with a repeated doubling of 3 or of 5 sides, or with 2n · 3 · 5 sides
(such as the 15-gon, the 30-gon, etc.) can be constructed. Next comes
Gauss’s 17 = 222

 + 1. And then? 223
+ 1 = 257, which is prime. In 1832 two

people named Richelot and Schwendenwein put in a little bid for im-
mortality by showing how to construct the 257-gon.

224
 + 1 is also prime: it has in fact made several appearances in this

book already, disguised as an arbitrary number no one would have
thought about once, much less twice: 65,537. From Olympus a Mr. Johann
Hermes delivered the construction of the 65,537-gon to the University
of Göttingen, in 1879, wrapped up in a weighty manuscript written in
the most admirable hand and filled with delicate drawings and cumber-
some tables. It cost him ten years of his life and is there in its suitcase to
this day, the most looked at and least read of all dissertations (as the
curator of the University’s collection of mathematical models remarks;
you can see something of the puzzles it presents in the Appendix). How
petty for any to scorn it as adding not a jot to progress. Do we dismiss
the painstaking miniatures of the insane, or the ideal palaces built by
provincial postmen? Where’s your Forth Rail Bridge made out of tooth-
picks or your basement recreation of the Battle of Gettysburg now?

Fermat thought that all numbers of the form 22k
 +1, called in his honor

“Fermat Numbers”, were prime. But 225
 + 1 = 4,294,967,297 isn’t prime

(641 is one of its factors); nor is 226
 + 1 nor 227

 + 1 nor in fact any 22k
 + 1

for k from 5 to 32. As of May 28, 2001, 190 Fermat numbers, including
this run from k = 5 to 32, have been checked, and none were prime. The
largest number checked (you’ll be flabbergasted to learn) is k = 382,447.
To keep up to date, look from time to time at Wilfrid Keller’s excellent
web site: www.prothsearch.net/Fermat.html.

Is there another Fermat number out there which is prime? We just
don’t know, for we have suddenly arrived at a frontier of mathematics. If
there are no more, then except for multiples of those we have, Hermes
constructed the largest regular polygon possible. If there is a prime Fermat
number 22k

 + 1 for some k beyond 32, no Hermes nor any Olympian
will construct it in this universe, the number of whose particles to make
anything with is significantly less than (the non-prime) 2211

 + 1. Yet in
the infinite universe of the mind we may someday discover larger—or

*See the on-line Annex, too, for another surprise: a consequence Gauss drew from this criterion.

www.prothsearch.net/Fermat.html
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perhaps ever larger and larger—Fermat primes, or prove that, unlike the
totality of primes themselves, these dwindle and die out, so that the spe-
cies of constructible polygons are rarer than days in June.

What are we left with? The heptagon can’t be constructed with
straightedge and compass, although we can sketch it wonderfully well,
see it approximated in hubcaps and coins, and seem to picture it per-
fectly with eyes closed. We may build a nine-sided city like Palmanova in
Italy, but cannot construct its Platonic original.

We are left with a puzzle—it may even be a problem—about the -ible
in“constructible”: able how, when possible in theory but not in the physi-
cal world? Existing how, with singular points and special properties, when
not even constructible theoretically? Embodied how, on the abstract
Euclidean plane, when deposited there (as the heptagon is) by means
less fundamental than Euclid’s—such as marked straightedges slid along
sophisticated curves? And does the ancient conviction echo here that
thoughts are as real as or even more real than deeds (so that either might
have been In the Beginning, and sinful thoughts now must as much be
atoned for as sinful acts)? Or do constructions and constructing belong
to the imagination, that messenger between the world and the mind,
beholden to neither?
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The motto which I should adopt against a course calculated to stop
the progress of discovery would be—remember 1− .

—Augustus de Morgan

The Scottish chieftain Calgacus said of his country that it was “defended
by its remoteness and obscurity.” The complex plane is the Scotland of
mathematics. The countryside we have passed through has been hilly,
but cities habitable for the mind of man have dotted it: the familiar inte-
gers here, triangles there (although once in them, the ways have often
turned mazy). Narrow all our roads down to the line of real numbers,
cross it with the line of the imaginaries, let it fade endlessly off in every
direction, and we are all at once in the Cairngorms.

What are we doing here? Many a climber has found that the little
chaos of life grows ordered and makes a new sense when seen from afar,
just as writers like James Joyce discover in exile the vivid structure of
home, concealed by its cluttered presence. Complex events in simple
contexts become simple when the context grows sophisticated. So on this
complex plane, exceptions and peculiarities, such as those we recently met,
will all at once be seen as outcroppings of deeper symmetries.

Simplicity and symmetry: how often the impulse toward understand-
ing takes its bearings from these two markers, in the belief that ultimate
answers lie just beyond them (we lust after the subtle and singular as
openings into, rather than from, mystery). The complex plane promises
symmetry too, satisfying that old mathematical itch so well described by
William Rowan Hamilton:

The algebraicist complains of imperfection, when his language pre-
sents him with an anomaly; when he finds an exception disturbs
the simplicity of his notation, or the symmetrical structure of his
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syntax; when a formula must be written with precaution, and a
symbolism is not universal.

Here is a striking sort of anomaly rectified on the complex plane. On
the real plane, those quadratic functions we once had so much to do
with come in three varieties. Roots—places at which the value of the
function is zero—lie, naturally enough, on the x-axis, where y = 0. Some
quadratics don’t touch the x-axis at all, like f(x) = x2 + 3; some at one
place, like f(x) = x2 – 8x + 16, whose only root is 4; and some in two
places, and so have two roots, like f(x) = x2 – 5x + 6, whose roots are 2
and 3.

f(x) = x2 + 3 f(x) = x2 – 8x + 16 f(x) = x2 – 5x + 6

Cubic functions can have one, two, or three roots, but the shape of their
graphs forbids their having none.

f(x) = x3 – x2 + x – 1 f(x) = x3 – x2 – 8x + 12 f(x) = x3 – 2x2 – 5x + 6

Quartic functions can have no, one, two, three, or four roots,

f(x) = x4 + 7 f(x) = x4 + 4x3 + 6x2 + 4x + 1 f(x) = x4 – 3x2 – 4
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f(x) = x4 – 9x2 + 4x +12 f(x) = x4 – x3 – 7x2 + x + 6

and so on for higher degrees, needing a Linnaeus to classify them all. But
if we allow complex roots, quadratics always have two, cubics three, quar-
tics four—and nth degree polynomials always have n complex roots.*
This truth (once again, proved by Gauss) is so important that it is called
the Fundamental Theorem of Algebra. Roots are buried all over the com-
plex plane, there for our extracting.

Is unreality the price we must pay for this tidying up? You have al-
ready heard the square roots of negative numbers called impossible as
well as imaginary; but John Wallis, who had never studied math for-
mally before he became Savillian Professor at Oxford in 1649, was less
prejudiced. He saw a negative area as the spatial equivalent of a negative
length: both represent loss. You can go into debt, and the sea can over-
whelm your fields; and if a square has area –1600, it can only have a side
of 1600− , or 40i. Let’s see how they behave when the usual demands
are made on them.

Adding is straightforward:

3 +2i
+ 4 – 5i

7 – 3i

so too is subtraction:

3 + 2i
– (4 – 5i)

– 1 + 7i .

The important point to notice here is that arithmetical combinations of
complex numbers keep real parts with real, imaginary with imaginary.

*This is counting “multiplicities”: if the same factor occurs twice, for example, in the polynomial,
it is thought of as having two roots—or one root of multiplicity two—at that point. So x2 – 8x +
16 = 0 has a root of multiplicity 2 at x = 4, since it is (x – 4)(x – 4) = 0 in disguise.
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So in multiplying,

3 + 2i
× 4 – 5i

12 + 8i
– 15i – 10i2

12 – 7i – 10i2

but i2 = –1, so –10i2 is –10 · (–1) = 10 in disguise, and our product is 12
– 7i + 10 = 22 – 7i.

The complex numbers, then, remain closed under addition, subtrac-
tion, and multiplication. Might division suddenly force them to open
into yet more fantastic forms? What if

3 + 2i
4 – 5i

were no longer of the form a + bi, where a and b are real numbers (one
or both possibly 0)? Since it isn’t at all obvious how to go about answer-
ing this, we should look back in admiration at Rafael Bombelli, strolling
in the garden of his patron’s Roman villa.

Our miniature view is of the mid-sixteenth century. A war has inter-
rupted Bombelli’s draining of the Pontine marshes. He is puzzling over
having to find the three roots of certain cubics and announces that he
has “found another sort of cubic radical which behaves in a very differ-
ent way from the others.” He has to make sense of expressions like
3 2 1+ − , which are, he says, neither positive nor negative. Bombelli
thought he had come on novel creatures; how was he to guess that they
were the very imaginaries that Cardano, the mathematician whose work
he so much admired, had wrestled with a generation before? What we
call bi and –bi Bombelli calls “more than minus” (piu di meno) and “less
than minus” (meno di meno). Names only, like “Unicorn” and “Gandalf”,
of creatures that don’t exist? He too thought them merely sophistic until
he began watching them combine (“More than minus times less than
minus makes plus. . .”)—as if antic figures, even more mysterious than J.
B. Brown’s, were materializing in the umbrella pines behind him and
were then fixed there through the solidity of geometric proofs.

Seeing that bi and –bi always appeared yoked together in his calcula-
tions gave him his clue: since (a + bi) · (a – bi) = a2 + b2—a real num-
ber—he took a quotient like our

3 + 2i
4 – 5i
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and multiplied it by 1, in the guise of

4 + 5i
4 + 5i

 (the same tactic we used on page 150 to reveal the true identity of a b 2

c d 2

+
+ .

This would leave its value unchanged but convert its form to

(3 2i) (4 5i) 2 23i 2 23i 2 23i
 :

(4 5i) (4 5i) 16 25 41 41 41

+ + + += = = +
− + +

a perfectly good complex number.
Complex numbers, then, remain closed under all four arithmetic

operations: C is a field. But square-rooting took us out of fields before.
Perhaps here too the square root of a complex number will no longer be
complex but something richer and stranger. Let’s experiment with i it-
self and see if i  lies beyond the complex numbers. In Alcibiadean spirit
we’ll bet that it is complex. When we roll the dice, either a contradiction
will get the better of us, or we will win.

In its official form, i is 0 + 1i. Our claim is that

0 1i a bi+ = +

for some real numbers a and b, which we want to find. We resort to the
tactics familiar from Chapter One and square both sides:

0 + 1i = a2 + 2abi + (bi)2

or, since (bi)2 = –b2,

0 + 1i = a2 – b2 + 2abi .

Since 3 + 2i, for example, isn’t 5 of anything, when two complex num-
bers are equal (as here), remember that the two real parts must be equal,
and the two imaginaries must be also. We therefore have

0 = a2 – b2

and

1 = 2ab .

We want to solve these equations simultaneously, and to do this dip into
the algebraist’s bag of tricks.
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Since 0 = a2 – b2,

a2 = b2 ;

and that is only possible if b = a or b = –a.
In the second case, however, ab = a · (–a), which is negative, so 2ab

would be negative, and couldn’t equal 1; hence, we’d lose on that roll of
the dice. We can only hope that we will succeed with the other possibil-
ity, b = a.

This means we substitute a for b in the second equation, and get

1 = 2a2 ,

that is,

a2 = 
1

2

or

1
a

2
= ± .

We can metamorphose this answer a bit:

1 1 1

2 2 2
= =

and multiplying this last by 2

2  for the sake of a rational denominator,

1 2 2
 ,

2 2 2
⋅ =

so

2
a  .

2
= ±

When a = 2

2
, since b = a, b is 2

2
 and we get the unlikely looking

result

2 2
i i .

2 2
= +
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Very dubious—but look what happens when we test it: if this creature
really is the square root of i, then squaring it should give us i:

2
2 2 2 2 2 2

 i  i  i
2 2 2 2 2 2

     + = + ⋅ +     
     

1 1 1 1
 i i

2 2 2 2
= + + −

= i .

It does! And if a = 2

2

− , then again, since b = a, b will be 2

2

−  also.
Is ( 2

2

− – 2

2
 i) another square root of i?

2 2 2 2 1 1 1 1
 i  i  i  i i  .

2 2 2 2 2 2 2 2

   − −− ⋅ − = + + − =   
   

Two square roots—just as the Fundamental Theorem of Algebra predicted.
Alcibiades’s gamble has paid off: no contradiction, but instead two

complicated as well as complex square roots of i stand revealed. The first
person to see that any algebraic operation on the complex numbers left
them closed was Jean le Rond d’Alembert in 1747—a man who, although
his life was polarized, was convinced that all knowledge was unified. He
had been abandoned by his unmarried socialite mother on the steps of
St. Jean-le-Rond in Paris and raised by a poor glazier’s family. His noble
father later paid for his education, but d’Alembert kept his allegiance to
his stepparents. If this timeless story leads you to think that now and
then or here and there are the same, consider how strange past styles
and customs seem to us: the work in
which d’Alembert proved his result
was his “Reflections on the General
Cause of Winds”.

A broader revelation comes with
our two roots of i: their wholly unex-
pected (counter-intuitive?) form means
that the terrain hasn’t yet fully coa-
lesced, having been—as a historian
says of Virginia—an idea before it was
a place. If you find yourself in a coun-
try “fained by Imagination” (Virginia
as described by Sir Humphrey Gil-
bert), the solution is to let imagina-
tion do what fantasy cannot: focus in D’Alembert (1717–1783)
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on detail, so that we can end up navigating as confidently as we do in
the reals.

Algebra helped geometry in the last chapter: here geometry will re-
pay the debt. Since addition of complex numbers was straightforward,
let’s see what it looks like on the complex plane which we first saw on
page 27, looking just like the real plane, but with the y-axis occupied by
imaginaries. How did the ingenious Wallis come up with that image? He
realized that i was the mean proportional between 1 and –1, because

1 x

x 1
=

−

x2 = –1

x = i

and therefore, like the mean proportional we constructed on page 142,
should rise perpendicular to the real number line, halfway between 1
and –1.

We were adding (3 + 2i) + (4 – 5i)—but where are these two num-
bers? We have the point (3,2) standing for the pair “3 of the reals, 2 of
the imaginaries”—

but how should we represent the one complex number 3 + 2i?
Once again, the simplest inventions often have the most profound

consequences. In order to appreciate this one, savor the childhood rev-
elation of one of our leading mathematicians, William P. Thurston. In
the fifth grade he realized to his amazement that the answer to 134 di-
vided by 29 was 134

29
. “What a tremendous labor-saving device!” he later

wrote. “To me, ‘134 divided by 29’ meant a certain tedious chore, while
134

29
 was an object with no implicit work. I went excitedly to my father to

explain my major discovery. He told me that of course this is so, a

b
 and a

÷ b are just synonyms. To him it was just a small variation in notation.”
Looking at one thing in two ways—here Euler simply set the two expres-
sions equal: he let the point (3,2) on the complex plane stand for the
complex number 3 + 2i. So small a step over so deep a chasm. Here then
are 3 + 2i, 4 – 5i, and their sum, 7 – 3i:



���

������	
���
	�����

This picture doesn’t seem to tell us anything. Try another: (2 + 5i) + (8
+ 3i) = 10 + 8i:

Again, neither Cassiopeia nor Orion shapes itself from these stars. Per-
haps we have been spoiled by the constellations we found in Chapter
Five, and the skeptic who walks in every optimist’s shadow will rightly
now step out into the sun.

It took a Norwegian surveyor to find the sight-lines. In 1797, Caspar
Wessel—modest, self-taught, barely able to scrape a living from the maps
he made of towns and coastlines and islands—published his paper “On
the Analytic Representation of Direction; an Attempt”. Why not think
of these islanded points as the ends of arrows shot out from the origin,
(0,0): directed line-segments, that is—or vectors, as we now call them.
This is an idea that would come naturally to a sailor and chart maker
thinking of the different forces of wind and current on a ship. An image
begins to develop. Our first sum now looks like this:



���

�����	
����
���
�����
�

The same urge to symmetrize that we’ve felt again and again—the
urge to complete the picture, the child’s delight in connecting the dots—
comes on us here: we sketch in the two missing lines that are longing to
be found:

A parallelogram whose long diagonal is the sum! Has this homely shape,
that played so important a part in Chapter Five, come to our aid far from
home—or was it just a coincidence here? Examples may prove nothing
but they do strengthen resolve, so let’s try it again with (2 + 5i) + (8 + 3i):

Once more it works! It must: adding (a + bi) to (c + di) means moving
the first arrow, parallel to itself, a units over and b units up, so that its tail
begins at the head of the second: and this gives us our parallelogram.
Again, this is a notion congenial to anyone working with charts and the
parallel rulers that transfer bearings from the compass rose to bearings
from one’s location.

And subtraction? Here, with Wessel’s arrows, is (3 + 2i) – (4 + 5i) =
–1 – 3i:



���

�������	�
���
����

No parallelogram leaps to the eye. Yet something here is waiting to be
born. If you draw the line connecting the first two arrowheads, it looks,
oddly enough, parallel to and the same length as the arrow of their
difference:

Perhaps this isn’t so odd after all, if you think about what subtraction
means: (a + bi) – (c + di) = (a + bi) + (–c – di). Once we locate –c – di,
our parallelogram incarnation of addition will give us the vector we want,
with –c – di the same length as c + di but pointing 180° away from it.
Hence the sum arrow of (a + bi) and (–c – di) will be parallel to the other
diagonal of the parallelogram made from (a + bi) and (c + di):

You might have thought that so stunning an insight as Wessel’s would
have been flashed around the world on the mathematical telegraph—had
there been one. Instead, word from Norway languished in Scandinavia for
a hundred years, during which time Wessel was knighted for his contribu-
tion to surveying. But in 1806, a self-taught Swiss bookkeeper named Jean
Robert Argand rediscovered the idea (and so, inevitably, did Gauss in 1831).
Why are these parallelograms now universally known as Argand diagrams?
Perhaps because Argand’s name came into such prominence when argu-
ments raged over the validity of his figures. Servois—the man who coined
the terms “commutative” and “distributive”—insisted that what was alge-
braic must be dealt with algebraically. The movement of Argand’s thought
from algebra to geometry, of Wessel’s from geometry to algebra, shows
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once more how central to mathematical invention is fetching from afar
(the analogue of metaphor in poetic invention).

We can now move about the complex plane as blithely as a summer
visitor. How will multiplication look? (3 + 2i) · (4 – 5i) = 22 – 7i :

This is perplexing. Another example may shake our confidence further:
(2 + 5i) · (1 + 2i) = –8 + 9i.

What is the product arrow doing so far away from those of its compo-
nents? We seem to be faced with a truth we have confronted before:
multiplication isn’t some sort of shorthand for addition.

Now, however, we have accumulated enough experience to be sure
that problems will have solutions—but to be sure as well that the way to
them may be intricate. Finding the solution will show what multiplica-
tion “means”—and the intricacy of finding might make the pleasures of
mathematics even more meaningful. For certainly what the twentieth-
century mathematician Paul Halmos once said is true: “The major part
of every meaningful life is the solution of problems.” Not only is life,
and the life of our imagination, thus enriched, but the world changes in
ways we have yet to fathom. Hilbert once said: “There is the problem.
Seek its solution. You can find it by pure reason, for in mathematics
there is no ignorabimus [we shall not know].” Answering Hilbert’s call
brings into existence numbers no longer imaginary, and constructions
that dovetail with those of ancient reality.

An important step in visualizing how complex numbers add was re-
thinking the point (a, b) on the complex plane as a + bi, and then once
again as a vector: an arrow from the origin. Yet another metaphor will
carry the nature of multiplication across to us.
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Look first, in our troubling diagrams for multiplication, at the lengths
of the arrows. For 3 + 2i, the arrow is the hypotenuse of a right triangle:

so its length is 2 22 3 13.+ =  For 4 – 5i we have

and the arrow’s length is 2 24 5 41.+ =
The arrow of the product of 2 + 3i and 4 – 5i—namely, 22 –7i—

has length 2 222 7 533.+ = *
In other words, for the complex number a + bi the length of its vector

is 2 2a b .+  This real number is called its modulus.

*Why does 13 41 (13  41)× = × ? Why, in general, is a b ab= , if neither a nor b is negative?
The full answer relies on Dedekind Cuts and how to multiply them. An example such as

4 9 2 3 6× = × =  and 4 9 36 6× = =  makes it reasonable to expect that the general rule holds.
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We have seen a2 + b2 before, on page 170. It is the number Bombelli
came up with in making sense of division: the product of a complex
number a + bi and its yoke-mate a – bi, called, therefore, its conjugate.
What would Pythagoras have thought about his theorem reappearing to
make sense of numbers so very remote from his own?

Now observe: 13 × 41 = 533: so 13 41 533.× =  For complex num-
bers, the modulus of the product is the product of the moduli! If this
fails to reverberate harmoniously then look at this flow-chart:

2 2 2 2

modulus modulus modulus

(a bi) (c di) (ac bd) (ad bc)i

a b c d

+ ⋅ + = − + +
↓ ↓ ↓

+ ⋅ +
↓ ↓

=

Half of our mystery is solved: we now understand—as Wessel and
Argand and mathematicians like Euler before them did—the length of
the product vector. But exactly where has this vector swung around to?
Swung around: we can only come to grips with swinging in terms of
angles. It was Euler who did this by wheedling from complex numbers
the fourth of their names. He looked again at the line-segment from
(0,0) to (a,b)—let’s call its length r—and saw it as rotated counterclock-
wise from the horizontal by a certain angular amount φ (Greek letters
once more for angles—this time phi):

The length r and that angle φ determine the segment’s end-point as
surely as do the coordinates (a,b), so he could now rethink a + bi in
terms of r and φ:

a + bi = (a,b) = (r,φ) .

We know how to derive the modulus r from a and b: 2 2r a b .= +
But how can we derive the angle φ? The way passes through the parkland
of trigonometry (first cultivated by such Alexandrian mathematicians

2 2(ac bd) (ad bc)− + +

2 2 2 2 2 2 2 2a c a d b c b d+ + + 2 2 2 2 2 2 2 2a c a d b c b d+ + +
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as Hipparchus, Menelaus, and Ptolemy two thousand years ago): a charm-
ing landscape, once you become familiar with its features. Here are a few
pages from the guide to its flora and fauna. Keep in mind that our aim is
to grasp the multiplication of complex numbers all at once: seeing it;
and that angles will play an important role in this seeing.

The story is once again Pythagorean in spirit. As a line segment of a
fixed length—let’s simply make it 1—rotates counterclockwise from
horizontal to vertical, it draws right triangles up with it, whose vertical
sides grow in length from 0 to 1:

This is where sin enters math, as an abbreviation for sine (from the Latin
sinus, for gentle curves from bend of bay to your brow’s forecastle). The
sine of angle φ, sin φ, is just the ratio of this opposite side’s length to that
of the hypotenuse:

opposite
sin   .

hypotenuse
φ =

Since the hypotenuse here is 1, the opposite side’s length in our triangle
is just sin φ. So sin 0° = 0, sin 90° = 1, and sin 45° = 2

2
, since both legs are

equal and their squares add up to 1.

Any value of sin φ for φ between 0° and 90° can be figured out with more
or less effort (your pocket calculator will do at once what cost men of
the Renaissance, like Copernicus, hours and eyesight). The results pro-
duce a curving graph like this, when we relabel our axes from x and y to
the angle φ plotted horizontally, and sin φ vertically:
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As φ goes on from 90° to 180° the side opposite φ decreases from 1 to 0
in the same way and at the same rate that we saw it grow:

And if you attend to the plusses and minuses in the next two quadrants
(180° to 270°, then 270° to 360°) and attach the relevant sign to the side-
length, the graph of sin φ will go on to look like this:

When you increase φ beyond 360° the pattern will repeat exactly (so sin
370° = sin (360° + 10°) = sin 10°, for example), giving us the sine waves
that once dazzled adolescents on their basement oscilloscopes, before
the Internet took them upstairs:

The side adjacent to φ will change as the opposite side did, but in
reverse: shrinking from 1 to 0 as φ increases from 0° to 90°.

The ratio of this side’s length to the hypotenuse is called cosine φ:

adjacent
cos   ;

hypotenuse
φ =
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so that here, where the hypotenuse is 1, the adjacent side is just cos φ. The
graph of cos φ is the same shape as that of sin φ, but shifted left by 90°:

Looked at together, these two trigonometric functions braid perfectly:

The braiding is even more apparent to the mind’s eye focussed by
Pythagoras:

sin2 φ + cos2 φ = 1 .

Now we see how to relate the angle φ to our coordinates a and b on
the complex plane: If the modulus is 1, a is just cos φ, and b is i sin φ:

If the triangle is scaled up or down by a modulus r, each of its lengths is
multiplied by r, and

a = r cos φ b = r i sin φ .
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What was (a,b) is now (r cos φ, r i sin φ), so

a + bi = rcos φ + r i sin φ

or more economically,

a + bi = r (cos φ + i sin φ) .

“Mathematicians are like Frenchmen,” Goethe once said; “whatever you
say to them they translate into their own language and forthwith it is
something entirely different.” Nothing is sacred. Here they have even
translated from one of their own languages into another.

We now have almost all we need in order to make visual sense of
multiplying two complex numbers, a + bi and c + di, together. c + di will
have its own modulus—let’s say s—and its own angle, theta: θ. So

a + bi = r (cos φ + i sin φ) ,

c + di = s (cos θ + i sin θ) ,

and (a + bi) · (c + di) now becomes

r (cos φ + i sin φ) · s (cos θ + i sin θ) = r · s (cos φ + i sin φ)(cos θ + i sin θ).

Look! We see here what we saw before: the modulus of the product will
be the product of the moduli. But what about those terms in parenthe-
ses? Carrying out the multiplication, being good about our bookkeep-
ing and bearing in mind that i2 = –1, we get the mantic

cos φ cos θ + i cos φ sin θ + i sin φ cos θ – sin φ sin θ .

Collecting real terms together at the front and the terms with i in them
after, this becomes:

(cos φ cos θ – sin φ sin θ) + i (cos φ sin θ + sin φ cos θ)

so that altogether,



���

������	
���
	�����

(a + bi) (c + di) =

rs [(cos φ cos θ – sin φ sin θ) + i (cos φ sin θ + sin φ cos θ)] .

This is neater, but certainly not very neat; and no dazzling insight
leaps from it to our minds. Beauty is truth, truth beauty, and both are
mathematics. Something must be done about that clumsy, prowling
quadruped.

The first thing to do is cage it. Let’s take the triangle representing c +
di, with angle θ, and move it temporarily to the real plane, so we can
ignore the fact that its vertical side is in units of i, and call its length
simply d. While we are at it, let’s consider its modulus, s, to be 1. We’ll
bring back s and i after these simplifications have shown us the struc-
ture behind the symbols.

Now rotate the entire triangle counterclockwise by the angle φ belong-
ing to the triangle for a + bi:

We’ll want to refer to this triangle’s sides from time to time, so label
its vertices O, A, and B as here, and prop it up with a vertical line seg-
ment from A, meeting the x-axis at C.
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Finally, let’s package our construction in a rectangular box:

How long is AC? Since ∆OAC is a right triangle with hypotenuse cos θ,
and sin φ = 

opposite AC

hypotenuse cos  
=

θ , solving for AC gives us

AC = sin φ cos θ,

and a tense stillness passes through our tiger.
By the same reasoning, cos φ = adjacent OC

hypotenuse cos  
=

θ , so

OC = cos φ cos θ.

We need two more lengths: AE and BE. Since ∠C is a right angle and
∠AOC = φ, ∠OAC = 180° – (90° + φ) = 90° – φ.

But ∠OAB is also 90°, and since ∠EAC is a straight angle (180°), ∠BAE
= 180° – ((90° – φ) + 90°) = φ.

In ∆ABE, therefore, sin φ = 
opposite BE

hypotenuse sin  
=

θ , so

BE = sin φ sin θ;

and cos φ = 
adjacent AE

hypotenuse sin  
=

θ , hence
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AE =  cos φ sin θ .

Why have we been playing musical chairs with these line segments?
For the sake of our long-sought insight. If you now drop a perpendicu-
lar from B, meeting OC at F,

then ∆OBF has an angle at O of θ + φ, and sin (θ + φ) = BF

1
 = BF, and

cos (θ + φ) = OF

1
 = OF.

But BF = EC = cos φ sin θ + sin φ cos θ, while OF = OC – FC = OC –
BE = cos φ cos θ – sin φ sin θ: so that—gazing through the bars—

cos (θ + φ) = cos φ cos θ – sin φ sin θ

sin (θ + φ) = cos φ sin θ + sin φ cos θ .

When we substitute these telling expressions for their mute equiva-
lents on page 185 we have:

(a + bi) (c + di) = rs [cos (θ + φ) + i sin (θ + φ)] .

The two terms added up in the brackets mean that to reach the point
represented by (a + bi) · (c + di), we have swung through (θ + φ) degrees
and travelled rs from the origin. In other words, to multiply two complex
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numbers graphically, on the complex plane, multiply their moduli and
add their angles!

We have fought with demons of detail and triumphed. The sword of
transitivity has worked its wonders. By passing from one way of express-
ing complex numbers to another, a key insight into how they behave has
opened up. When Wittgenstein dismisses mathematics as nothing more
than a string of tautologies, the mathematician answers: nothing less!

From the sixteenth through the eighteenth century, even the best
mathematicians had used complex numbers covertly: as a means to be
hidden or discarded before announcing the end they achieved. (In the
same way, Archimedes apparently kept to himself his method of draw-
ing mathematical insights from physical analogies, and Newton con-
cealed under Euclidean geometry his radical ideas about calculus.) Even
as late as 1825 Gauss wrote that “the true metaphysics of −1  is elu-
sive.” Making the operations involving “imaginaries” visible, as we just
did, gave them respectability at last. In 1831 Gauss wrote that their geo-
metrical representation “completely established the intuitive meaning
of complex numbers, and more is not needed to admit these quantities
into the domain of arithmetic.”

How can a meaning be established by a new representation, if it is
already intuitive? We have suddenly spiralled back to the concerns of
Chapter Two: what is this intuition which some appeal to as a court of
first, others of last, resort? If common law can change, why cannot that
of the intuition too? The numbers once stigmatized as impossible we
now see behaving among themselves and the reals in a perfectly pos-
sible—in fact, cogent and attractive—manner, with a visual embodi-
ment as well. Once again what was newfangled has become old hat, as
habit fits its shape to our nature. Have we succeeded, then, in peeling off
a layer that helped hide the endlessly deep core of our intuition—or
only added one more colorful wrapping to an empty box?

∞
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We have just made a long excursion into trigonometric functions in
order to feel at home with the complex numbers. Before settling in to
enjoy our hard-won discoveries, we would like to take one more excur-
sion to a mountaintop where an astonishing view opens up. From it we
will see that our new functions are the polynomials, familiar from Chapter
Six, when spun out into infinite series like those we know from Chapter
Four. Even more: the constant π, familar since childhood, will connect to
e, that mysterious constant which lurks everywhere (surfacing momen-
tarily in Chapters Three and Four)—and these two constants will be tied
in a golden knot with i, as if in the welter we had caught a glimpse of unity.

“No great thing comes without a curse,” said Sophocles. To reach this
height we will have to avoid the gaping crevasse of calculus, as beautiful
as it is deep, whose descent we could make had we the time. Instead we
will follow the Greek precedent and set a sibyl over it, to speak oracles
from its exhalations when we need them.

Like all good travelers we pack a bilingual dictionary in our knap-
sack. This one lets us convert the arbitrary degrees, with which we have
up to now measured angles (only ancient arithmetic convenience, after
all, broke circular measure into 360 equal shares), into the more natural
radians, defined this way. Think of the radius as a short length of spa-
ghetti, boil it for six minutes and you will find that you can lay it off
along the curve of the circumference. Now since the circumference is
2πr long, precisely 2π radians (boiled radii) will lie around it. If we operate
in our unit circle, where the radius is 1, our circumference will be 2π—
that is, it will take 2π radians to complete the task we previously described
as a 360° tour.  π radians will take us halfway round, and 

2

π  radians will
give us a 90° angle. In general, x degrees = 2

360

π · x radians. By convention,
positive angles rise up from the x-axis; a picture will make all clear:

Not only are radians a more intrinsic measure of angles than degrees
were, but they let trigonometric functions like f(x) = sinx or g(x) = cosx
act as functions usually do, not with special “degree” inputs, but the nor-
mal real numbers that come from measuring distances around the cir-
cumference (reals between 0 and 2π if we go once around a circle, those
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between 2π and 4π if we wrap around it a second time, and so on). Nega-
tives are defined as corresponding to angles measured clockwise from
the x-axis.

A table of some outputs for sine and cosine will act as a rough guide
to the region:

x in x in
degrees radians sine x cosine x

0 0 0 1

2 2
45

4 2 2

90 1 0
2

3 2 2
135

4 2 2

180 0 1

5 2 2
225

4 2 2

3
270 1 0

2

7 2 2
315

4 2 2

360 2 0 1

9 2 2
405

4 2 2

π

π

π −

π −

π −

π −

π − −

π

π
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Indian mathematicians (probably before 1500), discovered wonderful
infinite polynomial equivalents of sine and cosine and Newton redis-
covered them independently in the seventeenth century. Here they are
(the angle x is from now on measured in radians):

sinx =
x

1!
–

3x

3!
+

5x

5!
–

7x

7!
+

9x

9!
–  . . .

cosx = 1 –
2x

2!
+

4x

4!
–

6x

6!
+

8x

8!
–  . . .

The triple dots at the end of each line mean, as always, that the series
continue in this pattern forever, with strict equality only after infinitely
many terms. A few terms, however, give remarkably good approxima-
tions. sin 

4

π  = 2

2
≈ 0.707106781, for example, and the first five terms of

the series for sin 
4

π  yield

3 5 7 9

4 4 4 4
 .

4 3! 5! 7! 9!

π π π π       
       π        − + − +

Taking π as approximately 3.1415926535, 
4

π  would be .785398163, and
five terms of our series would give us

0.785398163 0.484473073 0.298847348

1 6 120
− + −

0.184344069 0.113712689
0.707106782 :

5040 362880
+ =

only a few steps toward infinity give us an accuracy of eight decimal
places!

What have these two series to do with e, that constant of exponential
growth, which is approximately 2.718281828459045? We can raise e to
various powers—even rational numbers and (with the help of calculus)
any real number x, giving us a function

f(x) = ex .

The infinite series equivalent of ex was also discovered by Newton:

2 3 4
x x x x x

1  . . .
1! 2! 3! 4!

= + + + + +e
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Look at our three series together:

3 5 7

2 4 6 8

2 3 4 5 6 7 8
x

x x x x
sin x

1! 3! 5! 7!

x x x x
cos x 1

2! 4! 6! 8!

x x x x x x x x
    = 1 +

1! 2! 3! 4! 5! 6! 7! 8!

= − + −

= − + − +

+ + + + + + +e

The mind reaches out a hand, longing to add the first two series in order
to get the third—but the signs don’t work out, with pairs of negatives
after each pair of positive terms. In this cave of the sibyl, the ghost of
Alcibiades calls out hollowly: “Make them work out!”

How? “Rely on your faith in pattern and readiness to see askew.” But
from what hills will the justification of this faith come?

“We are here in the Highlands of imaginary numbers: look to them.”
This is what Euler did around 1740, experimenting with a math-

ematician’s boldness. The functions sin x, cos x, and ex are functions of a
real variable x. But what if sense could somehow be made of putting in
imaginary values, ix? Then since i2 = –1, i3 = –i, i4 = 1 and so on, we
would have

2 3 4 5 6 7 8
ix ix x ix x ix x ix x

1  . . .
1! 2! 3! 4! 5! 6! 7! 8!

= + − − + + − − +e

He then regrouped these terms:*

2 4 6 3 5 7
ix x x x x x x x

1  . . . i  . . .  .
2! 4! 6! 1! 3! 5! 7!

   = − + − + + − + − +   
   

e

In other words,

eix = cos x + i (sin x).

Amazing, and too good not to be true—and although it took more
than a hundred years for others (such as Gauss and Cauchy) to make the
sense Euler wanted of fitting in a complex variable where the real one
had been, he was—like all mathematicians—easy with delay.

*You may recall from page 97 that we rearrange infinite series at our peril. If, however, a series
converges when all its terms are positive, then we can legitimately rearrange its terms no matter
how we change their signs. In the example on page 96, the series did not converge when all of its
terms were positive.
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Here was a reward for such insouciance. sin π = 0 and cos π = –1, as
you can see in the picture:

If we therefore let x = π in

eix = cos x + i (sin x)

we get

eiπ = –1 .

Blink twice and look again: e, i, and π, those three remote peaks,
have shimmered together to yield the barely more familiar mystery of
–1. “Gentlemen,” said Benjamin Peirce to his students at Harvard Uni-
versity one day late in the nineteenth century, “that is surely true, it is
absolutely paradoxical; we cannot understand it, and we don’t know
what it means, but we have proved it, and therefore, we know it must
be the truth.”

∞

Now that we are at home in this land where hidden veins of gold
surface, what pleasures and palaces will be ours! Look, for example, at
the comfortable fact that any number will have two square roots. Those
of 1, for example, are both itself and –1. But how many cube roots will it
have? Since we are asking for the solutions of the equation

x3 = 1

or

x3 – 1 = 0 ,

the Fundamental Theorem of Algebra (stated on page 169) assures us
that three answers are growing on the complex plane.
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Three? Other than 1 again (13 = 1), what could they possibly be? We
saw how unintuitive and downright ugly the two square roots of i turned
out to be. Will we fare any better here? It seems not: solving by the method
we used on page 171, the three cube roots of 1 we come up with are

1 3 1 3
1,    i and   i

2 2 2 2
− + − −

(you may convince yourself of this awkward truth by carefully cubing
each, or looking up the full story in the appendix for this chapter).

1 will have four complex fourth roots, five complex fifth roots, and so
on—but if they are all going to be as unattractive as these, do we really
want to meet them? The walking bass of our music has been: if it isn’t
beautiful, it isn’t mathematics; and it sounds again through the overlaid
voices here. The classical design of these “complex roots of unity” was
uncovered by the work of a sequence of mathematicians, in which the
first term was a man who correctly predicted the day of his death.

Abraham de Moivre was born in 1667 in France, fled to England when
the Huguenots were expelled in 1685, and fell the further into poverty
the higher he rose in the academic world. He studied annuities and
mortality statistics; and perhaps with his thoughts so framed, noticed,
they say, that he was sleeping each night fifteen minutes longer than the
night before. From this arithmetical progression he calculated that on
November 27, 1754, he would sleep for twenty-four hours, deduced that
this would be the day he died, and did so. Prior to that he observed the
immortal play of the complex numbers, all dressed in their new, trigo-
nometric, finery. What he (and others after him, notably Newton’s me-
ticulous editor, Roger Cotes) saw was this.

The translation we made with much effort on page 187:

(a + bi)(c + di) = rs [cos(φ + θ) + i sin (φ + θ)]

takes on a nicely trimmed-down form when the two numbers are the
same:

(a + bi)(a + bi) = rr [cos(φ + φ) + i sin (φ + φ)]

which is

(a + bi)2 = r2 [cos 2φ + i sin 2φ] .

Similarly

(a + bi)3 = r3 [cos 3φ + i sin 3φ]
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and in general,

(a + bi)n = rn [cos nφ + i sin nφ].

This has come to be called de Moivre’s Formula. Stunning in its sim-
plicity, it has a knockout consequence when we come to the roots of 1. If
we want the two square roots (we know in advance that the answers are
1 and –1), we just recall that any complex number x satisfying x2 = 1 will
have the form r (cos φ + i sin φ) for an r and φ yet to be found.

Since 1 = 1 + 0i has the trigonometric form 1 · [cos 0 + i sin 0],

r = 1 and φ = 0

we must have

{r [cos φ + i sin φ]}2 = 1 + 0i = 1 [cos 0 + i sin 0]

and de Moivre lets us rewrite the left-hand side, giving us

r2 [cos 2φ + i sin 2φ] = 1 [cos 0 + i sin 0].

So r2 = 1 (just as with real and imaginary parts, real moduli and these
complex coordinates do not intermingle). If r2 = 1, the modulus r = 1,
because lengths can’t be negative. And if

cos 2φ + i sin 2φ = cos 0 + i sin 0 ,

then 2φ = 0, or any equivalent of 0 radians as we wrap around the circle
again and again: 0, 0 + 2π, 0 + 4π, 0 + 6π, . . . : in general, 0 + k · 2π
radians, where k is a natural number. So

2φ = 0 + k · 2π ,
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hence

φ = 
0

2
 +  k ·

2

2

π
 = kπ,

for any natural number k.
When k = 1, φ = π, and we get the –1 we expected:

when k = 2, φ = 2π, which thus takes us to the other square root of 1,
namely 1:

What about k = 3, 4, and so on? 3π, 4π, 5π, . . . just keep taking us back
and forth between these two square roots of 1: –1 and 1.

Interesting: they lie at opposite ends of this diameter.
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What then of the three cube roots: will de Moivre help us transform
the frogs of page 194 into handsome princes? Let’s just repeat what we
did with square roots. The complex numbers x satisfying x3 = 1 have the
form r [cos φ + i sin φ], with now

r3 [cos 3φ + i sin 3φ] = 1[cos 0 + i sin 0]

once again the modulus r = 1, but now

3φ = 0 + k2π

so

0 k2 k2
 .

3 3 3

π πφ = + =

For k = 0 we get 0 radians: the perennial root 1.
For k = 1, 2

3

π  gives us an angle in the second quadrant,
and for k = 2, 4

3

π  an angle in the third quadrant.

k = 3 yields 2π again (the root 1 we have already), and from 3 on we will
only cycle through the roots already found.

Our geometric instinct springs awake: the three distinct cube roots of
1 are the vertices of an equilateral triangle!
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And the four fourth roots (oh, of course: 1, i, –1, –i) lie at the vertices of
a square:

the fifth, sixth, seventh roots at the vertices of pentagon, hexagon,
heptagon—

each of the regular n-gons, in fact, is reincarnated by de Moivre’s For-
mula as an unexpected bearer on the complex plane of the n nth roots
of unity.

The n nth roots of unity, making angles of π2k
n  from the

horizontal root at 1, for each k from 0 to n – 1.
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On this plane we can even prove what we only asserted before—that
the heptagon, for example, can’t be constructed with straightedge and
compass (see the Appendix).

All the peculiarities of the previous chapter dwindle away in this new
dawn. There Euclid sought simplicity via his compass and straightedge,
yet these led to intricate patterns with Fermat numbers, still tinged with
mystery. Here the regular polygons make easy sense of puzzling com-
plex roots. The way of mathematics is always to spiral up its widening
tower to greater generality and higher simplicity. At these heights new
objects and old interact and so give each other a different order of real-
ity from that conferred by construction. For the ultimate atoms of math-
ematics are relations, not things, which therefore become more vivid
the more they interplay. William Blake wasn’t always right. “To General-
ize,” he said, “is to be an Idiot. To Particularize is the Alone Distinction
of Merit.” Yet he was right to continue: “All Sublimity is founded on
Minute Discriminations.” What singles out mathematics is the way that
its minute discriminations lead to ever greater generalities, as climbers
reach their dazzling vistas by attending to the piton in the cleft.
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Mystery stories leave a flat aftertaste, because before the solution, any-
one might have done it; after, it turns out to have been only a certain
someone. But the infinite and the unknown endlessly call each other up,
letting imagination loose.

We love to live on frontiers that enclose a polite, finite world but look
out toward the ever unexpected. Is this mere romantic exuberance or
the tinkering curiosity of our kind carried to its inevitable extreme?
Whatever the cause, how refreshingly courteous of the world to oblige,
always playing the tortoise to our Achilles by keeping a step ahead of all
we ask. The hook of a question mark can’t but snag more than it can
bear.

Yet why should this be, especially if Spinoza was right in saying that
the order of the world and the order of the mind are the same? It must
involve a deep trait of our thinking, that no sooner do we make sense of
this or that hang of things then all the intricate net shrinks down to a
knot, just as a word comes to condense great stretches of feeling and
event. That knot now sits among other abbreviations, demanding new
ties among them in a more rarified net: and this is where our renewed
explorations take place.

So when the universe seems to conclude in a Theory of Everything, a
window will open up in the far wall onto a landscape unguessed at until
then. Paradigms busily tidy up their last details just before they shake
and shift.

Here we have seen the vivid complexity of triangles shrunk to no more
than a point among the vaster collection of polygons which has its
own ecology; and polygons are in two dimensions what polyhedra are
in three and polytopes in four dimensions, and limitlessly beyond, O
brave new worlds! And this unknown we step into is at least partly of
our own making.
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Mathematics builds upward by taking as stones what were structures
before, gaining new heights from which to survey the way things are.
How staggeringly far it has come in five thousand years—but for every
answer found, a flurry of new questions arises. In the sequence of ratios
of what we don’t yet know to what at any moment we do, the terms grow
to infinity.
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This has been the romance of imagination and the infinite. Like the be-
loved in tales as old as time, the infinite keeps escaping imagination’s
stratagems, drawing it on through intrigues that must any moment surely
untangle. Mathematics being the stuff of invention and mathematicians
each Alcibiades in disguise, why not just declare (since faint heart never
won fair lady): here is the infinite, right here, in your midst. You have
only to recognize it to make it yours.

Easily said, but how is it to be done? Think of Euclid’s plane every-
where stretching away, with its parallel lines that meet at no “here” you
can picture—unless it be through Alberti’s Veil.

That wonderful Florentine, Leon Battista Alberti, shared the Renaissance
eagerness to translate the beauties of the visible world into painting—to
represent its depth on the plane—and saw how to do it by making “a veil,
loosely woven of fine thread, dyed whatever color you please, divided up
by thicker threads into as many parallel squares as you like, and stretched
on a frame. I set this up between the eye and the object to be represented,
so that the visual pyramid passes through the loose weave of the veil.”
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This notion of the visual pyramid (we might say “visual cone”) was the
key for turning three dimensions into two—a pair of pyramids, really,
with our eye at the near apex, the “vanishing point” ordering pictorial
space at the far, and the veil in between changing one image into another:

What was that vanishing point if not where the parallels receding from
us palpably met?

The principles of perspective drawing developed with Italian gusto.
How, for example, should a receding tiled floor be correctly drawn?
Alberti’s answer was ingenious: space the lines of the receding edges
equally far apart:

then put the nearest pair of horizontal edges where you will,

draw a diagonal through the left-handmost tile, and continue it to the
horizon on which the vanishing point lies.

Where this diagonal crosses the other perspective lines shows where to
draw the rest of the horizontals:



���

�����	
����
���
�����
�

This was Alberti’s “legitimate construction” (costruzione legittima). It
was neither the first nor the last time that the asymmetry of a diagonal
would win the day.

All through the Renaissance, artistic practice begot a flurry of math-
ematical insights to support and extend it, but not until the early years
of the nineteenth century was an organic geometry developed which
added as many vanishing points to the Euclidean plane as there are di-
rections, and a circumscribing horizon as well, a “line at infinity” for all
those “points at infinity” to lie on. What the eye proposes, Mind dis-
poses—but it is always Mind incarnated in some particular mind.

The mind in this case belonged to a young French lieutenant of engi-
neering in Napoleon’s army. Jean-Victor Poncelet was a man of extraor-
dinary willpower and character (at fifteen he had trained his dog to wake
him at dawn so he could get back to his studies; the dog often found him
asleep at his desk). At twenty-four he marched into Russia with the
Grande Armée and was left for dead at the battle of Krasnoi, near
Smolensk, in November 1812. The soldiers of the victorious Field Mar-
shal Prince Miliradovitch recognized his officer’s insignia and carried
him off for interrogation, which
saved him from death but con-
demned him to walking four months,
and six hundred frozen miles, over
the silent long plains to prison at
Saratov, on the Volga. To keep up his
spirits during the two years there, he
tried to remember the mathematics
he had studied, in a different life, just
a few years before, at the Ecole Poly-
technique in Paris. But the spiny
demonstrations, the abstractions
and generalizations, had perished
with his comrades in the cold.

He began to build mathematics
up from fundamentals again, trad-
ing his scanty rations for paper, mak-
ing his own ink, and using the walls
of his cell as a blackboard. Soon he

Poncelet (1788–1867). Loyal to his
youth, he published in age his early
work unedited by hindsight; loyal to
France, he wasted his geometric
foresight on its bureaucracy.
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found his mind moving over vaster plains than those of Russia, and be-
yond the geometry he had been taught. “Oh God!” said Hamlet, “I could
be bounded in a nutshell and count myself a king of infinite space.” Per-
haps being so bound in Saratov was what made Poncelet the king of
projective geometry.

What sort of geometry can this be, where parallels meet? How can we
picture, or even conceive of, a plane on which Alberti’s horizontals also
meet at a vanishing point—where no matter which way you look paral-
lel lines converge, so that in fact there are no parallels at all? Isn’t such an
idea repellent to thought and repugnant to the world?

It certainly was to the world of Euclidean geometry. Some of the best
mathematicians had tried for two millennia to prove what must be more
than a mere postulate: that on a plane there is one and only one line, m,
parallel to another line, l, through a point P not on l.

Gerolamo Saccheri (1667–1733) spent years trying to vindicate Euclid
and, ironically, developed without realizing it most of the ideas of a ge-
ometry with many parallels to a given line though a point P not on it.
Johann Heinrich Lambert, a generation later, tried to solve the parallel
problem by looking at polygons on an unimaginable sphere of imagi-
nary radius. The failure of all these attempts led even Gauss to speak of
the parallel issue as the shameful part of mathematics, and to suspect, as
did others, that if the existence and uniqueness of parallels was merely
postulated, the opposite could be postulated as readily. There was, be-
sides, a certain irritating asymmetry to Euclidean geometry: some lines
had a point in common, others had none:

Why not restore symmetry by adding in the missing points: for all lines
on the plane parallel to one another in a fixed direction, add just one
point “at infinity” where they all meet:



���

�����	
����
���
�����
�

(the shape resulting from trying to picture this may have led to the bundle
of lines being called a pencil).*  We don’t add two points at infinity for a
pencil—one left, one right, or one west, one east—in order to preserve
the postulate that two lines can’t meet more than once. Along with these
special points, add in the special line we spoke of on page 204: the line at
infinity on which, like an ultimate horizon, these special points glitter.
This completes the Euclidean to the Projective plane, which you might
try to picture like this:

The pencils, swung through 180°, trace out the curve of the far horizon.
After mathematicians had spent a long time looking at it this way and

that, the Projective plane turned out to be much simpler than Euclid’s,
with a packet of axioms even smaller than it seems:

P1: Any two points lie on exactly one line.
P2: Any two lines meet at exactly one point.
P3: There are (at least) three non-collinear points.
P4: At least three points lie on every line.

(Those last two axioms are to satisfy the inner Hilbert: “Does it exist?”)
How can we look on the plane these axioms create and see it as it

really is, without having to peer through a veil, or put up with such dis-
tortions as those playful “pencils”? You can no more expect to invite the
infinite into your cozy world with impunity than hope that Alcibiades
won’t carry off half the silver from your feast. What we can do, however,
is incarnate the projective plane in different ways, and by savoring the
oddities of each, come better to appreciate its character.

There are several models of the four axioms: here is a surprising one.
The objects themselves aren’t surprising: the points are the familiar dots
and the lines the conventional streaks—but there will turn out to be

*How far toward pure formalism are you willing to go? Would you agree to having the “point” at
infinity added to this pencil of lines be nothing other than that pencil itself?
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very few of each. Start with the three non-collinear points that the third
axiom demands—call them A, B, and C:

Now to fulfill P1 make lines through each pair of points,

and in a dream of Euclid construct another line through A, as if it were
to be parallel to BC:

But P2 says it can’t be: the new line must meet line BC in a new point D:

What begins as a parallel to AB through C must meet it in a point E,
intersecting AD at F along the way
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and satisfying P1 again with a line through B and F gives us a new point
G where this line meets AC:

You probably think that this process of adding new points at the urging
of P2 and new lines at the behest of P1 will go on forever, generating a
model with an infinite number of points and lines—but in fact we have
all the points we need and all but one of the lines. D and E need to be
collinear, as do E and G—and so do D and G. Why not satisfy all three
demands at once with the drunken “line” DEG?

If you object that DEG is no line at all but a wandering path, remember
that “line” is an undefined term: only custom (and Euclidean custom at
that) asks that lines be straight. What matters here is simply—and star-
tlingly—this: our model with its seven points and seven lines fulfills the
four axioms of the projective plane (we met the requirements of P4 with-
out even having to think about them).

This model may satisfy the axioms but it hardly satisfies the mind.
Weren’t we supposed to acknowledge that if it wasn’t beautiful it wasn’t
mathematics? Very well. Recall that in Chapter Five we found the incenter
of any triangle: the point where the angle bisectors meet, which is the
center of the “incircle” tangent to the triangle’s three sides:

Can’t we now freshly see this triangle with its angle bisectors, incenter,
and inscribed circle as the seven point and seven line projective plane?
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True, one of the “lines” looks like a circle, but that is only because the
doors of our projective perception have not yet been thoroughly cleansed.

How could such a cramped figure embody a geometry of spatial in-
finity? Other models are slightly larger, but finite too. We can construct
one with thirteen points and thirteen lines, but if we start as we just did,
putting down dots and running streaks through them, we will quickly
get into a tangle resembling nothing so much as the web of a spider on
LSD. The visual has always helped us—but our stubbornly Euclidean
intuition means that it hinders us here. On the premise that what the
eye can’t see, the heart won’t grieve for, let’s turn momentarily away from
sight altogether and think of our points as letters and the lines as their
combinations. We will number these lines, only asking that each have
exactly four “points” on it (that is, four different letters in its set).

Line 1 = {a, b, c, d} .

Now P3 requires that there be a point—a letter—not in this set: make
it the letter e. Then we must have a new line with a and e on (or in) it: P1
tells us that none of b, c, or d can be on this line as well—so we need two
fresh points, f and g:

Line 2 = {a, e, f, g} .

We will go on systematically in this way, making sure that any two
letters lie in a unique set and that each set contains four letters. The fear
that the bookkeeping will lead us to infinite excess is gradually put to
rest as the combinations both needed and possible converge:

Line 1 = {a b c d}
Line 2 = {a e f g}
Line 3 = { b e h i}
Line 4 = { b f j k}
Line 5 = { b g l m}
Line 6 = { c e j l}
Line 7 = { c f h m}
Line 8 = { c g i k}
Line 9 = { d e k m}
Line 10 = { d f i l}
Line 11 = { d g h j}
Line 12 = {a h k l}

Line 13 = {a i j m}

These letters and sets of letters obey each of our four axioms and so
constitute a model of the projective plane.
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Such a combinatorial exercise may lead you to agree with the nine-
teenth-century mathematician J. J. Sylvester: “Brindley, the engineer, once
said that rivers were made to feed navigable canals; I feel almost tempted
to say that space was made for feeding mathematical invention.” Or it
may cause you suddenly to reconsider the projective plane: it isn’t a kind
of space after all. It is a structure, a system of relations, which we could,
if we chose, embody in space—but it is no more native to space than is
the transmigrating soul to a particular creature’s body. Must this then
not be true of Euclidean “space” as well, or of anything generated by a
collection of axioms?

We could go on to accountants’ heaven with projective planes having
21 points and 21 lines, each with 5 points, or 31 of each (6 points to a
line) or 43, 57, 73—in fact n2 – n + 1 for any natural number n from 3
on, with n points on each of those lines—and so create an infinite num-
ber of finite models of the projective plane! But to nourish our starving
intuition, let’s look at one last visual model of this geometry, as wildly
different from any of these as each is from its siblings: the thistle.

Picture the thistle’s spines radiating out from a common core in ev-
ery direction—or if that is too prickly, turn it into a Kooshball, but with
infinitely many rubber threads rather than a mere 5000. The spines or
threads may be as long as you choose—infinitely long, if you wish. You
probably think that these will be the lines of our projective plane—but
the surprise is this: they represent the points. Recall once more that “point”
and “line” are undefined terms, so we may model them as perversely as
we will, if only they behave according to the four axioms.

What then will stand for lines? Any two of these spines intersect at
the center:

and back in the bucolic days of Euclidean geometry, two intersecting
lines defined a plane. Each such plane will act as a line here. This makes
sense: if our points look like lines, our lines must look like planes.

We now have to check: do any two points lie on exactly one line? That
is, do any two spines or threads lie on a distinct plane? Yes, as you saw
above, or as reinterpreted here:

This line is a “point”.

This plane is the “line” they lie on. This line is another “point”.
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Do two lines meet in exactly one point? Our translator interprets: do
two planes meet in exactly one line through the center? Again, yes:

Are there three non-collinear points? That is, are there three threads
of the Kooshball that aren’t all on the same plane? Here is an example:

Three concurrent lines not all in the same plane—i.e., three “points”
not all on the same “line”.

And finally, has every line (that is, plane) at least three points (i.e., lines
through the center) on it? Of course:

“Koosh” may be the sound that it makes when it lands in your hand—
but what the Kooshball tells us is that we need three Euclidean dimen-
sions to represent two of projective space; and that a model as far-fetched
as this captures the structure latent in those four axioms as fully as does
the seven- or thirteen-point plane, or the Euclidean plane completed
with points and the line they lie on at infinity. When next you see the
soft explosion of chrysanthemum fireworks in the summer night, or pick
a humble burr off the hem of your coat, remember the projective plane.

If you are tempted to ask about any of these models: “Which is that
special line at infinity in it, and which the special points?” we return the
question to you with interest. Go back to our first model on page 206
(though it deserves a more dignified name than that, being no mere
example but a very exemplar): the completed Euclidean plane. After it
was completed—once any two lines met in a point and any two points
lay on a line—could we really pick out the points or the line at infinity?
The projective axioms have homogenized everything: these are all just
points, just lines, obeying four laws. The desire to bring the infinite into
our garden has had the unexpected consequence of giving all our plants

This plane, formed
by its intersecting
lines, is a “line”.

This plane is another “line”.

This line of inter-
section is the “point”
that the two “lines”
have in common.
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double names. As we trim and tend the growths and watch patterns emerg-
ing among their patterns, novelties will merge into a new familiarity that
satisfies desires we don’t yet know we have. It isn’t that we get what we
want, as Proust once remarked, but that we come to want what we get.

We begin to acclimate ourselves to this landscape by first observing
that there must be three non-concurrent lines in it: for the three non-
collinear points that axiom P3 gave us will have lines through each pair
of them by P1;

these can’t all concur if P1 is still to hold. This is one of those truths you
may think too trivial to mention, but we will soon profit from it in an
unexpected way.

Slightly less obvious is a second observation of the same figure: at
least three lines must meet at every point, for there will always be two
points, such as A and B, which aren’t both collinear with C (the point in
question), and given the usual three lines through the pairs,

we will get two meeting at C. But P4 gives us another point D some-
where on AB, and DC is the third line going through C.

Having warmed up with these two exercises, look again at that packet
of four axioms we said might be even smaller than it seemed. P1 and P2
oddly echo each other:

P1: Any two points lie on exactly one line.
P2: Any two lines meet at exactly one point.

Our two observations now allow us to echo P3 and P4:

P3: There are at least three non-collinear points.
Observation One: There are at least three non-concurrent lines.
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P4: At least three points lie on every line.
Observation Two: At least three lines meet at every point.

Step back for a moment, as geometers after Poncelet finally managed
to do, in order to view these paired statements from the right vantage
point. What we see is something uncanny. Take any true statement in
this projective geometry and exchange the nouns “point” and “line” for
one another wherever they occur, and also their appropriate verbs, “lie
on” and “meet at”. Call this new statement the dual of the first. It will
clearly be a different, but equally true, statement!

Why? Because a statement is true if it follows from the axioms—but
as we have seen, the dual of each axiom is either another axiom or (as
with the two observations) follows immediately from the axioms. This
means that any theorem about some configuration of lines and points
will yield another theorem with an identical structure about points and
lines! Or to put it with disturbing vividness: if Euclidean custom leads
you to picture your points like this: • and your lines like this:

, well and good; but if, in projective geom-
etry, you choose to draw your points thus: and your lines
so: •, nothing will be amiss. We found that we couldn’t tell finite and
infinite apart—now we can’t even make out what are lines, what points!
A mathematician named C. J. Keyser wrote in 1908: “Projective Geom-
etry: a boundless domain of countless fields where reals and imaginar-
ies, finites and infinites, enter on equal terms, where the spirit delights
in the artistic balance and symmetric interplay of a kind of conceptual
and logical counterpoint—an enchanted realm where thought is double
and flows throughout in parallel streams.”

Rather than sharing Keyser’s enthusiasm, you may feel the sort of
queasiness that comes with the first imperceptible tremors of an earth-
quake. We need to bring some sort of order by focusing on the core of
this geometry: perspective and projection. In Euclidean geometry simi-
larity and congruence were the key relations among triangles. Let’s see
how two triangles are most naturally related here. Alberti’s Veil gives us
the answer at once:
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If you look at ∆ABC from a point of view O, ∆A′B′C′ is its image: or
think of O as a light; then ∆A′B′C′ is its shadow. ∆A′B′C′ is in perspective
with ∆ABC. Of course in this land of doubles, ∆ABC is just as much the
image or shadow of ∆A′B′C′—but that’s all right: the two triangles are
in perspective when viewed from O, their center of perspectivity (just as
on the Euclidean plane, the relations of similarity and congruence are
symmetrical). Let’s write:

∆ABC
o=̂ ∆A′B′C′

to mean that the two are perspective from O; that is, the paired verti-
ces are lined up on rays from O: O, A, A′ are collinear, as are O, B, B′,
and O, C, C′.

We might even do one perspectivity after another:

Here ∆ABC
o=̂ ∆A′B′C′, but also ∆A′B′C′ p=̂  ∆A″B″C″. This chain of two

perspectivities (from different points of view) we’ll call a projection, and
say we have projected ∆ABC onto ∆A″B″C″ (or vice versa) via this chain.
A projection can have as many links as you choose—and we’ll grant the
title “projection” even to the single link of one perspectivity.

Where has this gotten us? Aren’t things worse than ever? Two triangles
in perspective certainly needn’t be congruent—nor even similar; they
probably haven’t the same area and one triangle might even be acute
and the other obtuse!

With such a feeble relation between them, how could we hope to have
anything as interesting as the collinearities and concurrencies of Chap-
ter Five? What shall abide the coming of projection? Is not all changed in
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the twinkling of an eye? We relied on congruence in geometry and equal-
ity in algebra in order to transform one thing into another and see what
nevertheless remained invariant; yet here all is seeming and shadow, with
no objective form.*

Let the light of the golden seventeenth century organize these seemings
into sense. A self-taught French architect and engineer, Girard Desargues,
discovered a new and even more profound invariant of the projective plane.

He leads us to look once more at the simple, defining situation in this
geometry: two triangles in a perspective drawing on a plane:

But you are seeing them only in part, he says: line segments, not lines.
Extend, for example, sides AB and A′B′ until they meet (as they must) at
some point P.

We are in danger of cluttering up the picture with too many lines—but
go on, he says, and find where the other paired sides meet at Q and R:

*If you worry about how much things seem to be slatting around on the projective plane, a theo-
rem lurks in the Appendix through which they are miraculously made fast.
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We have been in a situation like this before: those three centers of a tri-
angle, in Chapter Five, that had to be collinear. Is it an accident that P, Q,
and R seem to be collinear too?*

To show that in fact they must be, we travel, as always, elsewhere: not
back to Euclid now but ahead into three dimensional projective space,
P3, whose six axioms—aimed at preventing parallels—are as straight-
forward as those of the projective plane. They include such assertions as
that a line must intersect any plane in a point, and any two planes must
meet in a line, and that there must be four non-coplanar points. Here is
Desargues’s gem of a proof that the paired sides of two triangles, per-
spective from a point, meet in three points that are collinear.

If the two triangles ∆ABC and ∆A′B′C′ lie on different planes, N and
M, and are perspective from some point O on neither plane, then their
paired sides when extended must meet in three points that lie on the
line l, where the planes M and N intersect.

*We needn’t have pictured the line that these three points lie on as “straight” but do so to accom-
modate our Euclidean vision. That what is to come also works on the Euclidean plane shows that
once more we are entertaining a visitor there who has traveled from his projective home.
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Why? Because lines OAA′ and OBB′, for example, intersect (at O) and
hence form a plane—call it T. AB and A′B′ are two lines on this plane
and so must intersect at a point—call it P. Since AB is on N and A′B′ on
M, P is on each of these planes and so must lie on their intersection, the
line l, which is the hinge between the two planes. The same argument
works for Q and R, so that all three lie on l.

This is all very well, but not quite what we wanted. We need to deduce
the same result when ∆ABC and ∆A′B′C′ are on the same plane. Here’s
Desargues’s architectural masterpiece.

We have ∆ABC and ∆A′B′C′ on one plane—call it V—and perspec-
tive from a point O on this plane.

We know (from the axioms for projective space) that there is a point
S not on the plane, so consider the line on which S and O lie (any two
points lie on a line). Every line in projective geometry has at least three
points, so there is another point—call it S′—on this line.

Now we will simply build Alberti’s visual pyramids. Construct lines
of sight from S to A, B, and C, and from S′ to A′, B′, and C′.
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What may look confusing is really two pyramids intersecting, since SA,
for example, and S′A′ must meet at some point—call it A″. Why must
they meet? Because lines OSS′ and OAA′ meet at O, and once more, two
intersecting lines form a plane. SA and S′A′ are lines on this plane, so
must intersect.

Again the same kind of thinking shows us that SB and S′B′ intersect
(at B″) and SC and S′C′ (at C″). A″, B″, and C″ are the vertices of that
small triangle floating above plane V—the intersection of the two pyra-
mids from S and S′.*

Now, with Desargues’s eye, look steadily at what he has built and re-
member the fundamental power of transitive thinking. The floating tri-
angle ∆A″B″C″ and ∆ABC are on different planes but perspective from
point S—hence, by Desargues’s proof for triangles on different planes,
their paired sides, when extended, meet at three points on one line: the
line l where plane V intersects the plane (which we haven’t drawn in) of
∆A″B″C″. Call those points P, Q, and R.

The floating triangle ∆A″B″C″ and ∆A′B′C′ are also on different planes,
but perspective from point S′—hence, again their paired sides, when
extended, meet at three points on line l. These must be the same three
points, since A″B″, for example, intersects l with AB at P and intersects it
again with A′B′—but one line cannot intersect another in more than a
single point.

By going up into a third dimension and returning, Desargues has
shown that two coplanar triangles, perspective from a point, are also

*If A″, B″, and C″ were collinear, A, B, and C would be too—and we began with them forming a
triangle.
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“perspective from a line” (a condensed way of phrasing his conclusion).
This line on which the paired sides meet is called the axis of perspectivity.
We can relish his insight now as if it lay wholly on the plane.

This being projective geometry, we are enticed into looking at
Desargues’s configuration from several different points of view. The first
is duality. Since we now have the theorem: “If two triangles are perspec-
tive from a point, then they are perspective from a line,” its dual must
also be true: “If two triangles are perspective from a line, then they are
perspective from a point.”

This dual is by no means as obvious as the original statement, but its
proof grows beside the double river that waters this land.

At least as remarkable is the following exercise in looking at things
askew. We will draw once more the “Desargues configuration” of ten
points and ten lines. ∆ABC and ∆A′B′C′ are perspective from O and
hence from line PQR. Now blink, and settle your seeing on any point
other than O: choose, for example, C, and call it the center of perspectivity.
Look—a new planet swims into our ken: ∆OAB and ∆QRC′ are per-
spective from point C, and also from line A′B′P!
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Choose another one of the ten points in this configuration as the center
of perspectivity: again two triangles line up with it, and a fresh axis of
perspectivity. Just as no point turned out to be a special “point at infin-
ity”, so none is a special “center of perspectivity”. There are ten distinct
“Desarguean configurations” compiled in this one—more collinearities
and concurrencies than in all of Chapter Five, more ambiguities than in
the most hypermodern novel.

Perhaps the most disconcerting reflection is this. We proved Desar-
gues’s theorem about the projective plane by moving into projective
three-space. We had to: there can be no proof of it confined to the plane
itself, making this particular fetching from afar not a jeu d’esprit but a
necessity. People therefore tend to speak not of Desargues’s theorem but
Desargues’s “theorem”, since it is a theorem (as is its dual) only for pro-
jective planes when they are thought of as part of projective three-space.
For an arbitrary projective plane, not similarly ensconced, his “theo-
rem” is only an axiom—whose contrary is as easily affirmed (though at
first perhaps not as cordially deemed worthy of belief). It is as if
Desargues’s conclusion were the shadow cast on the plane by a proof
elsewhere. The union which set out against Euclid has loosened into a
confederation of projective geometries.

∞

Projective planes in projective space—planes on which Desargues’s
theorem holds—are so rich that we can never gather up all their trea-
sures. In this atmosphere thick with duality, it will come as no surprise
to find that what were ends soon turn into means. Take, for example, the
theorem in Chapter Five for which we had a whole volley of proofs: the
medians of a triangle are concurrent. Let us bring yet one more proof—
perhaps the most beautiful—from the distant projective plane.

Instead of drawing in any of the medians (so artful is this proof), let’s
just mark the midpoints D, E, and F of  ∆ABC’s three sides:
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the line joining the midpoints we know (by similar triangles) is parallel
to the base: so FE ��BC, FD ��AC, DE ��AB:

But parallel lines meet on the line at infinity—that is, FE coincides with
BC at some point P there, FD with AC at a Q, DE with AB at some R. In
other words, triangles ABC and DEF are perspective from a line (at in-
finity though it may be). Hence by the dual of Desargues’s “theorem”,
these two triangles are perspective from a point—that is, there is an O at
which AD, BE, and CF are concurrent—as we wished to show. We are
looking straight down on Alberti’s visual pyramid.

As J.B.S. Haldane once almost said: Mathematics is not only queerer
than we suppose, but queerer than we can suppose.

∞

We will end this chapter on the endless with a magic trick. The best of
these give the audience so much freedom to choose that you can’t be-
lieve they could ever work—or if they do, it must be because of hidden
accomplices. We love our freedom until it verges on an almost synony-
mous lawlessness at one extreme, a hint of subversive powers at the other.

So pick a line, any line, as the card sharpers say—and then pick an-
other.
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Next, choose any three points you like on the first, and any three on the
second.

Please label the points on the first line A, B, and C—but again, in any
order you choose; and (in any order), A′, B′, C′ on the second line.

Now (while our assistant dusts off the vanishing points) connect A to
B′ and B to A′, and call P the point where AB′ and A′B cross (we are still
on the projective plane, so these lines will cross).

Let AC′ intersect A′C at Q, and BC′ meet B′C at R.
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Abracadabra! P, Q, and R will be collinear. Should you care to redraw
or relabel to see if this still looks true, we will entertain you the while
with Hilbert’s remark that a mathematical problem should be clear and
easy to understand, since complication is abhorrent; should be diffi-
cult enough to entice us but not completely inaccessible (“lest it mock
our efforts”); and should be significant: “a guidepost on the tortuous
path to hidden truths.”

Once you have convinced yourself experimentally that our claim is
just, we can indulge in the different sort of conviction that comes from a
proof—and its very different sort of pleasure as well: experiments gen-
erate wonder; proofs conclude with awe. Let’s begin by adding to our
diagram the point O where lines l and m meet. We will draw the line PQ
and prove that R is on it.

This is where the magician lets out the rabbit that was all the time in
his hat: take that line PQ as the line at infinity. What have we just done,
and who said we could do it? Remember that once the Euclidean plane
is completed by adding to it (along with special points) the line at infin-
ity, all lines look and behave alike, so any one can now be rechristened
the line at infinity! This move is like a modulation in a late Beethoven
quartet: inspired, outrageous, transforming. It trumps the original free-
dom of choice with a freedom of its own.

Since P is now the point at infinity where AB′ and A′B meet, they are
in the old Euclidean sense parallel; as are AC′ and A′C, since they meet
at Q on the line at infinity. If you like, you may think of what we’ve done
this way: we have taken advantage of being on the projective plane by
choosing our point of view so that these pairs of lines are parallel. Our
configuration would now look like this:

To prove that R (where BC′ and B′C meet) is on this line now amounts
to proving BC′ � B′C.
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Let’s assign lengths q, s, t, u, v, and w to segments in the diagram as
follows:

Since ∆OAB′ ~ ∆OBA′, the sides are in proportion: that is,

q q s
 ,

u v (u v w)

+=
+ + +

so

q(u v w)
q s ,

u v

+ + = +
+

or

q(u v w)
q s  .

u v

+ ++ =
+

And since ∆OAC′ ~ ∆OCA′,
q (q s t)

u (u v w)

+ +=
+ + , so

u(q s t)
q

(u v w)

+ +=
+ +

and

q(u v w)
u ,

q s t

+ + =
+ +

or

q(u v w)
u  .

q s t

+ +=
+ +

Hence we can write:

q(u v w)
(q s) u v  .

q(u v w)u
q s t

+ +
+ += + +

+ +

Let’s simplify this ungainly double-decker by dividing both its numera-
tor and denominator by q(u + v + w). We will then have
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1
(q s) q s tu v  .

1u u v
q s t

+ + ++= =
+

+ +

But this implies that ∆OBC′ ~ ∆OCB′, so that C′B � B′C, and their meet-
ing point, R, is indeed collinear with P and Q on the line at infinity.

It would be nice to end with a fanfare—an illustration of these simi-
lar triangles revealing the collinearity of P, Q, and R. But notice that AB′
and A′B must be simultaneously parallel and convergent at P. Since P is
the point at infinity, the mind can see it—but the hand trembles too much
to make a drawing.

What we have just done is as neat a piece of cross-ruffing as you are
likely to see (if you object to such playing off of one kind of plane against
another, a different proof of this theorem, wholly in the projective idiom,
is in the on-line Annex).

Which was more magical, the theorem or its proof? In either case the
show isn’t over. This theorem was first discovered by the witty Alex-
andrian geometer, Pappus, whom you may already have met in the ap-
pendix to Chapter Five (page 282): the man who proved the base angles
of an isosceles triangle congruent by thinking of the triangle as congru-
ent to its mirror image. A thousand years later, Pascal discovered that if
you sprinkle these two triples of points anywhere on a circle’s circum-
ference, the same result holds:

P, Q, and R are still collinear, no matter where you put them or how you
label them.

Shall we push incredulity further toward the brink? Distort that circle
into any sort of ellipse and P, Q, and R remain stubbornly perched on a
single line:
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What about a parabola?

Dare we go to the extreme of a hyperbola’s two branches?

Could we risk even thinking about the duals of each of these theorems?
Hard to swallow as the proof of Pappus’s theorem was with a pair of

straight lines, won’t trying to prove it in any of these four new configu-
rations mock our efforts? Not at all. They will now be simplicity itself
and a guidepost on the tortuous path to hidden truths (indeed, Hilbert
called Pappus’s theorem the most important in all of plane geometry,
because Desargues’s theorem, or any theorem about lines meeting on
the plane, can be derived from it). The simplicity comes from noticing
that a pair of lines, a circle, an ellipse, a parabola, and a hyperbola are all
conic sections: slices, not through Alberti’s visual pyramid, but through a
palpable cone. They are projective transformations, therefore, of one
another, when seen from the cone’s apex (the hyperbola’s second branch
lies up in the cone’s mirror image: extending, as always, the known into
the new). A projective invariant of one will be invariant for all.



���

������	��
���


Projective geometry—so sprightly in its approaches, so profound in
its results—is the contemplation of permanence behind change, ani-
mating the sculptural beauty of Euclid in a world of transformations.
Peacock fumbled at this with his Principle of Permanence. The new and
deeper sense it makes here was expressed as a Principle of Continuity by
Poncelet in 1822: “If one figure is derived from another by a continuous
change and the latter is as general as the former, then any property of
the first figure can be asserted at once for the second.” This principle,
and the subsequent algebraic approach to projective geometry, underlie
our modern facility for moving from one coordinate system to another—
a facility that underlies, for example, Einstein’s understanding of mea-
surements made by observers differently situated and in motion relative
to one another.
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If you stare too long into an abyss, the abyss
will stare back into you.

—Nietzsche

We would now spiral back to the counting with which the art of the
infinite began, were it not that a little cloud on the mind’s horizon—no
bigger, really, than a man’s hand—has from time to time troubled people
telling their numbers. In the ninth century the star worshipper Thabit
ibn Qurra, from Harran, argued that infinity could be split into two,
three, or any number of parts, each of which would then have the same
size as the whole: there is, for example, an infinite number of evens, but
also of odds, so each half of infinity is infinity—and so on.

In 1638 Galileo argued that “equal”, “greater”, and “less” can’t apply to
infinite quantities because a line segment contains an infinity of points,
so a longer segment would have to contain more than that infinity, which
is impossible. And again, each natural number has its square matched
with it:

1 ↔ 1
2 ↔ 4
3 ↔ 9
4 ↔ 16

.

.

.
n ↔ n2 .

Hence there must be exactly as many square numbers as there are
naturals. Clearly, however, there are fewer, since the squares grow ever
sparser as you go along.
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Putting the question aside seemed for a long time the best way of
coping with it. Infinite collections of numbers were too slippery to try
comparing, as if we were being warded off from these higher mysteries
by their power to confuse. We could speak negatively of approaching
but never reaching a limit, or of there not being a last prime; and posi-
tively about what must be true for any (or was it every?) number—we
could even make finite models of infinite planes. But how could a mind
tucked into a little skull possibly grasp the infinite as such, or count its
way through infinite multitudes?

The work of a single man utterly changed our glib know-nothingness
forever. What was to follow would be colored by the strengths and weak-
nesses of his particular personality, rather than having the impersonal
air we tend to associate with mathematics and collective work.

Georg Cantor must have been born in the imperative mood. This
mattered at least as much as the intellectual climate of Germany in 1845.
He was propelled through his youth by a torrent of a father (“Now my
dear son! Believe me—to prevent the slander of open or secret enemies
you need to acquire the greatest amount possible of the most basic knowl-
edge. Whatever one neglects through premature extravagance is irre-
trievably lost, like lost innocence. . . . Your father, your family, have their
eyes on you. . .”). Even more compelling was what he described through-
out his life as a secret voice—within, above, unknown—a “more power-
ful energy” that spoke through him. He always looked for the face behind
the mask and then for the mask behind that. Docile at home, domineer-
ing among colleagues, playful in mathematics and humorless in his
wrangles with mathematicians, he was as close to a reincarnation of
Alcibiades as nineteenth-century Germany could produce—not only in
his enthusiastic energy and wild daring, but in the ferocious way he fought
when cornered—Alcibiades by Phrygians, Cantor by ideas.

Let’s return, with Cantor’s inflexible
will and malleable imagination speaking
within us, to Galileo’s problem of the natu-
ral numbers and their squares. Since each
number has its unique square and each
square corresponds to a single natural, it
certainly seems right that there are just as
many squares as there are naturals, for all
that the squares are scattered among them.
Let skepticism give way to astonishment and
astonishment to experimental candor: let’s
follow where this observation leads.

Other such correspondences come troop-
ing after. Although only every second natu-Cantor as a young man.
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ral number is even, there must nevertheless be exactly as many of them
as naturals, since each natural is perfectly matched with its double:

N 2N
1 ↔ 2
2 ↔ 4
3 ↔ 6
4 ↔ 8
. . .
. . .
n ↔ 2n

To say these matchings-up show that there are as many of one kind as
of the other needs, of course, a very bold leap of thought. We are taking
each sort as a completed whole: all the naturals match up perfectly with
all the evens, or with all the odds. Stop short and the correspondence
breaks down: there are only 50 evens among the first 100 naturals, for
example, and 50 odds.

The multiples of 3 are even thinner on the ground than those of 2—
and yet once again, there are just as many of them as of the naturals they
are selected from:

N 3N
1 ↔ 3
2 ↔ 6
3 ↔ 9
4 ↔ 12
. . .
. . .
n ↔ 3n

We could walk over N in seven league boots and take just as many
paces as the numbers we stride through:

N 7N
1 ↔ 7
2 ↔ 14
3 ↔ 21
4 ↔ 28
. . .
. . .
n ↔ 7n
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How little a step now for the mind to invoke its own sort of infinity
and declare: for any natural number m, there are just as many multiples
of m as there are natural numbers altogether:

N mN
1 ↔ m
2 ↔ 2m
3 ↔ 3m
4 ↔ 4m
. . .
. . .
n ↔ nm

If you ask: how many is that? we could answer in terms of cardinal num-
bers, which read off what the size of a set is—that is, how many elements
(in whatever order) it contains. The set with a cabbage, a goose, and a fox:

{cabbage, goose, fox}

has cardinality three (and the problem is to keep it that way). So has
the set

{13, –8, 251} .

The set with the first million counting numbers has cardinality one mil-
lion. Here we could say: the sets N and mN have the same cardinality, as
established by the one-to-one correspondence we made. Since we count
by means of the natural numbers, we could also say that both sets are
countable.

Had Cantor done nothing else, this insight would still have revolu-
tionized our understanding of the infinite. What was a paradox could
now be seen as a peculiar truth suggestive of truths perhaps yet more
peculiar: the hallmark of mathematics at work. To say that Cantor did
infinitely more would be an understatement. In Chapter One we re-
marked that matching up separate things with a sequence of numbers
might seem of little consequence, but would take us beyond the moon.
With the set of all the natural numbers (or all the multiples, if you wish,
of 65,537), we are already well past it, yet hardly any distance along the
path that Cantor took: as winding, as steep, as exhilarating as those he
walked in the Harz mountains.

The crucial ideas in mathematics are always so simple as to seem in-
tuitively clear: sets and making 1–1 correspondences between their mem-
bers. You needn’t even know how to count to do this, and the effect has
always been spectacular. In the fourth century a nomadic army from the
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East rode through the Caucasus into Armenia. “No one could number
the vastness of the cavalry contingents,” wrote a contemporary chroni-
cler, “so every man was ordered to carry a stone so as to throw it down . . .
so as to form a mound . . . a fearful sign left for the morrow to under-
stand past events. And wherever they passed, they left such markers at
every crossroad along their way.” In Scotland the Cairn of Remembrance
still stands at Invercauld, where the Farquharsons each set down a stone
before battle—and those who survived took each his stone back home.

Although the word “set” first took on its technical meaning with Can-
tor, surely it stands for what we are all born knowing, as we observed in
Chapter Two. Sords of mallards and prides of lions tickle our easy apti-
tude for making a many into a one. It is almost more comfortable to
think, for example, of your old gang taking on a bunch of hoodlums
than having to deal with single people who have faces and friends. If
counting, as mathematicians know from bitter experience, is harder even
than hitting a round ball with a round bat (which Ted Williams said is
the hardest thing there is), certainly the young Cantor made it signifi-
cantly easier by recognizing “set” as the central noun of the new lan-
guage he was inventing. Its central verb was “to correspond”. The
correspondence between the members of the sets might be hard to find;
the way you made it might seem artificial or bizarre—but once revealed,
the two sets between which it ran had to have the same cardinality. Con-
versely, you must agree, if somehow you proved that no 1–1 correspon-
dence could exist between the members of the two sets, then their
cardinalities would have to be different. On such casual agreements
momentous conclusions hang.

Let us continue, with Cantor, to learn again how to count—which may
make us sympathize with birds and chimpanzees. Having found that any
infinite sequence of the naturals is countable (not as great a surprise as it
first seemed, if you think about it, since such a sequence will have a first
term, then a second, third and so on—and ordering them thus in effect
counts them), we are tempted to look in the opposite direction: not at
subsets of N but at a set that includes it. This is the set Z of integers, with
zero and the negatives of the naturals as well. Is it possible to put this set
too in one-to-one correspondence with its subset N?

Yes, but with a slightly greater effort of the imagination. After starting
with 0, just hop back and forth between the naturals and their negatives:

. . . . . .
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This establishes the match-ups:

N Z
1 ↔ 0
2 ↔ 1
3 ↔ –1
4 ↔ 2
5 ↔ –2
6 ↔ 3
7 ↔ –3
. . .
. . .

We have thus shown that the integers have the same cardinality as the
naturals.

Such a clever way of pairing gives us the confidence now to think the
unthinkable and face what Galileo shied away from: a more than infin-
ity. For if you look at all the rational numbers Q, or even at just the
positive rationals—the set of all these fractions—there are obviously more
of them than there are natural numbers, since between any two frac-
tions will lie another, until what was the space from one natural to the
next will be crammed to bursting with them. You could look at it this
way: any set as numerous as the naturals is countable, but how could
you possibly count the positive rationals? How say, given one of them,
which is the next, or even which is the first of them all? Between 0 and
any candidate you name, another will crop up—and another . . .

If it is hard to conjure up the entrenched determination of Alcibiades,
imagine Cantor prowling the margins of the forest of fractions, certain
that they could be counted if only looked at from the right angle. So the
chaos of an orchard seen from a passing train resolves itself for a mo-
ment into ordered rows.

Clearly their obvious order, from smaller to larger, doesn’t help, be-
cause of the ceaseless in-betweens. They would have to be rearranged,
like an orchard:

1 2 3 4 5 6 7 8 9

1 1 1 1 1 1 1 1 1

1 2 3 4 5 6 7

2 2 2 2 2 2 2

1 2 3 4 5

3 3 3 3 3

. . .

. . . . .

. . .

. . .

. . . . .
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Rethinking the divisions on a line as this two-dimensional grid is the
turn of thought we have met again and again: leaving the familiar and
nearby to return, enlightened, from a distant land. Now at least we have
what looks like a beginning: 1

1
 pinned in the upper left-hand corner. But

next? to move steadily to the right, clicking off 2

1
, 3

1
, 4

1
 . . . will count the

top row but leave the vast acres of fractions beneath it untouched. To
move steadily down from 1

1
 will number 1

2
, 1

3
, 1

4
, and all the Egyptian

fractions at the expense of the endless columns to their right.
Let these two necessities mother invention by scratching the eternal

itch of asymmetry. Go neither exclusively across nor exclusively down,
but zigzag along diagonals through the planting:

1 2 3 4

1 1 1 1

1 2 3 4

2 2 2 2

1 2 3 4

3 3 3 3

→ →

↓

� � �

� �

5 6 7 8 9

1 1 1 1 1

5 6 7

2 2 2

5

3

This is the path that will count the positive rationals, so long as it is
walked judiciously. Each fraction must appear once—but only once—
on our list, but the fifth entry here, 2

2
, is the first, 1

1
, in disguise. Very

well: starting at 1

1
 follow this maze and count each entry in order, so

long as it hasn’t appeared before. Then we have a 1–1 correspondence
between N and the positive rationals—Q+. It begins:

N Q+

1 ↔ 1

1

2 ↔ 2

1

3 ↔ 1

2

4 ↔ 1

3

5 ↔ 3

1

6 ↔ 4

1

7 ↔ 3

2

8 ↔ 2

3

9 ↔ 1

4

10 ↔ 1

5

11 ↔ 5

1

.

.

. . .

. . .

. . .
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The eccentricity of this sequence makes sense only when you see from
above the map of its two-dimensional source—but since each positive
rational appears precisely once here, the sense beyond sense it conveys
is that the set of positive rationals contains no larger an infinity than
that of the natural numbers. “How many” must have nothing to do
with “how dense”.

Three thoughts come tumbling all in a rush. First, notice how the
need for imagination has increased by quantum jumps through our three
problems. To show that the squares or the evens or the multiples of any
number m were countable took steadfast looking: letting the world in-
struct the eye. To count the integers we needed to free ourselves from
thinking via succession so as to come up with the pert invention of hop-
ping back and forth. To count the positive rationals we had to shake off
linear thinking altogether and devise a two-step as precariously balanced
as Harold Lloyd on an I-beam. The questions we ask beget means to
answer them that grow past all expectation in refinement, and develop
an arcana of their own.

Second, you now can see why we said, in Chapter Six, that if the book-
keeper in the brain really insisted on putting in order all those links in
the infinite chains hanging down from the infinitely long chain of square
root extension fields, he could do so: just diagonalize through them as
Cantor inspired us to do.

Third, not just the positive but all the rationals are crying out for us
to count them. It only takes combining our second and third techniques.
Make the zigzag through the positive rationals and then make another,
independently, through the negatives:

4 3 2 1

1 1 1 1

4 3 2 1

2 2 2 2

3 2 1

3 3 3

2 1

4 4

1

5

− − − −← ←

− − − −

↓
− − −

− −

−

� � �

� �

�

1 2 3 4

1 1 1 1

1 2 3 4

2 2 2 2

1 2 3

3 3 3

1 2

4 4

1

5

→ →

↓

� � �

� �

�

We know we can put each of these sets, Q+ and Q–, in 1–1 correspon-
dence with N. We also know that the set of evens, E, and the set of odds,

5

1

5

2

− 5

2

5

1

−
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O, are in 1–1 correspondence with N. Transitivity and interleaving to
the rescue: match the positive rationals, Q+, with the even naturals, E,
by way of that zigzag; and the negative rationals, Q–, with the odds, O,
in the same way. Then shuttling back and forth between odds and evens
will put the totality of Q+ and Q– in 1–1 correspondence with N.

We have left out zero, and make good our omission by bumping the
correspondence of Q– with the odds over one, leaving the natural num-
ber 1 with no partner. Pair it up now with 0. This counts all of Q, as
desired:

N Q
1 ↔ 0

2 ↔ 1

1

3 ↔ −1

1

4 ↔ 2

1

5 ↔ −2

1

6 ↔ 1

2

7 ↔ −1

2

8 ↔ 1

3

9 ↔ −1

3

10 ↔ 3

1

11 ↔ −3

1

.

.

No matter how far-flung the rational you name, it will eventually put in
an appearance on this list.

You will appreciate the exhilaration Cantor must have felt in winning
such striking insights as this by going against the authority of the demi-
gods Aristotle, Gauss, and his own contemporary Kronecker, who said
that it was illegitimate to think of or deal with completed infinities. For
them, as for almost all the world before Cantor, the infinite was poten-
tial. By making it actual he put infinite ensembles on a par with finite
ones, rethinking “number” altogether in terms of “sets”—and so laid the
foundations of modern mathematics. He also apparently put to rest the
paradox people had somehow managed to live with, of seeing how ab-
surd it must be to have a “more than infinity”, yet being sure at the same
time that there were more fractions than naturals. Keeping your thought
compartmentalized helps to hold two such incompatibles in it, and will
get you through many a difficult day.
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Pick up your neo-Pythagorean talisman again to see what Cantor
achieved. He matched up the members of the inner circle N with those
of its surrounding Z and now with all the elements of the wider enclo-
sure Q, so that “infinity” had not many vague meanings but one, thanks
to the notions “set” and “1–1 correspondence”. R was the next candi-
date, with all of the rationals in it, but all the irrationals too. The
irrationals: it was these, you recall, whose existence shattered the Py-
thagorean order of things. Once again we are about to fall off the edge of
the world.

In 1872, while Cantor was on holiday in the Swiss village of Gersau—
mountains before it, ravine behind—he chanced to meet Richard
Dedekind. They recognized at once the affinity of their thought and con-
tinued the conversations begun there in an exchange of letters. On No-
vember 29, 1873, Cantor wrote to Dedekind that it seemed impossible to
match up the naturals with the reals because the former were discrete and
the latter made a continuum—“. . . but nothing is gained by saying so, and
as much as I incline to this opinion, I haven’t been able to find the reason,
which I keep working at; perhaps it is really very simple.” On December 2,
he added that he had been trying to deal with this for years and couldn’t
decide whether the difficulties were his or lay in the problem itself.

Then suddenly—on December 7—he wrote again: he had found a proof
that the real numbers couldn’t in any way be put into a 1–1 correspon-
dence with the naturals—they were uncountable. Since the real numbers
contain the naturals as a proper subset (every natural is a real, that is, but
not every real is a natural), this suggests that in fact there are more of
them: a larger infinity than that of N or the equinumerous Z and Q.

You probably expect that so shattering a conclusion follows from a
proof whose subtlety or abstruseness could never be contained in these
pages—yet here it is, in a version Cantor came up with later: the most
stunning work in the gallery of nineteenth-century art, and built once
again on the strut of a slender diagonal.

Cantor had to show that there was no 1–1 correspondence between
the sets N and R—not just that he couldn’t find one. The only logical
approach to such negative statements was a proof by contradiction. His
strategy would be to assume that a 1–1 correspondence had been made,
and then to reduce this assumption, as they dismissively say, ad absur-
dum. His tactics involve first restricting his attention to a small subset of
the reals: all those greater than 0 and less than 1. We write (0, 1) to stand
for this “open interval from 0 to 1”, which you may picture as a segment
of the real line without its end-points:
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Any of these reals can of course be written as a decimal beginning “0.”,
and continuing with a string of digits. As we found in Chapter One, a
pattern will emerge among those digits for any rational, but not for any
irrational. In either sort, however, one of the ten digits from 0 to 9 will
occupy each of its countably many decimal places. Cantor’s proof turns
on this banal observation.

For assume, now, that all of these decimals are in a 1–1 correspon-
dence with the naturals, so that we can list them. Since the aim is to
contradict this assumption, we can’t specify how the listing is to be car-
ried out: any possible way of arranging them must conclude against the
same wall. We therefore need neutral markers to stand for whatever the
digits in any entry may be. Since we are on better terms with subscripts
after the adventures of Chapter Six, let a

11
 stand for the digit in the first

decimal place of the first entry, a
12

 for the second digit there, and so on:

1 ↔ 0 . a
11

a
12

a
13

 a
14

 . . .

The decimal matched up with 2 in our puzzling list will have entries
a

21
, a

22
, and so on:

2 ↔ 0 . a
21

 a
22

 a
23

a
24

. . .

so that the supposed one-to-one pairings-up of all the naturals with all
the reals in (0, 1) will look like this:

1 ↔  0 . a
11

a
12

a
13

 a
14

 . . .

2 ↔  0 . a
21

 a
22

 a
23

 a
24

 . . .

3 ↔  0 . a
31

 a
32

 a
33

 a
34

 . . .

4 ↔  0 . a
41

 a
42

 a
43

 a
44

 . . .

.

.

Each entry continues forever (i.e., with as many decimal places as there
are counting numbers), and there will be as many entries on the list as
there are counting numbers.

We are supposing that this list is complete: every real in (0, 1) is some-
where on it, hence there are no forgotten or neglected real numbers in
this interval that can be added on at the end—and a good thing too,
since the list has no end. We are also supposing that no entry appears
here twice: any two decimals listed must differ in at least one decimal
place ( 1

9
, for example, is listed somewhere: its decimal form is 0.1 , that
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is, 0.11111. . . forever; and here too is the decimal with 1 in every decimal
place—except for a 0 in the 93,247th place).

Now comes the diagonal stroke of genius. That first decimal place in
the list’s first entry, a

11
, must, of course, be one of the digits from 0 to 9:

for example, it is either 5, or not. Cantor asks us to create our own deci-
mal number between 0 and 1 as follows. Like those on the list, it too will
begin “0.”, but its first decimal place will be determined by what a

11
 is. If

a
11

 is 5, our number will have a 6; but if a
11

 isn’t 5, we put a 5 in the first
place of ours.

So far our decimal looks either like this: “0.6” or like this: “0.5”.
To decide whether to put a 5 or a 6 in the second decimal place of

ours, look at the second entry in the second decimal on the list: a
22

. Again
we act contrariwise: if a

22
 is 5 we will have 6 in our second decimal place;

but if a
22

isn’t 5, 5 goes there in ours. We thus have 0.65, 0.66, 0.55, or
0.56, depending on what a

11
 and a

22
 were.

Continue filling the successive decimal places of our number with 5
or 6 in this mechanical way, looking at a

33
 for our third place, a

44
 for our

fourth, and in general, sliding gracefully down this diagonal:

 0 . a
11

a
12

a
13

 a
14

 a
15

. . .

 0 . a
21

 a
22

 a
23

 a
24

 a
25

. . .

 0 . a
31

 a
32

 a
33

 a
34

 a
35

. . .

 0 . a
41

 a
42

 a
43

 a
44

 a
45

. . .

 0 . a
51

 a
52

a
53

 a
54

 a
55

. . .

whatever fills the nth decimal place of the nth entry, a
nn

, determines
whether we put 5 or 6 in the nth place of ours.

The real number we are building up has only 5s and 6s in its decimal
places, and might begin like this:

0.55666565656656555 . . .

Whatever it looks like, it is a perfectly good real number, somewhere to
the right of center in (0, 1): more precisely, it will be between 5

9
 = .5  and

6

9
 = .6 .
Notice, however, that it can’t possibly be the first entry on the list,

since it differs from that entry at least in the first decimal place. It can’t
be the second entry either, differing as it does from it in at least the
second decimal place; nor the third, for the analogous reason, nor the
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fourth—nor the nth. It cannot, in fact, be
anywhere on this list that was supposed to
contain all of the reals in (0,1) because it dif-
fers from every entry on it in at least one
decimal place—and that is the contradiction.

This proof—as simple and subtle as all
great art—throws open the gates to what
Hilbert called Cantor’s Paradise. If we can
compare infinite cardinalities—if we under-
stand the proof to show that there are more
real numbers in (0,1) than there are naturals
altogether—then we have just found a sec-
ond and larger size of infinity (and the hairs
on the back of the neck stand up at the hint
of perhaps more). It is hard to think of a

comparable shock to the life of the mind (unless it be the revelation that
others think “I”).

∞

Now we can return to Galileo’s shorter and longer line segments. The
open interval (0, 1) has more points on it than all the counting numbers
in the world, although there is no end of them. What about the longer
segment (0, 2)? An astonishingly simple proof—another“Look!”—shows
that this longer segment contains just as many points as the first: there is
a 1–1 correspondence between them.

Center the first segment above the second, and for the sake of the
proof put on their missing end-points:

We know from the previous chapter what to do with these two lines:
find their center of perspectivity, P:

Cantor in middle age.
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Now project the smaller interval onto the larger from P: each point in it
matches up with a unique point on the other—and vice versa:

This projection establishes a 1–1 correspondence between them: the
midpoint, 1

2
, of the first segment matches up with the midpoint, 1, of

the second, and trigonometry will, if you want, give you the rest of the
match-ups—but de minimis non curat Cantor. You may now eliminate
the end points of each, but leave the P they created: it still shows that the
cardinality of (0, 1) and of (0, 2) are the same.

Why stop here? Take some very short open interval, like (5, 5.1) and
some very big one: (–3,000, 1,000,000). The same projection establishes
the 1–1 correspondence between their elements:

The number of points on the horizontal bar of the t in “horizontal” has
exactly as many points on it as the line from the earth to Alpha Centauri.
“How many” has nothing to do with “how long”.

If space was created for feeding the imagination of geometers, count-
ing was created for feeding Cantor’s. The points on any line segment are
gigantically equinumerous with those of any other—but what about the
points on the entire real line, disappearing to negative and positive in-
finity? How can we show that the entire line has as many points alto-
gether as even on the merest smudge of one of its segments—or that it
has more? The proof by projection no longer works because the real line
lacks end-points to pull up the sight-lines from. Here is ingenuity raised
to the 13th power (“What lack we yet,” as Cardano said of another inge-
nious contrivance, “unless it be the taking of Heaven by storm?”). Bend
the open interval (0, 1) up into a semicircle and let the real line lie some-
where below it:
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Now place your light source, or point of view, in that hollow bowl,
midway between its missing end-points.

Each point of the open interval will correspond to a unique real, each
real to a unique point of the interval. Since the interval and the real line
are open (have no end-points), this match-up will work for every point
on each. The cardinality of the reals is the same as that of any open
interval of the reals.

The countably infinite was exemplified by many sets besides the epony-
mous counting numbers: the evens and odds, the multiples of any num-
ber, the integers and the rationals. Now this larger infinity is developing
an entourage of its own: continuous open intervals of any size (analo-
gous to those multiples of N) as well as the reals altogether.

You need to pick out faces in the crowding natural numbers to jog
your imagination into glimpsing just how very big their infinity is. Think
of those largest known twin primes, with 29,603 digits in each; remem-
ber that there are primes thirty quintillion numbers apart with not an-
other prime between them—yet there will be one further on. The number
of naturals isn’t just sickeningly huge: it is infinite. And yet, compared to
the number of reals in the interval ( 1

3
, 1

2
), it doesn’t amount to a hill of

beans. Worse: you’ve now seen that there are hills of reals in that narrow
range compared to which all the hills of naturals look like valleys.

Does it take the courage of Daedalus or the foolishness of Icarus to
ask now: “Is there a greater infinity still than those of the naturals and
the reals?” Does the asking imply a sort of imagination in whose pres-
ence ours shrivels to a dot? Or has abstraction somehow insulated the
mind against the reality it calls up, so that the imagination we rightly
praise is one of intuiting relationships and devising ways of rigorously
proving that they hold?
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On January 5, 1874, Cantor wrote to Dedekind: “Could the points of
a plane possibly be in a 1–1 correspondence with those on a line? Al-
though the answer here too seems so obviously to be ‘no’ that you might
almost think a proof superfluous, it seems to me that major difficulties
stand in the way of an answer.”

If he could only prove this, then a third size of infinity would be re-
vealed—and then in all likelihood the points in space would constitute a
yet larger, those in four dimensions a larger still, and so on forever, each
higher dimension containing a greater infinity of points than the one
before, as the spiral of counting widens and carries our thought out of
the universe with it.

If he could only prove this . . . but no proof was forthcoming. What
you often do in such a fix is to work simultaneously on proving and
disproving your conjecture: one approach may suddenly prosper, or as
each inches forward the odds against the other may suddenly lengthen.
Picture, then, trying to set up a one-to-one correspondence between the
points on the plane and those of the line—or to use the successful ear-
lier tactic, between all the points in some neatly confined corner of the
plane and part of the line—the “open unit square”, perhaps, tucked into
the first quadrant: all the points, that is, above the x-axis and below the
line y = 1, and to the right of the y-axis and left of the line x = 1:

could these be unequivocally corresponded to the points in (0, 1) that
this open square rests on?

The difficulty that seems insuperable is that each point of the square
has two coordinates, and each point of the line only one. How could you
find a unique point in (0, 1) to match up with a point in the square such
as (0.3750,  0.9140286. . .)? You clearly couldn’t send this pair of reals
just to its x-coordinate, for then every point in the square with the same
x-coordinate would go there too and the correspondence would be far
from one-to-one.

You couldn’t send the two coordinates to their sum, since again many
other points in the square would have coordinates that added up to the
same value. Subtraction, multiplication, division of one coordinate by the
other, or raising one to the power of the other all had the same fatal flaw.
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Pressing the other line of attack seemed much more promising: as-
sume a 1–1 correspondence and let it lead you to a contradiction. But
this too went nowhere. Half a year later Cantor wrote to Dedekind again,
asking him if he too was having difficulties with this—and adding that
friends in Berlin said the whole business was absurd, since obviously
two coordinates couldn’t be matched up with one.

Three years went by. Cantor married, pushed his thoughts forward
here and there, walked in the mountains—but this problem remained
like a rock in a river, deflecting its currents without suffering any appar-
ent erosion.

Then all at once, on June 20, 1877, he wrote to Dedekind that “despite
believing the opposite for years,” he had found a one-to-one correspon-
dence between the points of a square and those of an interval. “Je le vois
mais je ne le crois pas,” he added nine days later: I see it but I don’t believe
it. Why did he declare this to his German friend in French? Was it ironic
disarming, the way Beethoven called his most difficult and experimen-
tal efforts “Bagatelles”? Or was it meant to distance and elevate the rev-
elation? Could it have been a tip of the hat to Descartes’s staunch
separation of seeing from believing? Or must we leave this as Churchill
left Russia: a riddle wrapped in a mystery inside an enigma?

Once again you might reasonably expect that the correspondence
Cantor found (or made) after so much time and with so much effort
would be arcane almost to incomprehensibility, so that the marvel but
not the meaning would reach us, as it would a medieval congregation
listening to the Latin Mass. But his proof came from reaching backward
rather than ahead: back to the idea of interleaving that let us count the
integers, and back to a way of thinking so much younger than the
sophistications of arithmetic as to be almost nonmathematical. He asks
you to interleave the two coordinates of a point on the plane to find the
one and only point of the line it will correspond to! So our example,
( 0.3750, 0.9140286. . .), would go to the single decimal whose odd-num-
bered places are filled by the digits of 0.3750  and whose even-num-
bered places by those of the y-coordinate, 0.9140286 . . . :

( 0.3750,  0.9140286 . . .)
↓

0.397154000208060 . . .

(Notice that we need the bar on the 0 of the x-coordinate in order to
know that there will be only zeroes in all its decimal places from the
fourth on.)

The correspondence Cantor made works in both directions, since any
point in the interval (0, 1) will go to that point on the plane whose x-
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coordinate comes from the original point’s odd-numbered decimal
places, the y-coordinate from the even-numbered. So 0.29476583 corre-
sponds to the point with coordinates (0.2468, 0.9753).

Dedekind wrote back immediately, congratulating his friend, but
pointing out a technical problem which Cantor was later able to over-
come (see the Appendix for the difficulty and its resolution). Diagnostic
of the mathematician’s faith in pattern was Cantor’s postcard reply to
Dedekind on June 23: “Unfortunately your objection is correct; fortu-
nately it affects only the proof, not the conclusion.” Aren’t conclusions
supposed to follow from proofs? Not if seeing has now replaced believ-
ing, making you know you are right. Proofs, like coats, can always be cut
to fit your cloth. So in 1919, when Einstein received a telegram saying
that astronomical observations had confirmed his theory of relativity, a
doctoral student asked what he would have done had his predictions
been refuted? “In that case,” Einstein replied, “I’d have to feel sorry for
God, because the theory is correct.”

When Cantor published his revised proof, some—like the French
mathematician Paul Du Bois-Reymond—objected that it was “repug-
nant to common sense.” But Cantor had long since left the hearth of
common sense to watch the aurora borealis of a distant sky, and brave
were those both willing and able to follow him.

Since we know that (0, 1) ↔ R, Cantor’s proof meant that the cardinal-
ity of the square isn’t greater than but the same as that of the reals. And
larger open squares? As before, projection gives the 1–1 correspondence
between all their points and those of the open unit square:

As for the open unit square and the whole two-dimensional plane, or
R2, the cupping technique used in one dimension generalizes here:
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What then of all the points in three-dimensional space? Each such
point has three coordinates (length and width away from the origin
and height above it). Simply weave those three coordinates together in
a triple braid:

(0.a
1
a

2
a

3
a

4
. . ., 0.b

1
b

2
b

3
b

4
. . ., 0.c

1
c

2
c

3
c

4
. . .)

↓
(0.a

1
b

1
c

1
a

2
b

2
c

2
a

3
b

3
c

3
a

4
b

4
c

4
. . .) .

So all of three-dimensional space has the same cardinality as the line.
There are just as many points in the infinite universe as on the horizon-
tal bar of this t.

And what about the imaginable but ungraspable points of four-,
five-, . . . , n-dimensional space: you can weave the four, five, or n coor-
dinates of each of their points into a braid with the appropriate number
of plaits, to get the same 1–1 match-up with the points on a line. “How
many” has nothing to do with “how many dimensions.”

This revelation startled Cantor as much as it does us. He had found
two sizes of infinity, and as anyone who indulges in counting expects,
where there are two there must be many more. Yet if the mind and the
universe were divided, like Gaul, into three parts, he had conquered them
all: the finite, the countable, and the continuous. You see why we said
before that Cantor had done infinitely more than make sense of pairing
numbers with their squares.

If you pause now to ask how he won his insights, the answer must
surely involve a pioneer’s love of freedom more than comfort. Three
years of unrelenting work to prove the cardinality of the plane greater
than that of the line—then giving it up on the spot because it wasn’t
true. He had freed himself from one more tenet of common sense, thanks
to having already ruptured so many ligatures to traditional ways of think-
ing. Imagination is explosive—but if its explosions are to propel thought
forward, they need to be confined, as are the explosions in an engine’s
cylinder. The best restraints aren’t opinion but necessity: here, the need
to replace belief by proof. “Mathematics is freedom!” Cantor later pro-
claimed—and freedom is where “what if” meets “what then”.

You have probably come to terms with this about infinity: just when
you think there’s no more—there’s more. In looking to higher dimen-
sions for larger sizes, Cantor had turned in the wrong direction. What if
greater cardinalities lay hidden back in the fundamental notion of set
itself? He plunged into that mixture of doubting, defining, speculating,
inventing, experimenting, redefining, and suddenly seeing one’s work
from afar, eternally there but newly discovered, which is the artist’s in-
ferno and paradiso. He emerged with the alephs.
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For while a set is too primitive a notion to have any structure, with its
elements just rattling around in it like marbles in a box, there is a shred
of implicit architecture almost invisibly there too: the collection of its
subsets. So a set S with three elements—call them a, b, and c—

S = {a, b, c}

brings with it the single-member subsets {a}, {b}, and {c}, and the three
subsets with two elements each: {a, b}, {a, c}, {b, c}. Since a subset of S is
any set T all of whose members are also in S, we should by courtesy
include in this list Ø, the empty set (because, after all, whatever is in it is
certainly also in S); and the set S itself, since it fits this definition. These
last two subsets will remind you of the way definitions have stretched
before, as in calling a single dot • a triangular, square, or any n-gonal
number.

This set with three elements, then, has eight subsets:

Ø; {a}, {b}, {c}; {a, b}, {a, c}, {b, c}; {a, b, c}

1 3 3 1

and eight is greater than three.
Is it always true that a set has more subsets than it has elements? Let’s

step back before leaping forward. If S = {a, b} it has four subsets:

Ø; {a}, {b}; {a, b}

1 2 1

and if it has just one element, S = {a}, then it has two subsets:

Ø; {a}

1 1

Even the empty set, with no elements whatsoever, has one subset, namely,
the set itself:

Ø

1

(people bothered by thinking of the whole set as a subset of itself some-
times distinguish this courtesy case by calling all the others “proper
subsets”).
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If we put our results in order, what begins to take shape is the triangle
Pascal invented to count combinations (though it was Jia Xian’s triangle,
six centuries before it was Pascal’s—and al-Karaji’s before Jia’s . . .):

1

1 1

1 2 1

1 3 3 1
.
.

Here—if we call the top row row zero—the entries in the nth row add up
to the number of subsets of a set with n elements.

A set with four elements, S = {a, b, c, d}, will have 1 empty set, 4
subsets with a single element in each, 6 with two members each, 4 with
three, and the 1 “improper” subset with all the four elements:

1 4 6 4 1 = 16 subsets.

You notice that if a set has n elements it will have 2n subsets—and 2n is
always greater than n. You notice too that these are all the possible sub-
sets of S. If you made up a peculiar rule for picking out some of its
elements (such as choosing only those whose names begin with “v”), the
subset they form will already be one of those we have listed by number
of elements.

The pattern is beautiful in itself and spoke to Cantor in terms of car-
dinality: what he saw was that the cardinality of any finite set is less than
that of the set of its subsets. This new set he called the power set of S,
written P S, in honor of 2n, its cardinality.

If this were true of infinite sets, a cardinality greater than any he had
so far discovered would spring out, and a greater after that, and a yet
greater, forever: reviving the dream lost when spaces of higher dimen-
sion turned out to have the same cardinality as that of the real line. For
the power set P R of the reals—the set of all its subsets—would have
more things in it than the uncountable number of reals; and then the set
of all subsets of this new set P(P R), the power set of the power set of
the reals—would have more members still—world without end.

But why should the power set pattern continue for infinite sets—and
even if it were to do so, how could we ever know it? In the face of such
abstraction our capacities to prove seem (in the words of Daisy Ashford)
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as piffle before the wind. That Cantor in fact came up with a proof makes
you wonder again about how impersonal the works of mathematics are.
If the theorem is out there, is its proof out there too? Could anyone have
discovered it, is it part of our common heritage? Or is the proof and
what it establishes now a part of our thinking the way the Mona Lisa
is—but needn’t have been: necessary after the fact?

Once again Cantor approached his conjecture through a proof by
contradiction—and once again he used his diagonal idea, but now ethe-
realized to suit the unearthly remoteness of its subject. The spirit of
this diagonal came to haunt all of his subsequent work—and after him
became the controlling presence behind the foundations of modern
mathematics.

We have just seen that the number of subsets outraces the number of
elements in any finite set—but what if S were infinite? Well, assume that
S in fact has exactly as many subsets as it has elements. That means you
can make a 1–1 correspondence between them. Just as in the proof that
the reals were uncountable, we can’t specify beforehand what this corre-
spondence is, since the proof must work for any possible correspondence.
We are simply assuming that somehow each element of S matches up
with one and only one of the subsets of S, and likewise that each of these
subsets corresponds to a unique element of S. This will be true, we are
assuming, whether S has as many elements in it as do the naturals, or as
many as the reals—or in fact, has any cardinality whatever.

The empty set will appear in the list of subsets, of course, as will the
whole set S, and the “singleton” subsets each with only one element, the
subsets of all possible pairs, triples, and so on: they will all be there,
along with the subsets formed in any way at all.

Trying to imagine such a correspondence is more mind-expanding
than any drug in the hippie pharmacopoeia, but as a feeble help you
might picture part of such a list as looking like this:

Elements of S Elements of P S : The Set of All Subsets of S

f ↔ {g, j}
g ↔ Ø
h ↔ S
i ↔ {every element in S except i}
j ↔ {g, h, j, l}
k ↔ {k}
l ↔ {g}
. . .
. . .
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However the inventory is made, you will observe that an element of S
either is or is not matched up with a subset of S that contains it (this is
the same “diagonal” trope that lay behind the decimal made, in the ear-
lier proof, of 5s and 6s). In our example, h, j, and k are matched with
subsets containing them; f, g, i, and l aren’t.

Now, says Cantor, all the elements of S that aren’t in the subsets they
correspond to on this putative list constitute a subset of S! They must:
they form a collection drawn from the elements of S—and any such
collection (no matter by what clear rule it is made) is a subset of S. Call
this subset M. M must therefore appear somewhere on the list, matched
up with some element of S: call it w.

Elements of S Elements of P S : The Set of All Subsets of S

. . .

. . .
w ↔ M
. . .
. . .

w must be a member of M or not; there is no third possibility.
But if w is an element of M, then it is in the subset it is matched up

with. Yet M is the subset only of those elements in S that aren’t in the
subset to which they correspond. Hence w cannot be in M.

If it isn’t in M, however, it isn’t in the subset to which it corresponds
on this list—and so it must be in M!

This contradiction shows that M (which seems like a perfectly good
subset of S) isn’t anywhere in the supposed 1–1 correspondence; yet it
must be. That contradiction shows that such a correspondence is im-
possible, so the cardinality of PS can’t be the same as that of S. Since PS
contains at least as many subsets as there are elements in S (the singleton
subsets in PS are equinumerous with those elements), we can only con-
clude that the cardinality of PS is greater than that of S (with 2n in
mind, we could write the cardinality of PS as 2 cardinality of S).

∞

There are infinitely many counting numbers. There are yet more reals.
Now there are more subsets of the reals than reals themselves. Take this
new set PR: it begets a set with higher cardinality still—the set of all its
subsets—and this iteration won’t stop. Cantor had found new kinds of
numbers and now needed to learn how they behaved. Each larger num-
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ber is as perplexing as 7 is to the toddler who has just barely managed
to distinguish 2 from 1. Is the next cardinality after that of a set S the
size of its power set, PS, and P(PS) after that? Or are other infinite
multitudes sprawled everywhere here, like titans grappling with pri-
meval chaos?

Cantor’s first task was to put his infinite cardinals in order, saying
which was the least, which next—or to show that, like the fractions, none
had a next larger after it. To do this he turned away from his cardinal
numbers for more than a decade, working to find the calm mask of rea-
son behind their unreadable faces. He still, as ever, acted with character-
istic hubris.

Cardinal numbers tell us “how many”; ordinal numbers say where we
are in an ordered sequence. So 1 is the smallest ordinal (think of it as
“first”) and the next comes by adding to it the unit “1”, giving us 2 (“sec-
ond”). The ordinals now go on sequentially by adding a unit to the latest
one, making the third, fourth, and so on. It is a pleasant coincidence that
each natural number plays two roles: as a cardinal it tells us how many;
as an ordinal it tells us how far along the counting row we have come.
This coincidence may disappear when we come to infinite sets.

Cantor looked at the endless sequence of finite ordinals and gave it a
name: the last letter of the Greek alphabet, omega: ω. More than naming
it, he thought of ω as the first ordinal number after all of the finite ordi-
nals! Going in order he therefore counted: first, second, third . . . ωth—
or as he wrote with forgivable ambiguity:

1, 2, 3, . . . , ω

where ω comes after every finite ordinal. This is somewhat beyond the
wunnery tooery which came first for us. If you like, you may make his
notion a little less uncomfortable by thinking of ω as standing for the
natural order of the whole set of finite ordinal numbers. As such, it must
come next.

Why not apply the generative principle of adding units once again,
this time to ω, to get the next ordinal number, ω + 1? This is reminiscent
of the schoolyard exchange: “This is the gazillionth time I’ve won!”“Well,
it’s the gazillion and oneth time I’ve won!” “It’s the infinitieth time I’ve
won!”“Well, it’s the infinity and oneth time I’ve won!” ω + 1 is the ordi-
nal number of a sequence with all the natural numbers in it (arranged,
of course, in order), and then one element more—call it a fox or a cab-
bage or a goose, or simply “a”—which gets listed only after all the naturals:

1, 2, 3, . . . , fox
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or

1, 2, 3, . . . , a

(this means that you take “2” out of the box after you’ve taken out “1”,
and “3” after “2” and so on—and take out the fox, or “a”, only after you’ve
taken out all the natural numbers. The mind reels). If instead we put in
two extra elements, fox and goose or a

1
 and a

2
, after the natural numbers

(with the understanding that a
1
 < a

2
), then ω + 2 would be the ordinal

number of the new sequence

1, 2, 3, . . . , a
1
, a

2
.

We could go on like this—and Cantor did—getting in order the next
ordinals ω + 3, ω + 4, and so on—until we come to a sequence made by
inserting, after all the natural numbers, the elements a

1
, a

2
, a

3
, . . .—with

as many subscripts as there are natural numbers. The ordinal number of
this sequence

1, 2, 3, . . . , a
1
, a

2
, a

3
, . . .

would be ω + ω.
You notice that ω and ω + ω weren’t themselves formed by adding a

unit “1” to the ordinal immediately prior to each (since there wasn’t
one). What Cantor had done, really, was to bring in a second way of
making ordinals alongside the normal one of adding a unit to the last so
as to form the next. This second way took a great leap of the imagina-
tion—the very same leap that brought him to completed infinities. If
the line of all the finite ordinals could be thought of as coiled in a box,
then ω was the lid on this box. He spoke of ω in terms of limit, and from
this point of view the new ordinals may now seem more comfortable
still. ω is the limit which the finite ordinal numbers increase toward but
never reach (just as 1

2
, 2

3
, 3

4
, 4

5
, . . . approaches but never reaches 1). And

in fact, whenever there is no largest member in a succession of ordinal
numbers, “then a new number is created,” Cantor wrote, “which is
thought of as the limit of those numbers, i. e., it is defined as the next
number larger than all of them.” Surely one of the most understated
uses of “i. e.” on record.

Now he could play his two generative principles off against one an-
other to extend the ordinal numbers boundlessly beyond the finite into
what he called the Transfinite.
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1, 2, 3, . . . ω
ω + 1, ω + 2, ω + 3, . . . ω + ω
ω + ω + 1, ω + ω + 2, ω + ω + 3, . . . ω + ω + ω

.

.
ω · ω = ω2

ω3

.

.
ωω

.

.

.

But where are the cardinal numbers in all this splendor? We warned
you that once past the finite, the pleasing coincidence of ordinal and
cardinal might peter out—and it has. Every one of these infinite sequences
is countable: it can be put, that is, into a 1–1 correspondence with the
natural numbers! How can this be?

Take, for example, ω + 1, which is the next number in order after ω—
itself the first ordinal after the finite ordinals. ω + 1 therefore stands, as
you saw, for a set with all the natural numbers in it—and one element
more. But counting “how many” is no respecter of order, so we may
match up the elements in the sequence

1, 2, 3, . . . , a

with the counting numbers by starting with a:

Ordinal a 1 2 3 . . .

� � � �

Cardinal 1 2 3 4 . . .

The sequence whose ordinal number is ω + ω we could count this way:

Ordinal 1 2 3 . . . a
1

a
2

a
3
 . . .

� � � � � �

Cardinal 1 3 5 . . .  2  4  6 . . .

∞
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The reason for Cantor’s dozen-year digression into ordinal numbers
was to bring order to the cardinals. What he discovered was that the
whole set {ω, ω + 1, . . . , ω + ω, . . . , ω + ω + ω, . . . , ω2, . . . , ω3, . . . , ωω, . . .}
was not countable—and it was the first uncountable set after each of its
countable members (just as ω was the first countably infinite ordinal
after each of the finite ordinals 1, 2, 3, . . . ).

It was now that he reached for a name to distinguish these plateaus,
these sizes, of ordinal—

ω, ω + 1, ω + 2 . . .

•

•

•

4

3

2

and having used up the last Greek letter ω for them, he turned back for
these transfinite cardinals to the first letter of the Hebrew alphabet, aleph:
ℵ. As with everything he did, there were reasons behind the reasons for
his choice. Aleph, as he said, itself represented “one” in Hebrew, and
these new symbols marked a new beginning for his own work and for
mathematics. Was there also here a private nod toward what he took to
be the divine source of his inspiration? And was drawing from the lan-
guage of the Old Testament, after borrowing from the Greek of the New,
also a private acknowledgment of the Jewish background both of his
converted ancestors and of his own Lutheranism?

The smallest transfinite cardinal—the size of such sets as N (or of a
sequence like 1, 2, 3, . . . , a

1
, a

2
)—he called aleph null: ℵ

0
. The next—for

this ordinal substrate we have watched him rely on assured him that
there would be a next—was ℵ

1
: the size of the uncountable set {ω, ω + 1,

. . . , ωω. . .). The sequence of all these omegas Cantor denoted by an
upper-case omega: Ω. He then considered the sequence

Ω, Ω + 1, . . . , Ω + Ω, . . . , ΩΩ, . . .

This is the first sequence to have more than ℵ
1
 terms, so its cardinality is

ℵ
2
. Thus the Tower of Babel rises, calling forth on each new spiralled

ledge names incomprehensible on the lower levels: ℵ
3
, ℵ

4
, and so on.

Have you fully appreciated what “and so on” must mean? There will be
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an ℵω, and an ℵω+ω, and an ℵωω . . . How puny seem those infinitely large
and larger fleas of Chapter Two:

For at the gates that Cantor flung
Apart (and Hilbert later)
Angelic fleas cavort in hosts
Inordinately greater.

Once again Cantor’s faith in his ability to make sense of this new world
had been justified. Whenever he had needed an insight or a proof, his
inner voice had always accommodated. But supernatural helpers are
notoriously unreliable: as the fisherman’s wife in the fairy tale found
out, ask once too often and the earth will tremble, the sky darken, and
the sea run in mountainous black waves.

The first tremors that Cantor felt came from his colleagues. In France,
Poincaré grew disgusted with set theory, which he thought pathological:
he wrote that later generations would regard Cantor’s work as a disease
from which they had recovered. Closer to home, Kronecker, the most
powerful figure in the German mathematical establishment, had been
opposed to Cantor’s ideas from the beginning, calling the work humbug
and the man himself a charlatan and corrupter of youth. Kronecker tried
repeatedly to prevent the publication of Cantor’s papers, and his enmity
kept Cantor in provincial isolation. An intellect focused on the infinite
may overlook temporal indignities, but the psyche that intermediates
between the intellect and the world cannot, and Cantor wrote that pov-
erty and recrimination were the price he paid for his radical views. Math-
ematicians usually enjoy generalizing their observations, but seeing plots
everywhere brought Cantor suffering. He alienated some friends, discarded
others and had his first serious breakdown when he was thirty-nine.

It wasn’t just scurrying intrigue or furtive academic cabals that the
sky was darkening over, but the massive sliding and grinding of his
thought’s tectonic plates. When, a generation before, Schopenhauer
had been dragged through long and embarrassing legal battles after
throwing a seamstress down a flight of stairs, he consoled himself by
reflecting that he was, after all, the author of The World as Will and
Idea. But when Cantor looked at the world his will had created, he saw
coastlines eroding.

There were fissures here and there that others would fill in time, such
as proving that two sets have the same cardinality if and only if each is in
1–1 correspondence with a subset of the other. Cantor had to know such
criteria if he were to arrange the alephs in order. And there was a prob-
lem he hardly noticed but which grew to monstrous prominence: even
to show that ℵ

0
 (the size of the set of counting numbers) was the small-

est transfinite cardinal, an axiom was needed that sounds as innocent as
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the fisherman’s appeal to the flounder for a pretty cottage by the sea in-
stead of his hovel.

This Axiom of Choice asserts that given any collection of distinct, non-
empty sets, if you need to (as Cantor did), you can always choose an
element from each. It doesn’t tell you how to do this, but you can imag-
ine a jackdaw plucking a shiny trinket from each of a possibly infinite
row of boxes.*  The problem with the Axiom of Choice is that it lets the
Four Horsemen loose in the land: it allows an initiate, for example (by
an ingenious train of reasoning), to cut a golf ball into a finite number
of pieces and put them together again to make a globe as big as the sun.
Not only are its results an affront to intuition, but by not requiring us to
know how we do the choosing, it adds to the Formalist shift of math-
ematics sideways. No longer do we construct objects cleated to their lo-
cales, but now rest content (like Hilbert and the Hungarian) with the
bald assertion that they exist.

These commotions in the air were nothing compared to the moun-
tainous clash of the waters that threatened to drown his world. For the
whole point of propping up the cardinals on the ordinals was to find
how the cardinals were arranged. Yet in doing so he might only have
made a different sort of cardinal: those that corresponded to the ordinal
plateaus. What had these to do with the cardinals that arose from the
endless sequence of power sets? The problem is familiar: when Bombelli
had come up with his “new kinds” of imaginary numbers, like 3 2 1+ − ,
he had no guarantee that these were of the same species as a + bi.

Stubborn, God-driven, isolated, heir of Alcibiades, Cantor insisted
(proof came much later) that all transfinite cardinals were alephs—that
is, they measured some stage in the growth of ordinals. He proved that
the set of all subsets of N had the same cardinality as the set of the reals
(the continuum)—for a proof, see the Appendix—and then claimed that
this power set was the next aleph in order after ℵ

0
. This was his famous

Continuum Hypothesis: the cardinality of the continuum is ℵ
1
.

Everything began to come apart. The Continuum Hypothesis obsessed
him through recurrent breakdowns which took him in and out of sani-
toria and his university’s Nervenklinik. But the Continuum—for which
a gothic , as angular as his personality, has become the symbol—
resisted his best efforts.

Some mathematicians thought there might be many alephs between
ℵ

0
and the cardinality of . Others attacked the whole ordinal enter-

*So to prove that there could be no transfinite cardinal less than ℵ
0
, Cantor pictures any infinite

subset A of N and asks us to go steadily through N until we come to the first element of A; then
go through the subset of N made up of what’s left until you come to A’s second element—and so
on. This 1–1 match-up with the counting numbers shows that A has cardinality ℵ

0
also.
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prise: why must every infinite set have an aleph as its cardinal at all? And
of those that did, how did we know that any two could be compared in
terms of size? Jules König, renowned for his acuteness and reliability,
announced at an International Congress in Heidelberg that he had proved
the continuum had no aleph whatever corresponding to it. Cantor felt
publicly humiliated, and although within a day König’s proof was shown
to rest on faulty assumptions, there was no still center now left to Cantor’s
turnings. When some colleagues met a few days later at Wengen to dis-
cuss the events of the congress, Cantor burst into the dining room of
their hotel to explain excitedly to them—and everyone else at break-
fast—just what had been wrong with König’s proof.

∞

It takes an inhuman force of character to make the beds while your
house is falling down. At the same time that Cantor was trying desper-
ately and unsuccessfully to prove the Continuum Hypothesis (if his
theory couldn’t even locate the cardinality of the reals in the hierarchy
of the alephs, what good was it?), he went about the beginner’s business
of learning how to do arithmetic—but this time with transfinite cardi-
nal numbers: the most radical extension of the franchise we have seen.

ℵ
0
 + ℵ

0
 = ℵ

0
: the cardinality of the evens plus the cardinality of the

odds is the same as the cardinality of the naturals. In fact—shades of Thabit
ibn Qurra—any finite number of aleph nulls adds up to aleph null.

What was ℵ
0

2? Cantor knew the answer from the square array of the
rationals, which he had shown was countable: ℵ

0
 rows with ℵ

0
 entries

in each produced ℵ
0
. Since you could likewise zigzag your way through

a 3-dimensional array of rationals—or for that matter, an n-dimensional
array—ℵ

0
n = ℵ

0
. The size will increase when you move to the power set,

2ℵ0; or to the next ordinal plateau—if those moves were different.
The same laws of addition and multiplication hold for any of the alephs:

if k is any common ordinal, like 3 or 19—or even an infinite ordinal, like
ω—ℵ

k
 remains ℵ

k
 when added to or multiplied by itself any number of

times up to and including ℵ
k
. Did Cantor’s results come directly from his

intuition, or from an abstract play of forms? “Is a man to follow rules—or
rules to follow him?” asks Tristram Shandy, but assumes we know the an-
swer. Cantor replied with a passage from Sir Francis Bacon: “We do not
arbitrarily give laws to the intellect or to other things, but as faithful scribes
we receive and copy them from the revealed voice of Nature.”

This comes within an iota of the Intuitionist position that Brouwer
was soon to establish. Was the iota that separated them no more than a
different sense of “I”—Brouwer’s the creator of mathematical reality,
while Cantor (as he wrote to a friend in 1883) thought of himself as
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only a messenger, not the true discoverer of transfinite set theory? Yet no
two mathematicians could be more unlike, since Cantor establishes
existence on the basis of those proofs by contradiction that Brouwer
abhorred. No wonder Hilbert so warmly defended Cantor’s work: “No
one shall drive us from the Paradise that Cantor has created for us!”

But was Cantor a Formalist? He never presented his results in the for-
mal context of stripped-down deductions from axioms. His mathematics
isn’t about symbols that could mean this or that, but about what he saw as
real ideas in the divine intellect, and corporeal objects in the world. Com-
pleted infinities were, for him, actual, not like the formless and merely
potential apeiron of the Greeks. Hilbert purged mathematics of meaning;
Cantor flooded his mathematics with metaphysics and theology.

Was this dissonance in his approach like trying both to prove and
disprove a conjecture? Is his work the arena where revelation collides
with language? Or was it once more a question of masks behind masks?
For while the form of Formalism was absent from Cantor’s writing, we see
its spirit in his every line once we recall that this spirit is expressed by the
Great Converse described in Chapter Two: what is consistent must exist.

“Mathematics,” as Cantor had famously said, “is freedom!” But this
motto is as ambiguous as it is bold, since there is freedom from as well as
freedom of. For Cantor as for Hilbert, mathematics was free from con-
tradiction: the coherence of its parts in a consistent whole was all the
proof you needed that the whole existed. Should intuition give out (as it
does when we think about the higher alephs), proofs by contradiction
would take us to results purified of contradictions.

∞

A foolish consistency may be the hobgoblin of little minds, but con-
sistency itself of great ones. What if irreparable paradoxes were now to
open up in the fabric of Cantor’s work? Then the mountains would fall
and the sea roll over the land.

The melodiously named mathematician Cesare Burali-Forti, at the
Military Academy in Turin, discovered in 1897 a curious consequence
of the new set theory. Take the sequence of all the ordinal numbers. Since
this sequence is itself ordered, it must have an ordinal number—let’s
call it J. J would have to be greater than any of the ordinals in the se-
quence (it is their successor or limit)—yet these are all the ordinals, so J
must both be and not be among them. There this paradox squats, as
complete and immovable as the sphinx with its riddle. You can’t get under,
over, or around it.

The repercussions of Burali-Forti’s paradox were immediate, far-
reaching, and devastating. Nothing had been more certain than math-
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ematics; now, said a contemporary, nothing had become so uncertain.
The only certainty, surely, was that this blow would definitively topple
Cantor’s precarious mental balance. Far from it. He announced that he
had discovered this paradox two years before, and thought of it as a
positively beneficial result. In fact he added another to it: the set of all
sets—call it S—would, being a set, have a certain cardinality. But the set
of all its subsets, PS, would have a greater cardinality still. Since S is the
set of all sets, PS must be an element of it, so that a set of higher cardi-
nality would be contained in a set of lower cardinality.

You may think Cantor’s welcoming of the paradoxes was either bra-
vado in the face of defeat,

Thought shall be harder, heart the keener,
Courage the greater, as our might lessens

(as the Anglo-Saxon writer of the Battle of Maldon put it), or a sign in-
deed of breakdown. But there were always masks behind his masks. It is
telling that on the terrible day of public shame, when it seemed that
König had destroyed any hope for the Continuum Hypothesis, Cantor
thanked God for reproving him for his errors and at the same time as-
serted that König’s demonstration would be found erroneous.

Cornered by the paradoxes, Cantor’s thought twisted and turned them
seemingly to his advantage. He made out a new distinction between con-
sistent and inconsistent collections: only the former were sets; the latter
(such as the collection of all sets or of all the ordinals) were not. What-
ever they were, their existence at last let him prove (he wrote to Dedekind)
what he vitally needed to know: that sets could have no cardinality other
than the alephs. This meant that his two different ways of making larger
and larger sets—via power sets or via the cliffs, no-man-fathomed,
among the ordinals—coincided in what mattered: the way their size
was measured.

You will find the proof he sent to Dedekind in the Appendix. Con-
sider here, instead, the implications of his decision to use the very in-
consistency of collections that were “too large” in order to establish facts
about consistent collections—that is, about sets. These inconsistent
collections Cantor calls the absolutely infinite: it was the infinite that
God alone could know, as if our seeing it as inconsistent was a re-
proach to our feeble humanity for daring to extend its thought so far.*

*Doesn’t “the heaven of heavens” re-echo in the set of all sets? “But will God in very deed dwell
with men on the earth? Behold, the heaven of heavens cannot contain Thee; how much less this
house which I have built!” (2 Chron. 6:18). Awe, and its obverse, humility, give religion its end-
lessly ordinal impulse.
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The hierarchy of larger and larger infinities that Cantor had reported
on he called only Transfinite, precisely to distinguish such things that
humans could think of (approaches to the Throne) from what lay exclu-
sively in the mind of God.

Yet at the same time that Cantor’s piety and humility showed them-
selves in this distinction, he pushed his own thought past that brink to
make the absolutely infinite reveal new truths about the transfinite: to
guarantee the validity of his discoveries.

His leap upward from towering heights to bring back knowledge of
the lower structure has characterized subsequent work in set theory, a
century now and more after that moment. An active research program
strives to gain insight into very finite situations by invoking transfinite
numbers that dwarf even Cantor’s remoter alephs. There is the First In-
accessible Cardinal and after it, Hyper-Inaccessibles; then the First Mahlo
Cardinal (sounding more like a medieval grandee than a size past the
Hyper-Inaccessibles themselves). There are Cardinals Indescribable,
Huge, Supercompact; Rowbottom and (it may be) Ramsey Cardinals,
and then the Extendible and perhaps the Ineffable Cardinals, not to
mention those that are Inexpressible. Devising them isn’t only a game of
one-upmanship on a gigantic scale, but a serious attempt to prove im-
portant theorems which are unprovable without their condescending
help: fetching from afar carried to its logical extreme.

In the fairy tale the sky had turned as black as pitch and the fisher-
man had to shriek out to make the flounder hear that his wife now wanted
to be Lord of the Universe.

“Now she must go back to her old hovel,” said the flounder, “and
there she is!” So there they are to this very day.

In what passes for the real world, no one could make sense of Cantor’s
proof. Long after, Zermelo said of it that “the intuition of time is applied
here to a process that goes beyond all intuition, and a fictitious entity is
posited of which it is assumed that it could make successive arbitrary
choices”—over a span longer than time’s.

And now it wasn’t just that certain collections were simply too large
to be consistent: in 1907 Bertrand Russell showed that set theory gener-
ated paradoxes that hadn’t anything to do with alephs or ordinals at all.
He had found that legitimate ways of defining a set (via the properties
shared by its members) led to nonsense. Take, for example, the set of all
those sets which aren’t elements of themselves (an example of one of
those sets would be the set of all apples, which isn’t itself an apple). Is the
set of all such sets an element of itself? If it is, then (by its very defini-
tion) it isn’t; but if it isn’t, then (again by the way it is defined) it is.
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Sets were so intuitively clear when we began that we were happy to
reduce the mysteries of number to them. Now they have uncontrollably
swollen and multiplied, and which are consistent, which inconsistent,
and for whom? Their very nature has grown incoherent.

Cantor asked Dedekind how he thought of a set. Imagine them walk-
ing together in their beloved Harz mountains, where new and wonder-
ful vistas opened at every bend. Dedekind said that for him a set was a
closed bag with specific things in it which you couldn’t see and knew
nothing about, except that they were distinct and really there. A few
minutes passed. Cantor, immensely tall, flung out his arm toward the
wild landscape: “A set,” he said, “I think of as an abyss.”

∞

The question of infinity had brought mathematics to the edge of
uncertainty.

—Joseph Warren Dauben

Cantor struggled doggedly to prove his Continuum Hypothesis, that
the cardinality of the continuum was ℵ

1
. Elation alternated with longer

and longer depressions lit fitfully by promising strategies that one after
another flickered out. He was hospitalized again and again. Why had he
ever as a young man given up music for mathematics, he now wondered,
recalling the days when he had played the violin and formed his own
string quartet. Having broken with so many
of his colleagues over the years, he contin-
ued to thank his wife for each dinner she
provided and to ask her at its end whether
she still loved him.

He began to concern himself with the
Rosicrucians, and Theosophy, and Free-
masonry—and with proving that Shake-
speare’s plays had really been written by Sir
Francis Bacon. He hinted darkly that he had
made certain discoveries concerning the
first king of England “which will not fail to
terrify the English government as soon as
the matter is published.”

Form always seeks substance, and in do-
ing so begets ever more shadowy forms. Sets
behind numbers, inconsistent collections behind sets, ordinals behind
cardinals, the absolutely infinite behind the transfinite, his father’s voice

Cantor, a few months before
his death.
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in the background and a secret, divine voice behind that. . . . Cantor
published a pamphlet, “Ex Oriente Lux”, revealing that Christ was the
natural son of Joseph of Arimathea, and in this confusion of mask after
mask died, aged seventy-three, in 1918. His great work on set theory of
1883 was prefaced with three quotations, the last of which was, “The
time will come when these things which are now hidden from you will
be brought into the light.”

What has since been revealed about Cantor’s Continuum Hypothesis
is of a piece with this endless and endlessly surprising drama, shaped by
spiral returns to the earliest days of our story. Then, you recall, Hippasus
took the very means created by his teacher, Pythagoras, to undermine
the Pythagorean cosmos. His readiness to see askew what others had
looked at head-on led him to find in the diagonal of a square the ir-
rationals that now swarmed among the ratios which alone were sup-
posed to resound in the physical, mental, and moral order of things. It
was precisely Cantor’s daring diagonal which Kurt Gödel turned round
to prove that there were more true propositions than proofs: that in any
sufficiently rich formal system there would be statements which could
neither be proved nor refuted. Gödel’s own later work, and that of the
American logician Paul Cohen, then showed that the Continuum Hy-
pothesis was one of these statements. It wasn’t just that Cantor couldn’t
prove it; this time the difficulty did lie in the problem itself: no proof or
disproof lodged anywhere within the arcaded city of formal set theory.
It was forever undecidable.

Mathematics is permanent revolution. Gödel’s inevitably followed
from the radical mathematics invented by Cantor.

Revolutions still more remote appeared in the distance of this ex-
traordinary perspective. The mind seemed to grow giddy by look-
ing so far into the abyss of time . . . and we became sensible how
much further reason may sometimes go than the imagination can
dare to follow.

John Playfair wrote this at the beginning of the nineteenth century about
the Great Unconformity at Siccar Point, which the geologist James Hutton
had all at once seen as slanted layers of time, thus changing forever our
view of the earth’s evolution and ultimately ours. Cantor’s transfinite
arithmetic is this Unconformity on a universal scale. It has disrupted
our sedate understanding of the mind and its world, and from its frac-
ture a new understanding has yet fully to emerge. When it does—when
the doors of our perception are finally cleansed, as William Blake prom-
ised—then everything will appear as it is: infinite.

But which infinity will we see?
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1. [to page 45] An inductive proof that the sum of the first n
odd integers is n2.

To prove that 1 + 3 + 5 + . . . + (2n – 1) = n2

1. Prove that the statement is true for n = 1.
If n = 1, the only odd integer to consider is the first: 1. And is it true
that when n = 1, n2 = 1? Yes.

2. Assume the statement is true for n = k.
Easily done. Since when n = k the kth odd number is 2k – 1, we will
be assuming that

1 + 3 + 5 + . . . + (2k – 1) = k2 .

3. Now, using this assumption, prove that the statement is true for k’s
successor, k + 1.

Since the (k + 1)th odd number is 2 more than the kth odd number, we
know that it is 2k + 1. So we want to prove that

1 + 3 + 5 + . . . + (2k – 1) + (2k + 1) = (k + 1)2 .

But we know from our assumption in step 2 that everything on the left-
hand side up through (2k – 1) is equal to k2, so that all we have left to
prove is that

k2 + (2k + 1) = (k + 1)2 .
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Squaring the right-hand side gives us k2 + 2k + 1, so whipping the paren-
theses off the left-hand side reveals that we do indeed have our equality.

2. [to page 50] Models and consistency.

An accurate model will have the same structure as what it represents,
even if its size, appearance, and material are entirely different. So Hilbert’s
last broadcast words and his laugh at the end of them are faithfully
modelled by the bumps and dips of the grooves in the recording made
at the time.

Hilbert made inspired use of this simple idea. He borrowed or built
within Euclidean geometry an accurate model of each of its rivals. Hence,
if Euclidean geometry turned out to have no contradictions in it, nei-
ther could they. And then he showed how—as with Descartes’s coordi-
nate geometry—to make a model of Euclidean geometry within
arithmetic. Everything therefore now hinged on showing arithmetic to
be consistent.

You may wonder how a model could be made within Euclid’s of a
geometry that violated his parallel postulate—one in which there were
many parallels, for example, to a given line through a point not on it,
rather than one. The cleverness lay in thinking of familiar objects in
unfamiliar ways. Take the interior of a circle as this non-Euclidean
geometry’s whole two-dimensional universe, and some chord in it as
the “given line”. Through some point inside the circle but not on this
line there will be many chords that never within the circle intersect the
given one, and are therefore parallel to it—in this model.

As a step toward proving that the Peano axioms for arithmetic were
consistent, Hilbert proved that the field axioms on page 38 were. This
again he did by making an elegant little model of them. Since this mi-
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crocosm existed—there it was, right under the mathematical eye—and
nothing that exists can harbor a contradiction (nothing can both be and
not be in something that is), the field axioms had to be consistent.

This was his model. The only numbers it contained were 0 and 1, and
addition and multiplication were defined by the following tables (since
“addition” and “multiplication” are primitive terms, we can model them
as we will—so long as they still obey the axioms):

If you check you will see that this two-element universe satisfies all of
the field axioms.

Such a universe cannot, however, satisfy the more demanding Peano
Axioms (look at axiom 5). Hilbert’s vain attempts to model those turned
out not to be a personal but a formal failing, which was what Gödel
showed in 1931 (a logician named Post was in fact prior, but hadn’t pub-
lished his results): induction made it impossible to prove within such a
system that it was both consistent and complete—and that is pretty much
how things still stand.

It was ingenious to think of making models for a world that is gener-
ated by a set of axioms, in order to show that these models were ma-
chines that would go of themselves. It may lead you, however, to a curious
speculation. Aren’t the axioms supposed to catch the essence of what-
ever piece of mathematics they describe? If the real numbers, for ex-
ample, are truly real—part (or all!) of the one and only universe—how
could they have many models which are all but structurally different:
different in material, appearance, and even in their number of parts?
The one shown above comes from a crowd more numerous and motley
than any that surges through one’s minimalist imaginings. It is the
Schumann problem come back to haunt us: you feel the utter unique-
ness of your true, your subjective self (apprehended perhaps by intu-
ition), distinct from the body it happens to inhabit—a body whose form
(even to fine details) you share with billions of different members of our
species. If mathematics is formal through and through, then it will be
no surprise (only a disappointment) that it doesn’t pick out or point to
what really exists, in the sense of being uniquely distinct in time.

In an ancient tale from India, the gods—each eager to win the hand
of beautiful Damayanti

-
—turn themselves into perfect simulacra of Nala,

her human beloved, and stand in an endless row with him in their midst.
She may marry him only if she can single him out from the models. This
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she does in an instant, since his feet alone touch the earth. No formal
incarnation of an axiom system seems to be similarly grounded. True to
its Romantic origins, Formalism lets loose doubles and doppelgängers,
mimics and masks, in a fun-house of distorted reflections.

If rather than being formal itself, mathematics is about form—about
the unique patterns into which relations must fall—then any approach
to it that blurs this uniqueness must be at best a sort of scaffolding
trundled up by one of the blind sages against some part of the elephant—
the combinatorial play of too few assertions launched against the world’s
endless subtlety.

That laugh of Hilbert’s happened at an instant of time. Models of it
may soon make their way to you, via http://topo.math.u-psud.fr/~lcs/
Hilbert/HlbrtKD.htm.
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1. [to page 56] Proofs of some fundamental propositions.

We’ll prove that 0 is the only additive identity. The proofs of the other
statements have the same form.

Assume, as now seems the natural way to begin, that there is another
additive identity—call it ö. Then ö + a = a and 0 + a = a also.
Hence ö + a = 0 + a.

Now add –a to both sides of the equation:

(ö + a ) + –a = (0 + a) + –a .

Group together the second and third terms (by Associativity):

ö + (a + –a) = 0 + (a + –a)

and a + –a = 0 by the Additive Inverse Axiom, giving us

ö + 0 = 0 + 0 .

By the Additive Identity Axiom, this becomes

ö = 0 ,

so ö was just 0 wearing a mask.

http://topo.math.u-psud.fr/~lcs/Hilbert/HlbrtKD.htm
http://topo.math.u-psud.fr/~lcs/Hilbert/HlbrtKD.htm
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2. [to page 58] A more rigorous proof that a negative times a
positive is negative.

Put (–a) · b in a helpful context:

(–a) · b + a · b = b · (–a + a)

by the Commutative and then the Distributive Axiom. But b · (–a + a) is
b · 0, which we now know is 0. So

(–a) · b + a · b = 0 .

This means that (–a) · b is the additive inverse of a · b. But the additive
inverse of a · b is –(a · b): hence,

(–a) · b = –(a · b) ,

since each number has a unique inverse. This brief whirl around the
floor brings us to the conclusion that a negative times a positive is
negative.

3. [to page 59] A visual proof that a negative times a negative
is positive.

The following visual proof that (–a)(–b) = ab relies on the properties of
similar triangles we spoke of on page 15, when we showed how to think
of multiplication visually on the Euclidean plane. Here, however, the
picture lies on the somewhat more artificial coordinate plane, where
negative numbers are represented by horizontal lengths in the second
and third quadrants and vertical lengths in the third and fourth.
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Lay off a line of length 1 on the x-axis, from (0, 0) to (1, 0), and call
the end-points O and R. Now draw a perpendicular from R down into
the fourth quadrant, ending at S, representing the number –a; and on
the x-axis, from O leftward to T, lay off a segment representing –b.

Draw a line through S and O upward into the second quadrant, meet-
ing the perpendicular from T at U. Since ∆ORS ~ ∆OTU, TU

b−  = a

1

− , so
that TU = (–a)(–b), but is positive, since it is a vertical in the second
quadrant.

4. [to page 67] Factors of terms in the sequence 2, 5, 8, 11, 14, . . .

To ask about which primes are in the sequence

2, 5, 8, 11, 14, 17, . . .

means asking about what factors each term in it could have. The choices
can only have the form 3n – 1, 3n, or 3n + 1. The factors of any term here
couldn’t all have the form 3n, because if you multiply such numbers
together you would get another of the form 3n, not 3n – 1:

3a · 3b · 3c = (27 · abc) = 3 · (9abc) .

Nor could the factors all be of the form 3n + 1, because

3a + 1
× 3b + 1

9ab + 3b+ 3a + 1
= 3(3ab + b + a) + 1,

which is another number of the form 3n + 1. Were some factors of the
form 3n and the rest 3n + 1, their product would again be of the form
3n. We have found, therefore, that since the numbers in our sequence
have the form 3n – 1, at least one of the prime factors of any number in
our sequence must have the form 3n – 1.

5. [to page 70] e and its logarithm.

Some functions may never stop growing, but grow at different rates from
one another. Among the rapid risers are the exponential functions, where
the variable is used as an exponent, like f(x) = 10x: as x increases, the
output of 10x rockets away. Here are 2x and 3x; try graphing 10x yourself,
and be daring about which values for x you use as inputs: your calcula-
tor will let x take on any real value, not just integers.
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As you can see, 3x rises more steeply than 2x: it grows more rapidly. Be-
tween 2 and 3 lies a remarkable number, named e by Euler in 1728 (e is
irrational, and is approximately 2.718281828459045. . .), which has the
important property that ex grows at precisely the rate, for any x, of the
function’s output at that x. While with all such exponential functions the
more you have, the more you get; with ex how much you have is exactly
how fast you grow. Since this so well describes organic growth, f(x) = ex

shows up everywhere in the biological world, from the growth of cells to
the growth of animal populations. Its graph looks like this:

The output of f(x) = ex tells you how big ex is for a given input x.
What if you wanted to answer, however, the paired question: what x must
I put in to get a certain output from this function? This is answered by
its paired function, g(x) = ln x (which stands for “the logarithm, with
base e, of x”: ponderous name for a svelte idea).

Since you need to raise e to about 2.30258. . . to get 10 (so f(2.30258)
= e2.30258 ≈ 10, where “≈” means “is approximately”), we would say:

ln 10 ≈ 2.30258
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The graph of this “natural logarithm” function is the mirror-image of
the graph of f(x) = ex,

where the mirror is the line slanted at 45° between them: the line y = x
(because we’re exchanging the roles of input and output; and since
this line is where they are equal, the two graphs will be symmetrical
around it):

Not the least surprising thing about the relevance of ex and ln x to the
world of primes is this importing of the organic into what seemed me-
chanical. Are the two more intercalated than we supposed, the distinc-
tion between them as artificial as that between the animal and vegetable
kingdoms has turned out to be?

��������	
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1. [to page 98] The series of reciprocals of primes.

Euler’s proof that this series in fact diverges makes use of sophisticated
techniques. We will follow instead a delightful proof from 1966 by James
Clarkson.
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The effort it will take here and there, and the overall pull, can only
strengthen your muscles for mathematics. Since the chief difficulty will
be keeping the gist of the proof in focus at times when the point of
particular moves isn’t clear, patience is at a premium. It will also help to
step back from it now and then and review in your mind what has al-
ready happened and what the grand design is. As Brouwer knew, most
mathematics is done with the eyes closed—or as people in math librar-
ies can tell you, when someone is staring at a book, he isn’t doing math-
ematics; when he is staring at the ceiling, he is.

You know from Chapter Two that every natural number n has a mul-
tiplicative inverse, 1

n
, also called its reciprocal. The series we want to

consider is the sum of the reciprocals of all the primes:

1

2
 + 

1

3
 + 

1

5
 + 

1

7
 + 

1

11
 + 

1

13
 + 

1

17
 + . . .

Since 2 is the first prime, let’s call it p
1
. 3 is the second prime, p

2
; p

3
 =

5, p
4
 = 7, and so on. The subscripts correspond to the order the primes

come up in. We can therefore write:

1

1

p
 + 

2

1

p
 + 

3

1

p
 + 

4

1

p
 + . . .

It will be handy to abbreviate this infinite sum by a concise symbol,
since we will have much to do with it. The pleasant convention is to use
the upper-case Greek sigma, Σ, for “sum”, followed by what it is a sum
of—in this case—

1

pi
, where that index i runs from 1 through all the

natural numbers:

1
 .

p
i

∑

To show that i begins at 1 and goes on to infinity, we decorate Σ with i =
1 below and ∞ above, so that

i 1
i 1 2 3

1 1 1 1 1 1 1 1
 means  . . . i.e.,  . . .  .

p p p p 2 3 5 7

∞

=

 + + + + + + +∑   

Clarkson’s strategy is to assume that this sum converges and then to
get a contradiction: namely, that another series which we know diverges
would then have to converge too. That other series is based on the har-
monic series:

1

1
 + 

1

2
 + 

1

3
 + 

1

4
 + . . .
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(which we can now abbreviate 1

nn 1

∞
∑
=

). We saw on page 95 that this series
diverges.

A clever tactic Clarkson uses depends on noticing that a divergent
series multiplied by a positive fraction still diverges: since 1

nn 1

∞
∑
=

 grows
greater than any particular number, so will a third or a fourth of it, or 1

A

times it (where A is some positive constant), that is,

n 1

1 1
 diverges too.

A n

∞

=
∑

Since “
1 1

A nn 1

∞
∑
= ” means 1

A
 multiplied by each of the terms in the series, we

can write it as:

n 1

1 1 1 1 1
 . . .

A n A 2A 3A

∞

=
= + + +∑

The trick is to find the right A which will tie the reciprocals of primes to
the terms of the harmonic series. Here he makes use of a very nice idea.
If you have two fractions, like 1

5
 and 1

11
, the new fraction 1

5 11�
 = ( 1

5
)( 1

11
)

will be less than ( 1

5
 + 1

11
)2, because

2 2 2
1 1 1 1 1 1

2  .
5 11 5 5 11 11

        + = + ⋅ +                

In the same way, given three fractions, say 
8

1

p ,
13

1

p , and 
19

1

p , p p p8 13 19

1

� �  <
(

8

1

p  + 
13

1

p  + 
19

1

p )3, since p p p8 13 19

1

� � will be among the terms that arise from
cubing the sum of those three fractions.

In fact, and for the same reason, if you have r different fractions 
1

1

n ,

2

1

n ,
3

1

n , . . . , 
1

nr
, then

 
< + + + ⋅ ⋅ ⋅ ⋅  

r

1 2 3 r 1 2 3 r

1 1 1 1 1
 . . . +  .

n n n  . . . n n n n n

1 2 3 r

1

n n n  . . . n� � � �  will be even less, of course, than that sum plus a great
many more fractions, raised to the power r. So for example 

8 13 19

1

p p p� �  will
be very much less than the sum of all the reciprocals of primes from the
eighth prime on, cubed:

3

8 13 19 8 9 10 13 19

1 1 1 1 1 1
 . . . +  . . . +  . . .  .

p p p p p p p p

 
< + + + + + ⋅ ⋅  

This idea is one of the two sticks Clarkson will rub together to spark
into existence that A he needs.
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The other stick is this. If 
1

pii 1

∞
∑
=  converges (as we are assuming), then its

limit—its total sum—will be a certain number L. As the terms of the
series add up, their sum will get closer and closer to L—and as it does, it
will grow to within 1 of that limit, and then to within 1

2
 of it. In other

words (and this is what he is after), there will be some prime—the kth
along the way, p

k
—such that

k

i 1
i 1 2 3 k

1 1 1 1 1
 . . . +

p p p p p=
= + + +∑

will be less than 1

2
 away from L:

1 2 3 k

1 1 1 1
 . . . 

p p p p
+ + + +

L –
1

2
L

This means that the sum of all the rest of the terms, from the next one,
1

pk 1+
 on, will add up to less than 1

2
:

i k 1
i k 1 k 2

1 1 1 1
 . . . <  .

p p p 2

∞

= + + +

= + +∑

Why choose 1

2
? Why does 1

2
 matter? Because Clarkson has in the back

of his mind something else that we discovered in Chapter Four:

t

t 1

1 1 1 1
 . . .

2 2 4 8

∞

=

  = + + +∑  

converges (in fact, it converges to 1: see page 90).
Now we can start to rub his two sticks together. The first task is to

find that A we need.
Assuming that 

1

pii 1

∞
∑
=  converges meant that there would be a k such

that 1

pi k 1 i

∞
∑

= +  < 1

2
. Well, take those first k primes and multiply them to-

gether—let’s call their product Q:

p
1

· p
2

· . . . · p
k
 = Q .

Since every one of these k primes is a factor of Q, it is a factor as well of
nQ, where n is any positive integer. This means that none of the first k
primes can be a factor of 1 + nQ (for if it were, it would have to be a
factor of 1 as well, which is impossible—an echo of Euclid’s proof that
there is no last prime).

• •--
--

-
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So the factors of 1 + nQ must lie among the primes beyond p
k
: among

p
k+1

, p
k+2

, and so on. In other words, 1 + nQ, for each integer n, is a
product of primes of the form p

k+m
 (where m is an integer ≥ 1).

If, for a particular n, 1 + nQ is a product of s different primes of this
form,

k a k b k s1 nQ P p  . . . p

s of these
+ + ++ = ⋅ ⋅ ⋅���������

then

k a k b k s

1 1
 .

(1 nQ) (p p  . . . p )+ + +

=
+ ⋅ ⋅ ⋅

Does this look familiar? Yes; we saw something very much like it on
page 272, where we found (in terms of r different numbers n

1
, n

2
, . . . , n

r
)

what we could here express in terms of s different primes p
k+a

, p
k+b

, . . . ,p
k+s

:

S

k a k b k s k a k b k s

1 1 1 1
 . . . .

p p  . . . p p p p+ + + + + +

 
< + + + ⋅ ⋅ ⋅  

As we said before, this will be even less than the sum of all the recip-
rocals of primes from 

1

pk 1+
 on, that sum raised to the power s:

S

k a k b k s k a k b k s

1 1 1 1 1
 . . . +

(1 nQ) (p p  . . . p ) p p p+ + + + + +

 
= < + + < + ⋅ ⋅ ⋅  

S

k 1 k 2

1 1
 . . .  .

p p+ +

 
+ + 

 

This gives us the A we want: let A = 1 + Q. For then watch what hap-
pens (keep in mind that if x > y then 1

x
 < 

1

y ): if 1

A
 = 1

(1 Q)+ , then

n 1

1 1 1 1 1
 . . .

A n A 2A 3A

∞

=
= + + +∑

1 1 1
 . . .

(1 Q) (2 2Q) (3 3Q)
= + + +

+ + +
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But 2 + 2Q > 1 + 2Q and 3 + 3Q > 1 + 3Q—in fact,

1 1
n nQ 1 nQ  so   ,

(n+nQ) (1 nQ)
+ ≥ + ≤

+
1 1

i.e.,  
(1+nQ) (n nQ)

≥
+

(with equality only when n = 1), so

1 1

(1+Q) (1 Q)
=

+
1 1

(1+2Q) (2 2Q)
>

+

1 1

(1+3Q) (3 3Q)
>

+

 .
 .
 .

Adding them all up,

n 1 n 1 n 1

1 1 1 1
 .

1 nQ n nQ 1 Q n

∞ ∞ ∞

= = =

 > =∑ ∑ ∑ + + + 
↑

the harmonic series

We know that the harmonic series diverges. We know that this diver-
gent series times a constant, 1

(1 Q)+ , still diverges. Now we have another
series, 

n 1

1

(1 nQ)

∞

=
∑

+ , which is term by term greater than that divergent series—
so it must diverge too. That is, if we assume that our series 

i 1 i

1

p

∞

=
∑  con-

verges (so that Q exists), the series 
n 1

1

(1 nQ)

∞

=
∑

+  must diverge.
We will quickly show, however (again using our assumption), that

n 1

1

(1 nQ)

∞

=
∑

+ can’t diverge: it must converge—and this will be the desired con-
tradiction.

Why must 
n 1

1

(1 nQ)

∞

=
∑

+  converge? Look first at all n for which 1 + nQ has
only one factor among the primes which are greater than p

k
. For each of

those n’s, 
v

1 1

1 nQ p
=

+  for some prime p
v
 > p

k
. So if we add together all such

cases (even if there are infinitely many of them) n
1
, n

2
, . . . , each with its

separate p
v
, p

w
, . . . , we’ll get

1 2 v w k 1

1 1 1 1 1 1
 . . .  . . .  . . . <

(1 n Q) (1 n Q) p p p 2+

+ + = + + ≤ +
+ +

(by our definition).
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Now look at all those n for which 1+ nQ has two prime factors, each
greater than p

k
. For each of these, 

1 1

(1 nQ) p pv w
=+  for some p

v
 and p

w
. Add-

ing them all together,
2 2

1 2 v w x y k 1

1 1 1 1 1 1
 . . .  . . .  . . .

(1 n Q) (1 n Q) p p p p p 2+

   + + = + + ≤ + <   + +   

(for each 
1

p pv w
 comes up somewhere in that squared term).

The n’s for which 1 + nQ has three prime factors will give us
3 3

1 2 v w x y z r k 1

1 1 1 1 1 1
 . . .  . . .  . . .

(1 n Q) (1 n Q) p p p p p p p 2+

   + + = + + ≤ + <   + +   

and so on.
If we now add up all these 

1

(1 nQ)+ , for every possible n, we will get
some < 1

2
, some < 

21

2
 
  

, others < 31

2
 
  

, still others < 
41

2
 
  

, and so on, so that

n 1 t 1

t
1 1

 ,
1 nQ 2

∞ ∞

= =

 <∑ ∑ +  

and that right-hand sum, remember, converges. But a series with no nega-
tive terms and less than a convergent series must converge too—hence

n 1

1

(1 nQ)

∞

=
∑

+  both converges and diverges! This is the contradiction we sought,
which proves that the sum of the reciprocals of the primes diverges.

This wonderfully acrobatic proof tells us something else: the number
of primes is infinite. For were there only a finite number, this series would
have to converge. It also reminds us not only that dealing with primes is
always difficult, but that there is no problem that cannot be solved.

��������	
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1. [to page 108] Why the circumcenter of a right triangle is the
midpoint of the hypotenuse.

1. Drop a perpendicular from the midpoint, D, of the hypotenuse,
meeting the opposite side at E.

2. Since ∆ABC ~ ∆DEC, and the ratio of similitude is 2:1, CE is half
of CB—that is, CE = EB.
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3. Draw DB. Then (by SAS) ∆DEB ≅ ∆DEC, so DB = DC.
4. Since CD = AD, D is equidistant from A, B, and C; hence, D is the

circumcenter.

2. [to page 112] Why every triangle has a centroid.

Theorem: If in a triangle ABC two mass-balancing knife-edges AD and
BE intersect at a point O, then every mass-balancing knife-edge passes
through O, the centroid.

Proof:

1. Number the four regions into which these lines divide the tri-
angle 1, 2, 3, and 4. We will now use these numbers to stand for
the masses of their regions.

2. Since the median AD divides the triangle into two equal masses,
1 + 3 = 2 + 4.

3. Likewise, since BE is a median, 1 + 2 = 3 + 4.
4. So 1 + 2 = 3 + 4

4 + 2 = 3 + 1

1 – 4 = 4 – 1 ,
5. hence 1 = 4 and 2 = 3.
6. Now assume there is a mass-balancing knife-edge k that doesn’t

pass through O. Several situations are possible, of which we show
one (proofs for the others are similar). Here k meets AB at Q, AD
at a point P between A and O, AC at R.
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7. k creates regions 5 and 6, as shown, leaving region 1 – 5 and 2 – 6
below them.

8. Since k is mass-balancing, 5 + 6 = 1 – 5 + 3 + 2 – 6 + 4.
9. After the appropriate subtractions and substitutions, from step

5, 2(5 + 6) = 2(1 + 2);
10. That is, 5 + 6 = 1 + 2.
11. But this is impossible, since 5 + 6 is a proper part of 1 + 2. There-

fore k passes through O.

Corollary: Since this theorem is true for every mass-balancing line, it is
true for the median from C; hence the three medians coincide at the
centroid O.

3. [to page 124] The nine-point circle, with the new tenth point on it.

This point P is where the three Euler lines (marked “e ∆KLC”, etc.) of
their relevant triangles concur.

4. [to page 130] A proof that there is no shortest path in
an obtuse triangle.

We first need an auxiliary theorem, often called a lemma. This one was
devised by the ingenious Jim Tanton.

Lemma : If in ∆ABC, with ∠B > 90°, there is a shortest path XYZ, then
this path meets and leaves each side at equal angles.
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Proof:

1. Reflect XZ in AC to ZX′ and draw XX′, meeting AC at T.
2. ∆XZT ≅ ∆X′ZT (SSS), so ∠1 = ∠2.
3. Likewise reflect XY in AB to YX″. X″Y = XY (from congruent tri-

angles, as in step 2).
4. If XYZX is shortest, then X″YZX′ is shortest, and hence is a  straight

line, so ∠2 = ∠3.
5. Then by transitivity, ∠1 = ∠3, as desired.

The same argument applies to the other sides.

Theorem: There is no shortest path in an obtuse triangle.

Proof:

1. For any candidate XYZ the angles (by our lemma) would be as
lettered, and since

2. ∠a + ∠b + ∠c = 180°
∠a + ∠y + ∠z = 180°

∠x + ∠b + ∠y = 180°
∠x + ∠c + ∠z = 180°

2(∠a + ∠x + ∠b + ∠y + ∠c + ∠z ) = 720° .
3. And since ∠a + ∠b + ∠c = 180°, ∠x + ∠y + ∠z = 180°.
4. But ∠b > 90°, so ∠x + ∠y < 90°, hence ∠z > 90°, and at vertex Z,

2(∠z) > 180°, which is impossible.

Hence there is no shortest path in an obtuse triangle.

5. [to page 130] The Fermat Point.

Here is that promised marvel of an example. The question itself seems
innocent enough—a twin of the one at the end of Chapter Five. Is there
a point P in a triangle such that the sum of its distances to the three
vertices A, B, and C is minimal?
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We want to minimize, that is, the sum of PA, PB, and PC, as anyone
would who wanted to lay pipes most economically from a central pump-
ing station to three consumers. Having learned our lesson, we will be
more cautious this time and consider both acute and obtuse representa-
tive triangles.

Shortest distance—straight line. Like an apprentice chess player, we
are beginning to recognize the combinations. Remembering the gambit
of false position, we let P be any point. But now what? Extending PA, PB,
and PC their own lengths to new points X, Y, and Z gives a triangle simi-
lar to ∆ABC, which is simply our old problem drawn larger.

We need a zigzag line made up of segments equal to PA, PB, and PC, so
that when we pull it taut, P will pop into the right place.

Perhaps thoughts like these went through Pierre de Fermat’s mind
when in the mid-seventeenth century he started work on this problem
between his law cases. They may also have struck J. E. Hofmann three
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centuries later when he came up with a solution (Torricelli, to whom
Fermat had sent the problem, devised a different one around 1640 or so,
as have others since). But how can we possibly reconstruct the steps that
led him to look at ∆APC and rotate it 60° counterclockwise around A, to
make the new ∆AP′C′?

We’ll try to retrieve his insight by thinking backwards while following
his steps forward. He next draws P′P (ah—part of the broken line that
will eventually be straightened) and notes that, since AP′ is just AP swiv-
elled through 60°, AP′ = AP.
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He knew the early theorem in Euclid—another result that Thales may
first have seen—that if two sides of a triangle are equal, so are the angles
opposite them:

Euclid’s proof involves a construction sufficiently difficult for begin-
ners, and looking enough like a trestle bridge, to have earned the title
pons asinorum: if you can cross it, you are a fool no longer. Six centuries
later another Alexandrian, Pappus, came up with a proof so elegantly
simple that you may wonder if it is a proof at all. Since SR = TR, ∠R =
∠R, and TR = SR, ∆SRT ≅ ∆TRS by SAS. Hence the corresponding
parts are equal, among them ∠S = ∠T. Is this one-liner a joke or a
proof that deserves to be in The Book? Notice that Pappus didn’t prove
a triangle congruent to itself—rather, two different triangles inhabit-
ing the same body.

Here, then, since AP = AP′, the base angles of ∆AP′P are equal: ∠AP′P
= ∠APP′. Each is therefore (180 60 )

2

°− °  = 60°, and ∆AP′P is equilateral: all its
angles and all its sides are equal. That means AP also equals P′P—and
now we see what Hofmann was up to: that mysterious 60° rotation was
just to achieve this equality! (How could the Formalist account possibly
include this feel for the lay of the land, which leads to discovery?)

For Hofmann was interested in minimizing the sum of three lengths:
AP + PB + CP. But AP = P′P, PB is equal to itself, and CP is equal to C′P′,
since it was rotated into it by our 60° swing. So AP + PB + CP = PP′ +PB
+ C′P′, or, to put those in a more useful order,

C′P′ + P′P + PB .

That crooked line, C′P′PB, is the one he wants to straighten. It will be
straight when the angles at P′ and P are: that is, when ∠C′P′P and ∠P′PB
are each 180°. We know part of each of these angles: ∠AP′P is 60° and so
is ∠P′PA; so the remaining angles—∠C′P′A and ∠APB—each have to
be 120°. But ∠C′P′A = ∠APC (the first is just the second rotated). This
means that back in our original ∆ABC, the angles around P made by PA,
PB, and PC are each 120°!

The point P, then, from which the sum of the distances to the triangle’s
three vertices is least, is the point from which those three lines meet in
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pairs at 120° angles. You might think of the lines from P to vertices A, B,
and C as being elastic cords, and as you move P around (with the cords
lengthening and shortening) the angles around it change too; and you
stop when they are all equal.

You may find this vaguely disappointing, because it doesn’t really tell
you how to find P. A beautiful solution, however, is hiding just around
the diagram’s corner. Look at it again

and draw in one more line: C′C.
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Why? Because wonderfully enough, ∆AC′C is equilateral too: AC′ is
just AC rotated, so AC′ = AC, hence the angles ∠AC′C and ∠ACC′ are
equal—and since the hinge angle ∠C′AC is 60°, each of these is (180 60 )

2

°− °

= 60°. We know we have our point P when C′, P′, P, and B are collinear;
so if we simply construct an equilateral triangle on side AC, with new
vertex C′, and then connect C′ and B, P must lie somewhere on this
line.

And now we have an endgame like that in Fagnano’s Problem: there
was nothing special about side AC, so build an equilateral triangle on
another side of ∆ABC, such as BC, with vertex A′:

P must lie on A′A also—so where A′A and C′B cross is the P we want,
called the Fermat Point.

This very surprising simplification came from the previous hard work,
the way a finished building emerges from its scaffolding. At least we were
careful this time to test what we did on a representative obtuse as well as
acute triangle—but were we careful enough, or has the Protean nature
of things once again caught us off guard? Were those triangles sufficiently
representative? Let’s look at a very obtuse triangle, such as this:

If we make our construction, we see that
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P has escaped! Our construction fails when an angle of our triangle is
greater than or equal to 120°. When that happens, we must make do
with the vertex A as the Fermat Point: one of those solutions that—like
altitude AF in Fagnano’s Problem or (back in Chapter One) calling a single
dot a triangular or square number—pushes the envelope of definition.

��������	
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1. [to page 140] Solving quadratic equations.

(a) Completing the square.

Our first method is called “completing the square”. Starting from

0 = t2 + t – 1 ,

just for the sake of neatness store all the terms with unknowns on one
side of the equation, the known quantities on the other:

t2 + t = 1 .

Were that left-hand side less messy—were it something squared—then
we could take the square root of both sides and be just about done.
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Well, says the voice of Alcibiades, make it so: add whatever is needed
to t2 + t so that it becomes some expression squared. This is where algebra’s
stored up experience with factoring quadratics pays off. If you add 1

4
*

to t2 + t, you get t2 + t + 1

4
, which is 

2
1

2
t 

 +
 

.
But Alcibiades! You can’t arbitrarily add something on to an expres-

sion—that changes its value!
You can, he answers, if you have an equation, as we do here. You keep

the see-saw balanced by adding the same 1

4
 to the other side: the

mathematician’s twitchiness about asymmetry once more soothed.

t2 + t + 
1

4
 = 1 + 

1

4
 .

Our original equation t2 + t = 1 has now turned into the equivalent
2

1 5
t  .

2 4
 + =  

Now we can take the square root of both sides (since that was the reason
for all these gymnastics) and we’ll consider only the positive square root,
since lengths can’t be negative. We get

1 5
t

2 4
+ =

which simplifies to

1 5
t  .

2 2
+ =

Hence

1 5
t  .

2 2
= − +

More simply,

1 5
t

2

− +=

or, if you like your numbers arranged so that you can see in order the
geometric operations that will happen to them:

5 1
t  .

2

−=

*How did the algebraist come up with 1/4? He needed some number w so that (t + w)2 = t2 + 2wt
+ w2 would in fact yield t2 + t + some number: that is, 2w must be 1 (the coefficient of t), so w
must be 

1

2
; and 

21

2

 
 
 

 = 
1

4
. A choice instance of moving forward by thinking backward.
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(b) The Quadratic Formula, which formalizes the technique of
completing the square.

To solve for x in ax2 + bx + c = 0, we have to keep freeing x from its
various bonds (other numbers added to and multiplied by it, and being
squared).

Begin by subtracting the constant c from both sides:

ax2 + bx = –c.

To keep things as simple as possible, divide by a:

2 b c
x x  .

a a

− + ⋅ =  

Now ask yourself (as in the first approach) what needs to be added to
the left side of this equation in order to turn it into a perfect square. This
is the key piece of the puzzle, because finding it will allow us to take the
square root of both sides and so free x from its exponent. Those who
found it, like Bh�skara (in twelfth-century India), are immortalized in
the mathematical Pantheon. With some trial and error—or insight—
you come up with 

2

2

b

4a
: for then

22
2

2

b b b
x x x  .

a 4a 2a
   + ⋅ + = +      

Adding 
2

2

b

4a
, then, to both sides, we have

2 2

2

b b c
x  ,

2a 4a a
 + = −  

and putting the right-hand side over the common denominator of 4a2,
2 2

2

b b 4ac
x  .

2a 4a

− + =  

Now we can take the square root of both sides:

2b b 4ac
x

2a 2a

± −+ =

so that

2b b 4ac
x  .

2a

− ± −=
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If you put the coefficients a, b, and c of any quadratic equation ax2 +
bx + c = 0 into this Quadratic Formula, the equation’s two roots will
come out.

2. [to page 150] Why 3  is not in F
1
.

Suppose there were rationals a

b
 and c

d
 such that

a 2 c 3
 .

b d
=

Remembering what we did in Chapter One, we square both sides and
rearrange, getting

2(ad)2 = 3(bc)2 .

Since ad is some natural number—call it r—and bc a natural number s,
this simplifies to

2r2 = 3s2 .

If we break r and s down to their ultimate, prime factors, each of these
primes will appear twice on each side (since r and s are each squared); so
on the left-hand side, 2 will appear an odd number of times (possible
pairs from the factors of r2, and that solitary initial 2) but an even num-
ber of times (none or pairs) on the right. Divide both sides by 2 as many
times as you can, and you’ll be left with one surviving 2 on one side of
the equation or the other—which will make its side even and the other
side odd. But an odd number can’t equal an even number, so we never
had a true equation. This proof by contradiction shows that 3  cannot
belong to F

1
’s society.

3. [to page 165] On Hermes’s work.

The Diarium, in which Hermes wrote up his ten years of work, comes
with peculiar puzzles. Anyone undertaking to show just how to con-
struct the 65,537-gon would of course know that Gauss had proved it to
be constructible (since 65,537 = 224

 + 1, a Fermat prime)—and after
constructibility, actual construction is something of an anticlimax. Why
did Hermes spend a decade on what could only be uninformative details?

One possibility is that the devil in these details really does conceal
something interesting. Hermes may (as Paddy Patterson at Göttingen
conjectures) have been using the many different ways of expressing 65,537
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as a sum of two squares, in order to determine the square roots he needed.
If this were so, however, he would have had no need to express his
square roots numerically—certainly not to ten or more decimal places,
as he did.

Another possible answer might follow from his title page, which has a
drawing showing the segment midway along (between vertices 32,768
and 32,769) and about 11.3 cm (≈ 4.5 inches) long, and states that to
have the polygon’s side-lengths this size would require it to be inscribed
in a unit circle of radius 1,168.32 meters (≈ 3,797 feet or about seven
tenths of a mile). Was Hermes planning to have his model actually con-
structed—as a great monument, perhaps, to Gauss? We know that Gauss
had hoped (in vain) that the 17-gon would be inscribed on his tomb-
stone. Did Hermes wish to make up for such a slight? He lived at a time
when making physical models of geometrical objects was commonly
carried out, with great skill and patience. As late as 1951 a book of in-
structions for making immensely complicated models of polyhedra was
published, and a wire model of one with 720 faces and 1200 edges had
been built. The virtue of such models lies in their giving romantic real-
ity to imagination, though their particularity draws thought away from
its proper, relational, realm.

Yet if making a physical model had been Hermes’s intent, why did he
carry his calculations out so far? Three decimal places rather than ten
would have been more than wood or wire could tolerate.

His title page contains another clue, however. There at the hub of the
circumcircle is his dedication: to the Manes (the Roman equivalent of
soul) of Richelot—the man who, with Schwendenwein, had forty years
before calculated how to construct the 257-gon. Had he set Hermes this
doctoral task, thinking it commensurate with his dogged skills—and
had the student stuck to it through a decade of work, in homage to the
spirit of his master that now lay entangled within it? Read so, the story
rings with not Roman but Wilhelmine virtue.*

A more cynical view can be found in this curious passage by the En-
glish number theorist J. E. Littlewood (from the “Cross-Purposes” sec-
tion of Littlewood’s Miscellany, ed. B. Bollobás, Cambridge University
Press, 1986, p. 60):

A too-persistent research student drove his supervisor to say ‘Go
away and work out the construction for a regular polygon of 65537
sides.’ The student returned 20 years later with a construction (de-
posited in the Archives at Göttingen).

*Under the Prussians, discipline was so prized that even soldiers killed in battle were reputed to
snap to attention at the trumpet’s call: Kadavergehorsamkeit, “corpse obedience”, described this
dedication to duty.
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Some credence is given this version by Littlewood’s near contemporaneity
with the event, but diminished by his parodic intent and what may have
been the different bien entendus of English academic life.

Might the answer not lie at some point inside the triangle whose ver-
tices are the romance of numbers, of obligation, and of obsession?
Hermes wouldn’t have been alone in lowering himself down into an ir-
rational crevice in the number line, only to be drawn ever deeper, by the
promise of some conclusive revelation only a decimal place further on.
Was this promise not the devil who dances our souls away in detail?

��������	
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1. [to page 194] The three complex roots of 1.

In their street clothes, algebraists calculate with patience and accuracy.
When they change from Clark Kent in a phone booth, they emerge eager
to spark an insight through equating very different-seeming expressions.
We will need both of their embodiments in order to find the three cube
roots of 1: that is, the real numbers a and b such that (a + bi)3 = 1 + 0i.
Spelling this out,

a3 + 3a2bi – 3ab2 – b3i = 1 + 0i .

Equating real part with real part, imaginary with imaginary, we find that

a3 – 3ab2 = 1

and

3a2b – b3 = 0 .

Since 1 (that’s 1 + 0i) is, after all, a cube root of 1, a = 1 and b = 0 must be
one of the three solutions. To find the other two we may therefore as-
sume b ≠ 0. That lets us divide by b in this last equation, giving us

3a2 – b2 = 0

or

b2 = 3a2 .
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Taking the square root of both sides,

b = ± a 3 .

Now substitute b = +a 3  into the first equation

a3 – 3ab2 = 1 ,

to get a3 – 9a3 = 1; in other words,

–8a3 = 1 .

This gives us

3
1

a  ,
8

− =   

so

a = –
1

2
 .

Hence

3
b a 3  ,

2

−= =

giving us the second cube root of 1:

1 3
i .

2 2
− −

Faster than a speeding bullet, the other possible choice for b, –a 3 , yields
the third root,

1 3
i .

2 2
− +

2. [to page 199] The non-constructibility of the heptagon.

You may have felt short-changed when, in the previous chapter, we
only stated but didn’t prove Gauss’s conclusion about what kinds of
polygon can be constructed. Let’s atone for that now by showing why
the heptagon, at least, can’t be: paradoxically, its emergence far away
on the complex plane both hints that it might be constructible and
proves that it isn’t.
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The strategy is this. x7 = 1, or x7 – 1 = 0, is the equation for the seven
roots of unity, and hence (on the complex plane) for the vertices of the
heptagon, as we saw at the end of the chapter.

By a series of deft moves we’ll make this equation yield a cubic in-
volving the cosine of the angle (φ = 2

7

π  radians) at the center of each of
the heptagon’s pie-slices. The length cos φ is involved with the length of
the heptagon’s side, so if it can’t be constructed, neither can that side:

If x could be constructed, so could ∆ABC, whose other sides are the radii (length 1)
of the circumscribed circle. So, therefore, could the perpendicular CD to AB, and
thus AD = cos φ could be constructed too. If x could be constructed, then cos φ
could be—but cos φ cannot, so neither can x.

This is what we will show, by discovering that the cubic which follows
from the heptagon’s equation has no roots in a square root extension field,
where (as we know from Chapter Six) the only constructible lengths lie.

Our order of operations will be first to find out what sort of cubics
don’t have roots in square root extension fields—and only then to re-
duce the heptagon’s equation to a cubic, and see that it is of this sort.

(a) Cubics and their roots.

Think of yourself as a traveler in a medieval landscape. There are six
castles ahead, guarding the route. It won’t take trials of strength to get
past them, but resoluteness in the face of their equations—which only
look like portcullises: they turn out to be drawbridges. A morning sort
of optimism will help too, since we tend to tolerate only a few unaccus-
tomed turns of thought in a day. Each leaves a residue of discomfort: did
it really work? Did I really understand it? Too many such, and a sense of
the whole, along with self-confidence, topples (doesn’t the solution to
the riddle of intuition lie here? We take as intuitive whatever use has
made so familiar that we casually apply it to other ends).

The first of these six castles contains The Factor Theorem, which
Descartes came up with in 1637. We know how helpful it is to break
down numbers into their prime factors (such as 6 = 2 · 3) and so can
imagine that it must be equally valuable to factor polynomials.
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If t is a root of a polynomial, f(x), by definition

f(t) = 0 .

We should like to prove that (x – t) is a factor of f(x)—that is, that (x – t)
divides f(x), with no remainder.

Look at the worst case. You divide (x – t) into f(x) and get a quotient,
Q, and a remainder, R. When you divide 7 into 45, for example, the quo-
tient is 6 and the remainder is 3. Notice that you can write

45 = 7 · 6 + 3.

In the same way, you can write

f(x) = (x – t) · Q + R .

When x = t, you get

f(t) = (t – t) · Q + R .

But f(t) = 0 (since t is a root), and (t – t) = 0, so

0 = 0 · Q + R ,

which means R = 0.
There is no remainder, so (x – t) is indeed a factor of f(x).

Descartes is also the keeper of the second castle, which contains his
Rational Roots Theorem: if a polynomial f(x) has a rational root, this
theorem gives us a list of the possible candidates.

Early in our algebra careers we learn that given, say,

 (2x – 3)(x + 4) = 2x2 + 5x – 12,

i.e., that (2x – 3) and (x + 4) are the factors of 2x2 + 5x – 12—then, if

2x2 + 5x – 12 = 0,

it must be true that (2x – 3)(x + 4) = 0.
Since the only way to have the product of two factors equal to zero is

to have at least one of them be zero,

either 2x – 3 = 0, so x = 
3

2

or x + 4 = 0, so x = –4 ,
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and we have solved our polynomial. Note the parallel to the Factor Theo-
rem: there Descartes saw that if t is a root, (x – t) is a factor. Here we
discover that if (x – t) is a factor, t is a root.

The only difficult part of this technique for solving polynomials by
factoring is finding the factors—but a moment’s thought shows us that
the possible candidates for factors are determined by the polynomial
itself. Look again at

2x2 + 5x – 12 = 0

and set up dummy parentheses to signify its factors:

 (cx + d)(ex + g) = 0.

What could c and e possibly be? They would have to be integers which
multiply together to make 2—so can be only ±1 or ±2. Similarly, d and
g have to multiply together to make 12, so can be only (±) 1, 2, 3, 4, 6,
and 12.

Now, take any polynomial

f(x) = axn + bxn–1 + . . . + j

and set up even one dummy factor

 (mx + n) ;

m would have to be a factor of a,
n would have to be a factor of j.

f(x) might, of course, have no factors, but if (mx + n) is a factor of f(x),
then n

m

− , a rational number, is a root.
So we can say that any rational root has to have a denominator which

is a factor of the coefficient of the highest term of the polynomial, and a
numerator which divides the polynomial’s constant term.

Since both the Factor Theorem and the Rational Roots Theorem are
true for any polynomial, they are certainly true for the cubics we are
interested in.

Girolamo Cardano—one of the strangest figures in all of mathemat-
ics—lives in the third castle (he flickered briefly past us on page 170). A
century before Descartes, this thoroughly Renaissance man boasted,
cringed, calculated, cheated, invented, and lied his way through Italian
life. His uncle, daughter-in-law, and protégé were all poisoned, his son
beheaded, and he himself thrown in prison for blasphemously casting
the horoscope of Christ. He cured Scotland’s Archbishop of asthma by
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sheer reason and wrote seven thousand pages
on everything from navigation to the black
arts. You may take the man’s curious mea-
sure from this passage in his autobiography,
on the marvel of movable type: “What lack
we yet unless it be the taking of Heaven by
storm! Oh, the madness of men to give heed
to vanity rather than the fundamental things
of life! Oh, what arrogant poverty of intel-
lectual humility not to be moved to wonder!”

Cardano was the first to reckon odds; he
worked on the construction of the pentagon,
on cubic and quartic equations—and found
that if x3 + bx2 + cx + d = 0, then the sum of
the polynomial’s three roots will be equal to
–b. This is the result we will need, and here is
how he got it.

Let’s call the three roots of this cubic t, u, and v. By the factor theo-
rem, we now know that (x – t), (x – u), and (x – v) will each be a factor of
the polynomial. They must also be its only factors, because a cubic has
exactly three roots. There can’t be a constant multiplier, because our
polynomial starts “x3”, not “ax3”. This means that

 (x – t) (x – u) (x – v) = x3 + bx2 + cx + d .

It may seem like twiddling your thumbs while waiting for inspiration,
but let’s multiply out the left-hand side:

x3 – (t + u + v) x2 + (tu + tv + uv) x – tuv = x3 + bx2 + cx + d .

This can only mean that the two different-looking coefficients of x2 are
the same:

–(t + u + v) = b ,

or

t + u + v = –b

and that is just what Cardano proved, between bouts of necromancy
and vituperation. One more instance, then, of the algebraist giving depth
to an object by looking at it from two different standpoints.

Girolamo Cardano
(1501–1576), a man whose
modesty modestly made
way for his self-confessed
excellence.



���

������	


At the fourth castle we take a refreshing pause. If a complex number x
is trigonometrically cos φ + i sin φ, what will 1

x
, that is: 1

(cos    i sin )φ + φ , look
like? We’ll use once again the conjugacy tactic of pages 150 and 170:

2 2

1 (cos  i  sin ) (cos  i  sin )
 .

(cos   + i sin ) (cos  i  sin ) (cos  sin  )

φ − φ φ − φ⋅ =
φ φ φ − φ φ + φ

But cos2 φ + sin2 φ = 1 (as you saw on page 183), so

1

x
 = cos φ – i sin φ .

Graphically:

Each of our four brief visits abbreviates long swathes of time when
people puzzled over what we now take for granted, just as each of our
words condenses receding landscapes of thought. At least in mathemat-
ics, ontogeny recapitulates phylogeny.

Take, for example, a neat technique which will help in the castle ahead.
Its inventor is no more remembered than whoever first thought of put-
ting in a little cream and reducing it when making a beurre blanc, to keep
the sauce from breaking down. Here, if you have a polynomial equation
with rational coefficients, such as

ax3 + rx2 + sx + v = 0,

you can divide the equation by a without changing its nature and still
leave its coefficients rational:

3 2r s v
x x x 0 .

a a a
     + + + =          

For ease, let r

a
 = b, s

a
 = c, and v

a
 = d, giving us

x3 + bx2 + cx + d = 0 .
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As you’ve seen, it’s just that much easier to handle polynomials whose
highest coefficient is 1—our gratitude, then, for such ball-bearing inge-
nuities on which grand enterprises glide.

The fifth castle is larger than the others: it houses an insight into the
roots of a cubic equation with rational coefficients, like x3 + bx2 + cx + d
= 0. For we want to show that the paired forms you have already seen
several times reappear here: namely, if p + q w  should happen to be
one root of this polynomial, then p – q w  would have to be another
( w  first appears in some square root extension field, F

k
, of the rationals,

F; but p, q, and w are in F
k–1

).
This pairing of roots seems a likely proposition. Since a cubic has

three roots, if we had found one that was rational, r, then (x – r) would
be a factor of the polynomial, and its paired factor would have to be a
quadratic:

p(x) = (x – r) (x2 + bx + c) .

The other two roots would then come out of the quadratic formula:

2b (b 4ac)
x  ,

2a

− ± −=

so that if one root was p + q w , its mate would have the paired sign: p
– q w . Unfortunately we haven’t yet found one of the roots so we don’t
know that it is a rational number, r.

Or you might think that since we now know that the sum of the three
roots is equal to the rational number –b, the only way to rid ourselves of
the irrational q w  in one root must be to add – q w  in another. This
is very reasonable (and turns out to be true)—but we just don’t know
enough about irrationals at this point to be certain that some quite dif-
ferent irrational added to q w  might not yield a rational sum (after all,
the two irrationals

0.10110111011110 . . .

0.01001000100001 . . .

add up to the rational 0.111. . . = 1

9
).

Not proven, but hunch rallies our hopes high enough to make our way
though the delicate negotiations ahead. We’ll simply find out what
f(p + q w ) is, and follow the consequences. Then we’ll go back and re-
place x by p – q w  and follow its consequences: p – q w  will also turn
out to be a root (and as a final flourish, a different root from p + q w ).
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Here we go. Putting p + q w  for x in

x3 + bx2 + cx + d = 0

gives us

 (p + q w )3 +b(p + q w )2 + c(p + q w ) + d = 0 .

We must spell this all out in order to regroup and see what we have:

3 2 2 3 2 2p 3p q w 3pq w q w w bp 2bpq w bq w cp cq w d 0 .+ + + + + + + + + =

Rearranging and giving the names m and n to our clusters,

3 2 2 2 2 3(p 3pq w bp bq w cp d) (3p q q w 2bpq cq) w 0

m n

+ + + + + + + + + =��������������� �����������

we arrive at

m + n w  = 0 ,

where m and n both belong to F
k–1

.
Both m and n must be 0. Why? Because if n weren’t, we could divide

by it, so

m

n
 + w  = 0 ,

or

w  = 
m

n

−
,

which is impossible: m

n

−  is rational and w  isn’t (remember that w be-
longed to F

k–1
 but w  didn’t: it is in its own square root extension field).

So we can’t divide by n: hence n = 0. This means that

0 = m + 0 w  = m ,

that is, m = 0 too.
If we now replace x by p – q w , we will get the same polypedalian

creature as before (what might not Nichomachus have called it?), but
with minus signs instead of plus signs wherever q appears to an odd
power, which will be in the coefficient of w .
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3 2 2 2 2 3(p 3pq w bp bq w cp d) ( 3p q q w 2bpq cq) w

m n

+ + + + + + − − − −
−

��������������� �����������

Our polynomial turns into m – n w , and since these are the same m
and n which we just proved were 0,

m – n w  = 0 ,

hence p – q w  is a root of the polynomial too—and a different root
at that: for if p + q w  = p – q w , then 2q w  = 0, which would make
q = 0, so the original root p + q w  would have been just p, which is in
F

k–1
 (contrary to our assumption that this root first appeared in F

k
).

We have come to the last castle, which guards the pass to the hepta-
gon. In it is the secret of which cubics lack roots in square root extension
fields of the rationals. The secret (whose clues lay in the previous castles)
is this: if a cubic equation with rational coefficients has no rational roots,
then in fact none of its roots lie in any square root extension field, F

k
, of

the rationals. For assume that b, c, and d are rational, and that one of the
roots of

x3 + bx2 + cx + d = 0

does indeed appear for the first time in some F
k
, and so looks like p +

q w . The fifth castle’s guardian assures us that p – q w  is also a root;
the Fundamental Theorem of Algebra (page 169) that there must be a
third root—call it v; and Cardano then exclaims that these three roots
must add up to –b:

p + q w  + p – q w  + v = –b ,

in other words,

2p + v = –b

or

v = –b – 2p .

But –b – 2p appears in F
k–1

 (since b is rational and hence is in F and
every square root extension field of F, and p was explicitly stated on
page 297 to be in F

k–1
), contradicting our assumption that no root of

our equation appears until F
k
. The sixth castle has yielded up its secret

and we are through the pass. Now we need only reduce the heptagon’s
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equation to a cubic and find that it has rational coefficients but no ra-
tional roots.

(b) Reducing the heptagon’s equation.

Watch how all the parts now click into place. x7 – 1 = 0 is indeed an
equation with rational coefficients—but it isn’t a cubic. A sequence of
really artful moves (Renaissance born, in the spirit of projecting the vast
down to human scale) will draw a cubic out of it.

We know that 1 is a root of this equation, so by our first discovery,
(x – 1) is a factor of x7 – 1. Since it is a factor, we can find the other factor
by dividing:

7x 1

x 1

−
−

 = x6 + x5 + x4 + x3 + x2 + x + 1

(you can verify this by multiplying the right-hand side by x – 1).
The six other roots of x7 – 1 will come from

x6 + x5 + x4 + x3 + x2 + x + 1 = 0 .

The need for a cubic, along with informed tinkering, leads to the next
step: dividing both sides of this new equation by x3 (secure in the knowl-
edge that x ≠ 0: since if it were, the equation above would tell us that 1 =
0). This gives us:

x3 + x2 + x + 1 + 
1

x
 
  

 + 2

1

x
 
  

 + 3

1

x
 
  

 = 0 .

The first four terms are comfortable, the last three disturbing. To deal
with them, here is a cunning but legitimate rearrangement:

3 2

3 2

1 1 1
x x x 1 0 .

x x x

          + + + + + + =                    

Why do this? Because—and this was an innovation as slick as the curve
ball—this equation can in turn be transformed into

3 2
1 1 1 1

x 3 x x 2 x 1 0 .
x x x x

              + − + + + − + + + =                            

If you expand the terms that need expansion, you will see that the can-
cellations and sums of like terms return us to the previous equation.
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Easy to check—but how did anyone ever think of doing it? One of the
trade secrets of mathematics is to add zero to an expression in the useful
form of what-you-want plus its additive inverse.

Simplify and rearrange once more:
3 2

1 1 1
x x 2 x 1 0 .

x x x

          + + + − + − =                    

Still too bulky for comfort, but squint your eyes to see a simple cubic
with rational coefficients, disguised by a complicated variable. All we
really have here is

y3 + y2 – 2y – 1 = 0

where y = 
1

x
x  +     .

In all of these contortions, we don’t want to lose sight of what mat-
ters: the latent heptagon. We have just arrived at y = 1

x
x

   +    
: that x is still

a vertex of our heptagon and that x in trigonometric form is still cos φ +
i sin φ.

We brought along from the fourth castle the little plaything

1

x
 = cos φ – i sin φ ,

so

y = 
1

x
x

  +     
 = (cos φ + i sin φ) + (cos φ – i sin φ) = 2 cos φ .

If we can’t construct y, then we can’t construct the length 2 cos φ, and
therefore can’t construct cos φ through bisecting, and so cannot con-
struct the heptagon with Euclidean tools.

So it all comes down to showing that

y3 + y2 – 2y – 1 = 0

has no rational root.
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Suppose it had. Were r

s
 (a rational in lowest terms) a root of this

equation, then, from the second castle, r must be a factor of –1 and s of
1: in other words, r must be 1 or –1 and so must s, so that r

s
 = 1 or r

s
 =

–1. Those are the only possible rational roots of our latest equation.
Yet if you try each, you find

f(1) = 13 + 12 – 2 · 1 – 1 = –1; which isn’t 0 ,

f(–1) = (–1)3 + (–1)2 – 2 · (–1) –1 = 1; which also isn’t 0 .

Neither is a root; hence, our equation has no rational root—and on this
slender outcome of a long campaign, the battle is won: the heptagon
cannot be constructed by straightedge and compass. As Wellington said
of Waterloo: “It has been a damn’d nice thing—the nearest-run thing
you ever saw in your life. . .”

Afterthoughts in the tent, or You Can’t Get There from Here. Why do
some parts of mathematics need so much more work than others? Why
was our route to this result so devious (all those facts about cubics to
capture a general result), when some that seem equally inaccessible turn
out to be next door, and others that ought to be neighbors have still to
be reached? We hardly yet grasp the lay of the land. The long frontier of
mathematics expands like the Roman Empire’s, through a shapeless
unknown. The Teutoberg Forest may be just over the horizon.

��������	
���
��

1. [to page 215] Finding invariants on the projective plane.

To gauge just how bad things are on the projective plane, notice that we
can even project any three points on one line onto any three points of
your choice on another! Let A, B, and C be arbitrary points on a line l

and A′, B′, C′ equally arbitrary points on another line m:

With the aid once again of a subtle diagonal, a chain of two perspectivities
will do the work. Draw this diagonal n from A′ to C, then construct the
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lines A′A and B′B, which will meet at some point O (this is projective
geometry: any two lines must meet):

That line, OB′B, must also meet the diagonal line n somewhere: call it B″.

Next construct the lines OC and CC′. Line CC′ will meet BB′ at a point P:

Finally, draw PA′.

With O as our first center of perspectivity, the points A, B, and C on l
are sent to A′, B″, and C, respectively, on n. Let’s write—as if O were a
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function—O(ABC) = A′B″C. Now with P as the second center of per-
spectivity, the points A′, B″, and C on n go to A′, B′, and C′ on m: P(A′B″C)
= A′B′C′. Do O, then P, and we send A, B, and C to A′, B′, and C′—as
desired. We could also write: P(O(A, B, C)) = A′, B′, C′.

Clever, but dreadful. The line n stands, like Schumann, between form
and shadow, and only confirms our suspicion that nothing on the pro-
jective plane is stable. But to indulge in mathematics is to have faith in
pattern: faith that with enough—or the right kind of—probing, fixity
will emerge from change.

The very nature of perspectivity means there can be no similar tri-
angles on the projective plane: angles won’t stay the same under projec-
tion, nor lengths, so there can be no question of equal ratios. But take, as
Melville suggests in Moby Dick, a deeper cut. Let’s look not at three but
at an arbitrary four points on a line l . Send l to any other line m by a
perspectivity from some point O, l o=̂  m, so that A, B, C, and D go to
four points A′, B′, C′, and D′ on m: O(A, B, C, D) = A′, B′, C′, D′.

Is anything invariant here, no matter how far apart l and m may be, or
how differently inclined to one another? As long ago as the fourth cen-
tury A.D., Pappus of Alexandria (whom you saw fleetingly in Chapter
Five) uncovered a buried relation—in the context, however, of Euclid-
ean geometry, with its native angles, lengths, and areas. Let’s descend
from the projective plane to the Euclidean to see what he found—though
we will put it (as did the nineteenth-century German mathematician
Augustus Ferdinand Möbius) in terms of the trigonometry we mastered
in Chapter Seven.

Extract from our diagram ∆OAC, for example:

Its area is half the base, CA, times the altitude h to that base from O.
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Area ∆OAC = 
h�CA

2 .

We would, of course, have gotten the same area had we chosen OA as the
base, with the altitude k to it from C:

Area ∆OAC = �OA k
2

.

Trigonometry reminds us that the sine of an angle is the ratio of the
lengths: 

side  opposite

side adjacent  in a right triangle, so that here sin ∠AOC = k

OC
. This

means that k = OC · sin ∠AOC, so that we could if we wanted rewrite
the triangle’s area as

Area ∆OAC = 
OA OC sin AOC

2

⋅ ⋅ ∠
.

The two expressions for area must be equal:

CA h OA OC sin  AOC
 .

2 2

⋅ ⋅ ⋅ ∠=

From this equation it follows that

CA · h = OA · OC · sin ∠AOC.

Go through precisely the same maneuvers for ∆OCB to get

CB · h = OB · OC · sin ∠COB.

Should we then care to find the ratio of CA to CB, we would get

CA CA h

CB CB h

⋅=
⋅

OA OC sin  AOC

OB OC sin  COB

⋅ ⋅ ∠=
⋅ ⋅ ∠

OA sin  AOC

OB sin  COB

⋅ ∠=
⋅ ∠

.
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Past adventures will give you confidence that we are winding our way
into the heart of a labyrinth for the sake of coming out enriched on the
other side.

Repeat these operations for ∆ODA and ∆ODB:

DA h OA OD sin  DOA
Area of ODA

2 2

⋅ ⋅ ⋅ ∠= ∆ =

and

DB h OB OD sin  DOB
Area of ODB  .

2 2

⋅ ⋅ ⋅ ∠= ∆ =

So that—as before—

DA OA OD sin  DOA

DB OB OD sin  DOB

⋅ ⋅ ∠=
⋅ ⋅ ∠

OA sin  DOA
 .

OB sin  DOB

⋅ ∠=
⋅ ∠

No gap in the hedge appears—until we take the ratio of our two ratios:

sin  AOCCA OA sin  AOC

sin  COBCB OB sin  COB
.

DA OA sin  DOA sin  DOA

DB OB sin  DOB sin  DOB

∠⋅ ∠
∠⋅ ∠

==
⋅ ∠ ∠
⋅ ∠ ∠

This double abstraction has vaporized the lengths, leaving only the
sines of angles behind—but all these angles at O were determined by the
original four points on line l : they won’t change no matter what line m
we draw, and neither will their sines. That ratio of ratios, or cross ratio,
as it is called, is a constant! It is the same whether we look at A, B, C, D
on l or at A′, B′, C′, D′ on m, hence

CA C

CB C
.

DA D

DB D

′Α′
′Β′

=
′Α′
′Β′

We have found the hidden invariance in projecting an arbitrary four
points on one line to another perspective with it. What’s more, this in-



���

������	


variance carries through however long a chain of perspectivities we wish
to make: if l o=̂  m 

p=̂  n, then,

CA CA C A

CB CB C B
.

DA D A D A

DB D B D B

″ ″
″ ″

= =
′ ′ ″ ″
′ ′ ″ ″

Not ratios, then, as with similar triangles, but a ratio of ratios is what
remains constant in these projective transformations within Euclidean
geometry. It suggests that the cross ratio is a native of the projective
plane, glimpsed here in its travels abroad. The hidden connection it makes
(as Heraclitus told us) is stronger than one we can see, but might stand
out clearly in its natural setting. To bring it out there, a wonderfully
clever way arose of importing coordinates to the projective plane—but
to fetch from that far away would need another voyage.

��������	
���
	

1. [to page 245] The problem with terminating decimals.

Dedekind pointed out a problem with the 1–1 correspondence that
Cantor had proposed between the points of the square and those on
the line. It involved the awkward fact that “terminating decimals”, such
as 00.3  (for 3

10
) can always be represented in another way—in this

case, 00.3  = 0.29 .
Why is this so? Let’s look at a straightforward instance: the number 1.

Written in full, this is 1.0 . We claim, however—far-fetched as it may
seem—that

1 0.9=
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A delightful proof follows just from asking what 0.9 is—or to put it
mathematically: solve for x when

0.9  = x .

Multiply each side of this equation by 10. Since multiplying by 10 shifts
the digits one unit to the left,

10 · 0.9   = 9.9

we therefore have

9.9  = 10x .

Now subtract the first equation from the latest one:

9.9 = 10x
– 0.9 = x

9 = 9x

and dividing both sides by 9 reveals that x = 1.
This ambiguity in the naming of a point on the line could be simply

resolved by always choosing the “non-terminating” form (in our example,
0.29 ). But this choice led to a subtle dilemma. What if the point on the
line which we want to match with a point in the square is, say, .230407 ?
By Cantor’s proposed correspondence this would go to ( 0.20 , 0.347 ).
But since 0.20  = 0.19 , written so:

(0.19, 0.347) ,

that point must in its turn be sent to the point on the line

0.139497

a very different point from the one originally sent to the point on the
plane, destroying the 1–1 correspondence. Since ↔ runs in both direc-
tions, you must return to the point you started out from. But here you
don’t; you end up quite far away:

0.230407 (0.20,  0.347) (0.19,  0.347) 0.13497 .↔ = ↔

It looked as if in all his exertions, Cantor had momentarily but disas-
trously fallen asleep, and as Maurolico commented centuries before: “A
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little sleepiness and old errors are propagated, new ones introduced.”
But Cantor awoke with an evasion to equal the snare his friend had
discovered. Instead of making the x- and y-coordinates of the point on
the plane from the odd and even entries, respectively, of the decimal
expression for the point on the line, he preprocessed that expression
into strings: any non-zero digit is a string, all by itself, and when a zero
first appears it begins a new string which ends as soon as a non-zero
digit appears. Then send alternate strings to these two coordinates.

If the point on the line is, for example, 0.230407 , it breaks up into
strings like this:

0. 2 � 3 � 04 � 07 � 07 � 07 � . . .

and it would be matched to the point in the square with coordinates

(0.20407, 0.307) .

Try your hand at finding the coordinates of the point that corresponds
to 0.3040005678095. . .
Solution: breaking the decimal into strings gives us

0.3 � 04 � 0005 � 6 � 7 � 8 � 09 � 5 . . .

and this would be sent to the pair of coordinates

x = 0.30005709. . .

y = 0.04685. . .

2. [to page 256] The set of all subsets of N has the same cardinality
as the set of real numbers.

In order to show that these two sets have the same cardinality, we need
to make a 1–1 correspondence between their members.

One of the artful dodges you learn in the guild is to keep simplifying
until you actually have to do some work. We can certainly simplify our
problem here by recalling (from page 242) that there is a 1–1 correspon-
dence between R and the elements of the open interval (0, 1)—so we
need only try to match up the elements of (0, 1) and those of PN.

The theorem on page 255, proved by Schroeder and Bernstein in 1898,
allows us to simplify further. They proved that two sets, A and B, have
the same cardinality if and only if

card A ≤ card B
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and

card B ≤ card A .

Taking A as (0, 1), B as PN, the set of all subsets of N, this means that
we need only find some way of making a correspondence between each
decimal in (0, 1) and a different subset of N; then making a correspon-
dence between each subset of N and a distinct decimal in (0, 1).

We can no longer put off the actual work, but as often happens, find
it attractive once begun. You probably know that any number can be
written with just 0s and 1s (this is what your computer does, for which—
or whom—0 is a switch in the “off” and 1 in the “on” position). So 0 is 0
and 1 is 1, but 2 is 10, 3 is 11, 4 is 100, because each number is made up
by adding together no or one of the successive powers of 2 (17, for ex-
ample, is 16 + 1, i. e., 24 + 20, or 1 · 24 + 0 · 23 + 0 · 22 + 0 · 21 + 1 · 20, so
10001). The Rosetta Stone begins like this:

Numbers base 10 Numbers in Binary

0 0
1 1
2 10 (i.e., 1 · 21 + 0 · 20)
3 11
4 100
5 101
6 110
7 111
8 1000
9 1001
10 1010

You can even use this binary notation for decimals:

Fraction Base 10 Binary

1

4 .250 .010
0 1 0 0

 . . .
2 4 8 16

 = + + + +  
1

3 .3 .01
0 1 0 1

 . . .
2 4 8 16

 = + + + +  

It may take some work to re-express any decimal in terms of fractions
whose denominators are successive powers of 2, but it can always be
done. We’ll need this.

Finally, we need to think of any subset S of N from a rather interest-
ing point of view. S has various numbers in it: perhaps none, if S = Ø;
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perhaps all, if S = N—but empty, finite, or infinite, we can always say for
any natural number n whether n is in S or not. If n is in S, we’ll assign it
the number 1; if it isn’t, it must bear the mark 0.

This means that to any subset S of N corresponds an infinite sequence
of 0s and 1s. Take the set S = {3, 5, 10}, for example. Here only 3, 5, and
10 have the number 1 assigned to them—all the rest of the naturals get
0. This means that to S = {3, 5, 10} corresponds the infinite sequence

0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, . . .

We’re now ready for the first of our two steps: to show that card (0, 1)
≤ card PN. We’ll do this by sending each decimal in (0, 1) to a different
subset S of N, as follows. First rewrite the decimal in binary form; then
look at that binary form as a sequence of 0s and 1s, and match this se-
quence to the unique subset S of N in the way described. So 1

3
, for ex-

ample, is .010101. . . in binary: the sequence, that is,

0, 1, 0, 1, 0, 1, . . .

which corresponds to the set {2, 4, 6, 8, . . .}. In other words, the element
1

3
 in (0, 1) corresponds to the set of even numbers. 1

4
, you’ll find, is

matched to the subset {2}. In this way, every decimal in (0, 1) corre-
sponds to a different subset of N, so

card R = card (0, 1) ≤ card PN .

It only remains (thanks to Schroeder and Bernstein) to show that card
PN ≤ card (0, 1). But we really already know how to do this: the subset
{3, 5, 10} corresponds, as we saw above, to the infinite sequence

0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, . . .

so it is the most natural thing in the world (once you have accustomed
yourself to this world) to match that sequence to the ordinary decimal

.00101000010

In this way, each and every subset of N corresponds to a different
decimal made up exclusively of 0s and 1s—that is, a decimal between
0.0 and 0.1, which is contained in the interval from 0 to 1—hence, we
have card PN ≤ card (0, 1). These two parts establish that

card PN = card (0, 1) = card R :

there are exactly as many real numbers as there are subsets of the naturals.
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Two slight technicalities may be sticking in your throat, which we will
remove by passes more canny than the Heimlich Maneuver. We had been
dealing throughout with the open interval (0, 1): the set of all decimals
between 0 and 1 but not including either 0 or 1. In our last series of
steps, however, the empty set would correspond to the sequence

0, 0, 0, . . .

and hence to the decimal .0 : i.e., 0, which isn’t in (0, 1).
We will simply show (using Schroeder-Bernstein again) that adding

this extra element changes nothing, as far as the cardinality goes:

card [0, 1) = card (0, 1)

(where “[0, 1)” means the set of all decimals from 0 to 1, including 0 but
excluding 1). We therefore need to show:

card (0, 1) ≤ card [0, 1)

and

card [0, 1) ≤ card (0, 1) .

The first inequality obviously holds: every element in (0, 1) is also in
[0, 1).

As for the second,

card [0, 1) ≤ card R = card (0, 1) .

Since

card (0, 1) ≤ card [0, 1) ≤ card (0, 1),

by Schroeder-Bernstein the two sets have the same cardinality, which is
also card R. Hence

card PN = card R .

The other technicality concerns the terminating and the non-
terminating forms of binary decimals: the same sort of problem we
found and solved in the first part of this chapter’s appendix.

The point 0.10  in (0, 1) can also be written 0.01. What subset in PN
do we match it up with? Let’s just convene (as we did before) always to
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choose the “non-terminating” form—so here, 0.01; and this is unam-
biguously matched with the subset of N containing every natural num-
ber except 1. Thus indeed

card (0, 1) = card PN .

3. [to page 259] Cantor’s “proof ” that every cardinal number
is an aleph.

Having distinguished “consistent collections”, or sets, from collections
that were in some sense “too large” to be sets—the inconsistent collec-
tions—Cantor thought he could use the latter to prove what had until
then eluded him: that his alephs were the only kinds of cardinals there
were. This would mean that the cardinality of power sets too must be
alephs, so that they sat ranged in ordered tiers with other sets; and the
continuum in particular, which corresponded to the set of all subsets of
the natural numbers, would have an aleph for its size—though which
aleph this was (perhaps the cherished ℵ

1
, as he hoped) was still elusive.

To carry through his proof Cantor had to make three assumptions.

Assumption One: Only sets (that is, only consistent col-
lections) have cardinal numbers.

As assumptions go, this one seems plausible enough. It bars from con-
sideration such monsters as the cardinality of the “set” of all sets. You
may feel that, in the absence of intuition, this kind of assumption has a
merely legal air to it, like a stipulation that asks all parties to the discus-
sion for agreement, just so as to move on to matters more important.

Assumption Two: Two collections with a 1–1 correspon-
dence between their members are either both sets or
both inconsistent collections.

If we are going to introduce a distinction into the kinds of collection
and still keep the notion of 1–1 correspondence intact, this assumption
seems both reasonable and necessary.

Assumption Three: If a collection V has no aleph as its
cardinal number, then the whole of Ω (the collection of
all the ordinals) corresponds to some subcollection V′
of V.
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When Cantor wrote to Dedekind on July 28, 1899, detailing his proof,
he introduced this assumption with the words “We readily see . . .” Such
a phrase is notorious among mathematicians as are its companions in
infamy, “It is obvious that . . .” and “Now clearly . . .”; they mean that the
reader has hours or days of head-splitting labor ahead to bring light to
this darkness—after which he may learn that the writer himself no longer
remembers why it was obvious.

In addition to these assumptions, Cantor drew on Burali-Forti’s re-
sult that the collection Ω was inconsistent, and on the reasonable obser-
vation (which we have been taking for granted all along) that every
subcollection of a set is again a set (in fact, a “subset”). Hence if a sub-
collection isn’t a set, neither can be that collection of which it is a part.
This means that if a collection X contains a subcollection which is in 1–
1 correspondence with Ω, then by Assumption Two this subcollection of
X is inconsistent—and hence so is X.

Here then is Cantor’s brief proof of the

“Theorem”: Every cardinal number is an aleph.

Proof:

1. If a collection V has no aleph as its cardinal number, then (by As-
sumption Three) the whole of Ω is in 1–1 correspondence with
some subcollection V′ of V.

2. Hence (by what we just remarked), V is inconsistent.
3. The contrapositive is: if V is a set (a consistent collection), then V

has an aleph as its cardinal number.
4. Hence (by Assumption One), all cardinal numbers are alephs.

In mountains, as Nietzsche pointed out, the shortest way is from peak
to peak—but for that you need long legs. Whose are adequate for this
crevasse-ridden landscape? Cantor’s assumptions in his valiant effort
have been thought through and modified since. His “inconsistent col-
lections” are now “classes”: collections too big to be sets. Does this make
them more thinkable? As you saw, Zermelo’s Axiom of Choice is an at-
tempt to bridge all at once over Cantor’s third assumption. Would you
buy it? A number of axioms have been marshalled from which to derive
modern versions of Cantor’s proof. How are we to hold their unintuitive
truths?

A work of art needn’t be finished to be great: “Tell me if ever anything
was done!” We are all part of this one’s onward expansion.
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“Desarguean configurations,” 220
Desargues, Girard, 215, 216–17, 218–19
Desargues’s theorem, 220–21, 226
Descartes, Rene: complex plane, 27; coordinate

plane, 153; factor theorem, 292–94; form of
circles, 158; formalism, 38; mathematical in-
tuition, 32; proof methods, 92

diagonals: correspondence, 237, 239; Gödel’s use
of, 262; “legitimate construction,” 204; sets
theory and, 249

diagrams, 2
Diarium (Hermes), 288–90
Dirichlet, Johann Peter Gustav, 67
discovery vs. invention, 8, 25, 33, 47–48
distance, 125
distributive axiom, 38, 40, 58–59, 267
distributive law, 35, 38, 44
divergent series, 94–98, 270–76
division: decimal representation and, 21–23;

imaginary numbers, 26–27; of plane coordi-
nates, 243; polygon construction and, 148;
rational numbers and, 25; square root exten-
sion fields, 156; by zero, 56–57, 57–58

dodecagon, 144
drawing, 2, 7, 202–4, 215–16
Du Bois-Reymond, Paul, 245
Duke of Wellington, 157

eagle of algebra, 133–66
economics, 16
Egyptians, 16, 90
Einstein, Albert, 227, 245
Elements (Euclid), 104
elements of sets, 247–48, 249
ellipses, 225
“empty form,” 44
empty sets, 248
endpoints, 241
Enlightenment, 34, 119
Eötvös, Lóránd, 128
equality: of complex numbers, 171; in projective

geometry, 215
equilateral triangles, 112, 123–24, 135, 197, 283–

84
Erastosthenes, 61–62
Erdös, Paul, 61, 98
Euclid and Euclidean geometry, 100–130. See

also projective geometry; calculus and, 188;
congruent triangles, 104–5; consistency, 264;
construction of polygons, 133–35; Euclidean
plane, 104–5, 166, 202; Euclidean representa-
tion, 209; Euclid’s Fifth Postulate, 100–104;
Fermat numbers and, 199; infinite primes,
60–61; Millay on, 124; multiplication of
negatives, 267–68; paradoxes of, 49; parallel

lines in, 100–104, 114; perspective and, 204;
polygon construction, 147; prime numbers
and, 65; prime reciprocals, 273–74; shortest
path in triangles, 282; straight lines in, 125;
sum of ratio series, 90; triangle’s role in,
106–7, 117, 144

Eudoxus, 31
Euler, Leonhard, 119; on complex numbers, 174;

complex variables, 192; Euler Circle, 123;
Euler Line, 119, 123–24, 278; exponential
functions, 269; infinite series proof, 98;
mathematical induction, 47; p of geometry,
71; reciprocals of primes, 270–76

“Ex Oriente Lux,” 262
exponential functions, 70, 98, 191–92, 268–70

The Factor Theorem, 292–94
factorial, 65, 191
factoring, 286
factors, 60, 268, 292–93
Fagnano’s Problem, 124–30, 284
false position, 126
Farquharsons, 232
Fejér, Leopold, 127–28
Fermat, Pierre de: coordinate plane, 153; Fermat

numbers, 165, 199; Fermat point, 279–85;
Fermat prime, 288; form of circle, 158

Feuerbach, Karl Wilhelm, 121, 124
Feuerbach Circle, 123
fields. See also square root extension fields: axi-

oms of, 38, 49; complex numbers and, 171;
coordinate plane, 154; cubic roots and, 152;
field axioms, 264–65; Formalism and, 37;
polygon construction and, 150–51; slope in,
156–57; square root extension fields, 163;
Weber’s tablets for Fields, 149–50; y=mx+k
form of line, 155–56

Formalism: Axiom of Choice and, 256; axiom-
atic systems, 29–55; Cantor and, 258; conse-
quences of, 265; fields and, 37; intuition and,
130; natural numbers, 42; non-Euclidean ge-
ometry and, 35

fourth roots, 151–52
fractions, 15–17, 23, 233, 234, 236
Freemasonry, 261
Frege, Gottlob, 51
functions, 53, 70, 189
Fundamental Theorem of Algebra, 169, 173,

193–94

Galileo Galili, 228, 229, 233, 240
gambling, 86
Gaudi i Cornet, Antoni, 133
Gauss, Karl Friedrich, 68; 65,537-gon, 288; ap-

proximation of π (x), 71–72; completed in-
finities, 236; complex variables, 192;
Fundamental Theorem of Algebra, 169; in-
fluence, 163–64; mathematical intuition, 31;
prime numbers and, 67–68, 69–71; square
root extension fields, 164; square root of –1,
188; triangular numbers, 82; varieties of
geometries, 52

geometry, 100–130. See also projective geometry;
specific shapes; algebra and, 174, 177–78; geo-
metric sequences and series, 86, 89, 96, 132;
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geometry (continued)
geometrical representations, 188; Greeks
and, 18; Hobbes on, 104; paradoxes of, 49;
parallel lines, 52; perspective and, 204; pro-
jective, 302–7; Pythagorean Theorem, 29–30;
straight lines in, 125; symbols and abbrevia-
tions, 105–6; variety of, 52, 133

Gergonne, Joseph Diez, 32
Gerson, Levi ben, 45
Gilbert, Humphrey, 173
Girard, Albert, 27–28
Gnostics, 32, 48
Gödel, Kurt, 54, 262, 265
Gödel’s Incompleteness Theorem, 54
Goethe, Johann Wolfgang von, 184
Goldbach, Christian, 73
Golden Mean and Ratio, 137–38
Goya, Francisco Jose de, 96
graphs, 68–69, 182
Graves, Robert, 100
gravity, 36
Great Chain of Being, 151
“The Great Converse,” 51
Great Unconformity, 262
Greeks: apeiron, 75; geometry, 18, 101, 133; in-

sight and intuition, 31; number theory and,
8; ratios, 14–16

growth functions, 70, 98, 191–92, 268–70

Hadamard, Jacques, 71
Haldane, J. B. S., 221
Halmos, Paul, 178
Hamilton, William Rowan, 39, 53, 167–68
Hamlet (Shakespeare), 205
Harmonic Series, 94–96, 270–76
Hawking, Stephen, 2
al-Haytham, Ibn, 46
heptagons: constructing, 134, 166, 198–99, 291–

92, 292–300, 300–302; heptagonal numbers,
85

Heraclitus, 9, 120
Hermes, Johann, 165, 288–90
hexagons: constructing, 143–44, 198; hexagonal

numbers, 82
hierarchy of numbers, 28
Hilbert, David, 49; alephs and, 255; axiomatic

systems, 49–55; axioms, 147; Cantor and,
240, 258; infinite series proof, 98; on math-
ematical reasoning, 178; on Pappus’s theo-
rem, 226; Peano’s Axioms, 265; on
philosophy of mathematics, 35; projective
geometry, 206; rivalry with Brouwer, 47

Hipparchus, 181
Hippasus, 18–21, 25, 31, 138, 140–41, 262
Hobbes, Thomas, 85, 93, 103–4, 124, 133
Hofmann, J. E., 280–81, 282
horizontals, 205
Hutton, James, 262
hyperbolas, 226
hypotenuse, 21, 108, 110–11, 182, 276–77

“i” (square root of –1), 171–73. See also imagi-
nary numbers

identity, 38, 59
images of numbers, 4, 27–28

imaginary numbers: Bombelli and, 256; complex
plane and, 174; complex roots of 1 and, 290–
91; exponential functions and, 192; “i”
(square root of –1), 171–73; mathematical
operations on, 26–27

imagination, 173–74, 246
incenter, 111, 208–9
incircle, 111, 208–9
Incompleteness theorem (Gödel), 54
“indefinite,” 75
Indian culture, 191
induction, 42–46, 51, 263–64, 265
infinity: absolutely infinite, 259; cardinality of,

237, 251; collections of numbers, 229; com-
pleted infinities, 236, 252; conceptions of, 1;
counting numbers, 6; Dedekind Cuts and,
49; exponential growth, 191–92; infinite
area, 92–93; infinite sequences and series, 88,
92, 93–95, 116, 189, 192; infinite sets, 248;
“more than infinity,” 236; natural loga-
rithms, 95; natural numbers, 230–31; per-
spective and, 204; potential infinities, 236;
prime numbers, 60; projective geometry
and, 223–25; proof of, 5–6; ratios and, 17

inscribed plane, 208–9
inspiration, 229, 254–55, 257–58
integers: 1–1 correspondence, 232; cardinality,

232–33; countability, 242; in hierarchy of
numbers, 28; paired, 41; polygon construc-
tion and, 149; as rationals, 17

integrals, 71
interleaving, 244
intersections, 210, 218
Introductio Arithmetica (Nichomachus of

Gerasa), 13
intuition. See also Alcibiades Humor: alephs and,

257–58; Brouwer, 47–49, 271; Descartes, 32;
formalism and, 34, 50–53, 130, 147; Gauss,
47; imaginary numbers and, 188

invention, 25, 33, 47–48
Invercauld, 232
inverses: additive, 36, 40; field axioms, 38; multi-

plicative, 36
irrational numbers: abstract nature of, 38–39;

correspondence, 237, 238; cubic roots and,
297; cyclic, 23; decimal form, 21–23;
Dedekind Cuts and, 39–40, 49; discovery vs.
invention of, 25; exponential functions, 70,
269; functions and, 53; logarithms, 70, 95;
polygon construction and, 149–51, 151–53;
square root of 2, 20–21

Jerusalem, 131
Jia Xian, 248
John of Austria, 44
Joseph of Arimathea, 262
Joyce, James, 167
Jung, Carl, 31

k-gons. See polygons
Kant, Immanuel, 33, 35, 52–53
al-Karaji, Abu Bakr, 45–46, 248
Keller, Wilfrid, 165
Kepler, Johannes, 138
Keyser, C. J., 213
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König, Jules, 257
Kronecker, Leopold, 13–14, 42, 67, 236, 255

Lambert, Johann Heinrich, 205
Langland, William, 149
language of mathematics, 4, 47, 56
Leibniz, Gottfried Wilhelm, 27
lemma, 278–79
length in complex plane, 179, 180
Leonardo da Vinci, 76
“less than minus,” 170
limits, 87–90, 96–97, 252, 258, 273
lines: algebraic form, 155–56; correspondence

with points, 244–45; line segments, 240–41;
linear thinking, 235; parallel, 100–101; in
projective geometry, 208, 210–13, 218, 219,
221–23, 223–24, 302–7; slope, 156–57, 162

Linnaeus, Carolus, 169
Littlewood, J. E., 91, 289–90
Littlewood’s Miscellany (Littlewood), 289–90
Li(x), 71–72
Lloyd, Harold, 235
Lobkowitz, Juan Caramuel, 134
logarithms, 70, 72, 95, 268–70
lucky numbers, 4

magnitudes, 16
Mahavira, 1
major sixth interval, 138
Martingale System, 86
mass, 114, 277–78
“mathematical engine,” 34
Mathesis Audaz (Lobkowitz), 134
Maurice of Nassau (Maurice of Orange), 32
Maurolico, Francesco, 44–45
mean proportional, 142, 174
median, 111–12
Mendelssohn, Rebecca, 67
Menelaus of Alexandria, 181
metaphysics, 258
Michelangelo, 8
Millay, Edna St. Vincent, 124
Miloradovich, Mikhail, 204
Minkowski, Hermann, 95, 95, 99
Möbius, Augustus Ferdinand, 304
modulus, 179, 180, 183, 197
moon, 45
“more than infinity,” 236
“more than minus,” 170
Moses, 131
multiplication: alephs, 257; axioms of, 56–57,

59–60; closure, 37; complex numbers, 178–
84; field axioms, 38, 264–65; imaginary
numbers, 26–27; integers, 14; multiplicative
identity, 36; multiplicative inverses, 36, 55–
57, 271; natural numbers, 231; negative
numbers, 57–58; plane coordinates, 243;
polygon construction and, 147–48; square
roots, 38; square roots of negative numbers,
170; by zero, 7–8, 40

Murray, Gilbert, 100
music, 2, 16, 138

n-dimensional space, 246
n-gons, 144, 198. See also polygons

“nameless” numbers. See irrational numbers
Napier, John, 70
natural logarithms, 95, 269–70
natural numbers: 1–1 correspondence, 232–33,

235, 237; associative law, 34; axioms, 49–50;
cardinality, 251, 253; commutative law, 33;
complex plane and, 195–96; cube roots and,
288; functions and, 53; in hierarchy of num-
bers, 28; inductive proofs, 42–43; infinity
and, 228, 242; multiplicative inverses, 271;
ordinals and, 251–52; Peano’s Axioms, 46;
primes and, 60, 61–62, 64–65; Pythagorean
Theorem, 18–21, 42; real numbers compared
to, 240; sequences, 78–79; squares, 229–30;
sums, 29, 77–78; time and, 53; triangular
numbers, 8–9

negative numbers: 1–1 correspondence, 232–33,
235; abstract nature of, 13–14; debt, 12–13;
multiplying, 25, 57–58, 267

Neumann, John von, 24
Newton, Isaac: calculus, 188; complex plane, 27;

formalism, 36; infinite series, 191–92; on
vastness of mathematics, 77; Wordsworth
on, 49

Nietzsche, Friedrich, 228, 314
Nine Point Circle, 123–24
non-Euclidean space, 210
numbers. See also specific types of numbers (i.e.,

natural numbers, prime numbers, etc.): ab-
straction of, 13; cardinal, 231 (see also cardi-
nality); collections of, 229; coordinates,
154–55; countability, 232–34, 242, 253–54;
counting numbers, 4, 6, 8; counting primes,
73; decimal form, 21–24; Dedekind Cuts
and, 39–40, 44, 49, 179; even numbers, 19–
20; hierarchy of, 28; images of numbers, 27–
28; lucky numbers, 4; names of, 4, 6–7;
number line, 149; numerical coordinates (see
coordinate systems); one, 5; patterns, 8, 10;
positional notation, 7; shapes of, 8–10; signs
of, 36; tailing primes, 73; triangular, 8, 17–
18; uncountable numbers, 237; unnatural
numbers, 12; varieties of, 3–28; zero, 7

nursery rhymes, 3

objectivity, 215
obtuse triangles, 108, 129–30, 213–14, 278–79,

284–85
occult, 138
odd numbers, 12–13, 45
Odysseus, 162
Ohm, Georg, 33–35, 36, 67
Ohm, Martin, 33–34
Oksapmin of New Guinea, 6–7
omega (Ω), 254, 314
omega (ω), 251–52
on-line Annex, 66, 85
“On the Analytic Representation of Direction;

An Attempt” (Wessel), 175
On the Psychology of Military Incompetence

(Dixon), 47
open intervals, 237–42, 312
ordering, 233–34
ordinal numbers, 251–52, 253–54, 256–57
Oresme, Nicole d’ (Bishop of Lisieux), 92, 94–95
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organic geometry, 204
organic growth, 70, 269
orthocenters of triangles, 118–19, 121

Paine, Thomas, 8, 17
painting, 202
Palmanova, Italy, 166
Pappus of Alexandria, 140, 225, 226, 282, 304
parabolas, 226
paradigms, 200
paradoxes, 49–50, 258
parallel lines: convergence, 132; on coordinate

plane, 154–55; Euclid’s Fifth Postulate, 100–
104; non-Euclidean geometry, 264; parallel
postulate, 100–104, 116–17; polygon con-
struction and, 148; projective geometry and,
205, 220, 223–24; proofs, 114–15

parallelograms, 114–15, 117–18, 122, 176
partial sums, 86–87
Pascal, Blaise, 34, 225, 248
patterns: Cantor on, 245; intuition and, 10;

natural numbers, 77–78; prime numbers,
66–67; ratios, 87–88

Patterson, Paddy, 288
Peacock, George, 34, 34, 93–94, 149
Peacock’s Principle of Permanence, 34–35, 51–

52, 93–94, 227
Peano, Giuseppe, 46
Peano’s Axioms, 46, 54, 264–65
Peirce, Benjamin, 193
pentagonal numbers, 80–82, 85
pentagons, 136–46, 163–64, 165, 198
pentagrams, 137, 138
perpendicular bisectors, 108, 110
perpendicular lines, 106–8
personality in mathematics, 116, 229, 260. See

also Alcibiades Humor
perspective: axis of perspectivity, 219; cardinal-

ity, 240–41; center of perspectivity, 214, 220;
drawing, 202–4, 215–16; projective geometry
and, 214, 217, 219–20, 302–7; vanishing
point, 7

philosophy of mathematics, 31
physics, 116
pi (π), 68, 71–72, 189–91, 196–97
pictures as proofs, 91–92
Piers Plowman (Langland), 149
planes and plane geometry: cardinality, 246;

conic sections, 226; coordinate plane, 154;
Pappus’s theorem, 226; projective geometry
and, 206, 210–11, 215–18, 220, 222–24; se-
quences and, 100; triangle as fundamental
unit, 134

Plato, 31, 50
Playfair, John, 262
Plutarch, 26
Poetics (Aristotle), 100
Poincaré, Henri, 51, 96, 124, 124, 255
points: correspondence with lines, 244–45; in

projective geometry, 211–13, 219, 302–7
polygons: complex plane, 198–99; constructing,

133–34, 136–46, 147, 149–53, 164, 165–66,
288–92; pentagonal numbers, 80; polygonal
sequence, 83–84; prime numbers and, 165;
projective geometry and, 205; regular

n-gons, 134, 144–45, 198–99; triangle as
simplest form, 104–5; as two dimensional
objects, 200

polyhedra, 200
polynomials, 168, 169, 189, 292–300
polytopes, 200
Poncelet, Jean-Victor, 204, 204, 213, 227
positio falsa, 126, 128, 137
positional notation, 7
positions, 149
positive rationals, 234–35
postulates. See also axioms: angle-side-angle

(ASA) postulate, 104–5, 109; axiomatic sys-
tems, 50; Euclid’s Fifth Postulate, 100; paral-
lel postulate, 100–104, 116–17;
side-angle-side (SAS) postulate, 105, 107

Poussin, Charles Jean Gustave Nicolas de la
Vallée, 71

power sets, 248, 249–50, 256
prime numbers, 59–74; chaos and, 67; counting

primes, 73; distribution of, 62–65, 68–69;
divergent series, 270–76; factorial (!), 65; fac-
tors, 292–93; Fermat numbers, 165; Fermat
prime, 288; infinite series and, 98; polygons
and, 151, 165; prime reciprocals, 270–76;
prime sequences, 268; tailing primes, 73;
twin primes, 66, 72–73

Princess Ida, 161
Principle of Continuity, 227
projective geometry, 202–27; collinearity and,

216; correspondence and, 241; Euclid and,
207; impact of, 227; infinity and, 223; invari-
ants on, 302–7; “Kooshball” example, 210;
“pencil,” 206; Poncelet and, 205; projective
plane, 206, 208–10; projective three-space,
216, 220

proofs: addition of ratio series, 88–90; additive
identity, 266; associativity, 266; by contradic-
tion, 20, 56, 237, 249, 250, 288; correspon-
dence, 245; Euler Line, 119; of heptagon
construction, 291–92; imagination and, 246;
inductive, 42–44; infinite cardinalities, 240;
k-gonal sequences, 85; multiplication of
negatives, 267–68; pentagonal numbers, 80;
personality and, 30–31; pictorial representa-
tions, 91–92; prime numbers and, 61, 67;
Pythagorean Theorem, 29–30; quadratic
equation, 285–86, 286–88; reciprocals of
primes, 270–76; sum of odd numbers, 45;
sum of ratio series, 90; sum of the first n
odd integers, 263–64; symbolic proofs, 78–
79, 105–6; terminating decimals, 307–9; tri-
angles, 106–7, 112–16, 121–24

Proust, Marcel, 212
Ptolemy, 181
Punch, 58
pyramids, 217–18
Pythagoras, 16, 158, 180, 183, 262
Pythagorean Theorem, 18–21, 29–30, 104, 138,

140–41, 158–59
Pythagoreans, 18, 19–21, 32

Quadratic Equation, 140–41, 161–62, 285–86
quadratic functions, 168–69
quartic functions, 168–69
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radians, 189–90, 195, 197
rational numbers: coordinate plane, 154; corre-

spondence, 235–38; cube roots and, 288;
“Dedekind Cuts” and, 39–40; density of, 21;
division and, 25; functions and, 53; in hier-
archy of numbers, 28; infinity and, 233, 242;
integers as, 17; polygon construction and,
148, 149, 151; positive rationals, 233, 234–
35; Pythagorean Theorem and, 42; ratios
and, 88; square root extension fields, 156;
time and, 53

rational roots theorem, 293–94
ratios: infinity and, 17; limits and, 86–89; poly-

gon construction and, 148; Pythagorean
Theorem, 18–21; rational numbers and, 14–
16; triangular numbers and, 17; twin primes
and, 72

Ravel, Maurice Joseph, 132
real numbers: cardinality of, 250–51; compared

to naturals, 240; complex numbers and, 170;
complex roots of 1 and, 290–91; composi-
tion of, 24; coordinate plane, 154; corre-
spondence, 237, 238–39; “Dedekind Cuts,”
39–40; in hierarchy of numbers, 28; imagi-
nary numbers, 28; infinity and, 242; modu-
lus, 179; power sets and, 248; Pythagorean
Theorem and, 42; real number line, 241–42

rectangles, 137–38
reflection, 126
“Reflections on the General Cause of Winds”

(d’Alembert), 173
Règles pour la direction de l’esprit (Descartes), 32
relativity, 245
religion and theology, 258, 261, 288
revolutions, 262
Rhind Papyrus, 126
Richelot, Friedrich Julius, 165, 288
Riemann, Bernard, 47
Rimbaud, Arthur, 32, 79
Roland, Childe, 137
Romanticism, 34
roots, 25, 38, 168–69. See also square root exten-

sion fields; squares and square roots; com-
plex, 169, 193–94; cubic roots, 152, 170–72,
193–94, 197, 288, 292–300; fourth roots,
151–52; of “i,” 173; multiplication and, 38;
rational roots theorem, 293–94; roots of
unity, 198

Rosicrucians, 261
Russell, Bertrand, 260

Saccheri, Girolamo, 205
St. Augustine, 32
Saladin (Salah-al-Din Yusuf ibn-Ayyub), 131
al-Samaw’al, 46
Saracens, 131
Schopenhauer, Arthur, 255
Schroeder-Bernstein theorem, 309–13
Schumann, Robert, 34, 37, 304
Schumann problem, 265
Schwendenwein, 165, 288
self-evident truth, 32–33, 49
sequences and series, 77–99; convergent, 94–95,

96–97; defined, 79; divergent, 94–95, 96; on
Euclidean plane, 100; geometric, 86–89, 94,

96, 132; Harmonic Series, 94–96, 270–76;
infinite, 88, 92, 93–95, 116, 189, 192; k-gonal
sequences, 83–84, 85; Peacock on, 93–94; po-
lygonal, 83–84, 85; prime sequences, 268

series. See sequences and series
sets and set theory, 228–62; 1-1 correspondence,

231, 232, 237; alephs, 246–47, 255, 259, 313–
14; cardinality, 247–49, 249–51; consistent
and inconsistent, 259; contradictions of,
260–61; defining, 46; as fundamental, 39; in-
finite sets, 248; paradoxes of, 49, 258; power
sets, 248; set of all subsets, 309–13

Shandy, Tristam, 257
Shelly, Mary, 164
side-angle-side (SAS) postulate, 105, 107
signs of numbers, 36
simplicity, 167
sine (sin), 181–88, 190–97, 296, 301, 306
slope, 156–57, 162
Socrates, 25–26, 75
solids, 93
Solon, 75
Sophocles, 189
sorcery, 137
space: cardinality, 246; n-dimensional space,

246; non-Euclidean, 210; three dimensional
projective space, 216, 220; variety of geom-
etries, 52

Spinoza, Baruch, 200
square root extension fields, 151, 153–59, 159–

61, 161–64
squares and square roots. See also square root

extension fields: addition, 12; cardinality,
245; circles and, 198; complex numbers and,
171; construction of, 133–34, 135–36; cube
roots compared to, 193; imaginary numbers
and, 172–73; irrational numbers and, 21;
multiplication and, 38; natural numbers and,
228, 229–30; negative numbers and, 25; pen-
tagonal numbers and, 85; polygon construc-
tion and, 144–45, 151–52; reciprocals of
primes, 99; square numbers, 9–11, 79–81

statistics, 194
Stevenson, Robert Louis, 5
Stoic philosophers, 31, 32, 48
strings of decimals, 309
structure, 247, 264–66
subcollections, 314
subfield, 150
subscripts, 238
subsets, 247–51, 309–13, 314
subtraction: complex plane, 176–77; debt, 12–13;

imaginary numbers, 26–27; lengths, 147; na-
tural numbers, 12–13; negative numbers, 25;
of plane coordinates, 243; polygon construc-
tion and, 147; square root extension fields,
156; square roots of negative numbers, 169

surveying, 175–76, 177
Sylvester, J. J., 210
symbols: alephs (ℵ), 246–47, 254, 256–57, 259;

factorial (!), 65; infinity (∞), 90; mathemati-
cians’ use of, 2; “n,” 10; omega (Ω), 254, 314;
omega (ω), 251–52; Peano and, 46; pi (π),
68, 71–72, 189–91, 196–97; polygonal se-
quences, 85; in proofs, 30–31, 105–6; sym-
bolic proofs, 78–79
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symmetry: in algebra, 286; complex plane, 176;
functions and logarithms, 270; in number
shapes, 11; symbolic proofs, 78–79

Tablet of the Law, 38
tailing primes, 73
tangent lines, 111
Tanton, Jim, 278–79
tautology, 32–33
terminating decimals, 307–9
tetractys, 18, 28
Thabit ibn Qurra, 228, 257
Thales, 120, 124, 142, 282
Thales’s Converse, 120, 122–23, 142
theorems, 29–55. See also specific theorems
Theory of Everything, 200
Theosophy, 261
three-dimensional space, 216, 246
Thurston, William P., 174
time, 3, 6, 13–14, 53
Torricelli, Evangelista, 93, 281
Tower of Mathematics, 138
transfinite numbers, 252–56, 260
transitive property, 108, 115, 117, 121, 158, 161,

236
trapezoids, 91
triangles: altitudes, 116, 118–19, 121–24, 128–30;

base angles, 140; bisectors, 108; centroid,
112–15, 277–78; circle’s relationship to, 121–
24, 135–36, 142; circumcircle and circum-
center, 109, 276–77; compared to other
polygons, 200; congruent, 104–5, 109–10,
144; construction of, 133–34; coplanar, 218–
19; cube roots and, 197; equilateral triangles,
112, 123–24, 135, 197, 283–84; Euclidean ge-
ometry and, 104–5, 106–7; Euler line, 119;
Fermat point, 279–85; hypotenuse, 21, 108,
110–11, 182, 276–77; incenter and incircle,
111; isosceles triangles, 225; Jia Xian’s tri-
angle, 248; median, 113–14, 115–16; obtuse
triangles, 108, 129–30, 213–14, 278–79, 284–
85; orthocenter, 118–19, 121; parallel postu-
late and, 100–104; pentagon construction
and, 139–40; polygon construction and, 142;
prime numbers and, 165; projective geom-

etry, 213–16, 218, 225; Pythagorean Theo-
rem, 18–21; ratios and, 15–16; right tri-
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