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Abstract

We review Kaluza’s five-dimensional theory of gravity and discuss
the means by which the seemingly unnatural cylinder hypothesis can
be removed. Along the way we see that the geometry of a five di-
mensional empty universe induces four dimensional electromagnetic
radiation (and implies Maxwell’s equations) when the cylinder con-
dition is assumed and induces four dimensional massive matter when
the cylinder condition is dropped.
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1 Introduction

Kaluza attempted to unify Einstein’s theory of gravity with Maxwell’s theory
of electromagnetism by adding a fifth dimension to the universe. Kaluza as-
sumed that there would be no five-dimensional matter, that the mathematical
structure of general relativity would be extended to five dimensions without
changes, and that the quantities would have no dependence on the fifth co-
ordinate. A consequence of his work was that an empty five-dimensional
universe implied the presence of four-dimensional electromagnetic radiation
and Maxwell’s equations. However, the third assumption, called the cylinder
condition, was considered unnatural. Klein and others attempted to mod-
ify Kaluza’s theory in a manner that allowed the cylinder condition to be
dropped. Some of this work led to modern string theory as one possible
grand unification theory.

In this paper, we will review Kaluza’s theory and discuss directions in which
the cylinder condition has been removed. The direction depends in part
on how one interprets the fifth dimension. Klein assumed the fifth dimen-
sion was lengthlike. This required that the fifth dimension was compact.
This leads to theories in which higher-dimensional matter must be present.
The STM hypothesis (where “STM” stands for “Space-Time-Matter”), on
the other hand, assumes the fifth dimension is masslike. This leads to non-
compactified five dimensional theories of gravity in which, when one removes
the cylinder condition, four dimensional massive matter is induced by the
geometry of a five-dimensional empty universe.
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2 Maxwell’s Equations and Relativity

2.1 Maxwell’s Equations in Special Relativity

In order to understand Kaluza’s initial results, we must begin with Maxwell’s
equations. Maxwell’s equations are the fundamental equations in electricity
and magnetism. Electromagnetic radiation is a consequence of these equa-
tions, as is the value of the speed of light. Maxwell’s equations in their
traditional differential form are as follows:

~∇ · ~E =
ρ

ε0

(2.1)

~∇ · ~B = 0 (2.2)

~∇× ~E = −∂ ~B

∂t
(2.3)

~∇× ~B = µ0
~J + µ0ε0

∂ ~E

∂t
. (2.4)

The vectors ~E and ~B are the electric and magnetic fields respectively, ρ is
charge density, ~J is the current density, and µ0 and ε0 are constants related
to the speed of light by

c =
1

√
µ0ε0

.

Equations (2.1) and (2.2) are Gauss’ law for the electric and magnetic fields
respectively. Equation (2.3) is Faraday’s law, and equation (2.4) is the
Ampère-Maxwell law.

We will rewrite Maxwell’s equations in a form that is suitable for special
relativity. To do so, we define the basic rank one and rank two tensors that
we will need. First we define the 4-current to be:

J = (cρ, ~J).

There is a continuity equation given by

∂µJ
µ = 0.

This is interpreted physically as a local conservation of charge. This implies
the familiar continuity equation of electricity and magnetism:

~∇ · ~J = −∂ρ

∂t
.
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Next we define the 4-potential. The electric field ~E is conservative and is
therefore the gradient of a scalar potential Φ. Equation (2.2) indicates that
~B is a solenoidal vector field, and hence is the curl of a vector field ~A, called
the vector potential. We define the 4-potential in the obvious way:

A = (Φ/c, ~A).

Next define the electromagnetic field tensor to be the rank two antisymmetric
contravariant tensor F whose components are

F µν = ∂µAν − ∂νAµ.

Note that the partial derivative operator with an upper index in the context
of a general metric is given by

∂µ = gαµ∂α.

If we arrange the components of F in a matrix, we have

F µν =


0 E1/c E2/c E3/c

−E1/c 0 B3 −B2

−E2/c −B3 0 B1

−E3/c B2 −B1 0

 .

Recall that the classical Lorentz force from the electric and magnetic fields
on a charge q moving at velocity ~u is given by

~f = q ~E + q~u× ~B.

The 4-force can be shown to satisfy

fµ = quνF
µν

where uν are the covariant components of the 4-velocity of the charge. See
pages 458-459 of [PS02] for the derivation. Finally, we define the dual field
tensor G to be an antisymmetric contravariant rank 2 tensor whose compo-
nents are

Gµν =
1

2
εµναβFαβ,
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where Fαβ is F with its indices lowered and εµναβ is a generalization of the
rank 3 Levi-Cevita tensor. The components of G are given by

Gµν =


0 B1 B2 B3

−Bx 0 −E3/c E2/c
−B2 E3/c 0 −E1/c
−B3 −E2/c E1/c 0

 .

In terms of these tensors, Maxwell’s equations can be written

∂νF
µν = µ0J

µ (2.5)

∂νG
µν = 0. (2.6)

See pages 461-462 of [PS02].

As formulated, Maxwell’s equations are invariant under Lorentz boosts. See
section 12.4 of [PS02] for the argument.

2.2 Maxwell’s Equations in General Relativity

When passing to more general coordinates, we want to write Maxwell’s equa-
tions in a covariant form appropriate for general relativity. We cannot merely
replace the partial derivatives with covariant derivatives. Doing so would
cause conservation laws to be violated. See Section 4.3 of [Wal84] for a dis-
cussion of this issue. The correct way to write Maxwell’s equations in general
coordinates is

∇µFµν = κJν (2.7)

∇λFµν −∇µFλν +∇νFλµ = 0, (2.8)

where κ is a constant. In terms of the 4-potential, in order to preserve
conservation laws we introduce a term involving the Ricci curvature, giving
us

∇µ∇µAν −Rλ
νAλ = κJν .

See section 4.3 of [Wal84].

3 Kaluza’s Five Dimensional Spacetime

Kaluza brought gravity and electromagnetism together with a five-dimensional
theory of spacetime. The key assumptions of Kaluza’s model are:

4



1. the model should maintain Einstein’s vision that nature is pure gravity;

2. the mathematics of general relativity is not altered, merely extended
to five dimensions; and

3. there is no dependence on the fifth coordinate.

The last assumption, called the “cylinder assumption,” appears to be the
most contrived. However, we will see it is possible to interpret the fifth co-
ordinate in a manner where this assumption is more natural.

In accordance with the second assumption, the definition of the Christof-
fel symbols, the Riemann tensor, the Ricci tensor, the Einstein tensor, and
other fundamental quantities of general relativity are not altered. They are
merely extended so that the indices run from 0 to 4. Such indices will be
denoted by capital letters. Assumption 1 implies that the initial equation
should be free of matter. Therefore the Einstein equation in five dimensions
is

GAB = 0

where G is the five-dimensional Einstein tensor. As in the four-dimensional
case, this implies that

RAB = 0 (3.1)

where R is the five-dimensional Ricci tensor. As in the four dimensional case,
everything reduces to the properties of the metric.

Consider a four dimensional metric tensor gαβ. Kaluza extended this met-
ric to force the fifth dimension to induce electromagnetism. To do so, the gα4

components of the metric are connected with the electromagnetic potential
Aαβ and g44 is defined in terms of a scalar field ϕ. There is also a scaling
constant κ, necessary for certain results when this is treated variationally.
The four dimensional metric is taken to have signature (+ − − −). We
work in units where c = 1, ~ = 1 and G = 1. The five-dimensional metric
given by Kaluza, arranged as a matrix in block form, is:

gAB =

(
gαβ + κ2ϕ2AαAβ κϕ2Aα

κϕ2Aβ ϕ2

)
.
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Now we assume the cylinder conditions: all derivatives (covariant or other-
wise) with respect to the 4-coordinate are zero. Let

TEM
αβ =

1

4
gαβFγδF

γδ − F γ
αFβγ

be the electromagnetic stress-energy tensor, Gαβ the 4-dimensional Einstein
tensor, and � the D’Alembertion operator gαβ∂β∂α. With the cylinder condi-
tion, plugging the metric gAB into equation (3.1) yields the field equations:

Gαβ =
κ2ϕ2

2
TEM

αβ − 1

ϕ
[∇α(∂βϕ)− gαβ�ϕ] , (3.2)

∇αFαβ = −3
∂αϕ

ϕ
Fαβ, and (3.3)

�ϕ =
κ2ϕ3

4
FαβFαβ. (3.4)

Now assume the scalar field ϕ is constant. Let the scaling parameter be given
so that

κϕ = 4
√

πG

where we include G only for purposes of recognizing our results as something
more familiar. Then equations (3.2) and (3.3) become:

Gαβ = 8πGϕ2TEM
αβ (3.5)

∇αFαβ = 0. (3.6)

This is Kaluza and Klein’s original result. Equation (3.5) is the Einstein
equation and equation (3.6) is the same as Equation (2.7) in the absence
of a current. Therefore, the Einstein field equation with no matter in five
dimensions gives two of Maxwell’s equations in general coordinates.1 On the
other hand, if ϕ is constant then equation (3.4) becomes

FαβFαβ = 0.

This is a little more problematic, and raises some of the early controversy
surrounding the presence of a cosmological constant.

There are two consequences of equations (3.5) and (3.6). First of all, Maxwell’s

1It is not clear whether or not Kaluza and Klein obtained Equation (2.8).
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equations are now part of the field equations that are obtained from the
five-dimensional Einstein equation in a vacuum. In other words, Maxwell’s
equations, and as a consequence electromagnetism, are a product of pure ge-
ometry. The other consequence is that the Einstein equation in a vacuum in
five dimensions induces the Einstein equation with matter (electromagnetic
radiation) in four dimensions. Therefore matter in the observable universe is
a consequence of geometry in a five-dimensional universe.

4 Dropping the Cylinder Condition

The consequences of Kaluza’s theory led to several attempts to fix its short-
comings. These shortcomings were twofold. The first, and most obvious,
problem is that a fifth dimension is not observed. The second problem is
that the cylinder condition seems unnatural. If one assumes that the fifth
dimension is lengthlike, the typical way the first of these shortcoming is re-
solved involves the assumption that the extra dimension is compact. In this
setting, the cylinder condition is abandoned and the consequences are stud-
ied. Another way to resolve these shortcomings is to assume that the fifth
dimension represents something other than time or space. This leads to non-
compactified theories. For more detail on these theories than that presented
below, see [OW97] and the citations therein.

4.1 Compactified Theories

Klein modified Kaluza’s theory on the assumption that the fifth dimension
was lengthlike. This in turn requires the fifth dimension to be very “small.”
In other words, the fifth dimension had to be compact with a small diame-
ter. Specifically, Klein assumed that the fifth dimension was a circle, that is
topologically S1, with a very small radius.2 As of the end of the twentieth
century, observations constrained the radius of the circles in this dimension
to be less than 10−18 meters [OW97] (citing [KS91]).

Next one drops the cylinder condition. Since the fifth dimension is circu-
lar, the dependence on the fifth coordinate is periodic. Consequently metric

2Since we are assuming the fifth dimension should be a smooth manifold, by the clas-
sification of 1-manifolds, the assumption that the fifth dimension is topologically S1 is
equivalent to the assumption that the fifth dimension is compact.
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coefficients and components of other tensors can be expanded into Fourier
series:

gαβ(x, y) =
∑
n∈Z

g
(n)
αβ einy/r

Aα(x, y) =
∑
n∈Z

A(n)
α (x)einy/r

ϕ(x, y) =
∑
n∈Z

ϕ(n)(x)einy/r

where r is the radius of the circles in the fifth dimension, x is a vector corre-
sponding to position in four dimensional spacetime, y is a coordinate in the
fifth dimension, and the superscript (n) denotes the nth Fourier mode.

The expansion of the fundamental quantities into Fourier series above hints
at an explanation of the quantization of charge. Unfortunately this would
involve consequences for masses of various modes which diverge from obser-
vation.

It is also tempting to add other “compact” dimensions to bring the strong and
weak forces into the game. The number of required dimensions is typically
placed at ten or eleven. The number of dimensions should be the smallest
that can accommodate the minimum symmetry group in the standard model:
SU(3) × SU(2) × U(1). At least six of these dimensions are compact, con-
sisting of Calabi-Yau 3-folds (complex manifolds of 3 dimensions have 6 real
dimensions). One problem, however, is that matter must be present in the
additional dimensions, violating Kaluza’s first assumption.

4.2 Non-Compactified Theories

If one does not assume that the fifth dimension is lengthlike, and one does
not assume the cylinder condition, there is no reason to assume the fifth
dimension is compact and no restrictions on its 1-dimensional topology are
necessary. One alternative is to associate the fifth dimension with rest mass.
This is called the STM-hypothesis (where “STM” stands for “Space-Time-
Matter”). There are several reasons why this interpretation is theoretically
appealing. See section 6.10 of [OW97].
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Without the cylinder condition, we may assume we are in coordinates in
which the electromagnetic potential vanishes. We also drop the scaling fac-
tor κ. The metric tensor is now given by

ĝAB =

(
gαβ 0
0 εϕ

)
where we put hats on components of five-dimensional tensors to avoid con-
fusion. Here ε is ±1, depending on the appropriate sign in the signature of
the metric for the fifth dimension.

The αβ components of the Ricci tensor are now given by:

R̂αβ = Rαβ−
∇β(∂αϕ)

ϕ
+

ε

2ϕ2

(
∂4ϕ∂4gαβ

ϕ
− ∂4gαβ + gγδ∂4gαγ∂4gβδ −

gγδ∂4gαβ

2

)
.

(4.1)
There are also equations for the other components of the Ricci tensor. See
section 6.2 of [OW97], but we will not discuss them in this paper.

We assume Kaluza’s first hypothesis. Therefore the Einstein equation re-
duces to

R̂AB = 0.

This implies:

Rαβ =
∇β(∂αϕ)

ϕ
− ε

2ϕ2

(
∂4ϕ∂4gαβ

ϕ
− ∂4gαβ + gγδ∂4gαγ∂4gβδ −

gγδ∂4gαβ

2

)
.

(4.2)
We would like to show that this assumption on the geometry induces the
existence of matter in four dimensions. We require the existence of a matter
stress-energy tensor Tαβ such that

8πGTαβ = Gαβ = Rαβ −
1

2
Rgαβ.

Contracting equation (4.2) with gαβ (and invoking an equation following from
the 44-component of R̂AB) yields the four-dimensional scalar curvature

R =
ε

4ϕ2

[
∂4g

αβ∂4gαβ + (gαβ∂4gαβ)2
]
.
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Hence the 4-dimensional Einstein equation can be written

8πGTαβ =
∇β(∂αϕ)

ϕ
− ε

2ϕ2

[
∂4ϕ∂4gαβ

ϕ
− ∂4gαβ + gγδ∂4gαγ∂4gβδ−

gγδ∂4gαβ

2
+

gαβ

4

(
∂4g

αβ∂4gαβ + (gαβ∂4gαβ)2
)]

.

We can use this equation to define the matter stress-energy tensor. If de-
fined as such, Tαβ is symmetric. In addition, if we reintroduce the cylinder
condition, then contracting Tαβ with the metric yields

T = gαβTαβ = 0.

This in turn implies that the “matter fluid” satisfies an equation of state
p = ρ/3. This implies radiation, which suggests the result obtained orig-
inally by Kaluza. That is, in the presence of the cylinder condition, five
dimensional geometry induces 4-dimensional matter that takes on the form
of electromagnetic radiation (i.e. photons). Removing the cylinder condition
allows five dimensional geometry to induce four-dimensional massive matter.

There are several solutions of the field equation (4.2) and the field equations
that come out of expressions for the components RA4 of the Ricci tensor. See
sections 6.4 through 6.8 of [OW97].

5 Conclusion

We have seen that adding a fifth dimension and assuming the cylinder condi-
tion, the five dimensional Einstein field equations in a vacuum imply the pres-
ence of 4-dimensional electromagnetic radiation and Maxwell’s equations. If
one assumes that the fifth dimension is lengthlike, it is natural to also assume
that the fifth dimension is compact and very small. This can be extended to
higher dimensions in an attempt to create a grand unified theory. However
the presence of higher-dimensional matter is typically required. On the other
hand, one can interpret the fifth dimension to be masslike. Then the fifth
dimension need not be compact. As a consequence, one can define the four-
dimensional mass stress-energy tensor in such a way that the five-dimensional
Einstein field equations without the cylinder condition induces the presence
of massive matter in four dimensions. In other words, the presence of matter
is a consequence of the geometry of the universe.
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