
Major American Universities Ph.D.

Qualifying Questions and Solutions

 

Problems and Solutions
on Atomic, Nuclear and

Particle Physics

Compiled by

The Physics Coaching Class

University of Science and

Technology of China

Edited by

Yung-Kuo Lim
National University of Singapore

 World Scientific
 Singapore •  New Jersey • London   • Hong Kong



P u b l i s h e d  b y

World Scientific Publishing Co. Pte. Ltd.

P 0 Box 128, Farrer Road, Singapore 912805

USA office:  Suite lB, 1060 Main Street, River Edge, NJ 07661

UK office:  57 Shelton Street, Covent Garden, London WC2H 9HE

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the B r i t i s h Library.

Major American Universities Ph.D. Qualifying Questions and Solutions

PROBLEMS AND SOLUTIONS ON ATOMIC, NUCLEAR AND PARTICLE PHYSICS

Copyright ©  2000 by World Scientific Publishing Co. Pte. Ltd.

All rights reserved. This book, or parts, thereof may not be reproduced in any form or by any means,

electronic or mechanical, including photocopying, recording or any information storage and retrieval

system now known or to be invented, without written permission from the Publisher.

For photocopying of material in this volume, please pay a copying fee through the Copyright

Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to

photocopy is not required from the publisher.

ISBN 981-02-3917-3

981-02-3918-l (pbk)

This book is printed on acid-free paper.

Printed in Singapore by Uto-Print



PREFACE

This series of physics problems and solutions, which consists of seven

volumes — Mechanics, Electromagnetism, Optics, Atomic, Nuclear and

Particle Physics, Thermodynamics and Statistical Physics, Quantum Me-

chanics, Solid State Physics and Relativity, contains a selection of 2550

problems from the graduate-school entrance and qualifying examination

papers of seven U.S. universities — California University Berkeley Cam-

pus, Columbia University, Chicago University, Massachusetts Institute of

Technology, New York State University Buffalo Campus, Princeton Uni-

versity, Wisconsin University — as well as the CUSPEA and C.C. Ting’s

papers for selection of Chinese students for further studies in U.S.A., and

their solutions which represent the effort of more than 70 Chinese physicists,

plus some 20 more who checked the solutions.

The series is remarkable for its comprehensive coverage. In each area

the problems span a wide spectrum of topics, while many problems overlap

several areas. The problems themselves are remarkable for their versatil-

ity in applying the physical laws and principles, their uptodate realistic

situations, and their scanty demand on mathematical skills. Many of the

problems involve order-of-magnitude calculations which one often requires

in an experimental situation for estimating a quantity from a simple model.

In short, the exercises blend together the objectives of enhancement of one’s

understanding of physical principles and ability of practical application.

The solutions as presented generally just provide a guidance to solving

the problems, rather than step-by-step manipulation, and leave much to

the students to work out for themselves, of whom much is demanded of the

basic knowledge in physics. Thus the series would provide an invaluable

complement to the textbooks.

The present volume consists of 483 problems. It covers practically the

whole of the usual undergraduate syllabus in atomic, nuclear and particle

physics, but in substance and sophistication goes much beyond. Some

problems on experimental methodology have also been included.

In editing, no attempt has been made to unify the physical terms, units

and symbols. Rather, they are left to the setters’ and solvers’ own prefer-

ence so as to reflect the realistic situation of the usage today. Great pains

has been taken to trace the logical steps from the first principles to the

final solution, frequently even to the extent of rewriting the entire solution.

v



vi Preface

In addition, a subject index to problems has been included to facilitate the

location of topics. These editorial efforts hopefully will enhance the value

of the volume to the students and teachers alike.

Yung-Kuo Lim

Editor



INTRODUCTION

Solving problems in course work is an exercise of the mental facilities,

and examination problems are usually chosen, or set similar to such prob-

lems. Working out problems is thus an essential and important aspect of

the study of physics.

The series Major American University Ph.D. Qualifying Questions and

Solutions comprises seven volumes and is the result of months of work

of a number of Chinese physicists. The subjects of the volumes and the

respective coordinators are as follows:

1. Mechanics (Qiang Yan-qi, Gu En-pu, Cheng Jia-fu, Li Ze-hua, Yang

De-tian)

2. Electromagnetism (Zhao Shu-ping, You Jun-han, Zhu Jun-jie)

3. Optics (Bai Gui-ru, Guo Guang-can)

4. Atomic, Nuclear and Particle Physics (Jin Huai-cheng, Yang Bao-

zhong, Fan Yang-mei)

5. Thermodynamics and Statistical Physics (Zheng Jiu-ren)

6. Quantum Mechanics (Zhang Yong-de, Zhu Dong-pei, Fan Hong-yi)

7. Solid State Physics and Miscellaneous Topics (Zhang Jia-lu, Zhou

You-yuan, Zhang Shi-ling).

These volumes, which cover almost all aspects of university physics,

contain 2550 problems, mostly solved in detail.

The problems have been carefully chosen from a total of 3100 prob-

lems, collected from the China-U.S.A. Physics Examination and Applica-

tion Program, the Ph.D. Qualifying Examination on Experimental High

Energy Physics sponsored by Chao-Chong Ting, and the graduate qualify-

ing examinations of seven world-renowned American universities: Columbia

University, the University of California at Berkeley, Massachusetts Insti-

tute of Technology, the University of Wisconsin, the University of Chicago,

Princeton University, and the State University of New York at Buffalo.

Generally speaking, examination problems in physics in American uni-

versities do not require too much mathematics. They can be character-

ized to a large extent as follows. Many problems are concerned with the

various frontier subjects and overlapping domains of topics, having been

selected from the setters own research encounters. These problems show a

“modern” flavor. Some problems involve a wide field and require a sharp

mind for their analysis, while others require simple and practical methods

vii



viii Introduction

demanding a fine “touch of physics”. Indeed, we believe that these prob-

lems, as a whole, reflect to some extent the characteristics of American

science and culture, as well as give a glimpse of the philosophy underlying

American education.

That being so, we considered it worthwhile to collect and solve these

problems, and introduce them to students and teachers everywhere, even

though the work was both tedious and strenuous. About a hundred teachers

and graduate students took part in this time-consuming task.

This volume on Atomic, Nuclear and Particle Physics which contains

483 problems is divided into four parts: Atomic and Molecular Physics

(142), Nuclear Physics (120), Particle Physics (90), Experimental Methods

and Miscellaneous topics (131).

In scope and depth, most of the problems conform to the usual un-

dergraduate syllabi for atomic, nuclear and particle physics in most uni-

versities. Some of them, however, are rather profound, sophisticated, and

broad-based. In particular they demonstrate the use of fundamental prin-

ciples in the latest research activities. It is hoped that the problems would

help the reader not only in enhancing understanding of the basic principles,

but also in cultivating the ability to solve practical problems in a realistic

environment.

This volume was the result of the collective efforts of forty physicists

involved in working out and checking of the solutions, notably Ren Yong,

Qian Jian-ming, Chen Tao, Cui Ning-zhuo, Mo Hai-ding, Gong Zhu-fang

and Yang Bao-zhong.
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PHYSICS



1. ATOMIC PHYSICS (1001 1122)

1001

Assume that there is an announcement of a fantastic process capable of
putting the contents of physics library on a very smooth postcard. Will it
be readable with an electron microscope? Explain.

(Columbia)

Solution:

Suppose there are 106 books in the library, 500 pages in each book, and
each page is as large as two postcards. For the postcard to be readable,
the planar magnification should be 2 × 500× 106 ≈ 109, corresponding to
a linear magnification of 104.5. As the linear magnification of an electron
microscope is of the order of 800,000, its planar magnification is as large as
1011, which is sufficient to make the postcard readable.

1002

At 1010 K the black body radiation weighs (1 ton, 1 g, 10−6 g, 10−16 g)
per cm3.

(Columbia)

Solution:

The answer is nearest to 1 ton per cm3.

The radiant energy density is given by u = 4σT 4/c, where σ = 5.67×
10−8 Wm−2 K−4 is the Stefan–Boltzmann constant. From Einstein’s mass-
energy relation, we get the mass of black body radiation per unit volume as
u = 4σT 4/c3 = 4×5.67×10−8×1040/(3×108)3 ≈ 108 kg/m3 = 0.1 ton/cm3.

1003

Compared to the electron Compton wavelength, the Bohr radius of the
hydrogen atom is approximately

(a) 100 times larger.

(b) 1000 times larger.

(c) about the same.
(CCT )

3



4 Problems and Solutions in Atomic, Nuclear and Particle Physics

Solution:

The Bohr radius of the hydrogen atom and the Compton wavelength

of electron are given by a = �
2

me2
and λc =

h
mc

respectively. Hence a
λc
=

1
2π (

e2

�c
)−1 = 137

2π = 22, where e2/�c is the fine-structure constant. Hence

the answer is (a).

1004

Estimate the electric field needed to pull an electron out of an atom in

a time comparable to that for the electron to go around the nucleus.

(Columbia)

Solution:

Consider a hydrogen-like atom of nuclear charge Ze. The ionization

energy (or the energy needed to eject the electron) is 13.6Z2 eV. The orbit-

ing electron has an average distance from the nucleus of a = a0/Z, where

a0 = 0.53× 10−8 cm is the Bohr radius. The electron in going around the

nucleus in electric field E can in half a cycle acquire an energy eEa. Thus

to eject the electron we require

eEa � 13.6 Z2 eV ,

or

E � 13.6 Z3

0.53× 10−8 ≈ 2× 10
9 Z3 V/cm .

1005

As one goes away from the center of an atom, the electron density

(a) decreases like a Gaussian.

(b) decreases exponentially.

(c) oscillates with slowly decreasing amplitude.

(CCT )



Atomic and Molecular Physics 5

Solution:

The answer is (c).

1006

An electronic transition in ions of 12C leads to photon emission near

λ = 500 nm (hν = 2.5 eV). The ions are in thermal equilibrium at an

ion temperature kT = 20 eV, a density n = 1024 m−3, and a non-uniform

magnetic field which ranges up to B = 1 Tesla.

(a) Briefly discuss broadening mechanisms which might cause the tran-

sition to have an observed width ∆λ greater than that obtained for very

small values of T , n and B.

(b) For one of these mechanisms calculate the broadened width ∆λ using

order-of-magnitude estimates of needed parameters.

(Wisconsin)

Solution:

(a) A spectral line always has an inherent width produced by uncertainty

in atomic energy levels, which arises from the finite length of time involved

in the radiation process, through Heisenberg’s uncertainty principle. The

observed broadening may also be caused by instrumental limitations such

as those due to lens aberration, diffraction, etc. In addition the main causes

of broadening are the following.

Doppler effect: Atoms or molecules are in constant thermal motion at

T > 0 K. The observed frequency of a spectral line may be slightly changed

if the motion of the radiating atom has a component in the line of sight, due

to Doppler effect. As the atoms or molecules have a distribution of velocity

a line that is emitted by the atoms will comprise a range of frequencies

symmetrically distributed about the natural frequency, contributing to the

observed width.

Collisions: An atomic system may be disturbed by external influences

such as electric and magnetic fields due to outside sources or neighboring

atoms. But these usually cause a shift in the energy levels rather than

broadening them. Broadening, however, can result from atomic collisions

which cause phase changes in the emitted radiation and consequently a

spread in the energy.
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(b) Doppler broadening: The first order Doppler frequency shift is given

by ∆ν = ν0vx
c , taking the x-axis along the line of sight. Maxwell’s velocity

distribution law then gives

dn ∝ exp
(
−Mv2x
2kT

)
dvx = exp

[
−Mc2

2kT

(
∆ν

ν0

)2
]
dvx ,

where M is the mass of the radiating atom. The frequency-distribution of

the radiation intensity follows the same relationship. At half the maximum

intensity, we have

∆ν = ν0

√
(ln 2)2kT

Mc2
.

Hence the line width at half the maximum intensity is

2∆ν =
1.67c

λ0

√
2kT

Mc2
.

In terms of wave number ν̃ = 1
λ
= ν

c
we have

ΓD = 2∆ν̃ =
1.67

λ0

√
2kT

Mc2
.

With kT = 20 eV, Mc2 = 12× 938 MeV, λ0 = 5× 10−7 m,

ΓD =
1.67

5× 10−7

√
2× 20

12× 938× 106 = 199 m
−1 ≈ 2 cm−1 .

Collision broadening: The mean free path for collision l is defined by

nlπd2 = 1, where d is the effective atomic diameter for a collision close

enough to affect the radiation process. The mean velocity v̄ of an atom can

be approximated by its root-mean-square velocity given by 1
2Mv2 = 3

2 kT .

Hence

v̄ ≈
√
3kT

M
.

Then the mean time between successive collisions is

t =
l

v̄
=

1

nπd2

√
M

3kT
.
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The uncertainty in energy because of collisions, ∆E, can be estimated from

the uncertainty principle ∆E · t ≈ �, which gives

∆νc ≈
1

2πt
,

or, in terms of wave number,

Γc =
1

2
nd2
√
3kT

Mc2
∼ 3× 10

−3

λ0

√
2kT

Mc2
,

if we take d ≈ 2a0 ∼ 10−10 m, a0 being the Bohr radius. This is much
smaller than Doppler broadening at the given ion density.

1007

(I) The ionization energy EI of the first three elements are

Z Element EI

1 H 13.6 eV
2 He 24.6 eV
3 Li 5.4 eV

(a) Explain qualitatively the change in EI from H to He to Li.

(b) What is the second ionization energy of He, that is the energy re-

quired to remove the second electron after the first one is removed?

(c) The energy levels of the n = 3 states of the valence electron of

sodium (neglecting intrinsic spin) are shown in Fig. 1.1.

Why do the energies depend on the quantum number l?

(SUNY, Buffalo)

Fig. 1.1
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Solution:

(a) The table shows that the ionization energy of He is much larger than

that of H. The main reason is that the nuclear charge of He is twice than

that of H while all their electrons are in the first shell, which means that the

potential energy of the electrons are much lower in the case of He. The very

low ionization energy of Li is due to the screening of the nuclear charge by

the electrons in the inner shell. Thus for the electron in the outer shell, the

effective nuclear charge becomes small and accordingly its potential energy

becomes higher, which means that the energy required for its removal is

smaller.

(b) The energy levels of a hydrogen-like atom are given by

En = −
Z2

n2
× 13.6 eV .

For Z = 2, n = 1 we have

EI = 4× 13.6 = 54.4 eV .

(c) For the n = 3 states the smaller l the valence electron has, the larger

is the eccentricity of its orbit, which tends to make the atomic nucleus

more polarized. Furthermore, the smaller l is, the larger is the effect of

orbital penetration. These effects make the potential energy of the electron

decrease with decreasing l.

1008

Describe briefly each of the following effects or, in the case of rules, state

the rule:

(a) Auger effect

(b) Anomalous Zeeman effect

(c) Lamb shift

(d) Landé interval rule

(e) Hund’s rules for atomic levels

(Wisconsin)

Solution:

(a) Auger effect: When an electron in the inner shell (say K shell) of

an atom is ejected, a less energetically bound electron (say an L electron)
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may jump into the hole left by the ejected electron, emitting a photon. If

the process takes place without radiating a photon but, instead, a higher-

energy shell (say L shell) is ionized by ejecting an electron, the process is

called Auger effect and the electron so ejected is called Auger electron. The

atom becomes doubly ionized and the process is known as a nonradiative

transition.

(b) Anomalous Zeeman effect: It was observed by Zeeman in 1896 that,

when an excited atom is placed in an external magnetic field, the spectral

line emitted in the de-excitation process splits into three lines with equal

spacings. This is called normal Zeeman effect as such a splitting could

be understood on the basis of a classical theory developed by Lorentz.

However it was soon found that more commonly the number of splitting of

a spectral line is quite different, usually greater than three. Such a splitting

could not be explained until the introduction of electron spin, thus the name

‘anomalous Zeeman effect’.

In the modern quantum theory, both effects can be readily understood:

When an atom is placed in a weak magnetic field, on account of the in-

teraction between the total magnetic dipole moment of the atom and the

external magnetic field, both the initial and final energy levels are split

into several components. The optical transitions between the two multi-

plets then give rise to several lines. The normal Zeeman effect is actually

only a special case where the transitions are between singlet states in an

atom with an even number of optically active electrons.

(c) Lamb shift: In the absence of hyperfine structure, the 22S1/2 and

22P1/2 states of hydrogen atom would be degenerate for orbital quan-

tum number l as they correspond to the same total angular momentum

j = 1/2. However, Lamb observed experimentally that the energy of 22S1/2
is 0.035 cm−1 higher than that of 22P1/2. This phenomenon is called Lamb

shift. It is caused by the interaction between the electron and an electro-

magnetic radiation field.

(d) Landé interval rule: For LS coupling, the energy difference between

two adjacent J levels is proportional, in a given LS term, to the larger of

the two values of J .

(e) Hund’s rules for atomic levels are as follows:

(1) If an electronic configuration has more than one spectroscopic no-

tation, the one with the maximum total spin S has the lowest energy.

(2) If the maximum total spin S corresponds to several spectroscopic

notations, the one with the maximum L has the lowest energy.
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(3) If the outer shell of the atom is less than half full, the spectroscopic

notation with the minimum total angular momentum J has the lowest en-

ergy. However, if the shell is more than half full the spectroscopic notation

with the maximum J has the lowest energy. This rule only holds for LS

coupling.

1009

Give expressions for the following quantities in terms of e, �, c, k,me and

mp.

(a) The energy needed to ionize a hydrogen atom.

(b) The difference in frequency of the Lyman alpha line in hydrogen

and deuterium atoms.

(c) The magnetic moment of the electron.

(d) The spread in measurement of the π0 mass, given that the π0 lifetime

is τ .

(e) The magnetic field B at which there is a 10−4 excess of free protons

in one spin direction at a temperature T .

(f) Fine structure splitting in the n = 2 state of hydrogen.

(Columbia)

Solution:

(a)

EI =

(
e2

4πε0

)2
me

2�2
,

ε0 being the permittivity of free space.

(b) The difference of frequency is caused by the Rydberg constant chang-

ing with the mass of the nucleus. The wave number of the α line of hydrogen

atom is

ν̃H = RH

(
1− 1

4

)
=
3

4
RH ,

and that of the α line of deuterium atom is

ν̃D =
3

4
RD .

The Rydberg constant is given by
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R =

(
e2

4πε0

)2
mr

me
=

mr

me
R∞ ,

where mr is the reduced mass of the orbiting electron in the atomic system,

and

R∞ =

(
e2

4πε0

)2
me

4π�3c
.

As for H atom, mr =
mpme

mp+me
, and for D atom,

mr =
2mpme

2mp +me
,

mp being the nucleon mass, we have

∆ν = c∆ν̃ =
3

4
c(RD − RH) =

3

4
cR∞


 1

1 +
me

2mp

− 1

1 +
me

mp




≈ 3
4
cR∞

me

2mp
=
3

4

(
e2

4πε0

)2
π2

h3
m2
e

mp
.

(c) The magnetic moment associated with the electron spin is

µe =
he

4πme
= µB ,

µB being the Bohr magneton.

(d) The spread in the measured mass (in energy units) is related to the

lifetime τ through the uncertainty principle

∆E · τ � � ,

which gives

∆E � �
τ
.

(e) Consider the free protons as an ideal gas in which the proton spins

have two quantized directions: parallel to B with energy Ep = −µpB and
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antiparallel to B with energy Ep = µpB, where µp =
�e
2mp

is the magnetic

moment of proton. As the number density n ∝ exp(−Ep
kT
), we have

exp

(
µpB

kT

)
− exp

(−µpB
kT

)

exp

(
µpB

kT

)
+ exp

(−µpB
kT

) = 10−4 ,
or

exp

(
2µpB

kT

)
=
1 + 10−4

1− 10−4 ,

giving
2µpB

kT
≈ 2× 10−4 ,

i.e.

B =
kT

µp
× 10−4 .

(f) The quantum numbers of n = 2 states are: n = 2, l = 1, j1 = 3/2,

j2 = 1/2 (the l = 0 state does not split and so need not be considered here).

From the expression for the fine-structure energy levels of hydrogen, we get

∆E = −2πRhcα
2

n3


 1

j1 +
1

2

− 1

j2 +
1

2


 = πRhcα2

8
,

where

α =
e2

4πε0�c

is the fine structure constant,

R =

(
e2

4πε0

)2
me

4π�3c

is the Rydberg constant.

1010

As shown in Fig. 1.2, light shines on sodium atoms. Estimate the cross-

section on resonance for excitation of the atoms from the ground to the
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Fig. 1.2

first excited state (corresponding to the familiar yellow line). Estimate

the width of the resonance. You need not derive these results from first

principles if you remember the appropriate heuristic arguments.

(Princeton)

Solution:

The cross-section is defined by σA = Pω/Iω, where Pωdω is the energy

in the frequency range ω to ω+dω absorbed by the atoms in unit time, Iωdω

is the incident energy per unit area per unit time in the same frequency

range. By definition, ∫
Pωdω = B12�ωNω ,

where B12 is Einstein’s B-coefficient giving the probability of an atom in

state 1 absorbing a quantum �ω per unit time and Nωdω is the energy

density in the frequency range ω to ω + dω. Einstein’s relation

B12 =
π2c3

�ω3
· g1
g2
A21

gives

B12 =
π2c3

�ω3
· g1
g2
· 1
τ
=

π2c3

�2ω3
· g1
g2
Γ ,

where τ is the lifetime of excited state 2, whose natural line width is Γ ≈ �

τ
,

g1, g2 are respectively the degeneracies of states 1 and 2, use having been

made of the relation A12 = 1/τ and the uncertainty principle Γτ ≈ �. Then
as Nω = Iω/c, c being the velocity of light in free space, we have

Pω =
π2c2

�ω2
· g1
g2
ΓIω .
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Introducing the form factor g(ω) and considering ω and Iω as average values

in the band of g(ω), we can write the above as

Pω =
π2c2

�ω2
· g1
g2
ΓIωg(ω) .

Take for g(ω) the Lorentz profile

g(ω) =
�

2π

Γ

(E2 −E1 − �ω)2 +
Γ2

4

.

At resonance,

E2 −E1 = �ω ,

and so

g

(
ω =

E2 −E1

�

)
=
2�

πΓ
.

Hence

σA =
π2c2

�ω2
· g1
g2
· 2�
π
=
2πc2

ω2
· g1
g2

.

For the yellow light of Na (D line), g1 = 2, g2 = 6, λ = 5890 Å, and

σA =
1

3
· λ

2

2π
= 1.84× 10−10 cm2 .

For the D line of sodium, τ ≈ 10−8 s and the line width at half intensity is

Γ ≈ �
τ
= 6.6× 10−8 eV .

As

Γ = ∆E = �∆ω = �∆

(
2πc

λ

)
= 2π�c∆ν̃ ,

the line width in wave numbers is

∆ν̃ =
Γ

2π�c
≈ 1

2πcτ
= 5.3× 10−4 cm−1 .

1011

The cross section for electron impact excitation of a certain atomic level

A is σA = 1.4× 10−20 cm2. The level has a lifetime τ = 2× 10−8 sec, and
decays 10 per cent of the time to level B and 90 per cent of the time to

level C (Fig. 1.3).
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Fig. 1.3

(a) Calculate the equilibrium population per cm3 in level A when an

electron beam of 5 mA/cm2 is passed through a vapor of these atoms at a

pressure of 0.05 torr.

(b) Calculate the light intensity emitted per cm3 in the transition A→
B, expressed in watts/steradian.

(Wisconsin)

Solution:

(a) According to Einstein’s relation, the number of transitionsB, C → A

per unit time (rate of production of A) is

dNBC→A

dt
= n0σANBC ,

and the number of decays A→ B, C per unit time is

dNA→BC

dt
=

(
1

τ
+ n0σA

)
NA ,

where NBC and NA are the numbers of atoms in the energy levels B, C

and A respectively, n0 is the number of electrons crossing unit area per unit

time. At equilibrium,

dNBC→A

dt
=

dNA→BC

dt
,

giving

NA =
n0σAN

1

τ
+ 2n0σA

≈ n0σANτ , (N = NA +NBC)

as n0 = 5× 10−3/1.6× 10−19 = 3.1× 1016 cm−2 s−1 and so 1
τ � 2n0σA.
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Hence the number of atoms per unit volume in energy level A at equi-

librium is

n =
NA

V
=

τn0σAN

V
=

τn0σAp

kT

= 2× 10−8 × 3.1× 1016 × 1.4× 10−20 × 0.05× 1.333× 10
3

1.38× 10−16 × 300
= 1.4× 104 cm−3 ,

where we have taken the room temperature to be T = 300 K.

(b) The probability of atomic decay A→ B is

λ1 =
0.1

τ
.

The wavelength of the radiation emitted in the transition A → B is given

as λB = 500 nm. The corresponding light intensity I per unit volume per

unit solid angle is then given by

4πI = nλ1hc/λB ,

i.e.,

I =
nhc

40πτλB
=
1.4× 104 × 6.63× 10−27 × 3× 1010
40π × 2× 10−8 × 500× 10−7

= 2.2× 10−2 erg · s−1 sr−1 = 2.2× 10−9 W sr−1 .

1012

The electric field that an atom experiences from its surroundings within

a molecule or crystal can noticeably affect properties of the atomic ground

state. An interesting example has to do with the phenomenon of angular

momentum quenching in the iron atom of the hem group in the hemoglobin

of your blood. Iron and hemoglobin are too complicated, however. So

consider an atom containing one valence electron moving in a central atomic

potential. It is in an l = 1 level. Ignore spin. We ask what happens to this
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level when the electron is acted on by the external potential arising from

the atom’s surroundings. Take this external potential to be

Vpert = Ax2 +By2 − (A+B)z2

(the atomic nucleus is at the origin of coordinates) and treat it to lowest

order.

(a) The l = 1 level now splits into three distinct levels. As you can

confirm (and as we hint at) each has a wave function of the form

Ψ = (αx+ βy + γz)f(r) ,

where f(r) is a common central function and where each level has its own set

of constants (α, β, γ), which you will need to determine. Sketch the energy

level diagram, specifying the relative shifts ∆E in terms of the parameters

A and B (i.e., compute the three shifts up to a common factor).

(b) More interesting: Compute the expectation value of Lz, the z com-

ponent of angular momentum, for each of the three levels.

(Princeton)

Solution:

(a) The external potential field V can be written in the form

V =
1

2
(A+B)r2 − 3

2
(A+B)z2 +

1

2
(A−B)(x2 − y2) .

The degeneracy of the state n = 2, l = 1 is 3 in the absence of perturbation,

with wave functions

Ψ210 =

(
1

32πa3

) 1
2 r

a
exp
(
− r

2a

)
cos θ ,

Ψ21±1 = ∓
(

1

64πa3

) 1
2 r

a
exp
(
− r

2a

)
exp(±iϕ) sin θ ,

where a = �2/µe2, µ being the reduced mass of the valence electron.

After interacting with the external potential field V , the wave functions

change to

Ψ = a1Ψ211 + a2Ψ21−1 + a3Ψ210 .
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Perturbation theory for degenerate systems gives for the perturbation

energy E′ the following matrix equation:

C +A′ −E′ B′ 0

B′ C +A′ −E′ 0

0 0 C + 3A′ −E′





a1

a2

a2


 = 0 ,

where

C = 〈Ψ211|
1

2
(A+B)r2|Ψ211〉

= 〈Ψ21−1|
1

2
(A+B)r2|Ψ21−1

= 〈Ψ210|
1

2
(A+B)r2|Ψ210〉

= 15a2(A+B) ,

A′ = −〈Ψ211|
3

2
(A+B)z2|Ψ211〉

= −〈Ψ21−1|
3

2
(A+B)z2|Ψ21−1〉

= −1
3
〈Ψ210|

3

2
(A+B)z2|Ψ210〉

= −9a2(A+B) ,

B′ = 〈Ψ211|
1

2
(A−B)(x2 − y2)|Ψ21−1〉

= 〈Ψ21−1|
1

2
(A−B)(x2 − y2)|Ψ211〉

= −3
2
a2(A−B) .

Setting the determinant of the coefficients to zero, we find the energy

corrections

E′ = C + 3A′ , C +A′ ±B′ .

For E′ = C + 3A′ = −12(A+B)a2, the wave function is

Ψ1 = Ψ210 =

(
1

32πa3

) 1
2 r

a
exp
(
− r

2a

)
cos θ = f(r)z ,

where
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f(r) =

(
1

32πa3

) 1
2 1

a
· exp

(
− r

2a

)
,

corresponding to α = β = 0, γ = 1.

For E′ = C +A′ +B′ = 3
2 (5A+ 3B)a

2, the wave function is

Ψ2 =
1√
2
(Ψ211 +Ψ21−1) = −i

(
1

32πa3

) 1
2 r

a
exp
(
− r

2a

)
sin θ sinϕ

= −if(r)y ,

corresponding to α = γ = 0, β = −i.
For E′ = C +A′ −B′ = 3

2 (3A+ 5B)a
2, the wave function is

Ψ3 =
1√
2
(Ψ211 −Ψ21−1) = −f(r)x ,

corresponding to α = −1, β = γ = 0.

Thus the unperturbed energy level E2 is, on the application of the per-

turbation V , split into three levels:

E2 − 12(A+B)a2 , E2 +
3

2
(3A+ 5B)a2 , E2 +

3

2
(5A+ 3B)a2 ,

as shown in Fig. 1.4.

Fig. 1.4

(b) The corrected wave functions give

〈Ψ1|lz|Ψ1〉 = 〈Ψ2|lz|Ψ2〉 = 〈Ψ3|lz|Ψ3〉 = 0 .
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Hence the expectation value of the z component of angular momentum is

zero for all the three energy levels.

1013

The Thomas-Fermi model of atoms describes the electron cloud in an

atom as a continuous distribution ρ(x) of charge. An individual electron is

assumed to move in the potential determined by the nucleus of charge Ze

and of this cloud. Derive the equation for the electrostatic potential in the

following stages.

(a) By assuming the charge cloud adjusts itself locally until the electrons

at Fermi sphere have zero energy, find a relation between the potential φ

and the Fermi momentum pF .

(b) Use the relation derived in (a) to obtain an algebraic relation be-

tween the charge density ρ(x) and the potential φ(x).

(c) Insert the result of (b) in Poisson’s equation to obtain a nonlinear

partial differential equation for φ.

(Princeton)

Solution:

(a) For a bound electron, its energy E = p2

2m−eφ(x) must be lower than
that of an electron on the Fermi surface. Thus

p2max

2m
− eφ(x) = 0 ,

where pmax = pf , the Fermi momentum.

Hence

p2f = 2meφ(x) .

(b) Consider the electrons as a Fermi gas. The number of electrons

filling all states with momenta 0 to pf is

N =
V p3f
3π2�3

.

The charge density is then

ρ(x) =
eN

V
=

ep3f

3π2�3
=

e

3π2�3
[2meφ(x)]

3
2 .
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(c) Substituting ρ(x) in Poisson’s equation

∇2φ = 4πρ(x)

gives (
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
φ(x) =

4e

3π�3
[2meφ(x)]

3
2 .

On the assumption that φ is spherically symmetric, the equation re-

duces to
1

r

d2

dr2
[rφ(r)] =

4e

3π�3
[2meφ(r)]

3
2 .

1014

In a crude picture, a metal is viewed as a system of free electrons en-

closed in a well of potential difference V0. Due to thermal agitation, elec-

trons with sufficiently high energies will escape from the well. Find and

discuss the emission current density for this model.

(SUNY, Buffalo)

Fig. 1.5

Solution:

The number of states in volume element dpxdpydpz in the momentum

space is dN = 2
h3 dpxdpydpz. Each state ε has degeneracy exp(− ε−µkT ),

where ε is the energy of the electron and µ is the Fermi energy.

Only electrons with momentum component pz > (2mV0)
1/2 can escape

from the potential well, the z-axis being selected parallel to the outward
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normal to the surface of the metal. Hence the number of electrons escaping

from the volume element in time interval dt is

dN ′ = Avzdt
2

h3
dpxdpydpz exp

(
−ε− µ

kT

)
,

where vz is the velocity component of the electrons in the z direction which

satisfies the condition mvz > (2mV0)
1/2, A is the area of the surface of the

metal. Thus the number of electrons escaping from the metal surface per

unit area per unit time is

R =

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

(2mV0)1/2

2vz
h3
exp

(
−ε− µ

kT

)
dpxdpydpz

=
2

mh3
exp
( µ

kT

)∫ +∞

−∞
exp

(
− p2x
2mkT

)
dpx

∫ +∞

−∞
exp

(
−

p2y
2mkT

)
dpy

×
∫ +∞

(2mV0)1/2
pz exp

(
− p2z
2mkT

)
dpz

=
4πmk2T 2

h3
exp

(
µ− V0

kT

)
,

and the emission current density is

J = −eR = −4πmek2T 2

h3
exp

(
µ− V0

kT

)
,

which is the Richardson–Dushman equation.

1015

A narrow beam of neutral particles with spin 1/2 and magnetic moment

µ is directed along the x-axis through a “Stern-Gerlach” apparatus, which

splits the beam according to the values of µz in the beam. (The appara-

tus consists essentially of magnets which produce an inhomogeneous field

Bz(z) whose force on the particle moments gives rise to displacements ∆z

proportional to µzBz.)

(a) Describe the pattern of splitting for the cases:

(i) Beam polarized along +z direction.
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(ii) Beam polarized along +x direction.

(iii) Beam polarized along +y direction.

(iv) Beam unpolarized.

(b) For those cases, if any, with indistinguishable results, describe how

one might distinguish among these cases by further experiments which use

the above Stern-Gerlach apparatus and possibly some additional equip-

ment.

(Columbia)

Solution:

(a) (i) The beam polarized along +z direction is not split, but its direc-

tion is changed.

(ii) The beam polarized along +x direction splits into two beams, one

deflected to +z direction, the other to −z direction.
(iii) Same as for (ii).

(iv) The unpolarized beam is split into two beams, one deflected to +z

direction, the other to −z direction.
(b) The beams of (ii) (iii) (iv) are indistinguishable. They can be dis-

tinguished by the following procedure.

(1) Turn the magnetic field to +y direction. This distinguishes (iii) from

(ii) and (iv), as the beam in (iii) is not split but deflected, while the beams

of (ii) and (iv) each splits into two.

(2) Put a reflector in front of the apparatus, which changes the relative

positions of the source and apparatus (Fig. 1.6). Then the beam of (ii) does

not split, though deflected, while that of (iv) splits into two.

Fig. 1.6
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1016

The range of the potential between two hydrogen atoms is approxi-

mately 4 Å. For a gas in thermal equilibrium, obtain a numerical estimate

of the temperature below which the atom-atom scattering is essentially

s-wave.

(MIT )

Solution:

The scattered wave is mainly s-wave when ka ≤ 1, where a is the

interaction length between hydrogen atoms, k the de Broglie wave number

k =
p

�
=

√
2mEk

�
=

√
2m · 3

2
kBT

�
=

√
3mkBT

�
,

where p is the momentum, Ek the kinetic energy, and m the mass of the

hydrogen atom, and kB is the Boltzmann constant. The condition

ka =
√
3mkBT ·

a

�
≤ 1

gives

T ≤ �
2

3mkBa2
=

(1.06× 10−34)2
3× 1.67× 10−27 × 1.38× 10−23 × (4× 10−10)2

≈ 1 K

1017

(a) If you remember it, write down the differential cross section for

Rutherford scattering in cm2/sr. If you do not remember it, say so, and

write down your best guess. Make sure that the Z dependence, energy

dependence, angular dependence and dimensions are “reasonable”. Use

the expression you have just given, whether correct or your best guess, to

evaluate parts (b–e) below.

An accelerator supplies a proton beam of 1012 particles per second and

200 MeV/c momentum. This beam passes through a 0.01-cm aluminum
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window. (Al density ρ = 2.7 gm/cm3, Al radiation length x0 = 24 gm/cm
2,

Z = 13, A = 27).

(b) Compute the differential Rutherford scattering cross section in

cm2/sr at 30◦ for the above beam in Al.

(c) How many protons per second will enter a 1-cm radius circular

counter at a distance of 2 meters and at an angle of 30◦ with the beam

direction?

(d) Compute the integrated Rutherford scattering cross section for an-

gles greater than 5◦. (Hint: sin θdθ = 4 sin θ
2 cos

θ
2d

θ
2 )

(e) How many protons per second are scattered out of the beam into

angles > 5◦?

(f) Compute the projected rms multiple Coulomb scattering angle for

the proton beam through the above window. Take the constant in the

expression for multiple Coulomb scattering as 15 MeV/c.

(UC, Berkeley)

Solution:

(a) The differential cross section for Rutherford scattering is

dσ

dΩ
=

(
zZe2

2mv2

)2 (
sin

θ

2

)−4
.

This can be obtained, to a dimensionless constant, if we remember

dσ

dΩ
∼
(
sin

θ

2

)−4
,

and assume that it depends also on ze, Ze and E = 1
2mv2.

Let
dσ

dΩ
= K(zZe2)xEy

(
sin

θ

2

)−4
,

where K is a dimensionless constant. Dimensional analysis then gives

[L]2 = (e2)xEy .

As [
e2

r

]
= [E] ,

the above gives
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x = 2, y = −x = −2 .

(b) For the protons,

β ≡ v

c
=

pc√
m2c4 + p2c2

=
200√

9382 + 2002
= 0.2085 .

We also have

e2

mv2
= r0

(me

m

)(v
c

)−2
,

where r0 =
e2

mec2
= 2.82×10−13 cm is the classical radius of electron. Hence

at θ = 30◦,

dσ

dΩ
=

(
13

2

)2

r20

(me

m

)2 (v
c

)−4(
sin

θ

2

)−4

=

(
6.5× 2.82× 10−13
1836× 0.20852

)2

× (sin 15◦)−4

= 5.27× 10−28 × (sin 15◦)−4 = 1.18× 10−25 cm2/sr .

(c) The counter subtends a solid angle

dΩ =
π(0.01)2

22
= 7.85× 10−5 sr .

The number of protons scattered into it in unit time is

δn = n

(
ρt

27

)
Av

(
dσ

dΩ

)
δΩ

= 1012 ×
(
2.7× 0.01

27

)
× 6.02× 1023 × 1.18× 10−25 × 7.85× 10−5

= 5.58× 103 s−1 .
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(d)

σI =

∫
dσ

dΩ
dΩ = 2π

∫ 180◦

5◦

(
Ze2

2mv2

)2
sin θ

sin4
θ

2

dθ

= 8π

(
Ze2

2mv2

)2 ∫ 180◦

5◦

(
sin

θ

2

)−3
d sin

θ

2

= 4π

(
Ze2

2mv2

)2 [
1

(sin 2.5◦)2
− 1
]

= 4π × 5.27× 10−28 ×
[

1

(sin 2.5◦)2
− 1
]

= 3.47× 10−24 cm2 .

(e) The number of protons scattered into θ ≥ 5◦ is

δn = n

(
ρt

27

)
AvσI = 2.09× 109 s−1 ,

where Av = 6.02× 1023 is Avogadro’s number.
(f) The projected rms multiple Coulomb scattering angle for the proton

beam through the Al window is given by

θrms =
kZ√
2βp

√
t

x0

[
1 +

1

9
ln

(
t

x0

)]
,

where k is a constant equal to 15 MeV/c. As Z = 13, p = 200 MeV/c,

β = 0.2085, t = 0.01× 2.7 g cm−2, x0 = 24 g cm−2, t/x0 = 1.125× 10−3,
we have

θrms =
15× 13√

2× 0.2085× 200
×
√
1.125× 10−3

[
1 +

1

9
ln(1.125× 10−3)

]

= 2.72× 10−2 rad .

1018

Typical lifetime for an excited atom is 10−1, 10−8, 10−13, 10−23 sec.

(Columbia)
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Solution:

The answer is 10−8 s.

1019

An atom is capable of existing in two states: a ground state of mass

M and an excited state of mass M + ∆. If the transition from ground to

excited state proceeds by the absorption of a photon, what must be the

photon frequency in the laboratory where the atom is initially at rest?

(Wisconsin)

Solution:

Let the frequency of the photon be ν and the momentum of the atom

in the excited state be p. The conservation laws of energy and momentum

give

Mc2 + hν = [(M +∆)2c4 + p2c2]1/2 ,

hν

c
= p ,

and hence

ν =
∆c2

h

(
1 +

∆

2M

)
.

1020

If one interchanges the spatial coordinates of two electrons in a state of

total spin 0:

(a) the wave function changes sign,

(b) the wave function is unchanged,

(c) the wave function changes to a completely different function.

(CCT )

Solution:

The state of total spin zero has even parity, i.e., spatial symmetry.

Hence the wave function does not change when the space coordinates of

the electrons are interchanged.

So the answer is (b).
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1021

The Doppler width of an optical line from an atom in a flame is 106,

109, 1013, 1016 Hz.

(Columbia)

Solution:

Recalling the principle of equipartition of energy mv2/2 = 3kT/2 we

have for hydrogen at room temperature mc2 ≈ 109 eV, T = 300 K, and so

β =
v

c
≈
√
v2

c
=

√
3kT

mc2
∼ 10−5 ,

where k = 8.6× 10−5 eV/K is Boltzmann’s constant.
The Doppler width is of the order

∆ν ≈ ν0β .

For visible light, ν0 ∼ 1014 Hz. Hence ∆ν ∼ 109 Hz.

1022

Estimate (order of magnitude) the Doppler width of an emission line of

wavelength λ = 5000 Å emitted by argon A = 40, Z = 18, at T = 300 K.

(Columbia)

Solution:

The principle of equipartition of energy 1
2mv̄2 = 3

2kT gives

v ≈
√
v2 = c

√
3kT

mc2

with mc2 = 40× 938 MeV, kT = 8.6× 10−5× 300 = 2.58× 10−2 eV. Thus

β =
v

c
= 1.44× 10−6

and the (full) Doppler width is

∆λ ≈ 2βλ = 1.44× 10−2 Å .
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1023

Typical cross section for low-energy electron-atom scattering is 10−16,

10−24, 10−32, 10−40 cm2.

(Columbia)

Solution:

The linear dimension of an atom is of the order 10−8 cm, so the cross

section is of the order (10−8)2 = 10−16 cm2.

1024

An electron is confined to the interior of a hollow spherical cavity of

radius R with impenetrable walls. Find an expression for the pressure

exerted on the walls of the cavity by the electron in its ground state.

(MIT )

Solution:

Suppose the radius of the cavity is to increase by dR. The work done

by the electron in the process is 4πR2PdR, causing a decrease of its energy

by dE. Hence the pressure exerted by the electron on the walls is

P = − 1

4πR2

dE

dR
.

For the electron in ground state, the angular momentum is 0 and the

wave function has the form

Ψ =
1√
4π

χ(r)

r
,

where χ(r) is the solution of the radial part of Schrödinger’s equation,

χ′′(r) + k2χ(r) = 0 ,

with k2 = 2mE/�2 and χ(r) = 0 at r = 0. Thus

χ(r) = A sinkr .

As the walls cannot be penetrated, χ(r) = 0 at r = R, giving k = π/R.

Hence the energy of the electron in ground state is

E =
π2�2

2mR2
,

and the pressure is
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P = − 1

4πR2

dE

dR
=

π�2

4mR5
.

1025

A particle with magnetic moment µ = µ0s and spin s of magnitude 1/2

is placed in a constant magnetic field B pointing along the x-axis. At t = 0,

the particle is found to have sz = +1/2. Find the probabilities at any later

time of finding the particle with sy = ±1/2.
(Columbia)

Solution:

In the representation (s2, sx), the spin matrices are

σx =

(
1 0

0 −1

)
, σy =

(
0 1

1 0

)
, σz =

(
0 −i
i 0

)

with eigenfunctions (10 ), (
1
1 ), (

1
i ) respectively. Thus the Hamiltonian of

interaction between the magnetic moment of the particle and the magnetic

field is

H = −µ ·B = −µ0B
2

(
1 0

0 −1

)
,

and the Schrödinger equation is

i�
d

dt

(
a(t)

b(t)

)
= −µ0B

2

(
1 0

0 −1

)(
a(t)

b(t)

)
,

where

(
a(t)

b(t)

)
is the wave function of the particle at time t. Initially we

have

(
a(0)

b(0)

)
= 1√

2

(
1

i

)
, and so the solution is

(
a(t)

b(t)

)
=

1√
2




exp

(
i
µ0Bt

2�

)

i exp

(
−iµ0Bt

2�

)

 .

Hence the probability of the particle being in the state sy = +1/2 at

time t is
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∣∣∣∣ 1√2(1 1)
(
a(t)

b(t)

)∣∣∣∣
2

=
1

4

∣∣∣∣exp
(
i
µ0Bt

2�

)
+ i exp

(
−iµ0Bt

2�

)∣∣∣∣
2

=
1

2

(
1 + sin

µ0Bt

�

)
.

Similarly, the probability of the particle being in the state sy = −1/2 at
time t is 1

2 (1− sin
µ0Bt
�
).

1026

The ground state of the realistic helium atom is of course nondegenerate.

However, consider a hypothetical helium atom in which the two electrons

are replaced by two identical spin-one particles of negative charge. Neglect

spin-dependent forces. For this hypothetical atom, what is the degeneracy

of the ground state? Give your reasoning.

(CUSPEA)

Solution:

Spin-one particles are bosons. As such, the wave function must be

symmetric with respect to interchange of particles. Since for the ground

state the spatial wave function is symmetric, the spin part must also be

symmetric. For two spin-1 particles the total spin S can be 2, 1 or 0. The

spin wave functions for S = 2 and S = 0 are symmetric, while that for

S = 1 is antisymmetric. Hence for ground state we have S = 2 or S = 0,

the total degeneracy being

(2× 2 + 1) + (2× 0 + 1) = 6 .

1027

A beam of neutrons (mass m) traveling with nonrelativistic speed v

impinges on the system shown in Fig. 1.7, with beam-splitting mirrors at

corners B and D, mirrors at A and C, and a neutron detector at E. The

corners all make right angles, and neither the mirrors nor the beam-splitters

affect the neutron spin. The beams separated at B rejoin coherently at D,

and the detector E reports the neutron intensity I.
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Fig. 1.7

(a) In this part of the problem, assume the system to be in a vertical

plane (so gravity points down parallel to AB and DC). Given that detector

intensity was I0 with the system in a horizontal plane, derive an expression

for the intensity Ig for the vertical configuration.

(b) For this part of the problem, suppose the system lies in a horizontal

plane. A uniform magnetic field, pointing out of the plane, acts in the

dotted region indicated which encompasses a portion of the leg BC. The

incident neutrons are polarized with spin pointing along BA as shown. The

neutrons which pass through the magnetic field region will have their spins

pressed by an amount depending on the field strength. Suppose the spin

expectation value presses through an angle θ as shown. Let I(θ) be the

intensity at the detector E. Derive I(θ) as a function of θ, given that

I(θ = 0) = I0.

(Princeton)

Solution:

(a) Assume that when the system is in a horizontal plane the two split

beams of neutrons have the same intensity when they reach D, and so the

wave functions will each have amplitude
√
I0/2. Now consider the system

in a vertical plane. As BA and CD are equivalent dynamically, they need

not be considered. The velocities of neutrons v in BC and v1 in AD are

related through the energy equation
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1

2
mv2 =

1

2
mv21 +mgH ,

giving

v1 =
√
v2 − 2gH .

When the two beams recombine at D, the wave function is

Ψ =

[√
I0

2
exp
(
i
mv1

�
L
)
+

√
I0

2
exp
(
i
mv

�
L
)]
exp

(
−iEt
�

)
exp(iδ) ,

and the intensity is

Ig = |Ψ|2 =
I0

2
+

I0

2
cos

[
mL(v − v1)

�

]
= I0 cos

2

[
mL(v − v1)

2�

]
.

If we can take 1
2mv2 � mgH, then v1 ≈ v − gH

v
and

Ig ≈ I0 cos
2

(
mgHL

2�v

)
.

(b) Take z-axis in the direction of BA and proceed in the representation

of (s2, sz). At D the spin state is (10 ) for neutrons proceeding along BAD

and is

(
cos θ2

sin θ
2

)
for those proceeding along BCD. Recombination gives

Ψ =

√
I0

2
exp

(
−iEt
�

)
exp(iδ)


( 1

0

)
+


 cos

θ

2

sin
θ

2






=

√
I0

2
exp

(
−iEt
�

)
exp(iδ)


 1 + cos

θ

2

sin
θ

2


 ,

and hence

I(θ) = |Ψ|2 = I0

4

[(
1 + cos

θ

2

)2

+ sin2
θ

2

]
= I0 cos

2 θ

4
.
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1028

The fine structure of atomic spectral lines arises from

(a) electron spin-orbit coupling.

(b) interaction between electron and nucleus.

(c) nuclear spin.

(CCT )

Solution:

The answer is (a).

1029

Hyperfine splitting in hydrogen ground state is 10−7, 10−5, 10−3,

10−1 eV.

(Columbia)

Solution:

For atomic hydrogen the experimental hyperfine line spacing is ∆νhf =
1.42×109 s−1. Thus ∆E = hνhf = 4.14×10−15×1.42×109 = 5.9×10−6 eV.
So the answer is 10−5 eV.

1030

The hyperfine structure of hydrogen

(a) is too small to be detected.

(b) arises from nuclear spin.

(c) arises from finite nuclear size.

(CCT )

Solution:

The answer is (b).

1031

Spin-orbit splitting of the hydrogen 2p state is 10−6, 10−4, 10−2, 100 eV.

(Columbia)
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Solution:

For the 2p state of hydrogen atom, n = 2, l = 1, s = 1/2, j1 = 3/2,

j2 = 1/2. The energy splitting caused by spin-orbit coupling is given by

∆Els =
hcRα2

n3l

(
l +

1

2

)
(l + 1)

[
j1(j1 + 1)− j2(j2 + 1)

2

]
,

whereR is Rydberg’s constant and hcR = 13.6 eV is the ionization potential

of hydrogen atom, α = 1
137 is the fine-structure constant. Thus

∆Els =
13.6× (137)−2

23 × 3
2
× 2

× 1
2

(
15

4
− 3
4

)
= 4.5× 10−5 eV .

So the answer is 10−4 eV.

1032

The Lamb shift is

(a) a splitting between the 1s and 2s energy levels in hydrogen.

(b) caused by vacuum fluctuations of the electromagnetic field.

(c) caused by Thomas precession.

(CCT )

Solution:

The answer is (b)

1033

The average speed of an electron in the first Bohr orbit of an atom of

atomic number Z is, in units of the velocity of light,

(a) Z1/2.

(b) Z.

(c) Z/137.

(CCT )
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Solution:

Let the average speed of the electron be v, its mass be m, and the radius

of the first Bohr orbit be a. As

mv2

a
=

Ze2

a2
, a =

�
2

mZe2
,

We have

v =
Ze2

�
= Zcα ,

where α = e2

�c =
1

137 is the fine-structure constant. Hence the answer is (c).

1034

The following experiments were significant in the development of quan-

tum theory. Choose TWO. In each case, briefly describe the experiment

and state what it contributed to the development of the theory. Give an

approximate date for the experiment.

(a) Stern-Gerlach experiment

(b) Compton Effect

(c) Franck-Hertz Experiment

(d) Lamb-Rutherford Experiment

(Wisconsin)

Solution:

(a) Stern-Gerlach experiment. The experiment was carried out in 1921

by Stern and Gerlach using apparatus as shown in Fig. 1.8. A highly col-

limated beam (v ≈ 500 m/s) of silver atoms from an oven passes through

the poles of a magnet which are so shaped as to produce an extremely

non-uniform field (gradient of field ∼ 103 T/m, longitudinal range ∼ 4 cm)
normal to the beam. The forces due to the interaction between the compo-

nent µz of the magnetic moment in the field direction and the field gradient

cause a deflection of the beam, whose magnitude depends on µz. Stern and

Gerlach found that the beam split into two, rather than merely broadened,

after crossing the field. This provided evidence for the space quantization

of the angular momentum of an atom.
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Fig. 1.8

(b) Compton Effect. A. H. Compton discovered that when monochro-

matic X-rays are scattered by a suitable target (Fig. 1.9), the scattered

radiation consists of two components, one spectrally unchanged the other

with increased wavelength. He further found that the change in wavelength

of the latter is a function only of the scattering angle but is independent

of the wavelength of the incident radiation and the scattering material. In

1923, using Einstein’s hypothesis of light quanta and the conservation of

momentum and energy, Compton found a relation between the change of

wavelength and the scattering angle, ∆λ = h
mec

(1−cos θ), which is in excel-
lent agreement with the experimental results. Compton effect gives direct

support to Einstein’s theory of light quanta.

Fig. 1.9

(c) Franck-Hertz experiment. Carried out by Franck and Hertz in 1914,

this experiment proved Bohr’s theory of quantization of atomic energy

states as well as provided a method to measure the energy spacing of quan-

tum states. The experimental setup was as shown in Fig. 1.10. A glass
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Fig. 1.10

vessel, filled with Hg vapor, contained cathode K, grid G and anode A.

Thermoelectrons emitted from K were accelerated by an electric field to G,

where a small retarding field prevented low energy electrons from reaching

A. It was observed that the electric current detected by the ammeter A

first increased with the accelerating voltage until it reached 4.1 V. Then

the current dropped suddenly, only to increase again. At the voltages 9.0 V

and 13.9 V, similar phenomena occurred. This indicated that the electron

current dropped when the voltage increased by 4.9 V (the first drop at 4.1 V

was due to the contact voltage of the instrument), showing that 4.9 eV was

the first excited state of Hg above ground. With further improvements

in the instrumentation Franck and Hertz were able to observe the higher

excited states of the atom.

(d) Lamb-Rutherford Experiment. In 1947, when Lamb and Rutherford

measured the spectrum of H atom accurately using an RF method, they

found it different from the predictions of Dirac’s theory, which required

states with the same (n, j) but different l to be degenerate. Instead, they

found a small splitting. The result, known as the Lamb shift, is satisfac-

torily explained by the interaction between the electron with its radiation

field. The experiment has been interpreted as providing strong evidence in

support of quantum electrodynamics.

The experimental setup was shown in Fig. 1.11. Of the hydrogen gas

contained in a stove, heated to temperature 2500 K, about 64% was ionized

(average velocity 8 × 103 m/s). The emitted atomic beam collided at B

with a transverse electron beam of energy slightly higher than 10.2 eV

and were excited to 22S1/2, 2
2P1/2, 2

2P3/2 states. The atoms in the P
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Fig. 1.11

states spontaneously underwent transition to the ground state 12S1/2 al-

most immediately whereas the 22S1/2 state, which is metastable, remained.

Thus the atomic beam consisted of only 22S1/2 and 1
2S1/2 states when it

impinged on the tungsten plate P . The work function of tungsten is less

than 10.2 eV, so that the atoms in 22S1/2 state were able to eject electrons

from the tungsten plate, which then flowed to A, resulting in an electric

current between P and A, which was measured after amplification. The

current intensity gave a measure of the numbers of atoms in the 22S1/2
state. A microwave radiation was then applied between the excitation and

detection regions, causing transition of the 22S1/2 state to a P state, which

almost immediately decayed to the ground state, resulting in a drop of the

electric current. The microwave energy corresponding to the smallest elec-

tric current is the energy difference between the 22S1/2 and 2
2P1/2 states.

Experimentally the frequency of Lamb shift was found to be 1057 MHz.

1035

(a) Derive from Coulomb’s law and the simple quantization of angular

momentum, the energy levels of the hydrogen atom.

(b) What gives rise to the doublet structure of the optical spectra from

sodium?

(Wisconsin)

Solution:

(a) The Coulomb force between the electron and the hydrogen nucleus is
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F =
e2

4πε0r2
.

In a simplest model, the electron moves around the nucleus in a circular

orbit of radius r with speed v, and its orbital angular momentum pφ = mvr

is quantized according to the condition

pφ = n� ,

where n = 1, 2, 3, . . . and � = h/2π, h being Planck’s constant. For the

electron circulating the nucleus, we have

m
v2

r
=

e2

4πε0r2
,

and so

v =
e2

4πε0n�
.

Hence the quantized energies are

En = T + V =
1

2
mv2 − e2

4πε0r
= −1

2
mv2

= −1
2

me4

(4πε0)2�2n2
,

with n = 1, 2, 3, . . . .

(b) The doublet structure of the optical spectra from sodium is caused

by the coupling between the orbital and spin angular momenta of the va-

lence electron.

1036

We may generalize the semiclassical Bohr-Sommerfeld relation

∮
p · dr =

(
n+

1

2

)
2π�

(where the integral is along a closed orbit) to apply to the case where an

electromagnetic field is present by replacing p → p − eA
c . Use this and



42 Problems and Solutions in Atomic, Nuclear and Particle Physics

the equation of motion for the linear momentum p to derive a quantized

condition on the magnetic flux of a semiclassical electron which is in a

magnetic field B in an arbitrary orbit. For electrons in a solid this condition

can be restated in terms of the size S of the orbit in k-space. Obtain the

quantization condition on S in terms of B. (Ignore spin effects)

(Chicago)

Solution:

Denote the closed orbit by C. Assume B is constant, then Newton’s

second law
dp

dt
= −e

c

dr

dt
×B

gives∮
C

p · dr = −e
c

∮
C

(r×B) · dr = e

c

∮
C

B · r× dr =
2e

c

∫
S

B · dS = 2e
c
Φ ,

where Φ is the magnetic flux crossing a surface S bounded by the closed

orbit. We also have, using Stokes’ theorem,

−e
c

∮
C

A · dr = −e
c

∫
S

(∇×A) · dS = −e
c

∫
S

B · dS = −e
c
Φ .

Hence∮ (
p− e

c
A
)
· dr =

∮
C

p · dr− e

c

∮
C

A · dr = 2e

c
Φ− e

c
Φ =

e

c
Φ .

The generalized Bohr-Sommerfeld relation then gives

Φ =

(
n+

1

2

)
2π�c

e
,

which is the quantization condition on the magnetic flux.

On a plane perpendicular to B,

∆p ≡ �∆k = e

c
B∆r ,

i.e.,

∆r =
�c

eB
∆k .

Hence the orbital area S in k-space and A in r-space are related by



Atomic and Molecular Physics 43

A =

(
�c

eB

)2

S .

Using the quantization condition on magnetic flux, we have

A =
Φ

B
=

(
n+

1

2

)
2π�c

eB
,

or (
�c

eB

)2

S =

(
n+

1

2

)
2π�c

eB
.

Therefore the quantization condition on the orbital area S in k-space is

S =

(
n+

1

2

)
2πe

�c
B .

1037

If a very small uniform-density sphere of charge is in an electrostatic

potential V (r), its potential energy is

U(r) = V (r) +
r20
6
∇2V (r) + · · ·

where r is the position of the center of the charge and r0 is its very small

radius. The “Lamb shift” can be thought of as the small correction to the

energy levels of the hydrogen atom because the physical electron does have

this property.

If the r20 term of U is treated as a very small perturbation compared to

the Coulomb interaction V (r) = −e2/r, what are the Lamb shifts for the
1s and 2p levels of the hydrogen atom? Express your result in terms of r0
and fundamental constants. The unperturbed wave functions are

ψ1s(r) = 2a
−3/2
B exp(−r/aB)Y 0

0 ,

ψ2pm(r) = a
−5/2
B r exp(−r/2aB)Y m

1 /
√
24 ,

where aB = �
2/mee

2.

(CUSPEA)
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Solution:

As

∇2V (r) = −e2∇2 1

r
= 4πe2δ(r) ,

where δ(r) is Dirac’s delta function defined by

∇2 1

r
= −4πδ(r) ,

we have∫
ψ∗∇2V (r)ψd3r = 4πe2

∫
ψ∗(r)ψ(r)δ(r)d3r = 4πe2ψ∗(0)ψ(0) .

Hence

∆E1s =
r20
6
· 4πe2ψ∗1s(0)ψ1s(0)

=
r20
6
· 4πe2 · 4a−3B =

8πe2r20
3

a−3B ,

∆E2p =
r20
6
· 4πe2ψ∗2p(0)ψ2p(0) = 0 .

1038

(a) Specify the dominant multipole (such as E1 (electric dipole), E2, E3

. . . , M1, M2, M3. . . ) for spontaneous photon emission by an excited atomic

electron in each of the following transitions,

2p1/2 → 1s1/2 ,

2s1/2 → 1s1/2 ,

3d3/2 → 2s1/2 ,

2p3/2 → 2p1/2 ,

3d3/2 → 2p1/2 .

(b) Estimate the transition rate for the first of the above transitions

in terms of the photon frequency ω, the atomic radius a, and any other
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necessary physical constants. Give a rough numerical estimate of this rate

for a typical atomic transition.

(c) Estimate the ratios of the other transition rates (for the other tran-

sitions in (a)) relative to the first one in terms of the same parameters as

in (b).

(UC, Berkeley)

Solution:

(a) In multipole transitions for spontaneous photon emission, angular

momentum conservation requires

|ji − jf | ≤ L ≤ ji + jf ,

L being the order of transition, parity conservation requires

∆P = (−1)L for electric multipole radiation ,

∆P = (−1)L+1 for magnetic multipole radiation .

Transition with the smallest order L is the most probable. Hence for

2p1/2 → 1s1/2 : L = 1,∆P = −, transition is E1 ,

2s1/2 → 1s1/2 : L = 0,∆P = +,

transition is a double-photon dipole transition ,

3d3/2 → 2s1/2 : L = 1, 2,∆P = +, transition is M1 or E2 ,

2p3/2 → 2p1/2 : L = 1, 2,∆P = +, transition is M1 or E2 ,

3d3/2 → 2p1/2 : L = 1, 2,∆P = −, transition is E1 .

(b) The probability of spontaneous transition from 2p1/2 to 1s1/2 per

unit time is

AE1 =
e2ω3

3πε0�c3
|r12|2 =

4

3
αω3

( |r12|
c

)2

,

where α = e2/(4πε0�c) = 1/137 is the fine-structure constant. As |r12| ≈ a,

AE1 ≈
4

3
αω3

(a
c

)2
.

With a ∼ 10−10 m, ω ∼ 1016 s−1, we have AE1 ∼ 109 s−1.
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(c)

A(22s 1
2
→ 12s 1

2
)

AE1
≈ 10

(
�

mcα

)
,

A(3d 3
2
→ 2s 1

2
)

AE1
≈ (ka)2 ,

A(2p 3
2
− 2p 1

2
)

AE1
≈ (ka)2 ,

where k = ω/c is the wave number of the photon,

A(3d3/2 → 2p1/2)
AE1

≈
[
ω(3d3/2 → 2p1/2)
ω(2p1/2 → 1s1/2)

]3
.

1039

(a) What is the energy of the neutrino in a typical beta decay?

(b) What is the dependence on atomic number Z of the lifetime for

spontaneous decay of the 2p state in the hydrogen-like atoms H, He+, Li++,

etc.?

(c) What is the electron configuration, total spin S, total orbital angular

momentum L, and total angular momentum J of the ground state of atomic

oxygen?

(UC, Berkeley)

Solution:

(a) The energy of the neutrino emitted in a typical β-decay is Eν ≈
1 MeV.

(b) The probability of spontaneous transition 2p→ 1s per unit time is

(Problem 1038(b)) A ∝ |r12|2ω3, where

|r12|2 = |〈1s(Zr)|r|2p(Zr)〉|2 ,

|1s(Zr)〉 and |2p(Zr)〉 being the radial wave functions of a hydrogen-like
atom of nuclear charge Z, and

ω =
1

�
(E2 −E1) .

As
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1s(Zr)〉 =
(
Z

a0

) 3
2

2e
−Zr
a0 ,

2p(Zr)〉 =
(

Z

2a0

) 3
2 Zr

a0
√
3
e
− Zr
2a0 ,

a0 being a constant, we have for Z > 1,

|r12|2 ∝ Z−2 , ω3 ∝ Z6 ,

and so A ∝ Z4. Hence the lifetime τ is

τ ∝ 1

A
∝ Z−4 .

(c) The electron configuration of ground state atomic oxygen is 1s22s2

2p4. As the state has S = 1, L = 1, J = 2, it is designated 3P2.

1040

Suppose that, because of small parity-violating forces, the 22S1/2 level

of the hydrogen atom has a small p-wave admixture:

Ψ(n = 2, j = 1/2) =Ψs(n = 2, j = 1/2, l = 0)

+ εΨp(n = 2, j = 1/2, l = 1) .

What first-order radiation decay will de-excite this state? What is the form

of the decay matrix element? What dose it become if ε→ 0 and why?
(Wisconsin)

Solution:

Electric dipole radiation will de-excite the p-wave part of this mixed

state: Ψp(n = 2, j = 1/2, l = 1) → Ψs(n = 1, j = 1/2, l = 0). The

Ψs(n = 2, j = 1/2, l = 0) state will not decay as it is a metastable state.

The decay matrix, i.e. the T matrix, is

〈Ψf |T |Ψi〉 = ε

∫
Ψ∗fV (r)Ψid

3r ,

where, for electric dipole radiation, we have
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V (r) = −(−er) ·E = erE cos θ ,

taking the z-axis along the electric field. Thus

〈Ψf |T |Ψi〉 = εeE

∫
R10rR21r

2dr

∫
Y00Y10 cos θdΩ

=
εeE√
2a3

∫ ∞
0

r3 exp

(
−3r
2a

)
dr

=
32

27
√
6
εeaE

∫
Ω

Y00Y10 cos θdΩ .

As

cos θY10 =

√
4

15
Y20 +

√
1

3
Y00 ,

the last integral equals
√

1
3 and

〈Ψf |T |Ψi〉 =
(
2

3

)4√
2εeaE .

If ε → 0, the matrix element of the dipole transition 〈Ψf |T |Ψi〉 → 0

and no such de-excitation takes place. The excited state Ψs(n = 2, j =

1/2, l = 0) is metastable. It cannot decay to the ground state via electric

dipole transition (because ∆l �= 1). Nor can it do so via magnetic dipole
or electric quadruple transition. It can only decay to the ground state by

the double-photons transition 22S1/2 → 12S1/2, which however has a very

small probability.

1041

(a) The ground state of the hydrogen atom is split by the hyperfine

interaction. Indicate the level diagram and show from first principles which

state lies higher in energy.

(b) The ground state of the hydrogen molecule is split into total nuclear

spin triplet and singlet states. Show from first principles which state lies

higher in energy.

(Chicago)
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Solution:

(a) The hyperfine interaction in hydrogen arises from the magnetic in-

teraction between the intrinsic magnetic moments of the proton and the

electron, the Hamiltonian being

Hint = −µp ·B ,

where B is the magnetic field produced by the magnetic moment of the

electron and µp is the intrinsic magnetic moment of the proton.

In the ground state, the electron charge density is spherically symmetric

so that B has the same direction as the electron intrinsic magnetic moment

µe. However as the electron is negatively charged, µe is antiparallel to the

electron spin angular momentum se. For the lowest energy state of Hint,

〈µp · µe〉 > 0, and so 〈sp · se〉 < 0. Thus the singlet state F = 0 is the

ground state, while the triplet F = 1 is an excited state (see Fig. 1.12).

Fig. 1.12

(b) As hydrogen molecule consists of two like atoms, each having a

proton (spin 1
2 ) as nucleus, the nuclear system must have an antisymmetric

state function. Then the nuclear spin singlet state (S = 0, antisymmetric)

must be associated with a symmetric nuclear rotational state; thus J =

0, 2, 4, . . . , with the ground state having J = 0. For the spin triplet state

(S = 1, symmetric) the rotational state must have J = 1, 3, . . . , with the

ground state having J = 1. As the rotational energy is proportional to

J(J + 1), the spin triplet ground state lies higher in energy.

1042

(a) In Bohr’s original theory of the hydrogen atom (circular orbits) what

postulate led to the choice of the allowed energy levels?
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(b) Later de Broglie pointed out a most interesting relationship between

the Bohr postulate and the de Broglie wavelength of the electron. State

and derive this relationship.

(Wisconsin)

Solution:

(a) Bohr proposed the quantization condition

mvr = n� ,

where m and v are respectively the mass and velocity of the orbiting elec-

tron, r is the radius of the circular orbit, n = 1, 2, 3, . . . . This condition

gives descrete values of the electron momentum p = mv, which in turn

leads to descrete energy levels.

(b) Later de Broglie found that Bohr’s circular orbits could exactly hold

integral numbers of de Broglie wavelength of the electron. As

pr = n� =
nh

2π
,

2πr = n
h

p
= nλ ,

where λ is the de Broglie wavelength, which is associated with the group

velocity of matter wave.

1043

In radio astronomy, hydrogen atoms are observed in which, for example,

radiative transitions from n = 109 to n = 108 occur.

(a) What are the frequency and wavelength of the radiation emitted in

this transition?

(b) The same transition has also been observed in excited helium atoms.

What is the ratio of the wavelengths of the He and H radiation?

(c) Why is it difficult to observe this transition in laboratory experi-

ment?

(Wisconsin)
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Solution:

(a) The energy levels of hydrogen, in eV, are

En = −
13.6

n2
.

For transitions between excited states n = 109 and n = 108 we have

hν =
13.6

1082
− 13.6
1092

,

giving

ν = 5.15× 109 Hz ,

or

λ = c/ν = 5.83 cm .

(b) For such highly excited states the effective nuclear charge of the

helium atom experienced by an orbital electron is approximately equal to

that of a proton. Hence for such transitions the wavelength from He ap-

proximately equals that from H.

(c) In such highly excited states, atoms are easily ionized by colliding

with other atoms. At the same time, the probability of a transition between

these highly excited states is very small. It is very difficult to produce

such environment in laboratory in which the probability of a collision is

very small and yet there are sufficiently many such highly excited atoms

available. (However the availability of strong lasers may make it possible to

stimulate an atom to such highly excited states by multiphoton excitation.)

1044

Sketch the energy levels of atomic Li for the states with n = 2, 3, 4.

Indicate on the energy diagram several lines that might be seen in emission

and several lines that might be seen in absorption. Show on the same

diagram the energy levels of atomic hydrogen for n = 2, 3, 4.

(Wisconsin)

Solution:

As most atoms remain in the ground state, the absorption spectrum

arises from transitions from 2s to np states (n = 2, 3, 4). In Fig. 1.13,
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Fig. 1.13

the dashed lines represent absorption transitions, the solid lines, emission

transitions.

1045

The “plum pudding” model of the atom proposed by J. J. Thomson in

the early days of atomic theory consisted of a sphere of radius a of positive

charge of total value Ze. Z is an integer and e is the fundamental unit of

charge. The electrons, of charge −e, were considered to be point charges
embedded in the positive charge.

(a) Find the force acting on an electron as a function of its distance r

from the center of the sphere for the element hydrogen.

(b) What type of motion does the electron execute?

(c) Find an expression for the frequency for this motion.

(Wisconsin)

Solution:

(a) For the hydrogen atom having Z = 1, radius a, the density of positive

charge is

ρ =
e

4

3
πa3

=
3e

4πa3
.

When an electron is at a distance r from the center of the sphere, only

the positive charge inside the sphere of radius r can affect the electron and

so the electrostatic force acting on the electron is
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F (r) = − e

4πε0r2
· 4
3
πr3ρ = − e2r

4πε0a3
,

pointing toward the center of the sphere.

(b) The form of F (r) indicates the motion of the electron is simple

harmonic.

(c) F (r) can be written in the form

F (r) = −kr ,

where k = e2

4πε0a3
. The angular frequency of the harmonic motion is thus

ω =

√
k

m
=

√
e2

4πε0a3m
,

where m is the mass of electron.

1046

Lyman alpha, the n = 1 to n = 2 transition in atomic hydrogen, is at

1215 Å.

(a) Define the wavelength region capable of photoionizing a H atom in

the ground level (n = 1).

(b) Define the wavelength region capable of photoionizing a H atom in

the first excited level (n = 2).

(c) Define the wavelength region capable of photoionizing a He+ ion in

the ground level (n = 1).

(d) Define the wavelength region capable of photoionizing a He+ ion in

the first excited level (n = 2).

(Wisconsin)

Solution:

(a) A spectral series of a hydrogen-like atom has wave numbers

ν̃ = Z2R

(
1

n2
− 1

m2

)
,

where Z is the nuclear charge, R is the Rydberg constant, and n, m are

positive integers with m > n. The ionization energy of the ground state of

H atom is the limit of the Lyman series (n = 1), the wave number being
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ν̃0 =
1

λ0
= R .

For the alpha line of the Lyman series,

ν̃α =
1

λα
= R

(
1− 1

22

)
=
3

4
R =

3

4λ0
.

As λα = 1215 Å, λ0 = 3λα/4 = 911 Å. Hence the wavelength of light

that can photoionize H atom in the ground state must be shorter than

911 Å.

(b) The wavelength should be shorter than the limit of the Balmer series

(n = 2), whose wave number is

ν̃ =
1

λ
=

R

22
=

1

4λ0
.

Hence the wavelength should be shorter than 4λ0 = 3645 Å.

(c) The limiting wave number of the Lyman series of He+ (Z = 2) is

ν̃ =
1

λ
=

Z2R

12
= 4R =

4

λ0
.

The wavelength that can photoionize the He+ in the ground state must be

shorter than λ0/4 = 228 Å.

(d) The wavelength should be shorter than 1/R = λ0 = 1215 Å.

1047

A tritium atom in its ground state beta-decays to He+.

(a) Immediately after the decay, what is the probability that the helium

ion is in its ground state?

(b) In the 2s state?

(c) In the 2p state?

(Ignore spin in this problem.)

(UC, Berkeley)

Solution:

At the instant of β-decay continuity of the wave function requires

|1s〉H = a1|1s〉He+ + a2|2s〉He+ + a3|2p〉He+ + · · · ,

where
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|1s〉 = R10(r)Y00 , |2s〉 = R20(r)Y00 , |2p〉 = R21(r)Y10 ,

with

R10 =

(
Z

a

) 3
2

2 exp

(
−Zr

a

)
, R20 =

(
Z

2a

) 3
2
(
2− Zr

a

)
exp

(
−Zr
2a

)
,

R21 =

(
Z

2a

) 3
2 Zr

a
√
3
exp

(
−Zr
2a

)
, a =

�
2

me2
.

(a)

a1 =He+ 〈1s|1s〉H =
∫ ∞
0

2

a3/2
exp
(
− r
a

)
· 2
(
2

a

)3/2

× exp
(
−2r

a

)
· r2dr

∫
Y 2
00dΩ =

16
√
2

27
.

Accordingly the probability of finding the He+ in the ground state is

W 〈1s〉 = |a1|2 =
512

729
.

(b)

a2 =He+〈2s|1s〉H =
∫ ∞
0

2

a3/2
exp
(
− r
a

)
· 1√
2

(
2

a

)3/2 (
1− r

a

)

× exp
(
− r
a

)
· r2dr

∫
Y 2
00dΩ = −

1

2
.

Hence the probability of finding the He+ in the 2s state is

W 〈2s〉 = |a2|2 =
1

4
.
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(c)

a3 =He+〈2p|1s〉H =
∫ ∞
0

2

a3/2
exp
(
− r
a

)
· 1

2
√
6

(
2

a

)3/2

· 2r
a

× exp
(
− r
a

)
· r2dr

∫
Y ∗10Y00dΩ = 0 .

Hence the probability of finding the He+ in the 2p state is

W 〈2p〉 = |a3|2 = 0 .

1048

Consider the ground state and n = 2 states of hydrogen atom.

Indicate in the diagram (Fig. 1.14) the complete spectroscopic notation

for all four states. There are four corrections to the indicated level structure

that must be considered to explain the various observed splitting of the

levels. These corrections are:

Fig. 1.14

(a) Lamb shift,

(b) fine structure,

(c) hyperfine structure,

(d) relativistic effects.

(1) Which of the above apply to the n = 1 state?

(2) Which of the above apply to the n = 2, l = 0 state? The n = 2,

l = 1 state?
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(3) List in order of decreasing importance these four corrections.

(i.e. biggest one first, smallest last). Indicate if some of the corrections

are of the same order of magnitude.

(4) Discuss briefly the physical origins of the hyperfine structure. Your

discussion should include an appropriate mention of the Fermi contact po-

tential.

(Wisconsin)

Solution:

The spectroscopic notation for the ground and first excited states of

hydrogen atom is shown in Fig. 1.15.

Three corrections give rise to the fine structure for hydrogen atom:

Ef = Em +ED +Eso ,

Fig. 1.15

where Em is caused by the relativistic effect of mass changing with veloc-

ity, ED, the Darwin term, arises from the relativistic non-locality of the

electron, Eso is due to the spin-orbit coupling of the electron. They are

given by

Em = −
α2Z4

4n4


 4n

l+
1

2
− 3


× 13.6 eV ,
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ED =
α2Z4

n3
δl0 × 13.6 eV ,

Eso =



(1− δl0)

α2Z4l

n3l(l + 1)(2l+ 1)
× 13.6 eV,

(
j = l+

1

2

)

−(1− δl0)
α2Z4(l + 1)

n3l(l + 1)(2l+ 1)
× 13.6 eV.

(
j = l− 1

2

)

where α is the fine-structure constant, and δl0 is the usual Kronecker delta.

Lamb shift arises from the interaction between the electron and its ra-

diation field, giving rise to a correction which, when expanded with respect

to Zα, has the first term

EL = k(l)
α(Zα)4mc2

2πn3

= k(l)
α3Z4

πn3
× 13.6 eV ,

where k(l) is a parameter related to l.

Hyperfine structure arises from the coupling of the total angular mo-

mentum of the electron with the nuclear spin.

(1) For the n = 1 state (l = 0), Em, ED, EL can only cause the energy

level to shift as a whole. As Eso = 0 also, the fine-structure correction

does not split the energy level. On the other hand, the hyperfine structure

correction can cause a splitting as shown in Fig. 1.16.

Fig. 1.16
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(2) For the n = 2 state (l = 0 and l = 1), the fine-structure correction

causes the most splitting in the l = 1 level, to which the hyperfine structure

correction also contributes (see Fig. 1.17).

Fig. 1.17

(3) Em, ED, Eso are of the same order of magnitude > Lamb shift �
hyperfine structure.

(4) The hyperfine structure can be separated into three terms:

(a) Interaction between the nuclear magnetic moment and the magnetic

field at the proton due to the electron’s orbital motion,

(b) dipole-dipole interaction between the electron and the nuclear mag-

netic moment,

(c) the Fermi contact potential due to the interaction between the spin

magnetic moment of the electron and the internal magnetic field of the

proton.

1049

Using the Bohr model of the atom,

(a) derive an expression for the energy levels of the He+ ion.

(b) calculate the energies of the l = 1 state in a magnetic field, neglecting

the electron spin.

(Wisconsin)
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Solution:

(a) Let the radius of the orbit of the electron be r, and its velocity be

v. Bohr assumed that the angular momentum Lφ is quantized:

Lφ = mvr = n� . (n = 1, 2, 3 . . . )

The centripetal force is provided by the Coulomb attraction and so

m
v2

r
=

2e2

4πε0r2
.

Hence the energy of He+ is

En =
1

2
mv2 − 2e2

4πε0r
= −1

2
mv2 = − 2me4

(4πε0)2n2�2
.

(b) The area of the electron orbit is

A =

∫ 2π

0

r

2
· rdφ = 1

2

∫ T

0

r2ωdt =
Lφ

2m
T ,

where ω = dφ
dt , the angular velocity, is given by Lφ = mr2ω, and T is the

period of circular motion. For l = 1, Lφ = � and the magnetic moment of

the electron due to its orbital motion is

µ = IA = − e

T
A = − e�

2m
,

where I is the electric current due to the orbital motion of the electron.

The energy arising from interaction between the l = 1 state and a magnetic

field B is

∆E = −µ ·B =




e�

2m
B, (µ//B)

0 , (µ ⊥ B)

− e�

2m
B . (µ//−B)

1050

An atom has a nucleus of charge Z and one electron. The nucleus has

a radius R, inside which the charge (protons) is uniformly distributed. We
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want to study the effect of the finite size of the nucleus on the electron

levels:

(a) Calculate the potential taking into account the finite size of the

nucleus.

(b) Calculate the level shift due to the finite size of the nucleus for the 1s

state of 208Pb using perturbation theory, assuming that R is much smaller

than the Bohr radius and approximating the wave function accordingly.

(c) Give a numerical answer to (b) in cm−1 assuming R = r0A
1/3,

r0 = 1.2 fermi.

(Wisconsin)

Solution:

(a) For r ≥ R.

V (r) = − Ze2

4πε0r
.

For r < R,

V (r) = − Ze2

4πε0r
·
( r
R

)3
−
∫ R

r

eρ4πr′2

r′
dr′ = − Ze2

8πε0R3
(3R2 − r2) ,

where

ρ =
Ze
4

3
πr3

.

(b) Taking the departure of the Hamiltonian from that of a point nucleus

as perturbation, we have

H ′ =




Ze2

4πε0r
− Ze2

4πε0R

(
3

2
− r2

2R2

)
for r < R ,

0 for r ≥ R .

The 1s wave function of 208Pb is

|1s〉 = 2
(
Z

a0

)3/2

exp

(
−2r
a0

)
· 1√
4π

,
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where Z = 82, a0 is the Bohr radius. Taking the approximation r � a0,

i.e., exp(− 2r
a0
) ≈ 1, the energy shift is

∆E = 〈1s|H ′|1s〉

= − 4Z
4e2

4πε0a30

∫ R

0

(
3

2R
− r2

2R3
− 1

r

)
r2dr

=
4

5
Z2|E0|

(
R

a0

)2

,

where E0 = − Z2e2

(4πε0)2a0
is the ground state energy of a hydrogen-like atom.

(c)

∆E =
4

5
× 822 × (822 × 13.6)×

(
1.2× 10−19 × 208 13

5.29× 10−9

)2

= 8.89 eV ,

∆ν̃ =
∆E

hc
≈ 7.2× 104 cm−1 .

1051

If the proton is approximated as a uniform charge distribution in a

sphere of radius R, show that the shift of an s-wave atomic energy level

in the hydrogen atom, from the value it would have for a point proton, is

approximately

∆Ens ≈
2π

5
e2|Ψns(0)|2R2 ,

using the fact that the proton radius is much smaller than the Bohr radius.

Why is the shift much smaller for non-s states?

The 2s hydrogenic wave function is

(2a0)
−3/2π−1/2

(
1− r

2a0

)
exp

(
− r

2a0

)
.

What is the approximate splitting (in eV) between the 2s and 2p levels

induced by this effect? [a0 ≈ 5× 10−9 cm for H, R ≈ 10−13 cm.]
(Wisconsin)
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Solution:

The perturbation caused by the finite volume of proton is (Pro-

blem 1050)

H ′ =



0, (r ≥ R)

e2

r
− e2

R

(
3

2
− r2

2R2

)
. (r < R)

The unperturbed wave function is

Ψns = Nn0 exp

(
− r

na0

)
F

(
−n+ 1, 2, 2r

na0

)
Y00 ,

where

Nn0 =
2

(na0)3/2

√
n!

(n− 1)! ≈
2

(na0)3/2
,

F

(
−n+ 1, 2, 2r

na0

)
=1− n− 1

2
· 2r
na0

+
(n− 1)(n− 2)

2 · 3

× 1
2!

(
2r

na0

)2

+ · · · .

Taking the approximation r� a0, we have

F

(
−n+ 1, 2, 2r

na0

)
≈ 1 , exp

(
− r

na0

)
≈ 1 ,

and so

Ψns = Nn0Y00 =
2

(na0)3/2
Y00 ,

∆Ens = 〈Ψ∗ns|H ′|Ψns〉 =
∫ R

0

[
e2

r
− e2

R

(
3

2
− r2

2R2

)]
Ψ∗nsΨnsr

2drdΩ

=
2π

5

e2R2

π(na0)3
.

Using

Ψns(0) =
2

(na0)3/2
· 1√
4π
=

1√
π(na0)3/2

,

we have
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∆Ens =
2π

5
e2|Ψns(0)|2R2 .

As the non-s wave functions have a much smaller fraction inside the

nucleus and so cause smaller perturbation, the energy shift is much smaller.

For hydrogen atom, since ∆E2p � ∆E2s,

∆Eps = ∆E2s −∆E2p ≈ ∆E2s

=
2π

5
e2|Ψ2s(0)|2R ,

where

Ψ2s(0) = (2a0)
−3/2π−1/2 .

Hence

∆Eps ≈
2π

5
e2[(2a0)

−3/2π−1/2]2R2

=
e2R2

20a30
=

(
e2

�c

)2

· R
2mc2

20a20

=

(
1

137

)2

× 10
−26 × 0.511× 106
20× (5× 10−9)2 ≈ 5.4× 10

−10 eV .

1052

The ground state of hydrogen atom is 1s. When examined very closely,

it is found that the level is split into two levels.

(a) Explain why this splitting takes place.

(b) Estimate numerically the energy difference between these two levels.

(Columbia)

Solution:

(a) In the fine-structure spectrum of hydrogen atom, the ground state

1s is not split. The splitting is caused by the coupling between the magnetic

moments of the nuclear spin and the electron spin: F̂ = Î+ Ĵ. As I = 1/2,

J = 1/2, the total angular momentum is F = 1 or F = 0, corresponding to

the two split energy levels.
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(b) The magnetic moment of the nucleus (proton) is µ = µNσN , where

σN is the Pauli matrix operating on the nuclear wave function, inducing a

magnetic field Hm = ∇×∇× (µNσNr ). The Hamiltonian of the interaction

between Hm and the electron magnetic moment µ = −µeσe is

Ĥ = −µ · Ĥm = µeµNσe · ∇ ×∇×
(σN

r

)
.

Calculation gives the hyperfine structure splitting as (Problem 1053)

∆E = A′I · J ,

where

A′ ∼ µeµN

e2a30
≈
(
me

mN

)
mec

2

4
·
(
e2

�c

)4

≈ 1

2000
· 0.51× 10

6

4
×
(
1

137

)4

≈ 2× 10−7 eV ,

me, mN , c, a0 being the electron mass, nucleon mass, velocity of light, Bohr

radius respectively.

1053

Derive an expression for the splitting in energy of an atomic energy level

produced by the hyperfine interaction. Express your result in terms of the

relevant angular momentum quantum numbers.

(SUNY, Buffalo)

Solution:

The hyperfine structure is caused by the interaction between the mag-

netic field produced by the orbital motion and spin of the electron and the

nuclear magnetic momentmN . Taking the site of the nucleus as origin, the

magnetic field caused by the orbital motion of the electron at the origin is

Be(0) =
µ0e

4π

v× r
r3

= −2µ0µB
4π�

l

r3
,
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where v is the velocity of the electron in its orbit, l = mr× v is its orbital
angular momentum, µB = e�

2m , m being the electron mass, is the Bohr

magneton.

The Hamiltonian of the interaction between the nuclear magnetic mo-

ment mN and Be(0) is

HlI = −mN ·Be(0) =
2µ0gNµNµB
4π�2r3

l · I ,

where I is the nuclear spin, µN the nuclear magneton, gN the Landé g-factor

of the nucleon.

At r+ r′, the vector potential caused by the electron magnetic moment

ms = − 2µBs
�

is A = µ0
4πms × r′

r′3 , r
′ being the radius vector from r to the

field point. So the magnetic field is

Bs = ∇×A =
µ0

4π
∇×

(
ms ×

r′

r′3

)

=
2µ0µB
4π�
∇′ ×

(
s×∇′ 1

r′

)
=
2µ0µB
4π�

[
s∇′2 1

r′
− (s · ∇′)∇′ 1

r′

]

= −2µ0µB
4π�

[
4πsδ(r′) + (s · ∇′)∇′ 1

r′

]
.

Letting r′ = −r, we get the magnetic field caused by ms at the origin:

Bs(0) = −
2µ0µB
4π�

[
4πsδ(r) + (s · ∇)∇1

r

]
.

Hence the Hamiltonian of the interaction between mN = gNµN I
�

and

Bs(0) is

HsI = −mN ·Bs(0)

=
2µ0gNµNµB

4π�2

[
4πI · sδ(r) + (s · ∇)

(
I · ∇1

r

)]
.

The total Hamiltonian is then

Hhf = HlI +HsI

=
2µ0gNµNµB

4π�2

[
l · I
r3
+ 4πs · Iδ(r) + (s · ∇)

(
I · ∇1

r

)]
.
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In zeroth order approximation, the wave function is |lsjIFMF 〉, where
l, s and j are respectively the quantum numbers of orbital angular momen-

tum, spin and total angular momentum of the electron, I is the quantum

number of the nuclear spin, F is the quantum number of the total angular

momentum of the atom and MF is of its z-component quantum number.

Hence in first order perturbation the energy correction due to Hhf is

∆E = 〈lsjIFMF |Hhf |lsjIFMF 〉 .

If l �= 0, the wave function is zero at the origin and we only need to

consider Hhf for r �= 0. Thus

Hhf =
2µ0gNµNµB

4π�2

[
I · l
r3
+ (s · ∇)

(
I · ∇1

r

)]

=
2µ0gNµNµB
4π�2r3

G · I ,

where

G = l+ 3
(s · r)r
r2

.

Hence

∆E =
2µ0gNµNµB

4π�2

〈
1

r3
G · I

〉

=
µ0gNµNµB

4π
· l(l + 1)
j(j + 1)

· [F (F + 1)− I(I + 1)− j(j + 1)]

〈
1

r3

〉

=
µ0gNµNµB

4π
· Z3

a30n
3

(
l+

1

2

)
j(j + 1)

· [F (F + 1)

− I(I + 1)− j(j + 1)] ,

where a0 is the Bohr radius and Z is the atomic number of the atom.

For l = 0, the wave function is spherically symmetric and

∆E =
2µ0gNµNµB

4π�2

[
4π〈s · Iδ(r)〉 +

〈
(s · ∇)

(
I · ∇1

r

)〉]
.
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As〈
(s · ∇)

(
I · ∇1

r

)〉
=

〈
3∑

i,j=1

siIj
∂2

∂xi∂xj

(
1

r

)〉

=

〈
3∑

i,j=1

siIj
∂2

∂x2i

(
1

r

)〉
+

〈
3∑

i,j=1
i�=j

siIj
∂2

∂xi∂xj

(
1

r

)〉

=
1

3

〈
s · I∇2

(
1

r

)〉
= −4π

3
〈s · Iδ(r)〉 ,

we have

∆E =
2µ0gNµNµB

4π�2
· 8π
3
〈s · Iδ(r)〉

=
µ0gNµNµB

4π
[F (F + 1)− I(I + 1)− s(s+ 1)] · 8π

3
〈δ(r)〉

=
2µ0gNµNµB

3π
· Z3

a30n
3
· [F (F + 1)− I(I + 1)− s(s+ 1)] .

1054

What is meant by the fine structure and hyperfine structure of spectral

lines? Discuss their physical origins. Give an example of each, including

an estimate of the magnitude of the effect. Sketch the theory of one of the

effects.

(Princeton)

Solution:

(a) Fine structure: The spectral terms as determined by the principal

quantum number n and the orbital angular momentum quantum number

l are split due to a coupling between the electron spin s and orbital angu-

lar momentum l. Consequently the spectral lines arising from transitions

between the energy levels are each split into several lines. For example,

the spectral line arising from the transition 3p → 3s of Na atom shows a

doublet structure, the two yellow lines D1 (5896 Å), D2 (5890 Å) which are

close to each other.
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As an example of numerical estimation, consider the fine structure in

hydrogen.

The magnetic field caused by the orbital motion of the electron is B =
µ0ev
4πr2 . The dynamic equation

mv2

r = e2

4πε0r2
and the quantization condition

mvr = n� give v = αc/n, where α = e2

�c
is the fine-structure constant,

n = 1, 2, 3, . . . . For the ground state n = 1. Then the interaction energy

between the spin magnetic moment µs of the electron and the magnetic

field B is

∆E ≈ −µsB ≈
µ0µBαec

4πr2
,

where µs = − e�
2m = −µB, the Bohr magnetron. Take r ≈ 10−10 m, we find

∆E ≈ 10−7 × 10−23 × 10−2 × 10−19 × 108/10−20 ≈ 10−23 J ≈ 10−4 eV .

Considering an electron moving in a central potential V (r) = − Ze2

4πε0r
, the

interaction Hamiltonian between its orbital angular momentum about the

center, l, and spin s can be obtained quantum mechanically following the

same procedure as

H ′ =
1

2m2c2
1

r

dV

dr
(s · l) .

Taking H ′ as perturbation we then obtain the first order energy correction

∆Enlj = 〈H ′〉 =
Rhcα2Z4

[
j(j + 1)− l(l+ 1)− 3

4

]

2n3l

(
l +

1

2

)
(l + 1)

,

where R is the Rydberg constant, j is the total angular momentum of the

electron.

As states with different j have different ∆Enlj , an energy level (n, l) is

split into two levels with j = l + 1/2 and j = l − 1/2.
(b) Hyperfine structure: Taking into account the coupling between the

nuclear spin I and the total angular momentum j of the orbiting electron,

an energy level determined by j will be split further, forming a hyperfine

structure. Using an instrument of high resolution, we can see that the D1

spectral line of Na atom is actually composed of two lines with a separation

of 0.023 Å, and the D2 line is composed of two lines separated by 0.021 Å.

Administrator
ferret
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For ground state hydrogen atom, the magnetic field caused by the elec-

tron at the nucleus is B = µ0ev
4πa2 , where a is the Bohr radius. The hyperfine

structure splitting is

∆E ≈ µNB ≈
µ0

4π

µNeαc

a2

≈ 10−7 × 5× 10
−27 × 1.6× 10−19 × 3× 108
137× (0.53× 10−10)2 J

≈ 10−7 eV .

A theory of hyperfine structure is outlined in Problem 1053.

1055

Calculate, to an order of magnitude, the following properties of the 2p-

1s electromagnetic transition in an atom formed by a muon and a strontium

nucleus (Z = 38):

(a) the fine-structure splitting,

(b) the natural line width. (Hint: the lifetime of the 2p state of hydrogen

is 10−9 sec)

(Princeton)

Solution:

Taking into account the hyperfine structure corrections, the energy lev-

els of a hydrogen-like atom are given by

E = E0 +∆Er +∆Els

=



−RhcZ

2

n2
− Rhcα2Z4

n3

(
1

l
− 3

4n

)
,

(
j = l − 1

2

)

−RhcZ
2

n2
− Rhcα2Z4

n3

(
1

l + 1
− 3

4n

)
.

(
j = l +

1

2

)

The 1s state is not split, but the 2p state is split into two substates corre-

sponding to j = 1/2 and j = 3/2. The energy difference between the two

lines of 2p→ 1s is

∆E =
Rhcα2Z4

n3

(
1

l
− 1

l + 1

)
,
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where Z = 38, n = 2, l = 1, R = mµRH/me ≈ 200RH = 2.2 × 109 m−1,
α = 1

137 . Hence

∆E =
2.2× 109 × 4.14× 10−15 × 3× 108 × 384

23 × 1372 × 2 = 1.9× 104 eV .

(b) The lifetime of the 2p state of µ-mesic atom is

τµ =
1

Z4
· me

mµ
τH = 2.4× 10−18 s .

The uncertainty principle gives the natural width of the level as

Γ ≈ �/τµ = 2.7× 102 eV .

1056

The lowest-energy optical absorption of neutral alkali atoms corresponds

to a transition ns → (n + 1)p and gives rise to a characteristic doublet

structure. The intensity ratio of these two lines for light alkalis is 2; but as

Z increases, so does the ratio, becoming 3.85 for Cs (6s→ 7p).

(a) Write an expression for the spin-orbit operator N(r).

(b) In a hydrogenic atom, is this operator diagonal in the principal

quantum number n? Is it diagonal in J?

(c) Using the following data, evaluate approximately the lowest order

correction to the intensity ratio for the Cs doublet:

En = energy of the np state in cm
−1,

In = transition intensity for the unperturbed states from the 6s state

to the np state,

I6/I7 = 1.25 , I8/I7 = 0.5 ,

∆n = spin-orbit splitting of the np state in cm−1,

∆6 = 554 E6 = −19950 ,

∆7 = 181 E7 = −9550 ,

∆8 = 80 E8 = −5660 .
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In evaluating the terms in the correction, you may assume that the

states can be treated as hydrogenic.

HINT: For small r, the different hydrogenic radial wave functions are

proportional: fm(r) = kmnfn(r), so that, to a good approximation,

〈6p|N(r)|6p〉 ≈ k67 〈7p|N(r)|6p〉 ≈ k267〈7p|N(r)|7p〉.
(Princeton)

Solution:

(a) The spin-orbit interaction Hamiltonian is

N(r) =
1

2µ2c2r

dV

dr
ŝ · Î

=
1

4µ2c2r

dV

dr
(̂j2 − l̂2 − ŝ2) ,

where µ is the reduced mass, and V = − Ze2

4πε0r
.

(b) The Hamiltonian is H = H0 + N(r). For hydrogen atom, [H0,

N(r)] �= 0, so in the principal quantum number n, N(r) is not diagonal.

Generally,

〈nlm|N(r)|klm〉 �= 0 .

In the total angular momentum j (with fixed n), since [N(r), ĵ2] = 0, N(r)

is diagonal.

(c) The rate of induced transition is

Wk′k =
4π2e2

3�2
|rk′k|2ρ(ωk′k)

and the intensity of the spectral line is I(ωk′k) ∝ �ωk′kWk′k.

With coupling between spin and orbital angular momentum, each np

energy level of alkali atom is split into two sub-levels, corresponding to

j = 3/2 and j = 1/2. However as the s state is not split, the transition

ns → (n + 1)p will give rise to a doublet. As the splitting of the energy

level is very small, the frequencies of the ns→ (n+1)p double lines can be
taken to be approximately equal and so I ∝ |rk′k|2.
The degeneracy of the j = 3/2 state is 4, with jz = 3/2, 1/2,−1/2,−3/2;

the degeneracy of the j = 1/2 state is 2, with jz = 1/2,−1/2. In the zeroth
order approximation, the intensity ratio of these two lines is
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I

(
j =

3

2

)

I

(
j =

1

2

) =
∑
jz

∣∣∣∣
〈
(n+ 1)p

3

2

∣∣∣∣ r
∣∣∣∣ns
〉∣∣∣∣

2

∑
jz

∣∣∣∣
〈
(n+ 1)p

1

2

∣∣∣∣ r
∣∣∣∣ns
〉∣∣∣∣

2 ≈ 2 ,

as given. In the above |(n + 1)p, 1/2〉, |(n + 1)p, 3/2〉 are respectively the
zeroth order approximate wave functions of the j = 1/2 and j = 3/2 states
of the energy level (n+ 1)p.
To find the intensity ratio of the two lines of 6s → 7p transition of Cs

atom, take N(r) as perturbation. First calculate the approximate wave
functions:

Ψ3/2 =

∣∣∣∣7p32
〉
+

∞∑′

n=6

〈
np
3

2

∣∣∣∣N(r)
∣∣∣∣7p32

〉
E7 −En

∣∣∣∣np32
〉
,

Ψ1/2 =

∣∣∣∣7p12
〉
+

∞∑′

n=6

〈
np
1

2

∣∣∣∣N(r)
∣∣∣∣7p12

〉
E7 −En

∣∣∣∣np12
〉
,

and then the matrix elements:

|〈Ψ3/2|r|6s〉|2 =

∣∣∣∣∣∣∣∣
〈
7p
3

2

∣∣∣∣r
∣∣∣∣6s
〉
+

∞∑′

n=6

〈
np
3

2

∣∣∣∣N(r)
∣∣∣∣7p32

〉
E7 −En

〈
np
3

2

∣∣∣∣r
∣∣∣∣6s
〉∣∣∣∣∣∣∣∣

2

≈
∣∣∣∣∣
〈
7p
3

2

∣∣∣∣r
∣∣∣∣6s
〉∣∣∣∣∣

2

∣∣∣∣∣∣∣∣
1 +

∞∑′

n=6

〈
np
3

2

∣∣∣∣N(r)
∣∣∣∣7p32

〉
E7 −En

√
In

I7

∣∣∣∣∣∣∣∣

2

,

|〈Ψ1/2|r|6s〉|2 =

∣∣∣∣∣∣∣∣
〈
7p
1

2

∣∣∣∣r
∣∣∣∣6s
〉
+

∞∑′

n=6

〈
np
1

2

∣∣∣∣N(r)
∣∣∣∣7p12

〉
E7 −En

〈
np
1

2

∣∣∣∣r
∣∣∣∣6s
〉∣∣∣∣∣∣∣∣

2

≈
∣∣∣∣∣
〈
7p
1

2

∣∣∣∣r
∣∣∣∣6s
〉∣∣∣∣∣

2

∣∣∣∣∣∣∣∣
1 +

∞∑′

n=6

〈
np
1

2

∣∣∣∣N(r)
∣∣∣∣7p12

〉
E7 −En

√
In

I7

∣∣∣∣∣∣∣∣

2

,

where
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np
3

2

∣∣∣∣r
∣∣∣∣6s
〉

〈
7p
3

2

∣∣∣∣r
∣∣∣∣6s
〉 ≈

〈
np
1

2

∣∣∣∣r
∣∣∣∣6s
〉

〈
7p
1

2

∣∣∣∣r
∣∣∣∣6s
〉 ≈√In

I7
.

As

N(r) =
1

4µ2c2r

dV

dr
(̂j2 − l̂2 − ŝ2)

= F (r)(̂j2 − l̂2 − ŝ2) ,

where

F (r) ≡ 1

4µ2c2r

dV

dr
,

we have〈
np
3

2

∣∣∣∣N(r)
∣∣∣∣7p32

〉
=

〈
np
3

2

∣∣∣∣F (r)(̂j2 − l̂2 − ŝ2)
∣∣∣∣7p32

〉

=

[
3

2
×
(
3

2
+ 1

)
− 1× (1 + 1)− 1

2
×
(
1

2
+ 1

)]
�
2

× 〈np|F (r)|7p〉 = �2〈np|F (r)|7p〉 ,〈
np
1

2

∣∣∣∣N(r)
∣∣∣∣7p12

〉
=− 2�2〈np|F (r)|7p〉 .

For n = 7, as

∆7 =

〈
7p
3

2

∣∣∣∣N(r)
∣∣∣∣7p32

〉
−
〈
7p
1

2

∣∣∣∣N(r)
∣∣∣∣7p12

〉
= 3�2〈7p|F (r)|7p〉 ,

we have

〈7p|F (r)|7p〉 = ∆7

3�2
.

For n = 6, we have〈
6p
3

2

∣∣∣∣N(r)
∣∣∣∣7p32

〉
= �2〈6p|F (r)|7p〉 = �2k67〈7p|F (r)|7p〉 =

k67

3
∆7 ,

〈
6p
1

2

∣∣∣∣N(r)
∣∣∣∣7p12

〉
= −2�2〈6p|F (r)|7p〉

= −2�2k67〈7p|F (r)|7p〉 = −
2k67
3
∆7 .
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For n = 8, we have〈
8p
3

2

∣∣∣∣N(r)
∣∣∣∣7p32

〉
=

k87

3
∆7 ,

〈
8p
1

2

∣∣∣∣N(r)
∣∣∣∣7p12

〉
= −2k87

3
∆7 .

In the above

k67 =
〈6p|F (r)|7p〉
〈7p|F (r)|7p〉 ,

k87 =
〈8p|F (r)|7p〉
〈7p|F (r)|7p〉 .

Hence

|〈Ψ3/2|r|6s〉|2 =
∣∣∣∣
〈
7p
3

2

∣∣∣∣ r
∣∣∣∣6s
〉∣∣∣∣

2

×
∣∣∣∣∣1 + k67∆7

3(E7 −E6)

√
I6

I7
+

k87∆7

3(E7 −E8)

√
I8

I7

∣∣∣∣∣
2

,

|〈Ψ1/2|r|6s〉|2 =
∣∣∣∣
〈
7p
1

2

∣∣∣∣ r
∣∣∣∣6s
〉∣∣∣∣

2

×
∣∣∣∣∣1− 2k67∆7

3(E7 −E6)

√
I6

I7
− 2k87∆7

3(E7 −E8)

√
I8

I7

∣∣∣∣∣
2

.

As

∆6 =

〈
6p
3

2

∣∣∣∣N(r)
∣∣∣∣6p32

〉
−
〈
6p
1

2

∣∣∣∣N(r)
∣∣∣∣6p12

〉
= 3�2〈6p|F (r)|6p〉

= 3�2k267〈7p|F (r)|7p〉 = k267∆7 ,

we have

k67 =

√
∆6

∆7
,

and similarly

k87 =

√
∆8

∆7
.

Thus
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I

(
j =

3

2

)

I

(
j =

1

2

) =
∑
jz

|〈Ψ3/2|r|6s〉|2

∑
jz

|〈Ψ1/2|r|6s〉|2

≈ 2

∣∣∣∣∣∣∣∣∣
1 +

k67∆7

3(E7 −E6)

√
I6

I7
+

k87∆7

3(E7 −E8)

√
I8

I7

1− 2k67∆7

3(E7 −E6)

√
I6

I7
− 2k87∆7

3(E7 −E8)

√
I8

I7

∣∣∣∣∣∣∣∣∣

2

= 2

∣∣∣∣∣∣∣∣∣
1 +

√
∆6∆7

3(E7 −E6)

√
I6

I7
+

√
∆8∆7

3(E7 −E8)

√
I8

I7

1− 2
√
∆6∆7

3(E7 −E6)

√
I6

I7
− 2
√
∆8∆7

3(E7 −E8)

√
I8

I7

∣∣∣∣∣∣∣∣∣

2

= 3.94 ,

using the data supplied.

1057

An atomic clock can be based on the (21-cm) ground-state hyperfine

transition in atomic hydrogen. Atomic hydrogen at low pressure is con-

fined to a small spherical bottle (r � λ = 21 cm) with walls coated by

Teflon. The magnetically neutral character of the wall coating and the

very short “dwell-times” of the hydrogen on Teflon enable the hydrogen

atom to collide with the wall with little disturbance of the spin state. The

bottle is shielded from external magnetic fields and subjected to a controlled

weak and uniform field of prescribed orientation. The resonant frequency

of the gas can be detected in the absorption of 21-cm radiation, or alter-

natively by subjecting the gas cell to a short radiation pulse and observing

the coherently radiated energy.

(a) The Zeeman effect of these hyperfine states is important. Draw an

energy level diagram and give quantum numbers for the hyperfine substates

of the ground state as functions of field strength. Include both the weak

and strong field regions of the Zeeman pattern.

(b) How can the energy level splitting of the strong field region be used

to obtain a measure of the g-factor for the proton?
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(c) In the weak field case one energy-level transition is affected little

by the magnetic field. Which one is this? Make a rough estimate of the

maximummagnetic field strength which can be tolerated with the resonance

frequency shifted by ∆ν < 10−10 ν.

(d) There is no Doppler broadening of the resonance line. Why is this?

(Princeton)

Solution:

(a) Taking account of the hyperfine structure and the Zeeman effect,

two terms are to be added to the Hamiltonian of hydrogen atom:

Hhf = AI · J , (A > 0)

HB = −µ ·B .

For the ground state of hydrogen,

I =
1

2
, J =

1

2

µ = −ge
e�

2mec

J

�
+ gp

e�

2mpc

I

�
.

Letting
e�

2mec
= µB ,

e�

2mpc
= µN

and using units in which � = 1 we have

µ = −geµBJ+ gpµNI .

(1) Weak magnetic field case. 〈Hnf 〉 � 〈HB〉, we couple I, J as F =
I+ J. Then taking Hhf as the main Hamiltonian and HB as perturbation

we solve the problem in the representation of {F̂2, Î2, Ĵ2, F̂z}. As

Hhf =
A

2
(F̂2 − Î2 − Ĵ2) = A

2

(
F̂2 − 1

2
· 3
2
− 1
2
· 3
2

)
=

A

2

(
F̂2 − 3

2

)
,

we have

∆Ehf =



−3
4
A for F = 0

1

4
A for F = 1 .
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In the subspace of {F̂2, F̂z}, the Wigner-Ecart theory gives

〈µ〉 = (−geµBJ+ gpµNI) ·F
F 2

F .

As for I = J = 1
2 ,

J ·F = 1

2
(F̂2 + Ĵ2 − Î2) = 1

2
F̂2 ,

I ·F = 1

2
(F̂2 + Î2 − Ĵ2) = 1

2
F̂2 ,

we have

〈µ〉 = −geµB − gpµN

2
F̂ .

Then as

HB = −µ ·B =
geµB − gpµN

2
BF̂z ,

we have

∆EB =




E1, (Fz = 1)

0, (Fz = 0)

−E1, (Fz = −1)
where

E1 =
geµB − gpµN

2
B .

(2) Strong magnetic field case. As 〈HB〉 � 〈Hhf 〉, we can treat HB as

the main Hamiltonian and Hhf as perturbation. With {Ĵ2, Î2, Ĵz , Îz} as a
complete set of mechanical quantities, the base of the subspace is | + +〉,
| + −〉, | − +〉, | − −〉 (where | + +〉 means Jz = +1/2, Iz = +1/2, etc.).
The energy correction is

∆E = 〈Hhf +HB〉 = 〈AIzJz〉+ geµBB〈Jz〉 − gpµNB〈Iz〉

=




E1 +
A

4
for |++〉,

E2 −
A

4
for |+−〉,

−E2 −
A

4
for | −+〉,

−E1 +
A

4
for | − −〉,

where
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E1 =
geµB − gpµN

2
B ,

E2 =
geµB + gpµN

2
B .

The quantum numbers of the energy sublevels are given below and the

energy level scheme is shown in Fig. 1.18.

quantum numbers (F, J, I, Fz), (J, I, Jz, Iz)

sublevel (1, 1/2, 1/2, 1) (1/2, 1/2, 1/2,−1/2)

(1, 1/2, 1/2, 0) (1/2, 1/2, 1/2, 1/2)

(1, 1/2, 1/2,−1) (1/2, 1/2,−1/2,−1/2)

(0, 1/2, 1/2, 0) (1/2, 1/2,−1/2, 1/2)

Fig. 1.18

(b) In a strong magnetic field, the gradients of the energy levels with

respect to B satisfy the relation
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∆E|+−〉
∆B

+
∆E|−−〉
∆B

∆E|+−〉
∆B

+
∆E|++〉
∆B

=
gpµN

geµB
,

which may be used to determine gp if the other quantities are known.

(c) In a weak magnetic field, the states |F = 1, Fz = 0〉, |F = 0, Fz = 0〉
are not appreciably affected by the magnetic field, so is the transition energy

between these two states. This conclusion has been reached for the case

of weak magnetic field (A � E1) considering only the first order effect. It

may be expected that the effect of magnetic field on these two states would

appear at most as second order of E1/A. Thus the dependence on B of the

energy of the two states is (
E1

A

)2

· A = E2
1

A
,

and so

∆ν

ν
=
∆E

E
≈

E2
1

A
A

4
−
(
−3A
4

) = E2
1

A2
≈
(
geµBB

2A

)2

,

neglecting gpµN . For ∆ν/ν < 10−10 and the 21-cm line we have

A =
1

4
A−

(
−3
4
A

)
= hν =

2π�c

λ
≈ 2π × 2× 10

−5

21
= 6× 10−6 eV ,

and so

B ≤
(
2A

geµB

)2

× 10−5 =
(
2× 6× 10−6
2× 6× 10−9

)
× 10−5 = 10−2 Gs .

(d) The resonance energy is very small. When photon is emitted, the

ratio of the recoil energy of the nucleon to that of the photon E, ∆E/E � 1.
Hence the Doppler broadening caused by recoiling can be neglected.

1058

Consider an atom formed by the binding of an Ω− particle to a bare Pb

nucleus (Z = 82).

(a) Calculate the energy splitting of the n = 10, l = 9 level of this atom

due to the spin-orbit interaction. The spin of the Ω− particle is 3/2. Assume

a magnetic moment of µ = e�
2mcgps with g = 2 and m = 1672 MeV/c2.
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Note: 〈
1

r3

〉
=

(
mc2

�c

)3

(αZ)3
1

n3l

(
l +

1

2

)
(l + 1)

for a particle of mass m bound to a charge Z in a hydrogen-like state of

quantum numbers (n, l).

(b) If the Ω− has an electric quadrupole moment Q ∼ 10−26 cm2 there

will be an additional energy shift due to the interaction of this moment with

the Coulomb field gradient ∂Ez/∂z. Estimate the magnitude of this shift;

compare it with the results found in (a) and also with the total transition

energy of the n = 11 to n = 10 transition in this atom.

(Columbia)

Solution:

(a) The energy of interaction between the spin and orbital magnetic

moments of the Ω− particle is

∆Els = Zµl · µs
〈
1

r3

〉
,

where

µl =
e

2mc
pl,=

e�

2mc
l ,

µs =
e

mc
ps,=

e�

mc
s ,

pl, ps being the orbital and spin angular momenta. Thus

∆Els =
Ze2�2

2m2c2

〈
1

r3

〉
l · s .

As

l · s = 1
2
[(l+ s)2 − l2 − s2] ,

we have

∆Els =
Ze2�2

2m2c2

〈
1

r3

〉
(j2 − l2 − s2)

2

=
(Zα)4mc2

4


 j(j + 1)− l(l+ 1)− s(s+ 1)

n3l

(
l +

1

2

)
(l + 1)


 .
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With Z = 82, m = 1672 MeV/c2, s = 3/2, n = 10, l = 9, α = 1
137 , and

〈1/r3〉 as given, we find ∆Els = 62.75× [j(j + 1)− 93.75] eV. The results
are given in the table below.

j ∆Els (eV) Level splitting (eV)

19/2 377 1193
17/2 −816 1067
15/2 −1883 941
13/2 −2824

(b) The energy shift due to the interaction between the electric quad-

rupole moment Q and the Coulomb field gradient ∂Ez
∂z

is

∆EQ ≈ Q

〈
∂Ez

∂z

〉
,

where ∂Ez
∂z is the average value of the gradient of the nuclear Coulomb field

at the site of Ω−. As 〈
∂Ez

∂z

〉
≈ −

〈
1

r3

〉
,

we have

∆EQ ≈ −Q
〈
1

r3

〉

in the atomic units of the hyperon atom which have units of length and

energy, respectively,

a =
�
2

me2
=
�c

mc2

(
�c

e2

)
=
1.97× 1011
1672

× 137 = 1.61× 10−12 cm ,

ε =
me4

�2
= mc2

(
e2

�c

)2

=
1672× 106
1372

= 8.91× 104 eV .

For n = 10, l = 9, 〈 1
r3
〉 = 1.53 × 1035 cm−3 ≈ 0.6 a.u. With Q ≈

10−26 cm2 ≈ 4× 10−3 a.u., we have

∆EQ ≈ 2.4× 10−3 a.u. ≈ 2× 102 eV .
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The total energy resulting from a transition from n = 11 to n = 10 is

∆E =
Z2mc2

2

(
e2

�c

)2(
1

102
− 1

112

)

=
822 × 1672× 106

2× 1372
(
1

102
− 1

112

)

≈ 5× 105 eV .

1059

What is the energy of the photon emitted in the transition from the

n = 3 to n = 2 level of the µ− mesic atom of carbon? Express it in terms of

the γ energy for the electronic transition from n = 2 to n = 1 of hydrogen,

given that mµ/me = 210.

(Wisconsin)

Solution:

The energy of the µ− atom of carbon is

En(µ) =
Z2mµ

me
En(H) ,

where En(H) is the energy of the corresponding hydrogen atom, and Z = 6.

The energy of the photon emitted in the transition from n = 3 to n = 2

level of the mesic atom is

∆E =
Z2mµ

me
[E3(H)−E2(H)] .

As

−En(H) ∝
1

n2
,

we have
36

5
[E3(H)−E2(H)] =

4

3
[E2(H)−E1(H)] ,

and hence

∆E =
5Z2mµ

27me
[E2(H)−E1(H)]

= 1400[E2(H)−E1(H)] ,
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where E2(H)−E1(H) is the energy of the photon emitted in the transition

from n = 2 to n = 1 level of hydrogen atom.

1060

The muon is a relatively long-lived elementary particle with mass 207

times the mass of electron. The electric charge and all known interactions of

the muon are identical to those of the electron. A “muonic atom” consists

of a neutral atom in which one electron is replaced by a muon.

(a) What is the binding energy of the ground state of muonic hydrogen?

(b) What ordinary chemical element does muonic lithium (Z = 3) re-

semble most? Explain your answer.

(MIT )

Solution:

(a) By analogy with the hydrogen atom, the binding energy of the

ground state of the muonic atom is

Eµ =
mµe

4

2�2
= 207EH = 2.82× 103 eV .

(b) A muonic lithium atom behaves chemically most like a He atom. As

µ and electron are different fermions, they fill their own orbits. The two

electrons stay in the ground state, just like those in the He atom, while the

µ stays in its own ground state, whose orbital radius is 1/207 of that of the

electrons. The chemical properties of an atom is determined by the number

of its outer most shell electrons. Hence the mesic atom behaves like He,

rather than like Li.

1061

The Hamiltonian for a (µ+e−) atom in the n = 1, l = 0 state in an

external magnetic field is

H = aSµ · Se +
|e|
mec

Se ·B−
|e|
mµc

Sµ ·B .

(a) What is the physical significance of each term? Which term domi-

nates in the interaction with the external field?
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(b) Choosing the z-axis along B and using the notation (F,MF ), where

F = Sµ+Se, show that (1,+1) is an eigenstate ofH and give its eigenvalue.

(c) An RF field can be applied to cause transition to the state (0,0).

Describe quantitatively how an observation of the decay µ+ → e+νeν̄µ
could be used to detect the occurrence of this transition.

(Wisconsin)

Solution:

(a) In the Hamiltonian, the first term, aSµ · Se, describes the elec-
tromagnetic interaction between µ+ and e−, the second and third terms

respectively describe the interactions between the electron and µ+ with the

external magnetic field.

(b) Denote the state of F = 1, MF = +1 with Ψ. As F = Sµ + Se, we

have

Sµ · Se =
1

2
(F2 − S2µ − S2e) ,

and hence

Sµ · SeΨ =
1

2
(F2Ψ− S2µΨ− S2eΨ) =

�
2

2

(
2Ψ− 3

4
Ψ− 3

4
Ψ

)
=
�
2

4
Ψ .

In the common eigenvector representation of Sze, S
z
µ, the Ψ state is

represented by the spinor

Ψ =

(
1

0

)
e

⊗
(
1

0

)
µ

.

Then

SzeΨ =
�

2
σzeΨ =

�

2
Ψ ,

SzµΨ =
�

2
σzµΨ =

�

2
Ψ ,

and so

H = aSµ · SeΨ+
e

mec
BSzeΨ−

e

mµc
BSzµΨ

= a
�
2

4
Ψ +

eB

mec
· �
2
Ψ− eB

mµc
· �
2
Ψ

=

(
1

4
a�2 +

eB

2mec
�− eB

2mµc
�

)
Ψ .

Hence the (1,+1) state is an eigenstate of H with eigenvalue
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1

4
a�2 +

eB

2mec
�− eB

2mµc
�

)
.

(c) The two particles in the state (1,+1) have parallel spins, while those

in the state (0,0) have anti-parallel spins. So relative to the direction of

spin of the electron, the polarization directions of µ+ in the two states are

opposite. It follows that the spin of the positrons arising from the decay

of µ+ is opposite in direction to the spin of the electron. An (e+e−) pair

annihilate to give rise to 3γ or 2γ in accordance with whether their spins

are parallel or antiparallel. Therefore if it is observed that the (e+e−) pair

arising from the decay µ+ → e+νeµ̃µ annihilate to give 2γ, then it can be

concluded that the transition is between the states (1,+1) and (0,0).

1062

Muonic atoms consist of mu-mesons (mass mµ = 206me) bound to

atomic nuclei in hydrogenic orbits. The energies of the mu mesic levels

are shifted relative to their values for a point nucleus because the nuclear

charge is distributed over a region with radius R. The effective Coulomb

potential can be approximated as

V (r) =



−Ze

2

r
, (r ≥ R)

−Ze
2

R

(
3

2
− r2

2R2

)
. (r < R)

(a) State qualitatively how the energies of the 1s, 2s, 2p, 3s, 3p, 3d

muonic levels will be shifted absolutely and relative to each other, and

explain physically any differences in the shifts. Sketch the unperturbed

and perturbed energy level diagrams for these states.

(b) Give an expression for the first order change in energy of the 1s

state associated with the fact that the nucleus is not point-like.

(c) Estimate the 2s–2p energy shift under the assumption that R/aµ �
1, where aµ is the “Bohr radius” for the muon and show that this shift

gives a measure of R.

(d) When is the method of part (b) likely to fail? Does this method

underestimate or overestimate the energy shift. Explain your answer in

physical terms.
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Useful information:

Ψ1s = 2N0 exp

(
− r

aµ

)
Y00(θ, φ) ,

Ψ2s =
1√
8
N0

(
2− r

aµ

)
exp

(
− r

2aµ

)
Y00(θ, φ) ,

Ψ2p =
1√
24

N0
r

aµ
exp

(
− r

2aµ

)
Y1m(θ, φ) ,

N0 =
1

a
3/2
µ

.

(Wisconsin)

Solution:

(a) If nuclear charge is distributed over a finite volume, the intensity of

the electric field at a point inside the nucleus is smaller than that at the

same point if the nucleus is a point. Consequently the energy of the same

state is higher in the former case. The probability of a 1s state electron

staying in the nucleus is larger than that in any other state, so the effect

of a finite volume of the nucleus on its energy level, i.e. the energy shift, is

largest. Next come 2s, 3s, 2p, 3p, 3d, etc. The energy levels are shown in

Fig. 1.19.

Fig. 1.19
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(b) The perturbation potential due to the limited volume of nucleus has

the form

∆V =



0, (r ≥ R)

Ze2

R

(
r2

2R2
− 3
2
+

R

r

)
. (r < R)

The first order energy correction of the 1s state with the approximation
R
aµ
� 1 is

∆E1s =

∫
Ψ∗1s∆VΨ1sdτ

=
Ze2

R
4N2

0

∫ R

0

exp

(
− 2r
aµ

)
·
(

r2

2R2
− 3
2
+

R

r

)
r2dr

≈ Ze2

R
4N2

0

∫ R

0

(
r2

2R2
− 3
2
+

R

r

)
r2dr

=
2Ze2R2

5a3µ
.

(c) The energy shifts for the 2s and 2p states are

∆E2s =

∫
Ψ∗2s∆VΨ2sdτ

=
Ze2N2

0

8R

∫ R

0

(
2− r

aµ

)2

exp

(
− r

aµ

)
·
(

r2

2R2
− 3
2
+

R

r

)
r2dr

≈ Ze2N2
0

8R

∫ R

0

4

(
r2

2R2
− 3
2
+

R

r

)
r2dr

=
Ze2R2

20a3µ
,

∆E2p =

∫
Ψ∗2p∆VΨ2pdτ

=
Ze2N2

0

24a2µR

∫ R

0

r2 exp

(
− r

aµ

)
·
(

r2

2R2
− 3
2
+

R

r

)
r2dr
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≈ Ze2N2
0

24a2µR

∫ R

0

r2
(

r2

2R2
− 3
2
+

R

r

)
r2dr

=
3Ze2R4

3360a5µ
� ∆E2s .

Hence the relative shift of 2s–2p is

∆Esp ≈ ∆E2s =
Ze2R2

20a3µ
.

Thus R can be estimated from the relative shift of the energy levels.

(d) For large Z, aµ =
�
2

Zmµe2
becomes so small that R

aµ
≥ 1. When

R
aµ
≥
√
5
2 , we have, using the result of (b),

∆E1s =
2Ze2R2

5a3µ
=
4

5
|E0

1s|
(
R

aµ

)2

> |E0
1s| ,

where

E0
1s = −

mµZ
2e4

2�2
.

This means that E1s = E0
1s +∆E1s > 0, which is contradictory to the

fact that E1s, a bound state, is negative. Hence ∆E1s as given by (b) is

higher than the actual value. This is because we only included the zeroth

order term in the expansion of exp(− 2r
aµ
). Inclusion of higher order terms

would result in more realistic values.

1063

Consider the situation which arises when a negative muon is captured

by an aluminum atom (atomic number Z = 13). After the muon gets

inside the “electron cloud” it forms a hydrogen-like muonic atom with the

aluminum nucleus. The mass of the muon is 105.7 MeV.

(a) Compute the wavelength (in Å) of the photon emitted when this

muonic atom decays from the 3d state. (Sliderule accuracy; neglect nuclear

motion).
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(b) Compute the mean life of the above muonic atom in the 3d state,

taking into account the fact that the mean life of a hydrogen atom in the

3d state is 1.6× 10−8 sec.
(UC, Berkeley)

Solution:

There are two energy levels in each of the 3d, 3p, 2p states, namely

32D5/2 and 3
2D3/2, 3

2P3/2 and 3
2P1/2, 2

2P3/2 and 2
2P1/2, respectively.

There is one energy level each, 32S1/2, 2
2S1/2 and 1

2S1/2, in the 3s, 2s and

1s states respectively.

The possible transitions are:

32D5/2 → 32P3/2, 32D5/2 → 22P3/2, 32D3/2 → 32P1/2,

32D3/2 → 22P3/2, 32D3/2 → 22P1/2 ,
32P3/2 → 32S1/2, 32P3/2 → 22S1/2, 32P3/2 → 12S1/2,

32P1/2 → 22S1/2, 32P1/2 → 12S1/2 ,
32S1/2 → 22P3/2, 3

2S1/2 → 22P1/2, 22P3/2 → 22S1/2,
22P3/2 → 12S1/2, 22P1/2 → 12S1/2 .

(a) The hydrogen-like mesic atom has energy

E = E0


 1
n2
+

α2Z2

n3


 1

j +
1

2

− 3

4n




 ,

where

E0 = −
2π2mµe

4Z2

(4πε0)2h2
= −13.6× 105.7

0.511
× 132 = −4.754× 105 eV ,

α = 1
137 . Thus

∆E(32D5/2 → 32P3/2) = 26.42 eV ,

∆E(32D5/2 → 22P3/2) = 6.608× 104 eV ,

∆E(32D3/2 → 32P1/2) = 79.27 eV ,

∆E(32D3/2 → 22P3/2) = 6.596× 104 eV ,

∆E(32D3/2 → 22P1/2) = 6.632× 104 eV ,
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∆E(32P3/2 → 32S1/2) = 79.27 eV ,

∆E(32P3/2 → 22S1/2) = 6.632× 104 eV ,

∆E(32P3/2 → 12S1/2) = 4.236× 105 eV ,

∆E(32P1/2 → 22S1/2) = 6.624× 104 eV ,

∆E(32P1/2 → 12S1/2) = 4.235× 105 eV ,

∆E(32S1/2 → 22P3/2) = 6.598× 105 eV ,

∆E(32S1/2 → 22P1/2) = 6.624× 104 eV ,

∆E(22P3/2 → 22S1/2) = 267.5 eV ,

∆E(22P3/2 → 12S1/2) = 3.576× 105 eV ,

∆E(22P1/2 → 12S1/2) = 3.573× 105 eV .

Using the relation λ = hc
∆E = 12430

∆E(eV) Å, we obtain the wavelengths of

the photons emitted in the decays of the 3d state: λ = 470 Å, 0.188 Å,

0.157 Å, 0.188 Å, 0.187 Å in the above order.

(b) The probability of a spontaneous transition is

P ∝ e2ω3

�c3
R2

with

ω ∝ mµ(Ze
2)2

�3
, R ∝ �

2

mµZe2
.

Thus

P ∝ mµ(Ze
2)4 .

As the mean life of the initial state is

τ =
1

P
,

the mean life of the 3d state of the µ mesic atom is

τ =
meτ0

mµZ4
= 2.7× 10−15 s .

where τ0 = 1.6× 10−8 s is the mean life of a 3d state hydrogen atom.
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1064

One method of measuring the charge radii of nuclei is to study the

characteristic X-rays from exotic atoms.

(a) Calculate the energy levels of a µ− in the field of a nucleus of charge

Ze assuming a point nucleus.

(b) Now assume the µ− is completely inside a nucleus. Calculate the

energy levels assuming the nucleus is a uniform charge sphere of charge Ze

and radius ρ.

(c) Estimate the energy of the K X-ray from muonic 208Pb82 using the

approximations in (a) or (b). Discuss the validity of these approximations.

NOTE: mµ = 200me.

(Princeton)

Solution:

(a) The energy levels of µ− in the field of a point nucleus with charge

Ze are given by (Problem 1035)

En = Z2mµ

me
En(H) = −Z2 × 200× 13.6

n2

= −2.72× 10
3

n2
Z2 eV ,

where En(H) is the corresponding energy level of a hydrogen atom.

(b) The potential for µ− moving in a uniform electric charge sphere of

radius ρ is (Problem 1050(a))

V (r) = −Ze
2

ρ

(
3

2
− r2

2ρ2

)
= −3Ze

2

2ρ
+
1

2

(
Ze2

ρ3

)
r2 .

The dependence of the potential on r suggests that the µ− may be

treated as an isotropic harmonic oscillator of eigenfrequency ω =
√

Ze2

mµρ3
.

The energy levels are therefore

En = �ω

(
n+

3

2

)
− 3Ze

2

2ρ
,

where n = 0, 1, 2, . . . , ρ ≈ 1.2× 10−13 A1/3 cm.
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(c) K X-rays are emitted in the transitions of electron energy levels

n ≥ 2 to the n = 1 level.
The point-nucleus model (a) gives the energy of the X-rays as

∆E = E2 −E1 = −2.72× 103 × 822
(
1

22
− 1
)
= 1.37× 107 eV .

The harmonic oscillator model (b) gives the energy of the X-rays as

∆E =E2 −E1 = �ω = �

(
c

ρ

)√
Z
r0

ρ

me

mµ
=
6.58× 10−16 × 3× 1010

1.2× 10−13

×
√

82× 2.82× 10−13
208× 200× 1.2× 10−13 = 1.12× 10

7 eV ,

where r0 =
e2

mec2
= 2.82× 10−13 cm is the classical radius of electron.

Discussion: As µ− is much heavier than electron, it has a larger proba-

bility of staying inside the nucleus (first Bohr radius a0 ∝ 1
m
), which makes

the effective nuclear charge Z∗ < Z. Thus we may conclude that the energy

of K X-rays as given by the point-nucleus model is too high. On the other

hand, as the µ− does have a finite probability of being outside the nucleus,

the energy of the K X-rays as given by the harmonic oscillator model would

be lower than the true value. As the probability of the µ− being outside

the nucleus decreases faster than any increase of Z, the harmonic oscillator

model is closer to reality as compared to the point-nuclear model.

1065

A proposal has been made to study the properties of an atom composed

of a π+ (mπ+ = 273.2me) and a µ
− (mµ− = 206.77me) in order to measure

the charge radius of π+ assuming that its charge is spread uniformly on a

spherical shell of radius r0 = 10
−13 cm and that the µ− is a point charge.

Express the potential as a Coulomb potential for a point charge plus a

perturbation and use perturbation theory to calculate a numerical value

for the percentage shift in the 1s–2p energy difference ∆ (neglect spin orbit

effects and Lamb shift). Given

a0 =
�
2

me2
,
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R10(r) =

(
1

a0

)3/2

2 exp

(
− r

a0

)
,

R21(r) =

(
1

2a0

)3/2
r

a0
exp

(
− r

a0

)
· 1√
3
.

(Wisconsin)

Solution:

The potential function is

V (r) =

{
−e2/r, (r > r0)

−e2/r0. (r < r0)

The Hamiltonian can be written as H = H0 + H ′, where H0 is the

Hamiltonian if π+ is treated as a point charge, H ′ is taken as perturbation,

being

H ′ =



0, (r > r0)

e2
(
1

r
− 1

r0

)
. (r < r0)

The shift of 1s level caused by H ′, to first order approximation, is

∆E1s =

∫
Ψ∗1sH

′Ψ1sdτ =

∫ r0

0

R2
10(r)e

2

(
1

r
− 1

r0

)
r2dr ≈ 2e

2r20
3a30

,

assuming r0 � a0. The shift of 2p level is

∆E2p =

∫
Ψ∗2pH

′Ψ2pdτ =

∫ r0

0

R2
21(r)e

2

(
1

r
− 1

r0

)
r2dr

≈ e2r40
480a50

� ∆E1s ,

using the same approximation. Thus

∆E1s −∆E2p ≈ ∆E1s =
2e2r20
3a30

.

Without considering the perturbation, the energy difference of 1s–2p is

∆ = −me4

2�2

(
1

22
− 1
)
=
3me4

8�2
=
3e2

8a0
.
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Hence
∆E1s −∆E2p

∆
≈ 16
9

(
r0

a0

)2

.

As

m =
mµ−mπ+

mµ− +mπ+
= 117.7me ,

we have

a0 =
�
2

me2
=

(
�
2

mee2

)
me

m
=
0.53× 10−8
117.7

= 4.5× 10−11 cm ,

and hence

∆E1s −∆E2p

∆
=
16

9
×
(

10−3

4.5× 10−11
)2

= 8.8× 10−6 .

1066

A µ− meson (a heavy electron of massM = 210me withme the electron

mass) is captured into a circular orbit around a proton. Its initial radius

R ≈ the Bohr radius of an electron around a proton. Estimate how long (in
terms of R, M and me) it will take the µ

− meson to radiate away enough

energy to reach its ground state. Use classical arguments, including the

expression for the power radiated by a nonrelativistic accelerating charged

particle.

(CUSPEA)

Solution:

The energy of the µ− is

E(r) = K(r)− e2

r
= − e

2

2r
,

where K(r) is the kinetic energy.

The radiated power is P = 2e2a2

3c3 , where

a =
FCoul

M
=

e2

r2M

is the centripetal acceleration. Energy conservation requires
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dE

dt
= −P ,

i.e.,
e2

2r2
dr

dt
= −2e

2

3c3
· e4

r4M2
.

Integration gives

R3 − r3 =
4

c3
· e

4

M2
t ,

where R is the radius of the initial orbit of the µ mesion, being

R ≈ �
2

me2
.

At the µ ground state the radius of its orbit is the Bohr radius of the mesic

atom

r0 =
�
2

Me2
,

and the time t taken for the µ meson to spiral down to this state is given by

(
�
2

e2

)3(
1

m3
− 1

M3

)
=

4e4

c3M2
t .

Since M � m, we have

t ≈ M2c3R3

4e4
=

(
M

m

)2(
mc2

e2

)2
R3

4c

= 2102 ×
(
5.3× 10−9
2.82× 10−13

)2

× 5.3× 10−9
4× 3× 1010 = 6.9× 10

−7 s .

1067

Consider a hypothetical universe in which the electron has spin 3/2

rather than spin 1/2.

(a) Draw an energy level diagram for the n = 3 states of hydrogen in

the absence of an external magnetic field. Label each state in spectroscopic

notation and indicate which states have the same energy. Ignore hyperfine

structure (interaction with the nuclear spin).
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(b) Discuss qualitatively the energy levels of the two-electron helium

atom, emphasizing the differences from helium containing spin 1/2 elec-

trons.

(c) At what values of the atomic number would the first two inert gases

occur in this universe?

(Columbia)

Solution:

(a) Consider a hydrogen atom having electron of spin 3/2. For n = 3,

the possible quantum numbers are given in Table 1.1.

Table 1.1

n l j

0 3/2

3 1 5/2, 3/2, 1/2

2 7/2, 5/2, 3/2, 1/2

If fine structure is ignored, these states are degenerate with energy

En = −
RhcZ2

n2

where Z = 1, n = 3, R is the Rydberg constant, c is the speed of light.

If the relativistic effect and spin-orbit interactions are taken into ac-

count, the energy changes into E = E0 + ∆E and degeneracy disappears,

i.e., different states have different energies.

(1) For l = 0 and j = 3/2, there is only the correction ∆Er arising from

the relativistic effect, i.e.,

∆E = ∆Er = −A


 1

l+
1

2

− 3

4n


 = −7

4
A ,

where A = Rhcα2Z4/n3, α being the fine structure constant.

(2) For l �= 0, in addition to ∆Er there is also the spin-orbital coupling
correction ∆Els, so that

∆E = ∆Er +∆Els = −A


 1

l +
1

2

− 3

4n



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+A
1

l

(
l +

1

2

)
(l + 1)

· j(j + 1)− l(l+ 1)− s(s+ 1)

2
.

(i) For l = 1,

∆E =

[
1

6
j(j + 1)− 11

8

]
A ,

Thus for

j =
5

2
, ∆E =

1

12
A ,

j =
3

2
, ∆E = −3

4
A ,

j =
1

2
, ∆E = −5

4
A .

(ii) For l = 2,

∆E =

[
1

30
j(j + 1)− 19

40

]
A ,

Thus for

j =
7

2
, ∆E =

1

20
A ,

j =
5

2
, ∆E = −11

60
A ,

j =
3

2
, ∆E = − 7

20
A .

j =
1

2
, ∆E = − 9

20
A .

The energy level scheme for n = 3 of the hydrogen atom is shown in

Fig. 1.20.

(b) Table 1.2 shows the single-electron energy levels of the helium atoms

(electron spins 1/2 and 3/2).
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Fig. 1.20

Table 1.2

He (s = 3/2) He (s = 1/2)

n1 = 1 Total electron spin S = 0, 2 S = 0

n2 = 1

l = 0 energy level 1S0, 5S2 1S0

n1 = 1 Total electron spin S = 0, 1, 2, 3 S = 0, 1

n2 = 2

l2 = 0, 1 energy level l2 = 0 : 1S0, 3S1, 5S2, 7S3 l2 = 0: 1S0, 3S1

l2 = 1: 1P1, 3P2,1,0, 5P3,2,1 l2 = 1: 1P1, 3P2,1,0
7P4,3,2

(c) If the electron spin were 3/2, the atomic numbers Z of the first two

inert elements would be 4 and 20.

1068

Figure 1.21 shows the ground state and first four excited states of the

helium atom.

(a) Indicate on the figure the complete spectroscopic notation of each

level.
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Fig. 1.21

(b) Indicate, with arrows on the figure, the allowed radiative dipole

transitions.

(c) Give a qualitative reason why level B is lower in energy than level C.

(Wisconsin)

Solution:

(a) The levels in Fig. 1.21 are as follows:

A: 11S0, constituted by 1s
2,

B: 21S0, constituted by 1s2s,

C: 21P1, constituted by 1s2p,

D: 23S1, constituted by 1s2s,

E: 23P2,1,0, constituted by 1s2p.

(b) The allowed radiative dipole transitions are as shown in Fig. 1.22.

(Selection rules ∆L = ±1, ∆S = 0)
(c) In the C state constituted by 1s2p, one of the electrons is excited to

the 2p orbit, which has a higher energy than that of 2s. The main reason

is that the effect of the screening of the nuclear charge is larger for the p

orbit.
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Fig. 1.22

1069

Figure 1.23 shows the ground state and the set of n = 2 excited states

of the helium atom. Reproduce the diagram in your answer giving

(a) the spectroscopic notation for all 5 levels,

(b) an explanation of the source of ∆E1,

(c) an explanation of the source of ∆E2,

(d) indicate the allowed optical transitions among these five levels.

(Wisconsin)

Fig. 1.23
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Solution:

(a) See Problem 1068(a).

(b) ∆E1 is the difference in energy between different electronic config-

urations with the same S. The 3P states belong to the configuration of

1s2p, which has one electron in the 1s orbit and the other in the 2p orbit.

The latter has a higher energy because the screening of the nuclear charge

is greater for the p electron.

(c) ∆E2 is the energy difference between levels of the same L in the

same electronic configuration but with different S. Its origin lies in the

Coulomb exchange energy.

(d) See Problem 1068(b).

1070

Figure 1.24 is an energy level diagram for the ground state and first four

excited states of a helium atom.

(a) On a copy of the figure, give the complete spectroscopic notation for

each level.

(b) List the possible electric-dipole allowed transitions.

Fig. 1.24
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(c) List the transitions between those levels that would be possible for

an allowed 2-photon process (both photons electric dipole).

(d) Given electrons of sufficient energy, which levels could be populated

as the result of electrons colliding with ground state atoms?

(Wisconsin)

Solution:

(a) (b) See problem 1068.

(c) The selection rule for a 2-photon process are

(1) conservation of parity,

(2) ∆J = 0,±2.
Accordingly the possible 2-photon process is

(1s2s)1S0 → (1s2)1S0 .

The transition (1s2s)3S to (1s2)1S0 is also possible via the 2-photon

process with a rate 10−8 ∼ 10−9 s−1. It has however been pointed out
that the transition 23S1 → 11S0 could proceed with a rate ∼ 10−4 s via
magnetic dipole radiation, attributable to some relativistic correction of

the magnetic dipole operator relating to spin, which need not satisfy the

condition ∆S = 0.

(d) The (1s2s)1S0 and (1s2s)
3S1 states are metastable. So, besides the

ground state, these two levels could be populated by many electrons due to

electrons colliding with ground state atoms.

1071

Sketch the low-lying energy levels of atomic He. Indicate the atomic

configuration and give the spectroscopic notation for these levels. Indicate

several transitions that are allowed in emission, several transitions that are

allowed in absorption, and several forbidden transitions.

(Wisconsin)

Solution:

The energy levels of He are shown in Fig. 1.25.

According to the selection rules ∆S = 0, ∆L = ±1, ∆J = 0,±1 (except
0→ 0), the allowed transitions are: 31S0 → 21P1, 33S1 → 23P2,1,0, 21P1 →
11S0, 2

1P1 → 21S0, 3
3D1 → 33P0, 3

3D2,1 → 33P1, 3
3D3,2,1 → 33P2,
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Fig. 1.25

31D2 → 31P1, 3
1D2 → 21P1, 3

3D1 → 23P1,0, 3
3D3,2,1 → 23P2, 3

3P2,1,0 →
23S1. The reverse of the above are the allowed absorption transitions.

Transitions between singlet and triplet states (∆S �= 0) are forbidden,

e.g. 23S1 → 11S0, 21P1 → 23S1.

1072

Sketch the energy level diagram for a helium atom in the 1s3d configu-

ration, taking into account Coulomb interaction and spin-orbit coupling.

(UC, Berkeley)

Solution:

See Problem 1100.

1073

For helium atom the only states of spectroscopic interest are those for

which at least one electron is in the ground state. It can be constructed

from orthonormal orbits of the form
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Ψ±(1, 2) =
1√
2
[Φ1s(1)Φnlm(2)± Φnlm(1)Φ1s(2)]× spin wave function .

The para-states correspond to the + sign and the ortho-states to the

− sign.

(a) Determine for which state the ortho- or the corresponding para-state

has the lowest energy. (i.e. most negative).

(b) Present an argument showing for large n that the energy difference

between corresponding ortho- and para-states should become small.

(SUNY, Buffalo)

Solution:

(a) For fermions like electrons the total wave function of a system must

be antisymmetric.

If both electrons of a helium atom are in 1s orbit, Pauli’s principle

requires that their spins be antiparallel, i.e. the total spin function be an-

tisymmetric. Then the spatial wave function must be symmetric and the

state is the para-state 11S0.

If only one electron is in 1s orbit, and the other is in the nlm-state,

where n �= 1, their spins may be either parallel or antiparallel and the

spatial wave functions are, respectively,

Ψ∓ =
1√
2
[Φ1s(1)Φnlm(2)∓ Φnlm(1)Φ1s(2)] .

Ignoring magnetic interactions, consider only the Coulomb repulsion be-

tween the electrons and take as perturbation H ′ = e2/r12, r12 being the

distance between the electrons. The energy correction is then

W ′
∓ =

1

2

∫∫
[Φ∗1s(1)Φ

∗
nlm(2)∓ Φ∗nlm(1)Φ∗1s(2)]

× e2

r12
[Φ1s(1)Φnlm(2)∓ Φnlm(1)Φ1s(2)]dτ1dτ2

=J ∓K

with

J =

∫∫
e2

r12
|Φ1s(1)Φnlm(2)|2dτ1dτ2 ,

K =

∫∫
e2

r12
Φ∗1s(1)Φnlm(1)Φ

∗
nlm(2)Φ1s(2)dτ1dτ2 .
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Hence the ortho-state (− sign above) has lower corrected energy. Thus
para-helium has ground state 11S0 and ortho-helium has ground state 2

3S1,

which is lower in energy than the 21S0 state of para-helium (see Fig. 1.25).

(b) As n increases the mean distance r12 between the electrons increases

also. This means that the energy difference 2K between the para- and

ortho-states of the same electron configuration decreases as n increases.

1074

(a) Draw and qualitatively explain the energy level diagram for the

n = 1 and n = 2 levels of helium in the nonrelativistic approximation.

(b) Draw and discuss a similar diagram for hydrogen, including all the

energy splitting that are actually present.

(CUSPEA)

Solution:

(a) In the lowest energy level (n = 1) of helium, both electrons are in the

lowest state 1s. Pauli’s principle requires the electrons to have antiparallel

spins, so that the n = 1 level is a singlet. On account of the repulsion

energy between the electrons, e2/r12, the ground state energy is higher

than 2Z2E0 = 8E0, where E0 = −me
4

2�2 = −13.6 eV is the ground state

energy of hydrogen atom.

In the n = 2 level, one electron is in 1s state while the other is in

a higher state. The two electrons can have antiparallel or parallel spins

(singlet or triplet states). As the probability for the electrons to come

near each other is larger in the former case, its Coulomb repulsion energy

between the electrons, e2/r12, is also larger. Hence in general a singlet state

has higher energy than the corresponding triplet state (Fig. 1.26).

(b) The energy levels of hydrogen atom for n = 1 and n = 2 are shown

in Fig. 1.27. If one considers only the Coulomb interaction between the

nucleus and electron, the (Bohr) energy levels are given by

En = −
mee

4

2�2n2
,

which is a function of n only. If the relativistic effect and the spin-orbit

interaction of the electron are taken into account, the n = 2 level splits into

two levels with a spacing ≈ α2E2, where α is the fine structure constant.
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Fig. 1.26

Fig. 1.27

If one considers, further, the interaction between the electron and its own

magnetic field and vacuum polarization, Lamb shift results splitting the

degenerate 2S1/2 and 2P1/2 states, the splitting being of the order mec
2α5.

In addition, the levels split further on account of the interactions be-

tween the spin and orbital motions of the electron and the nuclear magnetic

moment, giving rise to a hyperfine structure with spacing about 1/10 of the

Lamb shift for the same n.
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1075

(a) The 1s2s configuration of the helium atom has two terms 3S1 and
1S0 which lie about 20 eV above the ground state. Explain the meaning of

the spectroscopic notation. Also give the reason for the energy splitting of

the two terms and estimate the order of magnitude of the splitting.

(b) List the ground-state configurations and the lowest-energy terms of

the following atoms: He, Li, Be, B, C, N, O, F and A.

Possible useful numbers:

aB = 0.529×10−8 cm, µB = 9.27×10−21 erg/gauss, e = 4.8×10−10 esu .

(Princeton)

Solution:

(a) The spectroscopic notation indicates the state of an atom. For

example in 3S1, the superscript 3 indicates the state is a triplet (3 = 2S+1),

the subscript 1 is the total angular momentum quantum number of the

atom, J = S + L = 1, S labels the quantum state corresponding to the

orbital angular momentum quantum number L = 0 (S for L = 0, P for

L = 1, D for L = 2, etc.).

The split in energy of the states 1S0 and
3S1 arises from the difference in

the Coulomb interaction energy between the electrons due to their different

spin states. In the 1s2s configuration, the electrons can have antiparallel

or parallel spins, giving rise to singlet and triplet states of helium, the

approximate energy of which can be obtained by perturbation calculations

to be (Problem 1073)

E(singlet) = −Z
2e2

2a0

(
1 +

1

22

)
+ J +K ,

E(triplet) = −Z
2e2

2a0

(
1 +

1

22

)
+ J −K ,

where J is the average Coulomb energy between the electron clouds, K is

the exchange energy. The splitting is

∆E = 2K

with
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K = e2
∫∫

d3x1d
3x2

1

r12
Ψ∗100(r1)Ψ200(r1)Ψ100(r2)Ψ

∗
200(r2)

=
4Z6e2

a60

[∫ ∞
0

r21

(
1− Zr1

2a0

)
exp

(
−3Zr1
2a0

)
dr1

]2

≈ 2
4Ze2

36a0
.

Thus

K =
25e2

36a0
=
25

36
me4

�2
=
25

36

(
e2

�c

)2

mc2

=
25

36

(
1

137

)2

× 0.511× 106 = 1.2 eV ,

and ∆E ≈ 2 eV.
(b)

Atom Ground state configuration Lowest-energy spectral term

He 1s2 1S0

Li 1s22s1 2S1/2

Be 1s22s2 1S0

B 1s22s22p1 2P1/2

C 1s22s22p2 3P0

N 1s22s22p3 4S3/2

O 1s22s22p4 3P2

F 1s22s22p5 2P3/2

A 1s22s22p63s23p6 1S0

1076

Use a variational method, a perturbation method, sum rules, and/or

other method to obtain crude estimates of the following properties of the

helium atom:

(a) the minimum energy required to remove both electrons from the

atom in its ground state,
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(b) the minimum energy required to remove one electron from the atom

in its lowest F state (L = 3), and

(c) the electric polarizability of the atom in its ground state. (The

lowest singlet P state lies ∼ 21 eV above the ground state.)
(Princeton)

Solution:

(a) In the perturbation method, the Hamiltonian of helium atom is writ-

ten as

H =
p21
2me

+
p22
2me
− 2e

2

r1
− 2e

2

r2
+

e2

r12
= H0 +

e2

r12
,

where

H0 =
p21
2me

+
p22
2me
− 2e

2

r1
− 2e

2

r2

is considered the unperturbed Hamiltonian, and the potential due to the

Coulomb repulsion between the electrons as perturbation. The zero-order

approximate wave function is then

ψ = ψ100(r1)ψ100(r2) ,

where

ψ100(r) =
1√
π

(
2

a

)3/2

e−2r/a ,

a being the Bohr radius. The zero-order (unperturbed) ground state en-

ergy is

E(0) = 2

(
−2

2e2

2a

)
= −4e

2

a
,

where the factor 2 is for the two 1s electrons. The energy correction in first

order perturbation is

E(1) =

∫
|ψ100|2

e2

r12
dr1dr2 =

5e2

4a
.

Hence the corrected ground state energy is

E = −4e
2

a
+
5e2

4a
= −11

2
· e

2

2a
= −11

2
× 13.6 = −74.8 eV ,
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and the ionization energy of ground state helium atom, i.e. the energy

required to remove both electrons from the atom, is

EI = −E = 74.8 eV .

In the variational method, take as the trial wave function

ψ =
λ3

πa3
e−λ(r1+r2)/a .

We then calculate

〈H〉 =
∫∫

ψ∗
(
− �

2

2me
∇2

1 −
�
2

2me
∇2

2 −
2e2

r1
− 2e

2

r2
+

e2

r12

)
ψdr1dr2

=

(
2λ2 − 27

4
λ

)
EH ,

where

EH =
e2

2a
= 13.6 eV .

Minimizing 〈H〉 by taking

∂〈H〉
∂λ

= 0 ,

we find λ = 27
16 and so

〈H〉 = 27
16

(
27

8
− 27
4

)
EH = −77.5 eV .

The ionization energy is therefore EI = −〈H〉 = 77.5 eV, in fairly good

agreement with the perturbation calculation.

(b) In the lowest F state the electron in the l = 3 orbit is so far from

the nucleus that the latter together with the 1s electron can be treated as a

core of charge +e. Thus the excited atom can be considered as a hydrogen

atom in the state n = 4. The ionizaion energy EI , i.e. the energy required

to remove one electron from the atom, is

EI = −E =
Ze2

2a42
=
1

16

(
e2

2a

)
=
13.6

16
= 0.85 eV .
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(c) Consider a perturbation u. The wave function and energy for the

ground state, correct to first order, are

Ψ = Ψ0 +
∑
n�=0

un0

E0 −En
Ψn , E = E0 + u00 +

∑
n�=0

(un0)
2

E0 −En
,

where Ψ0, En are the unperturbed wave function and energy, and un0 ≡
〈0|u|n〉. Write∑

n�=0

un0Ψn =
∑
n=0

un0ψn − u00ψ0 = uψ0 − u00ψ0 ,

with uψ0 =
∑

n=0 un0ψn. Then

Ψ ≈ Ψ0

(
1 +

u− u00

E′

)
,

E′ being the average of E0 −En.

The average total kinetic energy of the electrons is calculated using a

variational method with ψ = (1 + λu)ψ0 as trial function:

〈T 〉 =
∫
Ψ∗0(1 + λu)T̂Ψ0(1 + λu)dr∫

Ψ∗0Ψ0(1 + λu)2dr
,

where

T̂ =
1

2me
(p21 + p22) = −

�
2

2me
(∇2

1 +∇2
2) ,

or, in atomic units (a0 = � = e = 1),

T̂ = −1
2

2∑
i=1

∇2
i .

Thus

T̂ ∝− 1
2

2∑
i=1

1

2

∫
{Ψ∗0(1 + λu)∇2

i (1 + λu)Ψ0 +Ψ0(1 + λu)

×∇2
i (1 + λu)Ψ∗0}dr

=− 1
2

2∑
i=1

1

2

∫
{Ψ∗0(1 + λu)2∇2

iΨ0 +Ψ0(1 + λu)2∇2
iΨ
∗
0

+ 2λΨ0Ψ
∗
0(1 + λu)∇2

i u+ 2λ(1 + λu)∇i(Ψ0Ψ
∗
0) · ∇iu}dr .
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Consider∑
i

∫
∇i · [ψ0ψ

∗
0(1 + λu)∇iu]dr =

∮
S

ψ0ψ
∗
0(1 + λu)

∑
i

∇iu · dS = 0

by virtue of Gauss’ divergence theorem and the fact that −∇iu represents
the mutual repulsion force between the electrons. As

∇i · [Ψ0Ψ
∗
0(1 + λu)∇iu] =Ψ0Ψ

∗
0(1 + λu)∇2

i u+ (1 + λu)∇i(Ψ0Ψ
∗
0) · ∇iu

+ λΨ0Ψ
∗
0∇iu · ∇iu ,

we can write∫
{Ψ0Ψ

∗
0(1 + λu)∇2

iu+ (1 + λu)∇i(Ψ0Ψ
∗
0) · ∇iu}dr

= −λ
∫
Ψ0Ψ

∗
0∇iu · ∇iudr .

Hence

〈T 〉 ∝ − 1
2

2∑
i=1

1

2

∫
[Ψ∗0(1 + λu)2∇2

iΨ0 +Ψ0(1 + λu)2∇2
iΨ
∗
0]dr

+
λ2

2

2∑
i=1

∫
Ψ0Ψ

∗
0∇iu · ∇iudr .

The total energy E can be similarly obtained by considering the total

Hamiltonian

Ĥ = Ĥ0 + T̂ + u .

As Ĥ and (1 + λu) commute, we have

〈H〉 =

1

2

∫
(1 + λu)2(Ψ∗0ĤΨ0 +Ψ0ĤΨ

∗
0)dr +

λ2

2

2∑
i=1

∫
Ψ∗0Ψ0∇iu · ∇iudr∫

Ψ∗0Ψ0(1 + λu)2dr

= E0 +

1

2

∫
Ψ∗0u(1 + λu)2Ψ0dr+

λ2

2

2∑
i=1

∫
Ψ∗0Ψ0∇iu · ∇iudr∫

Ψ∗0Ψ0(1 + λu)2dr
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= E0 +

(u)00 + 2λ(u
2)00 + λ2(u3)00 +

1

2
λ2

2∑
i=1

∫
[∇iu · ∇iu]00dr

1 + 2λ(u)00 + λ2(u2)00
,

where E0 is given by Ĥψ0 = E0ψ0, (u)00 =
∫
Ψ∗0uΨ0dr, (u

2)00 =
∫
Ψ∗0u

2

Ψ0dr, etc. Neglecting the third and higher order terms, we have the energy

correction

∆E ≈ (u)00 + 2λ(u2)00 − 2λ(u)200 +
1

2
λ2

2∑
i=1

[(∇iu) · (∇iu)]00 .

Minimizing ∆E by putting
d∆E

dλ
= 0 ,

we obtain

2(u2)00 − 2(u)200 + λ

2∑
i=1

[(∇iu) · (∇iu)]00 = 0 ,

or

λ =
2[(u)200 − (u2)00]
2∑
i=1

[∇iu · ∇iu]00
.

This gives

∆E = (u)00 −
2[(u)200 − (u2)00]2
2∑
i=1

[∇iu · ∇iu]00
.

Consider a He atom in an electric field of strength ε whose direction is

taken to be that of the z-axis. Then

u = −ε(z1 + z2) ≡ −εz .

As the matrix element (u)00 is zero for a spherically symmetric atom, we

have

∆E ≈ −2[(z
2)00]

2ε4

2ε2
= −[(z2)00]2ε2 .

The energy correction is related to the electric field by

∆E = −1
2
αε2 ,

where α is the polarizability. Hence
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α = 2[(z2)00]
2 = 2〈(z1 + z2)

2〉2 .

As 〈z21〉 = 〈z22〉 ≈ a′2 =
a20
Z2
, 〈z1z2〉 = 0, where a0 is the Bohr radius,

using Z = 2 for He we have

α =
8�2

e2me

a40
24
≈ 1
2
a30

in usual units. If the optimized Z = 27
16 from (a) is used,

α = 8

(
16

27

)4

a30 = 0.98a
3
0 .

1077

Answer each of the following questions with a brief, and, where possible,

quantitative statement. Give your reasoning.

(a) A beam of neutral atoms passes through a Stern-Gerlach appara-

tus. Five equally spaced lines are observed. What is the total angular

momentum of the atom?

(b) What is the magnetic moment of an atom in the state 3P0? (Disre-

gard nuclear effects)

(c) Why are noble gases chemically inert?

(d) Estimate the energy density of black body radiation in this room in

erg/cm3. Assume the walls are black.

(e) In a hydrogen gas discharge both the spectral lines corresponding

to the transitions 22P1/2 → 12S1/2 and 2
2P3/2 → 12S1/2 are observed.

Estimate the ratio of their intensities.

(f) What is the cause for the existence of two independent term-level

schemes, the singlet and the triplet systems, in atomic helium?

(Chicago)

Solution:

(a) The total angular momentum of an atom is

PJ =
√
J(J + 1)� .
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As the neutral-atom beam splits into five lines, we have 2J + 1 = 5, or

J = 2. Hence

PJ =
√
6� .

(b) The state has total angular momentum quantum number J = 0.

Hence its magnetic moment is M = gµB
√
J(J + 1) = 0.

(c) The electrons of a noble gas all lie in completed shells, which cannot

accept electrons from other atoms to form chemical bonds. Hence noble

gases are chemically inert.

(d) The energy density of black body radiation is u = 4Ju/c, where Ju
is the radiation flux density given by the Stefan-Boltzmann’s law

Ju = σT 4 ,

σ = 5.669× 10−5 erg cm−2K−4 s−1 .

At room temperature, T = 300 K, and

u =
4

3× 1010 × 5.669× 10
−5 × 3004

= 6.12× 10−5 erg · cm−3 .

(e) The degeneracies of 22P1/2 and 2
2P3/2 are 2 and 4 respectively, while

the energy differences between each of them and 12S1/2 are approximately

equal. Hence the ratio of the intensities of the spectral lines (22P1/2 →
12S1/2) to (2

2P3/2 → 12S1/2) is 1:2.
(f) The LS coupling between the two electrons of helium produces S =

0 (singlet) and S = 1 (triplet) states. As the transition between them

is forbidden, the spectrum of atomic helium consists of two independent

systems (singlet and triplet).

1078

(a) Make a table of the atomic ground states for the following elements:

H, He, Be, B, C, N, indicating the states in spectroscopic notation. Give J

only for S states.

(b) State Hund’s rule and give a physical basis for it.

(Wisconsin)
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Solution:

(a) The atomic ground states of the elements are as follows:

element: H He Li Be B C N
ground state: 2S1/2

1S0
2S1/2

1S0
2P1/2

3P0
4S3/2

(b) For a statement of Hund’s rules see Problem 1008. Hund’s rules

are empirical rules based on many experimental results and their application

is consequently restricted. First, they are reliable only for determining the

lowest energy states of atoms, except those of very heavy elements. They

fail in many cases when used to determine the order of energy levels. For

example, for the electron configuration 1s22s2p3 of Carbon, the order of

energy levels is obtained experimentally as 5S <3 D <1 D <3 S <1 P .

It is seen that although 3S is a higher multiplet, its energy is higher than

that of 1D. For higher excited states, the rules may also fail. For instance,

when one of the electrons of Mg atom is excited to d-orbital, the energy of
1D state is lower than that of 3D state.

Hund’s rules can be somewhat understood as follows. On account of

Pauli’s exclusion principle, equivalent electrons of parallel spins tend to

avoid each other, with the result that their Coulomb repulsion energy, which

is positive, tends to be smaller. Hence energies of states with most parallel

spins (with largest S) will be the smallest. However the statement regarding

states of maximum angular momentum cannot be so readily explained.

1079

(a) What are the terms arising from the electronic configuration 2p3p in

an (LS) Russell-Saunders coupled atom? Sketch the level structure, roughly

show the splitting, and label the effect causing the splitting.

(b) What are the electric-dipole transition selection rules for these

terms?

(c) To which of your forbidden terms could electric dipole transitions

from a 3P1 term be made?

(Wisconsin)
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Solution:

(a) The spectroscopic terms arising from the electronic configuration

2p3p in LS coupling are obtained as follows.

As l1 = l2 = 1, s1 = s2 =
1
2 , L = l1 + l2, S = s1 + s2, J = L + S, we

can have S = 1, 0, L = 2, 1, 0, J = 3, 2, 1, 0.

For S = 0, L = 2, J = 2: 1D2, L = 1, J = 1:
1P1, L = 0, J = 0:

1S0.

For S = 1, L = 2, J = 3, 2, 1, 0: 3D3,2,1, L = 1, J = 2, 1, 0:
3P2,1,0, L = 0,

J = 1: 3S1. Hence the terms are

singlet : 1S0,
1P1,

1D2

triplet : 3S1,
3P2,1,0,

3D3,2,1

The corresponding energy levels are shown in Fig. 1.28.

Fig. 1.28

Splitting of spectroscopic terms of different S is caused by the Coulomb

exchange energy. Splitting of terms of the same S but different L is caused

by the Coulomb repulsion energy. Splitting of terms of the same L, S but

different J is caused by the coupling between orbital angular momentum

and spin, i.e., by magnetic interaction.

(b) Selection rules for electric-dipole transitions are

(i) Parity must be reversed: even ↔ odd.

(ii) Change in quantum numbers must satisfy

∆S = 0, ∆L = 0,±1, ∆J = 0,±1 (excepting 0→ 0) .
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Electric-dipole transition does not take place between these spectral

terms because they have the same parity.

(c) If the 3P1 state considered has odd parity, it can undergo transition

to the forbidden spectral terms 3S0,
3P2,1,0,

3D2,1.

1080

The atoms of lead vapor have the ground state configuration 6s26p2.

(a) List the quantum numbers of the various levels of this configuration

assuming LS coupling.

(b) State whether transitions between these levels are optically allowed,

i.e., are of electric-dipole type. Explain why or why not.

(c) Determine the total number of levels in the presence of a magnetic

field B.

(d) Determine the total number of levels when a weak electric field E is

applied together with B.

(Chicago)

Solution:

(a) The two 6s electrons fill the first subshell. They must have anti-

parallel spins, forming state 1S0. Of the two 6p electrons, their orbital

momenta can add up to a total L = 0, 1, 2. Their total spin quantum

number S is determined by Pauli’s exclusion principle for electrons in the

same subshell, which requires L + S = even (Problem 2054(a)). Hence

S = 0 for L = 0, 2 and S = 1 for L = 1. The configuration thus has three

“terms” with different L and S, and five levels including the fine structure

levels with equal L and S but different J . The spectroscopic terms for

configuration are therefore

1S0,
3 P0,1,2,

1D2 .

(b) Electric-dipole transitions among these levels which have the same

configuration are forbidden because the levels have the same parity.

(c) In a magnetic field each level with quantum number J splits into

2J + 1 components with different MJ . For the 6p
2 levels listed above the

total number of sublevels is 1 + 1 + 3 + 5 + 5 = 15.

(d) The electric field E perturbs the sublevels but causes no further

splitting because the sublevels have no residual degeneracy. In other words,
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the applied electric field does not cause new splitting of the energy levels,

whose total number is still 15.

1081

Consider a multi-electron atom whose electronic configuration is 1s22s2

2p63s23p63d104s24p4d.

(a) Is this element in the ground state? If not, what is the ground state?

(b) Suppose a Russell-Saunders coupling scheme applies to this atom.

Draw an energy level diagram roughly to scale beginning with a single

unperturbed configuration and then taking into account the various inter-

actions, giving the perturbation term involved and estimating the energy

split. Label the levels at each stage of the diagram with the appropriate

term designation.

(c) What are the allowed transitions of this state to the ground state,

if any?

(Columbia)

Solution:

(a) The atom is not in the ground state, which has the outermost-shell

electronic configuration 4p2, corresponding to atomic states 1D2,
3P2,1,0

and 1S0 (Problem 1080), among which 3P0 has the lowest energy.

(b) The energy correction arising from LS coupling is

∆E =a1s1 · s1 + a2l1 · l2 +AL · S

=
a1

2
[S(S + 1)− s1(s1 + 1)− s2(s2 + 1)] +

a2

2
[L(L+ 1)

− l1(l1 + 1)− l2(l2 + 1)] +
A

2
[J(J + 1)− L(L+ 1)− S(S + 1)] ,

where a1, a2, A can be positive or negative. The energy levels can be

obtained in three steps, namely, by plotting the splittings caused by S, L

and J successively. The energy levels are given in Fig. 1.29.

(c) The selection rules for electric-dipole transitions are:

∆S = 0,∆L = 0,±1,∆J = 0,±1
(except 0→ 0).
The following transitions are allowed:
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Fig. 1.29

(4p4d)3P1 → (4p2)3P0, (4p4d)3P1 → (4p2)3P1 ,

(4p4d)3P1 → (4p2)3P2 , (4p4d)3P2 → (4p2)3P1 ,

(4p4d)3P2 → (4p2)3P2 , (4p4d)3P0 → (4p2)3P1 ,

(4p4d)3D1 → (4p2)3P1 , (4p4d)3D1 → (4p2)3P2 ,

(4p4d)3D2 → (4p2)3P1 , (4p4d)3D2 → (4p2)3P2 ,

(4p4d)3D3 → (4p2)3P2 , (4p4d)1P1 → (4p2)1S0 ,

(4p4d)1P1 → (4p2)1D2 , (4p4d)1D2 → (4p2)1D2 ,

(4p4d)1F3 → (4p2)1D2 .
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1082

In the ground state of beryllium there are two 1s and two 2s electrons.

The lowest excited states are those in which one of the 2s electrons is excited

to a 2p state.

(a) List these states, giving all the angular momentum quantum num-

bers of each.

(b) Order the states according to increasing energy, indicating any de-

generacies. Give a physical explanation for this ordering and estimate the

magnitudes of the splitting between the various states.

(Columbia)

Solution:

(a) The electron configuration of the ground state is 1s22s2. Pauli’s

principle requires S = 0. Thus the ground state has S = 0, L = 0, J = 0

and is a singlet 1S0.

The lowest excited state has configuration 1s22s2p. Pauli’s principle

allows for both S = 0 and S = 1. For S = 0, as L = 1, we have J = 1 also,

and the state is 1P1. For S = 1, as L = 1, J = 2, 1, 0 and the states are
3P2,1,0.

(b) In order of increasing energy, we have

1S0 <
3P0 <

3P1 <
3P2 <

1P1 .

The degeneracies of 3P2,
3P1 and

1P1 are 5, 3, 3 respectively. According

to Hund’s rule (Problem 1008(e)), for the same configuration, the largest

S corresponds to the lowest energy; and for a less than half-filled shell, the

smallest J corresponds to the smallest energy. This roughly explains the

above ordering.

The energy difference between 1S0 and
1P1 is of the order of 1 eV.

The energy splitting between the triplet and singlet states is also ∼ 1 eV.
However the energy splitting among the triplet levels of a state is much

smaller, ∼ 105–10−4 eV.

1083

A characteristic of the atomic structure of the noble gasses is that the

highest p-shells are filled. Thus, the electronic configuration in neon, for
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example, is 1s22s22p6. The total angular momentum J, total orbital an-

gular momentum L and total spin angular momentum S of such a closed

shell configuration are all zero.

(a) Explain the meaning of the symbols 1s22s22p6.

(b) The lowest group of excited states in neon corresponds to the excita-

tion of one of the 2p electrons to a 3s orbital. The (2p5) core has orbital and

spin angular momenta equal in magnitude but oppositely directed to these

quantities for the electron which was removed. Thus, for its interaction

with the excited electron, the core may be treated as a p-wave electron.

Assuming LS (Russell-Saunders) coupling, calculate the quantum num-

bers (L, S, J) of this group of states.

(c) When an atom is placed in a magnetic field H, its energy changes

(from the H = 0 case) by ∆E:

∆E =
e�

2mc
gHM ,

where M can be J , J − 1, J − 2, . . . ,−J . The quantity g is known as the
Laudé g-factor. Calculate g for the L = 1, S = 1, J = 2 state of the

1s22s22p53s configuration of neon.

(d) The structure of the 1s22s22p53p configuration of neon is poorly

described by Russell-Saunders coupling. A better description is provided

by the “pair coupling” scheme in which the orbital angular momentum L2

of the outer electron couples with the total angular momentum Jc of the

core. The resultant vector K (K = Jc +L2) then couples with the spin S2
of the outer electron to give the total angular momentum J of the atom.

Calculate the Jc, K, J quantum numbers of the states of the 1s22s2

2p53p configuration.

(CUSPEA)

Solution:

(a) In each group of symbols such as 1s2, the number in front of the letter

refers to the principal quantum number n, the letter (s, p, etc.) determines

the quantum number l of the orbital angular momentum (s for l = 0, p for

l = 1, etc.), the superscript after the letter denotes the number of electrons

in the subshell (n, l).

(b) The coupling is the same as that between a p- and an s-electron.

Thus we have l1 = 1, l2 = 0 and so L = 1 + 0 = 1; s1 =
1
2 , s2 =

1
2 and so
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S = 1
2 +

1
2 = 1 or S =

1
2 − 1

2 = 0. Then L = 1, S = 1 give rise to J = 2, 1,

or 0; L = 1, S = 0 give rise to J = 1. To summarize, the states of (L, S, J)

are (1,1,2), (1,1,1), (1,1,0), (1,0,1).

(c) The g-factor is given by

g = 1 +
J(J + 1) + S(S + 1)− L(L+ 1)

2J(J + 1)
.

For (1,1,2) we have

g = 1 +
6 + 2− 2
2× 6 =

3

2
.

(d) The coupling is between a core, which is equivalent to a p-electron,

and an outer-shell p-electron, i.e. between lc = 1, sc =
1
2 ; l2 = 1, s2 =

1
2 .

Hence

Jc =
3

2
,
1

2
, L2 = 1, S2 =

1

2
.

For Jc =
3
2 , L2 = 1, we have K = 5

2 ,
3
2 ,

1
2 .

Then for K = 5
2 , J = 3, 2; for K = 3

2 , J = 2, 1; for

K =
1

2
, J = 1, 0 .

For Jc =
1
2 , L2 = 1, we have K = 3

2 ,
1
2 . Then for

K =
3

2
, J = 2, 1; for K =

1

2
, J = 1, 0 .

1084

A furnace contains atomic sodium at low pressure and a temperature of

2000 K. Consider only the following three levels of sodium:

1s22s22p63s: 2S, zero energy (ground state),

1s22s22p63p: 2P , 2.10 eV,

1s22s22p64s: 2S, 3.18 eV.

(a) What are the photon energies of the emission lines present in the

spectrum? What are their relative intensities? (Give appropriate expres-

sions and evaluate them approximately as time permits).
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(b) Continuous radiation with a flat spectrum is now passed through

the furnace and the absorption spectrum observed. What spectral lines are

observed? Find their relative intensities.

(UC, Berkeley)

Solution:

(a) As E0 = 0 eV, E1 = 2.10 eV, E2 = 3.18 eV, there are two electric-

dipole transitions corresponding to energies

E10 = 2.10 eV, E21 = 1.08 eV .

The probability of transition from energy level k to level i is given by

Aik =
e2ω3

ki

3�2c3
1

gk

∑
mk,mi

|〈imi|r|kmk〉|2 ,

where ωki = (Ek −Ei)/�, i, k being the total angular momentum quantum
numbers,mk,mi being the corresponding magnetic quantum numbers. The

intensities of the spectral lines are

Iik ∝ Nk�ωkiAik ,

where the number of particles in the ith energy level Ni ∝ gi exp(− Ei
kT
).

For 2P , there are two values of J : J = 3/2, 1/2. Suppose the transition

matrix elements and the spin weight factors of the two transitions are ap-

proximately equal. Then the ratio of the intensities of the two spectral

lines is

I01

I12
=

(
ω10

ω21

)4

exp

(
E21

kT

)

=

(
2.10

1.08

)4

exp

(
1.08

8.6× 10−5 × 2000

)
= 8× 103 .

(b) The intensity of an absorption line is

Iik ∝ BikNkρ(ωik)�ωik ,

where

Bik =
4π2e2

3�2
1

gk

∑
mk,mi

|〈imi|r|kmk〉|2
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is Einstein’s coefficient. As the incident beam has a flat spectrum, ρ(ω) is

constant. There are two absorption spectral lines: E0 → E1 and E1 → E2.

The ratio of their intensities is

I10

I21
=

B10N0ω10

B21N1ω21
≈
(
ω10

ω21

)
exp

(
E10

kT

)

=

(
2.10

1.08

)
exp

(
2.10

8.62× 10−5 × 2000

)
= 4× 105 .

1085

For C (Z = 6) write down the appropriate electron configuration. Using

the Pauli principle derive the allowed electronic states for the 4 outermost

electrons. Express these states in conventional atomic notation and order in

energy according to Hund’s rules. Compare this with a (2p)4 configuration.

(Wisconsin)

Solution:

The electron configuration of C is 1s22s22p2. The two 1s electrons

form a complete shell and need not be considered. By Pauli’s principle,

the two electrons 2s2 have total spin S = 0, and hence total angular

momentum 0. Thus we need consider only the coupling of the two p-

electrons. Then the possible electronic states are 1S0,
3P2,1,0,

1D2 (Prob-

lem 1088). According to Hund’s rule, in the order of increasing energy

they are 3P0,
3 P1,

3 P2,
1D2,

1 S0.

The electronic configuration of (2p)4 is the same as the above but the

energy order is somewhat different. Of the 3P states, J = 0 has the highest

energy while J = 2 has the lowest. The other states have the same order

as in the 2s22p2 case.

1086

The atomic number of Mg is Z = 12.

(a) Draw a Mg atomic energy level diagram (not necessarily to scale)

illustrating its main features, including the ground state and excited states



Atomic and Molecular Physics 127

arising from the configurations in which one valence electron is in the 3s

state and the other valence electron is in the state nl for n = 3, 4 and l = 0,

1. Label the levels with conventional spectroscopic notation. Assuming LS

coupling.

(b) On your diagram, indicate the following (give your reasoning):

(1) an allowed transition,

(2) a forbidden transition,

(3) an intercombination line (if any),

(4) a level which shows (1) anomalous and (2) normal Zeeman effect,

if any.

(Wisconsin)

Solution:

(a) Figure 1.30 shows the energy level diagram of Mg atom.

(b) (1) An allowed transition:

(3s3p)1P1 → (3s3s)1S0 .
(2) A forbidden transition:

(3s4p)1P1 �→ (3s3p)1P1 .
(∆π = 0, violating selection rule for parity)

Fig. 1.30
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(3) An intercombination line:

(3s3p)3P1 → (3s3s)1S0 .

(4) In a magnetic field, the transition (3s3p)1P1 → (3s3s)1S0 only pro-
duces three lines, which is known as normal Zeeman effect, as shown in

Fig. 1.31(a). The transition (3s4p)3P1 → (3s4s)3S1 produces six lines and

is known as anomalous Zeeman effect. This is shown in Fig. 1.31(b). The

spacings of the sublevels of (3s3p)1P1, (3s4p)
3P1, and (3s4s)

3S1 are µBB,

3µBB/2 and 2µBB respectively.

Fig. 1.31

1087

Give, in spectroscopic notation, the ground state of the carbon atom,

and explain why this is the ground.

(Wisconsin)

Solution:

The electron configuration of the lowest energy state of carbon atom is

1s22s22p2, which can form states whose spectroscopic notations are 1S0,
3P0,1,2,

1D2. According to Hund’s rule, the ground state has the largest

total spin S. But if there are more than one such states, the ground state

corresponds to the largest total orbital angular momentum L among such
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states. If the number of electrons is less than that required to half-fill

the shell, the lowest-energy state corresponds to the smallest total angular

momentum J . Of the above states, 3P0,1,2 have the largest S. As the p-shell

is less than half-full, the state 3P0 is the ground state.

1088

What is meant by the statement that the ground state of the carbon

atom has the configuration (1s)2(2s)2(2p)2?

Assuming that Russell-Saunders coupling applies, show that there are

5 spectroscopic states corresponding to this configuration: 1S0,
1D2,

3P1,
3P2,

3P0.

(Wisconsin)

Solution:

The electronic configuration of the ground state of carbon being (1s)2

(2s)2(2p)2 means that, when the energy of carbon atom is lowest, there are

two electrons on the s-orbit of the first principal shell and two electrons

each on the s- and p-orbits of the second principal shell.

The spectroscopic notations corresponding to the above electronic con-

figuration are determined by the two equivalent electrons on the p-orbit.

For these two p-electrons, the possible combinations and sums of the

values of the z-component of the orbital quantum number are as follows:

ml2 ml1 1 0 −1
1 2 1 0
0 1 0 −1
−1 0 −1 −2

For ml1 = ml2, or L = 2, 0, Pauli’s principle requires ms1 �= ms2, or

S = 0, giving rise to terms 1D2,
1S0.

Forms1 = ms2, or S = 1, Pauli’s principle requiresml1 �= ml2, or L = 1,

and so J = 2,1,0, giving rise to terms 3P2,1,0. Hence corresponding to the

electron configuration 1s22s22p2 the possible spectroscopic terms are

1S0,
1D2,

3 P2,
3 P1,

3 P0 .
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1089

Apply the Russell-Saunders coupling scheme to obtain all the states

associated with the electron configuration (1s)2(2s)2(2p)5(3p). Label each

state by the spectroscopic notation of the angular-momentum quantum

numbers appropriate to the Russell-Saunders coupling.

(Wisconsin)

Solution:

The 2p-orbit can accommodate 2(2l+ 1) = 6 electrons. Hence the con-

figuration (1s)2(2s)2(2p)5 can be represented by its complement (1s)2(2s)2

(2p)1 in its coupling with the 3p electron. In LS coupling the combination

of the 2p- and 3p-electrons can be considered as follows. As l1 = 1, l2 = 1,

s1 =
1
2 , s2 =

1
2 , we have L = 2, 1, 0; S = 1, 0. For L = 2, we have for

S = 1: J = 3, 2, 1; and for S = 0: J = 2, giving rise to 3D3,2,1,
1D2. For

L = 1, we have for S = 1: J = 2, 1, 0; and for S = 0: J = 1, giving rise to
3P2,1,0,

1P1. For L = 0, we have for S = 1: J = 1; for S = 0: J = 0, giving

rise to 3S1,
1S0. Hence the given configuration has atomic states

3S1,
3 P2,1,0,

3D3,2,1,
1 S0,

1 P1,
1D2 .

1090

The ground configuration of Sd (scandium) is 1s22s22p63s23p63d4s2.

(a) To what term does this configuration give rise?

(b) What is the appropriate spectroscopic notation for the multiplet

levels belonging to this term? What is the ordering of the levels as a

function of the energy?

(c) The two lowest (if there are more than two) levels of this ground

multiplet are separated by 168 cm−1. What are their relative population

at T = 2000 K?

h = 6.6× 10−34 J sec , c = 3× 108 m/s , k = 1.4× 10−23 J/K .

(Wisconsin)

Solution:

(a) Outside completed shells there are one 3d-electron and two 4s-

electrons to be considered. In LS coupling we have to combine l = 2,
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s = 1
2 with L = 0, S = 0. Hence L = 2, S = 1

2 , and the spectroscopic

notations of the electron configuration are

2D5/2,
2D3/2 .

(b) The multiplet levels are 2D5/2 and
2D3/2, of which the second has

the lower energy according to Hund’s rules as the D shell is less than half-

filled.

(c) The ratio of particle numbers in these two energy levels is

g1

g2
exp

(
−∆E
kT

)
,

where g1 = 2× 3
2+1 = 4 is the degeneracy of

2D3/2, g2 = 2× 5
2+1 = 6 is the

degeneracy of 2D5/2, ∆E is the separation of these two energy levels. As

∆E = hc∆ν̃ = 6.6× 10−34 × 3× 108 × 168× 102

= 3.3× 10−21 J ,

g1

g2
exp

(
−∆E
kT

)
= 0.6 .

1091

Consider the case of four equivalent p-electrons in an atom or ion.

(Think of these electrons as having the same radial wave function, and

the same orbital angular momentum l = 1).

(a) Within the framework of the Russell-Saunders (LS) coupling scheme,

determine all possible configurations of the four electrons; label these ac-

cording to the standard spectroscopic notation, and in each case indicate

the values of L, S, J and the multiplicity.

(b) Compute the Landé g-factor for all of the above states for which

J = 2.

(UC, Berkeley)

Solution:

(a) The p-orbit of a principal-shell can accommodate 2(2 × 1 + 1) = 6
electrons and so the terms for pn and p6−n are the same. Thus the situation
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of four equivalent p-electrons is the same as that of 2 equivalent p-electrons.

In accordance with Pauli’s principle, the spectroscopic terms are (Problem

1088)

1S0 (S = 0, L = 0, J = 0)

1D2 (S = 0, L = 2, J = 2)

3P2,1,0 (S = 1, L = 1, J = 2, 1, 0) .

(b) The Landé g-factors are given by

g = 1 +
J(J + 1) + S(S + 1)− L(L+ 1)

2J(J + 1)
.

For 1D2:

g = 1 +
2× 3 + 0× 1− 2× 3

2× 2× 3 = 1 ,

For 3P2:

g = 1 +
2× 3 + 1× 2− 1× 2

2× 2× 3 = 1.5 .

1092

For the sodium doublet give:

(a) Spectroscopic notation for the energy levels (Fig. 1.32).

(b) Physical reason for the energy difference E.

(c) Physical reason for the splitting ∆E.

(d) The expected intensity ratio

D2/D1 if kT � ∆E .

(Wisconsin)
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Fig. 1.32

Solution:

(a) The spectroscopic notations for the energy levels are shown in

Fig. 1.33.

Fig. 1.33

(b) The energy difference E arises from the polarization of the atomic

nucleus and the penetration of the electron orbits into the nucleus, which

are different for different orbital angular momenta l.

(c) ∆E is caused by the coupling between the spin and orbit angular

momentum of the electrons.

(d) When kT � ∆E, the intensity ratio D2/D1 is determined by the

degeneracies of 2P3/2 and
2P1/2:

D2

D1
=
2J2 + 1

2J1 + 1
=
3 + 1

1 + 1
= 2 .
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1093

(a) What is the electron configuration of sodium (Z = 11) in its ground

state? In its first excited state?

(b) Give the spectroscopic term designation (e.g. 4S3/2) for each of these

states in the LS coupling approximation.

(c) The transition between the two states is in the visible region. What

does this say about kR, where k is the wave number of the radiation and R

is the radius of the atom? What can you conclude about the multipolarity

of the emitted radiation?

(d) What are the sodium “D-lines” and why do they form a doublet?

(Wisconsin)

Solution:

(a) The electron configuration of the ground state of Na is 1s22s22p63s1,

and that of the first excited state is 1s22s22p63p1.

(b) The ground state: 2S1/2.

The first excited state: 2P3/2,
2 P1/2.

(c) As the atomic radius R ≈ 1 Å and for visible light k ≈ 10−4 Å−1,
we have kR� 1, which satisfies the condition for electric-dipole transition.
Hence the transitions 2P3/2 →2 S1/2,

2P1/2 →2 S1/2 are electric dipole

transitions.

(d) The D-lines are caused by transition from the first excited state

to the ground state of Na. The first excited state is split into two energy

levels 2P3/2 and
2P1/2 due to LS coupling. Hence the D-line has a doublet

structure.

1094

Couple a p-state and an s-state electron via

(a) Russell-Saunders coupling,

(b) j, j coupling,

and identify the resultant states with the appropriate quantum numbers.

Sketch side by side the energy level diagrams for the two cases and show

which level goes over to which as the spin-orbit coupling is increased.

(Wisconsin)



Atomic and Molecular Physics 135

Solution:

We have s1 = s2 = 1/2, l1 = 1, l2 = 0.

(a) In LS coupling, L = l1 + l2, S = s1 + s2, J = L + S. Thus

L = 1, S = 1, 0.

For S = 1, J = 2, 1, 0, giving rise to 3P2,1,0.

For S = 0, J = 1, giving rise to 1P1.

(b) In jj coupling, j1 = l1+s1, j2 = l2+s2, J = j1+ j2. Thus j1 =
3
2 ,

1
2 ,

j2 =
1
2 .

Hence the coupled states are(
3

2
,
1

2

)
2

,

(
3

2
,
1

2

)
1

,

(
1

2
,
1

2

)
1

,

(
1

2
,
1

2

)
0

,

where the subscripts indicate the values of J .

The coupled states are shown in Fig. 1.34.

Fig. 1.34

1095

(a) State the ground state configuration of a carbon atom, and list the

levels (labeled in terms of Russel-Saunders coupling) of this configuration.
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(b) Which is the ground state level? Justify your answer.

(Wisconsin)

Solution:

(a) The electronic configuration of the ground state of carbon is 1s2

2s22p2. The corresponding energy levels are 1S0,
2P2,1,0,

1D2.

(b) According to Hund’s rules, the ground state is 3P0.

1096

For each of the following atomic radiative transitions, indicate whe-

ther the transition is allowed or forbidden under the electric-dipole radiation

selection rules. For the forbidden transitions, cite the selection rules which

are violated.

(a) He: (1s)(1p) 1P1 → (1s)2 1S0

(b) C: (1s)2(2s)2(2p)(3s) 3P1 → (1s)2(2s)2(2p)2 3P0

(c) C: (1s)2(2s)2(2p)(3s) 3P0 → (1s)2(2s)2(2p)2 3P0

(d) Na: (1s)2(2s)2(2p)6(4d) 2D5/2 → (1s)2(2s)2(2p)6(3p) 2P1/2
(e) He: (1s)(2p) 3P1 → (1s)2 1S0

(Wisconsin)

Solution:

The selection rules for single electric-dipole transition are

∆l = ±1, ∆j = 0,±1 .

The selection rules for multiple electric-dipole transition are

∆S = 0 , ∆L = 0 ,±1, ∆J = 0,±1(0 /←→ 0) .

(a) Allowed electric-dipole transition.

(b) Allowed electric-dipole transition.

(c) Forbidden as the total angular momentum J changes from 0 to 0

which is forbidden for electric-dipole transition.

(d) Forbidden as it violates the condition ∆J = 0,±1.
(e) Forbidden as it violates the condition ∆S = 0.
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1097

Consider a hypothetical atom with an electron configuration of two iden-

tical p-shell electrons outside a closed shell.

(a) Assuming LS (Russell-Saunders) coupling, identify the possible lev-

els of the system using the customary spectroscopic notation, (2S+1)LJ .

(b) What are the parities of the levels in part (a)?

(c) In the independent-particle approximation these levels would all be

degenerate, but in fact their energies are somewhat different. Describe the

physical origins of the splittings.

(Wisconsin)

Solution:

(a) The electronic configuration is p2. The two p-electrons being equiv-

alent, the possible energy levels are (Problem 1088)

1S0,
3P2,1,0,

1D2 .

(b) The parity of an energy level is determined by the sum of the orbital

angular momentum quantum numbers: parity π = (−1)Σl. Parity is even
or odd depending on π being +1 or −1. The levels 1S0,

3P2,1,0,
1D2 have

Σl = 2 and hence even parity.

(c) See Problem 1079(a).

1098

What is the ground state configuration of potassium (atomic num-

ber 19).

(UC, Berkeley)

Solution:

The ground state configuration of potassium is 1s22s22p63s23p64s1.

1099

Consider the 17O isotope (I = 5/2) of the oxygen atom. Draw a diagram

to show the fine-structure and hyperfine-structure splittings of the levels
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described by (1s22s22p4) 3P . Label the states by the appropriate angular-

momentum quantum numbers.

(Wisconsin)

Solution:

The fine and hyperfine structures of the 3P state of 17O is shown in

Fig. 1.35.

Fig. 1.35

1100

Consider a helium atom with a 1s3d electronic configuration. Sketch a

series of energy-level diagrams to be expected when one takes successively

into account:

(a) only the Coulomb attraction between each electron and the nucleus,

(b) the electrostatic repulsion between the electrons,

(c) spin-orbit coupling,

(d) the effect of a weak external magnetic field.

(Wisconsin)

Solution:

The successive energy-level splittings are shown in Fig. 1.36.
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Fig. 1.36

1101

Sodium chloride forms cubic crystals with four Na and four Cl atoms

per cube. The atomic weights of Na and Cl are 23.0 and 35.5 respectively.

The density of NaCl is 2.16 gm/cc.

(a) Calculate the longest wavelength for which X-rays can be Bragg

reflected.

(b) For X-rays of wavelength 4 Å, determine the number of Bragg re-

flections and the angle of each.

(UC, Berkeley)

Solution:

(a) Let V be the volume of the unit cell, NA be Avogadro’s number, ρ

be the density of NaCl. Then

V ρNA = 4(23.0 + 35.5) ,

giving
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V =
4× 58.5

2.16× 6.02× 1023 = 1.80× 10
−22 cm3 ,

and the side length of the cubic unit cell

d =3
√
V = 5.6× 10−8 cm = 5.6 Å .

Bragg’s equation 2d sin θ = nλ, then gives

λmax = 2d = 11.2 Å .

(b) For λ = 4 Å,

sin θ =
λn

2d
= 0.357n .

Hence

for n = 1 : sin θ = 0.357, θ = 20.9◦ ,

for n = 2 : sin θ = 0.714, θ = 45.6◦

For n ≥ 3: sin θ > 1, and Bragg reflection is not allowed.

1102

(a) 100 keV electrons bombard a tungsten target (Z = 74). Sketch the

spectrum of resulting X-rays as a function of 1/λ (λ = wavelength). Mark

the K X-ray lines.

(b) Derive an approximate formula for λ as a function of Z for the K

X-ray lines and show that the Moseley plot (λ−1/2 vs. Z) is (nearly) a

straight line.

(c) Show that the ratio of the slopes of the Moseley plot for Kα and Kβ

(the two longest-wavelength K-lines) is (27/32)1/2.

(Wisconsin)

Solution:

(a) The X-ray spectrum consists of two parts, continuous and charac-

teristic. The continuous spectrum has the shortest wavelength determined

by the energy of the incident electrons:

λmin =
hc

E
=
12.4

100
Å = 0.124 Å .
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The highest energy for the K X-ray lines of W is 13.6 × 742 eV =

74.5 keV, so theK X-ray lines are superimposed on the continuous spectrum

as shown as Fig. 1.37.

Fig. 1.37

(b) The energy levels of tungsten atom are given by

En = −
RhcZ∗2

n2
,

where Z∗ is the effective nuclear charge.

The K lines arise from transitions to ground state (n→ 1):
hc

λ
= −RhcZ

∗2

n2
+RhcZ∗2 ,

giving

λ =
n2

(n2 − 1)RZ∗2 ,

or

λ−
1
2 = Z∗

√(
n2 − 1
n2

)
R ≈ Z

√(
n2 − 1
n2

)
R . (n = 1, 2, 3, . . . )



142 Problems and Solutions in Atomic, Nuclear and Particle Physics

Hence the relation between λ−1/2 and Z is approximately linear.

(c) Kα lines are emitted in transitions n = 2 to n = 1, and Kβ lines,

from n = 3 to n = 1. In the Moseley plot, the slope of the Kα curve is√
3
4R and that of Kβ is

√
8
9R, so the ratio of the two slopes is

√
(3/4)R√
(8/9)R

=

√
27

32
.

1103

(a) If a source of continuum radiation passes through a gas, the emergent

radiation is referred to as an absorption spectrum. In the optical and ultra-

violet region there are absorption lines, while in the X-ray region there are

absorption edges. Why does this difference exist and what is the physical

origin of the two phenomena?

(b) Given that the ionization energy of atomic hydrogen is 13.6 eV, what

would be the energy E of the radiation from the n = 2 to n = 1 transition

of boron (Z = 5) that is 4 times ionized? (The charge of the ion is +4e.)

(c) Would the Kα fluorescent radiation from neutral boron have an

energy Ek greater than, equal to, or less than E of part (b)? Explain why.

(d) Would the K absorption edge of neutral boron have an energy Ek
greater than, equal to, or less than Ek of part (c)? Explain why.

(Wisconsin)

Solution:

(a) Visible and ultra-violet light can only cause transitions of the outer

electrons because of their relatively low energies. The absorption spectrum

consists of dark lines due to the absorption of photons of energy equal to the

difference in energy of two electron states. On the other hand, photons with

energies in the X-ray region can cause the ejection of inner electrons from

the atoms, ionizing them. This is because in the normal state the outer

orbits are usually filled. Starting from lower frequencies in the ultraviolet

the photons are able to eject only the loosely bound outer electrons. As

the frequency increases, the photons suddenly become sufficiently energetic

to eject electrons from an inner shell, causing the absorption coefficient to

increase suddenly, giving rise to an absorption edge. As the frequency is
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increased further, the absorption coefficient decreases approximately as ν−3

until the frequency becomes great enough to allow electron ejection from

the next inner shell, giving rise to another absorption edge.

(b) The energy levels of a hydrogen-like atom are given by

En = −
Z2e2

2n2a0
= −Z

2

n2
E0 ,

where E0 is the ionization energy of hydrogen. Hence

E2 −E1 = −Z2E0

(
1

22
− 1

12

)
= 52 × 13.6× 3

4

= 255 eV .

(c) Due to the shielding by the orbital electrons of the nuclear charge,

the energy Ek of Kα emitted from neutral Boron is less than that given in

(b).

(d) As the K absorption edge energy Ek correspond to the ionization

energy of a K shell electron, it is greater than the energy given in (c).

1104

For Zn, the X-ray absorption edges have the following values in keV:

K 9.67, LI 1.21, LII 1.05, LIII 1.03 .

Determine the wavelength of the Kα line.

If Zn is bombarded by 5-keV electrons, determine

(a) the wavelength of the shortest X-ray line, and

(b) the wavelength of the shortest characteristic X-ray line which can

be emitted.

Note: The K level corresponds to n = 1, the three L-levels to the dif-

ferent states with n = 2. The absorption edges are the lowest energies for

which X-rays can be absorbed by ejection of an electron from the corre-

sponding level. The Kα line corresponds to a transition from the lowest L

level.

(UC, Berkeley)
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Solution:

The Kα series consists of two lines, Kα1(LIII → K), Kα2(LII → K):

EKα1
= KLIII −EK = 9.67− 1.03 = 8.64 keV ,

EKα2
= KLII −EK = 9.67− 1.05 = 8.62 keV .

Hence

λKα1
=

hc

EKα1

=
12.41

8.64
= 1.436 Å ,

λKα2
=

hc

EKα2

= 1.440 Å .

(a) The minimum X-ray wavelength that can be emitted by bombarding

the atoms with 5-keV electrons is

λmin =
hc

Emax
=
12.41

5
= 2.482 Å .

(b) It is possible to excite electrons on energy levels other than the

K level by bombardment with 5-keV electrons, and cause the emission of

characteristic X-rays when the atoms de-excite. The highest-energy X-rays

have energy 0−EI = 1.21 keV, corresponding to a wavelength of 10.26 Å.

1105

The characteristic Kα X-rays emitted by an atom of atomic number Z

were found by Morseley to have the energy 13.6× (1− 1
4 )(Z − 1)2 eV.

(a) Interpret the various factors in this expression.

(b) What fine structure is found for the Kα transitions? What are the

pertinent quantum numbers?

(c) Some atoms go to a lower energy state by an Auger transition.

Describe the process.

(Wisconsin)

Solution:

(a) In this expression, 13.6 eV is the ground state energy of hydrogen

atom, i.e., the binding energy of an 1s electron to unit nuclear charge, the
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factor (1− 1
4 ) arises from difference in principal quantum number between

the states n = 2 and n = 1, and (Z−1) is the effective nuclear charge. The
Kα line thus originates from a transition from n = 2 to n = 1.

(b) The Kα line actually has a doublet structure. In LS coupling, the

n = 2 state splits into three energy levels: 2S1/2,
2P1/2,

2P3/2, while the

n = 1 state is still a single state 2S1/2. According to the selection rules

∆L = ±1, ∆J = 0, ±1(0 /←→ 0), the allowed transitions are

Kα1 : 22P3/2 → 12S1/2 ,

Kα2 : 22P1/2 → 12S1/2 .

(c) The physical basis of the Auger process is that, after an electron has

been removed from an inner shell an electron from an outer shell falls to

the vacancy so created and the excess energy is released through ejection of

another electron, rather than by emission of a photon. The ejected electron

is called Auger electron. For example, after an electron has been removed

from the K shell, an L shell electron may fall to the vacancy so created

and the difference in energy is used to eject an electron from the L shell or

another outer shell. The latter, the Auger electron, has kinetic energy

E = −EL − (−Ek)−EL = Ek − 2EL ,

where Ek and EL are the ionization energies of K and L shells respectively.

1106

The binding energies of the two 2p states of niobium (Z = 41) are

2370 eV and 2465 eV. For lead (Z = 82) the binding energies of the 2p

states are 13035 eV and 15200 eV. The 2p binding energies are roughly

proportional to (Z − a)2 while the splitting between the 2P1/2 and the

2P3/2 goes as (Z − a)4. Explain this behavior, and state what might be a

reasonable value for the constant a.

(Columbia)

Solution:

The 2p electron moves in a central potential field of the nucleus shielded

by inner electrons. Taking account of the fine structure due to ls coupling,

the energy of a 2p electron is given by
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E = −1
4
Rhc(Z − a1)

2 +
1

8
Rhcα2(Z − a2)

4


3
8
− 1

j +
1

2




= −3.4(Z − a1)
2 + 9.06× 10−5(Z − a2)

4


3
8
− 1

j +
1

2


 ,

as Rhc = 13.6 eV, α = 1/137. Note that −E gives the binding energy and

that 2P3/2 corresponds to lower energy according to Hund’s rule. For Nb,

we have 95 = 9.06 × 10−5(41 − a2)
4 × 0.5, or a2 = 2.9, which then gives

a1 = 14.7. Similarly we have for Pb: a1 = 21.4, a2 = −1.2.

1107

(a) Describe carefully an experimental arrangement for determining the

wavelength of the characteristic lines in an X-ray emission spectrum.

(b) Frommeasurement of X-ray spectra of a variety of elements, Moseley

was able to assign an atomic number Z to each of the elements. Explain

explicitly how this assignment can be made.

(c) Discrete X-ray lines emitted from a certain target cannot in general

be observed as absorption lines in the same material. Explain why, for

example, the Kα lines cannot be observed in the absorption spectra of

heavy elements.

(d) Explain the origin of the continuous spectrum of X-rays emitted

when a target is bombarded by electrons of a given energy. What feature

of this spectrum is inconsistent with classical electromagnetic theory?

(Columbia)

Solution:

(a) The wavelength can be determined by the method of crystal diffrac-

tion. As shown in the Fig. 1.38, the X-rays collimated by narrow slits S1,

S2, fall on the surface of crystal C which can be rotated about a verti-

cal axis. Photographic film P forms an arc around C. If the condition

2d sin θ = nλ, where d is the distance between neighboring Bragg planes

and n is an integer, is satisfied, a diffraction line appears on the film at A.

After rotating the crystal, another diffraction line will appear at A′ which

is symmetric to A. As 4θ = arcAA′/CA, the wavelength λ can be obtained.
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Fig. 1.38

(b) Each element has its own characteristic X-ray spectrum, of which

the K series has the shortest wavelengths, and next to them the L series,

etc. Moseley discovered that the K series of different elements have the

same structure, only the wavelengths are different. Plotting
√
ν̃ versus the

atomic number Z, he found an approximate linear relation:

ν̃ = R(Z − 1)2
(
1

12
− 1

22

)
,

where R = RHc, RH being the Rydberg constant and c the velocity of light

in free space.

Then if the wavelength or frequency of Kα of a certain element is found,

its atomic number Z can be determined.

(c) The Kα lines represent the difference in energy between electrons

in different inner shells. Usually these energy levels are all occupied and

transitions cannot take place between them by absorbing X-rays with en-

ergy equal to the energy difference between such levels. The X-rays can

only ionize the inner-shell electrons. Hence only absorption edges, but not

absorption lines, are observed.

(d) When electrons hit a target they are decelerated and consequently

emit bremsstrahlung radiation, which are continuous in frequency with the

shortest wavelength determined by the maximum kinetic energy of the elec-

trons, λ = hc
Ee
. On the other hand, in the classical electromagnetic theory,

the kinetic energy of the electrons can only affect the intensity of the spec-

trum, not the wavelength.

1108

In the X-ray region, as the photon energy decreases the X-ray absorption

cross section rises monotonically, except for sharp drops in the cross section
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at certain photon energies characteristic of the absorbing material. For Zn

(Z = 30) the four most energetic of these drops are at photon energies

9678 eV, 1236 eV, 1047 eV and 1024 eV.

(a) Identify the transitions corresponding to these drops in the X-ray

absorption cross section.

(b) Identify the transitions and give the energies of Zn X-ray emission

lines whose energies are greater than 5000 eV.

(c) Calculate the ionization energy of Zn29+ (i.e., a Zn atom with 29

electrons removed). (Hint: the ionization energy of hydrogen is 13.6 eV).

(d) Why does the result of part (c) agree so poorly with 9678 eV?

(Wisconsin)

Solution:

(a) The energies 9.768, 1.236, 1.047 and 1.024 keV correspond to the

ionization energies of an 1s electron, a 2s electron, and each of two 2p elec-

trons respectively. That is, they are energies required to eject the respective

electrons to an infinite distance from the atom.

(b) X-rays of Zn with energies greater than 5 keV are emitted in tran-

sitions of electrons from other shells to the K shell. In particular X-rays

emitted in transitions from L to K shells are

Kα1 : E = −1.024− (−9.678) = 8.654 keV , (LIII → K)

Kα2 : E = −1.047− (−9.678) = 8.631 keV . (LII → K)

(c) The ionization energy of the Zn29+ (a hydrogen-like atom) is

EZn = 13.6 Z
2 = 11.44 keV .

(d) The energy 9.678 keV corresponds to the ionization energy of the 1s

electron in the neutral Zn atom. Because of the Coulomb screening effect

of the other electrons, the effective charge of the nucleus is Z∗ < 30. Also

the farther is the electron from the nucleus, the less is the nuclear charge

Z∗ it interacts with. Hence the ionization energy of a 1s electron of the

neutral Zn atom is much less than that of the Zn29+ ion.

1109

Sketch a derivation of the “Landé g-factor”, i.e. the factor determining

the effective magnetic moment of an atom in weak fields.

(Wisconsin)
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Solution:

Let the total orbital angular momentum of the electrons in the atom

be PL, the total spin angular momentum be PS (PL and PS being all in

units of �). Then the corresponding magnetic moments are µL = −µBPL

and µS = −2µBPS , where µB is the Bohr magneton. Assume the total

magnetic moment is µJ = −gµBPJ , where g is the Landé g-factor. As

PJ = PL +PS ,

µJ = µL + µS = −µB(PL + 2PS) = −µB(PJ +PS) ,

we have

µJ =
µJ ·PJ

P 2
J

PJ

= −µB
(PJ +PS) ·PJ

P 2
J

PJ

= −µB
P 2
J +PS ·PJ

P 2
J

PJ

= −gµBPJ ,

giving

g =
P 2
J +PS ·PJ

P 2
J

= 1 +
PS ·PJ

P 2
J

.

As

PL ·PL = (PJ −PS) · (PJ −PS) = P 2
J + P 2

S − 2PJ ·PS ,

we have

PJ ·PS =
1

2
(P 2

J + P 2
S − P 2

L) .

Hence

g = 1 +
P 2
J + P 2

S − P 2
L

2P 2
J

= 1 +
J(J + 1) + S(S + 1)− L(L+ 1)

2J(J + 1)
.
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1110

In the spin echo experiment, a sample of a proton-containing liquid

(e.g. glycerin) is placed in a steady but spatially inhomogeneous magnetic

field of a few kilogauss. A pulse (a few microseconds) of a strong (a few

gauss) rediofrequency field is applied perpendicular to the steady field. Im-

mediately afterwards, a radiofrequency signal can be picked up from the

coil around the sample. But this dies out in a fraction of a millisecond

unless special precaution has been taken to make the field very spatially

homogeneous, in which case the signal persists for a long time. If a sec-

ond long radiofrequency pulse is applied, say 15 milliseconds after the first

pulse, then a radiofrequency signal is observed 15 milliseconds after the

second pulse (the echo).

(a) How would you calculate the proper frequency for the radiofrequency

pulse?

(b) What are the requirements on the spatial homogeneity of the steady

field?

(c) Explain the formation of the echo.

(d) How would you calculate an appropriate length of the first radiofre-

quency pulse?

(Princeton)

Solution:

(a) The radiofrequency field must have sufficiently high frequency to

cause nuclear magnetic resonance:

�ω = γp�H0(r) ,

or

ω = γp〈H0(r)〉 ,
where γp is the gyromagnetic ratio, and 〈H0(r)〉 is the average value of the
magnetic field in the sample.

(b) Suppose the maximum variation of H0 in the sample is (∆H)m.

Then the decay time is 1
γp(∆H)m

. We require 1
γp
(∆H)m > τ , where τ is the

time interval between the two pulses. Thus we require

(∆H)m <
1

γpτ
.
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(c) Take the z-axis along the direction of the steady magnetic field H0.
At t = 0, the magnetic moments are parallel to H0 (Fig. 1.39(a)). After

introducing the first magnetic pulse H1 in the x direction, the magnetic

moments will deviate from the z direction (Fig. 1.39(b)). The angle θ of
the rotation of the magnetic moments can be adjusted by changing the

width of the magnetic pulse, as shown in Fig. 1.39(c) where θ = 90◦.

Fig. 1.39

The magnetic moments also processes around the direction of H0. The

spatial inhomogeneity of the steady magnetic field H0 causes the proces-
sional angular velocity ω = γPH0 to be different at different points, with

the result that the magnetic moments will fan out as shown in Fig. 1.39(d).
If a second, wider pulse is introduced along the x direction at t = τ (say,

at t = 15 ms), it makes all the magnetic moments turn 180◦ about the x-

axis (Fig. 1.39(e)). Now the order of procession of the magnetic moments
is reversed (Fig. 1.39(f)). At t = 2τ , the directions of the magnetic mo-

ments will again become the same (Fig. 1.39(g)). At this instant, the total
magnetic moment and its rate of change will be a maximum, producing

a resonance signal and forming an echo wave (Fig. 1.40). Afterwards the

magnetic moments scatter again and the signal disappears, as shown in
Fig. 1.39(h).

(d) The first radio pulse causes the magnetic moments to rotate through
an angle θ about the x-axis. To enhance the echo wave, the rotated mag-

netic moments should be perpendicular to H0, i.e., θ ≈ π/2. This means

that
γPH1t ≈ π/2 ,

i.e., the width of the first pulse should be t ≈ π
2γPH1

.
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Fig. 1.40

1111

Choose only ONE of the following spectroscopes:

Continuous electron spin resonance

Pulsed nuclear magnetic resonance

Mössbauer spectroscopy

(a) Give a block diagram of the instrumentation required to perform

the spectroscopy your have chosen.

(b) Give a concise description of the operation of this instrument.

(c) Describe the results of a measurement making clear what quantita-

tive information can be derived from the data and the physical significance

of this quantitative information.

(SUNY, Buffalo)

Solution:

(1) Continuous electron spin resonance

(a) The experimental setup is shown in Fig. 1.41.

(b) Operation. The sample is placed in the resonant cavity, which is

under a static magnetic field B0. Fixed-frequency microwaves B1 created

in the klystron is guided to the T -bridge. When the microwave power is dis-

tributed equally to the arms 1 and 2, there is no signal in the wave detector.

As B0 is varied, when the resonance condition is satisfied, the sample ab-

sorbs power and the balance between 1 and 2 is disturbed. The absorption



Atomic and Molecular Physics 153

Fig. 1.41

Fig. 1.42

signal is transmitted to the wave detector through arm 3, to be displayed

or recorded.

(c) Data analysis. The monitor may show two types of differential graph

(Fig. 1.42), Gaussian or Lagrangian, from which the following information

may be obtained.

(i) The g-factor can be calculated from B0 at the center and the mi-

crowave frequency.

(ii) The line width can be found from the peak-to-peak distance ∆Bpp

of the differential signal.

(iii) The relaxation time T1 and T2 can be obtained by the saturation

method, where T1 and T2 (Lorenzian profile) are given by
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T2(spin–spin) =
1.3131× 10−7

g∆B0
pp

,

T1 =
0.9848× 10−7∆B0

PP

gB2
1

(
1

s
− 1
)
.

In the above g is the Landé factor, ∆B0
PP is the saturation peak-to-peak

distance (in gauss), B1 is the magnetic field corresponding to the edge of

the spectral line, and s is the saturation factor.

(iv) The relative intensities.

By comparing with the standard spectrum, we can determine from the g-

factor and the line profile to what kind of paramagnetic atoms the spectrum

belongs. If there are several kinds of paramagnetic atoms present in the

sample, their relative intensities give the relative amounts. Also, from the

structure of the spectrum, the nuclear spin I may be found.

(2) Pulsed nuclear magnetic resonance

(a) Figure 1.43 shows a block diagram of the experimental setup.

(b) Operation. Basically an external magnetic field is employed to split

up the spin states of the nuclei. Then a pulsed radiofrequency field is in-

troduced perpendicular to the static magnetic field to cause resonant tran-

sitions between the spin states. The absorption signals obtained from the

same coil are amplified, Fourier-transformed, and displayed on a monitor

screen.

Fig. 1.43
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(c) Information that can be deduced are positions and number of ab-

sorption peaks, integrated intensities of absorption peaks, the relaxation

times T1 and T2.

The positions of absorption peaks relate to chemical displacement. From

the number and integrated intensities of the peaks, the structure of the

compound may be deduced as different kinds of atom have different ways

of compounding with other atoms. For a given way of compounding, the

integrated spectral intensity is proportional to the number of atoms. Con-

sequently, the ratio of atoms in different combined forms can be determined

from the ratio of the spectral intensities. The number of the peaks relates

to the coupling between nuclei.

Fig. 1.44

For example Fig. 1.44 shows the nuclear magnetic resonance spectrum

of H in alcohol. Three groups of nuclear magnetic resonance spectra are

seen. The single peak on the left arises from the combination of H and O.

The 4 peaks in the middle are the nuclear magnetic resonance spectrum of

H in CH2, and the 3 peaks on the right are the nuclear magnetic resonance

spectrum of H in CH3. The line shape and number of peaks are related to

the coupling between CH2 and CH3. Using the horizontal line 1 as base

line, the relative heights of the horizontal lines 2, 3, 4 give the relative

integrated intensities of the three spectra, which are exactly in the ratio of

1:2:3.

(3)Mössbauer spectroscopy

(a) Figure 1.45 shows a block diagram of the apparatus.
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Fig. 1.45

(b) Operation. The signal source moves towards the fixed absorber with

a velocity v modulated by the signals of the wave generator. During reso-

nant absorption, the γ-ray detector behind the absorber produces a pulse

signal, which is stored in the multichannel analyser MCA. Synchronous sig-

nals establish the correspondence between the position of a pulse and the

velocity v, from which the resonant absorption curve is obtained.

(c) Information that can be obtained are the position δ of the absorption

peak (Fig. 1.46), integrated intensity of the absorbing peak A, peak width Γ.

Fig. 1.46

Besides the effect of interactions among the nucleons inside the nucleus,

nuclear energy levels are affected by the crystal structure, the orbital elec-

trons and atoms nearby. In the Mössbauer spectrum the isomeric shift δ

varies with the chemical environment. For instance, among the isomeric

shifts of Sn2+, Sn4+ and the metallic β-Sn, that of Sn2+ is the largest, that

of β-Sn comes next, and that of the Sn4+ is the smallest.

The lifetime of an excited nuclear state can be determined from the

width Γ of the peak by the uncertainty principle Γτ ∼ �.
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The Mössbaur spectra of some elements show quadrupole splitting, as

shown in Fig. 1.47. The quadrupole moment Q = 2∆/e2q of the nucleus

can be determined from this splitting, where q is the gradient of the electric

field at the site of the nucleus, e is the electronic charge.

Fig. 1.47

1112

Pick ONE phenomenon from the list below, and answer the following

questions about it:

(1) What is the effect? (e.g., “The Mössbauer effect is . . . ”)

(2) How can it be measured?

(3) Give several sources of noise that will influence the measurement.

(4) What properties of the specimen or what physical constants can be

measured by examining the effect?

Pick one:

(a) Electron spin resonance. (b) Mössbauer effect. (c) The Josephson

effect. (d) Nuclear magnetic resonance. (e) The Hall effect.

(SUNY, Buffalo)

Solution:

(a) (b) (d) Refer to Problem 1111.

(c) The Josephson effect: Under proper conditions, superconducting

electrons can cross a very thin insulation barrier from one superconduc-

tor into another. This is called the Josephson effect (Fig. 1.48). The
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Fig. 1.48

Josephson effect is of two kinds, direct current Josephson effect and alter-

nating current Josephson effect.

The direct current Josephson effect refers to the phenomenon of a direct

electric current crossing the Josephson junction without the presence of any

external electric or magnetic field. The superconducting current density can

be expressed as Js = Jc sinϕ, where Jc is the maximum current density that

can cross the junction, ϕ is the phase difference of the wave functions in

the superconductors on the two sides of the insulation barrier.

The alternating current Josephson effect occurs in the following situa-

tions:

1. When a direct current voltage is introduced to the two sides of the

Josephson junction, a radiofrequency current Js = Jc sin(
2e
�
V t + ϕ0) is

produced in the Josephson junction, where V is the direct current voltage

imposed on the two sides of the junction.

2. If a Josephson junction under an imposed bias voltage V is exposed to

microwaves of frequency ω and the condition V = n�ω/2e (n = 1, 2, 3, . . . )

is satisfied, a direct current component will appear in the superconducting

current crossing the junction.

Josephson effect can be employed for accurate measurement of e/�. In

the experiment the Josephson junction is exposed to microwaves of a fixed

frequency. By adjusting the bias voltage V , current steps can be seen on

the I–V graph, and e/� determined from the relation ∆V = �ω/2e, where

∆V is the difference of the bias voltages of the neighboring steps.

The Josephson junction can also be used as a sensitive microwave de-

tector. Furthermore, ∆V = �ω/2e can serve as a voltage standard.
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Fig. 1.49

Making use of the modulation effect on the junction current of the

magnetic field, we can measure weak magnetic fields. For a ring struc-

ture consisting of two parallel Josephson junctions as shown in Fig. 1.49

(“double-junction quantum interferometer”), the current is given by

Is = 2Is0 sinϕ0 cos

(
πΦ

φ0

)
,

where Is0 is the maximum superconducting current which can be produced

in a single Josephson junction, φ0 =
h
2e is the magnetic flux quantum, Φ is

the magnetic flux in the superconducting ring. Magnetic fields as small as

10−11 gauss can be detected.

(e) Hall effect. When a metallic or semiconductor sample with electric

current is placed in a uniform magnetic field which is perpendicular to the

current, a steady transverse electric field perpendicular to both the current

and the magnetic field will be induced across the sample. This is called the

Hall effect. The uniform magnetic field B, electric current density j, and

the Hall electric field E have a simple relation: E = RHB × j, where the

parameter RH is known as the Hall coefficient.

As shown in Fig. 1.50, a rectangular parallelepiped thin sample is placed

in a uniform magnetic field B. The Hall coefficient RH and the electric

conductivity σ of the sample can be found by measuring the Hall voltage

VH , magnetic field B, current I, and the dimensions of the sample:

RH =
VHd

IB
, σ =

Il

Ubd
,

where U is the voltage of the current source. From the measured RH

and σ, we can deduce the type and density N of the current carriers in a

semiconductor, as well as their mobility µ.
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Fig. 1.50

The Hall effect arises from the action of the Lorentz force on the cur-

rent carriers. In equilibrium, the magnetic force on the current carriers is

balanced by the force due to the Hall electric field:

qE = qv×B ,

giving

E = v ×B = 1

Nq
j×B .

Hence RH = 1
Nq
, where q is the charge of current carriers (|q| = e),

from which we can determine the type of the semiconductor (p or n type in

accordance with RH being positive or negative). The carrier density and

mobility are given by

N =
1

qRH
,

µ =
σ

Ne
= σ|RH | .

1113

State briefly the importance of each of the following experiments in the

development of atomic physics.

(a) Faraday’s experiment on electrolysis.

(b) Bunsen and Kirchhoff’s experiments with the spectroscope.
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(c) J. J. Thomson’s experiments on e/m of particles in a discharge.

(d) Geiger and Marsdens experiment on scattering of α-particles.

(e) Barkla’s experiment on scattering of X-rays.

(f) The Frank-Hertz experiment.

(g) J. J. Thomson’s experiment on e/m of neon ions.

(h) Stern-Gerlach experiment.

(i) Lamb-Rutherford experiment.

(Wisconsin)

Solution:

(a) Faraday’s experiment on electrolysis was the first experiment to

show that there is a natural unit of electric charge e = F/Na, where F is

the Faraday constant and Na is Avogadro’s number. The charge of any

charged body is an integer multiple of e.

(b) Bunsen and Kirchhoff analyzed the Fraunhofer lines of the solar

spectrum and gave the first satisfactory explanation of their origin that

the lines arose from the absorption of light of certain wavelengths by the

atmospheres of the sun and the earth. Their work laid the foundation of

spectroscopy and resulted in the discovery of the elements rubidium and

cesium.

(c) J. J. Thomson discovered the electron by measuring directly the e/m

ratio of cathode rays. It marked the beginning of our understanding of the

atomic structure.

(d) Geiger and Marsden’s experiment on the scattering of α-particles

formed the experimental basis of Rutherfold’s atomic model.

(e) Barkla’s experiment on scattering of X-rays led to the discovery of

characteristic X-ray spectra of elements which provide an important means

for studying atomic structure.

(f) The Frank-Hertz experiment on inelastic scattering of electrons by

atoms established the existence of discrete energy levels in atoms.

(g) J. J. Thomson’s measurement of the e/m ratio of neon ions led to

the discovery of the isotopes 20Ne and 22Ne.

(h) The Stern-Gerlach experiment provided proof that there exist only

certain permitted orientations of the angular momentum of an atom.

(i) The Lamb-Rutherford experiment provided evidence of interaction

of an electron with an electromagnetic radiation field, giving support to the

theory of quantum electrodynamics.
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1114

In a Stern-Gerlach experiment hydrogen atoms are used.

(a) What determines the number of lines one sees? What features of the

apparatus determine the magnitude of the separation between the lines?

(b) Make an estimate of the separation between the two lines if the

Stern-Gerlach experiment is carried out with H atoms. Make any reasonable

assumptions about the experimental setup. For constants which you do not

know by heart, state where you would look them up and what units they

should be substituted in your formula.

(Wisconsin)

Solution:

(a) A narrow beam of atoms is sent through an inhomogeneous mag-

netic field having a gradient dB
dz perpendicular to the direction of motion

of the beam. Let the length of the magnetic field be L1, the flight path

length of the hydrogen atoms after passing through the magnetic field be

L2 (Fig. 1.51).

Fig. 1.51

The magnetic moment of ground state hydrogen atom is µ = gµBJ =

2µBJ. In the inhomogeneous magnetic field the gradient
∂B
∂z
iz exerts a

force on the magnetic moment Fz = 2µBMJ(
∂B
∂z
). As J = 1

2 , MJ = ± 1
2

and the beam splits into two components.
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After leaving the magnetic field an atom has acquired a transverse ve-

locity Fz
m · L1v and a transverse displacement 1

2
Fz
m (

L1
v )

2, where m and v

are respectively the mass and longitudinal velocity of the atom. When the

beam strikes the screen the separation between the lines is

µBL1

mv2
(L1 + 2L2)

(
1

2
+
1

2

)
∂B

∂z
.

(b) Suppose L1 = 0.03 m, L2 = 0.10 m, dB/dz = 10
3 T/m, v = 103 m/s.

We have

d =
0.927× 10−23 × 0.03
1.67× 10−27 × 106 × (0.03 + 2× 0.10)× 10

3

= 3.8× 10−2 m = 3.8 cm .

1115

Give a brief description of the Stern-Gerlach experiment and answer the

following questions:

(a) Why must the magnetic field be inhomogeneous?

(b) How is the inhomogeneous field obtained?

(c) What kind of pattern would be obtained with a beam of hydrogen

atoms in their ground state? Why?

(d) What kind of pattern would be obtained with a beam of mercury

atoms (ground state 1S0)? Why?

(Wisconsin)

Solution:

For a brief description of the Stern-Gerlach experiment see Pro-

blem 1114.

(a) The force acting on the atomic magnetic moment µ in an inhomo-

geneous magnetic field is

Fz = −
d

dz
(µB cos θ) = −µdB

dz
cos θ ,

where θ is the angle between the directions of µ and B. If the magnetic

field were uniform, there would be no force and hence no splitting of the

atomic beam.



164 Problems and Solutions in Atomic, Nuclear and Particle Physics

(b) The inhomogeneous magnetic field can be produced by non-sym-

metric magnetic poles such as shown in Fig. 1.52.

Fig. 1.52

(c) The ground state of hydrogen atom is 2S1/2. Hence a beam of

hydrogen atoms will split into two components on passing through an in-

homogeneous magnetic field.

(d) As the total angular momentum J of the ground state of Hg is zero,

there will be no splitting of the beam since (2J + 1) = 1.

1116

The atomic number of aluminum is 13.

(a) What is the electronic configuration of Al in its ground state?

(b) What is the term classification of the ground state? Use standard

spectroscopic notation (e.g. 4S1/2) and explain all superscripts and sub-

scripts.

(c) Show by means of an energy-level diagram what happens to the

ground state when a very strong magnetic field (Paschen-Back region) is

applied. Label all states with the appropriate quantum numbers and indi-

cate the relative spacing of the energy levels.

(Wisconsin)

Solution:

(a) The electronic configuration of the ground state of Al is
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(1s)2(2s)2(2p)6(3s)2(3p)1 .

(b) The spectroscopic notation of the ground state of Al is 2P1/2, where

the superscript 2 is the multiplet number, equal to 2S + 1, S being the

total spin quantum number, the subscript 1/2 is the total angular momen-

tum quantum number, the letter P indicates that the total orbital angular

momentum quantum number L = 1.

(c) In a very strong magnetic field, LS coupling will be destroyed, and

the spin and orbital magnetic moments interact separately with the external

magnetic field, causing the energy level to split. The energy correction in

the magnetic field is given by

∆E = −(µL + µs) ·B = (ML + 2Ms)µBB ,

where

ML = 1, 0,−1, MS = 1/2,−1/2 .
The 2P energy level is separated into 5 levels, the spacing of neighboring

levels being µBB. The split levels and the quantum numbers (L, S,ML,

MS) are shown in Fig. 1.53.

Fig. 1.53

1117

A heated gas of neutral lithium (Z = 3) atoms is in a magnetic field.

Which of the following states lie lowest. Give brief physical reasons for your

answers.

(a) 3 2P1/2 and 2
2S1/2.

(b) 5 2S1/2 and 5
2P1/2.
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(c) 5 2P3/2 and 5
2P1/2.

(d) Substates of 52P3/2.

(Wisconsin)

Solution:

The energy levels of an atom will be shifted in an external magnetic

field B by

∆E =MJgµBB ,

where g is the Landé factor, MJ is the component of the total angular

momentum along the direction of the magnetic field B. The shifts are only

∼ 5× 10−5 eV even in a magnetic field as strong as 1 T.

(a) 32P1/2 is higher than 2
2S1/2 (energy difference ∼ 1 eV), because the

principal quantum number of the former is larger. Of the 2S1/2 states the

one with MJ = − 1
2 lies lowest.

(b) The state with MJ = −1/2 of 2S1/2 lies lowest. The difference of
energy between 2S and 2P is mainly caused by orbital penetration and is

of the order ∼ 1 eV.
(c) Which of the states 2P3/2 and

2P1/2 has the lowest energy will de-

pend on the intensity of the external magnetic field. If the external magnetic

field would cause a split larger than that due to LS-coupling, then the state

with MJ = −3/2 of 2P3/2 is lowest. Conversely, MJ = −1/2 of 2P1/2 is

lowest.

(d) The substate with MJ = −3/2 of 2P3/2 is lowest.

1118

A particular spectral line corresponding to a J = 1→ J = 0 transition

is split in a magnetic field of 1000 gauss into three components separated

by 0.0016 Å. The zero field line occurs at 1849 Å.

(a) Determine whether the total spin is in the J = 1 state by studying

the g-factor in the state.

(b) What is the magnetic moment in the excited state?

(Princeton)
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Solution:

(a) The energy shift in an external magnetic field B is

∆E = gµBB .

The energy level of J = 0 is not split. Hence the splitting of the line

due to the transition J = 1→ J = 0 is equal to the splitting of J = 1 level:

∆E(J = 1) = hc∆ν̃ = hc
∆λ

λ2
,

or

g =
hc

µBB

∆λ

λ2
.

With

∆λ = 0.0016 Å ,

λ = 1849 Å = 1849× 10−8 cm ,

hc = 4π × 10−5 eV · cm ,

µB = 5.8× 10−9 eV ·Gs−1 ,

B = 103 Gs ,

we find

g = 1 .

As J = 1 this indicates (Problem 1091(b)) that S = 0, L = 1, i.e., only

the orbital magnetic moment contributes to the Zeeman splitting.

(b) The magnetic moment of the excited atom is

µJ = gµBPJ/� = 1 · µB ·
√
J(J + 1) =

√
2µB .

1119

Compare the weak-field Zeeman effect for the (1s3s) 1S0 → (1s2p) 1P1
and (1s3s) 3S1 → (1s2p) 3P1 transitions in helium. You may be qualitative
so long as the important features are evident.

(Wisconsin)
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Solution:

In a weak magnetic field, each energy level of 3P1,
3S1 and

1P1 is split

into three levels. From the selection rules (∆J = 0,±1; MJ = 0,±1), we
see that the transition (1s3s)1S0 → (1s2p)1P1 gives rise to three spectral

lines, the transition (1s3s)3S1 → (1s2p)3P1 gives rise to six spectral lines,

as shown in Fig. 1.54.

Fig. 1.54

The shift of energy in the weak magnetic field B is ∆E = gMJµBB,

where µB is the Bohr magneton, g is the Landé splitting factor given by

g = 1 +
J(J + 1)− L(L+ 1) + S(S + 1)

2J(J + 1)
.

For the above four levels we have

Level (1s3s)1S0 (1s2p)1P1 (1s3s)3S1 (1s2p)3P1
(JLS) (000) (110) (101) (111)
∆E 0 µBB 2µBB 3µBB/2

from which the energies of transition can be obtained.

1120

The influence of a magnetic field on the spectral structure of the promi-

nent yellow light (in the vicinity of 6000 Å) from excited sodium vapor is
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being examined (Zeeman effect). The spectrum is observed for light emitted

in a direction either along or perpendicular to the magnetic field.

(a) Describe: (i) The spectrum before the field is applied.

(ii) The change in the spectrum, for both directions of observation, after

the field is applied.

(iii) What states of polarization would you expect for the components

of the spectrum in each case?

(b) Explain how the above observations can be interpreted in terms of

the characteristics of the atomic quantum states involved.

(c) If you have available a spectroscope with a resolution (λ/δλ) of

100000 what magnetic field would be required to resolve clearly the ‘split-

ting’ of lines by the magnetic field? (Numerical estimates to a factor of two

or so are sufficient. You may neglect the line broadening in the source.)

(Columbia)

Solution:

(a) The spectra with and without magnetic field are shown in Fig. 1.55.

Fig. 1.55
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(i) Before the magnetic field is introduced, two lines can be observed

with wavelengths 5896 Å and 5890 Å in all directions.

(ii) After introducing the magnetic field, we can observe 6σ lines in

the direction of the field and 10 lines, 4π lines and 6σ lines in a direction

perpendicular to the field.

(iii) The σ lines are pairs of left and right circularly polarized light. The

π lines are plane polarized light.

(b) The splitting of the spectrum arises from quantization of the direc-

tion of the total angular momentum. The number of split components is

determined by the selection rule (∆MJ = 1, 0,−1) of the transition, while
the state of polarization is determined by the conservation of the angular

momentum.

(c) The difference in wave number of two nearest lines is

∆ν̃ =
|g1 − g2|µBB

hc
=
1

λ1
− 1

λ2
≈ δλ

λ2
,

where g1, g2 are Landé splitting factors of the higher and lower energy levels.

Hence the magnetic field strength required is of the order

B ∼ hcδλ

|g1 − g2|µBλ2
=
12× 10−5 × 108
1× 6× 10−5 ×

10−5

6000
= 0.3 T .

1121

Discuss qualitatively the shift due to a constant external electric field

E0 of the n = 2 energy levels of hydrogen. Neglect spin, but include the

observed zero-field splitting W of the 2s and 2p states:

W = E2s − E2p ∼ 10−5 eV .

Consider separately the cases |e|E0a0 � W and |e|E0a0 � W , where

a0 is the Bohr radius.

(Columbia)

Solution:

Consider the external electric field E0 as perturbation. Then H ′ =

eE0 · r. Nonzero matrix elements exist only between states |200〉 and |210〉
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among the four |n = 2〉 states |200〉, |211〉, |210〉, |21−1〉. Problem 1122(a)

gives

〈210|H ′|200〉 ≡ u = −3eE0a0 .

The states |211〉 and |21−1〉 remain degenerate.
(i) ForW � |e|E0a0, orW � |u|, the perturbation is on nondegenerate

states. There is nonzero energy correction only in second order calculation.

The energy corrections are

E+ =W + u2/W, E− =W − u2/W .

(ii) For W � |e|E0a0, or W � |u|, the perturbation is among degener-
ate states and the energy corrections are

E+ = −u = 3eE0a0, E− = u = −3eE0a0 .

1122

A beam of excited hydrogen atoms in the 2s state passes between the

plates of a capacitor in which a uniform electric field E exists over a distance

L, as shown in the Fig. 1.56. The hydrogen atoms have velocity v along

the x axis and the E field is directed along the z axis as shown.

All the n = 2 states of hydrogen are degenerate in the absence of the E

field, but certain of them mix when the field is present.

Fig. 1.56

(a) Which of the n = 2 states are connected in first order via the

perturbation?
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(b) Find the linear combination of n = 2 states which removes the

degeneracy as much as possible.

(c) For a system which starts out in the 2s states at t = 0, express the

wave function at time t ≤ L/v.

(d) Find the probability that the emergent beam contains hydrogen in

the various n = 2 states.

(MIT )

Solution:

(a) The perturbation Hamiltonian H ′ = eEr cos θ commutes with l̂z =

−i� ∂
∂ϕ
, so the matrix elements of H ′ between states of different m vanish.

There are 4 degenerate states in the n = 2 energy level:

2s : l = 0,m = 0 ,

2p : l = 1,m = 0,±1 .
The only nonzero matrix element is that between the 2s and 2p(m = 0)

states:

〈210|eEr cos θ|200〉 = eE

∫
ψ210(r)r cos θψ200(r)d

3r

=
eE

16a4

∫ ∞
0

∫ 1

−1
r4
(
2− r

a

)
e−r/a cos2 θd cos θdr

= −3eEa ,
where a is the Bohr radius.

(b) The secular equation determining the energy shift∣∣∣∣∣∣∣∣∣

−λ −3eEa 0 0

−3eEa −λ 0 0

0 0 −λ 0

0 0 0 −λ

∣∣∣∣∣∣∣∣∣
= 0

gives

λ = 3eEa , Ψ(−) =
1√
2
(Φ200 − Φ210) ,

λ =−3eEa , Ψ(+) =
1√
2
(Φ200 +Φ210) ,

λ = 0 , Ψ = Φ211,Φ21−1 .
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(c) Let the energy of n = 2 state before perturbation be E1. As at t = 0,

Ψ(t = 0) = Φ200 =
1√
2

[
1√
2
(Φ200 − Φ210) +

1√
2
(Φ200 +Φ210)

]

=
1√
2
(Ψ(−) +Ψ(+)) ,

we have

Ψ(t) =
1√
2

{
Ψ(−) exp

[
− i

�
(E1 + 3eEa)t

]
+Ψ(+) exp

[
− i

�
(E1 − 3eEa)t

]}

=

[
Φ200 cos

(
3eEat

�

)
+Φ210 sin

(
3eEat

�

)]
exp

(
− i

�
E1t

)
.

(d) When the beam emerges from the capacitor at t = L/v, the proba-

bility of its staying in 2s state is

∣∣∣∣cos
(
3eEat

�

)
exp

(
− i
�
E1t

)∣∣∣∣
2

= cos2
(
3eEat

�

)
= cos2

(
3eEaL

�v

)
.

The probability of its being in 2p(m = 0) state is

∣∣∣∣sin
(
3eEat

�

)
exp

(
− i

�
E1t

)∣∣∣∣
2

= sin2
(
3eEat

�

)
= sin2

(
3eEaL

�v

)
.

The probability of its being in 2p(m = ±1) state is zero.

2. MOLECULAR PHYSICS (1123 1142)

1123

(a) Assuming that the two protons of the H+
2 molecule are fixed at their

normal separation of 1.06 Å, sketch the potential energy of the electron

along the axis passing through the protons.

(b) Sketch the electron wave functions for the two lowest states in

H+
2 , indicating roughly how they are related to hydrogenic wave functions.

Which wave function corresponds to the ground state of H+
2 , and why?
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(c) What happens to the two lowest energy levels of H+
2 in the limit

that the protons are moved far apart?

(Wisconsin)

Solution:

(a) Take the position of one proton as the origin and that of the other

proton at 1.06 Å along the x-axis. Then the potential energy of the elec-

tron is

V (r1, r2) = −
e2

r1
− e2

r2
,

where r1 and r2 are the distances of the electron from the two protons. The

potential energy of the electron along the x-axis is shown in Fig. 1.57.

Fig. 1.57

(b) The molecular wave function of the H+
2 has the forms

ΨS =
1√
2
(Φ1s(1) + Φ1s(2)) ,

ΨA =
1√
2
(Φ1s(1)− Φ1s(2)) ,

where Φ(i) is the wave function of an atom formed by the electron and the

ith proton. Note that the energy of ΨS is lower than that of ΨA and so ΨS
is the ground state of H+

2 ; ΨA is the first excited state. ΨS and ΨA are

linear combinations of 1s states of H atom, and are sketched in Fig. 1.58.

The overlapping of the two hydrogenic wave functions is much larger in the

case of the symmetric wave function ΨS and so the state is called a bonding

state. The antisymmetric wave function ΨA is called an antibonding state.

As ΨS has stronger binding its energy is lower.
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Fig. 1.58

(c) Suppose, with proton 1 fixed, proton 2 is moved to infinity, i.e. r2 →
∞. Then Φ(2) ∼ e−r2/a → 0 and ΨS ≈ ΨA ≈ Φ(1). The system breaks up
into a hydrogen atom and a non-interacting proton.

1124

Given the radial part of the Schrödinger equation for a central force

field V (r):

− �
2

2µ

1

r2
d

dr

(
r2
dΨ(r)

dr

)
+

[
V (r) +

l(l+ 1)�2

2µr2

]
Ψ(r) = EΨ(r) ,

consider a diatomic molecule with nuclei of masses m1 and m2. A good

approximation to the molecular potential is given by

V (r) = −2V0
(
1

ρ
− 1

2ρ2

)
,

where ρ = r/a, a with a being some characteristic length parameter.

(a) By expanding around the minimum of the effective potential in the

Schrödinger equation, show that for small B the wave equation reduces to

that of a simple harmonic oscillator with frequency

ω =

[
2V0

µa2(1 +B)3

]1/2
, where B =

l(l + 1)�2

2µa2V0
.

(b) Assuming �2/2µ� a2V0, find the rotational, vibrational and rota-

tion-vibrational energy levels for small oscillations.

(SUNY, Buffalo)
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Solution:

(a) The effective potential is

Veff =

[
V (r) +

l(l+ 1)�2

2µr2

]
= −2V0

[
a

r
− a2

2r2
(1 +B)

]
.

To find the position of minimum Veff, let
dVeff
dr

= 0, which gives r = a(1 +

B) ≡ r0 as the equilibrium position. Expanding Veff near r = r0 and

neglecting terms of orders higher than ( r−r0
a
)2, we have

Veff ≈ −
V0

1 +B
+

V0

(1 +B)3a2
[r − (1 +B)a]2 .

The radial part of the Schrödinger equation now becomes

− �
2

2µ

1

r2
d

dr

(
r2
dΨ(r)

dr

)
+

{
− V0

B + 1
+

V0

(1 +B)3a2
[r − (1 +B)a]2

}
Ψ(r)

= EΨ(r) ,

or, on letting Ψ(r) = 1
r
χ(r), R = r − r0,

− �
2

2µ

d2

dR2
χ(R) +

V0

(1 +B)3a2
R2χ(R) =

(
E +

V0

1 +B

)
χ(R) ,

which is the equation of motion of a harmonic oscillator of angular frequency

ω =

[
2V0

µa2(1 +B)3

]1/2
.

(b) If �2/2µ� a2V0, we have

B =
l(l + 1)�2

2µa2V0
� 1, r0 ≈ Ba ,

ω ≈
√

2V0
µa2B3

.

The vibrational energy levels are given by

Ev = (n+ 1/2)�ω, n = 1, 2, 3 . . . .
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The rotational energy levels are given by

Er =
l(l + 1)�2

2µr0
≈ l(l + 1)�2

2µBa
.

Hence, the vibration-rotational energy levels are given by

E = Ev +Er ≈
(
n+

1

2

)
�ω +

l(l + 1)�2

2µBa
.

1125

A beam of hydrogen molecules travel in the z direction with a kinetic

energy of 1 eV. The molecules are in an excited state, from which they

decay and dissociate into two hydrogen atoms. When one of the dissociation

atoms has its final velocity perpendicular to the z direction its kinetic energy

is always 0.8 eV. Calculate the energy released in the dissociative reaction.

(Wisconsin)

Solution:

A hydrogen molecule of kinetic energy 1 eV moving with momentum p0
in the z direction disintegrates into two hydrogen atoms, one of which has

kinetic energy 0.8 eV and a momentum p1 perpendicular to the z direction.

Let the momentum of the second hydrogen atom be p2, its kinetic energy

be E2. As p0 = p1 + p2, the momentum vectors are as shown in Fig. 1.59.

Fig. 1.59
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We have

p0 =
√
2m(H2)E(H2)

=
√
2× 2× 938× 106 × 1 = 6.13× 104 eV/c ,

p1 =
√
2m(H)E(H)

=
√
2× 938× 106 × 0.8 = 3.87× 104 eV/c .

The momentum of the second hydrogen atom is then

p2 =
√
p20 + p21 = 7.25× 104 eV/c ,

corresponding to a kinetic energy of

E2 =
p22

2m(H)
= 2.80 eV .

Hence the energy released in the dissociative reaction is 0.8+ 2.8− 1 =
2.6 eV.

1126

Interatomic forces are due to:

(a) the mutual electrostatic polarization between atoms.

(b) forces between atomic nuclei.

(c) exchange of photons between atoms.

(CCT )

Solution:

The answer is (a).

1127

Which of the following has the smallest energy-level spacing?

(a) Molecular rotational levels,

(b) Molecular vibrational levels,

(c) Molecular electronic levels.

(CCT )
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Solution:

The answer is (a). ∆Ee > ∆Ev > ∆Er .

1128

Approximating the molecule 1
1H

17
35Cl as a rigid dumbbell with an

internuclear separation of 1.29×10−10 m, calculate the frequency separation
of its far infrared spectral lines. (h = 6.6 × 10−34 J sec, 1 amu = 1.67 ×
10−27 kg).

(Wisconsin)

Solution:

The moment of inertia of the molecule is

I = µr2 =
mClmH

mCl +mH
r2 =

35

36
× 1.67× 10−27 × (1.29× 10−10)2

= 2.7× 10−47 kg ·m2

The frequency of its far infrared spectral line is given by

ν =
hcBJ(J + 1)− hcBJ(J − 1)

h
= 2cBJ ,

where B = �2/(2Ihc). Hence

ν =
�
2

Ih
J , and so ∆ν =

�
2

hI
=

h

4π2I
=

6.6× 10−34
4π2 × 2.7× 10−47 = 6.2× 10

11 Hz .

1129

(a) Recognizing that a hydrogen nucleus has spin 1/2 while a deuterium

nucleus has spin 1, enumerate the possible nuclear spin states for H2, D2

and HD molecules.

(b) For each of the molecules H2, D2 and HD, discuss the rotational

states of the molecule that are allowed for each nuclear spin state.

(c) Estimate the energy difference between the first two rotational levels

for H2. What is the approximate magnitude of the contribution of the
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nuclear kinetic energy? The interaction of the two nuclear spins? The

interaction of the nuclear spin with the orbital motion?

(d) Use your answer to (c) above to obtain the distribution of nuclear

spin states for H2, D2 and HD at a temperature of 1 K.

(Columbia)

Solution:

(a) As s(p) = 1
2 , s(d) = 1, and S = s1 + s2, the spin of H2 is 1 or 0, the

spin of D2 is 2, 1 or 0, and the spin of HD is 1/2 or 3/2.

(b) The two nuclei of H2 are identical, so are the nuclei of D2. Hence

the total wave functions of H2 and D2 must be antisymmetric with respect

to exchange of particles, while there is no such rule for DH. The total wave

function may be written as ΨT = ΨeΨvΨrΨs, where Ψe,Ψv,Ψr, and Ψs
are the electron wave function, nuclear vibrational wave function, nuclear

rotational wave function, and nuclear spin wave function respectively. For

the ground state, the Ψe,Ψv are exchange-symmetric. For the rotational

states of H2 or D2, a factor (−1)J will occur in the wave function on
exchanging the two nuclei, where J is the rotational quantum number.

The requirement on the symmetry of the wave function then gives the

following:

H2 : For S = 1 (Ψs symmetric), J = 1, 3, 5, . . . ;

for S = 0 (Ψs anitsymmetric), J = 0, 2, 4, . . . .

D2 : For S = 0, 2, J = 0, 2, 4, . . . ; for S = 1, J = 1, 3, 5, . . . .

HD : S =
1

2
,
3

2
;J = 1, 2, 3, . . . (no restriction) .

(c) For H2, take the distance between the two nuclei as a ≈ 2a0 ≈ 1 Å
a0 =

�
2

mee2
being the Bohr radius. Then I = 2mpa

2
0 =

1
2mpa

2 and the

energy difference between the first two rotational states is

∆E =
�
2

2I
× [1× (1 + 1)− 0× (0 + 1)] ≈ 2�2

mpa2
≈ me

mp
E0 ,

where

E0 =
2�2

mea2
=

e2

2a0
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is the ionization potential of hydrogen. In addition there is a contribution

from the nuclear vibrational energy: ∆Ev ≈ �ω. The force between the
nuclei is f ≈ e2/a2, so that K = |∇f | ≈ 2e2

a3 , giving

∆E0 = �ω ≈
√

K

mp
=

√
2e2�2

mpa3
=

√
me

mp

e2

2e0
=

√
me

mp
E0 .

Hence the contribution of the nuclear kinetic energy is of the order of√
me

mp
E0.

The interaction between the nuclear spins is given by

∆E ≈ µ2N/a
3 ≈
(

e�

2mpc

)2
1

8a30
=
1

16

(
�

mpc

)2(
mee

2

�2

)2
e2

2a0

=
1

16

(
me

mp

)2(
e2

�c

)2

E0 =
1

16

(
me

mp

)2

α2E0 ,

where α = 1
137 is the fine structure constant, and the interaction between

nuclear spin and electronic orbital angular momentum is

∆E ≈ µNµB/a
3
0 ≈

1

2

(
me

mp

)
α2E0 .

(d) For H2, the moment of inertia is I = µa2 = 1
2mpa

2 ≈ 2mpa
2
0, so the

energy difference between states l = 0 and l = 1 is

∆EH2 =
�
2

2I
× (2− 0) = 2me

mp
E0 .

For D2, as the nuclear mass is twice that of H2,

∆ED2 =
1

2
∆EH2 =

me

mp
E0 .

As kT = 8.7× 10−5 eV for T = 1 K, ∆E ≈ E0
2000 = 6.8× 10−3 eV, we have

∆E � kT and so for both H2 and D2, the condition exp(−∆E/kT ) ≈ 0
is satisfied. Then from Boltzmann’s distribution law, we know that the H2

and D2 molecules are all on the ground state.

The spin degeneracies 2S + 1 are for H2, gs=1 : gs=0 = 3 : 1; for D2,

gs=2 : gs=1: gs=0 = 5 : 3 : 1; and for HD, gs=2/3 : gs=1/2 = 2 : 1. From
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the population ratio g2/g1, we can conclude that most of H2 is in the state

of S = 1; most of D2 is in the states of S = 2 and S = 1, the relative

ratio being 5:3. Two-third of HD is in the state S = 3/2 and one-third in

S = 1/2.

1130

Consider the (homonuclear) molecule 14N2. Use the fact that a nitro-

gen nucleus has spin I = 1 in order to derive the result that the ratio of

intensities of adjacent rotational lines in the molecular spectrum is 2:1.

(Chicago)

Solution:

As nitrogen nucleus has spin I = 1, the total wave function of the

molecule must be symmetric. On interchanging the nuclei a factor (−1)J
will occur in the wave function. Thus when the rotational quantum number

J is even, the energy level must be a state of even spin, whereas a rotational

state with odd J must be associated with an antisymmetric spin state.

Furthermore, we have

gS

gA
=
(I + 1)(2I + 1)

I(2I + 1)
= (I + 1)/I = 2 : 1

where gS is the degeneracy of spin symmetric state, gA is the degeneracy

of spin antisymmetric state. As a homonuclear molecule has only Raman

spectrum for which ∆J = 0,±2, the symmetry of the wave function does
not change in the transition. The same is true then for the spin function.

Hence the ratio of intensities of adjacent rotational lines in the molecular

spectrum is 2 : 1.

1131

Estimate the lowest neutron kinetic energy at which a neutron, in a

collision with a molecule of gaseous oxygen, can lose energy by exciting

molecular rotation. (The bond length of the oxygen molecule is 1.2 Å).

(Wisconsin)
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Solution:

The moment of inertia of the oxygen molecule is

I = µr2 =
1

2
mr2 ,

where r is the bond length of the oxygen molecule, m is the mass of oxygen

atom.

The rotational energy levels are given by

EJ =
h2

8π2I
J(J + 1), J = 0, 1, 2, . . . .

To excite molecular rotation, the minimum of the energy that must be

absorbed by the oxygen molecule is

Emin = E1 −E0 =
h2

4π2I
=

h2

2π2mr2
=
2(�c)2

mc2r2

=
2× (1.97× 10−5)2

16× 938× 106 × (1.2× 10−8)2 = 3.6× 10
−4 eV .

As the mass of the neutron is much less than that of the oxygen molecule,

the minimum kinetic energy the neutron must possess is 3.6× 10−4 eV.

1132

(a) Using hydrogen atom ground state wave functions (including the

electron spin) write wave functions for the hydrogen molecule which satisfy

the Pauli exclusion principle. Omit terms which place both electrons on

the same nucleus. Classify the wave functions in terms of their total spin.

(b) Assuming that the only potential energy terms in the Hamiltonian

arise from Coulomb forces discuss qualitatively the energies of the above

states at the normal internuclear separation in the molecule and in the limit

of very large internuclear separation.

(c) What is meant by an “exchange force”?

(Wisconsin)

Solution:

Figure 1.60 shows the configuration of a hydrogen molecule. For conve-

nience we shall use atomic units in which a0 (Bohr radius) = e = � = 1.

(a) The Hamiltonian of the hydrogen molecule can be written in the

form



184 Problems and Solutions in Atomic, Nuclear and Particle Physics

Fig. 1.60

Ĥ = −1
2
(∇2

1 +∇2
2) +

1

r12
−
(
1

ra1
+
1

ra2
+
1

rb1
+
1

rb2

)
+
1

R
.

As the electrons are indistinguishable and in accordance with Pauli’s

principle the wave function of the hydrogen molecule can be written as

ΨS = [Ψ(ra1)Ψ(rb2) + Ψ(ra2)Ψ(rb1)]χ0

or

ΨA = [Ψ(ra1)Ψ(rb2)−Ψ(ra2)Ψ(rb1)]χ1 ,

where χ0, χ1 are spin wave functions for singlet and triplet states respec-

tively, ψ(r) = λ3/2√
π
e−λr, the parameter λ being 1 for ground state hydrogen

atom.

(b) When the internuclear separation is very large the molecular energy

is simply the sum of the energies of the atoms.

If two electrons are to occupy the same spatial position, their spins must

be antiparallel as required by Pauli’s principle. In the hydrogen molecule

the attractive electrostatic forces between the two nuclei and the electrons

tend to concentrate the electrons between the nuclei, forcing them together

and thus favoring the singlet state. When two hydrogen atoms are brought

closer from infinite separation, the repulsion for parallel spins causes the

triplet-state energy to rise and the attraction for antiparallel spins causes

the singlet-state energy to fall until a separation of ∼ 1.5a0 is reached,
thereafter the energies of both states will rise. Thus the singlet state has

lower energy at normal internuclear separation.

(c) The contribution of the Coulomb force between the electrons to the

molecular energy consists of two parts, one is the Coulomb integral arising
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from the interaction of an electron at location 1 and an electron at location

2. The other is the exchange integral arising from the fact that part of the

time electron 1 spends at location 1 and electron 2 at location 2 and part

of the time electron 1 spends at location 2 and electron 2 at location 1.

The exchange integral has its origin in the identity of electrons and Pauli’s

principle and has no correspondence in classical physics. The force related

to it is called exchange force.

The exchange integral has the form

ε =

∫∫
dτ1dτ2

1

r12
ψ∗(ra1)ψ(rb1)ψ(ra2)ψ

∗(rb2) .

If the two nuclei are far apart, the electrons are distinguishable and the

distinction between the symmetry and antisymmetry of the wave functions

vanishes; so does the exchange force.

1133

(a) Consider the ground state of a dumbbell molecule: mass of each

nucleus = 1.7× 10−24 gm, equilibrium nuclear separation = 0.75 Å. Treat
the nuclei as distinguishable. Calculate the energy difference between the

first two rotational levels for this molecule. Take � = 1.05× 10−27 erg.sec.
(b) When forming H2 from atomic hydrogen, 75% of the molecules are

formed in the ortho state and the others in the para state. What is the

difference between these two states and where does the 75% come from?

(Wisconsin)

Solution:

(a) The moment of inertia of the molecule is

I0 = µr2 =
1

2
mr2 ,

where r is the distance between the nuclei. The rotational energy is

EJ =
�
2

2I0
J(J + 1) ,

with

J =

{
0, 2, 4, . . . for para-hydrogen ,

1, 3, 5, . . . for ortho-hydrogen .
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As
�
2

2I
=
�
2

mr2
=
(�c)2

mc2r2
=

19732

9.4× 108 × 0.752 = 7.6× 10
−3 eV ,

the difference of energy between the rotational levels J = 0 and J = 1 is

∆E0,1 =
�
2

I0
= 1.5× 10−2 eV .

(b) The two nuclei of hydrogen molecule are protons of spin 1
2 . Hence

the H2 molecule has two nuclear spin states I = 1, 0. The states with total

nuclear spin I = 1 have symmetric spin function and are known as ortho-

hydrogen, and those with I = 0 have antisymmetric spin function and are

known as para-hydrogen.

The ratio of the numbers of ortho H2 and para H2 is given by the

degeneracies 2I + 1 of the two spin states:

degeneracy of ortho H2

degeneracy of para H2
=
3

1
.

Thus 75% of the H2 molecules are in the ortho state.

1134

A 7N14 nucleus has nuclear spin I = 1. Assume that the diatomic

molecule N2 can rotate but does not vibrate at ordinary temperatures and

ignore electronic motion. Find the relative abundance of ortho and para

molecules in a sample of nitrogen gas. (Ortho = symmetric spin state; para

= antisymmetric spin state), What happens to the relative abundance as

the temperature is lowered towards absolute zero?

(SUNY, Buffalo)

Solution:

The 7N14 nucleus is a boson of spin I = 1, so the total wave function of a

system of such nuclei must be symmetric. For the ortho-nitrogen, which has

symmetric spin, the rotational quantum number J must be an even number

for the total wave function to be symmetric. For the para-nitrogen, which

has antisymmetric spin, J must be an odd number.

The rotational energy levels of N2 are

EJ =
�
2

2H
J(J + 1) , J = 0, 1, 2, . . . .

where H is its moment of inertia. Statistical physics gives
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population of para-nitrogen

population of ortho-nitrogen
=

∑
even J

(2J + 1) exp

[
− �

2

2HkT
J(J + 1)

]
∑
odd J

(2J + 1) exp

[
− �

2

2HkT
J(J + 1)

]

× I + 1

I
,

where I is the spin of a nitrogen nucleus.

If �2/HRT � 1, the sums can be approximated by integrals:

∑
even J

(2J + 1) exp

[
− �

2

2HkT
J(J + 1)

]

=
∞∑
m=0

(4m+ 1) exp

[
− �

2

2HkT
2m(2m+ 1)

]

=
1

2

∫ ∞
0

exp

(
− �

2x

2HkT

)
dx =

HkT

�2
,

where x = 2m(2m+ 1);

∑
odd J

(2J + 1) exp

[
− �

2

2HkT
J(J + 1)

]

=
∞∑
m=0

(4m+ 3) exp

[
− �

2

2HkT
(2m+ 1)(2m+ 2)

]

=
1

2

∫ ∞
0

exp

(
− �

2y

2HkT

)
dy =

HkT

�2
exp

(
− �

2

HkT

)
,

where y = (2m+ 1)(2m+ 2).

Hence

population of para-nitrogen

population of ortho-nitrogen
=

I + 1

I
exp

(
�
2

HkT

)
≈ I + 1

I

=
1 + 1

1
= 2 : 1 .
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For T → 0, �2/HkT � 1, then

∑
even J

(2J + 1) exp

[
− �

2

2HkT
J(J + 1)

]

=
∞∑
m=0

(4m+ 1) exp

[
− �

2

2HkT
2m(2m+ 1)

]
≈ 1 ,

∑
odd J

(2J + 1) exp

[
− �

2

2HkT
J(J + 1)

]

=
∞∑
m=0

(4m+ 3) exp

[
− �

2

2HkT
(2m+ 1)(2m+ 2)

]

≈ 3 exp
[
− �

2

HkT

]
,

retaining the lowest order terms only. Hence

population of para-nitrogen

population of ortho-nitrogen
≈ I + 1

3I
exp

(
�
2

HkT

)
→∞ ,

which means that the N2 molecules are all in the para state at 0 K.

1135

In HCl a number of absorption lines with wave numbers (in cm−1) 83.03,

103.73, 124.30, 145.03, 165.51, and 185.86 have been observed. Are these

vibrational or rotational transitions? If the former, what is the charac-

teristic frequency? If the latter, what J values do they correspond to, and

what is the moment of inertia of HCl? In that case, estimate the separation

between the nuclei.

(Chicago)

Solution:

The average separation between neighboring lines of the given spectrum

is 20.57 cm−1. The separation between neighboring vibrational lines is of

the order of 10−1 eV = 103 cm−1. So the spectrum cannot originate from
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transitions between vibrational energy levels, but must be due to transitions

between rotational levels.

The rotational levels are given by

E =
�
2

2I
J(J + 1) ,

where J is the rotational quantum number, I is the moment of inertia of

the molecule:

I = µR2 =
mClmH

mCl +mH
R2 =

35

36
mHR

2 ,

µ being the reduced mass of the two nuclei forming the molecule and R

their separation. In a transition J ′ → J ′ − 1, we have
hc

λ
=
�
2

2I
[J ′(J ′ + 1)− (J ′ − 1)J ′] = �

2J ′

I
,

or

ν̃ =
1

λ
=
�J ′

2πIc
.

Then the separation between neighboring rotational lines is

∆ν̃ =
�

2πIc
,

giving

R =


 �c

2π

(
35

36

)
mHc2∆ν̃



1
2

=


 19.7× 10−12

2π

(
35

36

)
× 938× 20.57



1
2

= 1.29× 10−8 cm = 1.29 Å .

As J ′ = ν̃
∆ν̃ , the given lines correspond to J

′ = 4, 5, 6, 7, 8, 9 respectively.

1136

When the Raman spectrum of nitrogen (14N14N) was measured for the

first time (this was before Chadwick’s discovery of the neutron in 1932),
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scientists were very puzzled to find that the nitrogen nucleus has a spin of

I = 1. Explain

(a) how they could find the nuclear spin I = 1 from the Raman spec-

trum;

(b) why they were surprised to find I = 1 for the nitrogen nucleus.

Before 1932 one thought the nucleus contained protons and electrons.

(Chicago)

Solution:

(a) For a diatomic molecule with identical atoms such as (14N)2, if each

atom has nuclear spin I, the molecule can have symmetric and antisym-

metric total nuclear spin states in the population ratio (I + 1)/I. As the

nitrogen atomic nucleus is a boson, the total wave function of the molecule

must be symmetric. When the rotational state has even J , the spin state

must be symmetric. Conversely when the rotational quantum number J is

odd, the spin state must be antisymmetric. The selection rule for Raman

transitions is ∆J = 0,±2, so Raman transitions always occur according to
Jeven → Jeven or Jodd to Jodd. This means that as J changes by one succes-

sively, the intensity of Raman lines vary alternately in the ratio (I + 1)/I.

Therefore by observing the intensity ratio of Raman lines, I may be deter-

mined.

(b) If a nitrogen nucleus were made up of 14 protons and 7 electrons

(nuclear charge = 7), it would have a half-integer spin, which disagrees

with experiments. On the other hand, if a nitrogen nucleus is made up of

7 protons and 7 neutrons, an integral nuclear spin is expected, as found

experimentally.

1137

A molecule which exhibits one normal mode with normal coordinate

Q and frequency Ω has a polarizability α(Q). It is exposed to an applied

incident field E = E0 cosω0t. Consider the molecule as a classical oscillator.

(a) Show that the molecule can scatter radiation at the frequencies ω0
(Rayleigh scattering) and ω0 ± Ω (first order Raman effect).
(b) For which α(Q) shown will there be no first order Raman scattering?
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(c) Will O2 gas exhibit a first order vibrational Raman effect? Will O2

gas exhibit a first order infrared absorption band? Explain your answer

briefly.

(Chicago)

Fig. 1.61

Solution:

(a) On expanding α(Q) about Q = 0,

α(Q) = α0 +

(
dα

dQ

)
Q=0

Q+
1

2

(
d2α

dQ2

)
Q=0

Q2 + · · · .

and retaining only the first two terms, the dipole moment of the molecule

can be given approximately as

P = αE ≈
[
α0 +

(
dα

dQ

)
Q=0

Q cosΩt

]
E0 cosω0t

= α0E0 cosω0t+QE0

(
dα

dQ

)
Q=0

{
1

2
[cos(ω0 +Ω)t+ cos(ω0 − Ω)t]

}
.

As an oscillating dipole radiates energy at the frequency of oscillation, the

molecule not only scatters radiation at frequency ω0 but also at frequencies

ω0 ± Ω.
(b) The first order Raman effect arises from the term involving ( dα

dQ
)Q=0.

Hence in case (II) where ( dα
dQ
)Q=0 = 0 there will be no first order Raman

effect.

(c) There will be first order Raman effect for O2, for which there is a

change of polarizability with its normal coordinate such that ( dα
dQ
)Q=0 �= 0.
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However, there is no first order infrared absorption band, because as the

charge distribution of O2 is perfectly symmetric, it has no intrinsic elec-

tric dipole moment, and its vibration and rotation cause no electric dipole

moment change.

1138

Figure 1.62 shows the transmission of light through HCl vapor at room

temperature as a function of wave number (inverse wavelength in units of

cm−1) decreasing from the left to the right.

Fig. 1.62

Explain all the features of this transmission spectrum and obtain quan-

titative information about HCl. Sketch an appropriate energy level diagram

labeled with quantum numbers to aid your explanation. Disregard the slow

decrease of the top baseline for λ−1 < 2900 cm−1 and assume that the top

baseline as shown represents 100% transmission. The relative magnitudes

of the absorption lines are correct.

(Chicago)

Solution:

Figure 1.62 shows the vibration-rotational spectrum of the molecules of

hydrogen with two isotopes of chlorine, H35Cl and H37Cl, the transition

energy being
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Ev,k = (v + 1/2)hν0 +
�
2k(k + 1)

2I
,

where v, k are the vibrational and rotational quantum numbers respectively.

The selection rules are ∆v = ±1,∆k = ±1.

Fig. 1.63

The “missing” absorption line at the center of the spectrum shown in

Fig. 1.63 corresponds to k = 0 → k′ = 0. This forbidden line is at λ−1 =

2890 cm−1, or ν0 = cλ−1 = 8.67× 1013 s−1.
From the relation

ν0 =
1

2π

√
K

µ
,

where K is the force constant, µ = 35
36mH = 1.62× 10−24 g is the reduced

mass of HCl, we obtain K = 4.8× 105 erg cm−2 = 30 eV Å−2.
Figure 1.64 shows roughly the potential between the two atoms of

HCl. Small oscillations in r may occur about r0 with a force constant

K = d2V
dr2
|r=r0 . From the separation of neighboring rotational lines ∆ν̃ =

20.5 cm−1, we can find the equilibrium atomic separation (Problem 1135)
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Fig. 1.64

r0 =


 �c

2π

(
36

37

)
mHc2∆ν̃



1
2

= 1.30× 10−8 cm

= 1.30 Å .

The Isotope ratio can be obtained from the intensity ratio of the two

series of spectra in Fig. 1.62. For H35Cl, µ = 35
36mH , and for H

37Cl, µ =
37
38mH . As the wave number of a spectral line ν̃ ∝ 1

µ , the wave number of

a line of H37Cl is smaller than that of the corresponding line of H35Cl. We

see from Fig. 1.62 that the ratio of the corresponding spectral intensities is

3:1, so the isotope ratio of 35Cl to 37Cl is 3:1.

1139

(a) Using the fact that electrons in a molecule are confined to a volume

typical of the molecule, estimate the spacing in energy of the excited states

of the electrons (Eelect).

(b) As nuclei in a molecule move they distort electronic wave func-

tions. This distortion changes the electronic energy. The nuclei oscillate

about positions of minimum total energy, comprising the electron energy
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and the repulsive Coulomb energy between nuclei. Estimate the frequency

and therefore the energy of these vibrations (Evib) by saying that a nucleus

is in a harmonic oscillator potential.

(c) Estimate the deviations from the equilibrium sites of the nuclei.

(d) Estimate the energy of the rotational excitations (Erot).

(e) Estimate the ratio of Eelect : Evib : Erot in terms of the ratio of

electron mass to nuclear mass, me/mn.

(Columbia)

Solution:

(a) The uncertainty principle pd ≈ � gives the energy spacing between
the excited states as Eelect =

p2

2me
≈ �

2

2med2
, where d, the linear size of the

molecule, is of the same order of magnitude as the Bohr radius a0 =
�
2

mee2
.

(b) At equilibrium, the Coulomb repulsion force between the nuclei is

f ≈ e2

d2
, whose gradient is K ≈ f

d
≈ e2

d3
. The nuclei will oscillate about the

equilibrium separation with angular frequency

ω =

√
K

m
≈
√

me

m

√
e2a0

med4
=

√
me

m

�

med2
,

where m is the reduced mass of the atomic nuclei.

Hence

Evib = �ω ≈
√

me

m
Eelect .

(c) As

Evib =
1

2
mω2(∆x)2 = �ω ,

we have

∆x ≈
(me

m

) 1
4

d .

(d) The rotational energy is of the order Erot ≈ �
2

2I . With I ≈ md2,

we have

Erot ≈
me

m
Eelect .

(e) As m ≈ mn, the nuclear mass, we have

Eelect : Evib : Erot ≈ 1 :
√

me

mn
:
me

mn
.
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1140

Sketch the potential energy curve V (r) for the HF molecule as a func-

tion of the distance r between the centers of the nuclei, indicating the

dissociation energy on your diagram.

(a) What simple approximation to V (r) can be used near its minimum

to estimate vibrational energy levels? If the zero-point energy of HF is

0.265 eV, use your approximation (without elaborate calculations) to esti-

mate the zero-point energy of the DF molecule (D = deuteron, F = 19F).

(b) State the selection rule for electromagnetic transitions between vi-

brational levels in HF within this approximation, and briefly justify your

answer. What is the photon energy for these transitions?

(Wisconsin)

Solution:

(a) Figure 1.65 shows V (r) and the dissociation energy Ed for the HF

molecule. Near the minimum potential point r0, we may use the approxi-

mation

Fig. 1.65

V (r) ≈ 1
2
k(r − r0)

2 .

Thus the motion about r0 is simple harmonic with angular frequency ω0 =√
k
µ
, µ being the reduced mass of the nuclei. The zero-point energy is

E0 =
1
2�ω0.

As their electrical properties are the same, DF and HF have the same

potential curve. However their reduced masses are different:
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µ(DF ) =
m(D)m(F )

m(D) +m(F )
=
2× 19
2 + 19

u = 1.81u ,

µ(HF ) =
m(H)m(F )

m(H) +m(F )
=
1× 19
1 + 19

u = 0.95u .

where u is the nucleon mass.

Hence

E0(HF )

E0(DF )
=

√
µ(DF )

µ(HF )

and the zero-point energy of DF is

E0(DF ) =

√
µ(HF )

µ(DF )
E0(HF ) = 0.192 eV .

(b) In the harmonic oscillator approximation, the vibrational energy

levels are given by

Eν = (ν + 1/2)�ω, ν = 0, 1, 2, 3 . . . .

The selection rule for electromagnetic transitions between these energy

levels is

∆ν = ±1,±2,±3, . . . ,
while the selection rule for electric dipole transitions is

∆ν = ±1 .

In general, the electromagnetic radiation emitted by a moving charge

consists of the various electric and magnetic multipole components, each

with its own selection rule ∆ν and parity relationship between the initial

and final states. The lowest order perturbation corresponds to electric

dipole transition which requires ∆ν = ±1 and a change of parity.
For purely vibrational transitions, the energy of the emitted photon is

approximately �ω0 ∼ 0.1 to 1 eV.

1141

Diatomic molecules such as HBr have excitation energies composed of

electronic, rotational, and vibrational terms.
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(a) Making rough approximations, estimate the magnitudes of these

three contributions to the energy, in terms of fundamental physical con-

stants such as M,me, e, . . . , where M is the nuclear mass.

(b) For this and subsequent parts, assume the molecule is in its elec-

tronic ground state. What are the selection rules that govern radiative

transitions? Justify your answer.

(c) An infrared absorption spectrum for gaseous HBr is shown in

Fig. 1.66. (Infrared absorption involves no electronic transitions.) Use

it to determine the moment of interia I and the vibrational frequency ω0
for HBr.

Fig. 1.66

(d) Note that the spacing between absorption lines increases with in-

creasing energy. Why?

(e) How does this spectrum differ from that of a homonuclear molecule

such as H2 or D2?

(Princeton)

Solution:

(a) Let a denote the linear dimension of the diatomic molecule. As the

valence electron moves in an orbit of linear dimension a, the uncertainty of

momentum is ∆p ≈ �/a and so the order of magnitude of the zero-point
energy is

Ee ≈
(∆p)2

me
≈ �

2

mea2
.

A harmonic oscillator with mass m and coefficient of stiffness k is used

as model for nuclear vibration. A change of the distance between the two
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nuclei will considerably distort the electronic wave function and thus relate

to a change of the electronic energy, i.e. ka2 ≈ Ee.

Hence

Evib ≈ �ω ≈ �
√

k

M
=

√
me

M

√
�2

mea2

√
ka2 ≈

(me

M

) 1
2

Ee

The molecular rotational energy levels are obtained by treating the

molecule as a rotator of moment of inertia I ≈Ma2. Thus

Erot ≈
�
2

I
≈ me

M

�
2

mea2
≈ me

M
Ee .

(b) The selection rules for radiative transitions are ∆J = ±1,∆v = ±1,
where J is the rotational quantum number, v is the vibrational quantum

number. As the electrons remain in the ground state, there is no transition

between the electronic energy levels. The transitions that take place are

between the rotational or the vibrational energy levels.

(c) From Fig. 1.66 we can determine the separation of neighboring

absorption lines, which is about ∆ν̃ = 18 cm−1. As (Problem 1135)

∆ν̃ = 2B, where B = �

4πIc , the moment of inertia is

I =
�

2πc∆ν̃
= 3.1× 10−40 g cm2 .

Corresponding to the missing spectral line in the middle we find the

vibrational frequency ν0 = 3× 1010 × 2560 = 7.7× 1013 Hz.
(d) Actually the diatomic molecule is not exactly equivalent to a har-

monic oscillator. With increasing vibrational energy, the average separation

between the nuclei will become a little larger, or Bv a little smaller:

Bv = Be −
(
ν +

1

2

)
αe ,

where Be is the value B when the nuclei are in the equilibrium positions,

αe > 0 is a constant. A transition from E to E′(E < E′) produces an

absorption line of wave number

ν̃ =
E′ −E

hc
=
1

hc
[(E′vib +E′rot)− (Evib +Erot)]

= ν̃0 +B′J ′(J ′ + 1)−BJ(J + 1) .
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where B′ < B. For the R branch, J ′ = J + 1, we have

ν̃R = ν̃0 + (B
′ +B)J ′ + (B′ −B)J

′2 ,

and hence the spectral line separation

∆ν̃ = (B′ +B) + (B′ −B)(2J ′ + 1) ,

where J ′ = 1, 2, 3 . . . . Hence, when the energy of spectral lines increases,

i.e., J ′ increases, ∆ν̃ will decrease.

For the P branch, J ′ = J − 1,
ν̃P = ν̃0 − (B′ +B)J + (B′ −B)J2 ,

∆ν̃ = (B′ +B)− (B′ −B)(2J + 1) ,

where J = 1, 2, 3 . . . . Thus ∆ν̃ will decrease with increasing spectral line

energy.

(e) Molecules formed by two identical atoms such as H2 and D2 have

no electric dipole moment, so the vibration and rotation of these molecules

do not relate to absorption or emission of electric-dipole radiation. Hence

they are transparent in the infrared region.

1142

In a recent issue of Science Magazine, G. Zweig discussed the idea of

using free quarks (if they should exist) to catalyze fusion of deuterium. In

an ordinary negative deuterium molecule (ded) the two deuterons are held

together by an electron, which spends most of its time between the two nu-

clei. In principle a neutron can tunnel from one proton to the other, making

a tritium plus p + energy, but the separation is so large that the rate is neg-

ligible. If the electron is replaced with a massive quark, charge −4e/3, the
separation is reduced and the tunneling rate considerably increased. After

the reaction, the quark generally escapes and captures another deuteron to

make a dQ atom, charge −e/3. The atom decays radiatively to the ground
state, then captures another deuteron in a large-n orbit. This again decays

down to the ground state. Fusion follows rapidly and the quark is released

again.

(a) Suppose the quark is much more massive than the deuteron. What

is the order of magnitude of the separation of the deuterons in the ground

state of the dQd molecule?
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(b) Write down an expression for the order of magnitude of the time for

a deuteron captured at large radius (large n) in dQ to radiatively settle to

the ground state. Introduce symbols like mass, charge, etc. as needed; do

not evaluate the expression.

(c) Write down the expression for the probability of finding the neutron-

proton separation in a deuteron being r ≥ r0, with r0 � 10−13 cm. Again,
introduce symbols like deuteron binding energy as needed, and do not eval-

uate the expression.

(d) As a simple model for the tunneling rate suppose that if the neutron

reaches a distance r ≥ r0 from the proton it certainly is captured by the

other deuteron. Write down an order of magnitude expression for the halflife

of dQd (but do not evaluate it).

(Princeton)

Solution:

(a) The dQd molecule can be considered as H+
2 ion with the replace-

ments me → m, the deuteron mass, nuclear charge e→ quark charge − 4
3e.

Then by analogy with H+
2 ion, the Hamiltonian for the dQd molecule

can be written as

H =
p21
2m

+
p22
2m
− 4e

2

3r1
− 4e

2

3r2
+

e2

r12
,

where r12 = |r1 − r2|, r1, r2 being the radius vectors of the deuterons from
the massive quark.

Assume the wave function of the ground state can be written as

Ψ(r1, r2) = Ψ100(r1)Ψ100(r2) ,

where

Ψ100(r) =
1√
π
a−3/2 exp

(
− r
a

)
,

with

a =
3�2

4me2
.

The average separation of the deuterons in the ground state is

r̄12 =
1

π2a6

∫∫
r12 exp

[
−2(r1 + r1)

a

]
dr1dr1 =

8

5
a =

6�2

5me2
.
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(b) A hydrogen-like atom of nuclear charge Ze has energy −Z2e4me

2�2n2 . By

analogy the dQd molecule has ground state energy

E = −2×
(
4

3

)2
me4

2�2
+

e2

r12

= −4
3

e2

a
+
5

8

e2

a
= −17

24

e2

a
.

When n is very large, the molecule can be considered as a hydrogen-like

atom with dQ as nucleus (charge = − 4e
3 +e = − e

3 ) and the second d taking

the place of orbital electron (charge = +e). Accordingly the energy is

En = −
4

6

e2

a
−
(
1

3

)2
me4

2�2n2
= −4

6

e2

a
− 1
6

e2

a′
1

n2
,

where a′ = 3�2

me2 . Hence when the system settles to the ground state, the

energy emitted is

∆E = En −E0 = −
4e2

6a
+
17

24

e2

a
− e2

6a′
1

n2
≈ e2

24a
.

The emitted photons have frequency

ω =
∆E

�
≈ e2

24�a
.

The transition probability per unit time is given by

An1 =
4e2ω3

3�c3
|r1n|2 ,

and so the time for deuteron capture is of the order

τ = 1/An1 =
3�c3

4e2ω3|r1n|2
.

The wave function of the excited state is

Ψ± =
1√
2
[Ψ100(r1)Ψnlm(r2)±Ψ100(r2)Ψnlm(r1)] ,

which only acts on one d. As
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〈Ψ100|r|Ψ100〉 = 0 ,
we have

r1n =
1√
2
〈Ψnlm|r|Ψ100〉

and hence

τ =
3�c3

2e2ω3|〈Ψnlm|r|Ψ100〉|2
.

(c) In a deuteron the interaction potential between the proton and neu-

tron can be taken to be that shown in Fig. 1.67, where W is the binding

energy and a ≈ 10−13 cm.

Fig. 1.67

The radial part of the wave function can be shown to satisfy the equation

R′′ +
1

r
R′ +

M

�2
[−W − V (r)]R = 0 ,

where M is the mass of the neutron. Let rR = u. The above becomes

u′′ − M

�2
[W + V (r)]u = 0 .

As V = −V0 for 0 ≤ r ≤ a and V = 0 otherwise, we have


u′′ − M

�2
[W − V0]u = 0, (r ≤ a) ,

u′′ − MW

�2
u = 0 , (r ≥ a) .
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The boundary conditions are u|r=0 = 0 and u|r→∞ finite. Satisfying

these the solutions are

u =

{
A sin(k1r), (r ≤ a)

B exp(−k2r), (r ≥ a)

where k1 =
√

M
�2
(V0 −W ), k2 =

√
MW
�2
. Continuity of the wave function

at r = a further requires

u =

{
A sin(k1r), (r ≤ a)

A sin(k1a) exp[−k2(a− r)] . (r ≥ a)

Continuity of the first derivative of the wave function at r = a gives

cot(k1a) = −k2/k1 .
Hence the probability of finding r ≥ r0 is

P =

∫∞
r0

r2R2(r)dr∫∞
0 r2R2(r)dr

=
sin2(k1a) exp[2k2(a− r0)]

ak2 −
k2

2k1
sin(2k1a) + sin

2(k1a)

≈ sin
2(k1a)

ak2
exp(−2k2r0) ,

as r0 � a.

A rough estimate of the probability can be obtained by putting u ≈
C exp(−k2r), for which

P =

∫∞
r0
exp(−2k2r)dr∫∞

0
exp(−2k2r)dr

= exp(−2k2r0) .

(d) The neutron has radial velocity

v =
p

M
=

√
2(V0 −W )

M

in the potential well. The transition probability per unit time is

λ =
vP

a
,

and so the halflife of dQd is given by

τ =
ln 2

λ
=

a ln 2

vP
≈ a ln 2

√
M

2(V0 −W )
exp(2k2r0) .



PART II

NUCLEAR PHYSICS



1. BASIC NUCLEAR PROPERTIES (2001 2023)

2001

Discuss 4 independent arguments against electrons existing inside the

nucleus.

(Columbia)

Solution:

First argument - Statistics. The statistical nature of nuclei can be de-

duced from the rotational spectra of diatomic molecules. If a nucleus (A,Z)

were to consist of A protons and (A-Z) electrons, the spin of an odd-odd

nucleus or an odd-even nucleus would not agree with experimental results,

Take the odd-odd nucleus 14N as example. An even number of protons

produce an integer spin while an odd number of electrons produce a half-

integer spin, so the total spin of the 14N nucleus would be a half-integer,

and so it is a fermion. But this result does not agree with experiments.

Hence, nuclei cannot be composed of protons and electrons.

Second argument - Binding energy. The electron is a lepton and cannot

take part in strong interactions which bind the nucleons together. If elec-

trons existed in a nucleus, it would be in a bound state caused by Coulomb

interaction with the binding energy having an order of magnitude

E ≈ −Ze
2

r
,

where r is the electromagnetic radius of the nucleus, r = 1.2A1/3fm. Thus

E ≈ −Z
(
e2

�c

)
�c

r
= − 197Z

137× 1.2A1/3
≈ −1.20 Z

A1/3
MeV .

Note that the fine structure constant

α =
e2

�c
=

1

137
.

Suppose A ≈ 124, Z ≈ A/2. Then E ≈ −15 MeV, and the de Brogile
wavelength of the electron would be

λ = �/p = c�/cp = 197/15 = 13 fm .

As λ > r the electron cannot be bound in the nucleus.

207
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Third argument - Nuclear magnetic moment. If the nucleus consists of

neutrons and protons, the nuclear magnetic moment is the sum of the con-

tributions of the two kinds of nucleons. While different coupling methods

give somewhat different results, the nuclear magnetic moment should be

of the same order of magnitude as that of a nucleon, µN . On the other

hand, if the nucleus consisted of protons and electrons, the nuclear mag-

netic moment should be of the order of magnitude of the magnetic moment

of an electron, µe ≈ 1800µN . Experimental results agree with the former
assumption, and contradict the latter.

Fourth argument - β-decay. Nucleus emits electrons in β-decay, leaving

behind a daughter nucleus. So this is a two-body decay, and the electrons

emitted should have a monoenergetic spectrum. This conflicts with the

continuous β energy spectrum found in such decays. It means that, in a

β-decay, the electron is accompanied by some third, neutral particle. This

contracts the assumption that there were only protons and electrons in a

nucleus.

The four arguments above illustrate that electrons do not exist in the

nucleus.

2002

The size of the nucleus can be determined by (a) electron scattering, (b)

energy levels of muonic atoms, or (c) ground state energies of the isotopic

spin multiplet . Discuss what physical quantities are measured in two and

only two of these three experiments and how these quantities are related to

the radius of the nucleus.

(SUNY, Buffalo)

Solution:

(a) It is the nuclear form factor that is measured in electron scattering

experiments:

F (q2) =
(dσ)exp
(dσ)point

,

where (dσ)exp is the experimental value, (dσ)point is the theoretical value

obtained by considering the nucleus as a point. With first order Born

approximation, we have
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F (q2) =

∫
ρ(r)eiq·rd3r .

Assuming ρ(r) = ρ(r) and q · r� 1, we have

F (q2) ≈
∫

ρ(r)

[
1 +

1

2
(iq · r)2

]
d3r = 1− 1

2

∫
ρ(r)(q · r)2d3r

= 1− 1

c2

∫
ρ(r)q2r2 · 4πr2dr

∫ π

0

1

2
cos2 θ sin θdθ

= 1− 1
6
q2〈r2〉

with 〈r2〉 =
∫
ρ(r)r2d3r.

By measuring the angular distribution of elastically scattered electrons,

we can deduce F (q2), and so obtain the charge distribution ρ(r) as a func-

tion of r, which gives a measure of the nuclear size.

(b) We can measure the energy differences between the excited states

and the ground state of the muonic atom. As the mass of a muon is mµ ≈
210me, the first radius of the muonic atom is aµ ≈ (1/210)a0, where a0
is the Bohr radius, so that the energy levels of muonic atom are more

sensitive to its nuclear radius. Consider for example the s state, for which

the Hamiltonian is

H = − 1

2mµ
∇2 + V (r) .

If the nucleus can be considered as a point charge, then V (r) = V0(r) =

−e2/r, r being the distance of the muon from the nucleus.
If on the other hand we consider the nuclear charge as being uniformly

distributed in a sphere of radius R, then

V (r) =



− e2

2R3
(3R2 − r2) , 0 < r ≤ R ,

−e
2

r
, r > R .

To obtain the energy shift of the ground state, ∆E, caused by the finite

size of the nucleus, we take

H ′ = H −H0 = V (r) − V0(r) =


 −

e2

2R3
(3R2 − r2) +

e2

r
, 0 < r ≤ R ,

0, r > R ,

as perturbation. Then
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∆E = 〈Φ0|H ′|Φ0〉 = 4π
∫ R

0

|Φ0|2H ′r2dr ,

where Φ0 =
(

1
πa3µ

)1/2
e
− r
aµ . As R ∼ 10−12 cm, aµ ∼ 10−10 cm, we can

take R
aµ
� 1 and hence e−2r/aµ ≈

(
1− 2r

aµ

)
. Then ∆E = 2

5

(
e2

2aµ

)(
R
aµ

)2
,

neglecting terms of order ( R
aµ
)3 and higher.

We can measure the energy of the X-rays emitted in the transition from

the first excited state to the ground state,

EX = (E1 −E0)−
2

5

(
e2

aµ

)(
R

aµ

)2

,

where E1 and E0 are eigenvalues ofH0, i.e. E1 is the energy level of the first

excited state and E0 is the energy level of the ground state (for a point-

charge nucleus). If the difference between EX and (E1 −E0), is known, R

can be deduced.

(c) The nuclear structures of the same isotopic spin multiplet are the

same so that the mass difference in the multiplet arises from electromag-

netic interactions and the proton-neutron mass difference. Thus (Prob-

lem 2009)

∆E ≡ [M(Z,A)−M(Z − 1, A)]c2

= ∆Ee − (mn −mp)c
2

=
3e2

5R
[Z2 − (Z − 1)2]− (mn −mp)c

2 ,

from which R is deduced

It has been found that R ≈ R0A
1
3 with R0 = 1.2− 1.4 fm.

2003

To study the nuclear size, shape and density distribution one employs

electrons, protons and neutrons as probes.

(a) What are the criteria in selecting the probe? Explain.

(b) Compare the advantages and disadvantages of the probes men-

tioned above.
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(c) What is your opinion about using photons for this purpose?

(SUNY, Buffalo)

Solution:

(a) The basic criterion for selecting probes is that the de Broglie wave-

length of the probe is less than or equal to the size of the object being

studied. Thus λ = h/p ≤ dn, or p ≥ h/dn, where dn is the linear size of

the nucleus. For an effective study of the nuclear density distribution we

require λ� dn.

(b) Electrons are a suitable probe to study the nuclear electromagnetic

radius and charge distribution because electrons do not take part in strong

interactions, only in electromagnetic interactions. The results are therefore

easy to analyze. In fact, many important results have been obtained from

electron-nucleus scatterings, but usually a high energy electron beam is

needed. For example, take a medium nucleus. As dn ≈ 10−13 cm, we require
pe ≈ �/dn ≈ 0.2 GeV/c, or Ee ≈ pc = 0.2 GeV .

Interactions between protons and nuclei can be used to study the nuclear

structure, shape and distribution. The advantage is that proton beams of

high flux and suitable parameters are readily available. The disadvantage

is that both electromagnetic and strong interactions are present in proton-

nucleus scatterings and the results are rather complex to analyse.

Neutrons as a probe are in principle much ‘neater’ than protons, How-

ever, it is much more difficult to generate neutron beams of high energy and

suitable parameters. Also detection and measurements are more difficult

for neutrons.

(c) If photons are used as probe to study nuclear structure, the high

energy photons that must be used to interest with nuclei would show a

hadron-like character and complicate the problem.

2004

Consider a deformed nucleus (shape of an ellipsoid, long axis 10% longer

than short axis). If you compute the electric potential at the first Bohr

radius, what accuracy can you expect if you treat the nucleus as a point

charge? Make reasonable estimate; do not get involved in integration.

(Wisconsin)
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Solution:

Assume the charge distribution in the nucleus is uniform, ellipsoidal and

axially symmetric. Then the electric dipole moment of the nucleus is zero,

and the potential can be written as

V = Vp + Vq ,

where Vp = Q/r is the potential produced by the nucleus as a point charge,

Vq =MQ/r3, M being the electric quadrupole moment.

For the ellipsoid nucleus, let the long axis be a = (1 + ε)R, the short

axis be b = (1 − ε/2)R, where ε is the deformed parameter, and R is the

nuclear radius. As a : b = 1.1, we have 3ε
2 = 0.1, or ε = 0.2/3, and so

M =
2

5
(a2 − b2) =

2

5
(a− b)(a+ b) =

1.22

15
R2 .

For a medium nucleus, take A ∼ 125, for which R = 1.2A1/3 = 6 fm.

Then

∆V =
Vq

Vp
=

M

r2
=
1.22

15

R2

r2
=
1.22

15
×
(
6× 10−13
0.53× 10−8

)
≈ 1× 10−9 ,

at the first Bohr radius r = 0.53× 10−8 cm. Thus the relative error in the
potential if we treat the nucleus as a point charge is about 10−9 at the first

Bohr orbit.

2005

The precession frequency of a nucleus in the magnetic field of the earth

is 10−1, 101, 103, 105 sec−1.

(Columbia)

Solution:

The precession frequency is given by

ω =
geB

2mNc
.

With g = 1, e = 4.8 × 10−10 esu, c = 3 × 1010 cm/s, B ≈ 0.5 Gs, mN ≈
10−23g for a light nucleus, ω = 4.8×0.5×10−10

2×10−23×3×1010 = 0.4× 103s−1.
Hence the answer is 103 s−1.
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2006

Given the following information for several light nuclei (1 amu =

931.5 MeV) in Table 2.1.

(a) What are the approximate magnetic moments of the neutron, 3H1,
3He2, and

6Li3?

(b) What is the maximum-energy β-particle emitted when 3H1 decays

to 3He2?

(c) Which reaction produces more energy, the fusion of 3H1 and
3He2

or 2H1 and
4He2?

(Wisconsin)

Table 2.1

Nuclide Jπ Nuclide mass (amu) magnetic moment (µN )

1H1 1/2+ 1.00783 +2.79
2H1 1+ 2.01410 +0.86
3H1 1/2+ 3.01605 —
3He2 1/2+ 3.01603 —
4He2 0+ 4.02603 0
6Li3 1+ 6.01512 —

Solution:

The nuclear magnetic moment is given by µ = gµNJ, where J is the

nuclear spin, g is the Landé factor, µN is the nuclear magneton. Then from

the table it is seen that

g(1H1) = 2× 2.79 = 5.58, g(2H1) = 0.86, g(4He2) = 0 .

When two particles of Landé factors g1 and g2 combine into a new

particle of Landé factor g, (assuming the orbital angular momentum of

relative motion is zero), then

g = g1
J(J + 1) + j1(j1 + 1)− j2(j2 + 1)

2J(J + 1)

+ g2
J(J + 1) + j2(j2 + 1)− j1(j1 + 1)

2J(J + 1)
,

where J is the spin of the new particle, j1 and j2 are the spins of the

constituent particles.
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2H1 is the combination of a neutron and
1H1, with J = 1, j1 = j2 = 1/2.

Let g1 = g(n), g2 = g(1H1). Then
1
2g1 +

1
2g2 = g(2H1), or

g(n) = g1 = 2(0.86− 2.79) = −3.86 .

According to the single-particle shell model, the magnetic moment is due

to the last unpaired nucleon. For 3H, j = 1/2, l = 0, s = 1/2, same as

for 1H. Thus, g(3H) = g(1H). Similarly 3He has an unpaired n so that

g(3He) = g(n). Hence

µ(3H) = 2.79µN , µ(3He) = −1.93µN .

6Li3 can be considered as the combination of
4He2 and

2H1, with J = 1,

j1 = 0, j2 = 1. Hence

g =

(
2− 2
2× 2

)
g1 +

(
2 + 2

2× 2

)
g2 = g2 ,

or

g(6Li3) = g(2H1) = 0.86 .

(a) The approximate values of the magnetic moments of neutron, 3H1,
3He2,

6Li3 are therefore

µ(n) = g(n)µN/2 = −1.93µN ,

µ(3H1) = 2.79µN ,

µ(3He2) = −1.93µN ,

µ(6Li) = g(6Li3)µN × 1 = 0.86µN .

(b) The β-decay from 3H1 to
3He is by the interaction

3H1 → 3He2 + e− + ν̄e ,

where the decay energy is

Q = m(3H1)−m(3He2) = 3.01605− 3.01603 = 0.00002 amu

= 2× 10−5 × 938× 103 keV = 18.7 keV .

Hence the maximum energy of the β-particle emitted is 18.7 keV.



Nuclear Physics 215

(c) The fusion reaction of 3H1 and
3He2,

3H1 +
3He2 → 6Li3 ,

releases an energy

Q = m(3H1) +m(3He2)−m(6Li3) = 0.01696 amu = 15.9 MeV .

The fusion reaction of 2H1 and
4He2,

2H1 +
4He2 → 6Li3 ,

releases an energy

Q′ = m(2H1) +m(4He2)−m(6Li3) = 0.02501 amu = 23.5 MeV .

Thus the second fusion reaction produces more energy.

2007

To penetrate the Coulomb barrier of a light nucleus, a proton must have

a minimum energy of the order of

(a) 1 GeV.

(b) 1 MeV.

(c) 1 KeV.

(CCT)

Solution:

The Coulomb barrier of a light nucleus is V = Q1Q2/r. Let Q1 ≈ Q2 ≈
e, r ≈ 1 fm. Then

V = e2/r =
�c

r

(
e2

�c

)
=
197

1
· 1
137

= 1.44 MeV .

Hence the answer is (b).

2008

What is the density of nuclear matter in ton/cm3?

(a) 0.004.

(b) 400.

(c) 109.

(CCT)
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Solution:

The linear size of a nucleon is about 10−13 cm, so the volume per nucleon

is about 10−39 cm3. The mass of a nucleon is about 10−27 kg = 10−30 ton,

so the density of nuclear matter is ρ = m/V ≈ 10−30/10−39 = 109ton/cm3.

Hence the answer is (c).

2009

(a) Calculate the electrostatic energy of a charge Q distributed uni-

formly throughout a sphere of radius R.

(b) Since 27
14Si and

27
13Al are “mirror nuclei”, their ground states are

identical except for charge. If their mass difference is 6 MeV, estimate

their radius (neglecting the proton-neutron mass difference).

(Wisconsin)

Solution:

(a) The electric field intensity at a point distance r from the center of

the uniformly charged sphere is

E(r) =




Qr

R3
for r < R ,

Q

r2
for r > R .

The electrostatic energy is

W =

∫ ∞
0

1

8π
E2dτ

=
Q2

8π

[∫ R

0

(
r

R3

)2

4πr2dr +

∫ ∞
R

1

r4
4πr2dr

]

=
Q2

2

(∫ R

0

(
r4

R6
dr +

∫ ∞
R

1

r2
dr

)

=
Q2

2

(
1

5R
+
1

R

)

=
3Q2

5R
.
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(b) The mass difference between the mirror nuclei 2714Si and
27
13Al can be

considered as due to the difference in electrostatic energy:

∆W =
3e2

5R
(Z2

1 − Z2
2 ) .

Thus

R =
3e2

5∆W
(142 − 132) = 3�c

5∆W

(
e2

�c

)
(142 − 132)

=
3× 1.97× 10−11

5× 6 × 1

137
× (142 − 132)

= 3.88× 10−11 cm

= 3.88 fm .

2010

The nucleus 27
14Si decays to its “mirror” nucleus

27
13Al by positron emis-

sion. The maximum (kinetic energy+mec
2) energy of the positron is

3.48 MeV. Assume that the mass difference between the nuclei is due to

the Coulomb energy. Assume the nuclei to be uniformly charged spheres of

charge Ze and radius R. Assuming the radius is given by r0A
1/3, use the

above data to estimate r0.

(Princeton)

Solution:

27
14Si→ 27

13Al + β+ + ν .

If the recoil energy of the nucleus is neglected, the maximum energy of

the positron equals roughly the mass difference between the nuclei minus

2mec
2. The Coulomb energy of a uniformly charged sphere is (Problem

2009)

Ee =
3e2Z2

5R
=
3e2

5r0
Z2A−1/3 .

For 27
14Si and

27
13Al,

Ee =
3e2

5r0
27−

1
3 (142 − 132) = 27e

2

5r0
= 3.48 + 1.02 = 4.5 MeV ,

or
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r0 =
27e2

5× 4.5 =
27�c

5× 4.5

(
e2

�c

)
=
27× 1.97× 10−11
5× 4.5× 137

= 1.73× 10−13 cm = 1.73 fm .

2011

The binding energy of 90
40Zr50 is 783.916 MeV. The binding energy of

90
39Y51 is 782.410 MeV. Estimate the excitation energy of the lowest T = 6

isospin state in 90Zr.

(Princeton)

Solution:

The energy difference between two members of the same isospin multi-

plet is determined by the Coulomb energies and the neutron-proton mass

difference. Thus (Problem 2009)

∆E = E(A,Z + 1)−E(A,Z) = ∆Ee − (mn −mp)c
2

=
3e2

5R
(2Z + 1)− 0.78 = 3(2Z + 1)c�α

5R
− 0.78

=
3(2× 39 + 1)× 197
5× 1.2× 901/3 × 137 − 0.78

= 11.89 MeV

using R = 1.2A1/3 fm.

Hence the excitation energy of the T = 6 state of 90Zr is

E = −782.410+ 11.89 + 783.916 = 13.40 MeV .

2012

The masses of a set of isobars that are members of the same isospin

multiplet can be written as the expectation value of a mass operator with

the form

M = a+ bTz + cT 2
z ,
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where a, b, c are constants and Tz is the operator for the z component of

the isotopic spin.

(a) Derive this formula.

(b) How large must the isospin be in order to test it experimentally?

(Princeton)

Solution:

(a) Members of the same isospin multiplet have the same spin-parity

Jp because of the similarity of their structures. Their mass differences are

determined by the Coulomb energies and the neutron-proton mass differ-

ence. Let the nuclear mass number be A, neutron number be N , then

A = Z +N = 2Z − (Z −N) = 2Z − 2Tz. As (Problem 2009)

M =
3e2Z2

5R
+ (mp −mn)Tz +M0

= B

(
A

2
+ Tz

)2

+ CTz +M0

=
BA2

4
+BATz +BT 2

z + CTz +M0

=M0 +
BA2

4
+ (C +BA)Tz +BT 2

z

= a+ bTz + cT 2
z

with a =M0 +BA2/4, b = C +BA, c = B.

The linear terms in the formula arise from the neutron-proton mass

difference and the Coulomb energy, while the quadratic term is mainly due

to the Coulomb energy.

(b) There are three constants a,b,c in the formula, so three independent

linear equations are needed for their determination. As there are (2T + 1)

multiplets of an isospin T, in order to test the formula experimentally we

require at least T = 1.

2013

Both nuclei 147N and
12
6C have isospin T = 0 for the ground state. The

lowest T = 1 state has an excitation energy of 2.3 MeV in the case of
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14
7N and about 15.0 MeV in the case of

12
6C. Why is there such a marked

difference? Indicate also the basis on which a value of T is ascribed to such

nuclear states. (Consider other members of the T = 1 triplets and explain

their relationship in terms of systematic nuclear properties.)

(Columbia)

Solution:

The excited states with T = 1 of 12
6C form an isospin triplet which

consists of 125B,
12
6C and

12
7N.

12
5B and

12
7N have |T3| = 1, so they are the

ground states of the triplet. Likewise, 146C and
14
8O are the ground states of

the isospin triplet of the T = 1 excited states of 147N. The binding energies

M −A are given in the table below.

Elements M-A (MeV)

12
6C 0
12
5B 13.370
14
7N 2.864
14
6C 3.020

The energy difference between two nuclei of an isospin multiplet is

∆E = [M(Z,A)−M(Z − 1, A)]c2

=
3e2

5R
(2Z − 1)− (mn −mp)c

2

=
3e2

5R0A1/3
(2Z − 1)− 0.78

=
3�c

5R0A1/3

(
e2

�c

)
(2Z − 1)− 0.78

=
3× 197

5× 137R0A1/3
(2Z − 1)− 0.78 MeV .

Taking R0 ≈ 1.4 fm and so

M(14N,T = 1)−M(14C, T = 1) = 2.5 MeV/c2 ,

M(12C, T = 1)−M(12B, T = 1) = 2.2 MeV/c2 ,

we have
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M(14N,T = 1)−M(14N,T = 0)

=M(14N,T = 1)−M(14C, T = 1)

+M(14C, T = 1)−M(14N,T = 0)

= 2.5 + 3.02− 2.86

= 2.66 MeV/c2 ,

M(12C, T = 1)−M(12C, T = 0)

=M(12C, T = 1)−M(12B, T = 1)

+M(12B, T = 1)−M(12C, T = 0)

= 2.2 + 13.37

= 15.5 MeV/c2 ,

which are in agreement with the experiment values 2.3 MeV and 15.0 MeV.

The large difference between the excitation energies of 12C and 14N is due

to the fact that the ground state of 12C is of an α-group structure and so

has a very low energy.

The nuclei of an isospin multiplet have similar structures and the same

Jp. The mass difference between two isospin multiplet members is de-

termined by the difference in the Coulomb energy of the nuclei and the

neutron-proton mass difference. Such data form the basis of isospin assign-

ment. For example 14O, 14N∗ and 14C belong to the same isospin multiplet

with Jp = 0+ and ground states 14C and 14O, 14N∗ being an exciting state.

Similarly 12C∗, 12C and 12B form an isospin multiplet with Jp = 1+, of

which 14N and 12B are ground states while 12C∗ is an excited state.

2014

(a) Fill in the missing entries in the following table giving the properties

of the ground states of the indicated nuclei. The mass excess ∆MZ,A is

defined so that

MZ,A = A(931.5 MeV) +∆MZ,A ,
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where MZ,A is the atomic mass, A is the mass member, T and Tz are the

quantum members for the total isotopic spin and the third component of

isotopic spin. Define your convention for Tz.

(b) The wave function of the isobaric analog state (IAS) in 81Kr is

obtained by operating on the 81Br ground state wave function with the

isospin upping operator T .

(i) What are Jπ, T , and Tz for the IAS in
81Kr?

(ii) Estimate the excitation energy of the IAS in 81Kr.

(iii) Now estimate the decay energy available for decay of the IAS in
81Kr by emission of a

neutron, γ-ray , α-particle, β+-ray .

(iv) Assuming sufficient decay energy is available for each decay mode

in (iii), indicate selection rules or other factors which might inhibit decay

by that mode.

(Princeton)

Isotopes Z Tz T Jp Mass excess (MeV)

n 0 8.07
1H 1 7.29
4He 2 2.43
77Se 34 1/2− −74.61
77Br 35 3/2− −73.24
77Kr 36 7/2+ −70.24
80Br 35 1+ −76.89
80Kr 36 −77.90
81Br 35 3/2− −77.98
81Kr 36 7/2+ −77.65
81Rb 37 3/2− −77.39

Solution:

(a) The table is completed as shown in the next page.

(b) (i) The isobasic analog state (IAS) is a highly excited state of a

nucleus with the same mass number but with one higher atomic number,

i.e. a state with the same A, the same T , but with Tz increased by 1. Thus
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for 81Br, |T, Tz〉 = |11/2,−11/2〉, the quantum numbers of the IAS in 81Kr

are T = 11/2, Tz = −9/2, Jp[81Kr(IAS)] = Jp(81Br) = 3/2−.

Isotopes Z Tz T Jp Mass excess (MeV)

n 0 −1/2 1/2 1/2+ 8.07
1H 1 1/2 1/2 1/2+ 7.29
4He 2 0 0 0+ 2.43
77Se 34 −9/2 9/2 1/2− −74.61
77Br 35 −7/2 7/2 3/2− −73.24
77Kr 36 −5/2 5/2 7/2+ −70.24
80Br 35 −5 5 1+ −76.89
80Kr 36 −4 4 0+ −77.90
81Br 35 −11/2 11/2 3/2− −77.98
81Kr 36 −9/2 9/2 7/2+ −77.65
81Rb 37 −7/2 7/2 3/2− −77.39

(ii) The mass difference between 81Br and 81Kr(IAS) is due to the dif-

ference between the Coulomb energies of the nuclei and the neutron-proton

mass difference:

∆M81Kr(IAS) = ∆M81Br +
3

5
× (2Z − 1)e

2

R0A1/3
− [m(n)−M(1H)]

= ∆M81Br + 0.719

(
2Z − 1
A
1
3

)
− 0.78 MeV ,

as R0 = 1.2 fm, mn −mp = 0.78 MeV. With Z = 36, A = 81, ∆M81Br =

−77.98 MeV, we have ∆M81Kr(IAS) = −67.29 MeV.
Hence the excitation energy of 81Kr(IAS) from the ground state of

81Kr is

∆E = −67.29− (−77.65) = 10.36 MeV .

(iii) For the neutron-decay 81Kr(IAS)→ n+80Kr,

Q1 = ∆M81Kr(IAS) −∆(n)−∆M80Kr

= −67.29− 8.07 + 77.90 = 2.54 MeV .

For the γ-decay 81Kr(IAS)→ 81Kr + γ,

Q2 = ∆M81Kr(IAS) −∆M81Kr = −67.29− (−77.65) = 10.36 MeV .

For the α-decay 81Kr(IAS)→ α+77Se,
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Q3 =∆M81Kr(IAS) −∆Mα −∆M77Se

= − 67.29− 2.43− (−74.61) = 4.89 MeV .

For the β+-decay 81Kr(IAS)→81 Br + β+ + νe,

Q4 =∆M81Kr(IAS) −∆M81Br − 2me

= − 67.29− (−77.98)− 1.02 = 9.67 MeV .

(iv)
In the interaction 81Kr(IAS)→ 81Kr + n

T : 11/2 4
1

2

∆T �= 0. As strong interaction requires conservation of T and Tz, the

interaction is inhibited.

In the interaction 81Kr(IAS)→ 81Kr + γ

Jp : 3
2

− 7
2

+

we have ∆J =
∣∣3
2 − 7

2

∣∣ = 2, ∆P = −1; so it can take place through E3 or

M2 type transition.

The interaction 81Kr(IAS)→ 77Se + α

T : 11/2 9/2 0

Tz : −9/2 −9/2 0

is inhibited as isospin is not conserved.

The interaction 81Kr(IAS)→ 81Br + β+ + νe

Jp : 3/2−
3

2

−

is allowed, being a mixture of the Fermi type and Gamow–Teller type in-

teractions.

2015

Isospin structure of magnetic dipole moment.
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The magnetic dipole moments of the free neutron and free proton are

−1.913µN and +2.793µN respectively. Consider the nucleus to be a collec-
tion of neutrons and protons, having their free moments.

(a) Write down the magnetic moment operator for a nucleus of A nu-

cleons.

(b) Introduce the concept of isospin and determine the isoscalar and

isovector operators. What are their relative sizes?

(c) Show that the sum of magnetic moments in nuclear magnetons of

two T = 1/2 mirror nuclei is

J + (µp + µn − 1/2)
〈 A∑

i=l

σ(i)z

〉
,

where J is the total nuclear spin and σ
(i)
z is the Pauli spin operator for a

nucleon.

(Princeton)

Solution:

(a) The magnetic moment operator for a nucleus of A nucleons is

µ =
A∑
i=l

(gil li + gisSi) ,

where for neutrons: gl = 0, gs = 2µn; for protons: gl = 1, gs = 2µp and S

is the spin operator 1
2σ.

(b) Charge independence has been found to hold for protons and neu-

trons such that, if Coulomb forces are ignored, the p−p, p−n, n−n forces
are identical provided the pair of nucleons are in the same spin and orbital

motions. To account for this, isospin T is introduced such that p and n

have the same T while the z component Tz in isospin space is Tz =
1
2 for p

and Tz = − 1
2 for n. There are four independent operators in isospin space:

scalar operator: unit matrix I =

(
1 0

0 1

)
;

vector operators: Pauli matrices, τ1 =

(
0 1

1 0

)
, τ2 =

(
0 −i
i 0

)
,

τ3 =

(
1 0

0 −1

)
.
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Let the wave functions of proton and neutron be ψp =

(
1
0

)
, ψn =

(
0
1

)
respectively, and define τ± = τ1 ± iτ2, T = τ/2. Then

T3Ψp =
1

2
Ψp, τ3Ψp = Ψp ,

T3Ψn = −
1

2
Ψn, τ3Ψn = −Ψn ,

T+Ψn = Ψp, T−Ψp = Ψn .

(c) The mirror nucleus is obtained by changing all the protons of a

nucleus into neutrons and all the neutrons into protons. Thus mirror nuclei

have the same T but opposite Tz. In other words, for mirror nuclei, if the

isospin quantum numbers of the first nucleus are
(
1
2 ,

1
2

)
, then those of the

second are
(
1
2 ,− 1

2

)
.

For the first nucleus, the magnetic moment operator is

µ1 =
A∑
i=1

(gil l
i
1 + gisS

i
1) .

We can write

gl =
1

2
(1 + τ3), gs = (1 + τ3)µp + (1− τ3)µn ,

since glψp = ψp, glψn = 0, etc. Then

µ1 =
A∑
i=1

(1 + τ i3)

2
li1 +

[
A∑
i=1

(1 + τ i3)µp +
A∑
i=1

(1− τ i3)µn

]
Sil

=
1

2

A∑
i=1

(li1 + S
i
1) +

(
µp + µn −

1

2

) A∑
i=1

Si1

+
1

2

A∑
i=1

τ i3[l
i
1 + 2(µp − µn)S

i
1] .

Similarly for the other nucleus we have

µ2 =
1

2

A∑
i=1

(li2+S
i
2)+

(
µp + µn −

1

2

) A∑
i=1

Si2+
1

2

A∑
i=1

τ i3[l
i
2+2(µp−µn)Si2] .
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As J i =
∑A

i=1(l
i + Si), the mirror nuclei have J1 = J2 but opposite T3

values, where T3 =
1
2

∑A
i=1 τ

i
3, S =

1
2σ.

The observed magnetic moment is µ = 〈µz〉 = 〈JJzTT3|µz |JJzTT3〉.
Then for the first nucleus:

µ1 =

〈
JJz

1

2

1

2

∣∣∣∣Jz2 +
(
µp + µn −

1

2

)
× 1
2

A∑
i=1

(σi1)z

+
1

2

A∑
i=1

τ i3[l
i
1z + 2(µp − µn)S

i
1z ]

∣∣∣∣JJz 12 12
〉

=
Jz

2
+
1

2

(
µp + µn −

1

2

)〈 A∑
i=1

(σi1)z

〉

+

〈
JJz

1

2

1

2

∣∣∣∣12
A∑
i=1

τ i3[l
i
1z + 2(µp − µn)S

i
1z ]

∣∣∣∣JJz 12 12
〉
,

and for the second nucleus:

µ2 =
Jz

2
+
1

2

(
µp + µn −

1

2

)〈 A∑
i=1

(σi1)z

〉

+

〈
JJz

1

2
− 1
2

∣∣∣∣12
A∑
i=1

τ i3[l
i
2z + 2(µp − µn)S

i
2z ]

∣∣∣∣JJz 12 − 12
〉
.

The sum of the magnetic moments of the mirror nuclei is

µ1 + µ2 = Jz +

(
µp + µn −

1

2

)〈 A∑
i=1

σiz

〉
,

as the last terms in the expression for µ1 and µ2 cancel each other.

2016

Hard sphere scattering:

Show that the classical cross section for elastic scattering of point par-

ticles from an infinitely massive sphere of radius R is isotropic.

(MIT)
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Solution:

In classical mechanics, in elastic scattering of a point particle from a

fixed surface, the emergent angle equals the incident angle. Thus if a parti-

cle moving along the −z direction impinges on a hard sphere of radius R at
a surface point of polar angle θ, it is deflected by an angle α = 2θ. As the

impact parameter is b = R sin θ, the differential scattering cross section is

dσ

dΩ
=

2πbdb

2π sinαdα
=

R2 sin θ cos θdθ

4 sin θ cos θdθ
=

R2

4
,

which is independent of θ, showing that the scattering is isotropic.

2017

A convenient model for the potential energy V of a particle of charge q

scattering from an atom of nuclear charge Q is V = qQe−αr/r. Where α−1

represents the screening length of the atomic electrons.

(a) Use the Born approximation

f = − 1
4π

∫
e−i∆k·r

2m

�2
V (r)d3r

to calculate the scattering cross section σ.

(b) How should α depend on the nuclear charge Z?

(Columbia)

Solution:

(a) In Born approximation

f = − m

2π�2

∫
V (r)e−iq.rd3r ,

where q = k−k0 is the momentum transferred from the incident particle to
the outgoing particle. We have |q| = 2k0 sin θ

2 , where θ is the angle between

the incident and outgoing particles. As V (r) is spherically symmetric,

f(θ) = − m

2π�2

∫ ∞
0

∫ 2π

0

∫ π

0

V (r)e−i∆kr cos θ sin θr2drdϕdθ

= − 2m

�2∆k

∫ ∞
0

V (r) sin(∆kr)rdr

= −2mQq

�2
· 1

α2 + (∆k)2
.
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The differential cross section is

dσ = |f(θ)|2dΩ = 4m2Q2q2

�4
· dΩ

[α2 + (∆k2)]2

=
m2Q2q2

4�4k40
· dΩ(

α2

4k20
+ sin2 θ

2

)2 ,
and the total cross-section is

σ =

∫
dσ =

m2Q2q2

4�4k40

∫ 2π

0

∫ π

0

sin θdθdϕ(
α2

4k20
+ sin2 θ

2

)2

=
16πm2Q2q2

�4α2(4k20 + α2)
.

(b) α−1 gives a measure of the size of atoms. As Z increases, the number

of electrons outside of the nucleus as well as the probability of their being

near the nucleus will increase, enhancing the screening effect. Hence α is

an increasing function of Z.

2018

Consider the scattering of a 1-keV proton by a hydrogen atom.

(a) What do you expect the angular distribution to look like? (Sketch

a graph and comment on its shape).

(b) Estimate the total cross section. Give a numerical answer in cm2,

m2 or barns, and a reason for your answer.

(Wisconsin)

Solution:

The differential cross section for elastic scattering is (Problem 2017)

dσ

dΩ
=

m2q2Q2

4�4k40

1(
α2

4k40
+ sin θ

2

)2 .

For proton and hydrogen nuclues Q = q = e. The screening length can be

taken to be α−1 ≈ R0, R0 being the Bohr radius of hydrogen atom. For an

incident proton of 1 keV; The wave length is
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λ̄ 0 =
�√
2µE

=
c�√
2µc2E

=
197√

1× 938× 10−3
= 203 fm .

With α−1 ≈ R0 = 5.3× 104 fm, α2

4k20
=
(

λ̄ 0
2α−1

)2 � 1 and so

dσ

dΩ
≈ m2e4

4�2k20

1

sin4 θ
2

,

which is the Rurthford scattering formula.

The scattering of 1-keV protons from hydrogen atom occurs mainly at

small angles (see Fig. 2.1). The probability of large angle scattering (near

head-on collision) is very small, showing that hydrogen atom has a very

small nucleus.

Fig. 2.1

(b) As given in Problem 2017,

σ =
16πm2e4

�4α2(4k20 + α3)
≈ 16πm

2e4

�4α24k20

= 4π

[
mc2R0λ̄ 0

�c

(
e2

�c

)]2
= 4π

(
938× 5.3× 104 × 203

197× 137

)2

= 1.76× 1012 fm2 = 1.76× 10−14 cm2 .
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2019

(a) At a center-of-mass energy of 5 MeV, the phase describing the elastic

scattering of a neutron by a certain nucleus has the following values: δ0 =

300, δ1 = 10
0. Assuming all other phase shifts to be negligible, plot dσ/dΩ

as a function of scattering angle. Explicitly calculate dσ/dΩ at 300, 450

and 900. What is the total cross section σ?

(b) What does the fact that all of the phase shifts δ2, δ3 . . . are negligible

imply about the range of the potential? Be as quantitative as you can.

(Columbia)

Solution:

(a) The differential cross section is given by

dσ

dΩ
=
1

k2

∣∣∣∣
∞∑
l=0

(2l+ 1)eiδl sin δlPl(cos θ)

∣∣∣∣
2

.

Supposing only the first and second terms are important, we have

dσ

dΩ
≈ 1

k2
|eiδ0 sin δ0 + 3eiδ1 sin δ1 cos θ|2

=
1

k2
|(cos δ0 sin δ0 + 3 cos δ1 sin δ1 cos θ) + i(sin2 δ0 + 3 sin

2 δ1 cos θ)|2

=
1

k2
[sin2 δ0 + 9 sin

2 δ1 cos
2 θ + 6 sin δ0 sin δ1 cos(δ1 − δ0) cos θ]

=
1

k2
[0.25 + 0.27 cos2 θ + 0.49 cosθ] ,

where k is the wave number of the incident neutron in the center-of-mass

frame. Assume that the mass of the nucleus is far larger than that of the

neutron mn. Then

k2 ≈ 2mnE

�2
=
2mnc

2E

(�c)2
=
2× 938× 5
1972 × 10−30

= 2.4× 1029 m−2 = 2.4× 1025 cm−2 .

The differential cross section for other angles are given in the following

table. The data are plotted in Fig. 2.2 also.
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Fig. 2.2

θ 00 300 450 900 1800

k2
dσ

dΩ
1 0.88 0.73 0.25 0

dσ

dΩ
× 1026 (cm2) 4.2 3.7 3.0 1.0 0

The total cross section is

σ =

∫
dσ

dΩ
dΩ =

2π

k2

∫ π

0

(0.25 + 0.49 cos θ + 0.27 cos2 θ) sin θdθ

=
4π

k2

(
0.25 +

1

3
× 0.27

)
= 1.78× 10−25 cm2 ≈ 0.18 b .

(b) The phase shift δl is given by

δl ≈ −
2mnk

�2

∫ ∞
0

V (r)J2
l (kr)r

2dr ,

where Jl is a spherical Bessel function. As the maximum of Jl(x) occurs

nears x = l, for higher l values Jl in the region of potential V (r) is rather

small and can be neglected. In other words, δ2, δ3 . . . being negligible means

that the potential range is within R ≈ 1/k. Thus the range of the potential
is R ≈ (2.4× 1025)−1/2 = 2× 10−13 cm = 2 fm.
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2020

Neutrons of 1000 eV kinetic energy are incident on a target composed

of carbon. If the inelastic cross section is 400×10−24 cm2, what upper and

lower limits can you place on the elastic scattering cross section?

(Chicago)

Solution:

At 1 keV kinetic energy, only s-wave scattering is involved. The phase

shift δ must have a positive imaginary part for inelastic process to take

place. The elastic and inelastic cross sections are respectively given by

σe = πλ̄ 2|e2iδ − 1|2 ,

σin = πλ̄ 2(1− |e2iδ|2) .

The reduced mass of the system is

µ =
mnmc

mc +mn
≈ 12
13

mn .

For E = 1000 eV,

λ̄ =
�√
2µE

=
�c√
2µc2E

=
197√

2× 12
13 × 940× 10−3

= 150 fm ,

πλ̄ 2 = 707× 10−24 cm2 .

As

1− |e2iδ|2 = σin

πλ̄ 2
=
400

707
= 0.566 ,

we have

|e2iδ| =
√
1− 0.566 = 0.659 ,

or

e2iδ = ±0.659 .
Hence the elastic cross section

σe = πλ̄ 2|e2iδ − 1|2

has maximum and minimum values
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(σe)max = 707× 10−24(−0.659− 1)2 = 1946× 10−24 cm2 ,

(σe)min = 707× 10−24(0.659− 1)2 = 82× 10−24 cm2 .

2021

The study of the scattering of high energy electrons from nuclei has

yielded much interesting information about the charge distributions in nu-

clei and nucleons. We shall here consider a simple version in which the

electrons are supposed to have zero spin. We also assume that the nucleus,

of charge Ze, remains fixed in space (i.e., its mass is assumed infinite). Let

ρ(x) denote the charge density in the nucleus. The charge distribution is

assumed to be spherically symmetric but otherwise arbitrary.

Let fc (pi,pf ), where pi is the initial and pf the final momentum, be

the scattering amplitude in the first Born approximation for the scattering

of an electron from a point-nucleus of charge Ze. Let f(pi,pf ) be the

scattering amplitude of an electron from a real nucleus of the same charge.

Let q = pi−pf denote the momentum transfer. The quantity F defined by
f(pi,pf ) = F (q2)fc(pi,pf )

is called the form factor. It is easily seen that F, in fact, depends on pi and

pf only through the quantity q
2.

(a) The form factor F (q2) and the Fourier transform of the charge den-

sity ρ(x) are related in a very simple manner. State and derive this re-

lationship within the framework of the nonrelativistic Schrödinger theory.

The assumption that the electrons are “nonrelativistic” is here made so

that the problem will be simplified. However, on careful consideration it

will probably be clear that the assumption is irrelevant: the same result

applies in the “relativistic” case of the actual experiment. It is also the case

that the neglect of the electron spin does not affect the essence of what we

are here concerned with.

(b) Figure 2.3 shows some experimental results pertaining to the form

factor for the proton, and we shall regard our theory as applicable to these

data. On the basis of the data shown, compute the root-mean-square

(charge) radius of the proton. Hint: Note that there is a simple rela-

tionship between the root-mean-square radius and the derivative of F (q2)

with respect to q2, at q2 = 0. Find this relationship, and then compute.

(UC, Berkeley)
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Fig. 2.3

Solution:

(a) In the first Born approximation, the scattering amplitude of a high

energy electron from a nucleus is

f(pi,pf ) = −
m

2π�2

∫
V (x)eiq·x/�d3x .

For a nucleus of spherically symmetric charge distribution, the potential at

position x is

V (x) =

∫
ρ(r)Ze

|x− r| d
3r .

Thus

f(pi,pf ) = −
m

2π�2

∫
d3xeiq·x/�

∫
d3r

ρ(r)Ze

|x− r|

= − m

2π�2

∫
d3rρ(r)eiq·r/�

∫
d3x

Ze

|x− r|e
iq·(x−r)/�

= − m

2π�2

∫
d3rρ(r)eiq·r/�

∫
d3x′

Ze

x′
eiq·x

′/� .

On the other hand, for a point nucleus we have V (x) = Ze
x and so

fc(pi,pf ) = −
m

2π�2

∫
Ze

x
eiq·x/�d3x .

Comparing the two equations above we obtain
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f(pi,pf) = fc(pi,pf )

∫
d3rρ(r)eiq·r/�

and hence

F (q2) =

∫
d3rρ(r)eiq·r/� .

(b) When q ≈ 0,

F (q2) =

∫
ρ(r)eiq·r/�d3r

≈
∫

ρ(r)

[
1 + iq · r/�− 1

2
(q · r)2/�2

]
d3r

=

∫
ρ(r)d3r− 1

2

∫
(ρ(r)q2r2 cos2 θ/�2) · r2 sin θdrdθdϕ

= F (0)− 2π
3

q2

�2

∫
r4ρ(r)dr ,

i.e.,

F (q2)− F (0) = −2π
3

q2

�2

∫
r4ρ(r)dr .

Note that i
�

∫
ρ(r)q · rd3r = 0 as

∫ π
0
cos θ sin θdθ = 0. The mean-square

radius 〈r2〉 is by definition

〈r2〉 =
∫

d3rρ(r)r2 = 4π

∫
ρ(r)r4dr

= −6�2F (q
2)− F (0)

q2
= −6�2

(
∂F

∂q2

)
q2=0

.

From Fig. 2.3,

−�2
(
∂F

∂q2

)
q2=0

≈ −0.8− 1.0
2− 0 × 10

−26 = 0.1× 10−26 cm2

Hence 〈r2〉 = 0.6× 10−26 cm2, or
√
〈r2〉 = 0.77× 10−13 cm, i.e., the root-

mean-square proton radius is 0.77 fm.

2022

The total (elastic+inelastic) proton-neutron cross section at center-of-

mass momentum p = 10 GeV/c is σ = 40 mb.
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(a) Disregarding nucleon spin, set a lower bound on the elastic center-

of-mass proton-neutron forward differential cross-section.

(b) Assume experiments were to find a violation of this bound. What

would this mean?

(Chicago)

Solution:

(a) The forward p− n differential cross section is given by

dσ

dΩ

∣∣∣∣
00
= |f(0)|2 ≥ |Imf(0)|2 =

(
k

4π
σt

)2

,

where the relation between Imf(0) and σt is given by the optical theorem.

As k = p/� we have

dσ

dΩ

∣∣∣∣
00
≥
( pc

4π�c
σl

)2
=

(
104 × 40× 10−27
4π × 1.97× 10−11

)2

= 2.6× 10−24 cm2 = 2.6 b .

(b) Such a result would mean a violation of the optical theorem, hence of

the unitarity of the S-matrix, and hence of the probabilistic interpretation

of quantum theory.

2023

When a 300-GeV proton beam strikes a hydrogen target (see Fig. 2.4),

the elastic cross section is maximum in the forward direction. Away from

the exact forward direction, the cross section is found to have a (first)

minimum.

(a) What is the origin of this minimum? Estimate at what laboratory

angle it should be located.

(b) If the beam energy is increased to 600 GeV, what would be the

position of the minimum?

(c) If the target were lead instead of hydrogen, what would happen to

the position of the minimum (beam energy= 300 GeV)?
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(d) For lead, at what angle would you expect the second minimum to

occur?

(Chicago)

Fig. 2.4

Solution:

(a) The minimum in the elastic cross section arises from the destruc-

tive interference of waves resulting from scattering at different impact pa-

rameters. The wavelength of the incident proton, λ = h
p = 2π�c

pc =
2π×1.97×10−11

300×103 = 4.1× 10−16 cm, is much smaller than the size ∼ 10−13 cm
of the target proton. The first minimum of the diffraction pattern will oc-

cur at an angle θ such that scattering from the center and scattering from

the edge of the target proton are one-half wavelength out of phase, i.e.,

rθmin = λ/2 = 2.1× 10−16 cm .

Thus, if r = 1.0× 10−13 cm, the minimum occurs at 2.1× 10−3rad.
(b) If E → 600 GeV/c, then λ → λ/2 and θmin → θmin/2 i.e., the

minimum will occur at θmin = 1.05× 10−3rad.
(c) For Pb : A = 208, r = 1.1× 208 13 = 6.5 fm, and we may expect the

first minimum to occur at θmin = 3.2× 10−4rad.
(d) At the second minium, scattering from the center and scattering

from the edge are 3/2 wavelengths out of phase. Thus the second minimum

will occur at θmin = 3× 3.2× 10−4 = 9.6× 10−4rad.
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2. NUCLEAR BINDING ENERGY, FISSION AND FUSION

(2024 2047)

2024

The semiempirical mass formula relates the mass of a nucleus,M(A,Z),

to the atomic number Z and the atomic weight A. Explain and justify

each of the terms, giving approximate values for the magnitudes of the

coefficients or constants in each term.

(Columbia)

Solution:

The mass of a nucleus, M(Z,A), is

M(Z,A) = ZM(1H) + (A− Z)mn −B(Z,A) ,

where B(Z,A) is the binding energy of the nucleus, given by the liquid-drop

model as

B(Z,A) =Bv +Bs +Be +Ba +Bp = avA− asA
2/3 − aeZ

2A−1/3

− aa

(
A

2
− Z

)2

A−1 + apδA
−1/2 ,

where Bv, Bs, Be are respectively the volume and surface energies and the

electrostatic energy between the protons.

As the nuclear radius can be given as r0A
−1/3, r0 being a constant, Bv,

which is proportional to the volume of the nucleus, is proportional to A.

Similarly the surface energy is proportional to A2/3. The Coulomb energy

is proportional to Z2/R, and so to Z2A−1/3.

Note that Bs arises because nucleus has a surface, where the nucleons

interact with only, on the average, half as many nucleons as those in the

interior, and may be considered as a correction to Bv.

Ba arises from the symmetry effect that for nuclides with mass number

A, nuclei with Z = A
2 is most stable. A departure from this condition leads

to instability and a smaller binding energy.

Lastly, neutrons and protons in a nucleus each have a tendency to exist

in pairs. Thus nuclides with proton number and neutron number being

even-even are the most stable; odd-odd, the least stable; even-odd or odd-

even, intermediate in stability. This effect is accounted for by the pairing

energy Bp = apδA
−1/2, where
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δ =



1 for even-even nucleus,

0 for odd-even or even-odd nucleus,

−1 for odd-odd nucleus.

The values of the coefficients can be determined by a combination of theo-

retical calculations and adjustments to fit the experimental binding energy

values. These have been determined to be

av = 15.835 MeV, as = 18.33 MeV, ae = 0.714 MeV ,

aa = 92.80 MeV, ap = 11.20 MeV .

2025

The nuclear binding energy may be approximated by the empirical ex-

pression

B.E. = a1A− a2A
2/3 − a3Z

2A−1/3 − a4(A− 2Z)2A−1 .

(a) Explain the various terms in this expression.

(b) Considering a set of isobaric nuclei, derive a relationship between A

and Z for naturally occurring nuclei.

(c) Use a Fermi gas model to estimate the magnitude of a4. You may

assume A �= 2Z and that the nuclear radius is R = R0A
1/3.

(Princeton)

Solution:

(a) The terms in the expression represent volume, surface, Coulomb and

symmetry energies, as explained in Problem 2024 (where aa = 4a4).

(b) For isobaric nuclei of the same A and different Z, the stable nuclides

should satisfy

∂(B.E.)

∂Z
= −2A−1/3a3Z + 4a4A−1(A− 2Z) = 0 ,

giving

Z =
A

2 + a3
2a4

A2/3
.

With a3 = 0.714 MeV, a4 = 23.20 MeV,
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Z =
A

2 + 0.0154A2/3
.

(c) A fermi gas of volume V at absolute temperature T = 0 has energy

E =
2V

h3
· 4π
5
· p

5
0

2m

and particle number

N =
2V

h3
· 4π
3
· p30 ,

where we have assumed that each phase cell can accommodate two particles

(neutrons or protons) of opposite spins. The limiting momentum is then

p0 = h

(
3

8π
· N
V

) 1
3

and the corresponding energy is

E =
3

40

(
3

π

) 2
3 h2

m
V −

2
3N

5
3 .

For nucleus (A,Z) consider the neutrons and protons as independent gases

in the nuclear volume V . Then the energy of the lowest state is

E =
3

40

(
3

π

)2/3
h2

m

N5/3 + Z5/3

V 2/3

=
3

40

(
9

4π2

)2/3
h2

mR2
0

N5/3 + Z5/3

A2/3

= C
N5/3 + Z5/3

A2/3
,

where V = 4π
3 R

3
0A, R0 ≈ 1.2 fm, C = 3

40

(
9

4π2

)2/3 1
mc2

(
hc
R0

)2
= 3

40

(
9

4π2

) 2
3

× 1
940

(
1238
1.2

)2
= 31.7 MeV .

For stable nuclei, N + Z = A, N ≈ Z. Let N = 1
2A(1 + ε/A), Z =

1
2A(1− ε/A), where ε

A
� 1. As(

1 +
ε

A

)5/3
= 1 +

5ε

3A
+
5ε2

9A2
+ . . . ,

(
1− ε

A

)5/3
= 1− 5ε

3A
+
5ε2

9A2
− . . . ,
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we have

N
5
3 + Z

5
3 ≈ 2

(
A

2

) 5
3
(
1 +

5ε2

9A2

)

and

E ≈ 2−2/3CA
[
1 +

5ε2

9A2

]
= 2−2/3CA+

5

9
× 2−2/3C (N − Z)2

A
.

The second term has the form a4
(N−Z)2

A with

a4 =
5

9
× 2−2/3C ≈ 11 MeV .

The result is smaller by a factor of 2 from that given in Problem 2024,

where a4 = aa/4 = 23.20 MeV. This may be due to the crudeness of the

model.

2026

The greatest binding energy per nucleon occurs near 56Fe and is much

less for 238U . Explain this in terms of the semiempirical nuclear bind-

ing theory. State the semiempirical binding energy formula (you need not

specify the values of the various coefficients).

(Columbia)

Solution:

The semiempirical formula for the binding energy of nucleus (A,Z) is

B(Z,A) =Bv +Bs +Be +Ba +Bp = avA− asA
2/3 − aeZ

2A−1/3

− aa

(
A

2
− Z

)2

A−1 + apδA
−1/2 .

The mean binding energy per nucleon is then

ε = B/A = av − asA
−1/3 − aeZ

2A−4/3 − aa

(
1

2
− Z

A

)2

+ apδA
−3/2 .
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Consider the five terms that contribute to ε. The contribution of the pair-

ing energy (the last term) for the same A may be different for different

combinations of Z, N , though it generally decreases with increasing A.

The contribution of the volume energy, which is proportional to A, is a

constant. The surface energy makes a negative contribution whose abso-

lute value decreases with increasing A. The Coulomb energy also makes

a negative contribution whose absolute value increases with A as Z and

A increase together. The symmetry energy makes a negative contribution

too, its absolute value increasing with A because Z/A decreases when A

increases. Adding together these terms, we see that the mean binding en-

ergy increases with A at first, reaching a flat maximum at A ∼ 50 and then
decreases gradually, as shown in Fig. 2.5.

Fig. 2.5

2027

Draw a curve showing binding energy per nucleon as a function of nu-

clear mass. Give values in MeV, as accurately as you can. Where is the

maximum of the curve? From the form of this curve explain nuclear fis-

sion and estimate the energy release per fission of 235U . What force is

principally responsible for the form of the curve in the upper mass region?

(Wisconsin)
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Solution:

Figure 2.5 shows the mean binding energy per nucleon as a function of

nuclear mass number A. The maximum occurs at A ∼ 50. As A increases
from 0, the curve rises sharply for A < 30, but with considerable fluctua-

tions. Here the internucleon interactions have not reached saturation and

there are not too many nucleons present so that the mean binding energy

increases rapidly with the mass number. But because of the small number

of nucleons, the pairing and symmetry effects significantly affect the mean

binding energy causing it to fluctuate.

When A > 30, the mean binding energy goes beyond 8 MeV. As A

increases further, the curve falls gradually. Here, with sufficient number

of nucleons, internucleon forces become saturated and so the mean bind-

ing energy tends to saturate too. As the number of nucleons increases

further, the mean binding energy decreases slowly because of the effect of

Coulomb repulsion.

In nuclear fission a heavy nucleus dissociates into two medium nuclei.

From the curve, we see that the products have higher mean binding energy.

This excess energy is released. Suppose the fission of 235U produces two

nuclei of A ∼ 117. The energy released is 235× (8.5− 7.6) = 210 MeV.

2028

Is the binding energy of nuclei more nearly proportional to A(= N +Z)

or to A2? What is the numerical value of the coefficient involved (state

units). How can this A dependence be understood? This implies an im-

portant property of nucleon-nucleon forces. What is it called? Why is a

neutron bound in a nucleus stable against decay while a lambda particle in

a hypernucleus is not?

(Wisconsin)

Solution:

The nuclear binding energy is more nearly proportional to A with a co-

efficient of 15.6 MeV. Because of the saturation property of nuclear forces,

a nucleon can only interact with its immediate neighbors and hence with

only a limited number of other nucleons. For this reason the binding en-

ergy is proportional to A, rather than to A2, which would be the case if
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the nucleon interacts with all nucleons in the nuclues. Nuclear forces are

therefore short-range forces.

The underlying cause of a decay is for a system to transit to a state of

lower energy which is, generally, also more stable. A free neutron decays

according to

n→ p+ e+ ν̄

and releases an energy

Q = mn −mp −me = 939.53− 938.23− 0.51 = 0.79 MeV .

The decay of a bound neutron in a nucleus AXN will result in a nucleus
AXN−1. If the binding energy of

AXN−1 is lower than that of
AXN and the

difference is larger than 0.79 MeV, the decay would increase the system’s en-

ergy and so cannot take place. Hence neutrons in many non-β-radioactive

nuclei are stable. On the other hand, the decay energy of a Λ0-particle,

37.75 MeV, is higher than the difference of nuclear binding energies be-

tween the initial and final systems, and so the Λ-particle in a hypernucleus

will decay.

2029

Figure 2.5 shows a plot of the average binding energy per nucleon E vs.

the mass number A. In the fission of a nucleus of mass number A0 (mass

M0) into two nuclei A1 and A2 (massesM1 andM2), the energy released is

Q =M0c
2 −M1c

2 −M2c
2 .

Express Q in terms of ε(A) and A. Estimate Q for symmetric fission of a

nucleus with A0 = 240.

(Wisconsin)

Solution:

The mass of a nucleus of mass number A is

M = Zmp + (A− Z)mn −B/c2 ,

where Z is its charge number, mp and mn are the proton and neutron

masses respectively, B is the binding energy. As Z0 = Z1 + Z2, A0 =

A1 +A2, and so M0 =M1 +M2 + (B1 +B2)/c
2 −B0/c

2, we have

Q =M0c
2 −M1c

2 −M2c
2 = B1 +B2 −B0 .
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The binding energy of a nucleus is the product of the average binding

energy and the mass number:

B = ε(A)×A .

Hence

Q = B1 +B2 −B0 = A1ε(A1) +A2ε(A2)−A0ε(A0) .

With A0 = 240, A1 = A2 = 120 in a symmetric fission, we have from

Fig. 2.5

ε(120) ≈ 8.5 MeV , ε(240) ≈ 7.6 MeV .

So the energy released in the fission is

Q = 120ε(120)+ 120ε(120)− 240ε(240) ≈ 216 (MeV) .

2030

(a) Construct an energy-versus-separation plot which can be used to

explain nuclear fission. Describe qualitatively the relation of the features

of this plot to the liquid-drop model.

(b) Where does the energy released in the fission of heavy elements come

from?

(c) What prevents the common elements heavier than iron but lighter

than lead from fissioning spontaneously?

(Wisconsin)

Solution:

(a) Nuclear fission can be explained using the curve of specific binding

energy ε vs. nuclear mass number A (Fig. 2.5). As A increases from 0, the

binding energy per nucleon E, after reaching a broad maximium, decreases

gradually. Within a large range ofA, ε ≈ 8 MeV/nucleon. The approximate
linear dependence of the binding energy on A, which shows the saturation

of nuclear forces (Problems 2028), agrees with the liquid-drop model.

(b) As a heavy nucleus dissociates into two medium nuclei in fission,

the specific binding energy increases. The nuclear energy released is the

difference between the binding energies before and after the fission:

Q = A1ε(A1) +A2ε(A2)−Aε(A) ,
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where A, A1 and A2 are respectively the mass numbers of the nuclei before

and after fission, ε(Ai) being the specific binding energy of nucleus Ai.

(c) Although the elements heavier than iron but lighter than lead can

release energy in fission if we consider specific binding energies alone, the

Coulomb barriers prevent them from fissioning spontaneously. This is be-

cause the fission barriers of these nuclei are so high that the probability of

penetration is very small.

2031

Stable nuclei have N and Z which lie close to the line shown roughly in

Fig. 2.6.

(a) Qualitatively, what features determine the shape of this curve.

(b) In heavy nuclei the number of protons is considerably less than the

number of neutrons. Explain.

(c) 14O(Z = 8, N = 6) has a lifetime of 71 sec. Give the particles in the

final state after its decay.

(Wisconsin)

Fig. 2.6

Solution:

(a) Qualitatively, Pauli’s exclusion principle allows four nucleons, 2 pro-

tons of opposite spins and 2 neutrons of opposite spins, to occupy the same

energy level, forming a tightly bound system. If a nucleon is added, it

would have to go to the next level and would not be so lightly bound. Thus

the most stable nuclides are those with N = Z.

From binding energy considerations (Problem 2025), A and Z of a

stable nuclide satisfy
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Z =
A

2 + 0.0154A2/3
,

or, as A = N + Z,

N = Z(1 + 0.0154A2/3) .

This shows that for light nuclei, N ≈ Z, while for heavy nuclei, N > Z, as

shown in Fig. 2.6.

(b) For heavy nuclei, the many protons in the nucleus cause greater

Coulomb repulsion. To form a stable nucleus, extra neutrons are needed

to counter the Coulomb repulsion. This competes with the proton-neutron

symmetry effect and causes the neutron-proton ratio in stable nuclei to in-

crease with A. Hence the number of protons in heavy nuclei is considerably

less than that of neutrons.

(c) As the number of protons in 14O is greater than that of neutrons,

and its half life is 71 s, the decay is a β+ decay

14O→14 N + e+ + νe ,

the decay products being 14N , e+, and electron-neutrino. Another possible

decay process is by electron capture. However, as the decay energy of 14O

is very large, (Emax > 4 MeV), the branching ratio of electron capture is

very small.

2032

The numbers of protons and neutrons are roughly equal for stable lighter

nuclei; however, the number of neutrons is substantially greater than the

number of protons for stable heavy nuclei. For light nuclei, the energy

required to remove a proton or a neutron from the nucleus is roughly the

same; however, for heavy nuclei, more energy is required to remove a proton

than a neutron. Explain these facts, assuming that the specific nuclear

forces are exactly equal between all pairs of nucleons.

(Columbia)

Solution:

The energy required to remove a proton or a neutron from a stable

nucleus (Z,A) is

Sp = B(Z,A)−B(Z − 1, A− 1) ,
or
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Sn = B(Z,A)−B(Z,A− 1) .

respectively, where B is the binding energy per nucleon of a nuclues. In the

liquid-drop model (Problem 2024), we have

B(Z,A) = avA− asA
2/3 − acZ

2A−1/3 − aa

(
A

2
− Z

)2
A−1 + apδA

−1/2 .

Hence

Sp − Sn = −ac(2Z − 1)(A− 1)−
1
3 + aa(A− 2Z)(A− 1)−1 ,

where ac = 0.714 MeV, aa = 92.8 MeV. For stable nuclei (Problem

2025),

Z =
A

2 + 2ac
aa

A2/3
≈ A

2

(
1− ac

aa
A2/3

)
,

and so

Sp − Sn ≈
ac

A− 1

[
A5/3 − (A− 1)5/3 + ac

aa
A5/3(A− 1)2/3

]
.

For heavy nuclei, A � 1 and Sp − Sn ≈ 5.5 × 10−3 A4/3. Thus Sp − Sn
increases with A, i.e., to dissociate a proton from a heavy nucleus needs

more energy than to dissociate a neutron.

2033

All of the heaviest naturally-occurring radioactive nuclei are basically

unstable because of the Coulomb repulsion of their protons. The mech-

anism by which they decrease their size is alpha-decay. Why is alpha-

decay favored over other modes of disintegration (like proton-, deuteron-,

or triton-emission, or fission)? Discuss briefly in terms of

(a) energy release, and

(b) Coulomb barrier to be penetrated.

(Wisconsin)

Solution:

(a) A basic condition for a nucleus to decay is that the decay energy is

larger than zero. For heavy nuclei however, the decay energy of proton-,
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deuteron- or triton-emission is normally less than zero. Take the isotopes

and isotones of 23895 Am as an example. Consider the ten isotopes of Am. The

proton-decay energies are between −3.9 MeV and −5.6 MeV, the deuteron-
decay energies are between −7.7 MeV and −9.1 MeV, the triton-decay en-
ergies are between −7.6 MeV and −8.7 MeV, while the α-decay energies
are between 5.2 MeV and 6.1 MeV. For the three isotones of 23895 Am, the

proton-, deuteron- and triton-decay energies are less than zero while their

α-decay energies are larger than zero. The probability for fission of a heavy

nucleus is less than that for α-decay also because of its much lower prob-

ability of penetrating the Coulomb barrier. Therefore α-decay is favored

over other modes of disintegration for a heavy nucleus.

(b) Figure 2.7 shows the Coulomb potential energy of a nucleus of charge

Z1e and a fragment of charge Z2e.

Fig. 2.7

Suppose a nucleus is to break up into two fragments of charges Z1e and

Z2e. The probability of penetrating the Coulomb barrier by a fragment of

energy Ed is

exp

(
−2
�

∫ Rc

R

[
2µ

(
Z1Z2e

2

r
−Ed

)]1/2
dr

)
= exp(−G) ,

where µ is the reduced mass of the system,

Rc =
Z1Z2e

2

Ed
,

and

G =
2
√
2µEd
�

∫ Rc

R

(
Rc

r
− 1
)1/2

dr .
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Integrating we have∫ Rc

R

√
Rc

r
− 1dr =Rc

∫ Rc/R

1

1

p2

√
p− 1dp

=Rc

[
−1
p

√
p− 1 + tan−1

√
p− 1

]Rc/R
1

≈Rc

[
π

2
−
(
R

Rc

) 1
2

]

taking Rc
R
� 1, and hence

G ≈ 2Rc

√
2µEd
�

[
π

2
−
(
R

Rc

)1/2
]
≈ 2Z1Z2e

2
√
2µ

�
√
Ed

[
π

2
−
(
R

Rc

)1/2
]
.

For fission, though the energy release is some 50 times larger than that

of α-decay, the reduced mass is 20 times larger and Z1Z2 is 5 times larger.

Then the value of G is 4 times larger and so the barrier penetrating prob-

ability is much lower than that for α-decay.

2034

Instability (‘radioactivity’) of atomic nuclei with respect to α-particle

emission is a comparatively common phenomenon among the very heavy

nuclei but proton-radioactivity is virtually nonexistent. Explain, with such

relevant quantitative arguments as you can muster, this striking difference.

(Columbia)

Solution:

An explanation can be readily given in terms of the disintegration en-

ergies. In the α-decay of a heavy nucleus (A,Z) the energy release given

by the liquid-drop model (Problem 2024) is

Ed =M(A,Z)−M(A− 4, Z − 2)−M(4, 2)

= − B(A,Z) +B(A − 4, Z − 2) +B(4, 2)

= − as[A
2/3 − (A− 4)2/3]− ac[Z

2A−
1
3 − (Z − 2)2(A− 4)− 13 ]
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− aa

[(
A

2
− Z

)2

A−1 −
(
A− 4
2
− Z + 2

)2
(A− 4)−1

]

+B(4, 2)− 4av .

For heavy nuclei, 2
Z
� 1, 4

A
� 1, and the above becomes

Ed ≈
8

3
asA

−1/3 + 4acZA
− 13
(
1− Z

3A

)
− aa

(
1− 2Z

A

)2

+ 28.3− 4av

=48.88A−1/3 + 2.856ZA−1/3
(
1− Z

3A

)

− 92.80
(
1− 2Z

A

)2

− 35.04 MeV .

For stable nuclei we have (Problem 2025)

Z =
A

2 + 0.0154A2/3
.

Ed is calculated for such nuclei and plotted as the dashed wave in Fig. 2.8.

Fig. 2.8

For α-decay to take place, we require Ed > 0. It is seen that Ed increases

generally with A and is positve when A ≥ 150. Thus only heavy nuclei have
α-decays. The actual values of Ed for naturally occurring nuclei are shown

as the solid curve in the figure. It intersects the Ed = 0 line at A ≈ 140,
where α-radioactive isotopes 147

62 Sm, 14460 Nd are actually observed. For the

proton-decay of a heavy nucleus, we have
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M(A,Z)−M(A− 1, Z − 1)−M(0, 1)

= −B(A,Z) +B(A− 1, Z − 1) +B(0, 1)

≈ −B(A,Z) +B(A− 1, Z − 1) = −ε < 0 ,

where ε is the specific binding energy and is about 7 MeV for heavy nuclei.
As the decay energy is negative, proton-decay cannot take place. How-

ever, this consideration is for stable heavy nuclei. For those nuclei far from

stability curve, the neutron-proton ratio may be much smaller so that the
binding energy of the last proton may be negative and proton-emission

may occur. Quite different from neutron-emission, proton-emission is not a
transient process but similar to α-decay; it has a finite half-life due to the

Coulomb barrier. As the proton mass is less than the α-particle mass and

the height of the Coulomb barrier it has to penetrate is only half that for
the α-particle, the half-life against p-decay should be much less than that

against α-decay. All proton-emitters should also have β+-radioactivity and
orbital-electron capture, and their half-lives are related to the probabili-

ties of such competing proceses. Instances of proton-radioactivity in some

isomeric states have been observed experimentally.

2035

(a) Derive argument for why heavy nuclei are α-radioactive but stable

against neutron-emission.
(b) What methods and arguments are used to determine nuclear radii?

(c) What are the properties that identify a system of nucleons in its
lowest energy state? Discuss the nonclassical properties.

(d) The fission cross sections of the following uranium (Z = 92) isotopes

for thermal neutrons are shown in the table below.

Isotope σ (barns)

230U 20
231U 300
232U 76
233U 530
234U 0
235U 580
236U 0
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The fast-neutron fission cross sections of the same isotopes are all of the

order of a few barns, and the even-odd periodicity is much less pronounced.

Explain these facts.

(Columbia)

Solution:

(a) The reason why heavy nuclei only are α-radioactive has been dis-

cussed in Problems 2033 and 2034. For ordinary nuclei near the β-

stability curve, the binding energy of the last neutron is positive so that no

neutron-radioactivity exists naturally. However, for neutron-rich isotopes

far from the β-stability curve, the binding energy may be negative for the

last neutron, and so neutron-emission may occur spontaneously. As there

is no Coulomb barrier for neutrons, emission is a transient process. Also,

certain excited states arising from β-decays may emit neutrons. In such

cases, as the neutron-emission follows a β-decay the emitted neutrons are

called delayed neutrons. The half-life against delayed-neutron emission is

the same as that against the related β-decay.

(b) There are two categories of methods for measuring nuclear radii.

The first category makes use of the range of the strong interaction of nu-

clear forces by studying the scattering by nuclei of neutrons, protons or α-

particles, particularly by measuring the total cross-section of intermediate-

energy neutrons. Such methods give the nuclear radius as

R = R0A
1/3, R0 ≈ (1.4 ∼ 1.5) fm .

The other category of methods makes use of the Coulomb interaction

between charged particles and atomic nuclei or that among particles within

a nucleus to get the electromagnetic nuclear radius. By studying the scat-

tering between high energy electrons and atomic nuclei, the form factors of

the nuclei may be deduced which gives the electromagnetic nuclear radius.

Assuming mirror nuclei to be of the same structure, their mass difference

is caused by Coulomb energy difference and the mass difference between

neutron and proton. We have (Problem 2010)

∆E =
3

5

e2

R
(2Z − 1)− (mn −mp)c

2

for the energy difference between the ground states of the mirror nuclei,

which then gives the electromagnetic nuclear radius R. A more precise
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method is to study the deviation of µ-mesic atom from Bohr’s model of

hydrogen atom (problem 1062). Because the Bohr radius of the mesic

atom is much smaller than that of the hydrogen atom, the former is more

sensitive to the value of the electromagnetic nuclear radius, which, by this

method, is

R = R0A
1/3, R0 ≈ 1.1 fm .

High-energy electron scattering experiments show that charge distribution

within a nucleus is nonuniform.

(c) The ground state of a system of nucleons is identified by its spin,

parity and isospin quantum numbers.

Spin and parity are determined by those of the last one or two unpaired

nucleons. For the ground state of an even-even nucleus, Jp = 0+. For an

even-odd nucleus, the nuclear spin and parity are determined by the last

nucleon, and for an odd-odd nucleus, by the spin-orbit coupling of the last

two nucleons.

The isospin of the nuclear ground state is I = 1
2 |N − Z|.

(d) There is a fission barrier of about 6 MeV for uranium so that spon-

taneous fission is unlikely and external inducement is required. At the same

time, there is a tendency for neutrons in a nucleus to pair up so that isotopes

with even numbers of neutrons, N , have higher binding energies. When an

uranium isotope with an odd number of neutrons captures a neutron and

becomes an isotope of even N , the excitation energy of the compound nu-

cleus is large, sufficient to overcome the fission barrier, and fission occurs.

On the other hand, when an even-N uranium isotope captures a neutron to

become an isotope of odd N , the excitation energy of the compound nucleus

is small, not sufficient to overcome the fission barrier, and fission does not

take place. For example, in 235U + n→236 U∗ the excitation energy of the

compound nucleus 236U∗ is 6.4 MeV, higher than the fission barrier of 236U

of 5.9 MeV, so the probability of this reaction results in a fission is large.

In 238U+n→239 U∗, the excitation energy is only 4.8 MeV, lower than the

fission barrier of 6.2 MeV of 239U , and so the probability for fission is low.

Such nuclides require neutrons of higher energies to achieve fission. When

the neutron energy is higher than a certain threshold, fission cross section

becomes large and fission may occur.

Thermal neutrons, which can cause fission when captured by odd-N

uranium isotopes, have long wavelengths and hence large capture cross

sections. Thus the cross sections for fission induced by thermal neutrons
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are large, in hundreds of barns, for uranium isotopes of odd N . They are

small for isotope of even N .

If a fast neutron is captured by an uranium isotope the excitation energy

of the compound nucleus is larger than the fission barrier and fission occurs

irrespective of whether the isotope has an even or an odd number of neu-

trons. While fast neutrons have smaller probability of being captured their

fission cross section, which is of the order of a few barns, do not change with

the even-odd periodicity of the neutron number of the uranium isotope.

2036

The semiempirical mass formula modified for nuclear-shape eccentricity

suggests a binding energy for the nucleus AZX:

B = αA− βA2/3

(
1 +

2

5
ε2
)
− γZ2A−

1
3

(
1− 1

5
ε2
)
,

where α, β, γ = 14, 13, 0.6 MeV and ε is the eccentricity.

(a) Briefly interpret this equation and find a limiting condition involving

Z and A such that a nucleus can undergo prompt (unhindered) spontaneous

fission. Consider 240
94 Pu as a specific example.

(b) The discovery of fission shape isomers and the detection of spon-

taneous fission of heavy isotopes from their ground state suggest a more

complicated nuclear potential energy function V (ε). What simple nuclear

excitations can account for the two sets of states of 240
94 Pu shown below

(Fig. 2.9). Discuss similarities and differences between the two. What are

the implications for V (ε)? Draw a rough sketch of V (ε).

(Princeton)

Solution:

(a) In the mass formula, the first term represents volume energy, the

second term surface energy, in which the correction 2
5ε

2 is for deformation

from spherical shape of the nucleus, the third term, the Coulomb energy, in

which the correction 1
5ε

2 is also for nucleus deformation. Consequent to nu-

clear shape deformation, the binding energy is a function of the eccentricity

ε. The limiting condition for stability is dB
dε
= 0. We have

dB

dε
= −4β

5
A2/3ε+ γ

Z2

A1/3
· 2
5
ε =

2

5
εA2/3

(
γZ2

A
− 2β

)
.



Nuclear Physics 257

Fig. 2.9

If dB
dε

> 0, nuclear binding energy increases with ε so the deformation will

keep on increasing and the nucleus becomes unstable. If dB
dε

< 0, binding

energy decreases as ε increases so the nuclear shape will tend to that with a

lower ε and the nucleus is stable. So the limiting condition for the nucleus

to undergo prompt spontaneous fission is dβ
dε

> 0, or

Z2

A
≥ 2β

γ
= 43.3 .

For 240Pu, Z
2

A = 36.8 < 43.3 and so it cannot undergo prompt sponta-

neous fission; it has a finite lifetime against spontaneous fission.

(b) The two sets of energy levels of 240Pu (see Fig. 2.9) can be inter-

preted in terms of collective rotational excitation of the deformed nucleus,

as each set satisfies the rotational spectrum relation for the K = 0 rota-

tional band

EI =
�
2

2M
[I(I + 1)] .

Both sets of states show characteristics of the rotational spectrums of

even-even nuclei; they differ in that the two rotational bands correspond to

different rotational moments of inertia M . The given data correspond to
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h2

2J ≈ 7 MeV for the first set, �
2

2J ≈ 3.3 MeV for the second set. The different
moments of inertia suggest different deformations. Use of a liquid-drop shell

model gives a potential V (ε) in the form of a two-peak barrier, as shown

in Fig. 2.10. The set of states with the longer lifetime corresponds to the

ground-state rotational band at the first minimum of the two-peak potential

barrier. This state has a thicker fission barrier to penetrate and hence a

longer lifetime (T1/2 = 1.4× 1011 yr for 240Pu). The set of rotational band

with the shorter lifetime occurs at the second minimum of the potential

barrier. In this state the fission barrier to penetrate is thinner, hence the

shorter lifetime (T1/2 = 4 × 10−9s for 240Pu). The difference between

the two rotational bands arises from the different deformations; hence the

phenomenon is referred to as nuclear shape isomerism.

Fig. 2.10

2037

Assume a uranium nucleus breaks up spontaneously into two roughly

equal parts. Estimate the reduction in electrostatic energy of the nuclei.

What is the relationship of this to the total change in energy? (Assume

uniform charge distribution; nuclear radius= 1.2× 10−13 A1/3 cm)

(Columbia)

Solution:

Uranium nucleus has Z0 = 92, A0 = 236, and radius R0 = 1.2 ×
10−13A

1/3
0 cm. When it breaks up into to two roughly equal parts, each

part has
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Z =
1

2
Z0, A =

1

2
A0, R = 1.2× 10−13A1/3 cm .

The electrostatic energy of a sphere of a uniformly distributed charge Q

is 3
5Q

2/R, where R is the radius. Then for uranium fission, the electrostatic

energy reduction is

∆E =
3

5

[
(Z0e)

2

R0
− 2× (Ze)

2

R

]

=
3× Z2

0e
2

5

1

R0

[
1− 1

22/3

]
= 0.222× Z2

0

R0

(
e2

�c

)
�c

=
0.222× 922

1.2× 10−13 × 236 13
× 1

137
× 1.97× 10−11

= 364 MeV .

This reduction is the source of the energy released in uranium fission.

However, to calculate the actual energy release, some other factors should

also be considered such as the increase of surface energy on fission.

2038

Estimate (order of magnitude) the ratio of the energy released when

1 g of uranium undergoes fission to the energy released when 1 g of TNT

explodes.

(Columbia)

Solution:

Fission is related to nuclear forces whose interaction energy is about

1 MeV/nucleon. TNT explosion is related to electromagnetic forces whose

interaction energy is about 1 eV/molecule. As the number of nucleons in

1 g of uranium is of the same order of magnitude as the number of molecules

in 1 g of TNT, the ratio of energy releases should be about 106.

A more precise estimate is as follows. The energy released in the ex-

plosion of 1 g of TNT is about 2.6 × 1022 eV. The energy released in the
fission of a uranium nucleus is about 210 MeV. Then the fission of 1 g of

uranium releases an energy 6.023×1023
238 × 210 = 5.3× 1023 MeV. Hence the

ratio is about 2× 107.
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2039

The neutron density ρ(x, t) inside a block of U235 obeys the differential

equation
∂ρ(x, t)

∂t
= A∇2ρ(x, t) +Bρ(x, t) ,

where A and B are positive constants. Consider a block of U235 in the

shape of a cube of side L. Assume that those neutrons reaching the cube’s

surface leave the cube immediately so that the neutron density at the U235

surface is always zero.

(a) Briefly describe the physical processes which give rise to the A∇2ρ

and the Bρ terms. In particular, explain why A and B are both positive.

(b) There is a critical length L0 for the sides of the U235 cube. For

L > L0, the neutron density in the cube is unstable and increases exponen-

tially with time — an explosion results. For L < L0, the neutron density

decreases with time — there is no explosion. Find the critical length L0 in

terms of A and B.

(Columbia)

Solution:

(a) The term Bρ(x, t), which is proportional to the neutron density,

accounts for the increase of neutron density during nuclear fission. Bρ(x, t)

represents the rate of increase of the number of neutrons, in a unit volume

at location x and at time t, caused by nuclear fission. It is proportional

to the number density of neutrons which induce the fission. As the fission

of U235 increases the neutron number, B is positive. The term A∇2ρ(x, t)

describes the macroscopic motion of neutrons caused by the nonuniformity

of neutron distribution. As the neutrons generally move from locations of

higher density to locations of lower density, A is positive too.

(b) Take a vertex of the cube as the origin, and its three sides as the x-,

y- and z-axes. Let ρ(x, t) = f(x, y, z)e−αt. Then the differential equation

becomes

A∇2f(x, y, z) + (α+B)f(x, y, z) = 0

with boundary condition

f(x, y, z)|i=0,L = 0 , i = x, y, z .
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Try a solution of the form f = X(x)Y (y)Z(z). Substitution gives

1

X

d2X

dx2
+
1

Y

d2Y

dy2
+
1

Z

d2Z

dz2
+ k2x + k2y + k2z = 0 ,

where we have rewritten α+B
A = k2x + k2y + k2z . The boundary condition

becomes

X(x) = 0 at x = 0, L; Y (y) = 0 at y = 0, L; Z(z) = 0 at z = 0, L .

The last differentiation equation can be separated into 3 equations:

d2X

dx2
+ k2xX = 0 , etc.

The solutions of these equations are

X = Cxi sin
(nxiπ

L
x
)
,

Y = Cyj sin
(nyjπ

L
y
)
,

Z = Czk sin
(nzkπ

L
x
)
,

with nxi, nyj, nzk = ±1,±2,±3 . . . and Cxi, Cyj , Czk being arbitrary con-

stants. Thus

f(x, y, z) =
∑
ijk

Cijk sin
(nxiπ

L
x
)
sin
(nyjπ

L
y
)
sin
(nzkπ

L
z
)
,

with

α+B

A
=
(π
L

)2
(n2xi + n2yj + n2zk) , Cijk = CziCyiCzk .

If α < 0, the neutron density will increase exponentially with time,

leading to instability and possible explosion. Hence the critial length L0 is

given by

α =
Aπ2

L2
0

(n2xi + n2yj + n2zk)−B = 0 ,

or

L0 = π

√
A

B
(n2xi + n2yj + n2zk) .
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In particular, for nxi = nyj = nzk = 1,

L0 = π

√
3A

B
.

2040

The half-life of U235 is 103, 106, 109, 1012 years.

(Columbia)

Solution:

109 years. (Half-life of U235 is 7× 108 years)

2041

Number of fission per second in a 100-MW reactor is: 106, 1012, 1018,

1024, 1030.

(Columbia)

Solution:

Each fission of uranium nucleus releases about 200MeV = 320×10−13 J .
So the number of fissions per second in a 100-MW reactor is

N =
100× 106
320× 10−13 = 3× 10

18 .

Hence the answer is 1018.

2042

Explain briefly the operation of a “breeder” reactor. What physical

constant of the fission process is a prerequisite to the possibility of “breed-

ing”? What important constraint is placed on the choice of materials in

the reactor? In particular, could water be used as a moderator?

(Wisconsin)

Solution:

A breeder reactor contains a fissionable material and a nonfissionable

one that can be made fissionable by absorbing a neutron. For example,
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235U and 238U . Suppose 3 neutrons are emitted per fission. One is needed

to induce a fission in another fuel atom and keep the chain reaction going. If

the other two neutrons can be used to convert two nonfissionable atoms into

fissionable ones, then two fuel atoms are produced when one is consumed,

and the reactor is said to be a breeder.

In the example, neutrons from the fission of 235U may be used to convert
238U to fissionable 239Pu:

n+ 238U → 239U + γ

|−→
β−

239Np →
β−

239Pu

A prerequisite to breeding is that η, the number of neutrons produced per

neutron absorbed in the fuel, should be larger than 2. In the example, this

is achieved by the use of fast neutrons and so no moderator is needed.

2043

(a) Describe briefly the type of reaction on which a nuclear fission reactor

operates.

(b) Why is energy released, and roughly how much per reaction?

(c) Why are the reaction products radioactive?

(d) Why is a “moderator” necessary? Are light or heavy elements pre-

ferred for moderators, and why?

(Wisconsin)

Solution:

(a) In nuclear fission a heavy nucleus disassociates into two medium

nuclei. In a reactor the fission is induced. It takes place after a heavy

nucleus captures a neutron. For example

n+235 U → X + Y + n+ · · · .

(b) The specific binding energy of a heavy nucleus is about 7.6 MeV

per nucleon, while that of a medium nucleus is about 8.5 MeV per nucleon.

Hence when a fission occurs, some binding energies will be released. The

energy released per fission is about 210 MeV.

(c) Fission releases a large quantity of energy, some of which is in

the form of excitation energies of the fragments. Hence fission fragments

are in general highly excited and decay through γ emission. In addition,
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the neutron-to-proton ratios of the fragments, which are similar to that of

the original heavy nucleus, are much larger than those of stable nuclei of

the same mass. So the fragments are mostly unstable neutron-rich isotopes

having strong β− radioactivity.

(d) For reactors using 235U , fission is caused mainly by thermal neu-

trons. However, fission reaction emits fast neutrons; so some moderator is

needed to reduce the speed of the neutrons. Lighter nuclei are more suit-

able as moderator because the energy lost by a neutron per neutron-nucleus

collision is larger if the nucleus is lighter.

2044

Give the three nuclear reactions currently considered for controlled ther-

monuclear fusion. Which has the largest cross section? Give the approxi-

mate energies released in the reactions. How would any resulting neutrons

be used?

(Wisconsin)

Solution:

Reactions often considered for controlled thermonuclear fusion are

D +D→ 3He + n+ 3.25 MeV ,

D +D→ T + p+ 4.0 MeV ,

D + T → 4He + n+ 17.6 MeV .

The cross section of the last reaction is the largest.

Neutrons resulting from the reactions can be used to induce fission in a

fission-fusion reactor, or to take part in reactions like 6Li + n → 4He + T

to release more energy.

2045

Discuss thermonuclear reactions. Give examples of reactions of impor-

tance in the sun, the H bomb and in controlled fusion attempts. Estimate

roughly in electron volts the energy release per reaction and give the char-

acteristic of nuclear forces most important in these reactions.

(Wisconsin)
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Solution:

The most important thermonuclear reactions in the sun are the proton-

proton chain

p+ p→ d+ e+ + νe ,

d+ p→ 3He + γ ,

3He + 3He→ 4He + 2p ,

the resulting reaction being

4p+ 2d+ 2p+ 23He→ 2d+ 2e+ + 2νe + 2
3He + 4He + 2p ,

or

4p→ 4He + 2e+ + 2νe .

The energy released in this reaction is roughly

Q =[4M(1H)−M(4He)]c2 = 4× 1.008142− 4.003860

=0.02871 amu = 26.9 MeV .

The explosive in a H bomb is a mixture of deuterium, tritium and

lithium in some condensed form. H bomb explosion is an uncontrolled

thermonuclear reaction which releases a great quantity of energy at the

instant of explosion. The reaction chain is

6Li + n→ 4He + t ,

D + t→ 4He + n ,

with the resulting reaction

6Li + d→ 24He .

The energy released per reaction is

Q = [M(6Li) +M(2H)− 2M(4He)]c2

= 6.01690 + 2.01471− 2× 4.00388

= 0.02385 amu = 22.4 MeV .
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An example of possible controlled fusion is

t+ d→ 4He + n ,

where the energy released is

Q = [M(3H) +M(2H)−M(4He)−M(n)]c2

= 3.01695+ 2.01471− 4.00388− 1.00896

= 0.01882 amu = 17.65 MeV .

The most important characteristic of nuclear forces in these reactions

is saturation, which means that a nucleon interacts only with nucleons in

its immediate neighborhood. So while the nuclear interactions of a nucleon

in the interior of a nucleus are saturated, the interactions of a nucleon on

the surface of the nucleus are not. Then as the ratio of the number of

nucleons on the nucleus surface to that of those in the interior is larger for

lighter nuclei, the mean binding energy per nucleon for a lighter nucleus is

smaller than for a heavier nucleus. In other words nucleons in lighter nuclei

are combined more loosely. However, because of the effect of the Coulomb

energy of the protons, the mean binding energies of very heavy nuclei are

less than those of medium nuclei.

2046

For some years now, R. Davis and collaborators have been searching for

solar neutrinos, in a celebrated experiment that employs as detector a large

tank of C2Cl4 located below ground in the Homestake mine. The idea is

to look for argon atoms (A37) produced by the inverse β-decay reaction

Cl37(ν, e−)Ar37. This reaction, owing to threshold effects, is relatively

insensitive to low energy neutrinos, which constitute the expected principal

component of neutrinos from the sun. It is supposed to respond to a smaller

component of higher energy neutrinos expected from the sun. The solar

constant (radiant energy flux at the earth) is ∼ 1 kW/m2.

(a) Outline the principal sequence of nuclear processes presumed to

account for energy generation in the sun. What is the slow link in the

chain? Estimate the mean energy of the neutrinos produced in this chain.
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What is the expected number flux at the earth of the principal component

of solar neutrinos?

(b) Outline the sequence of minor nuclear reactions that is supposed

to generate the higher energy component of the neutrino spectrum, the

component being looked for in the above experiment. Briefly discuss the

experiment itself, and the findings to date.

(Princeton)

Solution:

(a) The principal sequence of nuclear processes presumed to generate

solar energy is

(1) p+ p→ d+ e+ + νe , Eν = 0− 0.42 MeV ,

(2) d+ p→ 3He + γ ,

(3) 3He + 3He→ 4He + 2p ,

The resulting reaction being 4p→ 4He + 2e+ + 2νe + 26.7 MeV.

The reaction (1) is the slow link. About 25 MeV of the energy changes

into thermal energy in the sequence, the rest being taken up by the neutri-

nos. So the mean energy of a neutrino is

Eν ≈ (26.7− 25)/2 ≈ 0.85 MeV .

As each 25 MeV of solar energy arriving on earth is accompanied by 2

neutrions, the number flux of solar neutrinos at the earth is

I = 2

(
1× 103

25× 1.6× 10−13
)
= 5× 1014 m−2s−1 .

(b) The minor processes in the sequence are

(1) 3He + 4He→ 7Be+ γ ,

(2) 7Be+ e− → 7Li+ νe, Eν = 0.478 MeV(12%) and 0.861 MeV (88%),

(3) 7Li + p→ 24He,
(4) 7Be+ p→ 8B + γ,

(5) 8B → 24He + e+ + νe, Eν ≈ 0 ∼ 17 MeV.

The high energy neutrinos produced in the 8B decay are those being

measured in the experiment

In the experiment of Davis et al, a tank of 390000 liters of C2Cl4 was

placed in a mine 1.5 kilometers below ground, to reduce the cosmic-ray

background. The threshold energy for the reaction between solar neutrino
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and Cl, νe +
37Cl → e− + 37Ar, is 0.814 MeV. The Ar gas produced then

decays by electron capture, e− + 37Ar → νe +
37Cl, the energy of the

Auger electron emitted following this process being 2.8 keV. The half-life

of Ar against the decay is 35 days. When the Ar gas produced, which

had accumulated in the tank for several months, was taken out and its

radioactivity measured with a proportional counter, the result was only

one-third of what had been theoretically expected. This was the celebrated

case of the “missing solar neutrinos”. Many possible explanations have

been proposed, such as experimental errors, faulty theories, or “neutrinos

oscillation”, etc.

2047

In a crude, but not unreasonable, approximation, a neutron star is a

sphere which consists almost entirely of neutrons which form a nonrelativis-

tic degenerate Fermi gas. The pressure of the Fermi gas is counterbalanced

by gravitational attraction.

(a) Estimate the radius of such a star to within an order of magnitude if

the mass is 1033 g. Since only a rough numerical estimate is required, you

need to make only reasonable simplifying assumptions like taking a uniform

density, and estimate integrals you cannot easily evaluate, etc. (Knowing

the answer is not enough here; you must derive it.)

(b) In the laboratory, neutrons are unstable, decaying according to n→
p+e+ν+1 MeV with a lifetime of 1000 s. Explain briefly and qualitatively,

but precisely, why we can consider the neutron star to be made up almost

entirely of neutrons, rather than neutrons, protons, and electrons.

(Columbia)

Solution:

(a) Let R be the radius of the neutron star. The gravitational potential

energy is

Vg = −
∫ R

0

4

3
πr3ρ

(
G

r

)
4πr2ρdr = −3

5

GM2

R
,

where ρ = 3M
4πR3 is the density of the gas, M being its total mass, G is

the gravitational constant. When R increases by ∆R, the pressure P of

the gas does an external work ∆W = P∆V = 4πPR2∆R. As ∆W =

−∆Vg, we have
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P =
3GM2

20πR4
.

The pressure of a completely degenerate Fermi gas is

P =
2

5
NEf ,

where N = ρ
Mn

is the neutron number density,Mn being the neutron mass,

Ef =
�
2

2Mn

(
9π

4

M

MnR3

)2/3

is the limiting energy. Equating the expressions for P gives

R =

(
9π

4

) 2
3 �

2

GM3
n

(
Mn

M

) 1
3

=

(
9π

4

) 2
3

× (1.05× 10−34)2
6.67× 10−11 × (1.67× 10−27)3 ×

(
1.67× 10−27

1030

) 1
3

= 1.6× 104 m.

(b) Let d be the distance between neighboring neutrons. As M
Mn
≈(

2R
d

)3
, d ≈ 2R

(
Mn

M

) 1
3 = 4 × 10−15 m. If electrons existed in the star,

the magnitude of their mean free path would be of the order of d, and

so the order of magnitude of the kinetic energy of an electron would be

E ≈ cp ∼ c�/d ∼ 50 MeV. Since each neutron decay only gives out 1 MeV,
and the neutron’s kinetic energy is less than Ef ≈ 21 MeV, it is unlikely
that there could be electrons in the neutron star originating from the decay

of neutrons, if energy conservation is to hold. Furthermore, because the

neutrons are so close together, e and p from a decay would immediately

recombine. Thus there would be no protons in the star also.

3. THE DEUTERON AND NUCLEAR FORCES

(2048 2058)

2048

If the nuclear force is charge independent and a neutron and a proton

form a bound state, then why is there no bound state for two neutrons?

What information does this provide on the nucleon-nucleon force?

(Wisconsin)
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Solution:

A system of a neutron and a proton can form either singlet or triplet

spin state. The bound state is the triplet state because the energy level

of the singlet state is higher. A system of two neutrons which are in the

same energy level can form only singlet spin state, and no bound state is

possible. This shows the spin dependency of the nuclear force.

2049

A deuteron of massM and binding energy B(B �Mc2) is disintegrated

into a neutron and a proton by a gamma ray of energy Eγ . Find, to lowest

order in B/Mc2, the minimum value of (Eγ − B) for which the reaction

can occur.

(Wisconsin)

Solution:

In the disintegration of the deuteron, Eγ −B is smallest when Eγ is at

threshold, at which the final particles are stationary in the center-of-mass

system. In this case the energy of the incident photon in the center-of-mass

system of the deuteron is E∗ = (mn +mp)c
2.

Let M be the mass of the deuteron. As E2 − p2c2 is Lorentz-invariant

and B = (mn +mp −M)c2, we have

(Eγ +Mc2)−E2
γ = (mn +mp)

2c4 ,

i.e.,

2EγMc2 = [(mn +mp)
2 −M2]c4 = (B + 2Mc2)B ,

or

Eγ −B =
B2

2Mc2
,

which is the minimum value of Eγ −B for the reaction to occur.

2050

According to a simple-minded picture, the neutron and proton in a

deuteron interact through a square well potential of width b = 1.9×10−15 m
and depth V0 = 40 MeV in an l = 0 state.
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(a) Calculate the probability that the proton moves within the range of

the neutron. Use the approximation that mn = mp = M , kb = π
2 , where

k =
√

M(V0−ε)
�2

and ε is the binding energy of the deuteron.

(b) Find the mean-square radius of the deuteron.

(SUNY, Buffalo)

Solution:

The interaction may be considered as between two particles of mass M ,

so the reduced mass is µ = 1
2M . The potential energy is

V (r) =

{ −V0, r < b,

0, r > b,

where r is the distance between the proton and the neutron. The system’s

energy is E = −ε.
For l = 0 states, let the wave function be Ψ = u(r)/r. The radial

Schrödinger equation

u′′ +
2µ

�2
(E − V )u = 0

can be written as

u′′ + k2u = 0 , r ≤ b ,

u′′ − k21u = 0 , r > b ,

where

k =

√
M(V0 − ε)

�2
,

k1 =

√
Mε

�2
.

With the boundary condition ψ = 0 at r = 0 and ψ =finite at r = ∞, we

get u(r) = A sin(kr), r ≤ b; Be−k1(r−b), r > b.

The continuity of ψ(r) and that of ψ′(r) at r = b require

A sin(kb) = B ,

kA cos(kb) = −k1B ,
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which give

cot(kb) = −k1
k
= −

√
ε

V0 − ε
.

If we take the approximation kb = π
2 , then A ≈ B and cot(kb) ≈ 0. The

latter is equivalent to assuming V0 � ε, which means there is only one

found state.

To normalize, consider

1 =

∫ ∞
0

|ψ(r)|24πr2dr

= 4πA2

∫ b

0

sin2(kr)dr + 4πB2

∫ ∞
b

e−2k1(r−b)dγ

≈ 2πA2b

(
1 +

1

bk1

)
.

Thus

A ≈ B ≈
[
2πb

(
1 +

1

bk1

)]− 12
.

(a) The probability of the proton moving within the range of the force

of the neutron is

P = 4πA2

∫ b

0

sin2(kr)dr =

(
1 +

1

k1b

)−1
.

As

k =

√
M(V0 − ε)

�
≈ π

2b
,

i.e.

ε ≈ V0 −
1

Mc2

(
π�c

2b

)2

= 40− 1

940

(
π × 1.97× 10−13
2× 1.9× 10−15

)2

= 11.8 MeV ,

and

k1 =

√
Mc2ε

�c
=

√
940× 11.8

1.97× 10−13 = 5.3× 10
14 m−1 ,
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we have

P =

(
1 +

1

5.3× 1014 × 1.9× 10−15
)−1

= 0.50 .

(b) The mean-square radius of the deuteron is

r2 = 〈Ψ|r2|Ψ〉r<b + 〈Ψ|r2|Ψ〉r>b

= 4πA2

[∫ b

0

sin2(kr)r2dr +

∫ ∞
b

e−2k1(r−b)r2dr

]

=
b2

1 + 1
k1b

[(
1

3
+
4

π2

)
+

1

k1b
+

1

(k1b)2
+

1

2(k1b)3

]

≈ b2

2

(
1

3
+
4

π2
+ 2.5

)
= 5.8× 10−30m2 .

Hence

(r2)
1
2 = 2.4× 10−15 m.

2051

(a) A neutron and a proton can undergo radioactive capture at rest:

p + n → d + γ. Find the energy of the photon emitted in this capture. Is

the recoil of the deuteron important?

(b) Estimate the energy a neutron incident on a proton at rest must

have if the radioactive capture is to take place with reasonable probability

from a p-state (l = 1). The radius of the deuteron is ∼ 4× 10−13 cm.
mp = 1.00783 amu, mn = 1.00867 amu, md = 2.01410 amu, 1 amu =

1.66× 10−24 g = 931 MeV, 1 MeV = 1.6 × 10−13 joule = 1.6 × 10−6 erg,
� = 1.05× 10−25 erg.s.

(Wisconsin)

Solution:

(a) The energy released in the radioactive capture is

Q = [mp +mn −md]c
2 = 1.00783+ 1.00867− 2.01410 amu = 2.234 MeV .
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This energy appears as the kinetic energies of the photon and recoil

deuteron. Let their respective momenta be p and −p. Then

Q = pc+
p2

2md
,

or

(pc)2 + 2mdc
2(pc)− 2mdc

2Q = 0 .

Solving for pc we have

pc = mdc
2

(
−1 +

√
1 +

2Q

mdc2

)
.

As Q/mdc
2 � 1, we can take the approximation

p ≈ mdc

(
−1 + 1 + Q

mdc2

)
≈ Q

c
.

Thus the kinetic energy of the recoiling deuteron is

Erecoil =
p2

2md
=

Q2

2mdc2
=

2.2342

2× 2.0141× 931 = 1.33× 10
−3 MeV .

Since
∆Erecoil

Eγ
=
1.34× 10−3
2.234

= 6.0× 10−4 ,

the recoiling of the deuteron does not significantly affect the energy of the

emitted photon, its effect being of the order 10−4.

(b) Let the position vectors of the neutron and proton be r1, r2 respec-

tively. The motion of the system can be treated as that of a particle of

mass µ =
mpmn

mp+mn
, position vector r = r1 − r2, having momentum p′ = µṙ

and kinetic energy T ′ = p′2

2µ in the center-of-mass frame. The laboratory

energy is

T = T ′ +
1

2
(mp +mn)Ṙ

2 ,

where Ṙ = (mnṙ1 +mpṙ2)/(mn +mp).

To a good approximation we can take mp � mn. Initially ṙ2 = 0, so

that Ṙ = 1
2 ṙ1, T =

mn

2 ṙ21 =
p2

2mn
, where p = mnṙ1 is the momentum of the

neutron in the laboratory. Substitution in the energy equation gives

p2

2mn
=

p′2

mn
+

p2

4mn
,
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or

p2 = 4p′2 .

The neutron is captured into the p-state, which has angular momentum

eigenvalue
√
1(1 + 1)�. Using the deuteron radius a as the radius of the

orbit, we have p′a ≈
√
2� and hence the kinetic energy of the neutron in

the laboratory

T =
p2

2mn
=
2p′2

mn
=

4

mnc2

(
�c

a

)2

=
4

940

(
1.97× 10−11
4× 10−13

)2

= 10.32 MeV .

2052

Consider the neutron-proton capture reaction leading to a deuteron and

photon, n + p → d + γ. Suppose the initial nucleons are unpolarized and

that the center of mass kinetic energy T in the initial state is very small

(thermal). Experimental study of this process provides information on

s-wave proton-neutron scattering, in particular on the singlet scattering

length as. Recall the definition of scattering length in the terms of phase

shift: k cot δ → −1/as, as k → 0. Treat the deuteron as being a pure

s-state .

(a) Characterize the leading multipolarity of the reaction (electric

dipole? magnetic dipole? etc.?). Give your reason.

(b) Show that the capture at low energies occurs from a spin singlet

rather than spin triplet initial state.

(c) Let B be the deuteron binding energy and let m = mp = mn be

the nucleon mass. How does the deuteron spatial wave function vary with

neutron-proton separation r for large r?

(d) In the approximation where the neutron-proton force is treated as

being of very short range, the cross section σ depends on T , B, as, m

and universal parameters in the form σ = σ0(T,B,m)f(as, B,m), where f

would equal unity if as = 0. Compute the factor f for as �= 0.
(Princeton)

Solution:

(a) As the center-of-mass kinetic energy of the n − p system is very

small, the only reaction possible is s-wave capture with l = 0. The possible
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initial states are 1S0 state: sp + sn = 0. As P (
1S0) = 1, we have J

p = 0+;
3S1 state: sp+ sn = 1. As P (

3S1) = 1, we have J
p = 1+. The final state is

a deuteron, with Jp = 1+, and thus S = 1, l = 0, 2 (Problem 2058(b)).

The initial states have l = 0. Hence there are two possible transitions

with ∆l = 0, 2 and no change of parity. Therefore the reactions are of the

M1, E2 types.

(b) Consider the two transitions above: 1S0 → 3S1, and
3S1 → 3S1.

As both the initial and final states of each case have l = 0, only those

interaction terms involving spin in the Hamiltonian can cause the transition.

For such operators, in order that the transition matrix elements do not

vanish the spin of one of the nucleons must change during the process.

Since

for 3S1 → 3S1, ∆l = 0, ∆S = 0 ,

for 1S0 → 3S1, ∆l = 0, ∆S �= 0 ,
the initial state which satisfies the transition requirement is the spin-singlet
1S0 state of the n− p system.

(c) Let the range of neutron-proton force be a. The radial part of the

Schrödinger equation for the system for s waves is

d2u

dr2
+
2µ

�2
(T − V )u = 0 ,

where u = rR(r), R(r) being the radial spatial wave function, µ = m
2 , and

V can be approximated by a rectangular potential well of depth B and

width a:

V =

{
−B for 0 ≤ r ≤ a ,

0 for a < r .

The solution for large r gives the deuteron spatial wave function as

R(r) =
A

r
sin(kr + δ)

where k =
√
mT
�
, A and δ are constants.

(d) The solutions of the radial Schrödinger equation for s waves are

u =




A sin(kr + δ), with k =

√
mT

�
, for r ≥ a ,

A′ sinKr, with K =

√
m(T +B)

�
, for r ≤ a .
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The continuity of the wave function and its first derivative at r = a gives

tan(ka+ δ) =
k

K
tanKa , (1)

and hence

δ = arctan

(
k

K
tanKa

)
− ka . (2)

The scattering cross section is then

σ =
4π

k2
sin2 δ .

Consider the case of k → 0. We have δ → δ0, K → K0 =
√
mB
�
, and, by

definition, as = − tan δ0
k .

With k → 0, Eq. (1) gives

ka+ tan δ0 ≈
k

K0
tanK0a(1− ka tan δ0) ≈

k

K0
tanK0a ,

or

ka− kas ≈
k

K0
tanK0a ,

i.e.,

as ≈ −a
(
tanK0a

K0a
− 1
)
.

If as = − tan δ0
k
→ 0, then δ0 → 0 also (k is small but finite). The

corresponding scattering cross section is

σ0 =
4π

k2
sin2 δ0 ≈

4π

k2
δ20 =

4π

k2
k2a2s = 4πa

2

(
tanK0a

K0a
− 1
)2

.

Hence

f(as, B,m) =
σ

σ0
≈ sin

2[arctan( kK tanKa)− ka]

k2a2( tanK0a
K0a

− 1)2

≈ sin
2[arctan( k

K
tanKa)− ka]

k2a2s
.
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2053

The only bound two-nucleon configuration that occurs in nature is

the deuteron with total angular momentum J = 1 and binding energy

−2.22 MeV.
(a) From the above information alone, show that the n − p force must

be spin dependent.

(b) Write down the possible angular momentum states for the deuteron

in an LS coupling scheme. What general liner combinations of these states

are possible? Explain.

(c) Which of the states in (b) are ruled out by the existence of the

quadrupole moment of the deuteron? Explain. Which states, in addition,

are ruled out if the deuteron has pure isospin T = 0?

(d) Calculate the magnetic moment of the deuteron in each of the al-

lowed states in part (c), and compare with the observed magnetic moment

µd = 0.875µN , µN being the nuclear magneton.

(NOTE: µp = 2.793µN and µn = −1.913µN)
The following Clebsch–Gordan coefficients may be of use:

[Notation; 〈J1J2M1M2|JTOTMTOT〉]

〈2, 1; 2,−1|1, 1〉 = (3/5)1/2 ,

〈2, 1; 1, 0|1, 1〉 = −(3/10)1/2 ,

〈2, 1; 0, 1|1, 1〉 = (1/10)1/2 .

(Princeton)

Solution:

(a) The spin of naturally occurring deuteron is J = 1. As J = sn+sp+lp,

we can have

for |sn + sp| = 1 , l = 0, 1, 2, possible states 3S1 · 3P1, 3D1 ,

for |sn + sp| = 0 , l = 1, possible state 1P1 .

However, as no stable singlet state 1S0, where n, p have antiparallel spins

and l = 0, is found, this means that when n, p interact to form S = 1 and

S = 0 states, one is stable and one is not, indicating the spin dependence

of nuclear force.
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(b) As shown above, in LS coupling the possible configurations are 3S1,
3D1 of even party and

3P1,
1P1 of odd parity.

As the deuteron has a definite parity, only states of the same parity can

be combined. Thus

Ψ(n, p) = a3S1 + b3D1 or c
3P1 + d1P1 ,

where a, b, c, d are constants, are the general linear combinations possible.

(c) l = 1 in the P state corresponds to a translation of the center of mass

of the system, and does not give rise to an electric quadrupole moment. So

the existence of an electric quadrupole moment of the deuteron rules out the

combination of P states. Also, in accordance with the generalized Pauli’s

principle, the total wave function of the n−p system must be antisymmetric.
Thus, in

Ψ(n, p) = Ψl(n, p)Ψs(n, p)ΨT (n, p) ,

where l, s, T label the space, spin and isospin wave functions, as T = 0

and so the isospin wave function is exchange antisymmetric, the combined

space and spin wave function must be exchange symmetric. It follows that

if l = 1, then S = 0, if l = 0, 2 then S = 1. This rules out the 3P1 state.

Hence, considering the electric quadrupole moment and the isospin, the

deuteron can only be a mixed state of 3S1 and
3D1.

(d) For the 3S1 state, l = 0, and the orbital part of the wave function

has no effect on the magnetic moment; only the spin part does. As S = 1,

the n and p have parallel spins, and so

µ(3S1) = µp + µn = (2.793− 1.913)µN = 0.88µN .

For the 3D1 state, when m = 1, the projection of the magnetic moment

on the z direction gives the value of the magnetic moment. Expanding the

total angular momentum |1, 1〉 in terms of the D states we have

|1, 1〉 =
√
3

5
|2, 2, 1,−1〉 −

√
3

10
|2, 1, 1, 0〉+

√
1

10
|2, 0, 1, 1〉 .



280 Problems and Solutions in Atomic, Nuclear and Particle Physics

The contribution of the D state to the magnetic moment is therefore

µ(3D1) =

[
3

5
(glml1 + gsms1) +

3

10
(glml2 + gsms2)

+
1

10
(glml3 + gsms3)

]
µN

=

[(
3

5
ml1 +

3

10
ml2 +

1

10
ml3

)
× 1
2

+

(
3

5
ms1 +

3

10
ms2 +

1

10
ms3

)
× 0.88

]
µN

=0.31µN .

Note that gl is 1 for p and 0 for n, gs is 5.5855 for p and −3.8256 for n,
and so gl is

1
2 and gs is 0.88 for the system (Problem 2056).

As experimentally µd = 0.857µN , the deuteron must be a mixed state

of S and D. Let the proportion of D state be x, and that of S state be

1− x. Then

0.88(1− x) + 0.31x = 0.857 ,

giving x ≈ 0.04, showing that the deuteron consists of 4% 3D1 state and

96% 3S1 state.

2054

Consider a nonrelativistic two-nucleon system. Assume the interaction

is charge independent and conserves parity.

(a) By using the above assumptions and the Pauli principle, show that

S2, the square of the two-nucleon spin, is a good quantum number.

(b) What is the isotopic spin of the deuteron? Justify your answer!

(c) Specify all states of a two-neutron system with total angular mo-

mentum J ≤ 2. Use the notation 2S+1XJ where X gives the orbital angular

momentum.

(SUNY Buffalo)

Solution:

(a) Let the total exchange operator of the system be P = P ′P12, where

P ′ is the space reflection, or parity, operator, P12 is the spin exchange
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operator

P12 =
1

2
(1 + σ1 · σ2) = S2 − 1 ,

where σi = 2si(i = 1, 2), S = s1 + s2, using units where � = 1. Pauli’s

principle gives [P,H] = 0, and conservation of parity gives [P ′,H] = 0. As

0 = [P,H] = [P ′P12,H] = P ′[P12,H] + [P
′,H]P12

=P ′[P12,H] = P ′[S2 − 1,H] = P ′[S2,H] ,

we have [S2,H] = 0, and so S2 is a good quantum number.

(b) The isospin of the nuclear ground state always takes the smallest

possible value. For deuteron,

T = Tp +Tn, Tz = Tpz + Tnz =
1

2
− 1
2
= 0 .

For ground state T = 0.

(c) As S = s1 + s2 and s1 = s2 =
1
2 the quantum number S can be 1 or

0. The possible states with J ≤ 2 are

S = 0 , l = 0 : 1S0 ,

S = 0 , l = 1 : 1P1 ,

S = 0 , l = 2 : 1D2 ,

S = 1 , l = 0 : 3S1 ,

S = 1 , l = 1 : 3P2,
3P1,

3P0 ,

S = 1 , l = 2 : 3D2,
3D1 ,

S = 1 , l = 3 : 3F2 ,

However, a two-neutron system is required to be antisymmetric with respect

to particle exchange. Thus (−1)l+S+1 = −1, or l + S = even. Hence the

possible states are 1S0,
1D2,

3P2,
3P1,

3P0,
3F2.

2055

Consider the potential between two nucleons. Ignoring velocity-

dependent terms, derive the most general form of the potential which is
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consistent with applicable conservation laws including that of isotopic spin.

Please list each conservation law and indicate its consequences for the

potential.

(Chicago)

Solution:

(a) Momentum conservation – invariance in space translation.

This law means that the potential function depends only on the relative

position between the two nucleons x = x1 − x2.
(b) Angular momentum conservation – invariance in continuous space

rotation: x′ = R̂x, J(i)′ = R̂J(i), i = 1, 2, where R̂ is the rotational

operator.

The invariants in the rotational transformation are 1, x2 J(i) · x, J(1) ·
J(2) and [J(1) × J(2)] · x. Terms higher than first order in J(1) or in J(2)
can be reduced as JiJj = δij + iεijkJk. Also (J

(1) × x) · (J(2) × x) =
(J(1) × x)× J(2) · x = (J(1) · J(2))x2 − (J(1) · x)(J(2) · x).
(c) Parity conservation – invariance in space reflection: x′ = −x, J(i)′ =

J(i), i = 1, 2.

Since x is the only polar vector, in the potential function only terms

of even power in x are possible. Other invariants are 1, x2, J(1) · J(2),
(J(1) · x)(J(2) · x).
(d) Isotopic spin conservation – rotational invariance in isotopic spin

space:

I(i)′ = RJI
(i), i = 1, 2 .

The invariants are 1 and I(1) · I(2).
(e) Conservation of probability – Hamiltonian is hermitian: V + = V .

This implies the realness of the coefficient of the potential function,

i.e., Vsk(r), where r = |x|, is real. Thus in

V (x1,x2,J
(1),J(2), I(1), I(2)) = Va + J

(1) · J(2)Vb ,

where Va and Vb are of the form

V0(r) + V1(r)J
(1) · J(2) + V2(r)

(J(1) · x)(J(2) · x)
x2

,

as the coefficients Vsk(r) (s = a, b; k = 0, 1, 2) are real functions.
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(f) Time reversal (inversion of motion) invariance:

V = U−1V ∗U, U−1J∗U = −J .

This imposes no new restriction on V .

Note that V is symmetric under the interchange 1 ↔ 2 between two

nucleons.

2056

The deuteron is a bound state of a proton and a neutron of total angular

momentum J = 1. It is known to be principally an S(l = 0) state with a

small admixture of a D(l = 2) state.

(a) Explain why a P state cannot contribute.

(b) Explain why a G state cannot contribute.

(c) Calculate the magnetic moment of the pure D state n − p system

with J = 1. Assume that the n and p spins are to be coupled to make

the total spin S which is then coupled to the orbital angular momentum

L to give the total angular momentum J. Express your result in nuclear

magnetons. The proton and neutron magnetic moments are 2.79 and −1.91
nuclear magnetons respectively.

(CUSPEA)

Solution:

(a) The P state has a parity opposite to that of S and D states. As

parity is conserved in strong interactions states of opposite parities cannot

be mixed. Hence the P state cannot contribute to a state involving S and

D states

(b) The orbital angular momentum quantum number of G state is l = 4.

It cannot be coupled with two 1/2 spins to give J = 1. Hence the G state

cannot contribute to a state of J = 1.

(c) We have J = L+ S,

µ =
[(gLL+ gsS) · J]

J(J + 1)
Jµ0 ,
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where µ0 is the nuclear magneton. By definition,

S = sp + sn ,

µs =
[(gpsp + gnsn) · S]

S(S + 1)
Sµ0 ≡ gsSµ0 ,

or

gs =
gpsp · S+ gnsn · S

S(S + 1)
.

Consider sn = S− sp. As s2n = S2 + s2p − 2S · sp, we have

S · sp =
S(S + 1) + sp(sp + 1)− sn(sn + 1)

2
= 1 ,

since sp = sn =
1
2 , S = 1 (for J = 1, l = 2). Similarly S · sn = 1. Hence

gs =
1

2
(gp + gn) .

As the neutron, which is uncharged, makes no contribution to the orbital

magnetic moment, the proton produces the entire orbital magnetic moment,

but half the orbital angular momentum. Hence gL =
1
2 .

Substitution of gs and gL in the expression for µ gives

µ

µ0
=

1
2 (L · J) + 1

2 (gp + gn)(S · J)
J(J + 1)

J .

As

L · J = 1

2
[J(J + 1) + L(L+ 1)− S(S + 1)]

=
1

2
(1× 2 + 2× 3− 1× 2) = 3 ,

S · J = 1

2
[J(J + 1) + S(S + 1)− L(L+ 1)]

=
1

2
(1× 2 + 1× 2− 2× 3) = −1 ,

µ

µ0
=
1

2

(
3

2
− gp + gn

2

)
J .
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with µp = gpspµ0 =
1
2gpµ0, µn = gnsnµ0 =

1
2gnµ0, we have

µ =

(
3

4
− µp + µn

2

)
µ0 =

(
3

4
− 2.79− 1.91

2

)
µ0 = 0.31µ0 .

2057

(a) The deuteron (21H) has J = 1� and a magnetic moment (µ =

0.857µN) which is approximately the sum of proton and neutron magnetic

moments (µp = 2.793µN , and µn = −1.913µN). From these facts what can
one infer concerning the orbital motion and spin alignment of the neutron

and proton in the deuteron?

(b) How might one interpret the lack of exact equality of µ and µn+µp?

(c) How can the neutron have a nonzero magnetic moment?

(Wisconsin)

Solution:

(a) As µ ≈ µn + µp, the orbital motions of proton and neutron make

no contribution to the magnetic moment of the deuteron. This means that

the orbital motion quantum number is l = 0. As J = 1 the spin of the

deuteron is 1 and it is in the 3S1 state formed by proton and neutron of

parallel-spin alignment.

(b) The difference between µ and µn+µp cannot be explained away by

experimental errors. It is interpreted as due to the fact that the neutron

and proton are not in a pure 3S1 state, but in a mixture of
3S1 and

3D1

states. If a proportion of the latter of about 4% is assumed, agreement with

the experimental value can be achieved.

(c) While the neutron has net zero charge, it has an inner structure.

The current view is that the neutron consists of three quarks of fractional

charges. The charge distribution inside the neutron is thus not symmetrical,

resulting in a nonzero magnetic moment.

2058

The deuteron is a bound state of a proton and a neutron. The Hamil-

tonian in the center-of-mass system has the form

H =
p2

2µ
+V1(r) +σp ·σnV2(r) +

[(
σp ·
x

r

)(
σn ·

x

r

)
− 1
3
(σp · σn)

]
V3(r) ,
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where x = xn−xp, r = |x|, σp and σn are the Pauli matrices for the spins
of the proton and neutron, µ is the reduced mass, and p is conjugate to x.

(a) Total angular momentum (J2 = J(J + 1)) and parity are good

quantum numbers. Show that if V3 = 0, total orbital angular momentum

(L2 = L(L+1)) and total spin (S2 = S(S+1)) are good quantum numbers,

where S = 1
2 (σp + σn). Show that if V3 �= 0, S is still a good quantum

number. [It may help to consider interchange of proton and neutron spins.]

(b) The deuteron has J = 1 and positive parity. What are the possible

values of L? What is the value of S?

(c) Assume that V3 can be treated as a small perturbation. Show that

in zeroth order (V3 = 0) the wave function of the state with Jz = +1 is of

the form Ψ0(r)|α, α〉, where |α, α〉 is the spin state with spz = snz = 1/2.

What is the differential equation satisfied by Ψ0(r)?

(d) What is the first order shift in energy due to the term in V3? Suppose

that to first order the wave function is

Ψ0(r)|α, α〉 +Ψ1(x)|α, α〉 +Ψ2(x)(|α, β〉 + |β, α〉) + Ψ3(x)|β, β〉 ,
where |β〉 is a state with sz = − 1

2 and Ψ0 is as defined in part (c). By

selecting out the part of the Schördinger equation that is first order in V3
and proportional to |α, α〉, find the differential equation satisfied by Ψ1(x).

Separate out the angular dependence of Ψ1(x) and write down a differential

equation for its radial dependence.

(MIT )

Solution:

(a) We have [L2,σp · σn] = 0, [L2, Vi(r)] = 0, [S
2, Vi(r)] = 0, [S

2,p2] =

0; [S2,σp ·σn] = [S2, 2S2−3] = 0 as S2 = s2p+s
2
n+2sp ·sn = 3

4+
3
4+

1
2σp ·σn;[

S2, 3
(
σp ·
x

r

)(
σn ·

x

r

)
− σp · σn

]

=

[
S2,

12(s · x)2
r2

− 2S2 + 3
]
=

[
S2,

12(s · x)2
r2

]

=
12(s · x)

r2
[S2, s · x] + [S2, s · x] 12(s · x)

r2
= 0

as
(σp · x)

r

(σn · x)
r

=
4

r2
(sp · x)(sn · x) =

4

r2
(s · x)2 ;

[L2,p2] = L[L,p2] + [L,p2]L = 0 as [lα,p
2] = 0.
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Hence if V3 = 0, [L
2,H] = 0, [S2,H] = 0, and the total orbital angu-

lar momentum and total spin are good quantum numbers. If V3 �= 0, as
[S2,H] = 0, S is still a good quantum number.

(b) The possible values of L are 0,2 for positive parity, and so the value

of S is 1.

(c) If V3 = 0, the Hamiltonian is centrally symmetric. Such a symmetric

interaction potential between the proton and neutron gives rise to an S state

(L = 0). The S state of deuteron would have an admixture of D-state if

the perturbation V3 is included.

In the case of V3 = 0, L = 0, S = 1 and Sz = 1, so Jz = +1 and the

wave function has a form Ψ0(r)|α, α〉. Consider

HΨ0(r)|α, α〉 =
[
−∇

2

2µ
+ V1(r) + (2S

2 − 3)V2(r)
]
Ψ0(r)|α, α〉

=

[
−∇

2

2µ
+ V1(r) + V2(r)

]
Ψ0(r)|α, α〉

= EcΨ0(r)|α, α〉

noting that 2S2 − 3 = 2.1.2− 3 = 1. Thus Ψ0(r) satisfies

[
−∇

2

2µ
+ V1(r) + V2(r) −Ec

]
Ψ0(r) = 0 ,

or

− 1
2µ

1

r2
d

dr
[r2Ψ′0(r)] + [V1(r) + V2(r) −Ec]Ψ0(r) = 0 ,

i.e.,

− 1
2µ
Ψ′′0(r) −

1

µr
Ψ′0(r) + [V1(r) + V2(r) −Ec]Ψ0(r) = 0 .

(d) Now, writing S12 for the coefficient of V3(r),

H = −∇
2

2µ
+ V1(r) + (2S

2 − 3)V2(r) + S12V3(r)

= −∇
2

2µ
+ V1(r) + V2(r) + S12V3(r) ,
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so

HΨ =

(
−∇

2

2µ
+ V1 + V2

)
Ψ0(r)|α, α〉 +

(
−∇

2

2µ
+ V1 + V2

)
[Ψ1|α, α〉

+Ψ2(|α, β〉 + |β, α〉) + Ψ3|β, β〉] + S12V3Ψ0|α, α〉

=EcΨ0(r)|α, α〉 +Ec[Ψ1|α, α〉 +Ψ2(|α, β〉

+ |β, α〉) + Ψ3|β, β〉] + ∆EΨ0(r)|α, α〉 ,

where

S12V3Ψ0(r)|α, α〉 = [(σpz cos θ · σnz cos θ)|α, α〉 −
1

3
|α, α〉]V3Ψ0(r) + · · ·

=

(
cos2 θ − 1

3

)
V3Ψ0(r)|α, α〉 + · · · ,

terms not proportional to |α, α〉 having been neglected.
Selecting out the part of the Schrödinger equation that is first order in

V3 and proportional to |α, α〉, we get
(
−∇

2

2µ
+ V1 + V2

)
Ψ1(x) +

(
cos2 θ − 1

3

)
V3Ψ0(r) = EcΨ1(x)+∆EΨ0(r) .

Thus the angular-dependent part of Ψ1(x) is

Y20 = 3

(
5

16π

) 1
2
(
cos2 θ − 1

3

)
,

since for the state |α, α〉, Sz = 1 and so Lz = 0, i.e. the angular part of the
wave function is Y20. Therefore we have

− 1

2µ

1

r2
d

dr

(
r2
dΨ1(r)

dr

)
+ V1(r)Ψ1(r) + V2(r)Ψ2(r)

+
l(l + 1)

r2
Ψ1(r) +

1

3

√
16π

5
V3Ψ0(r)

= EcΨ1(r) + ∆EΨ0(r)
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with Ψ1(x) = Ψ1(r)Y20, l = 2, or

− 1

2µ
Ψ′′1(r)−

1

µr
Ψ′1(r) +

[
V1(r) + V2(r) +

6

r2
−Ec

]
Ψ1(r)

+

(
1

3

√
16π

5
V3 −∆E

)
Ψ0(r) = 0

with

∆E =

(
cos2 θ − 1

3

)
V3 .

4. NUCLEAR MODELS (2059 2075)

2059

What are the essential features of the liquid-drop, shell, and collective

models of the nucleus? Indicate what properties of the nucleus are well

predicted by each model, and how the model is applied.

(Columbia)

Solution:

It is an empirical fact that the binding energy per nucleon, B, of a

nucleus and the density of nuclear matter are almost independent of the

mass number A. This is similar to a liquid-drop whose heat of evaporation

and density are independent of the drop size. Add in the correction terms of

surface energy, Coulomb repulsion energy, pairing energy, symmetry energy

and we get the liquid-drop model. This model gives a relationship between

A and Z of stable nuclei, i.e., the β-stability curve, in agreement with

experiment. Moreover, the model explains why the elements 43Te, 61Pm

have no β-stable isobars. If we treat the nucleus’s radius as a variable

parameter in the mass-formula coefficients asurface and avolume and fit the

mass to the experimental value, we find that the nuclear radius so deduced

is in good agreement with those obtained by all other methods. So the

specific binding energy curve is well explained by the liquid-drop model.

The existence of magic numbers indicates that nuclei have internal struc-

ture. This led to the nuclear shell model similar to the atomic model, which

could explain the special stability of the magic-number nuclei. The shell

model requires:
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(1) the existence of an average field, which for a spherical nucleus is a

central field,

(2) that each nucleon in the nucleus moves independently,

(3) that the number of nucleons on an energy level is limited by Pauli’s

principle,

(4) that spin-orbit coupling determines the order of energy levels.

The spin and parity of the ground state can be predicted using the shell

model. For even-even nuclei the predicted spin and parity of the ground

state, 0+, have been confirmed by experiment in all cases. The prediction is

based on the fact that normally the spin and parity are 0+ when neutrons

and protons separately pair up. The predictions of the spin and parity of

the ground state of odd-A nuclei are mostly in agreement with experiment.

Certain aspects of odd-odd nuclei can also be predicted. In particular it

attributes the existence of magic numbers to full shells.

The shell model however cannot solve all the nuclear problems. It is

quite successfull in explaining the formation of a nucleus by adding one

or several nucleons to a full shell (spherical nucleus), because the nucleus

at this stage is still approximately spherical. But for a nucleus between

two closed shells, it is not spherical and the collective motion of a number

of nucleons become much more important. For example, the experimental

values of nuclear quadrupole moment are many times larger than the values

calculated from a single particle moving in a central field for a nucleus

between full shells. This led to the collective model, which, by considering

the collective motion of nucleons, gives rise to vibrational and rotational

energy levels for nuclides in the ranges of 60 < A < 150 and 190 < A < 220,

150 < A < 190 and A > 220 respectively:

2060

Discuss briefly the chief experimental systematics which led to the shell

model description for nuclear states. Give several examples of nuclei which

correspond to closed shells and indicate which shells are closed.

(Wisconsin)

Solution:

The main experimental evidence in support of the nuclear shell model is

the existence of magic numbers. When the number of the neutrons or of the

protons in a nucleus is 2, 8, 20, 28, 50, 82 and 126 (for neutrons only), the
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nucleus is very stable. In nature the abundance of nuclides with such magic

numbers are larger than those of the nearby numbers. Among all the stable

nuclides, those of neutron numbers 20, 28, 50 and 82 have more isotones,

those of proton numbers 8, 20, 28, 50 and 82 have more stable isotopes, than

the nearby nuclides. When the number of neutrons or protons in a nuclide

is equal to a magic number, the binding energy measured experimentally is

quite different from that given by the liquid-drop model. The existence of

such magic numbers implies the existence of shell structure inside a nucleus

similar to the electron energy levels in an atom.
4He is a double-magic nucleus; its protons and neutrons each fill up the

first main shell. 16O is also a double-magic nucleus, whose protons and neu-

trons each fill up the first and second main shells. 208Pb is a double-magic

nucleus, whose protons fill up to the sixth main shell, while whose neutrons

fill up to the seventh main shell. Thus these nuclides all have closed shells.

2061

(a) Discuss the standard nuclear shell model. In particular, characterize

the successive shells according to the single-particle terms that describe the

shell, i.e., the principal quantum number n, the orbital angular momentum

quantum number l, and the total angular momentum quantum number

j (spectroscopic notation is useful here, e.g., 2s1/2, 1p3/2, etc..). Discuss

briefly some of the basic evidence in support of the shell model.

(b) Consider a nuclear level corresponding to a closed shell plus a single

proton in a state with the angular momentum quantum numbers l and j.

Of course j = l ± 1/2. Let gp be the empirical gyromagnetic ratio of the
free proton. Compute the gyromagnetic ratio for the level in question, for

each of the two cases j = l + 1/2 and j = l− 1/2.
(Princeton)

Solution:

(a) The basic ideas of the nuclear shell model are the following. Firstly

we assume each nucleon moves in an average field which is the sum of the

actions of the other nucleons on it. For a nucleus nearly spherically in

shape, the average field is closely represented by a central field. Second, we

assume that the low-lying levels of a nucleus are filled up with nucleons in

accordance with Pauli’s principle. As collisions between nucleons cannot

cause a transition and change their states, all the nucleons can maintain
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Fig. 2.11

their states of motion, i.e., they move independently in the nucleus. We can

take for the average central field a Woods–Saxon potential well compatible

with the characteristics of the interaction between nucleons, and obtain the

energy levels by quantummechanical methods. Considering the spin-orbital

interaction, we get the single-particle energy levels (Fig. 2.11), which can

be filled up with nucleons one by one. Note that each level has a degeneracy

2j + 1. So up to the first 5 shells as shown, the total number of protons or

neutrons accommodated are 2, 8, 20, 28 and 50.

The main experimental evidence for the shell model is the existence of

magic numbers. Just like the electrons outside a nucleus in an atom, if

the numbers of neutrons on protons in a nucleus is equal to some ‘magic

number’ (8,20,28,50 or 82), the nucleus has greater stability, larger binding

energy and abundance, and many more stable isotopes.

(b) According to the shell model, the total angular momentum of the

nucleons in a closed shell is zero, so is the magnetic moment. This means

that the magnetic moment and angular momentum of the nucleus are de-

termined by the single proton outside the closed shell.

As

µj = µl + µs ,

i.e.,

gjj = gll+ gss ,

we have

gjj · j = gll · j+ gss · j .
With

l · j = 1
2
(j2 + l2 − s2) = 1

2
[j(j + 1) + l(l + 1)− s(s+ 1)] ,

s · j = 1
2
(j2 + s2 − l2) = 1

2
[j(j + 1) + s(s+ 1)− l(l + 1)] ,
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we have

gj = gl
j(j + 1) + l(l + 1)− s(s+ 1)

2j(j + 1)
+ gs

j(j + 1) + s(s+ 1)− l(l+ 1)

2j(j + 1)
.

For proton, gl = 1, gs = gp, the gyromagnetic ratio for free proton (l =

0, j = s), s = 1
2 . Hence we have

gj =



2j − 1
2j

+
gp

2j
for j = l + 1/2 ,

1

j + 1

(
j +

3

2
− gp

2

)
for j = l − 1/2 .

2062

The energy levels of the three-dimensional isotropic harmonic oscillator

are given by

E = (2n+ l + 3/2)�ω =

(
N +

3

2

)
�ω .

In application to the single-particle nuclear model �ω is fitted as

44A−
1
3 MeV.

(a) By considering corrections to the oscillator energy levels relate the

levels for N ≤ 3 to the shell model single-particle level scheme. Draw an en-
ergy level diagram relating the shell model energy levels to the unperturbed

oscillator levels.

(b) Predict the ground state spins and parities of the following nuclei

using the shell model:

3
2He, 17

8 O, 34
19K, 41

20Ca .

(c) Strong electric dipole transitions are not generally observed to con-

nect the ground state of a nucleus to excited levels lying in the first 5 MeV

of excitation. Using the single-particle model, explain this observation and

predict the excitation energy of the giant dipole nuclear resonance.

(Princeton)

Solution:

(a) Using LS coupling, we have the splitting of the energy levels of a

harmonic oscillator as shown in Fig. 2.12.
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Fig. 2.12

(b) According to Fig. 2.12 we have the following:

3
2He: The last unpaired nucleon is a neutron of state 1s 12 , so J

π = (1/2)+.

17
8 O: The last unpaired nucleon is a neutron of state 1d5/2, so J

π = (5/2)+.

34
19K: The last two unpaired nucleons are a proton of state 2s 12 and a neutron

of state 1d3/2, so J
π = 1+.

41
20Ca: The last unpaired nucleon is a neutron of state 1f7/2, so J

π = (7/2)−.

(c) The selection rules for electric dipole transition are

∆J = Jf − Ji = 0, 1, ∆π = −1 ,

where J is the nuclear spin, π is the nuclear parity. As �ω = 44A−
1
3 MeV,

�ω > 5 MeV for a nucleus. When N increases by 1, the energy level

increases by ∆E = �ω > 5 MeV. This means that excited states higher than

the ground state by less than 5 MeV have the same N and parity as the

latter. As electric dipole transition requires ∆π = −1, such excited states
cannot connect to the ground state through an electric dipole transition.

However, in LS coupling the energy difference between levels of different

N can be smaller than 5 MeV, especially for heavy nuclei, so that electric

dipole transition may still be possible.

The giant dipole nuclear resonance can be thought of as a phenomenon

in which the incoming photon separates the protons and neutrons in the

nucleus, increasing the potential energy, and causing the nucleus to vibrate.
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Resonant absorption occurs when the photon frequency equals resonance

frequency of the nucleus.

2063

To some approximation, a medium weight nucleus can be regarded as

a flat-bottomed potential with rigid walls. To simplify this picture still

further, model a nucleus as a cubical box of length equal to the nuclear

diameter. Consider a nucleus of iron-56 which has 28 protons and 28 neu-

trons. Estimate the kinetic energy of the highest energy nucleon. Assume

a nuclear diameter of 10−12 cm.

(Columbia)

Solution:

The potential of a nucleon can be written as

V (x, y, z) =



∞, |x|, |y|, |z| > a

2
,

0, |x|, |y|, |z| < a

2
,

where a is the nuclear diameter. Assume the Schrödinger equation

− �
2

2m
∇2Ψ(x, y, z) + V (x, y, z)Ψ(x, y, z) = EΨ(x, y, z)

can be separated in the variables by letting Ψ(x, y, z) = Ψ(x)Ψ(y)Ψ(z).

Substitution gives

− �
2

2m

d2

dx2i
Ψ(xi) + V (xi)Ψ(xi) = EiΨ(xi) ,

with

V (xi) =



∞, |xi| >

a

2
,

0, |xi| <
a

2
,

i = 1, 2, 3; x1 = x, x2 = y, x3 = z, E = E1 +E2 +E3.

Solving the equations we have

Ψ(xi) = Ai sin(kixi) +Bi cos(kixi)
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with ki =
√
2mEi
�

. The boundary condition Ψ(xi)|xi=± a
2
= 0 gives

Ψ(xi) =




Ai sin
(nπ
a
xi

)
, with n even ,

Bi cos
(nπ
a
xi

)
, with n odd ,

and hence

Exi =
k2xi�

2

2m
=

π2n2xi�
2

2ma2
, nx = 1, 2, 3, . . . ,

E = E0(n
2
x + n2y + n2z) ,

where

E0 =
π2�2

2ma2
=

π2(c�)2

2mc2 · a2 =
π2(1.97× 10−11)2
2× 939× 10−24 = 2.04 MeV .

(nx, ny , nz)Number Number E

of states of nucleons

(111) 1 4 3E0

(211)

(121) 3 12 6E0

(112)

(221)

(122) 3 12 9E0

(212)

(311)

(131) 3 12 11E0

(113)

(222) 1 4 12E0

(123)

(132)

(231) 6 24 14E0

(213)

(312)

(321)
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According to Pauli’s principle, each state can accommodate one pair of

neutrons and one pair of protons, as shown in the table.

For 56Fe, Emax = 14E0 = 2.04× 14 = 28.6 MeV.

2064

Light nuclei in the shell model.

(a) Using the harmonic-oscillator shell model, describe the expected

configurations for the ground states of the light stable nuclei with A ≤ 4,
specifying also their total L, S, J and T quantum numbers and parity.

(b) For 4He, what states do you expect to find at about one oscillator

quantum of excitation energy?

(c) What radioactive decay modes are possible for each of these states?

(d) Which of these states do you expect to find in 4H? Which do you

expect to find in 4Be?

(e) Which of the excited states of 4He do you expect to excite in α-

particle inelastic scattering? Which would you expect to be excited by

proton inelastic scattering?

(Princeton)

Solution:

(a) According to Fig. 2.11 we have

A = 1: The stable nucleus 1H has configuration: p(1s1/2)
1,

L = 0, S = 1/2, Jp = 1/2+, T = 1/2 .

A = 2: The stable nucleus 2H has configuration: p(1s1/2)
1, n(1s1/2)

1,

L = 0, S = 1, Jp = 1+, T = 0 .

A = 3: The stable nucleus 3He has configuration: p(1s1/2)
2, n(1s1/2)

1,

L = 0, S = 1/2, Jp = 1/2+, T = 1/2 .

A = 4: The stable nucleus 4He has configuration: p(1s1/2)
2, n(1s1/2)

2,

L = 0, S = 0, Jp = 0+, T = 0 .
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(b) Near the first excited state of the harmonic oscillator, the energy

level is split into two levels 1p3/2 and 1p1/2 because of the LS coupling of

the p state. The isospin of 4He is Tz = 0, T = 0 for the ground state. So

the possible excitated states are the following:

(i) When a proton (or neutron) is of 1p3/2 state, the other of 1s1/2 state,

the possible coupled states are 1−, 2− (T = 0 or T = 1).

(ii) When a proton (or neutron) is of 1p1/2 state, the other of 1s1/2
state, the possible coupled states are 0−, 1− (T = 0 or 1).

(iii) When two protons (or two neutrons) are of 1p1/2 (or 1p3/2) state,

the possible coupled state is 0+ (T = 0).

(c) The decay modes of the possible states of 4He are:

Jp T Decay modes

Ground state: 0+ 0 Stable

Excited states: 0+ 0 p

0− 0 p, n

2− 0 p, n

2− 1 p, n

1− 1 p, nγ

0− 1 p, n

1− 1 p, nγ

1− 0 p, n, d

(d) 4H has isospin T = 1, so it can have all the states above with T = 1,

namely 2−, 1−, 0−.

The isospin of 4Be is T ≥ 2, and hence cannot have any of the states
above.

(e) α − α scattering is between two identical nuclei, so the total wave

function of the final state is exchange symmetric and the total angular

momentum is conserved

In the initial state, the two α-particles have L = 0, 2, . . .

In the final state, the two α-particles are each of 0− state, L = 0, 2 . . .

Thus an α-particle can excite 4He to 0− state while a proton can excite

it to 2−, or 0− states.
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2065

Explain the following statements on the basis of physical principles:

(a) The motion of individual nucleons inside a nucleus may be regarded

as independent from each other even though they interact very strongly.

(b) All the even-even nuclei have 0+ ground state.

(c) Nuclei with outer shells partially filled by odd number of nucleons

tend to have permanent deformation.

(SUNY, Buffalo)

Solution:

(a) The usual treatment is based on the assumption that the interaction

among nucleons can be replaced by the action on a nucleon of the mean

field produced by the other nucleons. The nucleons are considered to move

independently of one another. Despite the high nucleon density inside a

nucleus it is assumed that the individual interactions between nucleons

do not manifest macroscopically. Since nucleons are fermions, all the low

energy levels of the ground state are filled up and the interactions among

nucleons cannot excite a nucleon to a higher level. We can then employ a

model of moderately weak interaction to describe the strong interactions

among nucleons.

(b) According to the nuclear shell model, the protons and neutrons in

an even-even nucleus tend to pair off separately, i.e., each pair of neutrons

or protons are in the same orbit and have opposite spins, so that the total

angular momentum and total spin of each pair of nucleons are zero. It

follows that the total angular momentum of the nucleus is zero. The parity

of each pair of nucleons is (−1)2l = +1, and so the total parity of the

nucleus is positive. Hence for an even-even nucleus, Jp = 0+.

(c) Nucleons in the outermost partially-filled shell can be considered as

moving around a nuclear system of zero spin. For nucleons with l �= 0, the
orbits are ellipses. Because such odd nucleons have finite spins and magnetic

moments, which can polarize the nuclear system, the nucleus tends to have

permanent deformation.

2066

Explain the following:
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(a) The binding energy of adding an extra neutron to a 3He nucleus

(or of adding an extra proton to a 3H nucleus) to form 4He is greater than

20 MeV. However neither a neutron nor a proton will bind stably to 4He.

(b) Natural radioactive nuclei such as 232Th and 238U decay in stages,

by α- and β-emissions, to isotopes of Pb. The half-lives of 232Th and 238U

are greater than 109 years and the final Pb-isotopes are stable; yet the

intermediate α-decay stages have much shorter half-lives – some less than

1 hour or even 1 second – and successive stages show generally a decrease

in half-life and an increase in α-decay energy as the final Pb-isotope is

approached.

(Columbia)

Solution:

(a) 4He is a double-magic nucleus in which the shells of neutrons and

protons are all full. So it is very stable and cannot absorb more neutrons or

protons. Also, when a 3He captures a neutron, or a 3H captures a proton

to form 4He, the energy emitted is very high because of the high binding

energy.

(b) The reason that successive stages of the decay of 232Th and 238U

show a decrease in half-life and an increase in α-decay energy as the final

Pb-isotopes are approached is that the Coulomb barrier formed between the

α-particle and the daughter nucleus during α-emission obstructs the decay.

When the energy of the α-particle increases, the probability of its pene-

trating the barrier increases, and so the half-life of the nucleus decreases.

From the Geiger–Nuttall formula for α-decays

logλ = A−BE
−1/2
d ,

where A and B are constants with A different for different radioactivity

series, λ is the α-decay constant and Ed is the decay energy, we see that a

small change in decay energy corresponds to a large change in half-life.

We can deduce from the liquid-drop model that the α-decay energy

Ed increases with A. However, experiments show that for the radioactive

family 232Th and 238U, Ed decreases as A increases. This shows that the

liquid-drop model can only describe the general trend of binding energy

change with A and Z, but not the fluctuation of the change, which can be

explained only by the nuclear shell model.
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2067

(a) What spin-parity and isospin would the shell model predict for the

ground states of 135 B,
13
6 C, and

13
7 N? (Recall that the p3/2 shell lies below

the p1/2.)

(b) Order the above isobaric triad according to mass with the lowest-

mass first. Briefly justify your order.

(c) Indicate how you could estimate rather closely the energy difference

between the two lowest-mass members of the above triad.

(Wisconsin)

Solution:

(a) The isospin of the ground state of a nucleus is I = |Z − N |/2,
where N,Z are the numbers of protons and neutrons inside the nucleus

respectively. The spin-parity of the ground state of a nucleus is decided by

that of the last unpaired nucleon. Thus (Fig. 2.11)

13
5 B : Jp =

(
3

2

)−
, as the unpaired proton is in 1p 3

2
state ,

I =
3

2
;

13
6 C : Jp =

(
1

2

)−
, as the unpaired neutron is in 1p1/2 state ,

I =
1

2
;

13
7 N : Jp =

(
1

2

)−
, as the unpaired proton is in 1p1/2state ,

I =
1

2
.

(b) Ordering the nuclei with the lowest-mass first gives 13
6 C,

13
7 N,

13
5 B.

13
6 C and

13
7 N belong to the same isospin doublet. Their mass difference

arises from the difference in Coulomb energy and the mass difference be-

tween neutron and proton, with the former being the chiefly cause. 13
7 N has

one more proton than 13
6 C, and so has greater Coulomb energy and hence

larger mass. Whereas 13
5 B has fewer protons, it has more neutrons and is
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far from the line of stable nuclei and so is less tightly formed. Hence it has

the largest mass.

(c) Consider the two lowest-mass members of the above triad, 136 C and
13
6 N. If the nuclei are approximated by spheres of uniform charge, each will

have electrostatic (Coulomb) energy W = 3Q2/5R, R being the nuclear

radius R ≈ 1.4A1/2 fm. Hence the mass difference is

[M(137 N)−M(136 C)]c2 =
3

5R
(Q2

N −Q2
C)− [Mn −M(1H)]c2

=
3�c

5R

(
e2

�c

)
(72 − 62)− 0.78

= 0.6× 197
137
× 49− 36
1.4× 131/3 − 0.78

= 2.62 MeV .

2068

In the nuclear shell model, orbitals are filled in the order

1s1/2, 1p3/2, 1p1/2, 1d5/2, 2s1/2, 1d3/2, etc.

(a) What is responsible for the splitting between the p3/2 and p1/2 or-

bitals?

(b) In the model, 16O (Z = 8) is a good closed-shell nucleus and has

spin and parity Jπ = 0+. What are the predicted Jπ values for 15O and
17O?

(c) For odd-odd nuclei a range of Jπ values is allowed. What are the

allowed values for 18F (Z = 9)?

(d) For even-even nuclei (e.g. for 18O) Jπ is always 0+. How is this

observation explained?

(Wisconsin)

Solution:

(a) The splitting between p3/2 and p1/2 is caused by the spin-orbit

coupling of the nucleons.

(b) Each orbital can accommodate 2j + 1 protons and 2j + 1 neutrons.

Thus the proton configuration of 15O is (1s1/2)
2(1p3/2)

4(1p1/2)
2, and its
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neutron configuration is (1s1/2)
2(1p3/2)

4(1p1/2)
1. As the protons all pair

up but the neutrons do not, the spin-parity of 15O is determined by the

angular momentum and parity of the unpaired neutron in the 1p 1
2
state.

Hence the spin-parity of 15O of Jp = 1/2−.

The proton configuration of 17O is the same as that of 15O, but its neu-

tron configuration is (1s1/2)
2(1p3/2)

4(1p1/2)
2(1d5/2)

1. So the spin-parity of
17O is that of the neutron in the 1d5/2 state, J

p = 5/2+.

(c) The neutron configuration of 18F is (1s1/2)
2(1p3/2)

4(1p1/2)
2(1d5/2)

1,

its proton configuration is (1s1/2)
2(1p3/2)

4(1p1/2)
2(1d5/2)

1. As there are

two unpaired nucleons, a range of Jp values are allowed, being decided by

the neutron and proton in the 1d5/2 states. As ln = 2, lp = 2, the parity

is π = (−1)ln+lp = +1. As jn = 5/2, jp = 5/2, the possible spins are

J = 0, 1, 2, 3, 4, 5. Thus the possible values of the spin-parity of 18F are

0+, 1+, 2+, 3+, 4+, 5+. (It is in fact 1+.)

(d) For an even-even nucleus, as an even number of nucleons are in

the lowest energy levels, the number of nucleons in every energy level is

even. As an even number of nucleons in the same energy level have an-

gular momenta of the same absolute value, and the angular momenta of

paired nucleons are aligned oppositely because of the pairing force, the to-

tal angular momentum of the nucleons in an energy level is zero. Since

all the proton shells and neutron shells have zero angular momentum, the

spin of an even-even nucleus is zero. As the number of nucleons in every

energy level of an even-even nucleus is even, the parity of the nucleus is

positive.

2069

The single-particle energies for neutrons and protons in the vicinity of
208
82 Pb126 are given in Fig. 2.13. Using this figure as a guide, estimate or

evaluate the following.

(a) The spins and parities of the ground state and the first two excited

states of 207Pb.

(b) The ground state quadrupole moment of 207Pb.

(c) The magnetic moment of the ground state of 209Pb.

(d) The spins and parities of the lowest states of 20883 Bi (nearly degener-

ate). What is the energy of the ground state of 208Bi relative to 208Pb?
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Fig. 2.13

(e) The isobaric analog state in 208Bi of the ground state of 208Pb is defined

as

T+|208Pb (ground state)〉

with T+ =
∑

i t+(i), where t+ changes a neutron into a proton. What

are the quantum numbers (spin, parity, isospin, z component of isospin) of

the isobaric analog state? Estimate the energy of the isobaric analog state

above the ground state of 208Pb due to the Coulomb interaction.

(f) Explain why one does not observe super-allowed Fermi electron or

positron emission in heavy nuclei.

(Princeton)

Solution:

(a) 20782 Pb consists of full shells with a vacancy for a neutron in p1/2 level.

The spin-parity of the ground state is determined by that of the unpaired

neutron in p1/2 and so is (1/2)
−. The first excited state is formed by a

f5/2 neutron transiting to p1/2. Its J
p is determined by the single neutron

vacancy left in f5/2 level and is (5/2)
−. The second excited state is formed
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by a p3/2 neutron refilling the f5/2 vacancy (that is to say a p3/2 neutron

goes to p1/2 directly). J
p of the nucleus in the second excited state is then

determined by the single neutron vacancy in p3/2 level and is
(
3
2

)−
. Hence

the ground and first two excited states of 207Pb have Jp = (12 )
−, (52 )

−, (32 )
−.

(b) The nucleon shells of 20782 Pb are full except there is one neutron short

in p1/2 levels. An electric quadrupole moment can arise from polarization

at the nuclear center caused by motion of neutrons. But as J = 1/2, the

electric quadrupole moment of 207Pb is zero.

(c) 209
82 Pb has a neutron in g9/2 outside the full shells. As the orbital

motion of a neutron makes no contribution to the nuclear magnetic moment,

the total magnetic moment equals to that of the neutron itself:

µ(209Pb) = −1.91µN , µN being the nuclear magneton.
(d) For 20883 Bi, the ground state has an unpaired proton and an unpaired

neutron, the proton being in h9/2, the neutron being in p1/2. As J =

1/2+9/2 = 5 (since both nucleon spins are antiparallel to l), lp = 5, ln = 1

and so the parity is (−1)lp+ln = +, the states has Jp = 5+. The first

excited state is formed by a neutron in f5/2 transiting to p1/2 and its spin-

parity is determined by the unpaired f5/2 neutron and h9/2 proton. Hence

J = 5/2 + 9/2 = 7, parity is (−1)1+5 = +, and so Jp = 7+. Therefore, the

two lowest states have spin-parity 5+ and 7+.

The energy difference between the ground states of 208Bi and 208Pb can

be obtained roughly from Fig. 2.13. As compared with 208Pb, 208Bi has

one more proton at h9/2 and one less neutron at p1/2 we have

∆E = E(Bi)−E(Pb) ≈ 7.2− 3.5 + 2∆ ≈ 3.7 + 1.5 = 5.2 MeV ,

where ∆ = mn−mp, i.e., the ground state of
208Bi is 5.2 MeV higher than

that of 208Pb.

(e) As T+ only changes the third component of the isospin,

T+|T, T3〉 = A|T, T3 + 1〉 .

Thus the isobaric analog state should have the same spin, parity and isospin,

but a different third component of the isospin of the original nucleus.

As 208Pb has Jp = 0+, T = 22, T3 = −22, 208Bi, the isobaric analog

state of 208Pb, has the same Jp and T but a different T3 = −21. The
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energy difference between the two isobaric analog states is

∆E ≈ 6
5

Ze2

R
+ (mH −mn)c

2 =
6

5

Z�c

R

(
e2

�c

)
− 0.78

=
6× 82× 197

5× 1.2× 2081/3 × 137 − 0.78 = 19.1 MeV .

(f) The selection rules for super-allowed Fermi transition are ∆J = 0,

∆P = +, ∆T = 0, so the wave function of the daughter nucleus is very

similar to that of the parent. As the isospin is a good quantum number

super-allowed transitions occur generally between isospin multiplets. For a

heavy nucleus, however, the difference in Coulomb energy between isobaric

analog states can be 10 MeV or higher, and so the isobaric analogy state

is highly excited. As such, they can emit nucleons rather than undergo

β-decay.

2070

The simplest model for low-lying states of nuclei with N and Z between

20 and 28 involves only f7/2 nucleons.

(a) Using this model predict the magnetic dipole moments of 41
20Ca21

and 41
21Sc20. Estimate crudely the electric quadrupole moments for these

two cases as well.

(b) What states are expected in 42
20Ca according to an application of this

model? Calculate the magnetic dipole and electric quadrupole moments for

these states. Sketch the complete decay sequence expected experimentally

for the highest spin state.

(c) The first excited state in 43
21Ca23 is shown below in Fig. 2.14 with

a half-life of 34 picoseconds for decay to the ground state. Estimate the

lifetime expected for this state on the basis of a single-particle model. The

Fig. 2.14
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experimental values are

µn = −1.91µN , µ(41Ca) = −1.59µN

µp = 2.79µN , µ(41Sc) = 5.43µN

(Princeton)

Solution:

(a) 41Ca has a neutron and 41Sc has a proton outside closed shells in

state 1f7/2. As closed shells do not contribute to the nuclear magnetic

moment, the latter is determined by the extra-shell nucleons. The nuclear

magnetic moment is given by

µ = gjµN ,

where j is the total angular momentum, µN is the nuclear magneton. For

a single nucleon in a central field, the g-factor is (Problem 2061)

g =
(2j − 1)gl + gs

2j
for j = l +

1

2
,

g =
(2j + 3)gl − gs

2(j + 1)
for j = l − 1

2
.

For neutron, gl = 0, gs = gn = − 1.91
1
2

= −3.82. As l = 3 and j = 7
2 = 3+

1
2 ,

we have for 41Ca

µ(41Ca) = −3.82
2j
× jµN = −1.91µN .

For proton, gl = 1, gs = gp =
2.79
1/2 = 5.58. As j = 7

2 = 3 + 1
2 , we have

for 41Sc

µ(41Sc) =
(7− 1) + 5.58

7
× 7
2
µN = 5.79µN .

Note that these values are only in rough agreement with the given experi-

mental values.

The electric quadrupole moment of 41Sc, which has a single proton

outside closed shells, is given by

Q(41Sc) = −e2〈r2〉 2j − 1
2(j + 1)

= −〈r2〉 2j − 1
2(j + 1)

,
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where 〈r2〉 is the mean-square distance from the center and the proton

charge is taken to be one. For an order-of-magnitude estimate take 〈r2〉 =
(1.2×A1/3)2 fm2. Then

Q(41Sc) = −6
9
× (1.2× 41 13 )2 = −1.14× 10−25 cm2 .

41Ca has a neutron outside the full shells. Its electric quadrupole moment

is caused by the polarization of the neutron relative to the nucleus center

and is

Q(41Ca) ≈ Z

(A− 1)2 |Q(
41Sc)| = 1.43× 10−27 cm2 .

(b) As shown in Fig. 2.15 the ground state of 42Ca nucleus is 0+. The

two last neutrons, which are in f7/2 can be coupled to form levels of J =

7, 6, 5 . . . , 0 and positive parity. Taking into account the antisymmetry for

identical particles, the possible levels are those with J = 6, 4, 2, 0. (We

require L+ S = even, see Problem 2054. As S = 0, J = even.)

Fig. 2.15

The magnetic dipole moment µ of a two-nucleon system is given by

µ = gJµN = (g1j1 + g2j2)µN

with J = j1 + j2. As
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gJ2 = g1j1 · J+ g2j2 · J ,

j1 · J =
1

2
(J2 + j21 − j22) ,

j2 · J =
1

2
(J2 + j22 − j21) ,

we have

gJ2 =
1

2
(g1 + g2)J

2 +
1

2
(g1 − g2)(j

2
1 − j22) .

or

g =
1

2
(g1 + g2) +

1

2
(g1 − g2)

j1(j1 + 1)− j2(j2 + 1)

J(J + 1)
.

For 42Ca, the two nucleons outside full shells each has j = 7/2. As

g1 = g2 =
−3.82
j1

, j1 =
7

2
,

we have µ(42Ca) = g1JµN = −1.09JµN with J = 0, 2, 4, 6.

The ground-state quadrupole moment of 42Ca is Q = 0. One can get

the excited state quadrupole moment using the reduced transition rate for

γ-transition

B(E2, 2+ → 0+) = e2Q2
0

16π

where Q0 is the intrinsic electric quadrupole moment. The first excited

state 2+ of 42Ca has excitation energy 1.524 MeV and

B(E2 : 2+ → 0+) = 81.5e2 fm4 ,

or

Q0 =
√
16π × 81.5 = 64 fm2 .

For other states the quadrupole moments are given by

Q =
K2 − J(J + 1)

(J + 1)(2J + 3)
Q0 = −

J(J + 1)Q0

(J + 1)(2J + 3)
=
−J
2J + 3

Q0

as K = 0. Thus Q = 18.3 fm2 for J = 2, 23.3 fm2 for J = 4, and 25.6 fm2

for J = 6.

(c) The selection rule for the γ-transition (52 )
− → (72 )

− is (52 − 7
2 ) ≤

L ≤ 5
2 +

7
2 , i.e. L = 1, 2, 3, 4, 5, 6, with the lowest order having the highest
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probability, for which parity is conserved. Then the most probable are

magnetic dipole transition M1 for which ∆P = −(−1)1+1 = +, or electric

quadrupole transition E2 for which ∆P = (−1)2 = +. According to the
single-particle model (Problem 2093),

λM1 =
1.9(L+ 1)

L[(2L+ 1)!!]2

(
3

L+ 3

)2(
Eγ

197

)2L+1

× (1.4×A1/3)2L−2 × 1021

=
1.9× 2
32

(
3

4

)2 (
0.37

197

)3

(1.4× 431/3)0 × 1021

= 1.57× 1012 s−1 ,

λE2 =
4.4(L+ 1)

L[(2L+ 1)!!]2

[
3

L+ 3

]2(
Eγ

197

)2L+1

× (1.4×A1/3)2L × 1021

=
4.4× 3

2× (5× 3)2
(

3

L+ 3

)2(
0.37

197

)5

(1.4× 431/3)4 × 1021

= 1.4× 108 s−1 .

As λE2 � λM1, E2 could be neglected, and so

T1/2 ≈
ln 2

λM1
=

ln 2

1.57× 1012 = 4.4× 10
−13 s .

This result from the single-particle model is some 20 times smaller than

the experimental value. The discrepancy is probably due to γ-transition

caused by change of the collective motion of the nucleons.

2071

The variation of the binding energy of a single neutron in a “realistic”

potential model of the neutron-nucleus interaction is shown in Fig. 2.16.

(a) What are the neutron separation energies for 40
20Ca and

208
82 Pb?

(b) What is the best neutron magic number between those for 40Ca and
208Pb?

(c) Draw the spectrum including spins, parities and approximate relative

energy levels for the lowest five states you would expected in 210Pb and

explain.
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Fig. 2.16

Fig. 2.17
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(d) The s-wave neutron strength function S0 is defined as the ratio of

the average neutron width 〈Γn〉 to the average local energy spacing 〈D〉:

S0 = 〈Γn〉/〈D〉 .

Figure 2.17 shows the variation of the thermal neutron strength function

S0 with mass number A. Explain the location of the single peak around

A ≈ 50, and the split peak around A ≈ 160. Why is the second peak split?
(Princeton)

Solution:

(a) The outermost neutron of 40Ca is the twentieth one. Figure 2.16

gives for A = 40 that the last neutron is in 1d3/2 shell with separation

energy of about 13 MeV.
208Pb has full shells, the last pair of neutrons being in 3p1/2 shell. From

Fig. 2.16 we note that for A = 208, the separation energy of each neutron

is about 3 MeV.

(b) The neutron magic numbers between 40Ca and 208Pb are 28, 50

and 82. For nuclei of N = Z, at the neutron magic number N = 28

the separation energies are about 13 MeV. At neutron number N = 50,

the separation energies are also about 13 MeV. At N=82, the separation

energies are about 12 MeV. However, for heavy nuclei, there are more

neutrons than protons, so A < 2N . On account of this, for the nuclei

of magic numbers 50 and 82, the separation energies are somewhat less

than those given above. At the magic number 28 the separation energy is

highest, and so this is the best neutron magic number.

(c) The last two neutrons of 210Pb are in 2g9/2 shell, outside of the

double-full shells. As the two nucleons are in the same orbit and will nor-

mally pair up to J = 0, the even-even nucleus has ground state 0+.

The two outermost neutrons in 2g9/2 of
210Pb can couple to form states

of J = 9, 8, 7 . . . . However a two-neutron system has isospin T = 1. As the

antisymmetry of the total wave function requires J +T = odd, the allowed

J are 8, 6, 4, 2, 0 and the parity is positive. Thus the spin-parities of the

lowest five states are 8+, 6+, 4+, 2+, 0+. Because of the residual interaction,

the five states are of different energy levels as shown in Fig. 2.18.

(d) Near A = 50 the s-wave strength function has a peak. This is

because when A = 50 the excitation energy of 3s energy level roughly equals

the neutron binding energy. A calculation using the optical model gives the
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Fig. 2.18

shape of the peak as shown in Fig. 2.17 (solid curve). When 150 < A < 190,

the s-wave strength function again peaks due to the equality of excitation

energy of 4s neutron and its binding energy. However, nuclear deformation

in this region is greater, particularly near A = 160 to 170, where the nuclei

have a tendency to deform permanently. Here the binding energies differ

appreciably from those given by the single-particle model: the peak of the

s-wave strength function becomes lower and splits into two smaller peaks.

2072

Figure 2.19 gives the low-lying states of 18O with their spin-parity as-

signments and energies (in MeV) relative to the 0+ ground state.

Fig. 2.19

(a) Explain why these Jp values are just what one would expect in the

standard shell model.

(b) What Jp values are expected for the low-lying states of 19O?

(c) Given the energies (relative to the ground state) of these 18O levels, it

is possible within the shell model, ignoring interconfiguration interactions,
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to compute the energy separations of the 19O levels. However, this requires

familiarity with complicated Clebsch–Gordon coefficients. To simplify mat-

ters, consider a fictitious situation where the 2+ and 4+ levels of 18O have

the energies 2 MeV and 6 23 MeV respectively. For this fictitious world,

compute the energies of the low-lying 19O levels.

(Princeton)

Solution:

(a) In a simple shell model, ignoring the residual interactions between

nucleons and considering only the spin-orbit coupling, we have for a system

of A nucleons,

H = ΣHi ,

with

Hi = Ti + Vi ,

Vi = V i
0 (r) + f(r)Si · li ,

HiΨi = EiΨi ,

Ψ =
A∏
i=1

ψi .

When considering residual interactions, the difference of energy between

different interconfigurations of the nucleons in the same level must be taken

into account.

For 18O nucleus, the two neutrons outside the full shells can fill the

1d5/2, 2s1/2 and 1d3/2 levels (see Fig. 2.16). When the two nucleons are

in the same orbit, the antisymmetry of the system’s total wave function

requires T + J = odd. As T = 1, J is even. Then the possible ground and

excited states of 18O are:

(1d5/2)
2 : J = 0+, 2+, 4+, T = 1 ,

(1d5/22s1/2) : J = 2+, T = 1 ,

(2s1/2)
2 : J = 0+, T = 1 ,

(1d3/2)
2 : J = 0+, 2+, T = 1 .
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The three low-lying states of 18O as given in Fig. 2.19, 0+, 2+, 4+, should

then correspond to the configuration (1d5/2)
2. However, when considering

the energies of the levels, using only the (d5/2)
2 configuration does not

agree well with experiment. One must also allow mixing the configurations

1d5/1, 2s1/2, 1d3/2, which gives fairly good agreement with the experimental

values, as shown in Fig. 2.20.

Fig. 2.20

(b) To calculate the lowest levels of 19O using the simple shell model

and ignoring interconfiguration interactions, we consider the last unpaired

neutron. According to Fig. 2.16, it can go to 1d5/2, 2s1/2, or 1d3/2. So the

ground state is
(
5
2

)+
, the first excited state

(
1
2

)+
, and the second excited

state
(
3
2

)+
.

If interconfiguration interactions are taken into account, the three neu-

trons outside the full shells can go into the 1d5/2 and 2s1/2 orbits to form

the following configurations:
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[(d5/2)
3]5/2,m, [(d5/2)

2s1/2]5/2,m, [d5/2(s1/2)
2
0]5/2,m, J

p =

(
5

2

)+

,

[(d5/2)
2
0s1/2]1/2,m, J

p =

(
1

2

)+

,

[(d5/2)
3]3/2,m, [(d5/2)

2
2s1/2]3/2,m, J

p =

(
3

2

)+

.

Moreover, states with Jp = 7+

2 ,
9+

2 are also possible.

(c) In the fictitious case the lowest excited states of 18O are 0+, 2+, 4+

with energies 0, 2, 6 23 MeV as shown in Fig. 2.21.

Fig. 2.21

This fictitious energy level structure corresponds to the rotational spec-

trum of an even-even nucleus, for in the latter we have

E2

E1
=

J2(J2 + 1)

J1(J1 + 1)
=
4(4 + 1)

2(2 + 1)
=
6 23
2
.

Taking this assumption as valid, one can deduce the moment of inertia I of
18O. If this assumption can be applied to 19O also, and if the moments of

inertia of 19O, 18O can be taken to be roughly equal, then one can estimate

the energy levels of 19O. As EJ =
�
2

2I J(J + 1), we have for
18O

�
2

2I
=

EJ

J(J + 1)
=

2

2(2 + 1)
=
1

3
MeV .
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Assume that I is the same for 19O. From (b) we see that the three lowest

rotational levels of 19O correspond to J = 5
2 ,

7
2 ,

9
2 . Hence

E5/2 = 0, being the ground state of
19O ,

E7/2 =
1

3

[
7

2

(
7

2
+ 1

)
− 5
2

(
5

2
+ 1

)]
= 2

1

3
MeV ,

E9/2 =
1

3
× 1
4
(9× 11− 5× 7) = 51

3
MeV .

Fig. 2.22

2073

The following nonrelativistic Hamiltonians can be used to describe a

system of nucleons:

H0 =
∑
i

p2i
2m

+
1

2
mω2

0r
2
i ,

H1 = H0 −
∑
i

βl̂i · si ,

H2 = H1 −
∑
i

1

2
mω2(2z2i − x2i − y2i ) ,

where �ω0 � β � �ω.
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(a) For each Hamiltonian H0, H1, H2, identify the exactly and approx-

imately conserved quantities of the system. For the ground state of each

model, give the appropriate quantum numbers for the last filled single-

particle orbital when the number n of identical nucleons is 11, 13 and 15.

(b) What important additional features should be included when the

low-lying states of either spherical or deformed nucleons are to be described?

(c) The known levels of Aluminum 27, 2713Al14, below 5 MeV are shown

in Fig. 2.23. Which states correspond to the predictions of the spherical

and of the deformed models?

(Princeton)

Fig. 2.23

Solution:

(a) ForH0 the exactly conserved quantities are energyE, orbital angular

momentum L, total spin S, total angular momentum J , and parity.

For H1 the exactly conserved quantities are E, J and parity, the ap-

proximately conserved ones are L and S.

For H2 the exactly conserved quantities are E, the third component of

the total angular momentum Jz, and parity, the approximately conserved

ones are J, L, S.

As H0 is an isotropic harmonic oscillator field, EN =
(
N + 3

2

)
�ω. The

low-lying states are as follows (Figs. 2.12 and 2.16):

N = 0 gives the ground state 1s1/2.

N = 1 gives the p states, 1p3/2 and 1p1/2 which are degenerate.

N = 2 gives 2s and 1d states, 1d5/2, 2s1/2, 1d3/2, which are degenerate.
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When the number of identical nucleons is n = 11, 13, 15, the last filled

nucleons all have N = 2.

H1 can be rewritten as

H1 = H0 −
∑
i

β(li · si) = H0 −
∑
i

1

2
β[ji(ji + 1)− li(li + 1)− si(si + 1)] .

The greater is ji, the lower is the energy. For this Hamiltonian, some

of the degeneracy is lost: 1p3/2 and 1p1/2 are separated, so are 1d3/2 and

1d5/2. 11 or 13 identical nucleons can fill up to the 1d5/2 state, while for

n = 15, the last nucleon well go into the 2s1/2 state.

H2 can be rewritten as

H2 = H1 −
∑
i

1

2
mω2r2i (3 cos

2 θ − 1) ,

which corresponds to a deformed nucleus. For the Hamiltonain, 1p3/2,

1d3/2, and 1d5/2 energy levels are split further:

1d5/2 level is split into
(
1
2

)+
,
(
3
2

)+
,
(
5
2

)+
,

1d3/2 level is split into
(
1
2

)+
,
(
3
2

)+
,

1p3/2 level is split into
(
1
2

)−
,
(
3
2

)−
,

Let the deformation parameter be ε. The order of the split energy levels

well depend on ε. According to the single-particle model of deformed nuclei,

when ε ≈ 0.3 (such as for 27Al), the orbit of the last nucleon is(
3
2

)+
of the 1d5/2 level if n = 11,(

5
2

)+
of the 1d5/2 level if n = 13,(

1
2

)+
of the 2s1/2 level if n = 15.

(b) For a spherical nucleus, when considering the ground and low excited

states, pairing effect and interconfiguration interactions are to be included.

For a deformed nucleus, besides the above, the effect of the deforming field

on the single-particle energy levels as well as the collective vibration and

rotation are to be taken into account also.

(c) 27Al is a deformed nucleus with ε ≈ 0.3. The configurations of the
14 neutrons and 13 protons in a spherical nucleus are

n :(1s1/2)
2(1p3/2)

4(1p1/2)
2(1d5/2)

6 ,

n :(1s1/2)
2(1p3/2)

4(1p1/2)
2(1d5/2)

5 .
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The ground state is given by the state of the last unpaired nucleon (1d5/2) :

Jp =
(
5
2

)+
.

If the nucleus is deformed, not only are energy levels like 1p3/2, 1d5/2,

1d3/2 split, the levels become more crowded and the order changes. Strictly

speaking, the energy levels of 27Al are filled up in the order of single-particle

energy levels of a deformed nucleus. In addition, there is also collective

motion, which makes the energy levels very complicated. Comparing the

energy levels with theory, we have, corresponding to the levels of a spherical

nucleus of the same Jp, the levels,

ground state : Jp =

(
5

2

)+

, E = 0 ,

excited states : Jp =

(
1

2

)+

, E = 2.463 MeV ,

Jp =

(
3

2

)+

, E = 4.156 MeV ;

corresponding to the single-particle energy levels of a deformed nucleus the

levels

ground state : Kp =

(
5

2

)+

, E = 0 ,

excited states : Kp =

(
1

2

)+

, E = 0.452 MeV ,

Kp =

(
1

2

)+

, E = 2.463 MeV ,

Kp =

(
1

2

)−
, E = 3.623 MeV ,

Kp =

(
3

2

)+

, E = 4.196 MeV ,

Also, every Kp corresponds to a collective-rotation energy band of the

nucleus given by
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EJ =
�
2

2I
[J(J + 1)−K(K + 1)] ,

where K �=1/2, J = K,K + 1, . . . .

EJ =
�
2

2I

[
J(J + 1)− 3

4
+ a− a(−1)J+1/2

(
J +

1

2

)]
,

where K =1/2, J = K,K + 1, . . . .

For example, for rotational bands
(
5
2

)+
(0),
(
7
2

)+
(1.613),

(
9
2

)+
(3.425), we

have K = 5
2 ,(
�
2

2I

)
[(K + 1)(K + 2)−K(K + 1)] = 1.613 MeV ,

(
�
2

2I

)
[(K + 2)(K + 3)−K(K + 1)] = 3.425 MeV .

giving �
2

2I ≈ 0.222 MeV. For rotational bands
(
1
2

)+
(0.452),

(
3
2

)+
(0.944),(

5
2

)+
(1.790),

(
7
2

)+
(2.719),

(
9
2

)+
(4.027), we have

�
2

2I
≈ 0.150 MeV, a ≈ −3.175× 102 .

Similarly for
(
1
2

)−
(3.623),

(
7
2

)−
(3.497) and

(
3
2

)−
(3.042) we have

�
2

2I
≈ 0.278 MeV, a ≈ 5.092 .

2074

A recent model for collective nuclear states treats them in terms of

interacting bosons. For a series of states that can be described as symmetric

superposition of S and D bosons (i.e. of spins 0 and 2 respectively), what

are the spins of the states having Nd = 0, 1, 2 and 3 bosons? If the energy

of the S bosons is Es and the energy of the D bosons is Ed, and there is

a residual interaction between pairs of D bosons of constant strength α,

what is the spectrum of the states with Ns +Nd = 3 bosons?

(Princeton)
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Solution:

When Nd = 0, spin is 0,

Nd = 1, spin is 2,

Nd = 2, spin is 4,2,0,

Nd = 3, spin is 6, 4, 2, 0.

For states of Ns +Nd = 3, when

Nd = 0 : Ns = 3, E = 3Es ,

Nd = 1 : Ns = 2, E = Ed + 2Es ,

Nd = 2 : Ns = 1, E = 2Ed +Es + α ,

Nd = 3 : Ns = 0, E = 3Ed + 3α .

2075

A simplified model of the complex nuclear interaction is the pairing

force, specified by a Hamiltonian of the form

H = −g




1 1 · · 1
1 1 · · 1
· · · · ·
· · · · ·
1 1 · · 1




,

in the two-identical-particle space for a single j orbit, with the basic states

given by (−1)j−m|jm〉|j − m〉. This interaction has a single outstanding
eigenstate. What is its spin? What is its energy? What are the spins and

energies of the rest of the two-particle states?

(Princeton)

Solution:

Suppose H is a (j + 1
2 )× (j + 1

2 ) matrix. The eigenstate can be written

in the form
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ΨN=2 =

(
j +

1

2

)−1/2



1

1

:

1

1




,

where the column matrix has rank (j + 1
2 )× 1. Then

ĤΨN=2 = −g
(
j +

1

2

)
ΨN=2 .

Thus the energy eigenvalue of ΨN=2 is −g
(
j + 1

2

)
. As the pairing force

acts on states of J = 0 only, the spin is zero.

As the sum of the energy eigenvalues equals the trace of the Ĥ matrix,

−g
(
j + 1

2

)
, and H is a negative quantity, all the eigenstates orthogonal to

ΨN=2 have energy eigenvalues zero, the corresponding angular momenta

being J = 2, 4, 6 . . . , etc.

5. NUCLEAR DECAYS (2076 2107)

2076

In its original (1911) form the Geiger–Nuttall law expresses the gen-

eral relationship between α-particle range (Rα) and decay constant (λ) in

natural α-radioactivity as a linear relation between log λ and logR. Sub-

sequently this was modified to an approximate linear relationship between

logλ and some power of the α-particle energy, Ex(α).

Explain how this relationship between decay constant and energy is ex-

plained quantum-mechanically. Show also how the known general features

of the atomic nucleus make it possible to explain the extremely rapid de-

pendence of λ on E(α). (For example, from E(α) = 5.3 MeV for Po210 to

E(α) = 7.7 MeV for Po214, λ increases by a factor of some 1010, from a

half-life of about 140 days to one of 1.6× 10−4 sec.)
(Columbia)

Solution:

α-decay can be considered as the transmission of an α-particle through

the potential barrier of the daughter nucleus. Similar to that shown in
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Fig. 2.7, where R is the nuclear radius, r1 is the point where the Coulomb

repulsive potential V (r) = Zze2/r equals the α-particle energy E. Using

a three-dimensional potential and neglecting angular momentum, we can

obtain the transmission coefficient T by the W.K.B. method:

T = e−2G ,

where

G =
1

�

∫ r1

R

(2m|E − V |)1/2dr ,

with V = zZe2/r, E = zZe2/r1, z = 2, Ze being the charge of the daughter

nucleus. Integration gives

G =
1

�
(2mzZe2r1)

1/2

[
arccos

(
R

r1

)
−
(
R

r1
− R2

r21

)1/2
]

R
r1
→ 0
→ 1

�
(2mzZe2r1)

1/2

[
π

2
−
(
R

r1

)1/2
]
.

Suppose the α-particle has velocity v0 in the potential well. Then it collides

with the walls v0
R
times per unit time and the probability of decay per unit

time is λ = v0T/R. Hence

lnλ = −
√
2mBRπ

�

(
E−

1
2 − 2

π
B−

1
2

)
+ ln

v0

R
,

where B = zZe2/R. This is a linear relationship between log λ and E−1/2

for α-emitters of the same radioactive series.

For 84Po,

log10
T (210Po)

T (214Po)
=0.434[lnλ(214Po)− lnλ(210Po)]

=0.434×
√
2mc2zZ

(
e2

�c

)(
1√
E210

− 1√
E214

)

=
0.434×

√
8× 940× 2× (84− 2)

137

(
1√
5 · 3
− 1√

7 · 7

)

≈10.

Thus the life-times differ by 10 orders of magnitude.
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2077

The half-life of a radioactive isotope is strongly dependent on the energy

liberated in the decay. The energy dependence of the half-life, however,

follows quite different laws for α- and β-emitters.

(a) Derive the specific law for α-emitters.

(b) Indicate why the law for β-emitters is different by discussing in detail

the difference between the two processes.

(Columbia)

Solution:

(a) For a quantum-mechanical derivation of the Geiger–Nuttall law for

α-decays see Problem 2076.

(b) Whereas α-decay may be considered as the transmission of an α-

particle through a Coulomb potential barrier to exit the daughter nucleus,

β-decay is the result of the disintegration of a neutron in the nucleus into

a proton, which remains in the nucleus, an electron and an antineutrino,

which are emitted. Fermi has obtained the β-particle spectrum using a

method similar to that for γ-emission. Basically the transition probability

per unit time is given by Fermi’s golden rule No. 2,

ω =
2π

�
|Hfi|2ρ(E) ,

where E is the decay energy, Hfi is the transition matrix element and

ρ(E) = dN
dE
is the number of final states per unit energy interval.

For decay energy E, the number of states of the electron in the momen-

tum interval pe and pe + dpe is

dNe =
V 4πp2edpe
(2π�)3

,

where V is the volume of normalization. Similarly for the antineutrino we

have

dNν =
4πp2νdpν
(2π�)3

,

and so dN = dNedNν . However pe and pν are not independent. They are

related through Ee =
√
p2ec

2 +m2
ec

4, Eν = pνc by E = Ee + Eν . We can

write pν =
E−Ee
c
, and for a given Ee, dpν =

dEν
c
= dE

c
. Thus

dN

dE
=

∫
dNedNν

dE
=

V 2

4π4�6c3

∫ pmax

0

(E −Ee)
2p2edpe ,
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where pmax corresponds to the end-point energy of the β-particle spectrum

E0 ≈ E, and hence

λ =
2π

�
|Hfi|2

dN

dE
=

g2|Mfi|2
2π3�7c3

∫ pmax

0

(E −
√
p2ec

2 +m2
ec

4)2p2edpe ,

where Mfi =
V Hfi
g

and g is the coupling constant.

In terms of the kinetic energy T , as

Ee = T +mec
2 =
√
p2ec

2 +m2
ec

4 , E = T0 +mec
2 ,

the above integral can be written in the form

∫ T0

0

(T +mec
2)(T 2 + 2mec

2T )
1
2 (T0 − T )2dT .

This shows that for β-decays

λ ∼ T 5
0 ,

which is the basis of the Sargent curve.

This relation is quite different from that for α-decays,

λ ∼ exp
(
− c√

E

)
,

where E is the decay energy and C is a constant.

2078

Natural gold 197
79 Au is radioactive since it is unstable against α-decay

with an energy of 3.3 MeV. Estimate the lifetime of 19779 Au to explain why

gold does not burn a hole in your pocket.

(Princeton)

Solution:

The Geiger–Nuttall law

log10 λ = C −DE−1/2α ,
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where C,D are constants depending on Z, which can be calculated using

quantum theory, Eα is the α-particle energy, can be used to estimate the

life-time of 197Au. For a rough estimate, use the values of C,D for Pb,

C ≈ 52, D ≈ 140 (MeV) 12 . Thus

λ ≈ 10(52−140E−1/2) ≈ 10−25 s−1

and so

T1/2 =
1

λ
ln 2 ≈ 6.9× 1024 s ≈ 2.2× 1017 yr .

Thus the number of decays in a human’s lifetime is too small to worry

about.

2079

The half-life of 239Pu has been determined by immersing a sphere of
239Pu of mass 120.1 gm in liquid nitrogen of a volume enough to stop

all α-particles and measuring the rate of evaporation of the liquid. The

evaporation rate corresponded to a power of 0.231 W. Calculate, to the

nearest hundred years, the half-life of 239Pu, given that the energy of its

decay alpha-particles is 5.144 MeV. (Take into account the recoil energy of

the product nucleus.) Given conversion factors:

1 MeV = 1.60206× 10−13 joule ,

1 atomic mass unit = 1.66× 10−24 gm .

(SUNY, Buffalo)

Solution:

The decay takes place according to 239Pu→ α+235 U .

The recoil energy of 235U is

Eu =
p2u
2Mu

=
p2α
2Mu

=
2MαEα

2Mu
=

4

235
Eα .

The energy released per α-decay is

E = Eu +Eα =
239

235
Eα = 5.232 MeV .
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The decay rate is

dN

dt
=

0.231

5.232× 1.60206× 10−13 = 2.756× 10
11 s−1 .

The number of 239Pu is

N =
120.1× 5.61× 1026

239× 939 = 3.002× 1023 .

The half-life is

T1/2 =
ln 2

λ
=

N ln 2
dN
dt

=
3.002× 1023 × ln 2
2.756× 1011 = 7.55×1011 s = 2.39×104 yr .

2080

8Li is an example of a β-delayed particle emitter. The 8Li ground state

has a half-life of 0.85 s and decays to the 2.9 MeV level in Be as shown

in Fig. 2.24. The 2.9 MeV level then decays into 2 alpha-particles with a

half-life of 10−22 s.

Fig. 2.24

(a) What is the parity of the 2.9 MeV level in 8Be? Give your reasoning.

(b) Why is the half-life of the 8Be 2.9 MeV level so much smaller than

the half life of the 8Li ground state?

(c) Where in energy, with respect to the 8Be ground state, would you

expect the threshold for 7Li neutron capture? Why?

(Wisconsin)
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Solution:

(a) The spin-parity of α-particle is Jp = 0+. In 8Be → α + α, as

the decay final state is that of two identical bosons, the wave function is

required to be exchange-symmetric. This means that the relative orbital

quantum number l of the α-particles is even, and so the parity of the final

state of the two α-particle system is

πf = (+1)
2(−1)l = +1 .

As the α-decay is a strong-interaction process, (extremely short half-life),

parity is conserved. Hence the parity of the 2.9 MeV excited state of 8Be

is positive.

(b) The β-decay of the 8Li ground state is a weak-interaction process.

However, the α-decay of the 2.9 MeV excited state of 8Be is a strong-

interaction process with a low Coulomb barrier. The difference in the two

interaction intensities leads to the vast difference in the lifetimes.

(c) The threshold energy for 7Li neutron capture is higher than the 8Be

ground state by

M(7Li) +m(n)−M(8Be) =M(7Li) +m(n)−M(8Li)

+M(8Li)−M(8Be) = Sn(
8Li) + 16 MeV .

where Sn(
8Li) is the energy of dissociation of 8Li into 7Li and a neutron. As

Sn(
8Li) =M(7Li) +Mn(n)−M(8Li) = 7.018223 + 1.00892− 8.025018

=0.002187 amu = 2.0 MeV ,

the threshold of neutron capture by 7Li is about 18 MeV higher than the

ground state of 8Be. Note that as 8Li is outside the stability curve against

β-decay, the energy required for removal of a neutron from it in rather small.

2081

The following atomic masses have been determined (in amu):

(1)
7
3Li 7.0182
7
4Be 7.0192
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(2)
13
6 C 13.0076
13
7 N 13.0100

(3)
19
9 F 19.0045
19
10Ne 19.0080

(4)
34
15P 33.9983
34
16S 33.9978

(5)
35
16S 34.9791
35
17Cl 34.9789

Remembering that the mass of the electron is 0.00055 amu, indicate

which nuclide of each pair is unstable, its mode(s) of decay, and the ap-

proximate energy released in the disintegration. Derive the conditions for

stability which you used.

(Columbia)

Solution:

As for each pair of isobars the atomic numbers differ by one, only β-

decay or orbital electron capture is possible between them.

Consider β-decay. Let Mx, My, me represent the masses of the original

nucleus, the daughter nucleus, and the electron respectively. Then the

energy release in the β-decay is Ed(β
−) = [Mx(Z,A)−My(Z+1, A)−me]c

2.

Expressing this relation in amu and neglecting the variation of the binding

energy of the electrons in different atoms and shells, we have

Ed(β
−) = [Mx(Z,A)− Zme −My(Z + 1, A) + (Z + 1)me −me]c

2

=[Mx(Z,A)−My(Z + 1, A)]c
2 ,

whereM indicates atomic mass. Thus β-decay can take place only ifMx >

My. Similarly for β
+-decay, we have

Ed(β
+) = [Mx(Z,A)−My(Z − 1, A)− 2me]c

2 ,

and so β+-decay can take place only if Mx −My > 2me = 0.0011 amu.

In the same way we have for orbital electron capture (usually from the K

shell)

Ed(i) = [Mx(Z,A)−My(Z − 1, A)]c2 −Wi .

where Wi is the binding energy of an electron in the ith shell, ∼ 10 eV or
1.1× 10−8 amu for K-shell, and so we require Mx −My > Wi/c

2
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Let ∆ =M(Z + 1, A)−M(Z,A).

Pair (1), ∆ = 0.001 amu < 0.0011 amu, 7
4Be is unstable against K-

electron capture.

Pair (2), ∆ = 0.0024 amu > 0.0011 amu, 137 N is unstable against β-decay

and K-electron capture.

Pair (3), ∆ = 0.0035 amu > 0.0011 amu, 1910Ne is unstable against β
+-

decay and K-electron capture.

Pair (4), ∆ = −0.0005 amu, 3415P is unstable against β−-decay.
Pair (5), ∆ = −0.0002 amu, 3516S is unstable against β−-decay.

2082

34Cl positron-decays to 34S. Plot a spectrum of the number of positrons

emitted with momentum p as a function of p. If the difference in the masses

of the neutral atoms of 34Cl and 34S is 5.52 MeV/c2, what is the maximum

positron energy?

(Wisconsin)

Solution:
34Cl decays according to

34Cl → 34S + e+ + ν .

The process is similar to β−-decay and the same theory applies. The num-

ber of decays per unit time that emit a positron of momentum between p

and p+ dp is (Problem 2077(b))

I(p)dp =
g2|Mfi|2
2π3�7c3

(Em −E)2p2dp ,

where Em is the end-point (total) energy of the β+-spectrum. Thus I(p)

is proportional to (Em − E)2p2, as shown in Fig. 2.25. The maximum

β+-particle energy is

Emax β+ = [M(
34Cl)−M(34S)− 2me]c

2 = 5.52 MeV− 1.022 MeV

=4.50 MeV .
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Fig. 2.25

2083

Both 161Ho and 163Ho decay by allowed electron capture to Dy isotopes,

but the QEC values are about 850 keV and about 2.5 keV respectively.

(QEC is the mass difference between the final ground state of nucleus plus

atomic electrons and the initial ground state of nucleus plus atomic elec-

trons.) The Dy orbital electron binding energies are listed in the table

bellow. The capture rate for 3p1/2 electrons in
161Ho is about 5% of the

3s capture rate. Calculate the 3p1/2 to 3s relative capture rate in
161Ho.

How much do the 3p1/2 and 3s capture rates change for both
161Ho and

163Ho if the QEC values remain the same, but the neutrino, instead of being

massless, is assumed to have a mass of 50 eV?

Orbital Binding Energy (keV)

1s 54

2s 9

2p1/2 8.6

3s 2.0

3p1/2 1.8

(Princeton)

Solution:

As 161Ho and 163Ho have the same nuclear charge Z, their orbital-

electron wave functions are the same, their 3s and 3p1/2 waves differing
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only in phase. So the transition matrix elements for electron capture are

also the same.

The decay constant is given by

λ ≈ A|Mif |2ρ(E) ,

where Mif is the transition matrix element, ρ(E) is the density of states,

and A is a constant. For electron capture, the nucleus emits only a neutrino,

and so the process is a two-body one. We have

ρ(E) ∝ E2
ν ≈ (QEC −B)2 ,

where B is the binding energy of an electron in s or p state. As

λ(3p1/2)

λ(3s)
=
|M(3p1/2)|2(QEC −Bp)

2

|M(3s)|2(QEC −Bs)2
= 0.05,

|M(3p1/2)2
|M(3s)|2 = 0.05×

(
850− 2.0
850− 1.8

)2

= 0.04998 .

Hence for 163Ho,

λ(3p1/2)

λ(3s)
=
|M(3p1/2)|2(QEC −Bp)

2

|M(3s)|2(QEC −Bs)2

= 0.04998×
(
2.5− 1.8
2.5− 2.0

)2

≈ 9.8% .

If mν = 50 eV, then, as E2
ν = p2ν + m2

ν , the phase-space factor in P (E)

changes:

p2ν
dpν

dEν
= (E2

ν −m2
ν)
Eν

pν
= Eν

√
E2
ν −m2

ν ≈ E2
ν

(
1− m2

ν

2E2
ν

)
.

Hence the decay constant for every channel for 161Ho and 163Ho changes

from λ0 to λ:

λ ≈ λ0

(
1− 1

2

m2
ν

E2
ν

)
,

or
λ0 − λ

λ0
≈ 1
2

m2
ν

E2
ν

.
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Thus for 161Ho, 3s state:

λ0 − λ

λ0
=
1

2
× 502

8482 × 106 = 1.74× 10
−9 ,

3p1/2 state:

λ0 − λ

λ0
=
1

2
× 502

848.22 × 106 = 1.74× 10
−9 ;

for 163Ho, 3s state:

λ0 − λ

λ0
=
1

2
× 502

0.5× 106 = 5× 10
−3 ,

3p1/2 state:

λ0 − λ

λ0
=
1

2
× 502

0.72 × 106 = 2.25× 10
−3 .

2084

An element of low atomic number Z can undergo allowed positron β-

decay. Let p0 be the maximum possible momentum of the positron, suppos-

ing p0 � mc (m =positron mass); and let Γβ be the beta-decay rate. An

alternative process is K-capture, the nucleus capturing a K-shell electron

and undergoing the same nuclear transition with emission of a neutrino.

Let ΓK be the decay rate for this process. Compute the ratio ΓK/Γβ. You

can treat the wave function of the K-shell electron as hydrogenic, and can

ignore the electron binding energy.

(Princeton)

Solution:

The quantum perturbation theory gives the probability of a β+-decay

per unit time with decay energy E as

ω =
2π

�

∣∣∣∣
∫

ψ∗fHψidτ

∣∣∣∣
2
dn

dE
,

where ψi is the initial wave function, ψf is the final wave function and
dn
dE

is the number of final states per unit interval of E. As the final state has
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three particles (nucleus, β+ and ν), ψf = ufφβφν (assuming no interaction

among the final particles or, if there is, the interaction is very weak), where

uf is the wave function of the final nucleus, φβ , φν are respectively the wave

functions of the positron and neutrino.

In Fermi’s theory of β-decay, H is taken to be a constant. Let it be

g. Furthermore, the β+-particle and neutrino are considered free particles

and represented by plane waves:

φ∗β =
1√
V
e−ikβ ·r , φ∗ν =

1√
V
e−ikν ·r ,

where V is the volume of normalization, kβ and kν are respectively the

wave vectors of the β+-particle and neutrino. Let∫
ψiu

∗
fe
−i(kβ+kν)·rdτ =Mfi .

The final state is a three-particle state, and so dn is the product of the

numbers of state of the final nucleus, the β+-particle and neutrino. For

β+-decay, the number of states of the final nucleus is 1, while the number

of states of β+-particle with momentum between p and p+ dp is

dnβ =
4πp2dp

(2π�)3
V ,

and that of the neutrino is

dnν =
4πp2νdpν
(2π�)3

V .

Hence
dn

dE
=

dnβdnν

dE
=

p2p2νdpdpν

4π4�6dE
V 2 .

The sum of the β+-particle and neutrino energies equals the decay en-

ergy E (neglecting nuclear recoil):

Ee +Eν ≈ E ,

and so for a given positron energy Ee, dEν = dE. Then as the rest mass

of neutrino is zero or very small, Eν = cpν , and

pν = (E −Ee)/c, dpν =
dE

c
.
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Therefore
dn

dE
=
(E −Ee)

2p2dp

4π4�6c3
V 2 .

On writing

ω =

∫
I(p)dp ,

the above gives

I(p)dp =
g2|Mfi|2
2π3�7c3

(E −Ee)
2p2dp .

The β+-decay rate Γβ is

Γβ =

∫ p0

0

I(p)dp = B

∫ p0

0

(E −Ee)
2p2dp

where

B =
g2|Mfi|2
2π3�7c3

and p0 is the maximum momentum of the positron, corresponding to a

maximum kinetic energy E0 ≈ E. As E0 � mec
2, and so E0 =

p20
2me

,

Ee ≈ p2

2me
, we have

Γβ = B

∫ p0

0

1

(2me)2
(p40 + p4 − 2p20p2)p2dp

=
Bp70
4m2

e

(
1

3
+
1

7
− 2
5

)

≈ 1.9× 10−2Bp
7
0

m2
e

.

In K-capture, the final state is a two-body system, and so monoenergetic

neutrinos are emitted. Consider

ΓK =
2π

�

∣∣∣∣
∫

ψ∗fHψidτ

∣∣∣∣
2
dn

dE
.

The final state wave function ψ∗f is the product of the daughter nucleus

wave function u∗f and the neutrino wave function φ∗ν . The neutrino can be

considered a free particle and its wave a plane wave

φ∗ν =
1√
V
e−ikν ·r .
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The initial wave function can be taken to be approximately the product of

the wave functions of the parent nucleus and K-shell electron:

φK =
1√
π

(
Zmee

2

�2

)3/2

e−Zmee
2r/�2 .

Then as∣∣∣∣
∫

ψ∗fHψidτ

∣∣∣∣ = g√
V π

(
Zmee

2

�2

) 3
2
∣∣∣∣
∫

u∗fuie
−ikν ·re−

Zmee
2

�2
rdτ

∣∣∣∣
≈ g√

V π

(
Zmee

2

�2

)3/2

|Mfi|,

dn

dE
=
4πV p2νdpν
(2π�)3dE

=
4πV

(2π�)3
E2
ν

c3
,

taking Eν ≈ E and neglecting nuclear recoil, we have

ΓK =
m3
eg

2|Mfi|2
π2�7e3

(
Ze2

�

)3

E2
ν = 2πm

3
eB

(
Ze2

�

)3

E2
ν .

Ignoring the electron binding energy, we can take Eν ≈ E0 + 2mec
2 ≈

2mec
2, and hence

ΓK
Γβ

=
8πZ3

1.9× 10−2
(
e2

�c

)3(
mec

p0

)7

= 5.1× 10−4Z3

(
mec

p0

)7

.

Thus Γk
Γβ
∝ 1

p7
0
. It increases rapidly with decreasing p0.

2085

Tritium, the isotope 3H, undergoes beta-decay with a half-life of 12.5

years. An enriched sample of hydrogen gas containing 0.1 gram of tritium

produces 21 calories of heat per hour.

(a) For these data calculate the average energy of the β-particles emit-

ted.

(b) What specific measurements on the beta spectrum (including the

decay nucleus) indicate that there is an additional decay product and specif-

ically that it is light and neutral.
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(c) Give a critical, quantitative analysis of how a careful measurement

of the beta spectrum of tritium can be used to determine (or put an upper

limit on) the mass of the electron’s neutrino.

(Columbia)

Solution:

(a) The decay constant is

λ =
ln 2

T 1
2

=
ln 2

12.5× 365× 24 = 6.33× 10
−6hr−1 .

Hence

−dN
dt

= λN =
0.1× 6.023× 1023

3
× 6.33× 10−6 = 1.27× 1017

decay per hour and the average energy of the β-particles is

Ē =
21× 4.18
1.27× 1017 = 6.91× 10

−16 J = 4.3 keV .

(b) Both α- and β-decays represent transitions between two states of

definite energies. However, the former is a two-body decay (daughter nu-

cleus +α-particle) and the conservation laws of energy and momentum

require the α-particles to be emitted monoenergetic, whereas β-transition

is a three-body decay (daughter nucleus + electron or position + neutrino)

and so the electrons emitted have a continuous energy distribution with

a definite maximum approximately equal to the transition energy. Thus

the α-spectrum consists of a vertical line (or peak) while the β-spectrum

is continuous from zero to a definite end-point energy. Thus a measure-

ment of the β spectrum indicates the emission of a third, neutral particle.

Conservation of energy indicates that it is very light.

(c) Pauli suggested that β-decay takes place according to

A
ZX → A

Z+1Y + β− + ν̄e .

As shown in Fig. 2.25, β− has a continuous energy spectrum with a maxi-

mum energy Em. When the kinetic energy of ν̄e trends to zero, the energy

of β− trends to Em. Energy conservation requires

M(AZX) =M(AZ+1Y ) +
Em

c2
+mν ,
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or, for the process under consideration,

mν =M(31H)−M(32He)−Em/c
2 .

If Em is precisely measured, the neutrino mass can be calculated. It has

been found to be so small that only an upper limit can be given.

2086

(a) Describe briefly the energy spectra of alpha- and beta-particles emit-

ted by radioactive nuclei. Emphasize the differences and qualitatively ex-

plain the reasons for them.

(b) Draw a schematic diagram of an instrument which can measure

one of these spectra. Give numerical estimates of essential parameters and

explain how they are chosen.

(UC, Berkeley)

Fig. 2.26

Solution:

(a) α-particles from a radioactive nuclide are monoenergetic; the spec-

trum consists of vertical lines. β-particles have a continuous energy spec-

trum with a definite end-point energy. This is because emission of a β-

particle is accompanied by a neutrino which takes away some decay energy.

(b) Figure 2.26 is a schematic sketch of a semiconductor α-spectrometer.

The energy of an α-particle emitted in α-decay is several MeV in most

cases, so a thin-window, gold-silicon surface-barrier semiconductor detec-

tor is used which has an energy resolution of about 1 percent at room-

temperature. As the α-particle energy is rather low, a thick, sensitive layer



340 Problems and Solutions in Atomic, Nuclear and Particle Physics

is not needed and a bias voltage from several tens to 100 V is sufficient.

For good measurements the multichannel analyzer should have more than

1024 channels, using about 10 channels for the full width at half maximum

of a peak.

2087

The two lowest states of scandium-42, 4221Sc21, are known to have spins

0+ and 7+. They respectively undergo positron-decay to the first 0+ and 6+

states of calcium-42, 4220Ca22, with the positron reduced half-lives (ft)0+ =

3.2× 103 seconds, (ft)7+ = 1.6× 104 seconds. No positron decay has been
detected to the 0+ state at 1.84 MeV. (See Fig. 2.27.)

Fig. 2.27

(a) The two states of 42Sc can be simply accounted for by assuming two

valence nucleons with the configuration (f7/2)
2. Determine which of the

indicated states of 42Ca are compatible with this configuration. Briefly out-

line your reasoning. Assuming charge independence, assign isospin quan-

tum numbers |T, TZ〉 for all (f7/2)2 states. Classify the nature of the two
beta-transitions and explain your reasoning.

(b) With suitable wave functions for the |J,MJ〉 = |7, 7〉 state of
scandium-42 and the |6, 6〉 state of calcium-42, calculate the ratio (ft)7+/
(ft)0+ expected for the two positron-decays.

For j = l + 1
2 :

Ŝ−|j, j〉 =
1

(2j)1/2
|j, j − 1〉+

(
2j − 1
2j

)1/2

|j − 1, j − 1〉 ,



Nuclear Physics 341

Ŝz|j, j〉 =
1

2
|j, j〉 ,

Gv = 1.4× 10−49 erg cm3 ,

GA = 1.6× 10−49 erg cm3 .

(Princeton)

Solution:

(a) For 42S, Tz =
1
2 (Z − N) = 0. As the angular momenta of the two

nucleons are 7/2 each and the isospins are 1/2 each, vector addition gives

for the nuclear spin an integer from 0 to 7, and for the nuclear isospin

0 or 1. The generalized Pauli’s principle requires the total wave function

to be antisymmetric, and so J + T = odd. Hence the states compatible

with the configuration (f7/2)
2 are J = 0+, 2+, 4+, 6+ when T = 1, and

J = 1+, 3+, 5+, 7+ when T = 0.

The transition 7+ → 6+ is a Gamow–Teller transition as for such tran-
sitions ∆J = 0 or 1 (Ji = 0 to Jf = 0 is forbidden), ∆T = 0 or 1, πi = πf .

The transition 0+ → 0+ is a Fermi transition as for such transitions

∆J = 0, ∆T = 0, πi = πf .

(b) The probability per unit time of β-transition is Γ(β) ∝ G2
v〈MF 〉2 +

G2
A〈MGT 〉2, where 〈MF 〉2 and 〈MGT 〉2 are the squares of the spin-averaged

weak interaction matrix elements:

〈MF 〉2 =
1

2Ji + 1

∑
Mi,Mf

〈JfMfTfTfz|1 ·
A∑
k=1

t±(k)|JiMiTiTiz〉2

= 〈JfMTfTfz|1 ·
A∑
k=1

t±(k)|JiMTiTiz〉2 ,

〈MGT 〉2 =
1

2Ji + 1

∑
m,Mi,Mf

|〈JfMfTfTfz|
A∑
k=1

σm(k)t±(k)|JiMiTiTiz〉|2 ,

where m takes the values +1, 0,−1, for which
σ+1 = σx + iσy, σ0 = σz , σ−1 = σx − iσy .

Then the half-life is

ft =
K

G2
v〈MF 〉2 +G2

A〈MGT 〉2
,
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where K = 2π3�7 ln 2/m5c4, a constant. Hence

ft(7+ → 6+)

ft(0+ → 0+)
=

G2
v〈MF 〉20+

G2
A〈MGT 〉27+

.

Consider

〈MF 〉 = 〈JMTTfz|1 ·
A∑
k=1

t±(k)|JMTTiz〉 = 〈JMTTfz|T±|JMTTiz〉

=
√
T (T + 1)− TizTfz ,

replacing the sum of the z components of the isospins of the nucleons by

the z-component of the total isospin. Taking T = 1, Tiz = 0, we have

〈MF 〉2 = 2 .

Consider

〈MGT 〉2 =
∑
m

|〈6, 6, 1,−1|{σm(1)t±(1) + σm(2)t±(2)}|7, 7, 1, 0〉|2 ,

where only the two nucleons outside full shells, which are identical, are

taken into account. Then

〈MGT 〉2 = 4
∑
m

|〈6, 6, 1,−1|σm(1)t±(1)|7, 7, 1, 0〉|2 .

Writing the wave functions as combinations of nucleon wave functions:

|7, 7〉 =
∣∣∣∣72 , 72 ; 72 , 72

〉
,

|7, 6〉 = 1√
2

(∣∣∣∣72 , 62; 72 , 72
〉
+

∣∣∣∣72 , 72; 72 , 62
〉)

,

|6, 6〉 = 1√
2

(∣∣∣∣72 , 62; 72 , 72
〉
−
∣∣∣∣72 , 72; 72 , 62

〉)
,

we have

〈MGT 〉2 = 4
∣∣∣∣
〈
7

2
,
6

2
;
7

2
,
7

2
, ; 1,−1

∣∣∣∣σ−(1)t±(1)2

∣∣∣∣72 , 72; 72 , 72 ; 1, 0
〉∣∣∣∣

2

= 2 .
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Thus
(ft)7+

(ft)0+
=

G2
v

G2
A

≈
(
1.4

1.6

)2

≈ 0.77 .

2088

The still-undetected isotope copper-57 (5729Cu28) is expected to decay by

positron emission to nickel-57 (5728Ni29).

(a) Suggest shell-model spin-parity assignments for the ground and first

excited states of these nuclei.

(b) Estimate the positron end-point energy for decay from the ground

state of copper-57 to the ground state of nickel-57. Estimate the half-life

for this decay (order of magnitude).

(c) Discuss what one means by Fermi and by Gamow–Teller contri-

butions to allowed β-decays, and indicate the corresponding spin-parity

selection rules. For the above decay process, estimate the ratio ΓF /ΓGT of

the two contributions to the decay rate. Does one expect appreciable β+-

decay from the copper-57 ground state to the first excited state of nickel-57?

Explain.

(d) Nickel-58 occurs naturally. Briefly sketch an experimental arrange-

ment for study of copper-57 positron-decay.

(Princeton)

Solution:

(a) 57Cu and 57Ni are mirror nuclei with the same energy-level structure

of a single nucleon outside of double-full shells. The valence nucleon is

proton for 57Cu and neutron for 57Ni, the two nuclei having the same

features of ground and first excited states.

For the ground state, the last nucleon is in state 2p3/2 (Fig. 2.11), and

so Jπ = (32 )
−; for the first excited state, the nucleon is in state 1f5/2, and

so Jπ = (52 )
−(E1 = 0.76 MeV).

(b) As 57Cu and 57Ni are mirror nuclei, their mass difference is (Prob-

lem 2067(c))

∆E =M(Z + 1, A)c2 −M(Z,A)c2

=
3e2

5R
[(Z + 1)2 − Z2]− (mn −MH)c

2
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=
3c�

5R

(
e2

c�

)
(2Z + 1)− (mn −MH)c

2

=
3× 197× (2× 28 + 1)
5× 1.2× 571/3 × 137 − 0.78

= 9.87 MeV .

Thus the ground state of 57Cu is 9.87 MeV higher than that of 57Ni. The

positron end-point energy for decay from the ground state of 57Cu to that

of 57Ni is

E0 = ∆E − 2mec
2 ≈ 9.87− 1.02 ≈ 8.85 MeV .

As the β+-decay is from (32 )
− to (32 )

−, ∆J = 0, ∆π = +, ∆T = 0,

∆Tz = −1, the decay is of a superallowed type. To simplify calculation
take F (Z,E) = 1. Then (Problem 2084)

λβ ≈
∫ p0

0

I(p)dp ≈ B

∫ E0

0

(E0 −E)2E2dE

= BE5
0

(
1

3
+
1

5
− 1
2

)
=
1

30
BE5

0 ,

where

B =
g2|Mfi|2
2π3c6�7

= 3.36× 10−3 MeV−5s−1 ,

with |Mfi|2 ≈ 1, g = 8.95× 10−44 MeV · cm3 (experimental value). Hence

τ1/2 = ln 2/λ =
30 ln 2

BE5
0

= 0.114 s .

(c) In β+-decay between mirror nuclei ground states 3−

2 → 3−

2 , as the

nuclear structures of the initial and final states are similar, the transition

is of a superallowed type. Such transitions can be classified into Fermi and

Gamow–Teller types. For the Fermi type, the selection rules are ∆J = 0,

∆π = +, the emitted neutrino and electron have antiparallel spins. For

the Gamow–Teller type, the selection rules are ∆J = 0,±1, ∆π = +, the
emitted neutrino and electron have parallel spins.

For transition 3−

2 → 3−

2 of the Fermi type,

|MF |2 = T (T + 1)− TizTfz =
1

2

(
1

2
+ 1

)
+
1

2
× 1
2
= 1 .
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For transition 3−

2 → 3−

2 of the Gamow–Teller type,

|MGT |2 =
Jf + 1

Jf
=
3/2 + 1

3/2
=
5

3
.

The coupling constants for the two types are related roughly by |gGT | ≈
1.24|gF |. So the ratio of the transition probabilities is

λF

λGT
=

g2F |MF |2
g2GT |MGT |2

=
1

1.242 × 5/3 = 0.39 .

The transition from 57Cu to the first excited state of 57Ni is a normal-

allowed transition because ∆J = 1, ∆π = +. As the initial and final states

are 2p3/2 and 1f5/2, and so the difference in nuclear structure is greater,

the fT of this transition is larger than that of the superallowed one by

2 to 3 orders of magnitude. In addition, there is the space phase factor(
8.85−0.76

8.85

)5
= 0.64. Hence the branching ratio is very small, rendering

such a transition difficult to detect.

(d) When we bombard 58Ni target with protons, the following reaction

may occur:
58Ni+ p→57 Cu+ 2n

As the mass-excess ∆ = (M −A) values (in MeV) are

∆(n) ≈ 8.071, ∆(1H) = 7.289 ,

∆(58Ni) = −60.235, ∆(57Cu) ≈ −46.234 .
We have

Q =∆(58Ni) + ∆(1H)−∆(57Cu)− 2∆(n)

= − 60.235 + 7.289 + 46.234− 2× 8.071 = −22.854 MeV .

Hence the reaction is endoergic and protons of sufficient energy are

needed. The neutrons can be used to monitor the formation of 57Cu, and

measuring the delay in β+ emission relative to n emission provides a means

to study β+-decay of 57Cu.

2089

Suppose a search for solar neutrinos is to be mounted using a large sam-

ple of lithium enriched in the isotope 73Li. Detection depends on production,
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separation and detection of the electron-capturing isotope 7
4Be with a half-

life of 53 days. The low lying levels of these two nuclei are shown below in

Fig. 2.28. The atomic mass of 74Be in its ground state lies 0.86 MeV above

the atomic mass of 73Li in its ground state.

Fig. 2.28

(a) Discuss the electron-capture modes of the ground state of beryllium-

7 by providing estimates for the branching ratios and relative decay prob-

abilities (ft ratios).

(b) To calibrate this detector, a point source emitting 1017 monochro-

matic neutrinos/sec with energy 1.5 MeV is placed in the center of a one

metric ton sphere of lithium-7. Estimate the total equilibrium disintegra-

tion rate of the beryllium-7, given

GV = 1.42× 10−49 erg cm3 ,

GA = 1.60× 10−49 erg cm3 ,

ρLi = 0.53 gm/cm
3 .

(Princeton)

Solution:

(a) Two modes of electron capture are possible:(
3−

2

)−
→
(
3

2

)−
: ∆J = 0,∆P = + ,
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which is a combination of F and G-T type transitions;(
3

2

)−
→
(
1

2

)−
: ∆J = 1,∆P = + ,

which is a pure G-T type transition.
7
3Li and

7
4Be are mirror nuclei with T = 1

2 , and Tz =
1
2 and − 1

2 respec-

tively.

For the F-type transition
(
3
2

)− → (32)− the initial and final wave func-
tions are similar and so

〈MF 〉2 = T (T + 1)− TziTzf =
1

2
· 3
2
+
1

2
· 1
2
=
3

4
+
1

4
= 1 .

For the G-T-type transition 3−

2 → 3−

2 , the single-particle model gives

〈MG−T 〉2 =
Jf + 1

Jf
=
3/2 + 1

3/2
=
5

3
.

For the G-T-type transition
(
3
2

)− → (12)−, the transition is form l + 1
2 to

l − 1
2 with l = 1, and the single-particle model gives

〈MG−T 〉2 =
4l

2l+ 1
=
4

3
.

As λK(M
2,Wν) = |M |2W 2

ν , where Wν is the decay energy,

λK

(
3−

2 → 3−

2

)
λK

(
3−

2 → 1−

2

) = 〈MG−T 〉23/2 +
G2V
G2
A

〈MF 〉2

〈MG−T 〉21/2
· W

2
ν1

W 2
ν2

=
5
3 +
(
1.42
1.60

)2
4
3

×
(

0.86

0.86− 0.48

)2

=
(5 + 0.79× 3)× 0.862
4× (0.86− 0.48)2 = 9.43 .

Hence the branching ratios are B(3
−

2 → 3−

2 ) =
9.43
10.43 = 90.4%,

B

(
3−

2
→ 1−

2

)
=

1

10.43
= 9.6% .
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The fT ratio of the two transitions is

(fT )3/2−

(fT )1/2−
=

〈MG−T 〉21/2
〈MG−T 〉23/2 +

G2
V

G2
A

〈MF 〉2
=

4

3× 0.79 + 5 = 0.543 .

(b) When irradiating 7Li with neutrinos, 7Li captures neutrino and

becomes 7Be. On the other hand, 7Be undergoes decay to 7Li. Let the

number of 7Be formed per unit time in the irradiation be ∆N1. Consider

a shell of 7Li of radius r and thickness dr. It contains

4πr2ρndr

A

7Li nuclei, where n =Avogadro’s number, A =mass number of 7Li. The

neutrino flux at r is I0
4πr2 . If σ =cross section for electron-capture by

7Li,

a =activity ratio of 7Li for forming 7Be, R =radius of the sphere of 7Li,

the number of 7Be nuclei produced per unit time is

∆N1 =

∫
I0

4πr2
ρnσa · 4πr2dr/A = I0ρnσaR/A .

With a = 0.925, ρ = 0.53 g cm−3, A = 7, n = 6.023 × 1023, R =(
3×106
4πρ

) 1
3

= 76.7 cm, I0 = 10
17 s−1, σ ≈ 10−43 cm2, we have

∆N1 =
1017 × 0.53× 6.023× 1023 × 10−43 × 0.925× 76.7

7

= 3.2× 10−2 s−1 .

At equilibrium this is also the number of 7Be that decay to 7Li.

Hence the rate of disintegration of 7Be at equilibrium is 3.2× 10−2 s−1.
Note that the number of 7Li produced in 7Be decays is negligible compared

with the total number present.

2090

It is believed that nucleons (N) interact directly through the weak inter-

action and that the latter violates parity conservation. One way to study

the nature of the N-N weak interaction is by means of α-decay, as typified

by the decays of the 3+, T = 1 and 3−, T = 0 states of 20Ne (Fig. 2.29).
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Fig. 2.29

In the following you will be asked to explain the principles of an experi-

ment to measure the weak-interaction matrix element between these states,

〈3+|Hweak|3−〉.
(a) The N-N weak interaction has isoscalar, isovector, and isotensor

components (i.e., ranks 0,1, and 2 in isospin). Which components contribute

to the matrix element 〈3+|Hweak|3−〉?
(b) Explain the parity and isospin selection rules for α-decay. In partic-

ular, explain which of the two 20Ne states would decay to the ground state

of 16O+ α if there were no parity-violating N-N interaction.

(c) Allowing for a parity-violating matrix element 〈3+|Hweak|3−〉 of
1 eV, estimate the α width of the parity-forbidden transition, Γα (forbid-

den), in terms of the α width of the parity-allowed transition, Γα (allowed).

Assume Γα (allowed) is small compared with the separation energy between

the 3+, 3− states.

(d) The α width of the parity-allowed transition is Γα (allowed) =

45 keV, which is not small compared with the separation energy. Do you

expect the finite width of this state to modify your result of part (c) above?

Discuss.

(e) The direct reaction 19F(3He,d)20Ne∗ populates one of the excited

states strongly. Which one do you expect this to be and why?

(f) There is also a 1+/1− parity doublet at ∼ 11.23 MeV. Both states
have T = 1.

(i) In this case which state is parity-forbidden to α-decay?
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(ii) As in part(a), which isospin components of the weak N-N interaction

contribute to the mixing matrix element? (Note that 20Ne is self-conjugate)

Which would be determined by a measurement of the parity-forbidden α

width?

(Princeton)

Solution:

(a) As T = 1 for the 3+ state and T = 0 for the 3− state, only the

isovector component with ∆T = 1 contributes to 〈3+|Hweak|3−〉.
(b) α-decay is a strong interaction for which isospin is conserved. Hence

∆T = 0. As the isospin of α-particle is zero, the isospin of the daughter

nucleus should equal that of the parent. As 16O has T = 0, only the 3−,

T = 0 state can undergo α-decay to 16O + α. As both the spins of 16O

and α are zero, and the total angular momentum does not change in α-

decay, the final state orbital angular momentum is l = 3 and so the parity

is (−1)3 = −1. As it is the same as for the initial state, the transition is
parity-allowed.

(c) Fermi’s golden rule gives the first order transition probability per

unit time as

λ =
2π

�
|Vfi|2ρ(Ef ) ,

where Vfi is the transition matrix element and ρ(Ef ) is the final state

density. Then the width of the parity-allowed transition (3−, T = 0 to
16O + α) is

Γα =
2π

�
|V3−→16O|2ρ(Ef ) .

The parity-forbidden transition (3+, T = 1 to 16O + α) is a second order

process, for which

λ =
2π

�

∣∣∣∣∑
n�=i

VfnVni

Ei −En + iε

∣∣∣∣
2

ρ(Ef ) ,

where 2ε is the width of the intermediate state, and the summation is to

include all intermediate states. In this case, the only intermediate state is

that with 3−, T = 0. Hence

Γ′α =
2π

�
|V3−→16O|2

1

(Ei −En)2 + ε2
|〈3+|Hweak|3−〉|2ρ(Ef )

= Γα
|〈3+|Hweak|3−〉|2
(∆E)2 + (Γα/2)2

,
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where ∆E is the energy spacing between the 3+, 3− states, Γα is the width

of the parity-allowed transition. If Γα � ∆E, as when 〈3+|Hweak|3−〉 =
1 eV, ∆E = 0.052 MeV = 52× 103 eV, we have

Γ′α ≈
|〈3+|Hweak|3−〉|2

(∆E)2
Γα =

Γα
522 × 106 = 3.7× 10

−10Γα .

(d) As Γα = 45 keV, (Γα/2)
2 cannot be ignored when compared with

(∆E)2. Hence

Γ′α =
10−6

522 + 456

4

Γα = 3.1× 10−10Γα = 1.4× 10−5 eV .

(e) Consider the reaction 19F (3He, d)20Ne∗. Let the spins of 19F , 3He,

d, 20Ne, and the captured proton be JA, Ja, Jb, JB , Jp, the orbital angular

momenta of 3He, d and the captured proton be la, lb, lp, respectively. Then

JA + Ja + la = JB + Jb + lb .

As

JA = Jp + lb, la = lp + lb, JA + sp + lp = JB ,

and JA =
1
2 , JB = 3, Jb = 1, lb = 0, sp =

1
2 , we have Jp =

1
2 , lp = 2, 3, 4.

Parity conservation requires P (19F )P (p)(−1)lp = P (20Ne∗), P (20Ne∗) =

(−1)lp .
Experimentally lp is found from the angular distribution to be lp = 2.

Then P (20Ne∗) = +, and so the reaction should populate the 3+ state of

Ne∗, not the 3− state.

(f) (i) The 1+ state is parity-forbidden to α-decay. On the other hand, in

the α-decay of the 1− state, lf +Jα+J16O = 1, Pf = P (α)P (16O)(−1)lf =
−1, so that its α-decay is parity-allowed
(ii) As 20Ne is a self-conjugate nucleus, T3 = 0 because 〈1, 0|1, 0; 1, 0〉 =

0. So only the components of T = 0, 2 can contribute. However in weak

interaction, |∆T | ≤ 1, and so only the component with ∆T = 0 can con-
tribute to the experiment result.

2091

Consider the following energy level structure (Fig. 2.30):
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Fig. 2.30

The ground states form an isotriplet as do the excited states (all states

have a spin-parity of 0+). The ground state of 42
21Sc can β-decay to the

ground state of 4220Ca with a kinetic end-point energy of 5.4 MeV (transition

II in Fig. 2.30).

(a) Using phase space considerations only, calculate the ratio of rates

for transitions I and II.

(b) Suppose that the nuclear states were, in fact, pure (i.e. unmixed)

eigenstates of isospin. Why would the fact that the Fermi matrix element

is an isospin ladder operator forbid transition I from occurring?

(c) Consider isospin mixing due to electromagnetic interactions. In gen-

eral

HEM = H0 +H1 +H2 ,

where the subscripts refer to the isospin tensor rank of each term. Write

the branching ratio ΓI
ΓII

in terms of the reduced matrix elements of each

part of HEM which mixes the states.

(d) Using the results of parts (a) and (c), ignoring H2, and given that
ΓI
ΓII

= 6 × 10−5, calculate the value of the reduced matrix element which
mixes the ground and excited states of 4220Ca.

(Princeton)

Solution:

(a) From phase space consideration only, for β-decay of E0 � mec
2,

Γ ≈ E5
0 (Problem 2077). Thus

ΓI
ΓII

=
(5.4− 1.8)5
(5.4− 0)5 ≈ 0.13 .
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(b) For Fermi transitions within the same isospin multiplet, because the

structures of the initial and final states are similar, the transition proba-

bility is large. Such transitions are generally said to be superallowed. For

0+ → 0+(T = 1), there is only the Fermi type transition, for which

〈MF 〉2 = 〈α, Tf , Tf3|
A∑

K=1

t±(K)|α′, Ti, Ti3〉2

=

(
δαα′δTiTf

√
T (T + 1)− Ti3Tf3

)2

=

{
T (T + 1)− Ti3Tf3, if α = α′, Tf = Ti ,

0, otherwise,

ignoring higher order corrections to the Fermi matrix element. Here α is any

nuclear state quantum number other than isospin. From this we see that

channel II is a transition within the same isospin multiplet, i.e., a super-

allowed one, channel I is a transition between different isospin multiplets,

i.e., a Fermi-forbidden transition.

(c) We make use of the perturbation theory. Let the ground and excited

states of 42Ca be |1〉 and |2〉 respectively. Because of the effect of HEM ,

the states become mixed. Let the mixed states be |1〉′ and |2〉′, noting that
the mixing due to HEM is very small. We have

H0|1〉 = E1|1〉 ,

H0|2〉 = E2|2〉 ,

where E1 and E2 are the energies of the two states (E1 ≈ E0, E2 − E1 =

1.8 MeV).

Consider

H = H0 +HEM ,

where HEM = H0 +H1 +H2. As the index refers to isospin tensor rank,

we write H0, H1 H2 as P0,0, P1,0, P2,0 and define

〈J1m1|Pµν |J2m2〉 = CJ1m1
µνJ2m2

〈J1||Pµν ||J2〉 .
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Then

HEM =P0,0 + P1,0 + P2,0 ,

〈1|HEM |2〉 = 〈α, 1,−1|(P0,0 + P1,0 + P2,0)|α′, 1,−1〉

=

(
〈α, 1||P0||α′, 1〉 −

√
1

2
〈α, 1||P1||α′, 1〉

+

√
1

10
〈α, 1||P2||α′, 1〉

)
,

〈1|HEM |1〉 = 〈2|HEM |2〉 = 〈α, 1,−1|(P0,0 + P1,0 + P2,0)|α, 1,−1〉

= 〈α, 1||P0||α, 1〉 −
√
1

2
〈α, 1||P1||α, 1〉+

√
1

10
〈α, 1||P2||α, 1〉 .

In the above equations, α and α′ denote the quantum numbers of |1〉
and |2〉 other than the isospin, and 〈α, 1||P ||α, 1〉 denote the relevant part
of the reduced matrix element. Thus

ΓI
ΓII

=
E5
1 |M1|2

E5
2 |M2|2

=
(5.4− 1.8− 〈2|HEM |2〉)5
(5.4− 〈1|HEM |1〉)5

〈1|HEM |2〉2
(E2 −E1)2

.

If energy level corrections can be ignored, then 〈1|HEM |1〉 � E1, E2, and

ΓI
ΓII

=
E5
10

E5
20(E2 −E1)2

|〈1|HEM|2〉|2

=
(5.4− 1.8)5
5.45 × 1.82

(
〈1||P0||2〉 −

√
1

2
〈1||P1||2〉+

√
1

10
〈1||P2||2〉

)2

.

If we ignore the contribution of H2 and assume 〈1||P0||2〉 = 0, then the
isoscalar H does not mix the two isospin states and we have

ΓI
ΓII

=
E5
10

E5
20(E2 −E1)2

|〈α, 1||P1||α′, 1〉|2 .

(d) In the simplified case above,

ΓI
ΓII

=
(5.4− 1.8)5
5.45 × 1.82 |〈α, 1||P1||α

′, 1〉|2 = 6× 10−5
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gives

|〈α, 1||P1||α′, 1〉|2 = 24.6× 6× 10−5 = 1.48× 10−3 MeV2 ,

or

|〈α, 1||P1||α′, 1〉| = 38 keV .

2092

“Unlike atomic spectroscopy, electric dipole (E1) transitions are not

usually observed between the first few nuclear states”.

(a) For light nuclei, give arguments that support this statement on the

basis of the shell model. Indicate situations where exceptions might be

expected.

(b) Make an order-of-magnitude “guesstimate” for the energy and ra-

dioactive lifetime of the lowest-energy electric dipole transition expected

for 17
9 F8, outlining your choice of input parameters.

(c) Show that for nuclei containing an equal number of neutrons and

protons (N = Z), no electric dipole transitions are expected between two

states with the same isospin T .

The following Clebch–Gordan coefficient may be of use:

Using notation 〈J1J2M1M2|JTOTMTOT 〉, 〈J100|J0〉 = 0.
(Princeton)

Solution:

(a) Based on single-particle energy levels given by shell model, we see

that levels in the same shell generally have the same parity, especially the

lowest-lying levels like 1s, 1p, 1d, 2s shells, etc. For light nuclei, γ-transition

occurs mainly between different single-nucleon levels. In transitions be-

tween different energy levels of the same shell, parity does not change. On

the other hand, electric dipole transition E1 follows selection rules ∆J = 0

or 1, ∆P = −1. Transitions that conserve parity cannot be electric dipole
in nature. However if the ground and excited states are not in the same

shell, parity may change in a transition. For example in the transition

1p3/2 → 1s1/2, ∆J = 1, ∆P = −1. This is an electric dipole transition.
(b) In the single-particle model, the lowest-energy electric dipole tran-

sition E1 of 17F is 2s1/2 → 1p1/2. The transition probability per unit time
can be estimated by (Problem 2093 with L = 1)
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λ ≈ c

4

(
e2

�c

)(
Eγ

�c

)3

〈r〉2 ,

where Eγ is the transition energy and 〈r〉 ∼ R = 1.4 × 10−13 A1/3 cm.

Thus

λ ≈ 3× 10
10 × (1.4× 10−13)2

4× 137× (197× 10−13)3 A2/3E3
γ = 1.4× 1014A2/3E3

γ ,

where Eγ is in MeV. For
17F we may take Eγ ≈ 5 MeV, A = 17, and so

λ = 1.2× 1017 s ,

or

τ = λ−1 = 9× 10−18 s .

(c) For light or medium nuclei, the isospin is a good quantum number.

A nucleus state can be written as |JmTTz〉, where J,m refer to angular mo-

mentum, T , Tz refer to isospin. The electric multipole transition operator

between two states is

OE(L,E) =
A∑

K=1

[
1

2
(1 + τz(K))ep +

1

2
(1− τz(K))en

]
rL(K)YLM (r(K))

=
A∑

K=1

S(L,M,K) · 1 +
A∑

K=1

V (L,M,K)τz(K)

with

S(L,M,K) =
1

2
(ep + en)r

L(K)YLM(r(K)) ,

V (L,M,K) =
1

2
(ep − en)r

L(K)YLM(r(K)) ,

where τz is the z component of the isospin matrix, for which τzφn = −φn,
τzφp = +φp.

The first term is related to isospin scalar, the second term to isospin

vector. An electric multipole transition from J, T, Tz to J ′, T ′, T ′z can be

written as
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BE(L : JiTiTz → JfTfTz) = 〈JfTfTz|OE(L)|JiTiTz〉2/(2Ji + 1)

=
1

(2Ji + 1)(2Tf + 1)
[δTiTf 〈JfTf |

A∑
K=1

S(L,K) · 1|JiTi〉

+ 〈TiTz10|TfTz〉〈JfTf |
A∑

K=1

V (L,K)τz(K)|JiTi〉]2 .

From the above equation, we see that for electric multipole transitions

between two states the isospin selection rule is ∆T ≤ 1. When ∆T = 0,
δ′TT �= 0, there is an isospin scalar component; when ∆T = 1, the scalar
component is zero.

For electric dipole transition,

A∑
K=1

S(L,K) · 1 =
A∑

K=1

1

2
(ep + en)r(K)YLM (r(K))

=
1

2
(ep + en)

A∑
K=1

r(K)YLM (r(K)) ,

r being nucleon coordinate relative to the center of mass of the nucleus.

For spherically or axially symmetric nuclei, as
∑A

K=1 rYLM (r(K)) is

zero, the isospin scalar term makes no contribution to electric dipole tran-

sition. For the isospin vector term, when Ti = Tf = T ,

〈TiTz10|TfTz〉 =
Tz√

T (T + 1)
.

Then for nuclei with Z = N , in transitions between two levels of ∆T = 0,

as Tz = 0,

〈TiTz10|TfTz〉 = 0 .
and so both the isospin scalar and vector terms make no contribution. Thus

for self-conjugate nuclei, states with Ti = Tf cannot undergo electric dipole

transition.

2093

(a) Explain why electromagnetic Eλ radiation is emitted predominantly

with the lowest allowed multipolarity L. Give an estimate for the ratios E1 :

E2 : E3 : E4 : E5 for the indicated transitions in
16O (as shown in Fig. 2.31).
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Fig. 2.31

(b) Estimate the lifetime of the 7.1 MeV state. Justify your approxi-

mations.

(c) List the possible decay modes of the 6.0 MeV state.

(Princeton)

Solution:

(a) In nuclear shell theory, γ-ray emission represents transition between

nucleon energy states in a nucleus. For a proton moving in a central field

radiation is emitted when it transits from a higher energy state to a lower

one in the nucleus. If L is the degree of the electric multipole radiation,

the transition probability per unit time is given by

λE(L) ≈
2(L+ 1)

L[(2L+ 1)!!]2

(
3

L+ 3

)2(
e2

�

)
k2L+1〈rL〉2 ,

where k = w
c
=

Eγ
�c
is the wave number of the radiation, Eγ being the

transition energy, and 〈γL〉2 ≈ R2L, R = 1.4 × 10−13A1/3 cm being the

nuclear radius. Thus

λE(L) ≈
2(L+ 1)

L[(2L+ 1)!!]2

(
3

L+ 3

)2(
e2

R�c

)(
Eγc

�c

)(
EγR

�c

)2L

=
2(L+ 1)

L[(2L+ 1)!!]2

(
3

L+ 3

)2
1

137

(
3× 1010Eγ
197× 10−13

)
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×
(
Eγ × 1.4× 10−13A1/3

197× 10−13
)2L

=
4.4(L+ 1)

L[(2L+ 1)!!]2

(
3

L+ 3

)2(
Eγ

197

)2L+1

(1.4A1/3)2L × 1021 s−1

with Eγ in MeV. Consider
16O. If Eγ ∼ 1 MeV, we have

λE(L+ 1)

λE(L)
∼ (kR)2 =

(
EγR

�c

)2

=

(
1.4× 10−13 × 161/3

197× 10−13
)2

≈ 3× 10−4 .

Hence λE(L) decreases by a factor 10
−4 as L increases by 1. This means

that EL radiation is emitted predominantly with the lowest allowed multi-

polarity L.

The tranistions of 16O indicated in Fig. 2.31 can be summarized in the

table below.

Transition ∆π ∆l Type L Eγ (MeV)

E1 yes 3 octopole 3 6.1

E2 yes 1 dipole 1 0.9

E3 no 2 quadrupole 2 1.0

E4 no 2 quadrupole 2 1.0

E5 yes 1 dipole 1 7.1

Thus we have

λE1 : λE2 : λE3 : λE4 : λE5 =
4

3(7!!)2

(
1

2

)2 (
6.1

197

)7

(1.4A1/3)6

:
2

(3!!)2

(
3

4

)2(
0.9

197

)3

(1.4A1/3)2

:
3

2(5!!)2

(
3

5

)2(
1

197

)5

(1.4A1/3)4

:
3

2(5!!)2

(
3

5

)2(
1

197

)5

(1.4A1/3)4
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:
2

(3!!)2

(
3

4

)2(
7.1

197

)3

(1.4A1/3)2

=1.59× 10−12 : 1.48× 10−7 : 1.25× 10−12

: 1.25× 10−12 : 7.28× 10−5

=2.18× 10−8 : 2.03× 10−3

: 1.72× 10−8 : 1.72× 10−8 : 1

Thus the transition probability of E5 is the largest, that of E2 is the

second, those of E3, E4 and E1 are the smallest.

(b) The half-life of the 7.1 MeV level can be determined from λE5 :

λE5 =
4.4× 2
(3!!)2

(
3

4

)2(
7.1

197

)3

(1.4× 161/3)2 × 1021 = 3.2× 1017 s−1 ,

giving

T1/2(7.1 MeV) = ln 2/λE5 = 2.2× 10−18 s .

Neglecting transitions to other levels is justified as their probabilities are

much smaller, e.g.,

λE3 : λE5 = 1.7× 10−8 : 1 .

In addition, use of the single-particle model is reasonable as it assumes

the nucleus to be spherically symmetric, the initial and final state wave

functions to be constant inside the nucleus and zero outside which are

plausible for 16O.

(c) The γ-transition 0+ → 0+ from the 6.0 MeV states to the ground

state of 16O is forbidden. However, the nucleus can still go to the ground

state by internal conversion.

2094

The γ-ray total nuclear cross section σtotal (excluding e+e− pair pro-

duction) on neodymium 142 is given in Fig. 2.32
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Fig. 2.32

(a) Which electric or magnetic multipole is expected to dominate the

cross section and why?

(b) Considering the nucleus simply as two fluids of nucleons (protons

and neutrons), explain qualitatively the origin of the resonance shown in

the figure.

(c) Using a simple model of the nucleus as A particles bound in an

harmonic oscillator potential, estimate the resonance energy as a function

of A. Does this agree with the observed value in the figure for A = 142?

(d) Discuss the role of residual two-body interactions in modifying the

estimate in (c).

(e) What are the physical processes responsible for the width of the

resonance? Make rough estimates of the width due to different mechanisms.

(Princeton)

Solution:

(a) The excitation curves of reactions (γ, n) and (γ, p) show a broad

resonance of several MeV width from Eγ = 10 to 20 MeV. This can be

explained as follows. When the nuclear excitation energy increases, the

density of states increases and the level widths become broader. When

the level spacing and level width become comparable, separate levels join

together, so that γ-rays of a wide range of energy can excite the nucleus,

thus producing a broad resonance. If Eγ ≈ 15 MeV, greater than the

nucleon harmonic oscillator energy �ω ≈ 44/A1/3 MeV, dipole transition

can occur. The single-particle model gives (Problem 2093(a))
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Γ(E2orM1)

Γ(E1)
≈ (kR)2 =

(
15× 1.4× 10−13 × 1421/3

197× 10−13
)2

= 0.3 .

Hence the nuclear cross section is due mainly to electric dipole absorp-

tion. We can also consider the collective absorption of the nucleus. We see

that absorption of γ-rays causes the nucleus to deform and when the γ-

ray energy equals the nuclear collective vibrational energy levels, resonant

absorption can take place. As Eγ ≈ 15 MeV, for 142Nd nucleus, electric

dipole, quadrupole, octopole vibrations are all possible. However as the

energy is nearest to the electric dipole energy level, E1 resonant absorption

predominates.

(b) Consider the protons and neutrons inside the nucleus as liquids

that can seep into each other but cannot be compressed. Upon impact of

the incoming photon, the protons and neutrons inside the nucleus tend to

move to different sides, and their centers of mass become separated. Con-

sequently, the potential energy of the nucleus increases, which generates

restoring forces resulting in dipole vibration. Resonant absorption occurs

if the photon frequency equals the resonant frequency of the harmonic os-

cillator.

(c) In a simple harmonic-oscillator model we consider a particle of mass

M = AmN , mN being the nucleon mass, moving in a potential V =
1
2Kx2,

where K, the force constant, is proportional to the nuclear cross-sectional

area. The resonant frequency is f ≈
√
K/M . As K ∝ R2 ∝ A2/3, M ∝ A,

we have

f ∝ A−1/6 ≈ A−0.17 .

This agrees with the experimental result Eγ ∝ A−0.19 fairly well.

(d) The residual two-body force is non-centric. It can cause the nucleus

to deform and so vibrate more easily. The disparity between the rough

theoretical derivation and experimental results can be explained in terms

of the residual force. In particular, for a much deformed nucleus double

resonance peaks may occur. This has been observed experimently.

(e) The broadening of the width of the giant resonance is due mainly to

nuclear deformation and resonance under the action of the incident photons.

First, the deformation and restoring force are related to many factors and

so the hypothetical harmonic oscillator does not have a “good” quality (Q

value is small), correspondingly the resonance width is broad. Second, the

photon energy can pass on to other nucleons, forming a compound nucleus
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and redistribution of energy according to the degree of freedom. This may

generate a broad resonance of width from several to 10 MeV. In addition

there are other broadening effects like the Doppler effect of an order of

magnitude of several keV. For a nucleus of A = 142, the broadening due to

Doppler effect is

∆ED ≈
E2
γ

Mc2
≈ 152

142× 940 = 1.7× 10
−3 MeV = 1.7 keV .

2095

The total cross section for the absorption of γ-rays by 208Pb (whose

ground state has spin-parity Jπ = 0+) is shown in Fig. 2.33. The peak at

2.6 MeV corresponds to a Jπ = 3− level in 208Pb which γ-decays to a 1−

level at 1.2 MeV (see Fig. 2.34).

Fig. 2.33

Fig. 2.34

(a) What are the possible electric and/or magnetic multipolarities of the

γ-rays emitted in the transition between the 2.6 MeV and 1.2 MeV levels?

Which one do you expect to dominate?
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(b) The width of the 2.6 MeV level is less than 1 eV, whereas the width

of the level seen at 14 MeV is 1 MeV. Can you suggest a plausible reason

for this large difference? What experiment might be done to test your

conjecture?

(Wisconsin)

Solution:

(a) In the transition 3− → 1−, the emitted photon can carry away an

angular momentum l = 4, 3, 2. As there is no parity change, l = 4, 2. Hence

the possible multipolarities of the transition are E4,M3 or E2. The electric

quadrupole transition E2 is expected to dominate.

(b) The width of the 2.6 MeV level, which is less than 1 eV, is typical of

an electromagnetic decay, whereas the 14 MeV obsorption peak is a giant

dipole resonance (Problem 2094). As the resonance energy is high, the

processes are mostly strong interactions with emission of nucleons, where

the single-level widths are broader and many levels merge to form a broad,

giant resonance. Thus the difference in decay mode leads to the large

difference in level width.

Experimentally, only γ-rays should be found to be emitted from the

2.6 MeV level while nucleons should also be observed to be emitted from

the 14 MeV level.

2096

Gamma-rays that are emitted from an excited nuclear state frequently

have non-isotropic angular distribution with respect to the spin direction of

the excited nucleus. Since generally the nuclear spins are not aligned, but

their directions distributed at random, this anisotropy cannot be measured.

However, for nuclides which undergo a cascade of γ-emissions (e.g., 60Ni

which is used for this problem-see Fig. 2.35), the direction of one of the

cascading γ-rays can be used as a reference for the orientation of a specific

nucleus. Thus, assuming a negligible half-life for the intermediate state, a

measurement of the coincidence rate between the two γ-rays can give the

angular correlation which may be used to determine the nuclear spins.

In the case of 60Ni we find such a cascade, namely Jp = 4+ → Jp =

2+ → Jp = 0+. The angular correlation function is of the form W (θ) ∼
1 + 0.1248 cos2 θ + 0.0418 cos4 θ.
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Fig. 2.35

(a) Of what types are the transitions?

(b) Why are the odd powers of cos θ missing? Why is cos4 θ the highest

power?

(c) Draw a schematic diagram of an experimental setup showing how

you would make the measurements. Identify all components. (Give block

diagram.)

(d) Describe the γ-ray detectors.

(e) How do you determine the coefficients in the correlation function

which would prove that 60Ni undergoes the transition 4→ 2→ 0?
(f) Accidental coincidences will occur between the two γ-ray detectors.

How can you take account of them?

(g) How would a source of 22Na be used to calibrate the detectors and

electronics? (22Na emits 0.511 MeV gammas from β+ annihilation.)

(h) How would Compton scattering of γ-rays within the 60Co source

modify the measurements?

(Chicago)

Solution:

(a) Each of the two gamma-ray cascading emissions subtracts 2 from

the angular momentum of the excited nucleus, but does not change the

parity. Hence the two emissions are of electric-quadrupole E2 type.

(b) The angular correlation function for cascading emission can be writ-

ten as
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W (θ) =

Kmax∑
K=0

A2KP2K(cos θ) ,

where 0 ≤ Kmax ≤ min(Jb, L1, L2),

A2K = F2K(L1, Ja, Jb)F2K(L2, Jc, Jb) ,

L1, L2 being the angular momenta of the two γ-rays, Ja, Jb, Jc being re-

spectively the initial, intermediate and final nuclear spins, P2K(cos θ) are

Legendre polynomials.

Since W (θ) depends on P2K(cos θ) only, it consists of even powers of

cos θ. For the 4+ → 2+ → 0+ transition of 60Ni, Kmax is 2. Hence the

highest power of cos θ in P4(cos θ) is 4, and so is in W (θ).

(c) Figure 2.36 shows a block diagram of the experimental apparatus to

measure the angular correlation of the γ-rays. With probe 1 fixed, rotate

probe 2 in the plane of the source and probe 1 about the source to change

the angle θ between the two probes, while keeping the distance between the

probes constant. A fast-slow-coincidence method may be used to reduce

spurious coincidences and multiscattering.

Fig. 2.36

(d) A γ-ray detector usually consists of a scintillator, a photomultiplier,

and a signal-amplifying high-voltage circuit for the photomultiplier. When
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the scintillator absorbs a γ-ray, it fluoresces. The fluorescent photons hit the

cathode of the photomultiplier, causing emission of primary photoelectrons,

which are multiplied under the high voltage, giving a signal on the anode.

The signal is then amplified and processed.

(e) The coincidence counting rate W (θ) is measured for various θ. Fit-

ting the experimental data to the angular correlation function we can de-

duce the coefficients.

(f) We can link a delay line to one of the γ-detectors. If the delay time is

long compared to the lifetime of the intermediate state the signals from the

two detectors can be considered independent, and the coincidence counting

rate accidental. This may then be used to correct the observed data.

(g) The two γ-photons of 0.511 MeV produced in the annihilation of

β+ from 22Na are emitted at the same time and in opposite directions.

They can be used as a basis for adjusting the relative time delay between

the two detectors to compensate for any inherent delays of the probes and

electronic circuits to get the best result.

(h) The Compton scattering of γ-rays in the 60Co source will increase the

irregularity of the γ-emission and reduce its anisotropy, thereby reducing

the deduced coefficients in the angular correlation function.

2097

A nucleus of massM is initially in an excited state whose energy is ∆E

above the ground state of the nucleus. The nucleus emits a gamma-ray of

energy hν and makes a transition to its ground state.

Explain why the gamma-ray hν is not equal to the energy level difference

∆E and determine the fractional change hν−∆E
∆E . (You may assume ∆E <

Mc2)

(Wisconsin)

Solution:

The nucleus will recoil when it emits a γ-ray because of the conservation

of momentum. It will thereby acquire some recoil energy from the excitation

energy and make hν less than ∆E.

Let the total energy of the nucleus be E and its recoil momentum be p.

The conservation of energy and of momentum give

p = pγ , E +Eγ =Mc2 +∆E .
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As

Eγ = Pγc = hν, E =
√
p2c2 +M2c4 ,

we have

Eγ =
1

2Mc2
· (∆E)

2 + 2Mc2∆E(
1 + ∆E

Mc2

) ≈ ∆E − (∆E)
2

2Mc2
,

or
hν −∆E
∆E

= − ∆E

2Mc2
.

2098

A (hypothetical) particle of rest mass m has an excited state of excita-

tion energy ∆E, which can be reached by γ-ray absorption. It is assumed

that ∆E/c2 is not small compared to m.

Find the resonant γ-ray energy, Eγ , to excite the particle which is ini-

tially at rest.

(Wisconsin)

Solution:

Denote the particle by A. The reactions is γ + A → A∗. Let Eγ and

pγ be the energy and momentum of the γ-ray, p be the momentum of A,

initially at rest, after it absorbs the γ-ray. Conservation of energy requires

Eγ +mc2 =

√(
m+

∆E

c2

)2

c4 + p2c2 .

Momentum conservation requires

p = pγ ,

or

pc = pγc = Eγ .

Its substitution in the energy equation gives

Eγ = ∆E +
(∆E)2

2mc2
.
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Thus the required γ-ray energy is higher than ∆E by ∆E2

2mc2 , which provides

for the recoil energy of the particle.

2099

(a) Use the equivalence principle and special relativity to calculate, to

first order in y, the frequency shift of a photon which falls straight down

through a distance y at the surface of the earth. (Be sure to specify the

sign.)

(b) It is possible to measure this frequency shift in the laboratory using

the Mössbauer effect.

Describe such an experiment — specifically:

What is the Mössbauer effect and why is it useful here?

What energy would you require the photons to have?

How would you generate such photons?

How would you measure such a small frequency shift?

Estimate the number of photons you would need to detect in order to

have a meaningful measurement.

(Columbia)

Solution:

(a) Let the original frequency of the photon be ν0, and the frequency it

has after falling a distance y in the earth’s gravitational field be ν. Then

the equivalent masses of the photon are respectively hν0/c
2 and hν/c2.

Suppose the earth has mass M and radius R. Conservation of energy

requires

hν0 −G
M · hν0

c2

R+ y
= hν −G

M · hν
c2

R
,

where G is the gravitational constant, or, to first order in y,

ν − ν0

ν0
=

GM

c2

(
1

R
− 1

R+ y

)
≈ gy

c2
= 1.09× 10−16y ,

where g is the acceleration due to gravity and y is in meters. For example,

taking y = 20 m we have

ν − ν0

ν0
= 2.2× 10−15 .
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(b) In principle, photons emitted by a nucleus should have energy Eγ
equal to the excitation energy E0 of the nucleus. However, on account of

the recoil of the nucleus which takes away some energy, Eγ < E0, or more

precisely (Problem 2097),

Eγ = E0 −
E2
0

2Mc2
,

where M is the mass of the nucleus. Likewise, when the nucleus absorbs

a photon by resonant absorption the latter must have energy (Problem

2098)

Eγ = E0 +
E2
0

2Mc2
.

As
E20

2Mc2 is usually larger than the natural width of the excited state,

γ-rays emitted by a nucleus cannot be absorbed by resonant absorption by

the same kind of nucleus.

However, when both the γ source and the absorber are fixed in crystals,

the whole crystal recoils in either process, M → ∞, E20
2Mc2

→ 0. Resonant

absorption can now occur for absorber nuclei which are the same as the

source nuclei. This is known as the Mössbauer effect. It allows accurate

measurement of γ-ray energy, the precision being limited only by the natural

width of the level.

To measure the frequency shift ∆ν
ν0
= 2.2×10−15, the γ source used must

have a level of natural width Γ/Eγ less than ∆ν/ν0. A possible choice is
67Zn which has Eγ = 93 keV, Γ/Eγ = 5.0 × 10−16. Crystals of 67Zn are
used both as source and absorber. At y = 0, both are kept fixed in the

same horizontal plane and the resonant aborption curve is measured. Then

move the source crystal to 20 m above the absorber. The frequency of the

photons arriving at the fixed absorber is ν0 +∆ν and resonant absorption

does not occur. If the absorber is given a downward velocity of v such

that by the Doppler effect the photons have frequency ν0 as seen by the

absorber, resonant absorption can take place. As

ν0 = (ν0 +∆ν)
(
1− v

c

)
≈ ν0 +∆ν − ν0

(v
c

)
,

v ≈ c

(
∆ν

ν0

)
= 3× 1010 × 2.2× 10−15

= 6.6× 10−5 cm s−1 ,

which is the velocity required for the absorber.
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Because the natural width for γ-emission of 67Zn is much smaller than

∆ν/ν0, there is no need for a high counting rate. A statistical error of

5% at the spectrum peak is sufficient for establishing the frequency shift,

corresponding to a photon count of 400.

2100

A parent isotope has a half-life τ1/2 = 10
4 yr= 3.15× 1011 s. It decays

through a series of radioactive daughters to a final stable isotope. Among

the daughters the greatest half-life is 20 yr. Others are less than a year. At

t = 0 one has 1020 parent nuclei but no daughters.

(a) At t = 0 what is the activity (decays/sec) of the parent isotope?

(b) How long does it take for the population of the 20 yr isotope to

reach approximately 97% of its equilibrium value?

(c) At t = 104 yr how many nuclei of the 20 yr isotope are present?

Assume that none of the decays leading to the 20 yr isotope is branched.

(d) The 20 yr isotope has two competing decay modes: α, 99.5%; β,

0.5%. At t = 104 yr, what is the activity of the isotope which results from

the β-decay?

(e) Among the radioactive daughters, could any reach their equilib-

rium populations much more quickly (or much more slowly) than the 20 yr

isotope?

(Wisconsin)

Solution:

(a) The decay constant of the parent isotope is

λ1 =
ln 2

τ1/2
= 6.93× 10−5 yr−1 = 2.2× 10−12 s−1 .

When t = 0, the activity of the parent isotope is

A1(0) = λ1N1(t = 0) =
2.2× 10−12 × 1020

3.7× 107 = 5.95 millicurie .

(b) Suppose the 20 yr isotope is the nth-generation daughter in a ra-

dioactive series. Then its population is a function of time:

Nn(t) = N1(0)(h1e
−λ1t + h2e

−λ2t + · · ·+ hne
−λnt) ,
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where

h1 =
λ1λ2 · · ·λn−1

(λ2 − λ1)(λ3 − λ1) · · · (λn − λ1)
,

h2 =
λ1λ2 · · ·λn−1

(λ1 − λ2)(λ3 − λ2) · · · (λn − λ2)
,

...

hn =
λ1λ2 · · ·λn−1

(λ1 − λn)(λ2 − λn) · · · (λn−1 − λn)
,

where N1(0) is the number of the parent nuclei at t = 0, λi is the decay

constant of the ith-generation daughter. For secular equilibrium we require

λ1 � λj , j = 2, 3, . . . , n, . . . . As the nth daugther has the largest half-life

of 1020 yr, we also have λn � λj , j = 2, 3, . . . , (j �= n), λn = ln 2/τ1/2 =

3.466× 10−2 yr−1. Thus

h1 ≈
λ1

λn
, hn ≈ −

λ1

λn
.

After a sufficiently long time the system will reach an equilibrium at which

λnN
e
n(t) = λ1N

e
1 (t), the superscript e denoting equilibrium values, or

Ne
n(t) =

λ1

λn
Ne

1 (t) =
λ1

λn
N1(0)e

−λ1t .

At time t before equilibrium is reached we have

Nn(t) ≈ N1(0)

(
λ1

λn
e−λ1t − λ1

λn
e−λnt

)
.

When Nn(t) = 0.97N
e
n(t), or

0.97
λ1

λn
N1(0)e

−λ1t ≈ N1(0)

(
λ1

λn
e−λ1t − λ1

λn
e−λnt

)
,

the time is t = t0 given by

t0 =
ln 0.03

λ1 − λn
≈ 101 yr .

Hence after about 101 years the population of the 20 yr isotope will reach

97% of its equilibrium value.
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(c) At t = 104 yr, the system can be considered as in equilibrium. Hence

the population of the 20 yr isotope at that time is

Nn(10
4) =

λ1

λn
N1(0)e

−λ1t = 1017 .

(d) After the system has reached equilibrium, all the isotopes will have

the same activity. At t = 104 years, the activity of the parent isotope is

A1(10
4) =λ1N(0)e

−λ1t = 6.93× 10−5 × 1020 × exp(−6.93× 10−5 × 104)

=3.47× 1015 yr−1 = 3.0 mc .

The activity of the β-decay product of the 20 yr isotope is

Aβ = 3× 0.05 = 0.15 mc .

(e) The daughter nuclei ahead of the 20 yr isotope will reach their equi-

librium populations more quickly than the 20 yr isotope, while the daughter

nuclei after the 20 yr isotope will reach their equilibrium populations ap-

proximately as fast as the 20 yr isotope.

2101

A gold foil 0.02 cm thick is irradiated by a beam of thermal neutrons

with a flux of 1012 neutrons/cm2/s. The nuclide 198Au with a half-life of 2.7

days is produced by the reaction 197Au(n, γ)198Au. The density of gold is

19.3 gm/cm3 and the cross section for the above reaction is 97.8×10−24 cm2.
197Au is 100% naturally abundant.

(a) If the foil is irradiated for 5 minutes, what is the 198Au activity of

the foil in decays/cm2/s?

(b) What is the maximum amount of 198Au/cm2 that can be produced

in the foil?

(c) How long must the foil be irradiated if it is to have 2/3 of its maxi-

mum activity?

(Columbia)

Solution:

(a) Initially the number of 197Au nuclei per unit area of foil is

N1(0) =
0.02× 19.3

197
× 6.023× 1023 = 1.18× 1021 cm−2 .
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Let the numbers of 197Au and 198Au nuclei at time t be N1, N2 respectively,

σ be the cross section of the (n, γ) reaction, I be flux of the incident neutron

beam, and λ be the decay constant of 198Au. Then

dN1

dt
= − σIN1 ,

dN2

dt
=σIN1 − λN2 .

Integrating we have

N1 = N1(0)e
−σIt, ,

N2 =
σI

λ− σI
N1(0)(ē

σIt − e−λt) .

As

λ =
ln 2

2.7× 24× 3600 = 2.97× 10
−6 s−1 ,

σI = 9.78× 10−23 × 1012 = 9.78× 10−11 s−1 � λ ,

at t = 5 min = 300 s the activity of 198Au is

A(300s) = λN2(t) =
λσIN1(0)

λ− σI
(e−σIt − e−λt) ≈ σIN1(0)(1− e−λt)

= 9.78× 10−11 × 1.18× 1021 × [1− exp(−2.97× 10−6 × 300)]

= 1.03× 108 cm−2 s−1 .

(b) After equilibrium is attained, the activity of a nuclide, and hence

the number of its nuclei, remain constant. This is the maximum amount of
198Au that can be produced. As

dN2

dt
= 0 ,

we have

λN2 = σIN1 ≈ σIN1(0)
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giving

N2 =
σI

λ
N1(0) =

9.78× 10−11
2.97× 10−6 × 1.18× 10

21

= 3.89× 1016 cm−2 .

(c) As

A =
2

3
Amax ≈ σIN1(0)(1− e−λt) ,

t = − 1
λ
ln

(
1− 2

3

Amax

σIN1(0)

)
= − 1

λ
ln

(
1− 2

3

)
= 3.70× 105 s = 4.28 day .

2102

In the fission of 235U, 4.5% of the fission lead to 133Sb. This isotope is

unstable and is the parent of a chain of β-emitters ending in stable 133Cs:

133Sb
10min−→

133

Te
60min−→

133

I
22hours−→

133

Xe
5.3days−→

133

Cs .

(a) A sample of 1 gram of uranium is irradiated in a pile for 60 minutes.

During this time it is exposed to a uniform flux of 1011 neutrons/cm2 sec.

Calculate the number of atoms of Sb, Te, and I present upon removal from

the pile. Note that uranium consists of 99.3% 238U and 0.7% 235U, and the

neutron fission cross section of 235U is 500 barns. (You may neglect the

shadowing of one part of the sample by another.)

(b) Twelve hours after removal from the pile the iodine present is re-

moved by chemical separation. How many atoms of iodine would be ob-

tained if the separation process was 75% efficient?

(Columbia)

Solution:

(a) The number of Sb atoms produced in the pile per second is

C =N0 · f · σ · 4.5%

=
1× 0.007
235

× 6.023× 1023 × 1011 × 500× 10−24 × 0.045

=4.04× 107 s−1 .
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Let the numbers of atoms of Sb, Te, I present upon removal from the pile

be N1, N2, N3 and their decay constants be λ1, λ2, λ3 respectively. Then

λ1 =
ln 2
600 = 1.16× 10−3 s−1, λ2 = 1.93× 10−4 s−1, λ3 = 8.75× 10−6 s−1,

and dN1
dt = C − λ1N1, with N1 = 0 at t = 0, giving for T = 3600 s,

N1(T ) =
C

λ1
(1− e−λ1T ) = 3.43× 1010 ,

dN2
dt
= λ1N1 − λ2N2, with N2 = 0, at t = 0, giving

N2(T ) =
C

λ2

(
1 +

λ2

λ1 − λ2
e−λ1T − λ1

λ1 − λ2
e−λ2T

)
= 8.38× 1010 ,

dN3
dt
= λ2N2 − λ3N3, with N3 = 0, at t = 0, giving

N3(T ) =
C

λ3

[
1− λ2λ3e

−λ1T

(λ1 − λ2)(λ1 − λ3)
− λ3λ1e

−λ2T

(λ2 − λ3)(λ2 − λ1)

]

+
C

λ3

[
λ2λ3

(λ1 − λ2)(λ1 − λ3)
− λ1λ3

(λ1 − λ2)(λ2 − λ3)
− 1
]
e−λ3T

=
C

λ3

[
1− λ2λ3e

−λ1T

(λ1 − λ2)(λ1 − λ3)
− λ3λ1e

−λ2T

(λ2 − λ3)(λ2 − λ1)

− λ1λ2e
−λ3T

(λ3 − λ1)(λ3 − λ2)

]
≈ C

λ3
(1− e−λ3T )

=
C

λ3
(1− 0.969) = 2.77× 1010 .

(b) After the sample is removed from the pile, no more Sb is produced,

but the number of Sb atoms will decrease with time. Also, at the initial

time t = T,N1, N2, N3 are not zero. We now have

N1(t) =N1(T )e
−λ1t ,

N2(t) =
λ1

λ2 − λ1
N1(T )e

−λ1t +

[
N2(T ) +

λ1N1(T )

λ1 − λ2
e−λ2t

]
,

N3(t) =
λ1λ2N1(T )

(λ2 − λ1)(λ3 − λ1)
e−λ1t +

λ2

λ3 − λ2

[
N2(T ) +

λ1N1(T )

λ1 − λ2

]
e−λ2t

+

[
N3(T ) +

λ2

λ2 − λ3
N2(T ) +

λ1λ2N1(T )

(λ1 − λ3)(λ2 − λ3)

]
e−λ3t .
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For t = 12 hours, as t� τ1, τ2,

N3(12 hours) ≈
[
N3(T ) +

λ2

λ2 − λ3
N2(T ) +

λ1λ2N1(T )

(λ1 − λ3)(λ2 − λ3)

]
e−λ3t

=1010 × [2.77 + 8.80 + 3.62]

× exp(−8.75× 10−6 × 12× 3600)

= 1.04× 1011 .

The number of atoms of I isotope obtained is

N = 0.75×N3 = 7.81× 1010 .

2103

A foil of 7Li of mass 0.05 gram is irradiated with thermal neutrons

(capture cross section 37 milllibars) and forms 8Li, which decays by β−-

decay with a half-life of 0.85 sec. Find the equilibrium activity (number of

β-decays per second) when the foil is exposed to a steady neutron flux of

3× 1012 neutrons/sec·cm2.

(Columbia)

Solution:

Let the 7Li population be N1(t), the
8Li population be N2(t). Initially

N1(0) =
0.05

7
× 6.023× 1023 = 4.3× 1021, N2(0) = 0 .

During the neutron irradiation, N1(t) changes according to

dN1

dt
= −σφN1 ,

where σ is the neutron capture cross section and φ is the neutron flux, or

N1(t) = N1(0)e
−σφt .

N2(t) changes according to

dN2

dt
= −dN1

dt
− λN2(t) = N1(0)σφe

−σφt − λN2(t) ,
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where λ is the β-decay constant of 8Li. Integration gives

N2(t) =
σφ

λ− σφ
(e−σφt − e−λt)N1(0) .

At equilibrium, dN2dt = 0, which gives the time t it takes to reach equilib-

rium:

t =
1

λ− σφ
ln

(
λ

σφ

)
.

As λ = ln 2
0.85 = 0.816 s

−1, σφ = 3.7× 10−26 × 3× 1012 = 1.11× 10−13 s−1 ,

t ≈ 1
λ
ln

(
λ

σφ

)
= 3.63 s .

The equilibrium activity is

A = λN2 ≈
λσφN1(0)

λ− σφ
≈ σφN1(0) = 4.77× 108 Bq = 12.9 mc .

2104

In a neutron-activation experiment, a flux of 108 neutrons/cm2·sec is
incident normally on a foil of area 1 cm2, density 1022 atoms/cm3, and

thickness 10−2 cm (Fig. 2.37). The target nuclei have a total cross section

for neutron capture of 1 barn (10−24 cm2), and the capture leads uniquely

to a nuclear state which β-decays with a lifetime of 104 sec. At the end of

100 sec of neutron irradiation, at what rate will the foil be emitting β-rays?

(Wisconsin)

Fig. 2.37

Solution:

Let the number of target nuclei be N(t), and that of the unstable nuclei

resulting from neutron irradiation be Nβ(t). As the thickness of the target

is 10−2 cm, it can be considered thin so that
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dN(t)

dt
= −σφN(t) ,

where φ is the neutron flux, σ is the total neutron capture cross section of

the target nuclei. Integration gives N(t) = N(0)e−σφt. As σφ = 10−24 ×
108 = 10−16 s−1, σφt = 10−14 � 1 and we can take N(t) ≈ N(0), then

dN

dt
≈ −σφN(0) ,

indicating that the rate of production is approximately constant.

Consider the unstable nuclide. We have

dNβ(t)

dt
≈ σφN(0)− λNβ(t) ,

where λ is the β-decay constant. Integrating we have

Nβ(t) =
σφN(0)

λ
(1− e−λt) ,

and so

A = Nβ(t)λ = σφN(0)(1− e−λt) .

At t = 100 s, the activity of the foil is

A = 10−16 × 1022 × 1× 10−2 × (1− e−10
−2
) = 99.5 s−1

as

λ =
1

104
= 10−4 s .

2105

Radioactive dating is done using the isotope

(a) 238U.

(b) 12C.

(c) 14C.

(CCT)

Solution:
14C. The radioactive isotope 14C maintains a small but fixed proportion

in the carbon of the atomsphere as it is continually produced by bombard-

ment of cosmic rays. A living entity, by exchanging carbon with the atmo-

sphere, also maintains the same isotopic proportion of 14C. After it dies,
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the exchange ceases and the isotopic proportion attenuates, thus providing

a means of dating the time of death. 12C is stable and cannot be used for

this purpose. 238U has a half-life of 4.5× 109 years, too long for dating.

2106

14C decays with a half-life of about 5500 years.

(a) What would you guess to be the nature of the decay, and what are

the final products? Very briefly explain.

(b) If no more 14C enters biological systems after their death, estimate

the age of the remains of a tree whose radioactivity (decays/sec) of the type

given in (a) is 1/3 of that of a comparable but relatively young tree.

(Wisconsin)

Solution:

(a) 14C is a nuclide with excess neutrons, and so it will β−-decay to 14N

according to
14C →14 N + e− + v̄e .

(b) The number of 14C of a biological system attenuates with time after

death according to N(t) = N(0)e−λt, which gives the activity of 14C as

A(t) = λN(t) = A(0)e−λt .

Thus the age of the dead tree is

t =
1

λ
ln

A(0)

A(t)
=

τ1/2

ln 2
ln

A(0)

A(t)

=
5500

ln 2
ln

(
3

1

)
= 8717 years .

2107

Plutonium (238Pu, Z = 94) has been used as power source in space

flights. 238Pu has an α-decay half-life of 90 years (2.7× 109 sec).
(a) What are the Z and N of the nucleus which remains after α-decay?
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(b) Why is 238Pu more likely to emit α’s than deuterons as radiation?

(c) Each of the α-particles is emitted with 5.5 MeV. What is the power

released if there are 238 gms of 238Pu (6×1023 atoms)? (Use any units you
wish but specify.)

(d) If the power source in (c) produces 8 times the minimum required to

run a piece of apparatus, for what period will the source produce sufficient

power for that function.

(Wisconsin)

Solution:

(a) The daughter nucleus has N = 142, Z = 92.

(b) This is because the binding energy of α-particle is higher than that

of deuteron and so more energy will be released in an α-decay. For 238Pu,

238
94 Pu→ 234

92 U + α, Q = 46.186− 38.168− 2.645 ≈ 5.4 MeV ,

238
94 Pu→236

93 Np+ d, Q = 46.186− 43.437− 13.136 ≈ −10.4 MeV .

Deuteron-decay is not possible as Q < 0.

(c) Because of the recoil of 234U, the decay energy per 238Pu is

Ed = Eα+EU =
p2α
2mα

+
p2α
2mU

= Eα

(
1 +

mα

mU

)
= 5.5

(
238

234

)
= 5.6 MeV .

As the half-life of 238Pu is T1/2 = 90 yr = 2.7×109 s, the decay constant is

λ = ln 2/T1/2 = 2.57× 10−10 s−1 .

For 238 g of 238Pu, the energy released per second at the beginning is

dE

dt
= Ed

dN

dt
= EdλN0 = 5.6×2.57×10−10×6×1023 = 8.6×1014 MeV/s .

(d) As the amount of 238Pu nuclei attenuates, so does the power output:

W (t) =W (0)e−λt .

When W (t0) =W (0)/8,

t0 = ln 8/λ = 3 ln 2/λ = 3T1/2 = 270 yr.

Thus the apparatus can run normally for 270 years.
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6. NUCLEAR REACTIONS (2108 2120)

2108

Typical nuclear excitation energies are about 10−2, 101, 103, 105 MeV.

(Columbia)

Solution:

101 MeV.

2109

The following are atomic masses in units of u (1 u = 932 MeV/c2).

Electron 0.000549 152
62 Sm 151.919756

Neutron 1.008665 152
63 Eu 151.921749

1
1H 1.007825 152

64 Gd 151.919794

(a) What is the Q-value of the reaction 152Eu(n,p)?

(b) What types of weak-interaction decay can occur for 152Eu?

(c) What is the maximum energy of the particles emitted in each of the

processes given in (b)?

(Wisconsin)

Solution:

(a) The reaction 152Eu+ n→ 152Sm+ p has Q-value

Q =[m(152Eu) +m(n)−m(152Sm)−m(p)]c2

=[M(152Eu) +m(n)−M(152Sm)−M(1H)]c2

=0.002833 u = 2.64 MeV ,

where m denotes nuclear masses, M denotes atomic masses. The effects

of the binding energy of the orbiting electrons have been neglected in the

calculation.

(b) The possible weak-interaction decays for 152Eu are β-decays and

electron capture:
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β−-decay :152Eu→152 Gd+ e− + ν̄e ,

β+-decay :152Eu→152 Sm+ e+ + νe ,

orbital electron capture :152Eu+ e− →152 Sm+ νe .

Consider the respective Q-values:

β−-decay : Ed(β
−) = [M(152Eu)−M(152Gd)]c2 = 1.822 MeV > 0 ,

energetically possible.

β+-decay : Ed(β
+) = [M(152Eu)−M(152Sm)− 2m(e)]c2

=0.831 MeV > 0 ,

energetically possible.

Orbital electron capture:

Ed(EC) = [M(
152Eu)−M(152Sm)]c2 −Wj = 1.858 MeV−Wj ,

where Wj is the electron binding energy in atomic orbits, the subscript j

indicating the shell K,L,M , etc., of the electron. Generally Wj � 1 MeV,
and orbital electron capture is also energetically possible for 152Eu.

(c) As the mass of electron is much smaller than that of the daughter

nucleus, the latter’s recoil can be neglected. Then the maximum energies

of the particles emitted in the processes given in (b) are just the decay

energies. Thus

for β−-decay, the maximum energy of electron is 1.822 MeV,

for β+-decay, the maximum energy of positron is 0.831 MeV.

For orbital electron capture, the neutrinos are monoenergetic, their ener-

gies depending on the binding energies of the electron shells from which they

are captured. For example, for K capture, Wk ≈ 50 keV, Eν ≈ 1.8 MeV.

2110

(a) Consider the nuclear reaction

1H +A X →2 H +A−1 X .
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For which of the following target nuclei AX do you expect the reaction to

be the strongest, and why?

AX =39 Ca, 40Ca, 41Ca .

(b) Use whatever general information you have about nuclei to estimate

the temperature necessary in a fusion reactor to support the reaction

2H +2 H → 3He+ n .

(Wisconsin)

Solution:

(a) The reaction is strongest with a target of 41Ca. In the reaction the

proton combines with a neutron in 41Ca to form a deuteron. The isotope
41Ca has an excess neutron outside of a double-full shell, which means that

the binding energy of the last neutron is lower than those of 40Ca, 39Ca,

and so it is easier to pick up.

(b) To facilitate the reaction 2H+2H →3 H+n, the two deuterons must

be able to overcome the Coulomb barrier V (r) = 1
4πε0

e2

r
, where r is the

distance between the deuterons. Take the radius of deuteron as 2 fm. Then

rmin = 4× 10−15 m, and Vmax =
1

4πε0
e2

rmin
. The temperature required is

T �Vmax

k
=

1

4πε0

e2

rmin

1

k
=

(
1

4πε0

e2

�c

)(
�c

rmin

)
1

k

=
1

137
×
(
197× 10−15
4× 10−15

)
1

8.6× 10−11 = 4× 10
9 K .

In the above k is Boltzmann’s constant. Thus the temperature must be

higher than 4×109 K for the fusion reaction 2H+2H → 3He+n to occur.

2111

(a) Describe one possible experiment to determine the positions (exci-

tation energies) of the excited states (energy levels) of a nucleus such as
13C. State the target, reaction process, and detector used.

(b) In the proposed experiment, what type of observation relates to the

angular momentum of the excited state?

(Wisconsin)
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Solution:

(a) Bombard a target of 12C with deuterons and detect the energy spec-

trum of the protons emitted in the reaction 12C(d,p)13C with a gold-silicon

surface-barrier semiconductor detector. This, combined with the known

energy of the incident deuterons, then gives the energy levels of the excited

states of 13C. One can also use a Ge detector to measure the energy of the

γ-rays emitted in the de-excitation of 13C∗ and deduce the excited energy

levels.

(b) From the known spin-parity of 12C and the measured angular dis-

tribution of the reaction product p we can deduced the spin-parity of the

resultant nucleus 13C.

2112

Given the atomic mass excess (M −A) in keV:

1n = 8071 keV, 1H = 7289 keV, 7Li = 14907 keV , 7Be = 15769 keV ,

and for an electron m0c
2 = 511 keV.

(a) Under what circumstances will the reaction 7Li(p,n)7Be occur?

(b) What will be the laboratory energy of the neutrons at threshold for

neutron emission?

(Wisconsin)

Solution:

(a) In 7Li+ p→7 Be+ n+Q the reaction energy Q is

Q =∆M(7Li) + ∆M(1H)−∆M(7Be)−∆M(n)

= 14907 + 7289− 15769− 8071 = −1644 keV .

This means that in the center-of-mass system, the total kinetic energy

of 7Li and p must reach 1644 keV for the reaction to occur. Let E,P be

the total energy and momentum of the proton in the laboratory system.

We require

(E +mLic
2)2 − P 2c2 = (|Q|+mLic

2 +mpc
2)2 .
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As E2 = m2
pc

4 + P 2c2, E ≈ T + mpc
2, |Q| � mLi, mp, we have

2(E −mpc
2)mLic

2 ≈ 2|Q|(mLi +mp)c
2, or

T =
mp +mLi

mLi
× |Q| ≈ 1 + 7

7
× 1644 = 1879 keV .

Thus the kinetic energy T of the incident proton must be higher than

1879 keV.

(b) The velocity of the center of mass in the laboratory is

Vc =
mp

mp +mLi
Vp .

As at threshold the neutron is produced at rest in the center-of-mass system,

its velocity the laboratory is Vc. Its laboratory kinetic energy is therefore

1

2
mnV

2
c =

1

2

mnm
2
p

(mp +mLi)2
· 2T
mp

=
mnmpT

(mp +mLi)2
≈ T

64
= 29.4 keV .

2113

The nucleus 8Be is unstable with respect to dissociation into two α-

particles, but experiments on nuclear reactions characterize the two lowest

unstable levels as

J = 0, even parity, ∼95 keV above the dissociation level,
J = 2, even parity, ∼3 MeV above the dissociation level.
Consider how the existence of these levels influence the scattering of

α-particles from helium gas. Specifically:

(a) Write the wave function for the elastic scattering in its partial wave

expansion for r →∞.
(b) Describe qualitatively how the relevant phase shifts vary as functions

of energy in the proximity of each level.

(c) Describe how the variation affects the angular distribution of α-

particles.

(Chicago)

Solution:

(a) The wave function for elastic scattering of α-particle (He++) by

a helium nucleus involves two additive phase shifts arising from Coulomb
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interaction (δl) and nuclear forces (ηl). To account for the identity of the

two (spinless) particles, the spatial wave function must be symmetric with

an even value of l. Its partial wave at r →∞ is

∞∑
l=0

1 + (−1)l
2

(2l + 1)ilei(δl+ηl)
1

kr

× sin
[
kr − lπ

2
− γ ln(2kr) + δl + ηl

]
Pl(cos θ) ,

where k is the wave number in the center-of-mass system and γ = (2e)2/�v,

v being the relative velocity of the α-particles.

(b) The attractive nuclear forces cause each ηl to rise from zero as

the center-of-mass energy increases to moderately high values. Specifically

each ηl rises rather rapidly, by nearly π radians at each resonance, as the

energy approaches and then surpasses any unstable level of a definite l of

the compound nucleus, e.g., near 95 keV for l = 0 and near 3 MeV for l = 2

in the case of 8Be.

However, the effect of nuclear forces remains generally negligible at en-

ergies lower than the Coulomb barrier, or whenever the combination of

Coulomb repulsion and centrifugal forces reduces the amplitude of the rel-

evant partial wave at values of r within the range of nuclear forces. Thus

ηl remains ∼ 0 (or ∼ nπ) except when very near a resonance, where ηl,

rises by π anyhow. Taking R ∼ 1.5 fm as the radius of each He++ nucleus,

the height of the Coulomb barrier when two such nuclei touch each other

is B ∼ (2e)2/2R ∼ 2 MeV. Therefore the width of the l = 0 resonance

at 95 keV is greatly suppressed by the Coulomb barrier, while the l = 2

resonance remains broad.

(c) To show the effect of nuclear forces on the angular distribution one

may rewrite the partial wave expansion as

∞∑
l=0

1 + (−1)l
2

(2l+ 1)ileiδl
1

kr

{
sin

(
kr − lπ

2
− γ ln(2kr) + δl

)

+

(
e2iηl − 1
2i

)
exp

[
i

(
kr − lπ

2
− γ ln(2kr) + δl

]}
Pl(cos θ) .

Here the first term inside the brackets represents the Coulomb scattering

wave function unaffected by nuclear forces. The contribution of this term

can be summed over l to give
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exp i{kr cos θ − γ ln[kr(1− cos θ)] + δ0} − γ(kr)−1 exp i{kr cos θ

− γ ln(kr) + δ0} ·
1√
2

[
e−iγ ln(1−cos θ)

1− cos θ +
e−iγ ln(1+cos θ)

1 + cos θ

]
.

The second term represents the scattering wave due to nuclear forces, which

interferes with the Coulomb scattering wave in each direction. However,

it is extremely small for ηl very close to nπ, as for energies below the

Coulomb barrier. Accordingly, detection of such interference may signal

the occurence of a resonance at some lower energy.

An experiment in 1956 showed no significant interference from nuclear

scattering below 300 keV center-of-mass energy, at which energy it was

found η0 = (178± 1) degrees.

2114

A 3-MV Van de Graaff generator is equipped to accelerate protons,

deuterons, doubly ionized 3He particles, and alpha-particles.

(a) What are the maximum energies of the various particles available

from this machine?

(b) List the reactions by which the isotope 15O can be prepared with

this equipment.

(c) List at least six reactions in which 15N is the compound nucleus.

Fig. 2.38

(d) Describe two types of reaction experiment which can be carried out

with this accelerator to determine energy levels in 15N. Derive any equations
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needed. (Assume all masses are known. Figure 2.38 shows the isotopes of

light nuclei.)

(Columbia)

Solution:

(a) The available maximum energies of the various particles are: 3 MeV

for proton, 3 MeV for deuteron, 6 MeV for doubly ionized 3He, 6 MeV for

α-particle.

(b) Based energy consideration, the reactions that can produce 15O are

p+14 N →15 O + γ, Q = 7.292 MeV ,

d+14 N →15 O + n, Q = 5.067 MeV ,

3He+13 C →15 O + n, Q = 6.476 MeV .

15O cannot be produced with α-particles because of their high binding

energy and small mass, which result in Q = −8.35 MeV.
(c) The reactions in which 15N is the compound nucleus are

α+11 B →15 N∗ →14 N + n, Q = 0.158 MeV ,

→15 N∗ →14 C + p, Q = 0.874 MeV ,

→15 N∗ →15 N + γ, Q = 10.991 MeV ,

d+13 C →15 N∗ →14 N + n, Q = 5.325 MeV ,

→15 N∗ →11 B + α, Q = 5.168 MeV ,

→15 N∗ →14 C + p, Q = 5.952 MeV .

(d) (1) For the reaction α+11B →15 N∗ →15 N + γ, measure the γ-ray

yield curve as a function of the energy Eα of the incoming α-particles. A

resonance peak corresponds to an energy level of the compound nucleus
15N∗, which can be calculated:

E∗ =
11

15
Eα +m(4He)c2 +m(11B)c2 −m(15N)c2 .

(2) With incoming particles of known energy, measuring the energy

spectrums of the produced particles enables one to determine the energy

levels of 15N∗. For instance, the reaction
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3He+14 N →15 N + d

has Q = 4.558 MeV for ground state 15N . If the incoming 3He has en-

ergy E0, the outgoing deuteron has energy E
′ and angle of emission θ, the

excitation energy E∗ is given by

E∗ = Q−Q′ ,

where

Q′ =

[
1 +

m(d)

m(15N)

]
E′ −

[
1− m(3He)

m(15N)

]
E0 −

2
√
m(3He)m(d)E0E′

m(15N)
cos θ

=

(
1 +

2

15

)
E′ −

(
1− 3

15

)
E0 − 2

√
3× 2E0E′

15
cos θ

=
1

15
(17E′ − 12E0 − 2

√
6E0E′ cos θ) .

2115

When Li6 (whose ground state has J = 1, even parity) is bombarded

by deuterons, the reaction rate in the reaction Li6 + d → α + α shows

a resonance peak at E (deuteron)= 0.6 MeV. The angular distribution of

the α-particle produced shows a (1 + A cos2 θ) dependence where θ is the

emission angle relative to the direction of incidence of the deuterons. The

ground state of the deuteron consists of a proton and a neutron in 3S1
configuration. The masses of the relevant nuclides are

md =2.0147 amu, mα = 4.003 amu ,

mLi =6.0170 amu, mBe = 8.0079 amu ,

where 1 amu = 938.2 MeV.

From this information alone, determine the energy, angular momentum,

and parity of the excited level in the compound nucleus. What partial

wave deuterons (s,p,d, etc.) are effective in producing this excited level?

(explain)

(Columbia)
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Solution:

The excitation energy of the compound nucleus 8Be∗ in the reaction

d+6 Li→8 Be∗ is

E(8Be∗) = [m(2H) +m(6Li)−m(8Be)] +Ed
m(6Li)

m(6Li) +m(2H)

= (2.0147 + 6.0170− 8.0079)× 938.2 + 0.6× 6
8
= 22.779 MeV .

In the decay 8Be∗ → α+α, as Jπ of α is 0+, the symmetry of the total

wave function of the final state requires that lf , the relative orbital angular

momentum of the two α-particles, be even and the decay, being a strong

interaction, conserve parity, the parity of 8Be∗ is π(8Be∗) = (−1)lf (+1)2 =
+1.

As the angular distribution of the final state α-particles is not spherically

symmetric but corresponds to lf = 2, we have

Jπ(8Be∗) = 2+ .

Then the total angular momentum of the initial state d+6Li is also Ji = 2.

As Ji = Jd + JLi + li = 1+ 1+ li and as

1+ 1 =




0

1, the possible values of li are 0,1,2,3,4.

2

However, the ground state parities of 6Li and d are both positive, li must

be even. As the angular distribution of the final state is not isotropic, li �= 0
and the possible values of li are 2,4. So d-waves produce the main effect.

2116

Fast neutrons impinge on a 10-cm thick sample containing 1021 53Cr

atoms/cm3. One-tenth of one percent of the neutrons are captured into a

spin-parity Jπ = 0+ excited state in 54Cr. What is the neutron capture

cross section for this state? The excited 54Cr sometimes γ-decays as shown

in Fig. 2.39. What is the most likely Jπ for the excited state at 9.2 MeV?

What are the multipolarities of the γ-rays?

(Wisconsin)
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Solution:

Let the number of neutrons impinging on the sample be n and the

neutron capture cross section for forming the 0+ state be σ. Then 10 ×
1021nσ = 10−3 n, or

σ = 10−25 cm2 = 0.1 b .

Let the spin-parity of the 9.2 MeV level be Jp. As 54Cr only occasionally

γ-decays, the transitions are probably not of the E1 type, but correspond to

the next lowest order. Consider 0+ → Jp. If ∆J = 2, the electric multipole

field has parity (−1)∆J = +, i.e. Jp = 2+, and the transition is of the E2
type. The transitions γ2, γ3 are also between 0

+ and 2+ states, so they are

probably of the E2 type too. For γ4 : 2
+ → 2+, we have ∆L = 1, 2, 3 or 4.

For no parity change between the initial and final states, γ4 must be E2,

E4 or M1, M3. Hence most probably γ4 = E2, or M1, or both.

Fig. 2.39

2117

The surface of a detector is coated with a thin layer of a naturally

fissioning heavy nuclei. The detector area is 2 cm2 and the mean life of the

fissioning isotope is 1
3 × 109 years (1 yr = 3× 107 sec.). Twenty fissions are

detected per second. The detector is then placed in a uniform neutron flux
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of 1011 neutrons/cm2/sec. The number of fissions detected in the neutron

flux is 120 per second. What is the cross section for neutron-induced fission?

(Wisconsin)

Solution:

Let the number of the heavy nuclei be N . Then the number of natural

fissions taking place per second is

dN

dt
= −λN ≈ −λN0 ,

where N0 = N |t=0, as λ =
1

1
3×109×3×107

= 10−16 � 1.
The number of induced fissions per second is σNφ ≈ σN0φ, where φ is

the neutron flux, σ is the cross section for neutron-induced fission. As

σN0φ+ λN0

λN0
=
120

20
,

or
σφ

λ
=
100

20
= 5 ,

we have

σ =
5λ

φ
=
5× 10−16
1011

= 5× 10−27 cm2 = 5 mb .

2118

(a) How do you expect the neutron elastic scattering cross section to

depend on energy for very low energy neutrons?

(b) Assuming nonresonant scattering, estimate the thermal neutron

elastic cross section for 3He.

(c) Use the information in the partial level scheme for A = 4 shown in

Fig. 2.40 to estimate the thermal neutron absorption cross section for 3He.

Resonant scattering may be important here.

(Princeton)

Solution:

(a) For thermal neutrons of very low energies, the elastic scattering cross

section of light nuclei does not depend on the neutron energy, but is constant



394 Problems and Solutions in Atomic, Nuclear and Particle Physics

Fig. 2.40

for a large range of energy. But for heavier nuclei, resonant scattering can

occur in some cases at very low neutron energies. For instance, resonant

scattering with 157Gd occurs at En = 0.044 eV.

(b) The thermal neutron nonresonant scattering cross section for nuclei

is about 4πR2
0, where R0 is the channel radius, which is equal to the sum

of the radii of the incoming particle and the target nucleus. Taking the

nuclear radius as

R ≈ 1.5× 10−13 A1/3 ,

the elastic scattering cross section of 3He for thermal neutron is

σ = 4πR2
0 ≈ 4π[1.5× 10−13(31/3 + 1)]2 = 1.7× 10−24 cm2 = 1.7 b .

(c) The Breit–Wigner formula

σnb = πλ̄ 2 ΓnΓb
(E′ −E0)2 + Γ2/4

can be used to calculate the neutron capture cross section for 3He in the

neighborhood of a single resonance. Here λ̄ is the reduced wavelength of the

incident particle, E′ is the energy and E0 is the energy at resonance peak

of the compound nucleus A = 4, Γn and Γb are the partial widths of the

resonant state for absorption of neutron and for emission of b respectively,

and Γ is the total level width.
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For laboratory thermal neutrons, En ≈ 0.025 eV ,

λ̄ =
�√
2µEn

=
�√

2mnmHe

mn+mHe
En

=
�c√

3
2Enmnc2

=
197× 10−13√

3
2 × 2.5× 10−8 × 940

= 3.3× 10−9 cm .

As both the first excited and ground states of 4He have 0+, Γγ = 0, and

the only outgoing channel is for the excited state of 4He to emit a proton.

The total width is Γ = Γn + Γp. With Γn ≈ 150 eV , Γ ≈ Γp = 1.2 MeV,
E′ = 20.6 MeV, E = 20.1 MeV, we obtain

σ = πλ̄ 2 ΓnΓp
(E′ −E0)2 + Γ2/4

= 1× 10−20 cm2 = 1× 104 b .

2119

Typical cross section for low energy neutron-nucleus scattering is 10−16,

10−24, 10−32, 10−40 cm2.

(Columbia)

Solution:

10−24 cm2. The radius of the sphere of action of nuclear forces is ∼
10−12 − 10−13 cm, and a typical scattering cross-section can be expected
to be of the same order of magnitude as its cross-sectional area.

2120

In experiments on the reaction 21Ne(d, 3He)20F with 26 MeV deuterons,

many states in 20F are excited. The angular distributions are characteristic

of the direct reaction mechanism and therefore are easily sorted into those

for which the angular momentum of the transferred proton is lp = 0 or 1

or 2.

The lowest energy levels of 21Ne and the known negative-parity states

of 20F below 4 MeV are as shown in Fig. 2.41 (the many positive-parity

excited states of 20F are omitted).
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Fig. 2.41

The relative lp = 1 strengths S(J
π) observed in the (d, 3He) reaction

are approximately

S(1−) = 0.84 ,

S(2−1 ) = 0.78 ,

S(2−2 ) = 0.79 ,

S(3−) = 0.00 .

(a) If the 21Ne target and a 20F state both have (1s-0d) configuration,

they both have positive parity and therefore some lp = 0 or lp = 2 transi-

tions are expected. On the other hand, the final states of 20F with negative

parity are excited with lp = 1. Explain.

(b) In order to explain the observed negative-parity states in 20F, one

can try a coupling model of a hole weakly coupled to states of 21Ne. With

this model of a 21Ne nucleus with an appropriate missing proton and level

diagrams as given above, show how one can account for the negative-parity

states in 20F.

(c) In the limit of weak coupling; i.e., with no residual interaction be-

tween the hole and the particles, what would be the (relative) energies of

the 4 negative-parity states?

(d) What would be the effect if now a weak particle-hole interaction

were turned on? Do the appropriate centroids of the reported energies of

the 1−, 2−, 2−, 3− states conform to this new situation?
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(e) The weak coupling model and the theory of direct reactions lead

to specific predictions about the relative cross sections (strengths) for the

various final states. Compare these predictions with the observed S-factors

given above. Show how the latter can be used to obtain better agreement

with the prediction in part (d).

(Princeton)

Solution:

(a) The reactions are strong interactions, in which parity is conserved.

So the parity change from initial to final state must equal the parity of the

proton that is emitted as part of 3He:

P (21Ne) = P (20F )P (p) = P (20F )(−1)lp .

When both 20F and 21Ne have even parity, (−1)lp = 1 and so lp = 0, 2 · · · .
As conservation of the total angular momentum requires that lp be 0, 1,

2, we have lp = 0, 2. Similarly, for the negative-parity states of 20F, the

angular momentum that the proton takes away can only be 1, 3 · · · . In
particular for 1− and 2− states of 20F, lp = 1.

(b) In the weak coupling model, 20F can be considered as consisting of
21Ne and a proton hole (p−). Jp of 20F is then determined by a neutron

in 1d3/2, 1d5/2, or 2s1/2 and a proton hole in 1p1/2, 1p3/2 or 2s1/2, etc.,

outside of full shells (Fig. 2.16). For example, the 1− state of 20F can be

denoted as

|1M〉 = |1p−11/2, 1d3/2; 1,M〉

=
∑

m1,m2

〈
1

2
,
3

2
,m1,m2

∣∣∣∣1,M
〉
ψ1/2mψ3/2m .

where 1p−11/2 means a proton hole in 1p1/2 state, 1d3/2 means a neutron in

1d3/2 state. In the same way, the 2
− can be denoted as

|1p−11/2, 1d3/2; 2,M〉 and |1p−11/2, 1d5/2; 2,M〉 ,

the 3− state can be denoted as

|1p−11/2, 1d5/2; 3,M〉 .
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(c) We have H = Hp+Hh+Vph, where Hp and Hh are respectively the

Hamiltonian of the nuclear center and the hole, and Vph is the potential

due to the interaction of the hole and the nuclear center. In the limit of

weak coupling,

Vph = 0 ,

Hpψ(a1, j1,m1) = Ea1,j1,m1ψ(a1, j1,m1) ,

Hhφ(a2, j2,m2) = Ea2,j2,m2φ(a2, j2,m2) .

Then for the four negative-parity states we have

3− : E3− = Ep(1d5/2) +Eh(1p1/2) ,

2−1 : E2−1
= Ep(1d5/2) +Eh(1p1/2) ,

2−2 : E2−2
= Ep(1d3/2) +Eh(1p1/2) ,

1− : E1− = Ep(1d3/2) +Eh(1p1/2) .

Thus E3− = E2−1
, E2−2

= E1− , as shown in Fig. 2.42, with values

E3− = E2−1
= 1230 keV, E2−2

= E1− = 890 keV .

Fig. 2.42

(d) If Vph �= 0, i.e., coupling exists, then
E3− = Hp(1d5/2) +Hh(1p1/2) + 〈1p−11/2, 1d5/2, 3|Vph|1p

−1
1/2, 1d5/2, 3〉 ,

E1− = Hp(1d3/2) +Hh(1p1/2) + 〈1p−11/2, 1d3/2, 1|Vph|1p
−1
1/2, 1d3/2, 1〉 .
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As

〈1p−11/2, 1d5/2, 3
−|Vph|1p−11/2, 1d5/2, 3

−〉 ≈ 0.7 MeV ,

〈1p−11/2, 1d3/2, 1
−|Vph|1p−11/2, 1d3/2, 1

−〉 ≈ 0.1 MeV ,

〈1p−11/2, 1d5/2, 2
−|Vph|1p−11/2, 1d5/2, 2

−〉 = 0.45 MeV ,

〈1p−11/2, 1d3/2, 2
−|Vph|1p−11/2, 1d3/2, 2

−〉 = 0.25 MeV ,

〈1p−11/2, 1d5/2, 2
−|Vph|1p−11/2, 1d3/2, 2

−〉

= 〈1p−11/2, 1d3/2, 2
−|Vph|1p−11/2, 1d5/2, 2

−〉

= 0.3 MeV .

the above gives

E′3− = 0.9 + 0.35 + 0.7 = 1.95 MeV

E′1− = 0.9 + 0.1 = 1.0 MeV .

E′
2−1
and E′

2−2
are the eigenvalues of the matrix



〈1p−11/2; 1d5/2, 2

−|H|1p−11/2, 1d5/2, 2
−〉 〈1p−11/2; 1d5/2, 2

−|H|1p−11/2, 1d3/2, 2
−〉

〈1p−11/2; 1d3/2, 2
−|H|1p−11/2, 1d5/2, 2

−〉 〈1p−11/2; 1d3/2, 2
−|H|1p−11/2, 1d3/2, 2

−〉


 .

The secular equation

(
λ− 1.95 −0.3

−0.3 λ− 1.1

)
= 0

gives E′
2−1
= λ1 = 1.80 MeV, E

′
2−2
= λ2 = 1.26 MeV.

The energy levels are shown in Fig. 2.43.
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Fig. 2.43

(e) The relative strengths of the various final states as given by different

theories are compared in the table below:

Nilson model PHF Shell model Experimental

S(1−) 0.70 0.76 0.59 0.84

S(2−1 ) 0.93 0.20 0.72 0.78

S(2−2 ) 0.28 0.20 0.23 0.79

S(3−) 0.002 0.00

It is noted in particular that for S(2−2 ), the theoretical values are much

smaller than the experimental values.



PART III

PARTICLES PHYSICS



1. INTERACTIONS AND SYMMETRIES (3001 3037)

3001

The interactions between elementary particles are commonly classified

in order of decreasing strength as strong, electromagnetic, weak and gravi-

tational.

(a) Explain, as precisely and quantitatively as possible, what is meant

by ‘strength’ in this context, and how the relative strengths of these inter-

actions are compared.

(b) For each of the first three classes state what conservation laws ap-

ply to the interaction. Justify your answers by reference to experimental

evidence.

(Columbia)

Solution:

(a) The interactions can be classified according to the value of a char-

acteristic dimensionless constant related through a coupling constant to

the interaction cross section and interaction time. The stronger the in-

teraction, the larger is the interaction cross section and the shorter is the

interaction time.

Strong interaction: Range of interaction ∼ 10−13 cm. For example, the
interaction potential between two nuclei has the from

V (r) =
gh

r
exp

(
− r

R

)
,

where R ≈ �/mπc is the Compton wavelength of pion. Note the exponential

function indicates a short interaction length. The dimensionless constant

g2h/�c ≈ 1 ∼ 10
gives the interaction strength.

Electromagnetic interaction: The potential for two particles of charge e

at distance r apart has the form

Ve(r) = e2/r .

The dimensionless constant characteristic of interaction strength is the

fine structure constant

α = e2/�c ≈ 1/137 .

403
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Weak interaction: Also a short-range interaction, its strength is repre-

sented by the Fermi coupling constant for β-decay

GF = 1.4× 10−49 erg cm3 .

The potential of weak interaction has the form

Vw(r) =
gw

r
exp

(
− r

Rw

)
,

where it is generally accepted that Rw ≈ 10−16 cm. The dimensionless
constant characteristic of its strength is

g2w/�c = GFm
2
pc/�

3 ≈ 10−5 .

Gravitational interaction: For example the interaction potential be-

tween two protons has the form

Gm2
p/r .

The dimensionless constant is

Gm2
p/�c ≈ 6× 10−39 .

As the constants are dimensionless they can be used to compare the

interaction strengths directly. For example, the ratio of the strengths of

gravitational and electromagnetic forces between two protons is

Gm2
p/e

2 ≈ 10−36 .
Because of its much smaller strength, the gravitational force can usually be

neglected in particle physics. The characteristics of the four interactions

are listed in Table 3.1.

Table 3.1

Interaction Characteristic Strength Range of Typical cross Typical

constant interaction section lifetime

Strong
g2h
�c

1 ∼ 10 10−13 cm 10−26 cm2 10−23 s

Electromagnetic e2

�c
1
137

∞ 10−29 cm2 10−16 s

Weak
g2ω
�c

=
GFm

2
pc

�3
10−5 10−16 cm 10−38 cm2 10−10 s

Gravitational
Gm2p
�c

10−39 ∞
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Table 3.2

Quantity E J P Q B Le(Lµ) I I3 S P C T CP G

Strong Y Y Y Y Y Y Y Y Y Y Y Y Y Y

Electromagnetic Y Y Y Y Y Y N Y Y Y Y Y Y N

Weak Y Y Y Y Y Y N N N N N N N N

(b) The conservation laws valid for strong, electromagnetic, and weak

interactions are listed in Table 3.2, where y =conserved, N =not conserved.

The quantities listed are all conserved in strong interaction. This agrees

well with experiment. For example nucleon-nucleus and pion-nucleus scat-

tering cross sections calculated using isospin coupling method based on

strong forces agree well with observations.

In electromagnetic interaction I is not conserved, e.g. ∆I = 1 in elec-

tromagnetic decay of Σ0 (Σ0 → Λ0 + γ).

In weak interaction I, I3, S, P , C, T , PC are not conserved, e.g. 2π-

decay of K0
L. The process K

0
L → π+π− violates PC conservation. As PCT

is conserved, time-reversal invariance is also violated. All these agree with

experiment.

3002

The electrostatic force between the earth and the moon can be ignored

(a) because it is much smaller than the gravitational force.

(b) because the bodies are electrically neutral.

(c) because of the tidal effect.

(CCT)

Solution:

For electrostatic interaction the bodies should be electrically charged.

As the earth and the moon are both electrically neutral, they do not have

electrostatic interaction. Thus answer is (b).

3003

(a) Explain the meaning of the terms: boson, fermion, hadron, lep-

ton, baryon,
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(b) Give one example of a particle for each of the above.

(c) Which of the above name is, and which is not, applicable to the

photon?

(Wisconsin)

Solution:

(a) Fermion: All particles of half-integer spins.

Boson: All particles of integer spins.

Hardron: Particles which are subject to strong interaction are called

hadrons.

Lepton: Particles which are not subject to strong interaction but to

weak interaction are called leptons.

Baryon: Hadrons of half-integer spins are called baryons.

(b) Boson: π meson;

Fermion: proton;

Hardron: proton;

Lepton: neutrino;

Baryon: proton;

(c) The name boson is applicable to photon, but not the other names.

3004

Why does the proton have a parity while the muon does not? Because

(a) parity is not conserved in electromagnetism.

(b) the proton is better known.

(c) parity is defined from reactions relative to each other. Therefore, it

is meaningful for the proton but not for the muon.

(CCT)

Solution:

The answer is (c).

3005

What is the G-parity operator and why was it introduced in particle

physics? What are the eigenvalues of the G-operator for pions of different

charges, and for a state of n pions?
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What are the G values for ρ, ω, φ, and η mesons?

(Buffalo)

Solution:

The G-operator can be defined as G = CeiπI2 where I2 is the second

component of isospin I, and C is the charge conjugation operator.

As the C-operator has eigenvalues only for the photon and neutral

mesons and their systems, it is useful to be able to extend the operation to

include charged particles as well. The G-parity is so defined that charged

particles can also be eigenstates of G-parity. Since strong interaction is in-

variant under both isospin rotation and charge conjugation, G-parity is con-

served in strong interaction, which indicates a certain symmetry in strong

interaction. This can be used as a selection rule for certain charged systems.

For an isospin multiplet containing a neutral particle, the eigenvalue of

G-operator is

G = C(−1)I ,

where C is the C eigenvalue of the neutral particle, I is the isospin. For

π meson, C(π0) = +1, I = 1, so G = −1; for a system of n π-mesons,

G(nπ) = (−1)n. Similarly for

ρ : C(ρ0) = −1, I(ρ) = 1, G(ρ) = +1 ;

ω : C(ω0) = −1, I(ω0) = 0, G(ω) = −1 ;

φ : C(φ) = −1, I(φ) = 0, G(φ) = −1 ;

η0 : C(η0) = +1, I(η0) = 0, C(η0) = +1 .

ρ, ω, φ decay by strong interaction. As G-parity is conserved in strong

interaction, their G-parities can also be deduced from the decays. Thus as

ρ0 → π+π− , G(ρ) = (−1)2 = 1 ;

ω → 3π , G(ω) = (−1)3 = −1 ;

φ→ 3π , G(φ) = (−1)3 = −1 .

Note as η0 decays by electromagnetic interaction, in which G-parity is

not conserved, its G-parity cannot be deduced from the decay.
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3006

Following is a list of conservation laws (or symmetries) for interactions

between particles. For each indicate by S,E,W those classes of interactions

— strong, electromagnetic, weak — for which no violation of the symmetry

or conservation law has been observed. For any one of these conservation

laws, indicate an experiment which established a violation.

(a) I-spin conservation

(b) I3 conservation

(c) strangeness conservation

(d) invariance under CP

(Wisconsin)

Solution:

(a) I-spin conservation — S.

(b) I3 conservation — S, E.

(c) Strangeness conservation — S, E.

(d) CP invariance — S, E, and W generally. CP violation in weak

interaction is found only in KL decay. Isospin nonconservation can be

observed in the electromagnetic decay Σ0 → Λ0 + γ. I3 nonconservation

can be observed in the weak decay π− → µ− + ν̄µ.

Strangeness nonconservation is found in the weak decay of strange par-

ticles. For example, in Λ0 → π−+ p, S = −1 for the initial state, S = 0 for
the final state, and so ∆S = −1.
The only observed case of CP violation is the K0

L decay, in which the

3π and 2π decay modes have the ratio

η =
B(K0

L → π+π−)

B(K0
L → all charged particles)

≈ 2× 10−3 .

It shows that CP conservation is violated in K0
L decay, but only to a very

small extent.

3007

A state containing only one strange particle

(a) can decay into a state of zero strangeness.
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(b) can be created strongly from a state of zero strangeness.

(c) cannot exist.

(CCT)

Solution:

Strange particles are produced in strong interaction but decay in weak

interaction, and the strangeness number is conserved in strong interaction

but not in weak interaction. Hence the answer is (a).

3008

A particle and its antiparticle

(a) must have the same mass.

(b) must be different from each other.

(c) can always annihilate into two photons.

(CCT)

Solution:

Symmetry requires that a particle and its antiparticle must have the

same mass. Hence the answer is (a).

3009

Discuss briefly four of the following:

(1) J/ψ particle.

(2) Neutral K meson system, including regeneration of Ks.

(3) The two types of neutrino.

(4) Neutron electric dipole moment.

(5) Associated production.

(6) Fermi theory of beta-decay.

(7) Abnormal magnetic moment of the muon.

(Columbia)

Solution:

(1) J/ψ particle. In 1974, C. C. Ting, B. Richter and others, using

different methods discovered a heavy meson of massM = 3.1 GeV/c2. Its
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lifetime was 3 ∼ 4 orders of magnitude larger than mesons of similar masses,
which makes it unique in particle physics. Named J/ψ particle, it was later

shown to be the bound state of a new kind of quark, called the charm quark,

and its antiquark. The J/ψ particle decays into charmless particles via the

OZI rule or into a lepton pair via electromagnetic interaction, and thus has

a long lifetime. Some of its quantum numbers are

m(J/ψ) = (3096.9± 0.1) MeV/c2, Γ = (63± 9)keV ,

IG(JP )C = 0−(1−)− .

All of its decay channels have been fully studied. J/ψ particle and other

charmed mesons and baryons make up the family of charmed particles,

which adds significantly to the content of particle physics.

(2) Neutral K mesons Detailed discussions are given in Problems

3056–3058.

(3) Two kinds of neutrino. Experiments have shown that there are

two types of neutrino: one (νe) is associated with electron (as in β-decay),

the other (νµ) with muon (as in π → µ decay). Also a neutrino and its

antineutrino are different particles.

The scattering of high energy neutrinos can lead to the following

reactions:

νe + n→ p+ e−, ν̄e + p→ n+ e+ ,

νµ + n→ p+ µ−, ν̄µ + p→ n+ µ+ .

Suppose a neutrino beam from a certain source is scattered and it contains

νµ(ν̄µ). If νe(ν̄e) and νµ(ν̄µ) are the same, approximately the same num-

bers of e∓ and µ∓ should be observed experimentally. If they are not the

same, the reactions producing e∓ are forbidden and no electrons should be

observed. An experiment carried out in 1962 used a proton beam of energy

> 20 GeV to bombard a target of protons to produce energetic pions and

kaons. Most of the secondary particles were emitted in a cone of very small

opening angle and decayed with neutrinos among the final products. A

massive shielding block was used which absorbed all the particles except

the neutrinos. The resulting neutrino beam (98–99% νµ, 1–2% νe) was

used to bombard protons to produce muons or electrons. Experimentally,

51 muon events, but not one confirmed electron event, were observed. This

proved that νe(ν̄e) and νµ(ν̄µ) are different particles.
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That ν and ν̄ are different can be proved by measuring the reaction

cross section for neutrinos in 37Cl. Consider the electron capture process

37Ar + e− → 37Cl + ν .

The reverse process can also occur:

ν + 37Cl→ 37Ar + e− .

If ν̄ and ν are the same, so can the process below:

ν̄e +
37Cl→ 37Ar + e− .

In an experiment by R. Davis and coworkers, 4000 liters of CCl4 were

placed next to a nuclear reactor, where ν̄ were generated. Absorption of the

antineutrinos by 37Cl produced 37Ar gas, which was separated from CCl4
and whose rate of K-capture radioactivity was measured. The measured

cross section was far less than the theoretical value σ ≈ 10−43 cm2 expected

if νe and ν̄e were the same. This showed that ν̄ is different from ν.

(4) Electric dipole moment of neutron

Measurement of the electric dipole moment of the neutron had been of

considerable interest for a long time as it offered a means of directly exam-

ining time reversal invariance. One method for this purpose is described in

Fig. 3.1, which makes use of nuclear magnetic resonance and electrostatic

Fig. 3.1
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deflection. It gave Pn = eD, where D = (−1 ± 4) × 10−21 cm is the

effective length of the dipole moment and e is the electron charge. Later,

an experiment with cold neutrons gave D = (0.4± 1.1)× 10−24 cm. This
means that, within the experimental errors, no electric dipole moment was

observed for the neutron.

(5) Associated production

Many new particles were discovered in cosmic rays around 1950 in two

main categories — mesons and baryons. One peculiar characteristics of

these particles was that they were produced in strong interaction (interac-

tion time ∼ 10−23 s) but decayed in weak interaction (τ ∼ 10−10 ∼ 10−8 s).
Also, they were usually produced in pairs. This latter phenomenon is called

associated production and the particles are called strange particles. To ac-

count for the “strange” behavior a new additive quantum number called

strangeness was assigned to all hadrons and the photon. The strangeness

number S is zero for γ and the “ordinary” particles and is a small, posi-

tive or negative, integer for the strange particles K, Λ, Σ etc. A particle

and its antiparticle have opposite strangeness numbers. S is conserved for

strong and electromagnetic interactions but not for weak interaction. Thus

in production by strong interaction from ordinary particles, two or more

strange particles must be produced together to conserve S. This accounts

for the associated production. In the decay of a strange particle into ordi-

nary particles it must proceed by weak interaction as S is not conserved.

The basic reason for the strange behavior of these particles is that they

contain strange quarks or antiquarks.

(6) The Fermi theory of β-decay

Fermi put forward a theory of β-decay in 1934, which is analogous to

the theory of electromagnetic transition. The basic idea is that just as γ-

ray is emitted from an atom or nucleus in an electromagnetic transition,

an electron and a neutrino are produced in the decay process. Then the

energy spectrum of emitted electrons can be derived in a simple way to be

[
dI(pe)

p2eFdpe

]1/2
= C|Mij |2(E0 −Ee) ,

where dI(pe) is the probability of emitting an electron of momentum be-

tween pe and pe + dpe, Ee is the kinetic energy corresponding to pe, E0 is

the maximum kinetic energy of the electrons, C is a constant, Mij is the

matrix element for weak interaction transition, F (Z,Ee) is a factor which
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takes account of the effect of the Coulomb field of the nucleus on the emis-

sion of the electron. The theory, which explains well the phenomenon of

β-decay, had been used for weak interaction processes until nonconserva-

tion of parity in weak interaction was discovered, when it was replaced by

a revised version still close to the original form. Thus the Fermi theory

may be considered the fundamental theory for describing weak interaction

processes.

(7) Abnormal magnetic moment of muon

According to Dirac’s theory, a singly-charged exact Dirac particle of

spin J and mass m has a magnetic moment given by

µ =
J

me
= g

J

2mc
,

where g = −2 for muon. However muon is not an exact Dirac particle, nor
its g-factor exactly −2. It is said to have an abnormal magnetic moment,
whose value can be calculated using quantum electrodynamics (QED) in

accordance with the Feynman diagrams shown in Fig. 3.2. Let α = |g|−2
2 .

QED gives

αthµ = α/(2π) + 0.76578(α/π)2 + 2.55(α/π)3 + · · ·

= (116592.1± 1.0)× 10−8 ,

in excellent agreement with the experimental value

αexpµ = (116592.2± 0.9)× 10−8 .

This has been hailed as the most brilliant achievement of QED.

Fig. 3.2
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3010

The lifetime of the muon is 109, 102, 10−2, 10−6 second.

(Columbia)

Solution:

10−6 s (more precisely τµ = 2.2× 10−6 s).

3011

List all of the known leptons. How does µ+ decay? Considering this

decay and the fact that νµ + n→ e− + p is found to be forbidden, discuss

possible lepton quantum number assignments that satisfy additive quantum

number conservation laws. How could νµ produce a new charged “heavy

lepton”?

(Wisconsin)

Solution:

Up to now 10 kinds of leptons have been found. These are e−, νe, µ
−,

νµ, τ
− and their antiparticles e+, ν̄e, µ

+, ν̄µ, τ
+. ντ and ν̄τ have been

predicted theoretically, but not yet directly observed.

µ+ decays according to µ+ → e+ + νe + ν̄µ. It follows that ν̄e + µ+ →
e++ ν̄µ. On the other hand the reaction νµ+n→ e−+p is forbidden. From

these two reactions we see that for allowed reactions involving leptons, if

there is a lepton in the initial state there must be a corresponding lepton

in the final state. Accordingly we can define an electron lepton number Le
and a muon lepton number Lµ such that

Le = 1 for e−, νe ,

Lµ = 1 for µ−, νµ ,

with the lepton numbers of the antiparticles having the opposite sign, and

introduce an additional conservation rule that the electron lepton number

and the µ lepton number be separately conserved in a reaction.

It follows from a similar rule that to produce a charged heavy lepton,

the reaction must conserve the corresponding lepton number. Then a new

charged “ heavy lepton” A+ can be produced in a reaction

νµ + n→ A+ + νA + µ− +X ,
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where νA is the neutrino corresponding to A
+, X is a baryon. For example,

A+ = τ+, νA = ντ .

3012

Give a non-trivial (rate greater than 5%) decay mode for each particle

in the following list. If you include neutrinos in the final state, be sure to

specify their type.

n→, π+ →, ρ0 →,K0 →,Λ0 →,∆++ →, µ− →, φ→,Ω− →, J/Ψ→ .

(Wisconsin)

Solution:

n → pe−ν̄e; π
+ → µ+νµ; ρ

0 → π+π−; K0 → π+π−, π0π0, π0π0π0,

π+π−π0, π±µ∓νµ, π
0µ±e∓νe; Λ

0 → pπ−, nπ0; ∆++ → pπ+; µ− →
e−ν̄eνµ; φ→ K+K−, K0

LK
0
S , π

+π−π0; Ω− → ΛK−, Ξ0π−, Ξ−π0; J/ψ →
e+e−, µ+µ−, hadrons.

3013

Consider the following high-energy reactions or particle decays:

(1) π− + p→ π0 + n

(2) π0 → γ + γ + γ

(3) π0 → γ + γ

(4) π+ → µ+ + νµ
(5) π+ → µ+ + ν̄µ

(6) p+ p̄→ Λ0 +Λ0

(7) p+ p̄→ γ.

Indicate for each case:

(a) allowed or forbidden,

(b) reason if forbidden,

(c) type of interaction if allowed (i.e., strong, weak, electromagnetic,

etc.)

(Wisconsin)
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Solution:

(1) π−+p→ π0+n: All quantum numbers conserved, allowed by strong

interaction.

(2) π0 → γ + γ + γ : C(π0) = +1, C(3γ) = (−1)3 �= C(π0), forbidden

as C-parity is not conserved.

(3) π0 → γ + γ: electromagnetic decay allowed.

(4) π+ → µ+ + νµ: weak decay allowed.

(5) π+ → µ+ + ν̄µ: left-hand side Lµ = 0, right-hand side Lµ = −2,
forbidden as µ-lepton number is not conserved.

(6)
p+ p̄→ Λ0+ Λ0

B 1 −1 1 1 ∆B = +2

S 0 0 −1 −1 ∆S = −2
it is forbidden as baryon number is not conserved.

(7) p + p̄ → γ is forbidden, for the angular momentum and parity

cannot both be conserved. Also the momentum and energy cannot both be

conserved, for

W 2(p, p̄) = (Ep +Ep̄)
2 − (pp + pp̄)

2 = m2
p +m2

p̄ + 2(EpEp̄ − pp · pp̄) ≥
2m2

p > 0, as E2 = p2 +m2, EpEp̄ ≥ pppp̄ ≥ pp · pp̄, W 2(γ) = E2
γ − p2γ =

E2
γ −E2

γ = 0, and so W (p, p̄) �=W 2(γ).

3014

For each of the following decays state a conservation law that forbids it:

n→ p+ e−

n→ π+ + e−

n→ p+ π−

n→ p+ γ

(Wisconsin)

Solution:

n → p + e−: conservation of angular momentum and conservation of

lepton number are both violated.



Particle Physics 417

n→ π+ + e−: conservation of baryon number and conservation lepton

number are both violated.

n→ p+ π−: conservation of energy is violated.

n→ p+ γ: conservation of electric charge is violated.

3015

What conservation laws, invariance principles, or other mechanisms ac-

count for the suppressing or forbidding of the following processes?

(1) p+ n→ p+Λ0

(2) K+ → π+ + π− + π+ + π− + π+ + π0

(3) K̄0 → π− + e+ + νe
(4) Λ0 → K0 + π0

(5) π+ → e+ + νe (relative to π
+ → µ+ + νµ)

(6) K0
L → e+ + e−

(7) K− → π0 + e−

(8) π0 → γ + γ + γ

(9) K0
L → π+ + π−

(10) K+ → π+ + π+ + π0

(Wisconsin)

Solution:

(1) Conservation of strangeness number and conservation of isospin are

violated.

(2) Conservation of energy is violated.

(3) ∆S = 1, ∆Q = 0, the rule that if |∆S| = 1 in weak interaction, ∆S
must be equals to ∆Q is violated

(4) Conservation of baryon number is violated.

(5) The process go through weak interaction and the ratio of rates is

(Problem 3040)

Γ(π+ → e+ + νe)

Γ(π+ → µ+ + νµ)
=

(
me

mµ

)2(
m2
π −m2

e

m2
π −m2

µ

)2

= 1.2× 10−4 .

Hence the π → eν mode is quite negligible.

(6) ∆S = −1, ∆Q = 0, same reason as for (3).
(7) Conservation of lepton number is violated.
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(8) Conservation of C-parity is violated.

(9) CP parity conservation is violated.

(10) Conservation of electric charge is violated.

3016

Which of the following reactions violate a conservation law?

Where there is a violation, state the law that is violated.

µ+ → e+ + γ

e− → νe + γ

p+ p→ p+Σ+ +K−

p→ e+ + νe
p→ e+ + n+ νe
n→ p+ e− + ν̄e
π+ → µ+ + νµ

(Buffalo)

Solution:

µ+ → e++ γ is forbidden because it violates the conservation of lepton

number, which must hold for any interaction.

e− → νe + γ, p+ p→ p+Σ+ +K− are forbidden because they violate

electric charge conservation.

p→ e++νe is forbidden because it violates baryon number conservation.

p→ e+ + n+ νe is forbidden because it violates energy conservation.

n→ p+ e− + ν̄e, π
+ → µ+ + νµ are allowed.

3017

(a) Explain why the following reactions are not observed, even if the

kinetic energy of the first proton is several BeV:

(1) p+ p→ K+ +Σ+

(2) p+ n→ Λ0 +Σ+

(3) p+ n→ Ξ0 + p

(4) p+ n→ Ξ− +K+ +Σ+

(b) Explain why the following decay processes are not observed:

(1) Ξ0 → Σ0 +Λ0

(2) Σ+ → Λ0 +K+
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(3) Ξ− → n+ π−

(4) Λ0 → K+ +K−

(5) Ξ0 → p+ π−

(Columbia)

Solution:

(a) The reactions involve only strongly interacting particles and should

obey all the conservation laws. If some are violated then the process is for-

bidden and not observed. Some of the relevant data and quantum numbers

are given in Table 3.3.

(1) p + p → K+ + Σ+, the baryon number, the isospin and its third

component are not conserved.

(2) p+n→ Λ0+Σ+, the strangeness number (∆S = −2) and the third
component of isospin are not conserved.

(3) p+ n→ Ξ0 + p, for the same reasons as for (2).

(4) p+ n→ Ξ− +K+ +Σ+, for the same reasons as for (2).

(b) All the decays are nonleptonic weak decays of strange particles,

where the change of strangeness number S, isospin I and its third compo-

nent I3 should obey the rules |∆S| = 1, |∆I3| = 1/2, |∆I| = 1/2.
(1) Ξ0 → Σ0+Λ0, the energy and the baryon number are not conserved.

(2) Σ+ → Λ0 +K+, the energy is not conserved.

(3) Ξ− → n+ π−, |∆S| = 2 > 1, |∆I3| = 1 > 1/2.
(4) Λ0 → K+ +K−, the baryon number is not conserved.

(5) Ξ0 → p+ π−, |∆S| = 2 > 1, |∆I3| = 1 > 1/2.

Table 3.3

Particle Lifetime(s) Mass(MeV/c2) Spin J Strangeness number S Isospin I

π± 2.55× 10−8 139.58 0 0 1

K 1.23× 10−8 493.98 0 ±1 1/2

p stable 938.21 1/2 0 1/2

n 1.0× 103 939.51 1/2 0 1/2

Λ0 2.52× 10−10 1115.5 1/2 −1 0

Σ+ 0.81× 10−10 1189.5 1/2 −1 1

Σ0 < 10−14 1192.2 1/2 −1 1

Ξ− 1.7× 10−10 1321 1/2 −2 1/2

Ξ0 2.9× 10−10 1315 1/2 −2 1/2
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3018

Listed below are a number of decay processes.

(a) Which do not occur in nature? For each of these specify the conser-

vation law which forbids its occurrence.

(b) Order the remaining decays in order of increasing lifetime. For

each case name the interaction responsible for the decay and give an order-

of-magnitude estimate of the lifetime. Give a brief explanation for your

answer.

p→ e+ + π0

Ω− → Ξ0 +K−

ρ0 → π+ + π−

π0 → γ + γ

D0 → K− + π+

Ξ− → Λ0 + π−

µ− → e− + ν̄e + νµ

Table 3.4

particle mass (MeV/c2) J B L I S G

γ 0 1 0 0 0 0 0

νe 0 1/2 0 1 0 0 0

νµ 0 1/2 0 1 0 0 0

e− 0.5 1/2 0 1 0 0 0

µ− 106 1/2 0 1 0 0 0

π0 135 0 0 0 1 0 0

κ− 494 0 0 0 1/2 −1 0

ρ0 770 1 0 0 1 0 0

p 938 1/2 1 0 1/2 0 0

Λ0 1116 1/2 1 0 0 −1 0

Ξ− 1321 1/2 1 0 1/2 −2 0

Ω− 1672 3/2 1 0 0 −3 0

D0 1865 0 0 0 1/2 0 1

(Columbia)

Solution:

(a) p→ e++π0, forbidden as the lepton number and the baryon number

are not conserved.
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Ω− → Ξ0+K−, forbidden because the energy is not conserved as mΩ <

(mΞ +mK).

(b) The allowed decays are arranged below in increasing order of life-

time:

ρ0 → π+ + π−, lifetime ≈ 10−24 s, strong decay,
π0 → γ + γ, lifetime ≈ 10−16 s, electromagnetic decay,
D0 → K− + π+, lifetime ≈ 10−13 s, weak decay,
Ξ− → Λ0 + π−, lifetime ≈ 10−10 s, weak decay,
µ− → e− + ν̄e + νµ, lifetime ≈ 10−6 s, weak decay.
The first two decays are typical of strong and electromagnetic decays,

the third and fourth are weak decays in which the strangeness number

and the charm number are changed, while the last is the weak decay of a

non-strange particle.

3019

An experiment is performed to search for evidence of the reaction pp→
HK+K+.

(a) What are the values of electric charge, strangeness and baryon num-

ber of the particle H? How many quarks must H contain?

(b) A theoretical calculation for the mass of this state H yields a pre-

dicted value of mH = 2150 MeV.

What is the minimum value of incident-beam proton momentum neces-

sary to produce this state? (Assume that the target protons are at rest)

(c) If the mass prediction is correct, what can you say about the possible

decay modes of H? Consider both strong and weak decays.

(Princeton)

Solution:

(a) As K+ has S = 1, B = 0, H is expected to have electric charge

Q = 0, strangeness number S = −2, baryon number B = 2. To satisfy

these requirements, H must contain at least six quarks (uu dd ss).

(b) At minimum incident energy, the particles are produced at rest in

the center-of-mass frame. As (ΣE)2 − (Σp)2 is invariant, we have

(E0 +mp)
2 − p20 = (mH + 2mK)

2 ,
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giving

E0 =
(mH + 2mK)

2 − 2m2
p

2mp

=
(2.15 + 2× 0.494)2 − 2× 0.9382

2× 0.938 = 4.311 GeV ,

and hence the minimum incident momentum

p0 =
√
E2
0 −m2

p = 4.208 GeV/e .

(c) As for strong decays, ∆S = 0, ∆B = 0, the possible channels are

H → Λ0Λ0, Λ0Σ0, Ξ−p, Ξ0n.

However they all violate the conservation of energy and are forbidden.

Consider possible weak decays. The possible decays are nonleptonic decays

H → Λ+ n, Σ0 + n, Σ− + p, and semi-leptonic decays

H → Λ+ p+ e− + ν̄, Σ0 + p+ e− + ν̄ .

3020

Having 4.5 GeV free energy, what is the most massive isotope one could

theoretically produce from nothing?

(a) 2D.

(b) 3He.

(c) 3T.

(CCT)

Solution:

With a free energy of 4.5 GeV, one could create baryons with energy

below 2.25 GeV (To conserve baryon number, the same number of baryons

and antibaryons must be produced together. Thus only half the energy

is available for baryon creation). Of the three particles only 2D has rest

energy below this. Hence the answer is (a).

3021

(i) The decay K → πγ is absolutely forbidden by a certain conservation

law, which is believed to hold exactly. Which conservation law is this?
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(ii) There are no known mesons of electric charge two. Can you give a

simple explanation of this?

(iii) Explain how the parity of pion can be measured by observation of

the polarizations of the photons in π0 → γγ.

(iv) To a very high accuracy, the cross section for e−p scattering equals

the cross section for e+p scattering. Is this equality a consequence of a

conservation law? If so, which one? If not, explain the observed equality.

To what extent (if any at all) do you expect this equality to be violated?

(v) It has recently been observed that in inclusive Λ production

(Fig. 3.3), for example πp→ Λ+anything, the Λ is produced with a surpis-
ingly high polarization. Do you believe this polarization is

(a) along (or opposite to) the direction of the incident beam,

(b) along (or opposite to) the direction of motion of the outgoing Λ, or

(c) perpendicular to both?

Fig. 3.3

(Princeton)

Solution:

(i) The decay is forbidden by the conservation of strangeness number,

which holds exactly in electromagnetic interaction.

(ii) According to the prevailing theory, a meson consists of a quark and

an antiquark. The absolute value of a quark’s charge is not more than 2/3.

So it is impossible for the charge of a meson consisting of two quarks to be

equal to 2.

(iii) Let the wave vectors of the two photons be k1, k2, the directions of

the polarization of their electric fields be e1, e2, and let k = k1−k2. Since
the spin of π0 is 0, the possible forms of the decay amplitude are Ae1 ·e2 and
Bk · (e1×e2), which, under space inversion, respectively does not and does
change sign. Thus the former form has even parity, and the latter, odd

parity. These two cases stand for the two different relative polarizations
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of the photons. The former describes mainly parallel polarizations, while

the latter describes mainly perpendicular polarizations between the two

photons. It is difficult to measure the polarization of high energy photons

(E ∼ 70 MeV) directly. But in π0 decays, in a fraction α2 of the cases the

two photons convert directly to two electron-positron pairs. In such cases

the relative polarization of the photons can be determined by measuring

the angle between the two electron-positron pairs. The experimental results

tend to favor the perpendicular polarization. Since parity is conserved in

electromagnetic interaction, the parity of π0 is odd.

(iv) No. To first order accuracy, the probability of electromagnetic in-

teraction is not related to the sign of the charge of the incident particle.

Only when higher order corrections are considered will the effect of the

sign of the charge come in. As the strength of each higher order of electro-

magnetic interaction decreases by a factor α2, this equality is violated by

a fraction α2 ≈ 5.3× 10−5.
(v) The polarization σ of Λ is perpendicular to the plane of interaction.

As parity is conserved in strong interaction, σ is perpendicular to the plane

of production, i.e.,

σ ∝ pπ × pΛ

3022

Recently a stir was caused by the reported discovery of the decay µ+ →
e+ + γ at a branching ratio of ∼ 10−9.

(a) What general principle is believed to be responsible for the suppres-

sion of this decay?

(b) The apparatus consists of a stopping µ+ beam and two NaI crystals,

which respond to the total energy of the positrons or gamma rays. How

would you arrange the crystals relative to the stopping target and beam,

and what signal in the crystals would indicate that an event is such a µ

decay?

(c) The background events are the decays µ+ → e+ + νe + ν̄µ + γ with

the neutrinos undetected. Describe qualitatively how one would distinguish

events of this type from the µ+ → e+ + γ events of interest.

(Wisconsin)
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Solution:

(a) This decay is suppressed by the separate conservation of electron-

lepton number and µ-lepton number,

(b) µ+ → e+ + γ is a two-body decay. When the muon decays at rest

into e+ and γ, we have Ee ≈ Eγ =
mµc

2

2 . As e+ and γ are emitted in

opposite directions the two crystals should be placed face to face. Also, to

minimize the effect of any directly incident mesons they should be placed

perpendicular to the µ beam (see Fig. 3.4). The coincidence of e+ and

γ signals gives the µ decay events, including the background events given

in (c).

(c) µ+ → e+ + γ is a two-body decay and µ+ → e+ + νe + ν̄µ + γ

is a four-body decay. In the former e+ and γ are monoenergetic, while

in the latter e+ and γ have continuous energies up to a maximum. We

can separate them by the amplitudes of the signals from the two crystals.

For µ+ → e+ + γ, (Ee + Eγ) = mµ, while for µ
+ → e+ + νe + ν̄µ + γ,

(Ee +Eγ) < mµ.

Fig. 3.4

3023

Describe the properties of the various types of pion and discuss in detail

the experiments which have been carried out to determine their spin, parity,

and isospin.

(Buffalo)
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Solution:

There are three kinds of pion: π0, π+π−, with π+ being the antiparticle

of π− and π0 its own antiparticle, forming an isospin triplet of I = 1. Their

main properties are listed in Table 3.5.

Table 3.5

Particle Mass(MeV) Spin Parity C-Parity Isospin I3 G

π+ 139.6 0 − 1 1 −1
π0 135 0 − + 1 0 −1
π− 139.6 0 − 1 −1 −1

To determine the spin of π+, we apply the principle of detailed balance

to the reversible reaction π+ + d� p+ p, where the forward reaction and

its inverse have the same transition matrix element. Thus

dσ

dΩ
(pp→ dπ+) =

dσ

dΩ
(dπ+ → pp)× 2p

2
π(2Jπ + 1)(2Jd + 1)

p2p(2Jp + 1)
2

,

where pπ, pp are the momenta of π and p, respectively, in the center-of-mass

frame. Experimental cross sections give 2Jπ + 1 = 1.00± 0.01, or Jπ = 0.
The spin of π− can be determined directly from the hyperfine struc-

ture of the π-mesic atom spectrum. Also the symmetry of particle and

antiparticle requires π+ and π− to have the same spin. So the spin of π−

is also 0.

The spin of π0 can be determined by studying the decay π0 → 2γ. First
we shall see that a particle of spin 1 cannot decay into 2 γ’s. Consider the

decay in the center-of-mass frame of the 2 γ’s, letting their momenta be k

and −k, their polarization vectors be ε1 and ε2 respectively. Because the
spin of the initial state is 1, the final state must have a vector form. As a

real photon has only transverse polarization, only the following vectors can

be constructed from k, ε1, ε2:

ε1 × ε2, (ε1 · ε2)k, (ε× ε2 · k)k .

All the three vector forms change sign when the 2 γ’s are exchanged. How-

ever the 2γ system is a system of two bosons which is exchange-symmetric

and so none of three forms can be the wave function of the system. Hence
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the spin of π0 cannot be 1. On the other hand, consider the reaction

π− + p → π0 + n using low energy (s-wave) π−. The reaction is forbid-

den for Jπ0 ≥ 2. Experimentally, the cross section for the charge-exchange
reaction is very large. The above proves that Jπ0 = 0.

The parity of π− can be determined from the reaction π−+ d→ n+n,

employing low energy (s-wave) π−. It is well known that JPd = 1+, so

P (π−) = P 2(n)(−1)l, l being the orbital angular momentum of the relative
motion of the two neutrons. Since an n–n system is a Fermion system and

so is exchange antisymmetric, l = 1, J = 1, giving P (π−) = −1.
The parity of π+ can be determined by studying the cross section for

the reaction π+ + d → p + p as a function of energy of the incident low

energy (s-wave) π+. This gives P (π+) = −1.
The parity of π0 can be determined by measuring the polarization of

the decay π0 → 2γ. As J(π0) = 0, and the 2γ system in the final state is

exchange symmetric, possible forms of the decay amplitude are

ε1 · ε2, corresponding to P (π0) = +1 ,

k · (ε1 × ε2), corresponding to P (π0) = −1 ,

where k is the momentum of a γ in the π0 rest frame. The two forms respec-

tively represent the case of dominantly parallel polarizations and the case

of dominantly perpendicular polarizations of the two photons. Consider

then the production of electron-positron pairs by the 2 γ’s:

π0 → γ + γ∣∣∣∣∣
∣∣
→ e+ + e−

−→ e+ + e−

An electron-positron pair is created in the plane of the electric vector of the

γ ray. As the experimental results show that the planes of the two pairs

are mainly perpendicular to each other, the parity of π0 is −1.
The isospin of π can be deduced by studying strong interaction processes

such as

n+ p→ d+ π0, p+ p→ d+ π+ .

Consider the latter reaction. The isospin of the initial state (p+p) is |1, 1〉,
the isospin of the final state is also |1, 1〉. As isospin is conserved, the



428 Problems and Solutions in Atomic, Nuclear and Particle Physics

transition to the final state (d + π+) has a probability of 100%. Whereas,

in the former reaction, the isospin of the initial state is 1√
2
(|1, 0〉 − |0, 0〉),

of which only the state |1, 0〉 can transit to the (d + π0) system of isospin

|1, 0〉. Hence the probability for the transition from (n + p) to (d + π0) is

only 50%. In other words, if I(π) = 1, we would have

σ(pp→ dπ+) = 2σ(pn→ dπ0) .

As this agrees with experiment, I(π) = 1.

3024

The electrically neutral baryon Σ0 (1915) (of mass 1915 MeV/c2) has

isospin I = 1, I3 = 0. Call ΓK−p, ΓK̄0n, Γπ−p, Γπ+π− respectively the

rates for the decays Σ0(1915)→ K−p, Σ0(1915)→ K̄0n, Σ0(1915)→ π−p,

Σ0(1915)→ π+π−. Find the ratios

ΓK̄0n
ΓK−p

,
Γπ−p
ΓK−p

,
Γπ+π−

ΓK−p
.

(The masses of the nucleons, K−, and π− mesons are such that all these

decays are kinetically possible. You can disregard the small mass splitting

within an isospin multiplet.)

(Chicago)

Solution:

n, p form an isospin doublet, π+, π0, π− form an isospin triplet, and

K+, K0 form an isospin doublet. K− and K̄0, the antiparticles of K+ and

K0 respectively, also form an isospin doublet. Write the isospin state of

Σ0(1915) as |1, 0〉, those of p and n as |1/2, 1/2〉 and |1/2,−1/2〉, and those
of K̄0 and K− as |1/2, 1/2〉 and |1/2,−1/2〉, respectively. As

Ψ(K̄0n) =

∣∣∣∣12 , 12
〉 ∣∣∣∣12 ,−12

〉
=

√
1

2
(|1, 0〉+ |0, 0〉) ,

Ψ(K̄−p) =

∣∣∣∣12 ,−12
〉∣∣∣∣12 , 12

〉
=

√
1

2
(|1, 0〉 − |0, 0〉) ,
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Σ0(1915)→ K̄0n and Σ0(1915)→ K−p are both strong decays, the partial

widths are

ΓK̄0n ∝ |〈Ψ(Σ0)|H|Ψ(K̄0n)〉|2 =
(
a1√
2

)2

=
a21
2
,

ΓK−p ∝ |〈Ψ(Σ0)|H|Ψ(K−p)〉|2 =
(
a1√
2

)2

=
a21
2
,

where a1 = 〈1|H|1〉. Note 〈1|H|0〉 = 0 and, as strong interaction is charge
independent, a1 only depends on I but not on I3. Hence

ΓK̄0n
ΓK−p

= 1 .

Σ0(1915)→ pπ− is a weak decay (∆I3 = − 1
2 �= 0) and so

Γπ−p
ΓK−p

� 1

(actually ∼ 10−10).
In the Σ0(1915) → π+π− mode baryon number is not conserved, and

so the reaction is forbidden. Thus

Γπ+π− = 0 ,

or
Γπ+π−

ΓK−p
= 0 .

3025

Which of the following reactions are allowed? If forbidden, state the

reason.

(a) π− + p→ K− +Σ+

(b) d+ d→ 4He+ π0

(c) K− + p→ Ξ− +K+

What is the ratio of reaction cross sections σ(p+p→ π++d)/σ(n+p→
π0 + d) at the same center-of-mass energy?

(Chicago)
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Solution:

(a) Forbidden as ∆I3 = (−1/2) + (+1) − (−1) − 1/2 = 1 �= 0, ∆S =
(−1) + (−1)− 0− 0 = −2 �= 0.
(b) Forbidden as I(d) = I(4He) = 0, I(π0) = 1, ∆I = 1 �= 0
(c) Allowed by strong interaction as Q, I, I3, and S are all conserved.

The difference in cross section between pp→ π+d and np→ π0d relates

to isospin only. Using the coupling presentation for isospins and noting the

orthogonality of the isospin wave functions, we have

|pp〉 =
∣∣∣∣12 , 12

〉 ∣∣∣∣12 , 12
〉
= |1, 1〉 ,

|π+d〉 = |1, 1〉 |0, 0〉 = |1, 1〉 ,

|np〉 =
∣∣∣∣12 ,−12

〉 ∣∣∣∣12 , 12
〉
=

1√
2
|1, 0〉 − 1√

2
|0, 0〉 ,

|π0d〉 = |1, 0〉 |0, 0〉 = |1, 0〉 .

Hence the matrix element of pp→ π+d is

〈π+d|Ĥ|pp〉 ∝ 〈1, 1|Ĥ|1, 1〉 = 〈1|Ĥ|1〉 = a1 .

Similarly, the matrix element of np→ π0d is

〈π0d|Ĥ|np〉 ∝ 1√
2
〈1, 0|Ĥ|1, 0〉 − 1√

2
〈1, 0|Ĥ|0, 0〉

∝ 1√
2
〈1, 0|Ĥ|1, 0〉 = 1√

2
〈1|Ĥ|1〉 = a1√

2
,

as 〈1, 0|Ĥ|0, 0〉 = 0 and strong interaction is independent of I3. Therefore,

σ(pp→ π+d)

σ(np→ π0d)
=
|〈π+d|Ĥ|pp〉|2
|〈π0d|Ĥ|np〉|2

=
a21
1
2a

2
1

= 2 .

3026

Given two angular momenta J1 and J2 (for example L and S) and the

corresponding wave functions.
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(a) Compute the Clebsch–Gordan coefficients for the states with J =

j1 + j2, M = m1 +m2, where j1 = 1 and j2 = 1/2, J = 3/2, M = 1/2, for

the various possible m1 and m2 values.

(b) Consider the reactions

(1) π+p→ π+p,

(2) π−p→ π−p,

(3) π−p→ π0n.

These reactions, which conserve isospin, can occur in the isospin I = 3/2

state (∆ resonance) or I = 1/2 state (N∗ resonance). Calculate the ratio

of these cross sections σ1 : σ2 : σ3 for an energy corresponding to a ∆

resonance and to an N∗ resonance . At a resonance energy you can neglect

the effect due to the other isospin state. Note that the pion is an isospin

Iπ = 1 state and the nucleon an isospin In = 1/2 state.

(UC, Berkeley)

Solution:

(a) First consider ∣∣∣∣32 , 32
〉
= |1, 1〉

∣∣∣∣12 , 12
〉
.

Applying the operator

L− = Jx − iJy = (j1x − ij1y) + (j2x − ij2y) ≡ L
(1)
− + L

(2)
−

to the above:

L−

∣∣∣∣32 , 32
〉
= L

(1)
− |1, 1〉

∣∣∣∣12 , 12
〉
+ L

(2)
− |1, 1〉

∣∣∣∣12 , 12
〉
,

as

L−|J,M〉 =
√
J(J + 1)−M(M − 1)|J,M − 1〉 ,

we have
√
3

∣∣∣∣32 , 12
〉
=
√
2|1, 0〉

∣∣∣∣12 , 12
〉
+ |1, 1〉

∣∣∣∣12 ,−12
〉
,

or ∣∣∣∣32 , 12
〉
=

√
2

3
|1, 0〉

∣∣∣∣12 , 12
〉
+

√
1

3
|1, 1〉

∣∣∣∣12 ,−12
〉
.
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(b) We couple each initial pair in the isospin space:

|π+p〉 = |1, 1〉
∣∣∣∣12 , 12

〉
=

∣∣∣∣32 , 32
〉
,

|π−p〉 = |1,−1〉
∣∣∣∣12 , 12

〉
=

√
2

3

∣∣∣∣12 ,−12
〉
+

√
1

3

∣∣∣∣32 ,−12
〉
,

|π0n〉 = |1, 0〉
∣∣∣∣12 ,−12

〉
=

√
2

3

∣∣∣∣32 ,−12
〉
−
√
1

3

∣∣∣∣12 ,−12
〉
.

Because of charge independence in strong interaction, we can write

〈
3

2
,mj |Ĥ|

3

2
,mi

〉
= a1 ,

〈
1

2
,mj |Ĥ|

1

2
,mi

〉
= a2 ,

independent of the value of m. Furthermore the orthogonality of the wave

functions requires 〈
1

2
|Ĥ|3

2

〉
= 0 .

Hence the transition cross sections are

σ1(π
+p→ π+p) ∝

∣∣∣∣
〈
3

2
,
3

2

∣∣∣∣ Ĥ
∣∣∣∣32 , 32

〉∣∣∣∣
2

= |a1|2 ,

σ2(π
−p→ π−p) ∝

∣∣∣∣∣
(√

2

3

〈
1

2
,−1
2

∣∣∣∣+
√
1

3

〈
3

2
,−1
2

∣∣∣∣
)

Ĥ

(√
2

3

∣∣∣∣12 ,−12
〉
+

√
1

3

∣∣∣∣32 ,−12
〉)∣∣∣∣∣

2

=

∣∣∣∣23a2 + 13a1
∣∣∣∣
2

,
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σ3(π
−p→ π0n) ∝

∣∣∣∣∣
(√

2

3

〈
1

2
,−1
2

∣∣∣∣+
√
1

3

〈
3

2
,−1
2

∣∣∣∣
)

Ĥ

(√
2

3

∣∣∣∣32 ,−12
〉
−
√
1

3

∣∣∣∣12 ,−12
〉)∣∣∣∣∣

2

=

∣∣∣∣−
√
2

3
a2 +

√
2

3
a1

∣∣∣∣
2

,

When ∆ resonance takes place, |a1| � |a2|, and the effect of a2 can be
neglected. Hence

σ1 ∝ |a1|2 ,

σ2 ∝
1

9
|a1|2 ,

σ3 ∝
2

9
|a1|2 ,

and σ1 : σ2 : σ3 = 9 : 1 : 2.

When N∗ resonance occurs, |a1| � |a2|, and we have

σ1 ≈ 0 ,

σ2 ∝
4

9
|a2|2 ,

σ3 ∝
2

9
|a2|2 ,

σ1 : σ2 : σ3 = 0 : 2 : 1 .

3027

Estimate the ratios of decay rates given below, stating clearly the selec-

tion rules (“fundamental” or phenomenological) which are operating. Also

state whether each decay (regardless of the ratio) is strong, electromagnetic

or weak. If at all possible, express your answer in terms of the fundamental

constants G, α, θc, mK , etc. Assume that the strong interactions have unit

strength (i.e. , unit dimensionless coupling constant).
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(a)
K+ → π+π0

K0
s → π+π−

(b)
ρ0 → π0π0

ρ0 → π+π−

(c)
K0
L → µ+µ−

K0
L → π0π0

(d)
K+ → π+π+e−ν

K− → π+π−e−ν

(e)
Ω− → Σ−π0
Ω− → Ξ0π−

(f)
η0 → π+π−

η0 → π+π−π0

(g)
Λ0 → K−π+

Λ0 → pπ−

(h)
θ0 → π+π−π0

ω0 → π+π−π0

(i)
Σ− → Λ0π−

Σ− → nπ−

(j)
π− → e−ν

K+ → µ+ν
(Princeton)

Solution:

(a) Consider K+ → π+π0. For nonleptonic weak decays ∆I = 1/2.

As I(K) = 1/2, the isospin of the 2π system must be 0 or 1. The gen-

eralized Pauli’s principle requires the total wave function of the 2π sys-

tem to be symmetric. As the spin of K is 0, conservation of the total

angular momentum requires J(2π) = J(K) = 0. Then as the spin of

π is 0, l(2π) = 0. Thus the spatial and spin parts of the wave func-

tion of the 2π system are both symmetric, so the isospin wave function

must also be symmetric. It follows that the isospin of the 2π system has

two possible values, 0 or 2. Hence I(π+π0) = 0. However, I3(π
+π0) =

1 + 0 = 1. As the rule I3 ≤ I is violated, the decay is forbidden. On

the other hand, K0
s → π+π− is allowed as it satisfies the rule ∆I = 1/2.
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Therefore,
K+ → π+π−

K0
s → π+π−

� 1 .

Note the ratio of the probability amplitudes for ∆I = 1/2, 3/2 in K-decay,

A0 and A2, can be deduced from

Γ(K+ → π+π0)

Γ(K0
s → π+π−)

=
3

4

(
A2

A0

)2

≈ 1.5× 10−3 ,

giving
A2

A0
≈ 4.5% .

(b) Consider the decay modes ρ0 → π+π−, π0π0. ρ0 → π+π− is an

allowed strong decay, while for ρ0 → π0π0, the C-parities are C(ρ0) = −1,
C(π0π0) = 1, and the decay is forbidden by conservation of C-parity. Hence

ρ0 → π0π0

ρ0 → π+π−
≈ 0 .

(c) As K0
L is not the eigenstate of CP, K

0
L → π0π0 has a nonzero

branching ratio, which is approximately 9.4 × 10−4. The decay K0
L →

µ+µ−, being a second order weak decay, has a probability even less than

that of K0
L → π0π0. It is actually a flavor-changing neutral weak current

decay. Thus

1� K0
L → µ+µ−

K0
L → π0π0

≈ 0 .

Experimentally, the ratio ≈ 10−8/10−3 = 10−5.
(d) K+ → π+π+e−ν̄ is a semileptonic weak decay and so ∆Q should

be equal to ∆S, where ∆Q is the change of hadronic charge. As ∆S = 1,

∆Q = −1, it is forbidden. But as K− → π+π−e−ν̄ is an allowed decay,

K+ → π+π+e−ν̄

K− → π+π−e−ν̄
= 0 .

(e) In Ω− → Σ−π0, ∆S = 2. Thus it is forbidden. As Ω− → Ξ0π− is

allowed by weak interaction,

Ω− → Σ−π0
Ω− → Ξ0π− = 0 .

(f) Consider η0 → π+π−. η0 has JP = 0− and decays electromagneti-

cally (Γ = 0.83 keV). As JP of π± is 0−, a π+π− system can only form states
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0+, 1−, 2+. Since parity is conserved in electromagnetic decay, this decay

mode is forbidden. On the other hand, η0 → π+π−π0 is an electromagnetic

decay with all the required conservation rules holding. Hence

η0 → π+π−

η0 → π+π−π0
= 0 .

(g) Λ0 → K−π+ is a nonleptonic decay mode. As ∆I3 = 1/2, ∆S = 0,

it is forbidden. Λ0 → pπ− is also a nonleptonic weak decay satisfying

|∆S| = 1, |∆I| = 1/2, |∆I3| = 1/2 and is allowed. Hence
Λ0 → K−π+

Λ0 → pπ−
= 0 .

(h) Consider θ0 → π+π−π0. θ0 has strong decays (Γ = 180 MeV) and

IGJPC = 0+2++. As G(π+π−π0) = (−1)3 = −1, G(θ0) = +1, G-parity is
not conserved and the decay mode is forbidden. Consider ω0 → π+π−π0.

As IGJPC of ω0 is 0−1−−, it is allowed. Hence

θ0 → π+π−π0

ω0 → π+π−π0
= 0 .

(i) Consider Σ− → Λ0π−. As ∆S = 0, it is forbidden. Σ− → nπ− is an

allowed nonleptonic weak decay. Hence

Σ− → Λ0π−

Σ− → nπ−
= 0 .

(j) π− → e−ν̄ and K+ → µ+ν are both semileptonic two-body decays.

For the former, ∆S = 0 and the coupling constant is G cos θc, for the latter

∆S = 1 and the coupling constant is G sin θc, where θc is the Cabbibo

angle. By coupling of axial vectors we have

ω′(ϕ→ lν) =
f2ϕm

2
l (m

2
ϕ −m2

l )
2

4πm3
ϕ

,

where fϕ is the coupling constant. Hence

π− → e−ν̄

K+ → µ+ν
=

f2πm
2
e(m

2
π −m2

e)
2m3

K

f2Km
2
µ(m

2
K −m2

µ)
2m3

π

=
m3
Km

2
e(m

2
π −m2

e)
2

m3
πm

2
µ(m

2
K −m2

µ)
2
cot2 θc

= 1.35× 10−4 ,
using θc = 13.1

0 as deduced from experiment.
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3028

The Σ∗ is an unstable hyperon with mass m = 1385 MeV and decay

width Γ = 35 MeV, with a branching ratio into the channel Σ∗+ → π+Λ

of 88%. It is produced in the reaction K−p → π−Σ∗+, but the reaction

K+p→ π+Σ∗+ does not occur.

(a) What is the strangeness of the Σ∗? Explain on the basis of the

reactions given.

(b) Is the decay of the Σ∗ strong or weak? Explain.

(c) What is the isospin of the Σ∗? Explain using the information above.

(Wisconsin)

Solution:

(a) As Σ∗+ is produced in the strong interaction K−p → πΣ∗+, which

conserves strangeness number, the strangeness number of Σ∗+ is equal to

that of K−, namely, −1. As S(K+) = +1, the reaction K+p → π+Σ∗+

violates the conservation of strangeness number and is forbidden.

(b) The partial width of the decay Σ∗+ → Λπ+ is

ΓΛπ = 88%× 35 = 30.8 MeV ,

corresponding to a lifetime

τΛπ ≈
�

ΓΛπ
=
6.62× 10−22

30.8
= 2.15× 10−23 s .

As its order of magnitude is typical of the strong interaction time, the

decay is a strong decay.

(c) Isospin is conserved in strong interaction. The strong decay Σ∗+ →
Λπ+ shows that, as I(Λ) = I3(Λ) = 0,

I(Σ∗) = I(π) = 1 .

3029

A particle X has two decay modes with partial decay rates γ1(sec
−1)

and γ2(sec
−1).

(a) What is the inherent uncertainty in the mass of X?
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(b) One of the decay modes of X is the strong interaction decay

X → π+ + π+ .

What can you conclude about the isotopic spin of X?

(Wisconsin)

Solution:

(a) The total decay rate of particle X is

λ = γ1 + γ2 .

So the mean lifetime of the particle is

τ =
1

λ
=

1

γ1 + γ2
.

The inherent uncertainty in the mass of the particle, Γ, is given by the

uncertainty principle Γτ ∼ �. Hence

Γ ∼ �
τ
= �(γ1 + γ2) .

(b) As X → π+π+ is a strong decay, isospin is conserved. π+ has I = 1

and I3 = +1. Thus final state has I = 2 and so the isospin of X is 2.

3030

Suppose that π− has spin 0 and negative intrinsic parity. If it is captured

by a deuterium nucleus from a p orbit in the reaction

π− + d→ n+ n ,

show that the two neutrons must be in a singlet state. The deuteron’s

spin-parity is 1+.

(Wisconsin)

Solution:

The parity of the initial state π−d is

Pi = P (π−)P (d)(−1)l = (−1)× (+1)× (−1)1 = +1 .

As the reaction is by strong interaction, parity is conserved, and so the

parity of the final state is +1.
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As the intrinsic parity of the neutron is +1, the parity of the final state

nn is Pf = (+1)2(−1)l = Pi = (−1)1(−1)(+1), where l is the orbital

momentum quantum number of the relative motion of the two neutrons

in the final state. Thus l = 0, 2, 4, . . . . However, the total wave func-

tion of the final state, which consists of two identical fermions, has to

be exchange-antisymmetric. Now as l is even, i.e., the orbital wave func-

tion is exchange-symmetric, the spin wave function has to be exchange-

antisymmetric. Hence the two neutrons must be in a singlet spin state.

3031

A negatively charged π-meson (a pseudoscalar particle: zero spin and

odd parity) is initially bound in the lowest-energy Coulomb wave function

around a deuteron. It is captured by the deuteron (a proton and neutron

in 3S1 state), which is converted into a pair of neutrons:

π− + d→ n+ n .

(a) What is the orbital angular momentum of the neutron pair?

(b) What is their total spin angular momentum?

(c) What is the probability for finding both neutron spins directed op-

posite the spin of the deuteron?

(d) If the deuteron’s spin is initially 100% polarized in the k direction,

what is the angular dependence of the neutron emission probability (per

unit solid angle) for a neutron whose spin is opposite to that of the initial

deuteron? (See Fig. 3.5) You may find some of the first few (not normalized)

spherical harmonics useful:

Y 0
0 = 1 ,

Y ±11 = ∓ sin θe±iφ ,

Y 0
1 = cos θ ,

Y ±12 = ∓ sin 2θe±iφ .
(CUSPEA)

Solution:

(a) As JP (d) = 1+, JP (π−) = 0−, JP (n) = 1
2

+
, angular momentum

conservation demands J = 1, parity conservation demands (+1)2(−1)L
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Fig. 3.5

= (−1)(+1)(−1)0, or (−1)L = −1 for the final state. As neutrons are
fermions the total wave function of the final state is antisymmetric. Thus

(−1)L(−1)S+1 = −1, and L + S is an even number. For a two-neutron

system S = 0, 1. If S = 0, then L = 0, 2, 4, . . . . But this would mean

(−1)L = +1, which is not true. If S = 1, the L = 1, 3, 5, . . . , which satisfies
(−1)L = −1. Now if L ≥ 3, then J cannot be 1. Hence the neutron pair

has L = 1.

(b) The total spin angular momentum is S = 1.

(c) If the neutrons have spins opposite to the deuteron spin, Sz = − 1
2 −

1
2 = −1. Then Jz = Lz + Sz = Lz − 1. As L = 1, Lz = 0,±1. In either
case, |〈1, Lz − 1|1, 1〉|2 = 0, i.e. the proabability for such a case is zero.
(d) The wave function for the neutron-neutron system is

Ψ = |1, 1〉 = C1Y
1
1 χ10 + C2Y

0
1 χ11 ,

where C1, C2 are constants such that |C1|2 = |C2|2 = 1/2, and

χ10 =
1√
2
(↑↓ + ↓↑), χ11 = (↑↑) .

From the symmetry of the above wave function and the normalization con-

dition, we get
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dP

dΩ
= |C1|2(Y 1

1 χ10)
∗(Y 1

1 χ10)

=
1

2
(Y 1

1 )
∗Y 1

1

=
3

8π
sin2 θ .

3032

(a) The η0-particle can be produced by s-waves in the reaction

π− + p→ η0 + n .

(Note no corresponding process π− + p→ η− + p is observed)

(b) In the η0 decay the following modes are observed, with the proba-

bilities as indicated:

η0 → 2γ(38% of total)

→ 3π(30% of total)

→ 2π(< 0.15% of total) .

(c) The rest mass of the η0 is 548.8 MeV.

Describe experiments/measurements from which the above facts (a) (b)

(c) may have been ascertained. On the basis of these facts show, as precisely

as possible, how the spin, isospin, and charge of the η0 can be inferred.

(Columbia)

Solution:

An experiment for this purpose should consist of a π− beam with vari-

able momentum, a hydrogen target, and a detector system with good spa-

tial and energy resolutions for detecting γ-rays and charged particles. The

π− momentum is varied to obtain more 2γ and 3π events. The threshold

energy E0 of the reaction is given by

(E0 +mp)
2 − P 2

0 = (mη +mn)
2 .
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where P0 is the threshold momentum of the incident π
−, or

E0 =
(mη +mn)

2 −m2
p −m2

π

2mp

=
(0.5488 + 0.94)2 − 0.9382 − 0.142

2× 0.938

= 0.702 GeV = 702 MeV ,

giving

P0 =
√
E2
0 −m2

π ≈ 0.688 GeV/c = 688 MeV/c .

Thus η0 can be produced only if the π− momentum is equal to or larger

than 688 MeV/c.

Suppose the center of mass of the π−p system moves with velocity βcc

and let γc = (1 − β2c )
− 12 . Indicate quantities in the center-of-mass system

(cms) by a bar. Lorentz transformation gives

P̄0 = γc(P0 + βcE0) .

As P̄0 = P̄p = mpγcβc, we have

βc =
P0

mp +E0
=

688

702 + 938
= 0.420 ,

γc = 1.10 ,

and hence

P̄0 = γc(P0 − βcE0) = 433 Mev/c .

The de Broglie wavelength of the incident π− meson in cms is

λ =
�c

P̄0C
=
197× 10−13

433
= 0.45× 10−13 cm .

As the radius of proton ≈ 0.5× 10−13 cm, s-waves play the key role in the
π−p interaction.

Among the final products, we can measure the invariant-mass spectrum

of 2γ’s. If we find an invariant mass peak at 548.8 MeV, or for 6γ events, 3

pairs of γ’s with invariant mass peaking at m0
π,or the total invariant mass

of 6 γ’s peaking at 548.8 MeV, we can conclude that η0 particles have

been created. One can also search for π+π−π0 events. All these show the
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occurrence of

π− + p→ n+ η0∣∣∣∣∣
∣∣
→ 2γ
−→ 3π0, π+π−π0

If the reaction π− + p → p+ η− did occur, one would expect η− to decay

via the process

η− → π+π−π− .

Experimentally no π+π−π− events have been observed.

The quantum numbers of η0 can be deduced as follows.

Spin: As η0 can be produced using s-waves, conservation of angular

momentum requires the spin of η0 to be either 0 or 1. However since a

vector meson of spin 1 cannot decay into 2 γ’s, J(η0) = 0.

Parity: The branching ratios suggest η0 can decay via electromagnetic

interaction into 2 γ’s, via strong interaction into 3 π’s, but the branching

ratio of 2π-decay is very small. From the 3π-decay we find

P (η0) = P 3(π)(−1)l+l′ ,
where l and l′ are respectively the orbital angular momentum of a 2π system

and the relative orbital angular momentum of the third π relative to the 2π

system. As J(η0) = 0, conservation of total angular momentum requires

l′ = −l and so
P (η0) = (−1)3 = −1 .

Isospin: Because η− is not observed, η0 forms an isospin singlet. Hence

I(η0) = 0.

Charge: Conservation of charge shows Q(η0) = 0. In addition, from the

2γ-decay channel we can further infer that C(η0) = +1.

To summarize, the quantum numbers of η0 are I(η0) = 0, Q(η0) = 0,

JPC(η0) = 0−+. Like π and K mesons, η0 is a pseudoscalar meson, and it

forms an isospin singlet.

3033

A beam of K+ or K− mesons enters from the left a bubble chamber to

which a uniform magentic field of B ≈ 12 kGs is applied perpendicular to
the observation window.
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(a) Label with symbols (π+, π−, p, etc.) all the products of the decay of

the K+ in the bubble chamber pictures in Fig. 3.6 and give the complete

reaction equation for K+ applicable to each picture.

(b) In Fig. 3.7 theK− particles come to rest in the bubble chamber. La-

bel with symbols all tracks of particles associated with the K− particle and

identify any neutral particle by a dashed-line “track”. Give the complete

reaction equation for the K− interaction applicable to each picture.

Fig. 3.6

Fig. 3.7
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(c) Assuming that tracks in Fig. 3.7(a) and Fig. 3.7(b) above all lie in

the plane of the drawing determine the expressions for the lifetime of the

neutral particle and its mass.

(Chicago)

Solution:

(a) The modes and branching ratios of K+ decay are as follows:

K+ → µ+νµ 63.50% ,

π+π0 21.16% ,

π+π+π− 5.59% ,

π+π0π0 1.73% ,

µ+νµπ
0 3.20% ,

e+νeπ
0 4.82% .

The products from decays of K+ consist of three kinds of positively

charged particle π+, µ+, e+, one kind of negatively charged particle π−,

plus some neutral particles π0, νµ, νe. Where π
+ is produced, there should

be four linearly connected tracks of positively charged particles arising from

K+ → π+ → µ+ → e+. Where µ+ or e+ is produced there should be

three or two linearly connected tracks of positively charged particles in the

picture arising from K+ → µ+ → e+ or K+ → e+, respectively. Where π0

is produced, because of the decay π0 → 2γ(τ ≈ 10−16 s) and the subsequent
electron-positron pair production of the γ-rays, we can see the e+, e− tracks

starting out as a fork.

Analysing Fig. 3.6(a) we have Fig. 3.8. The decay of K+ could produce

either µ+ν or µ+γπ0. As the probability is much larger for the former we

assume that it was what actually happened. Then the sequence of events

is as follows:

K+ → µ+ + νµ

↓
e+ν̄µνe∣∣
−→ e+ + e− → γ1 + γ2

Note the sudden termination of the e+ track, which is due to the anni-

hilation of the positron with an electron of the chamber producing two

oppositely directed γ-rays.
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Fig. 3.8

Fig. 3.9

Analysing Fig. 3.6(b) we have Fig. 3.9. The sequence of events is as

follows:

K+ → π0 + π+

−−−→ µ+ + νµ

−−−−−−→ e+ + νe + ν̄µ , e+ + e− → γ5 + γ6

−−−−−−−→ γ1 + γ2

−−−−−−→ e+ + e−, e+ + e− → γ3 + γ4

or

K+ → π0 + π0 + π+

−−−→ µ+ + νµ

−−−−−−−→ γ + γ

−−−−−−−−−−−→ γ + γ

with the subsequent µ+ decay and pair production of the γ-rays.
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Fig. 3.10

Note that because of its short lifetime, π0 decays almost immediately

as it is produced. From Fig. 3.6(c) we have Fig. 3.10.

The sequence of events is as follows:

K+ → νe + e+1 + π0

−−→ γ3 + γ4

−−→ e+2 + e−, e+2 + e− → γ5 + γ6

−−−−−−→ e+1 + e− → γ1 + γ2

Figure 3.7(a) is interpreted as follows:

K− + n→ Λ0 + π−

−−−−−−→ p+ π−

The tracks are labelled in Fig. 3.11 below:

Fig. 3.11

Figure 3.7(b), is interpreted as

K− + p→ Λ0 + π0

−−−−→ γ + γ

−−−−−−−−→ p+ π−
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Fig. 3.12

Figure 3.12 shows the tracks with labels. Note that Λ0 has a lifetime

∼ 10−10 s, sufficient to travel an appreciable distance in the chamber.
(c) To determine the mass and lifetime of the neutral particle Λ0, we

measure the length of the track of the neutral particle and the angles it

makes with the tracks of p and π−, θp and θπ, and the radii of curvature, Rp

and Rπ, of the tracks of p and π
−. Force considerations give the momentum

of a particle of charge e moving perpendicular to a magnetic field of flux

density B as

P = eBR ,

where R is the radius of curvature of its track. With e in C, B in T,R in

m, we have

P = eBRc

(
joule

c

)
=

(
1.6× 10−19 × 3× 108
1.6× 10−19 × 109

)
BR

(
GeV

c

)

= 0.3BR

(
GeV

c

)
.

The momenta Pp, Pπ of p and π− from Λ0 decay can then be determined

from the radii of curvature of their tracks.

As (ΣE)2 − (ΣP )2 is invariant, we have

m2
Λ = (Ep +Eπ)

2 − (Pp +Pπ)
2 ,

where mΛ is the rest mass of Λ
0.

As

E2
p = P 2

p +m2
p ,

E2
π = P 2

π +m2
π ,
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we have

mΛ =
√
m2
p +m2

π + 2EpEπ − 2PπPp cos(θp + θπ) .

The energy and momentum of the Λ0 particle are given by

EΛ = Ep +Eπ ,

PΛ = Pp cos θp + Pπ cos θπ .

If the path length of Λ is l, its laboratory lifetime is τ = l
βc , and its proper

lifetime is

τ0 =
l

γβτ
=

lmΛ

PΛ
= l(Pp cos θp + Pπ cos θπ)

−1

× [m2
p +m2

π + 2EpEπ − 2PπPp cos(θp + θπ)]
1/2 .

3034

The invariant-mass spectrum of Λ0 and π+ in the reaction K− + p →
Λ0 + π+ + π− shows a peak at 1385 MeV with a full width of 50 MeV. It

is called Y ∗1 . The Λ
0π− invariant-mass spectrum from the same reaction

(but different events) shows a similar peak.

(a) From these data determine the strangeness, hypercharge and isospin

of Y ∗1 .

(b) Evidence indicates that the product Λ0+π+ from a Y ∗1 is in a relative

p state of angular momentum. What spin assignments J are possible for

the Y ∗1 ? What is its intrinsic parity? (Hint: the intrinsic parity of Λ
0 is +

and that of π+ is −)
(c) What (if any) other strong decay modes do you expect for Y ∗1 ?

(Columbia)

Solution:

(a) The resonance state Y ∗1 with full width Γ = 50 MeV has a lifetime

τ = �/Γ = 6.6× 10−22/50 = 1.3× 10−23 s. The time scale means that Y ∗1
decays via strong interaction, and so the strangeness number S, hypercharge
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Y , isospin I and its z-component I3 are conserved. Hence

S(Y ∗1 ) = S(Λ0) + S(π+) = −1 + 0 = −1 ,

Y (Y ∗1 ) = Y (Λ0) + Y (π+) = 0 + 0 = 0 ,

I(Y ∗1 ) = I(Λ0) + I(π+) = 0 + 1 = 1 ,

I3(Y
∗
1 ) = I3(Λ

0) + I3(π
+) = 0 + 1 = 1 .

Y ∗1 is actually an isospin triplet, its three states being Y ∗+1 , Y ∗01 , and

Y ∗−1 . The resonance peak of Λ0π− corresponds to Y ∗−1 .

(b) Λ0 has spin JΛ = 1/2, π
+ has spin Jπ = 0. The relative motion is a p

state, so l = 1. Then JY ∗1 = 1/2+1, the possible values being 1/2 and 3/2.

The intrinsic parity of Y ∗1 is P (Y
∗
1 ) = P (π)P (Λ)(−1)l = (−1)(1)(−1) = 1.

(c) Another possible strong decay channel is

Y ∗1 → Σπ .

As the intrinsic parity of Σ is (+1), that of π, (−1), the particles emitted
are in a relative p state

3035

Consider the hyperon nonleptonic weak decays:

Λ0 → pπ−

Λ0 → nπ0

Σ− → nπ−

Σ+ → pπ0

Σ+ → nπ+

Ξ− → Λ0π−

Ξ0 → Λ0π0
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On assuming that these ∆S = 1 weak decays satisfy the ∆I = 1/2 rule,

use relevant tables to find the values of x, y, z, as defined below:

x =
A(Λ0 → pπ−)

A(Λ0 → nπ0)
,

y =
A(Σ+ → π+n)−A(Σ− → π−n)

A(Σ+ → π0p)
,

z =
A(Ξ0 → Λ0π0)

A(Ξ− → Λ0π−)
,

where A denotes the transition amplitude.

(Columbia)

Solution:

As nonleptonic decays of hyperon require ∆I = 1/2, we can introduce

an “imaginary particle” a having I = 1
2 , I3 = − 1

2 , and combine the hyperon

with a in isospin compling:

|Λ0, a〉 = |0, 0〉
∣∣∣∣12 ,−12

〉
=

∣∣∣∣12 ,−12
〉
,

|Σ−, a〉 = |1,−1〉
∣∣∣∣12 ,−12

〉
=

∣∣∣∣32 ,−32
〉
,

|Σ+, a〉 = |1, 1〉
∣∣∣∣12 ,−12

〉
=

√
1

3

∣∣∣∣32 , 12
〉
+

√
2

3

∣∣∣∣12 , 12
〉
,

|Ξ0, a〉 =
∣∣∣∣12 , 12

〉∣∣∣∣12 ,−12
〉
=

√
1

2
|1, 0〉+

√
1

2
|0, 0〉 ,

|Ξ−, a〉 =
∣∣∣∣12 ,−12

〉∣∣∣∣12 ,−12
〉
= |1,−1〉 .

Similarly, we find the isospin wave functions for the final states:

|π−, p〉 = |1,−1〉
∣∣∣∣12 , 12

〉
=

√
1

3

∣∣∣∣32 ,−12
〉
−
√
2

3

∣∣∣∣12 ,−12
〉
,

|π0, p〉 = |1, 0〉
∣∣∣∣12 , 12

〉
=

√
2

3

∣∣∣∣32 , 12
〉
−
√
1

3

∣∣∣∣12 , 12
〉
,



452 Problems and Solutions in Atomic, Nuclear and Particle Physics

|π+, n〉 = |1, 1〉
∣∣∣∣12 ,−12

〉
=

√
1

3

∣∣∣∣32 , 12
〉
+

√
2

3

∣∣∣∣12 , 12
〉
,

|π0, n〉 = |1, 0〉
∣∣∣∣12 ,−12

〉
=

√
2

3

∣∣∣∣32 ,−12
〉
+

√
1

3

∣∣∣∣12 ,−12
〉
,

|π−, n〉 = |1,−1〉
∣∣∣∣12 ,−12

〉
=

∣∣∣∣32 ,−32
〉
,

|Λ0, π0〉 = |0, 0〉|1, 0〉 = |1, 0〉 ,

|Λ0, π−〉 = |0, 0〉|1,−1〉 = |1,−1〉 .

The coefficients have been obtained from Clebsch–Gordan tables. The tran-

sition amplitudes are thus

A1(Λ
0 → nπ0) =

√
1

3
M1/2

A2(Λ
0 → pπ−) = −

√
2

3
M1/2 ,

with

M1/2 =

〈
1

2

∣∣∣∣Hw

∣∣∣∣12
〉
.

Hence

x =
A2

A1
= −
√
2 .

Similarly,

A3(Σ
− → π−n) = M3/2 ,

A4(Σ
+ → π0p) =

√
1

3

√
2

3
M3/2 −

√
2

3

√
1

3
M1/2 =

√
2

3
(M3/2 −M1/2) ,

A5(Σ
+ → π+n) =

√
1

3

√
1

3
M3/2 +

√
2

3

√
2

3
M1/2 =

1

3
(M3/2 + 2M1/2) ,

with

M3/2 =

〈
3

2

∣∣∣∣Hω

∣∣∣∣32
〉
.
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Hence

y =
A5 −A3

A4
=

M3/2 + 2M1/2 − 3M3/2√
2(M3/2 −M1/2)

= −
√
2 .

Also,

A6(Ξ
0 → Λ0π0) =

√
1

2
M1 ,

A7(Ξ
− → Λ0π−) = M1

with

M1 = 〈1|Hω|1〉 .

Hence

z =
A6

A7
=

1√
2
.

3036

(a) The principle of detailed balance rests on the validity of time reversal

invariance and serves to relate the cross section for a given reaction a+b→
c+ d to the cross section for the inverse reaction c+ d→ a+ b. Let σI(W )

be cross section for

γ + p→ π+ + n

at total center-of-mass energy W , where one integrates over scattering an-

gle, sums over final spins, and averages over initial spins. Let σII(W ) be

the similarly defined cross section, at the same center-of-mass energy, for

π+ + n→ γ + p .

Let µ be the pion mass, m the nucleon mass (neglect the small difference

between the n and p masses). Given σI(W ), what does detailed balance

predict for σII(W )?

(b) For reaction II, what is the threshold value Wthresh and how does

σII(W ) vary with W just above threshold?

(Princeton)
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Solution:

(a) For simplicity denote the state (a,b) by α and the state (c,d) by β.

Let σαβ be the cross section of the process

a+ b→ c+ d

and σβα be the cross section of the inverse process

c+ d→ a+ b .

If T invariance holds true, then when the forward and inverse reactions

have the same energy W in the center-of-mass frame, σαβ and σβα are

related by
σαβ

σβα
=

P 2
β (2Ic + 1)(2Id + 1)

P 2
α(2Ia + 1)(2Ib + 1)

,

which is the principle of detailed balance. Here Pα is the relative momentum

of the incident channel of the reaction a + b → c + d, Pβ is the relative

momentum of the incident channel of the inverse reaction, Ia, Ib, Ic, Id are

respectively the spins of a, b, c, d.

For the reaction γ + p → π+ + n, in the center-of-mass frame of the

incident channel let the momentum of the γ be Pγ , the energy of the proton

be Ep. Then W = Eγ +Ep. As the γ has zero rest mass,

E2
γ − P 2

γ = 0 ,

or

(W −Ep)
2 − P 2

γ = 0 .

With Pγ = Pp, E
2
p − P 2

p = m2,

Ep =
W 2 +m2

2W
.

Hence the relative momentum is

P 2
α = P 2

γ = E2
p −m2 =

W 2 −m2

2W
.

For the inverse reaction π+ + n → γ + p, in the center-of-mass frame

let the energy of π+ be Eπ , its momentum be Pπ, and the energy of the

neutron be En, then as W = Eπ +En,

(W −En)
2 −E2

π = 0 .
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With Pπ = Pn, E
2
n = P 2

π +m2, E2
π = P 2

π + µ2, we have

En =
W 2 +m2 − µ2

2W
,

and hence

P 2
β = P 2

π = E2
n −m2 =

(W 2 +m2 − µ2)2 − 4W 2m2

4W 2
.

We have Iγ = 1, Ip = 1/2, In = 1/2, Iπ = 0. However as photon has only

left and right circular polarizations, 2Iγ+1 should be replaced by 2. Hence

σI(W )

σII(W )
=

P 2
β (2Iπ + 1)(2In + 1)

P 2
α(2Iγ + 1)(2Ip + 1)

=
P 2
β

2P 2
α

,

or

σII(W ) =
(W 2 −m2)2

(W 2 +m2 − µ2)2 − 4W 2m2
σI(W ) .

(b) At threshold all the final particles are produced at rest in the center-

of-mass frame. The energy of the center of mass is W th∗ = m+ µ. In the

laboratory let the energy of the photon be Eγ . As the proton is at rest, at

the threshold

(Eγ +m)2 − P 2
γ = (m+ µ)2 ,

or, since Eγ = Pγ ,

Eth
γ = µ

(
1 +

µ

2m

)
= 150 MeV .

When Eγ > Eth
γ , σ(γ + p → π+ + n) increases rapidly with increasing

Eγ . When Eγ = 340 MeV, a wide resonance peak appears, corresponding

to an invariant mass

E∗ =
√
(Eγ +mp)2 − P 2

γ =
√
2mpEγ +m2

p = 1232 MeV .

It is called the ∆ particle. The width Γ = 115 MeV and σ ≈ 280 µb at
the peak.

3037

The following questions require rough, qualitative, or magnitude an-

swers.

(a) How large is the cross section for e+e− → µ+µ− at a center-of-mass

energy of 20 GeV? How does it depend on energy?
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(b) How large is the neutrino-nucleon total cross section for incident

neutrinos of 100 GeV (in the nucleon rest frame)? How does it depend

on energy? At what energy is this energy dependence expected to change,

according to the Weinberg–Salam theory?

(c) How long is the lifetime of the muon? Of the tau lepton? If a new

lepton is discovered ten times heavier than tau, how long-lived is it expected

to be, assuming it decays by the same mechanism as the muon and tau?

(d) How large is the nucleon-nucleon total cross section at accelerator

energies?

(e) In pion-nucleon elastic scattering, a large peak is observed in the

forward direction (scattering through small angles). A smaller but quite

distinct peak is observed in the backward direction (scattering through ap-

proximately 180◦ in the center-of-mass frame). Can you explain the back-

ward peak? A similar backward peak is observed in K+p elastic scattering;

but in K−p scattering it is absent. Can you explain this?

(Princeton)

Solution:

(a) The energy dependence of the cross section for e+e− → µ+µ− can

be estimated by the following method. At high energies s
1
2 � me, mµ,

where s = E2
cm, and we can take me ≈ mµ ≈ 0. As there are two vertexes

in the lowest order electromagnetic interaction, we have

σ = f(s)α2 .

where α is the fine structure constant e2

�c
= 1

137 . Dimensionally σ = [M ]
−2,

s = [M ]2, α = [0], and so

f(s) ≈ 1
s
,

or

σ ≈ α2

s
.

A calculation using quantum electrodynamics without taking account of

radiation correction gives

σ ≈ 4πα
2

3s
.

At Ecm = 20 GeV,

σ =
4πα2

3× 202 = 5.6× 10
−7 GeV−2 = 2.2× 10−34 cm2 = 220 pb ,

as 1 MeV−1 = 197× 10−13 cm.
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(b) We can estimate the neutrino-nucleon total cross section in a sim-

ilar manner. In the high energy range s
1
2 � mp, ν and p react by weak

interaction, and

σ ≈ G2
F f(s) .

Again using dimensional analysis, we have GF = [M ]−2, s = [M ]2, σ =

[M ]−2, and so f(s) = [M ]2, or

f(s) ≈ s ,

i.e.,

σ ≈ G2
F s .

Let the energy of the neutrino in the neutron’s rest frame be Eν . Then

s = (Eν +mp)
2 − p2ν = m2

p + 2mpEν ≈ 2mpEν ,

or

σ ≈ G2
F s ≈ G2

FmpEν .

For weak interaction (Problem 3001)

GFm
2
p = 10

−5 .

With mp ≈ 1 GeV, at Eν = 100 GeV.

σ ≈ 10−10Eν GeV−2

= 10−10 × 102 × 10−6 MeV−2 = 10−14 × (197× 10−13)2 cm2

= 4× 10−36 cm2 .

Experimentally, σ ≈ 0.6 × 10−38 cm2. According to the Weinberg–Salam

theory, σ changes greatly in the neighborhood of s ≈ m2
W , where mW is

the mass of the intermediate vector boson W , 82 GeV.

(c) µ has lifetime τµ ≈ 2.2×10−6 s and τ has lifetime ττ ≈ 2.86×10−13 s.
Label the new lepton by H. Then mH = 10mτ . On assuming that it

decays by the same mechanism as muon and tau, its lifetime would be

τH =

(
mτ

mH

)5

ττ ≈ 10−5ττ = 2.86× 10−18 s .
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(d) Nucleons interact by strong interaction. In the energy range of

presentday accelerators the interaction cross section between nucleons is

σNN ≈ πR2
N ,

RN being the radius of the nucleon. With RN ≈ 10−13 cm,

σNN ≈ 3× 10−26 cm2 = 30 mb .

Experimentally, σpp ≈ 30 ∼ 50 mb for Ep = 2 ∼ 10× 103 GeV,

σnp ≈ 30 ∼ 50 mb for Ep = 5 ∼ 10× 102 GeV .

(e) Analogous to the physical picture of electromagnetic interaction, the

interaction between hadrons can be considered as proceeding by exchanging

virtual hadrons. Any hadron can be the exchanged particle and can be

created by other hadrons, so all hadrons are equal. It is generally accepted

that strong interaction arises from the exchange of a single particle, the

effect of multiparticle exchange being considered negligible. This is the

single-particle exchange model.

Figure 3.13(a) shows a t channel, where t = −(Pπ+−Pπ+′ )2 is the square
of the 4-momentum transfer of π+ with respect to π+′. Figure 3.13(b) shows

Fig. 3.13
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a u channel, where u = −(Pπ+ − Pp′)
2 is the square of the 4-momentum

transfer of π+ with respect to p′. Let θ be the angle of the incident π+

with respect to the emergent π+. When θ = 0, |t| is very small; when
θ = 1800, |u| is very small. The former corresponds to the π+ being scat-
tered forwards and the latter corresponds to the π+ being scattered back-

wards. As quantum numbers are conserved at each vertex, for the t channel

the virtual exchange particle is a meson, for the u channel it is a baryon.

This means that there is a backward peak for baryon-exchange scattering.

Generally speaking, the amplitude for meson exchange is larger. Hence the

forward peak is larger. For example, in π+p scattering there is a u channel

for exchanging n, and so there is a backward peak. In K+p scattering, a

virtual baryon (S = −1, B = 1) or Λ0 is exchanged. But in K−p scattering,

if there is a baryon exchanged, it must have S = 1, B = 1. Since there is

no such a baryon, K−p scattering does not have a backward peak.

2. WEAK AND ELECTROWEAK INTERACTIONS, GRAND

UNIFICATION THEORIES(3038 3071)

3038

Consider the leptonic decays:

µ+ → e+νν̄ and τ+ → e+νν̄

which are both believed to proceed via the same interaction.

(a) If the µ+ mean life is 2.2× 10−6 s, estimate the τ+ mean life given
that the experimental branching ratio for τ+ → e+νν̄ is 16%

Note that:

mµ = 106 MeV/c2 ,

mτ = 1784 MeV/c2 ,

me = 0.5 MeV/c2 ,

mν = 0 MeV/c2 ,
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(b) If the τ+ is produced in a colliding beam accelerator (like PEP),

e+e− → τ+τ− at Eem = 29 GeV (e+ and e− have equal and opposite

momenta), find the mean distance (in the laboratory) the τ+ will travel

before decay.

(UC, Berkeley)

Solution:

(a) The theory of weak interaction gives the decay probabilities per unit

time as

λµ = τ−1µ =
G2
µm

5
µ

192π3
, λτ =

G2
τm

5
τ

192π3
.

As the same weak interaction constant applies, Gµ = Gτ and

λτ/λµ = m5
τ/m

5
µ .

If λ is the total decay probability per unit time of τ+, the branching ratio

is R = λτ (τ
+ → e+νν̄)/λ.

Hence τ = λ−1 = R/λτ (τ
+ → e+νν̄) = R

(
mµ

mτ

)5
τµ = 16%×

(
106
1784

)5 ×
2.2× 10−6 = 2.6× 10−13 s .
(b) In the center-of-mass system, τ+ and τ− have the same energy.

Thus

Eτ = Ecm/2 = 14.5 GeV .

As the collision is between two particles of equal and opposite momenta,

the center-of-mass frame coincides with the laboratory frame. Hence the

laboratory Lorentz factor of τ is

γ = Eτ/mτ = 14.5× 103/1784 = 8.13 ,

giving

β =
√
1− γ−2 =

√
1− 8.13−2 = 0.992 .

Hence the mean flight length in the laboratory is

L = βcγτ = 0.992× 3× 1010 × 8.13× 2.6× 10−13 = 6.29× 10−2 cm .

3039

Assume that the same basic weak interaction is responsible for the beta

decay processes n→ pe−ν̄ and Σ− → Λe−ν̄, and that the matrix elements
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describing these decays are the same. Estimate the decay rate of the process

Σ− → Λe−ν̄ given the lifetime of a free neutron is about 103 seconds.
Given:

mn = 939.57 MeV/c2 , mΣ = 1197.35 MeV/c2 ,

mp = 938.28 MeV/c2 , mΛ = 1116.058 MeV/c2 ,

me = 0.51 MeV/c2 , mν = 0 .

(UC, Berkeley)

Solution:

β-decay theory gives the transition probability per unit time as W =

2πG2|M |2dN/dE0 and the total decay rate as λ ∝ E5
0 , where E0 is the

maximum energy of the decay neutrino. For two decay processes of the

same transition matrix element and the same coupling constant we have

λ1

λ2
=

(
E01

E02

)5

.

Hence

λ(Σ− → Λeν̄) =
[
E0(Σ

− → Λe−ν̄)
E0(n→ pe−ν̄)

]5
λn

=

(
mΣ −mΛ −me

mn −mp −me

)5
1

τn

=

(
1197.35− 1116.058− 0.51
939.57− 938.28− 0.51

)5

× 10−3

= 1.19× 107 s−1 .

3040

Although the weak interaction coupling is thought to be universal, dif-

ferent weak processes occur at vastly different rates for kinematics reasons.
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(a) Assume a universal V-A interaction, compute (or estimate) the ratio

of rates:

γ =
Γ(π− → µ−ν̄)

Γ(π− → e−ν̄)
.

Be as quantitative as you can.

(b) How would this ratio change (if the universal weak interaction cou-

pling were scalar? Pseudoscalar?

(c) What would you expect (with V-A) for

γ′ =
Γ(Λ→ pµ−ν̄)

Γ(Λ→ pe−ν̄)
.

Here a qualitative answer will do.

Data:

JP (π−) = 0−; MΛ = 1190 MeV/c2;

Mµ = 105 MeV/c2; Me = 0.5 MeV/c2; Mp = 938 MeV/c
2 .

(Princeton)

Solution:

(a) The weak interaction reaction rate is given by

Γ = 2πG2|M |2 dN
dE0

,

where dN
dE0

is the number of the final states per unit energy interval, M is

the transition matrix element, G is the weak interaction coupling constant.

Consider the two decay modes of π−:

π− → µ−ν̄µ , π− → e−ν̄ .

Each can be considered as the interaction of four fermions through an in-

termediate nucleon-antinucleon state as shown in Fig. 3.14:

π−
Strong-interaction−−−−−−−−−−−−→ p̄+ n

Weak-interaction−−−−−−−−−−−−→ e− + ν̄e or µ
− + ν̄µ .

From a consideration of parities and angular momenta, and basing on

the V –A theory, we can take the coupling to be of the axial vector (A) type.
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Fig. 3.14

For A coupling, M2 ≈ 1 − β, where β is the velocity of the charged

lepton. The phase space factor is

dN

dE0
= Cp2

dp

dE0
,

where C is a constant, p is the momentum of the charged lepton in the rest

frame of the pion. The total energy of the system is

E0 = mπ = p+
√
p2 +m2 ,

wherem is the rest mass of the charged lepton, and the neutrino is assumed

to have zero rest mass. Differentiating we have

dp

dE0
=

E0 − p

E0
.

From

mπ = p+
√
p2 +m2

we have

p =
m2
π −m2

2mπ
.

Combining the above gives

dp

dE0
=

m2
π +m2

2m2
π

.

We also have

β =
p√

p2 +m2
=

p

mπ − p
,
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and so

1− β =
2m2

m2
π +m2

.

Thus the decay rate is proportional to

(1− β)p2
dp

dE0
=
1

4

(
m

mπ

)2(
m2
π −m2

mπ

)2

.

Hence the ratio is

γ =
Γ(π− → µ−ν̄µ)

Γ(π− → e−ν̄e)
=

m2
µ(m

2
π −m2

µ)
2

m2
e(m

2
π −m2

e)
2
= 8.13× 103 .

(b) For scalar coupling, M2 ≈ 1 − β also and the ratio R would not

change.

For pseudoscalar coupling, M2 ≈ 1 + β, and the decay rate would be

proportional to

(1 + β)p2
dp

dE
=
1

4

(
m2
π −m2

mπ

)2

.

Then

γ =
Γ(π− → µ−ν̄µ)

Γ(π− → e−ν̄e)
=
(m2

π −m2
µ)

2

(m2
π −m2

e)
2
= 0.18 .

These may be compared with the experimental result

γexp = 8.1× 103 .

(c) For the semileptonic decay of Λ0 the ratio

γ′ =
Γ(Λ→ pµ−ν̄µ)

Γ(Λ→ pe−ν̄e)

can be estimated in the same way. We have

γ′th = 0.164 γ′exp = 0.187± 0.042 ,

which means Λ decay can be described in terms of the V-A coupling theory.

3041

List the general properties of neutrinos and antineutrinos. What was

the physical motivation for the original postulate of the existence of the

neutrino? How was the neutrino first directly detected?

(Wisconsin)
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Solution:

Table 3.6 lists some quantum numbers of neutrino and antineutrino.

Table 3.6

Charge Spin Helicity Lepton number

neutrino 0 1/2 −1 +1

antineutrino 0 1/2 +1 −1

Both neutrino and antineutrino are leptons and are subject to weak

interaction only. Three kinds of neutrinos and their antiparticles are at

present believed to exist in nature. These are electron-neutrino, muon-

neutrino, τ -neutrino, and their antiparticles. (ντ and ν̄τ have not been

detected experimentally).

Originally, in order to explain the conflict between the continuous energy

spectrum of electrons emitted in β-decays and the discrete nuclear energy

levels, Pauli postulated in 1933 the emission in β-decay also of a light

neutral particle called neutrino. As it is neutral the neutrino cannot be

detected, but it takes away a part of the energy of the transition. As it is a

three-body decay the electron has continuous energy up to a definite cutoff

given by the transition energy.

As neutrinos take part in weak interaction only, their direct detec-

tion is very difficult. The first experimental detection was carried out by

Reines and Cowan during 1953–1959, who used ν̄ from a nuclear reactor

to bombard protons. From the neutron decay n → p + e− + ν̄ we expect

ν̄ + p → n + e+ to occur. Thus if a neutron and a positron are detected

simultaneously the existence of ν̄ is proved. It took the workers six years

to get a positive result.

3042

(a) How many neutrino types are known to exist? What is the spin of

a neutrino?

(b) What properties of neutrinos are conserved in scattering processes?

What is the difference between a neutrino and an antineutrino? Illustrate
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this by filling in the missing particle:

νµ + e− → µ−+? .

(c) Assume the neutrino mass is exactly zero. Does the neutrino have a

magnetic moment? Along what direction(s) does the neutrino spin point?

Along what direction(s) does the antineutrino spin point?

(d) What is the velocity of a 3◦K neutrino in the universe if the neutrino

mass is 0.1 eV?

(Wisconsin)

Solution:

(a) Two kinds of neutrino have been found so far. These are electron-

neutrinos and muon-neutrinos and their antiparticles. Theory predicts the

existence of a third kind of neutrino, τ -neutrino and its antiparticle. The

neutrino spin is 1/2.

(b) In a scattering process, the lepton number of each kind of neutrino

is conserved. The difference between a neutrino and the corresponding

antineutrino is that they have opposite lepton numbers. Furthermore if

the neutrino mass is zero, the helicities of neutrino and antineutrino are

opposite. The unknown particle in the reaction is νe:

νµ + e− → µ− + νe .

(c) If the neutrino masses are strictly zero, they have no magnetic mo-

ment. The neutrino spin points along a direction opposite to its motion,

while the antineutrino spin does the reverse.

(d) The average kinetic energy of a neutrino in a gas of temperature

T is Ek = 3kT/2, where k is Boltzmann’s constant. The velocity of the

neutrino is then

β =
√
2Ek/m =

√
3kT/m =

√
3× 8.62× 10−5 × 3/0.1 = 0.088 ,

corresponding to 2.6× 107 m/s.

3043

(a) Describe the experiments that prove

(1) there are two kinds of neutrino,

(2) the interaction cross section is very small.
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(b) Write down the reactions in which an energetic neutrino may pro-

duce a single pion with

(1) a proton, and with

(2) a neutron.

(c) Define helicity and what are its values for neutrino and antineutrino.

(d) Can the following modes of µ+ decay proceed naturally? Why?

(1) µ+ → e+ + γ,

(2) µ+ → e+ + e− + e+.

(SUNY Buffalo)

Solution:

(a) (1) For two-neutrino experiment see Problem 3009(3).

(2) The first observation of the interaction of free neutrinos was

made by Reines and Cowan during 1953–1959, who employed ν̄e from a

nuclear reactor, which have a broad spectrum centered around 1 MeV, as

projectiles and cadmium chloride (CdCl2) and water as target to initiate

the reaction

ν̄e + p→ n+ e+ .

The e+ produced in this reaction rapidly comes to rest due to ionization

loss and forms a positronium which annihilates to give two γ-rays, each of

energy 0.511 MeV. The time scale for this process is of the order 10−9 s. The

neutron produced, after it has been moderated in the water, is captured

by cadmium, which then radiates a γ-ray of ∼ 9.1 MeV after a delay of
several µs. A liquid scintillation counter which detects both rays gives two

differential pulses with a time differential of about 10−5 s. The 200-litre

target was sandwiched between two layers of liquid scintillator, viewed by

banks of photomultipliers. The experiment gave σν ∼ 10−44 cm2, consistent

with theoretical expectation. Compared with the cross section σh of a

hardon, 10−24∼−26 cm2, σν is very small indeed.

(b) (1) νµ + p→ µ− + p+ π+.

(2) νµ + n→ µ− + n+ π+

→ µ− + p+ π0 .

(c) The helicity of a particle is defined as H = P·σ
|P||σ| , where P and σ

are the momentum and spin of the particle. The neutrino has H = −1 and
is said to be left-handed, the antineutrino has H = +1 and is right-handed.

(d) µ+ → e+ + γ, µ+ → e+ + e− + e+.
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Neither decay mode can proceed because they violate the conservation

of electron-lepton number and of muon-lepton number.

3044

A sensitive way to measure the mass of the electron neutrino is to mea-

sure

(a) the angular distribution in electron-neutrino scattering.

(b) the electron energy spectrum in beta-decay.

(c) the neutrino flux from the sun.

(CCT)

Solution:

In the Kurie plot of a β spectrum, the shape at the tail end depends on

the neutrino mass. So the answer is (b).

3045

How many of one million 1-GeV neutrinos interact when traversing the

earth? (σ = 0.7× 10−38 cm2/n, where n means a nucleon, R = 6000 km,

ρ ≈ 5 g/cm2, 〈A〉 = 20)
(a) all.

(b) ≈ 25.
(c) none.

(CCT)

Solution:

Each nucleon can be represented by an area σ. The number of nucleons

encountered by a neutrino traversing earth is then

Nn =
2RσρNA

〈A〉 〈A〉 ,

where NA =Avogadro’s number. The total number of encounters (colli-

sions) is

N = NνNn = 2RσρNANν

= 2× 6× 108 × 0.7× 10−38 × 5× 6.02× 1023 × 106 = 25.2
So the answer is (b).



Particle Physics 469

3046

The cross section rises linearly with Eν . How long must a detector (ρ ≈
5 g/cm3, 〈A〉 = 20) be so that 1 out of 106 neutrinos with Eν = 1000 GeV
interacts?

(a) 6 km.

(b) 480 m.

(c) 5 m.

(CCT)

Solution:

Write L = 2R in Problem 3045, then N ∝ Lσ. As σ′ = 1000σ, we

have
1

25.2
=
103L

2R
,

or

L =
2× 6000
25.2× 103 = 0.476 km .

Hence the anser is (b).

3047

An experiment in a gold mine in South Dakota has been carried out to

detect solar neutrinos using the reaction

ν + Cl37 → Ar37 + e− .

The detector contains approximately 4 × 105 liters of tetrachlorethylene
(CCl4). Estimate how many atoms of Ar

37 would be produced per day.

List your assumptions. How can you improve the experiment?

(Columbia)

Solution:

The threshold for the reaction ν+Cl37 → Ar37+e− is (MAr−MCl)c
2 =

0.000874× 937.9 = 0.82 MeV, so only neutrinos of Eν > 0.82 MeV can be
detected. On the assumption that the density ρ of CCl4 is near that of

water, the number of Cl nuclei per unit volume is

n =
4ρN0

A
= (4/172)× 6.02× 1023 = 1.4× 1022 cm−3 ,

where A = 172 is the molecular weight of CCl4.
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In general the interaction cross section of neutrino with matter is a

function of Eν . Suppose σ̄ ≈ 10−42 cm2/Cl. The flux of solar neutrinos

on the earth’s surface depends on the model assumed for the sun. Suppose

the flux with Eν > 0.82 MeV is F = 109 cm−2 s−1. Then the number of

neutrinos detected per day is Nν = nV σ̄F t = 1.4× 1022 × 4× 105 × 103 ×
10−42 × 109 × 24× 3600 = 4.8× 102.
However only neutrinos with energies Eν > 0.82 MeV can be detected

in this experiment, whereas solar neutrinos produced in the main process in

the sun p+ p→ 2H + e++ νe have maximum energy 0.42 MeV. Most solar

neutrinos will not be detected in this way. On the other hand, if Ga or In

are used as the detection medium, it would be possible to detect neutrinos

of lower energies.

3048

It has been suggested that the universe is filled with heavy neutrinos

νH (mass mH) which decay into a lighter neutrino νL (mass mL) and a

photon, νH → νL + γ, with a lifetime similar to the age of the universe.

The νH were produced at high temperatures in the early days, but have

since cooled and, in fact, they are now so cold that the decay takes place

with the νH essentially at rest.

(a) Show that the photons produced are monoenergetic and find their

energy.

(b) Evaluate your expression for the photon energy in the limit mL �
mH . If the heavy neutrinos have a mass of 50 eV as has been suggested

by recent terrestrial experiments, and mL � mH , in what spectral regime

should one look for these photons?

(c) Suppose the lifetime of the heavy neutrinos were short compared

to the age of the universe, but that they were still “cold” (in the above

sense) at the time of decay. How would this change your answer to part

(b) (qualitatively)?

(Columbia)

Solution:

(a) As it is a two-body decay, conservation of energy and conservation

of momentum determine uniquely the energy of each decay particle. Thus
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the photons are monoenergetic. The heavy neutrinos can be considered as

decaying at rest. Thus

mH = EL +Eγ , PL = Pγ .

As Eγ = Pγ , E
2
L = P 2

L +m2
L, these give

Eγ =
1

2mH
(m2

H −m2
L) .

(b) In the limit mH � mL, Eγ ≈ 1
2mH . If mH = 50 eV, Eγ = 25 eV.

The photons emitted have wavelength

λ =
h

Pγ
=
2π�c

Pγc
=
2π × 197× 10−13

25× 10−6 = 495× 10−8 cm = 495 Å .

This is in the regime of ultraviolet light. Thus one would have to look at

extraterrestrial ultraviolet light for the detection of such photons.

(c) If the lifetime of the heavy neutrinos is far smaller than that of the

universe, they would have almost all decayed into the lighter neutrinos.

This would make their direct detection practically impossible.

3049

The particle decay sequence

π+ → µ+ + νµ , µ+ → e+ + νe + ν̄µ

shows evidence of parity nonconservation.

(a) What observable quantity is measured to show this effect? Sketch

or give a formula for the distribution of this observable.

(b) Does the process show that both decay processes violate parity con-

servation, or only one? Explain why.

(Wisconsin)

Solution:

(a) Suppose the pions decay in flight. We can study the forward muons

µ+ which stop and decay inside a carbon absorber. The angular distribution
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of the e+ produced in the µ+ decay can determine if parity is conserved.

Relative to the initial direction of µ+ the e+ have angular distribution

dN/dΩ = 1 − 1
3 cos θ, which changes under space reflection θ → π − θ.

Hence parity is not conserved.

(b) Both the decay processes violate parity conservation since both pro-

ceed via weak interaction.

3050

Consider the following decay scheme:

π+ → µ+ + ν1

−−−→ e+ + ν2 + ν̄3

(a) If the pion has momentum p, what is the value of the minimum (and

maximum) momentum of the muon? Express the answer in terms of mµ,

mπ and p (mν1 = mν2 = mν̄3 = 0) and assume p� mµ,mπ.

(b) If the neutrino in π decay has negative helicity, what is the helicity

of the muon for this decay?

(c) Given that ν2 and ν̄3 have negative and positive helicities respec-

tively, what is the helicity of the positron?

(d) What conserved quantum number indicates that ν1 and ν̄3(ν2) are

associated with the muon (electron) respectively?

(e) The pion decays to an electron: π+ → e+ + νe. Even though the

kinematics for the electron and muon decay modes are similar, the rate of

muon decay is 104 times the rate of electron decay. Explain.

(Princeton)

Solution:

(a) Let γ be the Lorentz factor of π+. Then βγ = p
mπ
,

γ =

√
p2 +m2

π

mπ
≈
(
1 +

m2
π

2p2

)
p

mπ
.
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In the rest system of π+, p∗µ = p∗ν = E∗ν ,mπ = E∗µ+E
∗
ν = E∗µ+p

∗
µ, giving

p∗µ = p∗ν =
m2
π −m2

µ

2mπ
,

E∗µ =
√
p∗2µ +m2

µ =
m2
π +m2

µ

2mπ
.

Transforming to the laboratory system we have

pµ cos θ = γp∗µ cos θ
∗ + γβE∗µ .

In the direction of p (θ = 0), pµ has extreme values

(pµ)max ≈ p

(
1 +

m2
π

2p2

)
m2
π −m2

µ

2m2
π

+ p
m2
π −m2

µ

2m2
π

= p+
m2
π −m2

µ

4p
, (θ∗ = 0)

(pµ)min ≈ −p
(
1 +

m2
π

2p2

)
m2
π −m2

µ

2m2
π

+ p
m2
π +m2

µ

2m2
π

=

(
m2
µ

m2
π

)
p−

m2
π −m2

µ

4p
. (θ∗ = π)

(b) If the neutrino in π+ decay has negative helicity, from the fact that

π+ has zero spin and the conservation of total angular momentum and of

momentum, we can conclude that µ+ must have negative helicity in the

rest system of π+.

(c) Knowing that ν̄3 and ν2 respectively have positive and negative

helicities, one still cannot decide on the helicity of e+. If we moderate the

decay muons and study their decay at rest, a peak is found at 53 MeV

in the energy spectrum of the decay electrons. This means the electron

and ν2ν̄3 move in opposite directions. If the polarization direction of µ
+

does not change in the moderation process, the angular distribution of e+

relative to pµ,
dNe+

dΩ
≈ 1− α

3
cos θ ,

where α ≈ 1, shows that e+ has a maximum probability of being emitted

in a direction opposite to pµ (θ = π). Hence the helicity of e+ is positive.
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The longitudinal polarization of the electron suggests that parity is not

conserved in π and µ decays.

(d) The separate conservation of the electron- and muon-lepton numbers

indicates that ν1 and ν̄3 are associated with muon and that ν2 is associated

with electron since the electron-lepton numbers of ν1, ν2 and ν̄3 are 0,1,0,

and their muon-lepton numbers are 1,0, −1 respectively.
(e) See Problem 3040.

3051

A beam of unpolarized electrons

(a) can be described by a wave function that is an equal superposition

of spin-up and spin-down wave functions.

(b) cannot be described by a wave function.

(c) neither of the above.

(CCT)

Solution:

The answer is (a).

3052

Let s,p be the spin and linear momentum vectors of an elementary

particle respectively.

(a) Write down the transformations of s,p under the parity operator P̂

and the time reversal operator T̂ .

(b) In view of the answers to part (a), suggest a way to look for time

reversal violation in the decay Λ → N + π. Are any experimental details

or assumptions crucial to this suggestion?

(Wisconsin)

Solution:

(a) Under the operation of the parity operator, s and p are transformed

according to

P̂ sP̂−1 = s, P̂pP̂−1 = −p .
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Under the time-reversal operator T̂ , s and p are transformed accord-

ing to

T̂sT̂−1 = −s, T̂pT̂−1 = −p .

(b) Consider the angular correlation in the decay of polarized Λ parti-

cles. Define

Q = sΛ · (pN × pπ) ,

where sΛ is the spin of the Λ particle, pN and pπ are the linear momenta

of the nucleon and the pion respectively. Time reversal operation gives

T̂QT̂−1 = T̂sΛT̂
−1 · (T̂pN T̂−1× T̂pπT̂−1) = −sΛ · [(−pN )× (−pπ)] = −Q ,

or

Q̄ = 〈α|Q|α〉 = 〈α|T̂−1T̂QT̂−1T̂ |α〉 = −〈αT |Q|αT 〉 .

If time reversal invariance holds true, |αT 〉 and |α〉 would describe the same
state and so

Q̄ = 〈α|Q|α〉 = −〈αT |Q|αT 〉 = −Q̄ ,

or

Q̄ = 0 .

To detect possible time reversal violation, use experimental setup as in

Fig. 3.15. The pion and nucleon detectors are placed perpendicular to each

other with their plane perpendicular to the Λ-particle spin. Measure the

number of Λ decay events N(↑). Now reverse the polarization of the Λ-
particles and under the same conditions measure the Λ decay events N(↓).

Fig. 3.15
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A result N(↑) �= N(↓) would indicate time reversal violation in the decay
Λ→ π +N .

This experiment requires all the Λ-particles to be strictly polarized.

3053

Consider the decay Λ0 → p+π−. Describe a test for parity conservation

in this decay. What circumstances may prevent this test from being useful?

(Wisconsin)

Solution:

Λ0 → p + π− is a nonleptonic decay. It is known Λ0 and p both have

spin 1/2 and positive parity, and π− has spin 0 and negative parity.

As the total angular momentum is conserved, the final state may have

relative orbital angular momentum 0 or 1. If

l = 0, the final-state parity is P (p)P (π−)(−1)0 = −1; if
l = 1, the final-state parity is P (p)P (π−)(−1)1 = +1.
Thus if parity is conserved in Λ0 decay, l = 0 is forbidden. If parity is

not conserved in Λ0 decay, both the l values are allowed and the final-state

proton wave function can be written as

Ψ = Ψs +Ψp = asY0,0

∣∣∣∣12 , 12
〉
+ ap

(√
2

3
Y1,1

∣∣∣∣12 ,−12
〉
−
√
1

3
Y1,0

∣∣∣∣12 , 12
〉)

,

where |12 , 12 〉 and |12 ,− 1
2 〉 are respectively the spin wave functions of the

proton for m = ± 1
2 , as and ap are the amplitudes of the s and p waves.

Substitution of Y1,1, Y1,0, Y0,0 gives

Ψ∗Ψ ∝|as − ap cos θ|2 + |ap|2 sin2 θ

= |as|2 + |ap|2 − 2Re(asa∗p) cos θ ∝ 1 + α cos θ ,

where α = 2Re(aaa
∗
p)/(|as|2 + |ap|2).

If the Λ0-particles are polarized, the angular distribution of p or π−

will be of the form 1 + α cos θ, (in the rest frame of Λ0, p and π− move

in opposite directions). If Λ0 are not fully polarized, let the polarizability

be P . Then the angular distribution of π− or p is (1 + αP cos θ). In the

above θ is the angle between the direction of π− or p and the polarization

direction of Λ0.



Particle Physics 477

Measurement of the angular distribution can be carried out using the

polarized Λ0 arising from the associated production

π− + p→ Λ0 +K0 .

Parity conservation in the associated production, which is a strong inter-

action, requires the Λ0-particles to be transversally polarized with the spin

direction perpendicular to the reaction plane. Experimentally if the mo-

mentum of the incident π− is slightly larger than 1 GeV/c, the polarizability

of Λ0 is about 0.7. Take the plane of production of Λ0, which is the plane

containing the directions of the incident π− and the produced Λ0 (K0 must

also be in this plane to satisfy momentum conservation) and measure the

counting rate disparity of the π− (or p) emitted in Λ0 decay between the

spaces above and below this plane (θ = 0 to π/2 and θ = π/2 to π). A dis-

parity would show that parity is not conserved in Λ0 decay. An experiment

by Eister in 1957 using incident π− of momenta 910 ∼ 1300 MeV/c resulted
in P = 0.7. Note in the above process, the asymmetry in the emission of

π− originates from the polarization of Λ0. If the Λ0 particles has P = 0

the experiment could not be used to test parity conservation.

3054

The Λ and p particles have spin 1/2, the π has spin 0.

(a) Suppose the Λ is polarized in the z direction and decays at rest,

Λ→ p+π−. What is the most general allowed angular distribution of π−?

What further restriction would be imposed by parity invariance?

(b) By the way, how does one produce polarized Λ’s?

(Princeton)

Solution:

(a) The initial spin state of Λ-particle is |12 , 12 〉. Conservation of angular
momentum requires the final-state πp system orbital angular momentum

quantum number to be l = 0 or 1 (Problem 3053).

If l = 0, the final-state wave function is Ψs = asY00|12 , 12 〉, where as is
the s-wave amplitude in the decay, |12 , 12 〉 is the proton spin state, Y00 is
the orbital angular motion wave function.
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If l = 1, the final-state wave function is

Ψp = ap

(√
2

3
Y11

∣∣∣∣12 ,−12
〉
−
√
1

3
Y10

∣∣∣∣12 , 12
〉)

,

where ap is the p-wave amplitude in the decay,
√

2
3 ,−
√

1
3 are Clebsch–

Gordan coefficients.

With Y00 =
1√
4π
, Y10 =

√
3
4π cos θ, Y11 =

√
3
8π e

iϕ sin θ, we have

Ψs =
as√
4π

∣∣∣∣12 , 12
〉
,

Ψp = −
ap√
4π

(
eiϕ sin θ

∣∣∣∣12 ,−12
〉
+ cos θ

∣∣∣∣12 , 12
〉)

.

and the finalstate total wave function

Ψ =
1√
4π

(
(as − ap cos θ)

∣∣∣∣12 , 12
〉
− ape

iϕ sin θ

∣∣∣∣12 ,−12
〉)

.

The probability distribution is then

Ψ∗Ψ ∝ |as − ap cos θ|2 + |ap sin θ|2 = |as|2 + |ap|2 − 2Re(asa∗p) cos θ .

Hence the pion angular distribution has the form

I(θ) = C(1 + α cos θ) ,

where α,C are constants.

The particles Λ, p, π have parities +,+,− respectively. If parity is con-
served in the decay, l = 0 is forbidden, i.e. as = 0, and the angular distribu-

tion of the pion is limited by the space-reflection symmetry to be symmetric

above and below the decay plane. If observed otherwise, parity is not con-

served.

(b) Polarized Λ0-particles can be created by bombarding a proton target

with pions:

π− + p→ Λ0 +K0 .
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The Λ0-particles are produced polarized perpendicular to the plane of pro-

duction.

3055

(a) As is well known, parity is violated in the decay Λ → p + π−.

This is reflected, for example, in the following fact. If the Λ-particle is

fully polarized along, say, the z-axis, then the angular distribution of the

proton obeys
dΓ

dΩ
= A(1 + λ cos θ) .

Given the parameter λ, what is the longitudinal polarization of the

proton if the Λ is unpolarized?

(b) For strangeness-changing hyperon decays in general, e.g., Λ→ pπ−,

Λ→ nπ0, Σ+ → nπ+, Σ+ → pπ0, Σ− → nπ−, K+ → π+π0, K0
s → π+π−,

K0
s → π0π0, etc., there is ample evidence for the approximate validity of

the so-called ∆I = 1
2 rule (the transition Hamiltonian acts like a member

of an isotopic spin doublet). What does the ∆I = 1
2 rule predict for the

relative rates of K+ → π+π0, K0
s → π+π−, K0

s → π0π0?

(Princeton)

Solution:

(a) Parity is violated in Λ0 decay and the decay process is described

with s and p waves of amplitudes as and ap (Problem 3053). According

to the theory on decay helicity, a hyperon of spin 1/2 decaying at rest and

emitting a proton along the direction Ω = (θ, φ) has decay amplitude

fλM (θ, φ) = (2π)
− 12D1/2Mλ′(φ, θ, 0)aλ′ ,

where M and λ′ are respectively the spin projection of Λ0 and the proton

helicity. We use a+ and a− to represent the decay amplitudes of the two

different helicities. Conservation of parity would require a+ = −a−. The
total decay rate is

W = |a+|2 + |a−|2 .

The angular distribution of a particle produced in the decay at rest of a Λ0

hyperon polarized along the z-axis is
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dP

dΩ
=

1

W

∑
λ′

|fλ′,1/2(θ, φ)|2

= (2πW )−1
∑
λ′

|aλ′ |2[d1/21/2,λ′(θ)]
2

= (2πW )−1
(
|a+|2 cos2

θ

2
+ |a−|2 sin2

θ

2

)

= A(1 + λ cos θ) ,

where d
1/2
1/2,λ′(θ) = D

1/2
Mλ′(φ, θ, 0), A = 1

4π , λ =
|a+|2−|a−|2
|a+|2+|a−|2 . Note λ = 0 if

parity is conserved.

The expectation value of the helicity of the protons from the decay of

unpolarized Λ0 particles is

P = (2W )−1
∑
M

∫ (
1

2
|f1/2,M |2 −

1

2
|f−1/2,M |2

)
dΩ

= (2W )−1
∑
M

∫ ∑
λ′

λ′|fλ′,M |2dΩ

= (2W )−1
∑
M

∑
λ′

λ′|aλ′ |2(2π)−1
∫
|d1/2Mλ′(θ)|2dΩ

= W−1
∑
λ′

λ′|aλ′ |2 ,

where we have used∑
M′

(dJMM′(θ))2 =
∑
M′

dJMM′(−θ)dJM′M (θ) = dJMM (θ) .

Hence

P =
1

2

|a+|2 − |a−|2
|a+|2 + |a−|2

=
1

2
λ .

(b) In the decays

K+ → π+π0 ,

K0
s → π+π− ,

K0
s → π0π0 ,
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the final states consist of two bosons and so the total wave functions should

be symmetric. As the spin of K is zero, the final-state angular momentum

is zero. Then as pions have spin zero, l = 0 for the final state, i.e., the space

wave function is symmetric. Hence the symmetry of the total wave function

requires the final-state isospin wave function to be symmetric, i.e., I = 0, 2

as pions have isospin 1. Weak decays require ∆I = 1
2 . As K has isospin 1

2 ,

the two-π system must have I = 0, 1. Therefore, I = 0.

For K+ → π+π0, the final state has I3 = 0 + 1 = 1. As I = 0 or 2 and

I ≥ I3, we require I = 2 for the final state. This violates the ∆I = 1/2

rule and so the process is forbidden. Experimentally we find

σ(K0
S → π+π−)/σ(K+ → π+π0) ≈ 455� 1 .

On the other hand, in K0
S → π+π− or π0π0, as K0, π+, π0, π− have

I3 = − 1
2 , 1, 0,−1 respectively the final state has I3 = 0, I = 0 or 2. The

symmetry of the wave function requires I = 0. Hence the ∆I = 1
2 rule is

satisfied and the final spin state is |I, I3〉 = |0, 0〉. Expanding the spin wave
function we have

|I, I3〉 = |0, 0〉 =
√
1

3
(|1, 1; 1,−1〉+ |1,−1; 1, 1〉 − |1, 0, 1, 0〉)

=

√
1

3
(|π+π−〉+ |π−π+〉 − |π0π0〉) .

Therefore
K0
s → π+π−

K0
s → π0π0

= 2 .

3056

(a) Describe the CP violation experiment in K0 decay and explain why

this experiment is particularly appropriate.

(b) Find the ratio of KS (K short) to KL (K long) in a beam of

10 GeV/c neutral kaons at a distance of 20 meters from where the beam is

produced.

(τKL = 5× 10−8 sec, τKs = 0.86× 10−10 sec)

(SUNY, Buffalo)



482 Problems and Solutions in Atomic, Nuclear and Particle Physics

Solution:

(a) J. W. Cronin et al. observed in 1964 that a very few K0 mesons

decayed into 2 π’s after a flight path of 5.7 feet from production. As the

K0
S lifetime is short almost all K

0
S should have decayed within centimeters

from production. Hence the kaon beam at 5.7 feet from production should

consist purely of K0
L. If CP is conserved, K

0
L should decay into 3 π’s.

The observation of 2π decay means that CP conservation is violated in K0
L

decay. CP violation may be studied using K0 decay because K0 beam is a

mixture of K0
1 with ηCP = 1 and K0

2 with ηCP = −1, which have different
CP eigenvalues manifesting as 3π and 2π decay modes of different lifetimes.

The branching ratio

R =
K0
L → π+π−

K0
L → all

≈ 2× 10−3

quantizes the CP violation. K0
L corresponds to K

0
2 which has ηCP = −1

and should only decay into 3 π’s. Experimentally it was found that K0
L

also decays to 2 π’s, i.e., R �= 0. As ηCP (π+π+) = +1, CP violation occurs
in K0

L decay.

(b) Take MK0 ≈ 0.5 GeV/c2. Then PK0 ≈ 10 GeV/c gives
βγ ≈ PK0/MK0 = 20 .

When K0 are generated, the intensities of the long-lived K0
L and the short-

lived K0
S are equal:

IL0 = IS0 .

After 20 meters of flight,

IL = IL0e
−t/γτL = IL0e

−20/βγcτL ,

IS = IS0e
−t/γτS = IL0e

−20/βγcτS ,

and so

IS/IL = e
− 20
βγc (

1
τS
− 1
τL

) ≈ e−38.7 ≈ 1.6× 10−17 .
Hence after 20 meters, the 2π decays are due entirely to K0

L.

3057

The neutral K-meson states |K0〉 and |K̄0〉 can be expressed in terms
of states |KL〉, |KS〉:
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|K0〉 = 1√
2
(|KL〉+ |KS〉) ,

|K̄0〉 = 1√
2
(|KL〉 − |KS〉) .

|KL〉 and |KS〉 are states with definite lifetimes τL ≡ 1
γL
and τS ≡ 1

γS
, and

distinct rest energies mLc
2 �= mSc

2. At time t = 0, a meson is produced in

the state |ψ(t = 0)〉 = |K0〉. Let the probability of finding the system in

state |K0〉 at time t be P0(t) and that of finding the system in state |K̄0〉
at time t be P̄0(t). Find an expression for P0(t)− P̄0(t) in terms of γL, γS ,
mLc

2 and mSc
2. (Neglect CP violation)

(Columbia)

Solution:

We have at time t

|Ψ(t)〉 = e−iHt|ψ(0)〉 = e−iHt|K0〉

= e−iHt
1√
2
(|KL〉+ |KS〉)

=
1√
2
[e−imLt−γLt/2|KL〉+ e−imSt−γSt/2|KS〉] ,

where the factors exp(−γLt/2), exp(−γSt/2) take account of the attenua-
tion of the wave functions (particle number ∝ Ψ̄Ψ). Thus

|Ψ(t)〉 = 1√
2

{
e−imLt−γLt/2 1√

2
(|K0〉+ |K̄0〉)

+ e−imSt−γSt/2 1√
2
(|K0〉 − |K̄0〉)

}

=
1

2
{[e−imLt−γLt/2 + e−imSt−γSt/2]|K0〉

+ [e−imLt−γLt/2 − e−imSt−γSt/2]|K̄0〉} ,

and hence

〈ψ(t)|ψ(t)〉 = P0(t) + P̄0(t) ,
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where

P0(t) =
1

4
{e−γLt + e−γSt + 2e−(γL+γS)t/2 cos[(mL −mS)t]} ,

P̄0(t) =
1

4
{e−γLt + e−γSt − 2e−(γL+γS)t/2 cos[(mL −mS)t]} .

Thus we have

P0(t)− P̄0(t) = e−(γL+γS)t/2 cos[(mL −mS)t] .

3058

(a) Explain how the dominance of one of the following four reactions can

be used to produce a neutral kaon beam that is “pure” (i.e., uncontaminated

by the presence of its antiparticle).

π−p→ (Λ0 or K0)(K0 or K̄0) .

(b) A pure neutral kaon beam is prepared in this way. At time t = 0,

what is the value of the charge asymmetry factor δ giving the number of

e+π−ν decays relative to the number of e−π+ν− decays as

δ =
N(e+π−ν)−N(e−π+ν̄)

N(e+π−ν) +N(e−π+ν̄)
.

(c) In the approximation that CP is conserved, calculate the behavior

of the charge asymmetry factor δ as a function of proper time. Explain

how the observation of the time dependence of δ can be used to extract

the mass difference ∆m between the short-lived neutral kaon K0
S and the

long-lived K0
L.

(d) Now show the effect of a small nonconservation of CP on the proper

time dependence of δ.

(Princeton)

Solution:

(a) The reaction π−p→ Λ0K0 obeys all the conservation laws, including

∆S = 0, ∆Iz = 0, for it to go by strong interaction. K
0 cannot be replaced
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by K̄0 without violating the rule ∆Iz = 0. Hence it can be used to create

a pure K0 beam.

(b) When t = 0, the beam consists of only K0. Decays through weak

interaction obey selection rules

|∆S| = 1, |∆I| = |∆I3| =
1

2
.

Then as K0 → π−e+ν is allowed and K0 → π+e−ν̄ is forbidden,

δ(t = 0) =
N(e+π−ν)−N(e−π+ν̄)

N(e+π−ν) +N(e−π+ν̄)
= 1 .

(c) At time t = 0,

|K0
L(0)〉 =

1√
2
|K0(0)〉 ,

|K0
S(0)〉 =

1√
2
|K0(0)〉 .

At time t

|K0
L(t)〉 =

1√
2
|K0(0)〉e−(imLt+ΓLt/2) ,

|K0
S(t)〉 =

1√
2
|K0(0)〉e−(imSt+ΓSt/2) .

Hence

K0(t)〉 = 1√
2
(|K0

S(t)〉+ |K0(t)〉)

=
1

2
|K0(0)〉[e−(imSt+ΓSt/2) + e−(imLt+ΓLt/2)] ,

K̄0(t)〉 = 1

2
|K0(0)〉[e−(imSt+ΓSt/2) − e−(imLt+ΓLt/2)] .

Note that the term Γt/2 in the exponents accounts for the attenuation of

K0
S and K

0
L due to decay.
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If the decay probabilities N(K0 → π−e+ν) = N(K̄0 → π+e−ν̄), then

δ(t)

=
|e−(imS+ΓS/2)t + e−(imL+ΓL/2)t|2 − |e−(imS+ΓS/2)t − e−(imL+ΓL/2)t|2
|e−(imS+ΓS/2)t + e−(imL+ΓL/2)t|2 + |e−(imS+ΓS/2)t − e−(imL+ΓL/2)t|2

=
2e−(ΓL+ΓS)t/2 cos(∆mt)

e−ΓLt + e−ΓSt
.

Thus from the oscillation curve of δ(t), ∆m ≡ |mL −mS | can be deduced.
(d) If there is a small nonconservation of CP, let it be a small fraction

ε. Then

|K0(t)〉 = 1√
2
[(1 + ε)|K0

S(t)〉+ (1− ε)|K0
L(t)〉]

=
1

2
|K0(0)〉{(e−(imSt+ΓSt/2) + e−(imLt+ΓLt/2))}

+ ε(e−(imSt+ΓSt/2) − e−(imLt+ΓLt/2)) ,

|K̄0(t)〉 = 1

2
|K0(0)〉{(e−(imSt+ΓSt/2) − e−(imLt+ΓLt/2))

+ ε(e−(imSt+ΓSt/2) + e−(imLt+ΓLt/2))} ,

and so

δ(t) =
〈K0(t)|K0(t)〉 − 〈K̄0(t)|K̄0(t)〉
〈K0(t)|K0(t)〉+ 〈K̄0(t)|K̄0(t)〉

≈ 2e
−(ΓL+ΓS)t/2 cos(∆mt)

e−ΓLt + e−ΓSt
+Re(ε) .

3059

In the Weinberg–Salam model, weak interactions are mediated by three

heavy vector bosons, W+, W− and Z0, with masses given by

M2
W = (πα/

√
2)G sin2 θ ,

M2
Z = M2

W/ cos2 θ ,
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where α is the fine structure constant, θ is the “weak mixing angle” or the

“Weinberg angle”, andG is the Fermi constant. The interaction Lagrangian

between electrons, positrons, electron-neutrinos and W ’s, Z0 is

LINT =

√
πα

sin θ

{
1√
2
Wµ

+ν̄γµ(1− γ5)e+
1√
2
Wµ
−ēγµ(1− γ5)ν

+
1

2 cos θ
Zµ[ν̄γµ(1− γ5)ν − ēγµ(1− γ5)e+ 4 sin

2 θēγµe]

}
,

where ν and e are Dirac fields. Consider the elastic scattering of electron-

antineutrinos off electrons

ν̄e− → ν̄e− .

(a) Draw the lowest order Feynman diagram(s) for this process. Label

each line.

(b) If the energies of the electron and antineutrino are small compared

to MW , the interaction between them can be represented by a four-fermion

effective Lagrangian. Write down a correct effective Lagrangian, and put

it into the form

Leff =
G√
2
[ν̄γµ(1− γ5)ν][ēγµ(A−Bγ5)e] ,

where A and B are definite functions of θ.

NOTE: if ψ1 and ψ2 are anticommuting Dirac fields, then

[ψ̄1γ
µ(1− γ5)ψ2][ψ̄2γµ(1− γ5)ψ1] = [ψ̄1γ

µ(1− γ5)ψ1][ψ̄2γµ(1− γ5)ψ2] .

(c) What experiments could be used to determine A and B?

(Princeton)

Solution:

(a) Elastic ν̄e scattering can take place by exchanging W− or Z0. The

respective lowest order Feynman diagrams are shown in Fig. 3.16.

(b) From the given Lagrangian, we can write down the Lagrangians for

the two diagrams. For Fig. 3.16(a):
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Fig. 3.16

L(eν̄W ) =

(√
πα

2

1

sin θ

)2

[ν̄γµ(1− γ5)e ·
gµν − (kµkν/M2

W )

M2
W − k2

ēγµ(1− γ5)ν]

=
πα

2 sin2 θ
[ν̄γµ(1− γ5)e ·

gµν − (kµkν/M2
W )

M2
W − k2

ēγµ(1− γ5)ν] .

At low energies, M2
W � k2 and the above equation can be simplified to

L(eν̄W ) =
πα

2 sin2 θM2
W

[ν̄γµ(1− γ5)e][ēγµ(1− γ5)ν] .

ν̄ and e being Dirac fields, we have

[ν̄γµ(1− γ5)e][ēγµ(1− γ5)ν] = [ν̄γ
µ(1− γ5)ν][ēγµ(1− γ5)e] ,

and the Lagrangian

L(eν̄w) =
G√
2
[ν̄γµ(1− γ5)ν][ēγµ(1− γ5)e] ,

as G = πα√
2 sin2 θM2

W

.

For Fig. 3.16(b), the effective Lagrangian is

L(eν̄Z0) =
πα2

sin2 θ · 4 cos2 θ

×
[
ν̄γµ(1− γ5)ν ·

gµν − (kµkν/M2
Z)

M2
Z − k2

· ēγµ(gV − gAγ5)e

]
,
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where gV = −1 + 4 sin2 θ, gA = −1. If M2
Z � k2 this can be simplified to

a form for direct interaction of four Fermions:

L(eν̄Z0) =
πα2

4 sin2 θ cos2 θM2
Z

[ν̄γµ(1− γ5)ν][ēγµ(gV − gAγ5)e]

=
G

2
√
2
[ν̄γµ(1− γ5)ν][ēγµ(gV − gAγ5)e] ,

as

M2
Z =

M2
W

cos2 θ
=

πα2√
2G sin2 θ cos2 θ

.

The total effective Lagrangian is the sum of the two diagrams:

Leff = L(eν̄W ) + L(eν̄Z0)

=
G√
2
[ν̄γµ(1− γ5)ν][ēγµ(1− γ5)e]

+
G

2
√
2
[ν̄γµ(1− γ5)ν][ēγµ(gV − gAγ5)e]

=
G√
2
[ν̄γµ(1− γ5)ν]

[
ēγµ

(
1 +

gV

2
− γ5 −

gA

2
γ5

)
e
]

=
G√
2
[ν̄γµ(1− γ5)ν][ēγµ(A−Bγ5)e] ,

where A = 1 + gV /2, B = 1 + gA/2.

(c) Many experiments have been carried out to measure A and B, with

the best results coming from neutrino scatterings such as νµe
−, ν̄µe scat-

terings. Also experiments on the asymmetry of l-charge in e+e− → l+l−

can give gV and gA, and hence A and B.

Note the pp̄ colliding beams of CERN have been used to measure the

masses of W and Z directly, yielding

MW = (80.8± 2.7) GeV ,

MZ0 = (92.9± 1.6) GeV ,

and sin2 θ = 0.224.
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3060

One of the important tests of the modern theory of weak interactions

involves the elastic scattering of a µ-type neutrino off an electron:

νµ + e− → νµ + e− .

For low energies this may be described by the effective interaction Hamil-

tonian density

Heff =
GF√
2
ψ̄νγ

α(1 + γ5)ψνψ̄e{gV γα + gAγαγ5}ψe ,

where GF is the Fermi constant and gV , gA are dimensionless parameters.

Let σ(E) be the total cross section for this process, where E is the total

center-of-mass energy, and take E � me. Suppose the target electron is

unpolarized.

(a) On purely dimensional grounds, determine how σ(E) depends on

the energy E.

(b) Let ∂σ
∂E |00 be the differential cross section in the center-of-mass frame

for forward scattering. Compute this in detail in terms of E, GF , gV , gA.

(c) Discuss in a few words (and perhaps with a Feynman diagram) how

this process is thought to arise from interaction of a vector boson with

neutral “currents”.

(Princeton)

Solution:

(a) Given E � me, we can take me ≈ 0 and write the first order weak
interaction cross section as σ(E) ≈ G2

FE
k, where k is a constant to be

determined. In our units, � = 1, c = 1, �c = 1. Then [E] = M . As

[�c] = [ML] = 1, [σ] = [L2] =M−2. Also, [GF ] =
[

(�c)3

(Mc2)2

]
=M−2. Hence

k = −2 + 4 = 2 and so
σ(E) ≈ G2

FE
2 .

(b) The lowest order Faynman diagram for νµe → νµe is shown in

Fig. 3.17. In the center-of-mass frame, taking mν = 0, me ≈ 0 we have
p1 = p3 = k = (p,p) ,

p2 = p4 = p ≈ (p,−p) ,

dσ

dΩ
=
|F |2
64π2S
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Fig. 3.17

with S = E2. The square of the scattering amplitude based on Heff is

|F |2 = G2
F

2
Tr [k/γα(1 + γ5)k/γ

β(1 + γ5)]

× 1
2
Tr [p/(gV γα + gAγαγ5)p/(gV γβ + gAγβγ5)] ,

use having been made of the relation
∑

Ps
ūu = p/ +m, where p/ = γµp

µ.

Note the factor 1
2 arises from averaging over the spins of the interacting elec-

trons, whereas the neutrinos are all left-handed and need not be averaged.

Consider

Tr [k/γα(1 + γ5)k/γ
β(1 + γ5)] = 2Tr [k/γαk/γβ(1 + γ5)]

= 8(kαkβ − k2gαβ + kβkα + iεαβγδkγkδ) .

The last term in the brackets is zero because its sign changes when the

indices γ, δ are interchanged. Also for a neutrino, k2 = 0. Hence the above

expression can be simplified:

Tr (k/γα(1 + γ5)k/γ
β(1 + γ5)] = 16k

αkβ .

The second trace can be similarly simplified:

1

2
Tr [p/(gV γα + gAγαγ5)p/(gV γβ + gAγβγ5)]

=
1

2
Tr [g2V p/γαp/γβ + 2gV gAp/γαp/γβγ5 + g2Ap/γαp/γβ ]

= 4(g2A + g2V )
2pαpβ .
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Then as

kαp−αk
βpβ = (p1 · p2)(p3 · p4) = (p2 + p · p)2 =

[
2

(
E

2

)2
]2
=

(
S

2

)2

.

we have

|F |2 = G2
F

2
· 16× 4×

(
S

2

)2

(g2A + g2V )
2

= 8G2
FS

2(g2A + g2V )
2 ,

and

σ =

∫
dσ =

∫
G2
F

8π2
S(g2A + g2V )

2dΩ =
G2
FE

2

2π
(g2A + g2V )

2 .

Differentiating we have

dσ

dE
=

G2
FE

π
(g2A + g2V )

2 .

So the reaction cross section is isotropic in the center-of-mass frame, and

the total cross section is proportional to E2.

(c) The interaction is thought to take place by exchanging a neutral

intermediate boson Z0 as shown in Fig. 3.17 and is therefore called a neutral

weak current interaction. Other such interactions are, for example,

νµ +N → νµ +N , νe + µ→ νe + µ ,

where N is a nucleon.

3061

The Z-boson, mediator of the weak interaction, is eagerly anticipated

and expected to weigh in at MZ ≥ 80 GeV.

(a) Given that the weak and electromagnetic interactions have roughly

the same intrinsic strength (as in unified gauge theories) and that charged

and neutral currents are of roughly comparable strength, show that this is

a reasonable mass value (to a factor of 5).
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(b) Estimate the width of Z0 and its lifetime.

(c) Could you use Z0 production in e+e− annihilation to experimentally

determine the branching ratio of the Z0 into neutrinos? If so, list explicitly

what to measure and how to use it.

(Princeton)

Solution:

(a) The mediators of weak interactions are the massive intermediate

vector bosons W± and Z0. The weak coupling constant gW can be related

to the Fermi constant GF in beta decays by

g2W
8M2

W

=
GF√
2
.

In the Weinberg-Salam model, Z0, which mediates neutrino and electron,

has coupling constant gZ related to the electromagnetic coupling constant

ge through

gZ =
ge

sin θW cos θW
,

while gW can be given as

gW =
ge

sin θW
,

where θW is the weak mixing angle, called the Weinberg angle,

ge =
√
4πα ,

α being the fine structure constant. The model also gives

MW =MZ cos θW .

Thus

MZ =
MW

cos θW
=

1

sin 2θW

(
4πα√
2GF

) 1
2

.

The Fermi constant GF can be deduced from the observed muon mass

and lifetime to be 1.166× 10−5 GeV−2. This gives

MZ =
74.6

sin 2θW
GeV .

For MZ ≥ 80 GeV, θW ≤ 34.40.
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At the lower limit of 80 GeV, θW = 34.4◦ and the coupling constants are

for electromagnetic interaction:

ge = gW sin θW = 0.6gW ,

for neutral current interaction:

gZ =
gW

cos θW
= 1.2gW ,

for charged current interaction:

gW .

So the three interactions have strengths of the same order of magnitude if

MZ ≈ 80 GeV.
(b) The coupling of Z0 and a fermion can be written in the general form

LZint = −
gW

4 cos θW
f̄γµ(gV − gAγ5)fZµ ,

where the values of gV and gA are for

νe, νµ, · · · gV = 1, gA = 1 ;

e, µ, · · · gV = −1 + 4 sin2 θW , gA = −1 ;

u, c, · · · gV = 1−
8

3
sin2 θW , gA = 1 ;

d, s, · · · gV = −1 +
4

3
sin2 θW , gA = −1 .

Consider a general decay process

Z0(P )→ f(p) + f̄(q) .

The amplitude T is

T = − igW

4 cos θW
ενµ(p)ūσ(p)γ

µ(gV − gAγ5)νρ(q) .
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Summing over the fermion spins, quark decay channels and quark colors,

and averageing over the three polarization directions of Z0, we have

∑
|T |2 = 4n

3

(
gW

4 cos θW

)2(
−gµν +

pµpν

M2
Z

)

× [(g2V + g2A)(p
µqν + pνqµ − gµνp · g)− (g2V − g2A)m

2gµν ]

=
4n

3

(
gW

4 cos θW

)2{
(g2V + g2A)

[
p · q

+
2

M2
Z

(P · p)(P · q)
]
+ 3(g2V − g2A)m

2

}
,

where m is the fermion mass, n is the color number. In the rest system of

Z0, we have

E = MZ , p = 0 ,

Ep = Eq =
1

2
MZ , p = (Ep,p), q = (Eq ,−p) ,

|p| = |q| = 1
2
(M2

Z − 4m2)1/2 ,

and hence p · q =
(
MZ

2

)2
+ 1

4 (M
2
Z − 4m2) = 1

2M
2
Z −m2, (P · p)(P · q) =(

MZ · MZ

2

)2
=

M4
Z

4 .

Substitution gives

∑
|T |2 = 4n

3

(
gW

4 cos θW

)2

[(g2V + g2A)M
2
Z + 2(g

2
V − 2g2A)m2] .

From the formula for the probability of two-body decay of a system at rest

dΓ =
1

32π2
|p|
M2
Z

∑
|T |2dΩ ,

and neglecting the fermion mas m, we obtain

Γ(Z0 → ff̄) =
nGFM

3
Z

24
√
2π

(g2V + g2A) .
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Note that in the above we have used

|p| ≈ MZ

2
,

∫
dΩ = 4π ,

(
gW

4 cos θW

)2

=
GF

2
√
2
M2
Z .

Putting in the values of gV , gA, and n (contribution of color) we find

Γ(Z0 → νeν̄e) = Γ(Z0 → νµν̄µ) =
GFM

3
Z

12
√
2π

,

Γ(Z0 → e+e−) = Γ(Z0 → µ+µ−) =
GFM

3
Z

12
√
2π
(1− 4 sin2 θW + 8 sin4 θW ) ,

Γ(Z0 → uū) = Γ(Z0 → cc̄) =
GFM

3
Z

4
√
2π

(
1− 8

3
sin2 θW +

32

9
sin4 θW

)
,

Γ(Z0 → dd̄) = Γ(Z0 → ss̄) =
GFM

3
Z

4
√
2π

(
1− 4

3
sin2 θW +

8

9
sin4 θW

)
.

The sum of these branching widths gives the total width of Z0:

ΓZ =
GFM

3
Z

12
√
2π
· 8N

(
1− 2 sin2 θW +

8

3
sin4 θW

)
,

where N is the number of generations of fermions, which is currently

thought to be 3. The lifetime of Z0 is τ = Γ−1Z .

(c) Using the result of (b) and taking into accout the contribution of

the quark colors, we have

Γνν : Γµµ : Γuu : Γdd = 1 :

(
1− 4 sin2 θW +

8

3
sin4 θW

)

: 3

(
1− 8

3
sin2 θW +

32

9
sin4 θW

)

: 3

(
1− 4

3
sin2 θW +

8

9
sin4 θW

)

≈ 1 : 0.5 : 1.8 : 2.3 ,
employing the currently accepted value sin2 θW = 0.2196.

If we adopt the currently accepted 3 generations of leptons and quarks,

then

Bµµ =
Γµµ
Γz

=
1− 4 sin2 θW + 8

3 sin
4 θW

8× 3(1− 2 sin2 θW + 8
3 sin

4 θW )
≈ 3% .
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Similarly, for

ΣΓνν = Γνe + Γνµ + Γµτ =
GFM

3
Z

4
√
2π

,

Bνν =

∑
Γνν
Γz

= 18% .

According to the standard model, the numbers of generations of leptons

and quarks correspond; so do those of νi and li. If we measure ΓZ , we can

deduce the number of generations N . Then by measuring Bµµ we can get

Γµµ.

Using the number of generations N and Γµµ we can obtain Γνν ≈ 2Γµµ,∑
Γνν = 2NΓµµ.

In the production of Z0 in e+e− annihilation, we can measure ΓZ di-

rectly. Because the energy dispersion of the electron beam may be larger

than ΓZ , we should also measure Γµµ and Γh by measuring the numbers of

muon pairs and hadrons in the resonance region, for as

Ah =

∫
resonance region

σhdE ≈
6π2

M2
Z

ΓhΓee
ΓZ

=
6π2

M2
Z

ΓhΓµµ
ΓZ

,

Aµ =

∫
resonance region

σµµdE ≈
6π2

M2
Z

ΓhΓµµ
ΓZ

,

we have

Aµ/Ah = Γµµ/Γh .

Now for

N = 3, Γµµ : Γh ≈ 0.041 ;

N = 4, Γµµ : Γh ≈ 0.030 ;

N = 5, Γµµ : Γh ≈ 0.024 .
From the observed Aµ and Ah we can get N , which then gives

Bνν =
∑

Γνν/ΓZ = 2NΓµµ/ΓZ , ΓZ = 3NTµµ + Γh .

3062

Experiments which scatter electrons off protons are used to investi-

gate the charge structure of the proton on the assumption that the
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electromagnetic interaction of the electron is well understood. We consider

an analogous process to study the charge structure of the neutral kaon,

namely,

K0 + e→ K0 + e. (Call this amplitude A)

(a) Neglecting CP violation, express the amplitudes for the following

processes in terms of A:

K0
L + e→ K0

L + e, (Scattering, call this As)

K0
L + e→ K0

S + e. (Regeneration, call this AR)

(b) Consider the regeneration experiment

K0
L + e→ K0

S + e,

in which a kaon beam is incident on an electron target. At a very high

energy EK , what is the energy dependence of the differential cross section

in the forward direction? (Forward means the scattering angle is zero,

pKL = pKS). That is, how does
(
dσ
dΩ

)
00
vary with EK? Define what you

mean by very high energy.

(Princeton)

Fig. 3.18

Solution:

Consider the Feynman diagram Fig. 3.18, where pK , pK′ , pe, pe′ are the

initial and final momenta of K0 and e with masses M and m, respectively.

The S-matrix elements are:

Sfi = δfi − i(2π)4δ(pK + pe − pK′ − pe′)
tfi

(2π)6

√
m2

4EKEK′EeEe′
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where tfi is the invariant amplitude

tfi = ie2(2π)3
√
4EKEK′ ū(pe′)γ

µu(pe)
1

q2
〈K0pK′ |jµ(0)|K0pK〉 ≈ A ,

jµ being the current operator.

(a) We have

|K0
S〉 =

1√
2
(|K0〉+ |K̄0〉) , |K0

L〉 =
1√
2
(|K0〉 − |K̄0〉) .

If CP violation is neglected, K0
L, K

0
S, and K0 have the same mass. Then

〈K0
LpK′ |jµ(0)|K0

LpK〉 =
1

2
{〈K0pK′ |jµ(0)|K0pK〉+ 〈K̄0pK′ |jµ(0)|K̄0pK〉} .

As

〈K̄0pK′ |jµ(0)|K̄0pK〉 = 〈K̄0pK′ |C−1Cjµ(0)C−1C|K̄0pK〉

= −〈K0pK′ |jµ(0)|K0pK〉 ,

AS = 0. Similarly we have AR = A.

(b) Averaging over the spins of the initial electrons and summing over

the final electrons we get the differential cross section

dσ =
1

2vr

m2

4EKEK′EeEe′
(2π)4δ(pe + pK − pe′ − pK′)

∑
spin

|tfi|2
dpedpK′

(2π)6
.

Integration over pe′ and EK′ gives

dσ

dΩ′
=

m

32π2
pK′

pK

∑
spin |tfi|2

m+EK − (pKEK′/pK′) cos θ′
,

where θ′ is the angle pK′ makes with pK . Momentum conservations

requires

pe′ + pK′ − pe − pK = 0 ,

giving

m+
√
M2
L + p2K =

√
m2 + p2e +

√
M2
S + p2K′ ,

where ML, MS are the masses of K
0
L and K0

S respectively and m is the

electron mass. Consider

EL =
√
M2
L + p2K =

√
(MS +∆M)2 + p2K



500 Problems and Solutions in Atomic, Nuclear and Particle Physics

with ∆M = ML −MS . If E
2
L � MS∆M , or EL � ∆M , K0

L is said to

have high energy. At this time the momentum equation becomes

m+
√
M2
S + p2K =

√
m2 + p2e +

√
M2
S + p2K′ ,

which represents an elastic scattering process.

For forward scattering, pK = pK′ , pe = 0, and

dσ

dΩ

∣∣∣∣
0

=
1

32π

∑
spin

|tfi|2 .

Now

(2π)3
√
4EKEK′〈K0pK′ |jµ(0)|K0pK〉 = (pK + pK′)µFK(pK′ − pK)

2 ,

where FK is the electromagnetic form factor ofK
0, FK(q

2) = q2g(q2). Note

g(q2) is not singular at q2 = 0. Thus

tfi = ie2ū+(pe′)γ
µu(pe)g[(pK′ − pK)

2](pK′ + pK)µ

= ie2ū+(pe′ = 0)u(pe = 0) · 2EKg(0)

=

{
ie22EKg(0) if the initial and final electrons have the same spin,

0 if the initial and final electrons have different spins.

Thus the forward scattering differential cross section has the energy depen-

dence
dσ

dΩ

∣∣∣∣
0

∝ E2
K .

3063

Inelastic neutrino scattering in the quark model. Consider the scattering

of neutrinos on free, massless quarks. We will simplify things and discuss

only strangeness-conserving reactions, i.e. transitions only between the u

and d quarks.

(a) Write down all the possible charged-current elastic reactions for both

ν and ν̄ incident on the u and d quarks as well as the ū and d̄ antiquarks.

(There are four such reactions.)
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(b) Calculate the cross section for one such process, e.g. dσ
dΩ(νd→ µ−u).

(c) Give helicity arguments to predict the angular distribution for each

of the reactions.

(d) Assume that inelastic ν (or ν̄)-nucleon cross sections are given by

the sum of the cross sections for the four processes that have been listed

above. Derive the quark model prediction for the ratio of the total cross

section for antineutrino-nucleon scattering compared with neutrino-nucleon

scattering, σν̄N/σνN .

(e) The experimental value is σν̄N/σνN = 0.37± 0.02. What does this
value tell you about the quark/antiquark structure of the nucleon?

(Princeton)

Fig. 3.19

Solution:

(a) The four charged-current interactions are (an example is shown in

Fig. 3.19)

νµd→ µ−u ,

ν̄µd̄→ µ+ū ,

νµū→ µ−d̄ ,

ν̄µu→ µ+d .

(b) For νµd→ µ−u, ignoring mµ, md, mu and considering the reaction

in the center-of-mass system, we have

dσ

dΩ
=

1

64π2S
|F |2 ,
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where the invariant mass squared is S = −(k + p)2 = −2kp, and

|F |2=G2
F

2
Tr [k/′γµ(1−γ5)k/γν(1−γ5)]×

1

2
Tr [p/′γµ(1−γ5)p/γν(1−γ5)] cos2 θc ,

where θc is the Cabbibo mixing angle, and the factor
1
2 arises from averaging

over the spins of the initial muons. As

Tr [k/′γµ(1− γ5)k/γ
ν(1− γ5)] = Tr [k/′γµk/γν(1− γ5)

2]

= 2Tr [k/′γµk/γν ]− 2Tr [k/′γµk/γνγ5]

= 8

(
k′µkν + k′νkµ +

q2

2
gµν − iεµνγδk′γkδ

)
,

and similarly

Tr [p/′(γµ(1− γ5)p/γν(1− γ5)] = 8

[
p′µpν + p′νpµ +

q2

2
gµν − iεµναβp

′αpβ
]
,

where q2 = −(k−k′)2 = −2kk′ is the four-momentum transfer squared, we
have

|F |2 = 64G2
F (k · p)(k′ · p′) cos2 θc = 16G2

FS
2 cos2 θc ,

and so

dσ

dΩ
(νd→ µ−u)cm =

16G2
FS

2 cos2 θc
64π2S

=
G2
FS

4π2
cos2 θc .

(c) In the weak interaction of hadrons, only the left-handed u, d quarks

and e−, µ− and the right-handed quarks ū, d̄ and e+, µ+ contribute. In

the center-of-mass system, for the reactions νd→ µ−u and ν̄d̄→ µ+ū, the

orbital angular momentum is zero and the angular distribution is isotropic

as shown.

In the reactions νū → d̄µ− and ν̄u → µ+d (Fig. 3.20), the total spins

of the incoming and outgoing particles are both 1 and the angular distri-

butions are

dσ

dΩ
(νū→ µ−d̄)cm =

G2
FS

16π2
cos2 θc(1− cos θ)2 ,

dσ

dΩ
(ν̄u→ µ+d)cm =

G2
FS

16π2
cos2 θc(1− cos θ)2 .
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Fig. 3.20

Fig. 3.21

(d) For the reactions νd → µ−u and ν̄d̄ → µ+ū (Fig. 3.21) we have,

similarly,

dσ

dΩ
(νd→ µ−u)cm =

G2
FS

4π2
cos2 θc ,

dσ

dΩ
(ν̄d̄→ µ+ū)cm =

G2
FS

4π2
cos2 θc .

Integrating over the solid angle Ω we have

σ1 = σ(νd→ µ−u)cm =
G2
FS

π
cos2 θc ,

σ2 = σ(ν̄u→ µ+d)cm =
1

3

G2
FS

π
cos2 θc .
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Neutron and proton contain quarks udd and uud respectively. Hence

σ(νn)

σ(ν̄n)
=

σ(νudd)

σ(ν̄udd)
=
2σ(νd)

σ(ν̄u)
=

2(
1
3

) = 6 ,
σ(νp)

σ(ν̄p)
=

σ(νuud)

σ(ν̄uud)
=

σ(νd)

2σ(ν̄u)
=

1

2× 1
3

=
3

2
.

If the target contains the same number of protons and neutrons,

σ(νN)

σ(ν̄N)
=

σ(νp) + σ(νn)

σ(ν̄p) + σ(ν̄n)
=

3
2σ(ν̄p) + σ(νn)

σ(ν̄p) + 1
6σ(νn)

=
3
3 + 3

1 + 3
6

= 3 ,

where we have used σ(νn) = 3σ(ν̄p).

(e) The experimental value σ(ν̄N)/σ(νN) = 0.37±0.02 is approximately
the same as the theoretical value 1/3. This means that nucleons consist

mainly of quarks, any antiquarks present would be very small in proportion.

Let the ratio of antiquark to quark in a nucleon be α, then

σ(ν̄N)

σ(νN)
=
3σ(ν̄u) + 3ασ(ν̄d̄)

3σ(νd) + 3ασ(νū)
=
3× 1

3 + 3α× 1
3× 1 + 3α× 1

3

=
1 + 3α

3 + α
= 0.37 ,

giving
1 + 3α

8
=
0.37

2.63
,

or

α = 4× 10−2 .

3064

(a) According to the Weinberg-Salam model, the Higgs boson φ couples

to every elementary fermion f (f may be a quark or lepton) in the form

emf

mW
φf̄f ,

where mf is the mass of the fermion f , e is the charge of the electron, and

mW is the mass of the W boson. Assuming that the Higgs boson decays

primarily to the known quarks and leptons, calculate its lifetime in terms
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Fig. 3.22

of its mass mH . You may assume that the Higgs boson is much heavier

than the known quarks and leptons.

(b) Some theorists believe that the Higgs boson weighs approximately

10 GeV. If so do you believe it would be observed (in practice) as a resonance

in e+e− annihilation (Fig. 3.22)? Roughly how large would the signal to

background ratio be at resonance?

(Princeton)

Solution:

(a) Fermi’s Golden Rule gives for decays into two fermions the transition

probablity

Γf =

∫
d3p

(2π)32p0

d3q

(2π)32q0
· (2π)

4

2k0
δ4(k − p− q)|M |2 ,

where

|M |2 = Tr
∑
s,t

[(
emf

mW

)2

ūs(p)νt(q)φ̄φν̄t(q)us(p)

]

=

(
emf

mW

)2

Tr [p/q/ −m2
f ]

= 4

(
emf

mW

)2

(p · q −m2
f ) .

As p+ q = k, we have p · q = k2−p2−q2
2 =

m2H−2m
2
f

2 ,

|M |2 = 4
(
emf

mW

)2
(
m2
H − 4m2

f

2

)
= 2

(
emf

mW

)2

m2
H

(
1−

4m2
f

m2
H

)
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in the rest system of the Higgs boson. Then

Γf =

∫
d3pd3q

(2π)64p0q0

(2π)4

2mH
δ4(k − p− q)|M |2

=
1

(2π)2

∫
d3p

4p0q0
· 1

2mH
δ4(mH − p0 − q0)|M |2

=
4π

(2π)2 · 4q20 · 2mH

∫
q2dq · δ(mH − 2q0)|M |2 .

With qdq = q0dq0, we have

Γf =
1

8πmH

∫
q2

q20

q0

q
dq0δ(mH − 2q0)|M |2

=
1

8πmH

2

mH
· 1
2

[(mH

2

)2
−m2

f

]1/2
· 2

e2m2
fm

2
H

m2
W

(
1−

4m2
f

m2
H

)

=
e2m2

fmH

4πm2
W

(
1−

4m2
f

m2
H

)3/2

· 1
2

≈
e2m2

fmH

8πm2
W

if mH � mf .

Then Γ = ΣΓi =
e2mH

8πm2
W

∑
afm

2
f , with af = 1 for lepton and af = 3

for quark. Assuming mH ≈ 10 GeV, mW ≈ 80 GeV, and with mu =

md = 0.35 GeV, ms = 0.5 GeV, mc = 1.5 GeV, mb = 4.6 GeV, me =

0.5× 10−3 GeV, mµ = 0.11 GeV, mτ = 1.8 GeV, we have

∑
afm

2
f

(
1−

4m2
f

m2
H

)3/2

≈
∑
f �=b

afm
2
f + 3m

2
b

(
1− 4m

2
b

m2
H

)3/2

= 0.0052 + 0.112 + 1.82 + 3× (0.352 + 0.352 + 0.52 + 1.52)

+ 3× 4.62
[
1− 4×

(
4.6

10

)2
]3/2

= 15.3 GeV2 ,
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and hence

Γ =
1

8π

(
e2

�c

)
�c · mH

m2
W

∑
afm

2
f

(
1−

4m2
f

m2
H

)3/2

≈ 1

8π × 137 ×
10

802
× 15.3 = 6.9× 10−6 GeV ,

or

τ = Γ−1 = 145 MeV−1 = 6.58× 10−22 × 145 s = 9.5× 10−20 s .

(b) The process e+e− → f̄f consists of the following interactions:

e+e−
γ,Z0→ f̄f and e+e−

H→ f̄f .

When
√
S = 10 GeV, Z0 exchange can be ignored. Consider e+e−

γ→ f̄f .

The total cross section is given approximately by

σf̄ f ≈
4πα2

3S
Q2
f ,

where α is the fine structure constant and Qf is the charge (in units of the

electron charge) of the fermion. Thus

σ(+e−
γ→ f̄f) =

4πα2

3S

∑
Q2
f · af ,

where af = 1 for lepton, af = 3 for quark. As ΣQ2
faf = (19 +

4
9 +

1
9

+ 4
9 +

1
9 )× 3 + 1 + 1 + 1 = 20

3 , S = m2
H , we have

σ(e+e−
γ→ f̄f) =

4πα2

3S

20

3
≈ 8πα2/S = 8πα3

m2
H

.

For the e+e−
H→ f̄f process we have at resonance (JH = 0)

σ(e+e−
H→ f̄f) = πλ̄ 2Γee/Γ ≈ πp∗−2Γee/Γ .

As a rough estimate, taking Γee ≈ m2, i.e., Γee/Γ ≈ (0.5× 10−3)2/15.3 ≈
1.6× 10−8 and p∗2 = m2H

4 , we have

σ(e+e−
H→ f̄f) : σ(e+e−

γ→ f̄f) =

(
4π

m2
H

1.6× 10−8
)(

8πα2

m2
H

)−1

≈ 0.8× 10−8/α2 ≈ 1.5× 10−4 .
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In e+e− annihilation in the 10 GeV region, the background, which is mainly

due to the photon process, is almost 104 times as strong as theH0 resonance

process. The detection of the latter is all but impossible.

3065

Parity Violation. Recently the existence of a parity-violating neutral

current coupled to electrons was demonstrated at SLAC. The experiment

involved scattering of polarized electrons off (unpolarized) protons.

(a) Why are polarized electrons required? What is the signature for the

parity violation?

(b) Estimate the magnitude of the effect.

(c) How would this parity violation manifest itself in the passage of light

through matter?

(Princeton)

Solution:

(a) To observe the parity violation, we must measure the contribution of

the pseudoscalar terms to the interaction, such as the electron and hadron

spinor terms. Hence we must study the interaction between electrons of

fixed helicity and an unpolarized target (or conversely electrons and a po-

larized target, or electrons and target both polarized). The signature for

parity violation is a measureable quantity relating to electron helicity, such

as the dependence of scattering cross section on helicity, etc.

(b) Electron-proton scattering involves two parts representing electro-

magnetic and weak interactions, or specifically scattering of the exchanged

photons and exchanged Z0 bosons. Let their amplitudes be A and B. Then

σ ≈ A2 + |A ·B|+B2 .

In the energy range of the experiment, A2 � B2. As parity is conserved

in electromagnetic interaction, parity violation arises from the interference

term (considering only first order effect):

|A ·B|
A2 +B2

≈ |A ·B|
A2

≈ |B||A| ≈
Gf

e2/q2
,
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where GF is the Fermi constant, e is the electron charge, q
2 is the square

of the four-momentum transfer. We have

GF

e2/q2
≈
10−5m−2p
4π/137

q2 ≈ 10−4q2/m2
p ≈ 10−4q2 GeV−2 .

as mp ≈ 1 GeV. In the experiment at SLAC, Ee ≈ 20 GeV, q2 ≈ 10 ∼
20 GeV2, and the parity violation should be of order of magnitude 10−3.

The experiment specifically measured the scattering cross sections of elec-

trons of different helicities, namely the asymmetry

A =
σ(λ = 1/2)− σ(λ = −1/2)
σ(λ = 1/2) + σ(λ = −1/2) ≈ q2[a1 + a2f(y)] ,

where a1 and a2 involve Ae, VQ and AQ, Ve respectively, being related

to the quark composition of proton and the structure of the weak neutral

current, σ(λ = 1/2) is the scattering cross section of the incoming electrons

of helicity 1/2, y = (E−E′)/E, E and E′ being the energies of the incoming
and outgoing electrons respectively. From the experimental value of A, one

can deduce the weak neutral current parameter.

(c) Parity violation in atomic range manifests itself as a slight discrep-

ancy in the refractive indices of the left-handed and right-handed circularly

polarized lights passing through a high-nuclear-charge material. For a lin-

early polarized light, the plane of polarization rotates as it passes through

matter by an angle

φ =

(
ωL

2c

)
Re(n+ − n−) ,

where L is the thickness of the material, ω is the angular frequency of the

light, n+ and n− are the refractive indices of left-handed and right-handed

circularly polarized lights

3066

There are now several experiments searching for proton decay. The-

oretically, proton decay occurs when two of the quarks inside the proton

exchange a heavy boson and become an antiquark and an antilepton. Sup-

pose this boson has spin 1. Suppose, further, that its interactions conserve

charge, color and the SU(2)×U(1) symmetry of the Weinberg–Salammodel.

(a) It is expected that proton decay may be described by a fermion effec-

tive Lagrangian. Which of the following terms may appear in the effective
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Lagrangian? For the ones which are not allowed, state what principle or

facts forbid them, e.g., charge conservation.

(1) uRuLdRe
−
L (2) uRdRdLνL

(3) uRuLdLe
−
R (4) uLdLdLνL

(5) uRuRdRe
−
R (6) uLuLdRe

−
R

(7) uLdLdRνL (8) uLuRdRνL

All Fermions are incoming.

(b) Consider the decay p → e+H, where H is any hadronic state with

zero strangeness. Show that the average positron polarization defined by

the ratio of the rates

P =
Γ(p→ e+LH)− Γ(p→ e+RH)

Γ(p→ e+LH) + Γ(p→ e+RH)

is independent of the hadronic state H.

(c) If the spin-one boson has a mass of 5 × 1014 GeV and couples to
fermions with electromagnetic strength (as predicted by grand unified the-

ories), give a rough estimate of the proton lifetime (in years).

(Princeton)

Solution:

(a) (1), (2), (3), (4), (5) are allowed, (6), (7), (8) are forbidden. Note

that (6) is forbidden because uLuL is not an isospin singlet, (7) is forbidden

because it does not contain νR (8) is forbidden because total charge is not

zero.

(b) The decay process p → e+H can be described with the equivalent

interaction Lagrangian

Leff = [g1(d̄
c
αRµβR)(µ̄

c
γLeL − d̄cγLνL) + g2(d̄

c
αLµβL)(µ̄

c
γReR)]εαβγ ,

where g1, g2 are equavalent coupling coefficients, c denotes charge conjuga-

tion, α, β, γ are colors signatures, εαβγ is the antisymmetric matrix. Thus

the matrix element of p → e+LH is proportional to g1, that of e
+
RH is pro-

portional to g2, both having the same structure. Hence

P =
|g1|2 − |g2|2
|g1|2 + |g2|2

and is independent of the choice of the H state.
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(c) An estimate of the lifetime of proton may be made, mainly on the

basis of dimensional analysis, as follows. A massive spin-1 intermediate

particle contributes a propagator ∼ m−2, where m is its mass. This gives

rise to a transition matrix element ofM∼ m−2. The decay rate of proton

is thus

Γp ∝ |M|2 ∼ m−4 ,

or

Γp ∼
Cα2

m4
,

where α = e2/�c is the dimensionless coupling constant for electromagnetic

interaction (Problem 3001), and C is a constant. The lifetime of proton

τp has dimension

[τp] =M−1 ,

since in our units Et ∼ � = 1 and so [t] = [E]−1 =M−1. This means that

[C] =M4M1 =M5 .

For a rough estimate we may take C ∼ m5
p, mp being the proton mass.

Hence, with m ≈ 5× 1014 GeV, mp ≈ 1 GeV,

τp = Γ
−1
p ∼

m4

α2m5
p

= 1.2× 1063 GeV−1 ,

or, in usual units,

τp ∼
1.2× 1063�

365× 24× 60× 60 = 3× 10
31years .

3067

It is generally recognized that there are at least three different kinds of

neutrino. They can be distinguished by the reactions in which the neutrinos

are created or absorbed. Let us call these three types of neutrino νe, νµ and

ντ . It has been speculated that each of the neutrinos has a small but finite

rest mass, possibly different for each type.

Let us suppose, for this question, that there is a small perturbing in-

teraction between these neutrino types, in the absence of which all three
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types have the same nonzero rest mass M0. Let the matrix element of this

perturbation have the same real value �ω1 between each pair of neutrino

types. Let it have zero expectation value in each of the states νe, νµ and ντ .

(a) A neutrino of type νe is produced at rest at time zero. What is the

probability, as a function of time, that the neutrino will be in each of the

other states?

(b) (Can be answered independently of (a).) An experiment to detect

these “neutrino oscillations”is being performed. The flight path of the neu-

trinos is 2000 meters. Their energy is 100 GeV. The sensitivity is such that

the presence of 1% of neutrinos of one type different from that produced at

the start of flight path can be measured with confidence. Take M0 to be

20 electron volts. What is the smallest value of �ω1 that can be detected?

How does this depend on M0?

(UC, Berkeley)

Solution:

(a) Let |ψ〉 = a1(t)|νe〉 + a2(t)|νµ〉 + a3(t)|ντ 〉. Initially the interaction
Hamiltonian is zero. Use of the perturbation matrix

H ′ =




0 �ω1 �ω1

�ω1 0 �ω1

�ω1 �ω1 0




in the time-dependent Schrödinger equation

i�
∂

∂t



a1

a2

a3


 = �ω1



0 1 1

1 0 1

1 1 0





a1

a2

a3




gives 


iȧ1 = ω1(a2 + a3) ,

iȧ2 = ω1(a1 + a3) ,

iȧ3 = ω1(a1 + a2) .

Eliminating a1 from the last two equations gives

i(ȧ3 − ȧ2) = −ω1(a3 − a2) ,
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or

a3(t)− a2(t) = Aeiω1t .

At time t = 0, a2(0) = a3(0) = 0, so A = 0, a2 = a3, with which the

system of equations becomes{
iȧ1 = 2ω1a2 ,

iȧ2 = ω1(a1 + a2) .

Eliminating a1 again, we have

ä2 + iω1ȧ2 + 2ω
2
1a2 = 0 ,

whose solution is a2(t) = A1e
iω1t + A2e

−i2ω1t. At time t = 0, a2(0) = 0,

giving

A1 +A2 = 0, or a2 = A1(e
iω1t − e−i2ω1t) .

Hence

ȧ1 = −i2ω1A1(e
iω1t − e−i2ω1t) ,

or

a1 = −2A1e
iω1t −A1e

−i2ω1t .

Initially only |νe〉 is present, so

a1(0) = 1 .

Thus A1 = −1/3, and

a2 = a3 =
1

3
(e−i2ω1t − eiω1t) .

The probability that the neutrino is in |νµ〉 or |ντ 〉 at time t is

P (|νµ〉) = P (|ντ 〉) = |a2|2 =
1

9
(e−i2ω1t − eiω1t)(ei2ω1t − e−iω1t)

=
2

9
[1− cos(3ω1t)] .

(b) For simplicity consider the oscillation between two types of neutrino

only, and use a maximum mixing angle of θ = 45◦. From Problem 3068

we have

P (ν1 → ν2, t) = sin
2 2θ sin2

(
E1 −E2

2
t

)
= sin2

[
1.27

(
l

E
∆m2

)]
,
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where l is in m, E in MeV, and ∆m2 in eV2. For detection of ν2 we require

P ≥ 0.01, or sin
[
1.27

(
l
E∆m

2
)]
≥ 0.1, giving

∆m2 ≥ 100× 103
1.27× 2000 × arcsin 0.1 = 3.944 eV

2 .

As ∆m2 = (M0 + �ω1)
2 −M2

0 ≈ 2M0�ω1, we require

�ω1 ≥
3.944

2× 20 = 9.86× 10
−2 eV ≈ 0.1 eV

Note that the minimum value of �ω1 varies as M
−1
0 if M0 � �ω1.

3068

Suppose that νe and νµ, the Dirac neutrinos coupled to the electron and

the muon, are a mixture of two neutrinos ν1 and ν2 with masses m1 and

m2:

νe = ν1 cos θ + ν2 sin θ ,

νµ = −ν1 sin θ + ν2 cos θ ,

θ being the mixing angle.

The Hamiltonian has a mass term H = m1ν̄1ν1 +m2ν̄2ν2.

(a) Express the stationary-state masses m1 and m2, and the mixing

angle θ in terms of the mass matrix elements of the Hamiltonian in the νe,

νµ representation:

H = ν̄lMll′νl′ with l, l′ = e, µ .

(b) Specify under what conditions there is maximal mixing or no mixing.

(c) Suppose that at t = 0 one has pure νe. What is the probability for

finding a νµ at time t?

(d) Assuming that p (the neutrino momentum) is � m1 and m2, find

the oscillation length.

(e) If neutrino oscillations were seen in a detector located at a reac-

tor, what would be the order of magnitude of the oscillation parameter
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∆ = |m2
1 −m2

2|? (Estimate the particle energies and the distance between
the source and the detector.)

(f) Answer (e) for the case of neutrino oscillations observed at a

100 GeV proton accelerator laboratory.

(Princeton)

Solution:

(a) In the νe, νµ representation the Hamiltonian is

H =

(
Mee Meµ

Mµe Mµµ

)
.

For simplicity assumeMµe =Meµ. Then the eigenvalues are the solutions of∣∣∣∣∣
Mee −m Mµe

Mµe Mµµ −m

∣∣∣∣∣ = 0 ,
i.e.

m2 − (Mee +Mµµ)m+ (MeMµ −M2
µe) = 0 .

Solving the equation we have the eigenvalues

m1 =
1

2

[
(Mee +Mµµ)−

√
(Mee −Mµµ)2 + 4M2

µe

]
,

m2 =
1

2

[
(Mee +Mµµ) +

√
(Mee −Mµµ)2 + 4M2

µe

]
.

In the νe, νµ representation let ν2 =

(
a1
a2

)
. The operator equation

Hν2 = m2ν2 ,

i.e., (
Mee Mµe

Mµe Mµµ

)(
a1

a2

)
= m2

(
a1

a2

)
,

gives, with the normalization condition a21 + a22 = 1,

a1 =
Mµe√

M2
µe + (m2 −Mee)2

,

a2 =
m2 −Mee√

M2
µe + (m2 −Mee)2

.
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The mixing equations

νe = ν1 cos θ + ν2 sin θ ,

νµ = −ν1 sin θ + ν2 cos θ

can be written as

ν1 = νe cos θ − νµ sin θ ,

ν2 = νe sin θ + νµ cos θ .

However, as ν2 = a1νe + a2νµ,

tan θ =
a1

a2
=

Mµe

m2 −Mee

=
2Mµe

Mµµ −Mee +
√
(Mee −Mµµ)2 + 4M2

µe

,

or

θ = a = arctan


 2Mµe

Mµµ −Mee +
√
(Mee −Mµµ)2 + 4M2

µe


 .

(b) When Mµµ = Mee, mixing is maximum and the mixing angles is

θ = 45◦. In this case ν1 and ν2 are mixed in the ratio 1 : 1. WhenMµe = 0,

θ = 0 and there is no mixing.

(c) At t = 0, the neutrinos are in a pure electron-neutrino state νe which

is a mixture of states ν1 and ν2:

νe = ν1 cos θ + ν2 sin θ .

The state νe changes with time. Denote it by ψe(t). Then

ψe(t) = ν1e
−iE1t cos θ + ν2e

−iE2t sin θ

= (νe cos θ − νµ sin θ)e
−iE1t cos θ + (νe sin θ + νµ cos θ)e

−iE2t sin θ

= (cos2 θe−iE1t + sin2 θe−iE2t)νe + sin θ cos θ(e
−iE1t + e−iE2t)νµ .
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So the probability of finding a νµ at time t is

P = |〈νµ|ψe(t)〉|2

= sin2 θ cos2 θ| − e−iE1t + e−iE2t|2

=
1

2
sin2(2θ){1− cos[(E1 −E2)t]}

= sin2(2θ) sin2
(
E1 −E2

2
t

)
,

where E1, E2 are the eigenvalues of the states |ν1〉, |ν2〉 respectively
(d) As E1−E2 =

E21−E22
E1+E2

= 1
2E [p

2
1+m2

1− p22−m2
2] ≈ ∆m2

2E with ∆m2 =

m2
1 −m2

2, E =
1
2 (E1 +E2),

P = sin2(2θ) sin2
(
∆m2

4E
t

)
= sin2(2θ) sin2

(
∆m2

4E
l

)
,

since l = tβ ≈ t, the neutrino velocity being β ≈ 1 as p � m. In ordinary

units the second argument should be

∆m2

4E�

l

c
=

10−12

4× 197× 10−13
∆m2

E
l =

1.27l∆m2

E

with l in m, ∆m2 in eV2, E in MeV.

Thus

P = sin2(2θ) sin2(1.27l∆m2/E) ,

and the oscillation period is 1.27l∆m2/E ≈ 2π. Hence ∆m2l/E � 1 gives
the non-oscillation region, ∆m2l/E ≈ 1 gives the region of appreciable

oscillation, and ∆m2l/E � 1 gives the region of average effect.
(e) Neutrinos from a reactor have energy E ≈ 1 MeV, and the distance

between source and detector is several meters. As oscillations are observed,

∆m2 = E/l ≈ 0.1 ∼ 1 eV2 .

(f) With protons of 100 GeV, the pions created have energy Eπ of

tens of GeV. Then the neutrino energy Eν ≥ 10 GeV. With a distance of
observation 100 m,

∆m2 ≈ E/l ≈ 102 ∼ 103 eV2 .
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For example, for an experiment with Eν ≈ 10 GeV, l = 100 m,

∆m2 =
2πE

1.27l
≈ 5× 102 eV2 .

3069

(a) Neutron n and antineutron n̄ are also neutral particle and antipar-

ticle just as K0 and K̄0. Why is it not meaningful to introduce linear

combinations of n1 and n2, similar to the K
0
1 and K

0
2? Explain this.

(b) How are the pions, muons and electrons distringuished in photo-

graphic emulsions and in bubble chambers? Discuss this briefly.

(SUNY Buffalo)

Solution:

(a) n and n̄ are antiparticles with respect to each other with baryon

numbers 1 and −1 respectively. As the baryon number B is conserved in

any process, n and n̄ are eigenstates of strong, electromagnetic and weak

interactions. If they are considered linear combinations of n1 and n2 which

are not eigenstates of strong, electromagnetic and weak interactions, as n

and n̄ have different B the linear combination is of no meaning. If some

interaction should exist which does not conserve B, then the use of n1 and

n2 could be meaningful. This is the reason for the absence of oscillations

between neutron and antineutron.

(b) It is difficult to distinguish the charged particles e, µ, π over a general

energy range merely by means of photographic emulsions or bubble cham-

bers. At low energies (E < 200 ∼ 300 MeV), they can be distinguished by
the rate of ionization loss. The electron travels with the speed of light and

causes minimum ionization. Muon and pion have different velocities for the

same energy. As −dE/dx ∼ v−2, we can distinguish them in principle from

the different ionization densities of the tracks in the photographic emulsion.

However, it is difficult in practice because their masses are very similar.

At high energies, (E > 1 GeV), it is even more difficult to distinguish

them as they all have velocity v ≈ c. Pions may be distinguished by their

interaction with the nuclei of the detecting medium. However the Z values

of the materials in photographic emulsions and bubble chambers are rather

low and the probability of nuclear reaction is not large. Muons and electrons

do not cause nuclear reactions and cannot be destinguished this way. With

bubble chambers, a transverse magnetic field is usually applied and the
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curvatures of the tracks can be used to distinguish the particles, provided

the energy is not too high. For very low energies, muons and pions can be

distinguished by their characteristic decays.

3070

Neutron-Antineutron Oscillations. If the baryon number is conserved,

the transition n ↔ n̄, know as “neutron oscillation” is forbidden. The

experimental limit on the time scale of such oscillations in free space and

zero magnetic field is τn−n̄ ≥ 3×106 s. Since neutrons occur abundantly in
stable nuclei, one would naively think it possible to obtain a much better

limit on τn−n̄. The object of this problem is to understand why the limit

is so poor.

LetH0 be the Hamiltonian of the world in the absence of any interaction

which mixes n and n̄. Then

H0|n〉 = mnc
2|n〉, H0|n̄〉 = mnc

2|n̄〉
for states at rest. Let H ′ be the interaction which turns n into n̄ and vice

versa:

H ′|n〉 = ε|n̄〉, H ′|n̄〉 = ε|n〉 ,
where ε is real and H ′ does not flip spin.

(a) Start with a neutron at t = 0 and calculate the probability that it

will be observed to be an antineutron at time t. When the probability is

first equal to 50%, call that time τn−n̄. In this way convert the experimental

limit on τn−n̄ into a limit on ε. Note mnc
2 = 940 MeV.

(b) Now reconsider the problem in the presence of the earth’s mag-

netic field B0 = 0.5 Gs. The magnetic moment of the neutron is µn ≈
−6 × 10−18 MeV/Gs. The magnetic moment of the antineutron is oppo-
site. Begin with a neutron at t = 0 and calculate the probability it will

be observed to be an antineutron at time t. Ignore possible radioactive

transitions. [Hint: work to lowest order in small quantities.]

(c) Nuclei with spin have non-vanishing magnetic fields. Explain briefly

and qualitatively, in light of part (b), how neutrons in such nuclei can be

so stable while τn−n̄ is only bounded by τn−n̄ ≥ 3× 106 sec.
(d) Nuclei with zero spin have vanishing average magnetic field. Explain

briefly why neutron oscillation in such nuclei is also suppressed.

(MIT )
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Solution:

(a) Consider the Hamiltonian H = H0 + H ′. As (using units where

c = 1, � = 1)

H(|n〉+ |n̄〉) = mn(|n〉+ |n̄〉) + ε(|n〉+ |n̄〉) = (mn + ε)(|n〉+ |n̄〉) ,

H(|n〉 − |n̄〉) = mn(|n〉 − |n̄〉)− ε(|n〉 − |n̄〉) = (mn − ε)(|n〉 − |n̄〉) ,

|n〉 ± |n̄〉 are eigenstates of H. Denote these by |n±〉.
Let Φ0 be the wave function at t = 0. Then

Φ0|n〉 =
1

2
(|n+〉+ |n−〉) ,

and the wave function at the time t is

Φ =
1

2
(|n+〉e−i(mn+ε)t + |n−〉e−i(mn−ε)t)

=
1

2
e−imnt[(e−iεt + eiεt)|n〉+ (e−iεt − eiεt)|n̄〉

= e−imnt(cos εt|n〉 − i sin εt|n̄〉) .

The probability of observing an antineutron at time t is P = sin2 εt. As at

t = τn−n̄, sin
2 εt|n−n̄ = sin2 ετn−n̄ = 1/2,

ετn−n̄ = π/4 .

Hence

ε ≤ π

4
· 1

3× 106 = 2.62× 10
−7 s−1 = 2.62× 10−7� = 1.73× 10−28 MeV .

(b) The Hamiltonian is now H = H0 +H ′ − µ ·B. Then

H|n〉 = mn|n〉+ ε|n̄〉 − µnB|n〉 = (mn − µnB)|n〉+ ε|n̄〉 ,

H|n̄〉 = mn|n̄〉+ ε|n〉+ µnB|n̄〉 = (mn + µnB)|n̄〉+ ε|n〉 .

Here we assume that n, n̄ are polarized along z direction which is the di-

rection of B, i.e., sz(n) = 1/2, sz(n̄) = 1/2. Note this assumption does not

affect the generality of the result.
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Let the eigenstate of H be a|n〉+ b|n̄〉. As

H(a|n〉+ b|n̄〉 = aH|n〉+ bH|n̄〉

= [a(mn − µnB) + bε)]|n〉+ [b(mn + µnB) + aε]|n̄〉 ,

we have
a(mn − µnB) + bε

a
=

b(mn + µnB) + aε

b
,

or

b2 − a2 =
2µnB

ε
ab = Aab ,

where A = 2µnB
ε
≈ 6×10−18

1.73×10−28 = 3.47× 1010, and b2 + a2 = 1. Solving for

a and b we have either

{
a ≈ 1,

b ≈ −1/A,
or

{
a ≈ 1/A,

b ≈ 1.

Hence the two eigenstates of H are

|n+〉 =
1

A
|n〉+ |n̄〉, |n−〉 = |n〉 −

1

A
|n̄〉 .

At t = 0, Φ0 = |n〉 = |n+〉+A|n−〉
A+ 1

A

= A
1+A2 |n+〉+ A2

1+A2 |n−〉.
At time t the wave function is

Φ =
A

1 +A2
|n+〉e−iE+t +

A2

1 +A2
|n−〉e−iE−t ,

where E+ = mn − µnB +Aε, E− = mn − µnB − ε/A. So

Φ = e−i(mn−µnB)t

(
A

1 +A2
|n+〉e−iAεt +

A2

1 +A2
|n−〉e−i

ε
A t

)

=
1

1 +A2
e−i(mn−µnB)t[(e−iAεt +A2ei

ε
A t)|n〉+ (Ae−iAεt −Aei

ε
A t)|n̄〉] .
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The probability of observing an n̄ at time t is

P =
A2

(1 +A2)2
|e−iAεt − ei

ε
A t|2

=
A2

(1 +A2)2

[
2− 2 cos

(
Aε− ε

A

)
t
]

=
4A2

(1 +A2)2
sin2

(
A2 − 1
2A

εt

)

≈ 4

A2
sin2

(
A

2
εt

)
.

(c) Nuclei with spin have non-vanishing magnetic fields and so the re-

sults of (b) are applicable. For τn−n̄ ≥ 3× 106 s, or ε ≤ 1.73× 10−28 MeV,
A = 2µnB

ε
is quite a large number, so the probability of observing an n̄ is

almost zero (≈ 1/A2). Thus there is hardly any oscillation between n and

n̄; the nuclei are very stable.

(d) While nuclei with zero spin have zero mean magnetic field 〈B〉, the
mean square of B, 〈B2〉, is not zero because the magnetic field is not zero
everywhere in a nucleus. The probability of observing an n̄, P ≈ 1/〈A2〉 =

ε2

4µ2n〈B2〉
, is still small and almost zero. Hence neutron oscillation in such

nuclei is also suppressed.

3071

It has been conjectured that stable magnetic monopoles with magnetic

charge g = c�/e and mass ≈ 104 GeV might exist.
(a) Suppose you are supplied a beam of such particles. How would you

establish that the beam was in fact made of monopoles? Be as realistic as

you can.

(b) Monopoles might be pair-produced in cosmic ray collisions. What

is the threshold for this reaction (p+ p→M + M̄ + p+ p)?

(c) What is a practical method for recognizing a monopole in a cosmic

ray event?

(Princeton)

Solution:

(a) The detection of magnetic monopoles makes use of its predicted

characteristics as follows:
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(1) Magnetic monopole has great ionizing power. Its specific ionization

−dEdx is many times larger than that of a singly charged particle when it
passes through matter, say a nuclear track detector like nuclear emulsion

or cloud chamber.

(2) A charge does not suffer a force when moving parallel to a magnetic

field, whereas a magnetic monopole is accelerated or decelerated (depending

on the sign of its magnetic charge) when moving parallel to a magnetic field.

A magnetic monopole can acquire an energy of 400 MeV when passing

through a magnetic field of 10 kGs, whereas the energy of a charge does

not change in the same process.

(3) When a magnetic monopole passes though a closed circuit, it would

be equivalent to a large magnetic flux passing through the coil and a large

current pulse would be induced in the circuit.

(4) When a charge and a magnetic monopole pass through a transverse

magnetic field, they would suffer different deflections. The former is de-

flected transversely in the direction of F = 1
cv × B, while the latter is

deflected parallel or antiparallel to the magnetic field direction.

(b) Consider the process p + p → M + M̄ + p + p, where one of the

initial protons is assumed at rest, as is generally the case. As E2 − P 2

is invariant and the particles are produced at rest in the center-of-mass

system at threshold, we have

(E +mp)
2 − P 2 = (2mM + 2mp)

2 ,

where E2 − P 2 = m2
p, or

E =
(2mM + 2mp)

2 − 2m2
p

2mp
.

Taking mM = 104 GeV, mp = 1 GeV, we have E ≈ 2 × 108 GeV as the
laboratory threshold energy.

If in the reaction the two initial protons have the same energy and collide

head-on as in colliding beams, the minimum energy of each proton is given

by

2E = 2mM + 2mp ,

Hence E ≈ mM = 104 GeV.

(c) To detect magnetic monopoles in cosmic ray events, in principle, any

one of the methods in (a) will do. A practical one is to employ a solid track
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detector telescope. When a particle makes a thick track in the system of

detectors, several of the detectors together can distinguish the track due to

a multiply charged particle from that due to a magnetic monopole, as in

the former case the track thickness is a function of the particle velocity, but

not in the latter case. Particle idetification is more reliable if a magnetic

field is also used.

If magnetic monopoles are constantly created in cosmic-ray collisions

above the earth they may be detected as follows. As a monopole loses

energy rapidly by interacting with matter it eventually drops to the earth’s

surface. Based on their tendency of moving to the magnetic poles under the

action of a magnetic field, we can collect them near the poles. To detect

monopoles in a sample, we can place a coil and the sample between the

poles of a strong magnet (Fig. 3.23). As a magnetic monopole moves from

the sample to a pole a current pulse will be produced in the coil.

Fig. 3.23

3. STRUCTURE OF HADRONS AND THE QUARK

MODEL (3072 3090)

3072

Describe the evidence (one example each) for the following conclusions:

(a) Existence of quarks (substructure or composite nature of mesons

and baryons).

(b) Existence of the “color” quantum number.

(c) Existence of the “gluon”.

(Wisconsin)
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Solution:

(a) The main evidence supporting the quark theory is the non-uniform

distribution of charge in proton and neutron as seen in the scattering of

high energy electrons on nucleons, which shows that a nucleon has inter-

nal structure. Gell-Mann et al. discovered in 1961 the SU(3) symmetry of

hadrons, which indicates the inner regularity of hadronic structure. Basing

on these discoveries, Gell-Mann and Zweig separately proposed the quark

theory. In it they assumed the existence of three types of quark, u, d, s

and their antiparticles, which have fractional charges and certain quantum

numbers, as constituents of hadrons: a baryon consists of three quarks; a

meson, a quark and an antiquark. The quark theory was able to explain

the structure, spin and parity of hadrons. It also predicted the existence

of the Ω particle, whose discovery gave strong support to the quark the-

ory. Later, three types of heavy quarks c, b, t were added to the list of

quarks.

(b) The main purpose of postulating the color quantum number was to

overcome the statistical difficulty that according to the quark theory ∆++,

a particle of spin 3/2, should consist of three u quarks with parallel spins,

while the Pauli exclusion principle forbids three ferminions of parallel spins

in the same ground state. To get over this Greenberg proposed in 1964 the

color dimension for quarks. He suggested that each quark could have one

of three colors. Although the three quarks of ∆++ have parallel spins, they

have different colors, thus avoiding violation of the Pauli exclusion principle.

The proposal of the ‘color’ freedom also explained the relative cross section

R for producing hadrons in e+e− collisions. Quantum electrodynamics

gives, for Ecm < 3 GeV, R =
∑

iQ
2
i , where Qi is the charge of the ith

quark, summing over all the quarks that can be produced at that energy.

Without the color freedom, R = 2/3. Including the contribution of the

color freedom, R = 2, in agreement with experiment.

(c) According to quantum chromodynamics, strong interaction takes

place through exchange of gluons. The theory predicts the emission of

hard gluons by quarks. In the electron-positron collider machine PETRA

in DESY the “three-jet” phenomenon found in the hadronic final state

provides strong evidence for the existence of gluons. The phenomenon is

interpreted as an electron and a position colliding to produce a quark-

antiquark pair, one of which then emits a gluon. The gluon and the two

original quarks separately fragment into hadron jets, producing three jets
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in the final state. From the observed rate of three-jets events the coupling

constant αs for strong interaction can be deduced.

3073

Explain why each of the following particles cannot exist according to

the quark model.

(a) A baryon of spin 1.

(b) An antibaryon of electric charge +2.

(c) A meson with charge +1 and strangeness −1.
(d) A meson with opposite signs of charm and strangeness.

(Wisconsin)

Solution:

(a) According to the quark model, a baryon consists of three quarks.

Since the quark spin is 1/2, they cannot combine to form a baryon of spin 1.

(b) An antibaryon consists of three antiquarks. To combine three anti-

quarks to form an antribaryon of electric charge +2, we require antiquarks

of electric charge +2/3. However, there is no such antiquark in the quark

model.

(c) A meson consists of a quark and an antiquark. As only the s quark

(S = −1, Z = − 1
3 ) has nonzero strangeness, to form a meson of strangeness

−1 and electric charge 1, we need an s quark and an antiquark of electric
charge 4/3. There is, however, no such an antiquark.

(d) A meson with opposite signs of strangeness and charm must consist

of a strange quark (antistrange quark) and anticharmed quark (charmed

quark). Since the strangeness of strange quark and the charm of charm

quark are opposite in sign, a meson will always have strangeness and charm

of the same sign. Therefore there can be no meson with opposite signs of

strangeness and charm.

3074

The Gell-Mann–Nishijima relationship which gives the charge of me-

sons and baryons in terms of certain quantum numbers is

q = e(I3 +B/2 + S/2) .
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(a) Identify the terms I3, B and S, and briefly explain their usefulness

in discussing particle reactions.

(b) Make a table of the values of these quantum numbers for the family:

proton, antiproton, neutron, antineutron.

(Wisconsin)

Solution:

(a) I3 is the third component of isospin and denotes the electric charge

state of the isospin I. In strong and electromagnetic interactions I3 is

conserved, while in weak interaction it is not.

B is the baryon number. B = 0 for a meson and B = 1 for a baryon.

∆B = 0 for any interaction. The conservation of baryon number means

that proton is stable.

Table 3.7

Quantum number p p̄ n n̄

I3 1/2 −1/2 −1/2 1/2

B 1 −1 1 −1
S 0 0 0 0

S is the strangeness, introduced to account for the associated production

of strange particles. S is conserved in strong and electromagnetic interac-

tions, which implies that strange particles must be produced in pairs. S is

not conserved in weak interaction, so a strange particle can decay through

weak interaction to ordinary particles.

(b) The I3, B, and S values of for nucleons are listed in Table 3.7.

3075

Give the quantum numbers and quark content of any 5 different hadrons.

(Wisconsin)

Solution:

The quantum numbers and quark content of five most common hadrons

are listed in Table 3.8
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Table 3.8

Hadron Electric Baryon Spin(J) Isospin(I) I3 quark

charge (Q) number(B) content

n 0 1 1/2 1/2 −1/2 udd

p 1 1 1/2 1/2 1/2 uud

π− −1 0 0 1 −1 dū

π0 0 0 0 1 0 1√
2
(uū− dd̄)

π+ 1 0 0 1 1 ud̄

3076

Give a specific example of an SU(3) octet by naming all 8 particles.

What is the value of the quantum numbers that are common to all the

particles of the octet you have selected?

(Wisconsin)

Solution:

Eight nucleons and hyperons form an SU(3) octet, shown in Fig. 3.24.

Their common quantum numbers are J ) = 1+

2 , B = 1.

Fig. 3.24

3077

Calculate the ratio R = σ(e+e−→hadrons)
σ(e+e−→µ+µ−)
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(a) just below the threshold for “charm” production,

(b) above that threshold but below the b quark production threshold.

(Wisconsin)

Solution:

Quantum electrodynamics (QED) gives

σ(e+e− → qiq̄i → hadrons) =
4πα2

S
Q2
i ,

where S is the square of the energy in the center-of-mass frame of e+, e−,

α is the coupling constant, and Qi is the electric charge (unit e) of the ith

quark, and

σ(e+e− → µ+µ−) =
4πα2

3S
.

Hence

R =
σ(e+e− → hadrons)
σ(e+e− → µ+µ−)

=
∑
i

σ(e+e− → qiq̄i → hadrons)
σ(e+e− → µ+µ−)

= 3
∑
i

Q2
i ,

where
∑

i sums over all the quarks which can be produced with the given

energy.

(a) With such an energy the quarks which can be produced are u, d and

s. Thus

R = 3
∑
i

Q2
i = 3×

(
4

9
+
1

9
+
1

9

)
= 2 .

(b) The quarks that can be produced are now u, d, s and c. As the

charge of c quark is 2/3,

R = 3
∑
i

Q2
i = 3×

(
4

9
+
1

9
+
1

9
+
4

9

)
=
10

3
.

3078

(a) It is usually accepted that hadrons are bound states of elementary,

strongly-interacting, spin-1/2 fermions called quarks. Briefly describe some

evidence for this belief.
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The lowest-lying mesons and baryons are taken to be bound states of

the u, d, and s (or p, n, and λ in an alternative notation) quarks, which

form an SU(3) triplet.

(b) Define what is meant by the approximate Gell-Mann–Neeman global

SU(3) symmetry of strong interactions. How badly is this symmetry bro-

ken?

(c) Construct the lowest-lying meson and baryon SU(3) multiplets, giv-

ing the quark composition of each state and the corresponding quantum

numbers J , P , I, Y , S, B and, where appropriate, G.

(d) What is the evidence for another quantum number “color”, under

which the strong interactions are exactly symmetric? How many colors are

there believed to be? What data are used to determine this number?

(e) It is by now well established that there is a global SU(3) singlet

quark c with charge 2/3 and a new quantum number C preserved by the

strong interactions. Construct the lowest-lying C = 1 meson and baryon

states, again giving J , P , I, Y , S and B.

(f) What are the main semileptonic decay modes (i.e., those decays that

contain leptons and hadrons in the final state) of the C = 1 meson?

(g) Denoting the strange J = 1 and J = 0 charmed mesons by F ∗ and

F respectively and assuming that mF∗ > mF + mπ (something not yet

established experimentally), what rate do you expect for F ∗ → Fπ. What

might be the main decay mode of the F ∗?

(Princeton)

Solution:

(a) The evidence supporting the quark model includes the following:

(1) The deep inelastic scattering data of electrons on nucleons indicate

that nucleon has substructure. (2) The SU(3) symmetry of hadrons can

be explained by the quark model. (3) The quark model gives the correct

cross-section relationship of hadronic reactions. (4) The quark model can

explain the abnormal magnetic moments of nucleons.

(b) The approximate SU(3) symmetry of strong interactions means that

isospin multiplets with the same spin and parity, i.e., same JP , but differ-

ent strangeness numbers can be transformed into each other. They are

considered as the supermultiplet states of the same original particle U with

different electric charges (I3) and hypercharges (Y ).
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If SU(3) symmetry were perfect, particles of the same supermultiplet

should have the same mass. In reality the difference of their masses can be

quite large, which shows that such a supersymmetry is only approximate.

The extent of the breaking of the symmetry can be seen from the difference

between their masses, e.g., for the supermultiplet of 0− mesons, mπ0 =

135 MeV, mK0 = 498 MeV.

(c) The lowest-lying SU(3) multiplets of mesons and baryons formed by

u, d and s quarks are as follows.

For mesons, the quarks can form octet and singlet of JP equal to 0−

and 1−. They are all ground states with l = 0, with quark contents and

quantum numbers as listed in Table 3.9.

For baryons, which consist of three quarks each, the lowest-lying states

are an octet of JP = 1
2

+
and a decuplet of JP = 3

2

+
. They are ground

states with l = 0 and other characteristics as given in Table 3.10.

(d) The purpose of introducing the color freedom is to overcome statisti-

cal difficulties. In the quark model, a quark has spin 1/2 and so must obey

the Fermi statistics, which requires the wave function of a baryon to be an-

tisymmetric for exchanging any two quarks. In reality, however, there are

some baryons having quark contents sss or uuu, for which the wave func-

tions are symmetric for quark exchange. To get over this contradiction, it is

Table 3.9 Quantum numbers and quark contents of meson supermultiplets of JP =
0−, 1−

0− 1− quark content I I3 Y B S G

π+ ρ+ d̄u 1 +1 0 0 0 −1
π0 ρ0 (uū− dd̄)/

√
2 1 0 0 0 0 −1

π− ρ− ūd 1 −1 0 0 0 −1
K+ K∗+ s̄u 1/2 1/2 1 0 0

octet K− K∗− sū 1/2 −1/2 −1 0 0

K0 K∗0 s̄d 1/2 −1/2 1 0 0

K̄0 K̄∗0 sd̄ 1/2 1/2 −1 0 0

η(549) (uū+d̄d−2s̄s)√
6

0 0 0 0 0 +1

ω(783) uū+dd̄√
2

0 0 0 0 0 −1

singet η(958) (uū+d̄d+s̄s)√
3

0 0 0 0 0 +1

ψ(1020) s̄s 0 0 0 0 0 −1
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Table 3.10 Characteristics of baryon octet ( 1
2

+
) and decuplet ( 3

2

+
)

JP particles the quark content I I3 Y B S

p uud 1/2 1/2 1 1 0

n udd 1/2 −1/2 1 1 0

Σ+ uus 1 1 0 1 −1
1+

2
Σ0 s(ud+ du)/

√
2 1 0 0 1 −1

Σ− dds 1 −1 0 1 −1
Ξ0 uss 1/2 1/2 −1 1 −2
Ξ− dss 1/2 −1/2 −1 1 −2
Λ0 s(du− ud)/

√
2 0 0 0 1 −1

∆− ddd 3/2 −3/2 1 1 0

∆0 ddu 3/2 −1/2 1 1 0

∆+ duu 3/2 1/2 1 1 0

∆++ uuu 3/2 3/2 1 1 0
3
2

+
Σ∗− sdd 1 −1 0 1 −1
Σ∗0 sdu 1 0 0 1 −1
Σ∗+ suu 1 1 0 1 −1
Ξ∗− ssd 1/2 −1/2 −1 1 −2
Ξ∗0 ssu 1/2 1/2 −1 1 −2
Ω sss 0 0 −2 1 −3

assumed that there is an additional quantum number called “color” which

has three values. The hypothesis of color can be tested by the measurement

of R in high-energy e+e− collisions, which is the ratio of the cross sections

for producing hadrons and for producing a muonic pair

R =
σ(e+e− → hadrons)
σ(e+e− → µ+µ−)

.

Suppose the energy of e+e− system is sufficient to produce all the three

flavors of quarks. If the quarks are colorless,

R =
∑
i

Q2
i =

(
4

9
+
1

9
+
1

9

)
=
2

3
;

if each quark can have three colors,

R = 3
∑
i

Q2
i = 3×

(
4

9
+
1

9
+
1

9

)
= 2 ,

The latter is in agreement with experiments.
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(e) A c(c̄) quark and an ordinary antiquark (quark) can combine into a

charmed meson which can have JP equal to 0− or 1−. The characteristics of

charmed mesons are listed in Table 3.11. They can be regarded as the result

of exchanging an u(ū) quark for a c (c̄) quark in an ordinary meson. There

are six meson states with C = 1, namely D+,D0, F+,D∗+,D∗0 and F ∗+.

Also, a c quark and two ordinary quarks can combine into a charmed baryon

of JP = 1
2

+
or 3

2

+
. Theoretically there should be 9 charmed baryons of

JP = 1
2

+
, whose characteristics are included in Table 3.12. Experimentally,

the first evidence for charmed baryons Λ+
c , Σ

++
c appeared in 1975, that for

charmed mesons D+,D0, F+ appeared in 1976–77.

Correspondingly, baryons with C = 1 and JP = 3
2

+
should exist. Theo-

retically there are six such baryons, with quark contents (ddc), (duc), (uuc),

(cds), (css), (cus). Their expected quantum numbers, except for J = 3/2,

have not been confirmed experimentally, but they should be the same as

those of Σ0
c , Σ

+
c , Σ

++
c , S0, T 0 and S+, respectively.

(f) The semileptonic decay of a meson with C = 1 actually arises from

the semileptonic decay of its c quark:

c→ s l+ νe, with amplitude ∼ cos θc ,

c→ d l+ νe, with amplitude ∼ sin θc ,

Table 3.11 Characteristics of mesons with charmed quarks

JP particle quark content I I3 Y S C B

D0 ūc 1/2 −1/2 1 0 1 0

D+ d̄c 1/2 1/2 1 0 1 0

D̄0 c̄u 1/2 1/2 −1 0 −1 0

0− D− c̄d 1/2 −1/2 −1 0 −1 0

F+ s̄c 0 0 2 1 1 0

F− c̄s 0 0 −2 −1 −1 0

η0 c̄c 0 0 0 0 0 0

D∗0 ūc 1/2 −1/2 1 0 1 0

D∗+ d̄c 1/2 1/2 1 0 1 0

D̄∗0 c̄u 1/2 1/2 −1 0 −1 0

1− D∗− c̄d 1/2 −1/2 −1 0 −1 0

F ∗+ s̄c 0 0 2 1 1 0

F ∗− c̄s 0 0 −2 −1 −1 0

J/ψ c̄c 0 0 0 0 0 0
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Table 3.12 Characteristics of charmed baryons (C = 1) of JP = 1
2

+

Particle Quark content I I3 Y S C B

Σ++c cuu 1 1 2 0 1 1

Σ+c c(ud+ du)/
√
2 1 0 2 0 1 1

Σ0c cdd 1 −1 2 0 1 1

S+ c(us+ su)/
√
2 1/2 1/2 1 −1 1 1

S0 c(ds+ sd)/
√
2 1/2 −1/2 1 −1 1 1

T 0 css 0 0 0 −2 1 1

Λ+c c(ud− du)/
√
2 0 0 2 0 1 1

A+ c(us− su)/
√
2 1/2 1/2 1 −1 1 1

A0 c(ds− sd)/
√
2 1/2 −1/2 1 −1 1 1

where θc is the Cabibbo angle. For example, the reaction D
0 → K−e+νe,

is a Cabibbo-allowed decay, and D0 → π−e+νe, is a Cabibbo-forbidden

decay.

(g) If F ∗ exists and mF∗ > mF +mπ, then F
∗ → π0F is a strong decay

and hence the main decay channel, as it obeys all the conservation laws.

For example, F ∗ has JPC = 1−−, F has JPC = 0−+, pion has JPC = 0−+.

In the decay F ∗ → π0F , the orbital angular momentum of the πF system

is l = 1, the parity of the final state is P (π0)P (F )(−1)l = −1. Also,
C(π0)C(F ) = 1. Thus the final state has JP = 1−, same as JP (F ∗).

Another competiting decay channel is F ∗ → γ+F , which is an electro-

magnetic decay with the relative amplitude determined by the interaction

constant and the phase-space factor.

3079

Imagine that you have performed an experiment to measure the cross

sections for the “inclusive” process

a+N → µ+ + µ− + anything

where a = p, π+ or π−, and N is a target whose nuclei have equal numbers

of protons and neutrons.

You have measured these three cross sections as a function of m, the

invariant mass of the muon pair, and of s, the square of the energy in the

center of mass.
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The following questions are designed to test your understanding of the

most common model used to describe these processes, the quark-antiquark

annihilation model of Drell and Yan.

(a) In the simplest quark picture (baryons being composed of three

quarks and mesons of a quark-antiquark pair), what is the predicted ratio

dσpN (s,m)

dm
:
dσπ+N (s,m)

dm
:
dσπ−N (s,m)

dm
?

(b) An accurate measurement shows each element of the ratio to be

nonzero. How do you modify you answer to (a) to account for this? (A one

or two sentence answer is sufficient.)

(c) Given this modification, how do you expect the ratio to behave

with m (for fixed s)? (Again, a one or two sentence qualitative answer is

sufficient.)

(d) How would the predicted values of the three cross sections change

if the concept of color were introduced into the naive model?

(e) An important prediction of Drell and Yan is the concept of scaling.

Illustrate this with a formula or with a sketch (labeling the ordinate and

the abscissa).

(f) How would you determine the quark structure of the π+ from your

data?

(g) How would you estimate the antiquark content of the proton?

(Princeton)

Solution:

(a) According to the model of Drell and Yan, these reactions are pro-

cesses of annihilation of a quark and an antiquark with emission of a leptonic

pair. QED calculations show that if the square of the energy in the center

of mass of the muons sµu � m2
µ,m

2
q, the effect of mµ, mq can be neglected,

yielding

σ(µ+µ− → γ → qiq̄i) =
4π

3sµµ
α2Q2

i ,

where Qi is the charge number of the i quark, α is the fine structure con-

stant. Making use of the principle of detailed balance, we find

σ(qiq̄i → γ → µ+µ−) =
4π

3s
α2Q2

i = Q2
iσ0 ,



536 Problems and Solutions in Atomic, Nuclear and Particle Physics

where s is the square of total energy in the center-of-mass system of the two

quarks, i.e., s = sµµ = m2, m being the total energy in the center-of-mass

system of the µ+µ− (i.e. in the c.m.s. of qiq̄i). Thus in the simplest quark

picture,

σ(dd̄→ µ+µ−) ≈ 1
9
σ0 ,

σ(uū→ µ+µ−) ≈ 4
9
σ0 ,

For pN → µ+µ− + X, as there is no antiquark in the proton and in the

neutron,
dσ(s,m)

dm
= 0 .

For the same s and m, recalling the quark contents of p, n, π+ and π− are

uud, udd, ud̄, ūd respectively, we find

σ(π+N) = σ

[
(ud̄) +

1

2
(uud+ udd)

]
=
1

2
σ(dd̄)(1 + 2) ≈ 1

6
σ0 ,

σ(π−N) = σ

[
(ūd) +

1

2
(uud+ udd)

]
=
1

2
σ(uū)(2 + 1) ≈ 2

3
σ0 ,

and hence

dσpN (s,m)

dm
:
dσπ+N (s,m)

dm
:
dσπ−N (s,m)

dm
= 0 : 1 : 4 .

(b) The result that
dσpN (s,m)

dm is not zero indicates that there are anti-

quarks in proton and neutron. Let the fraction of antiquarks in a proton or

a neutron be α, where α� 1. Then the fraction of quark is (1−α) and so

σpN =σ

{
2αū+

1

2
[2(1− α)u+ (1− α)u] + 2(1− α)u

+
1

2
(2αū+ αū) + αd̄+

1

2
[(1 − α)d+ 2(1− α)d] + (1− α)d

+
1

2
(αd̄+ 2αd̄)]

}
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=σ(uū)[3α(1− α) + 3(1− α)α] + σ(dd̄)

[
3

2
α(1− α) +

3

2
(1− α)α

]

=6α(1− α)σ(uū) + 3α(1− α)σ(dd̄)

= 3α(1− α)[2σ(uū) + σ(dd̄)] ≈ 3α(1− α)σ0 ,

σπ+N =σ

{
d̄+

1

2
[(1− α)d+ 2(1− α)d] + u+

1

2
(2αū+ αū)

}

=
3

2
(1− α)σ(dd̄) +

3

2
ασ(uū)

=
3

2
σ(dd̄) +

3

2
α[σ(uū)− σ(dd̄)] ≈ 1

6
(1 + 3α)σ0 ,

σπ−N =σ

{
ū+

1

2
[2(1− α)u+ (1− α)u] + d+

1

2
(αd̄+ 2αd̄)

}

=
3

2
(1− α)σ(uū) +

3

2
ασ(dd̄)

=
3

2
σ(uū) +

3

2
α[σ(dd̄)− σ(uū)] ≈ 1

6
(4− 3α)σ0 .

Hence

dσpN (s,m)

dm
:
dσπ+N (s,m)

dm
:
dσπ−N (s,m)

dm
= 18α(1−α) : (1+3α) : (4−3α) .

For example if α = 0.01, the cross sections are in the ratio 0.17 : 1 : 3.85.

Thus the cross sections, especially
dσpN (s,m)

dm
, is extremely sensitive to the

fraction of antiquarks in the nucleon.

(c) An accurate derivation of the ratio is very complicated, as it would

involve the structure functions of the particles (i.e., the distribution of

quarks and their momenta in the nucleon and meson). If we assume that

the momenta of the quarks in a nucleon are the same, then the cross section

in the quark-antiquark center-of-mass system for a head-on collision is

σ(qiq̄i → µ+µ−) =
4π

3m2
α2Q2

i ,

or
dσ

dm
∼ m−3α2Q2

i .

Hence σ is proportional to m−2, in agreement with experiments.
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(d) The ratio would not be affected by the introduction of color.

(e) Scaling means that in a certain energy scale the effect on Drell-

Yan process of smaller energies can be neglected. For instance, for sec-

ond order electromagnetic processes, we have the general formula dσem =

α2f(s, q2,ml), where s is the square of energy in the center-of-mass system,

q2 is the square of the transferred 4-momentum, and ml is the mass of the

charged particle. If s and |q2| � m2
l , it is a good approximation to set

ml = 0, yielding

dσ = α2f(s, q2) .

Thus, for example, in the process qiq̄i → µ+µ−, if m� mµ, mq we can let

mµ ≈ mq ≈ 0 and obtain

σ(qiq̄i → µ+µ−) ∝ Q2
i /m

2 .

(f) The good agreement between the calculated result

dσπ+N (s,m)

dm
:
dσπ−N (s,m)

dm
= 1 : 4

and experiment supports the assumption of quark contents of π+(ud̄) and

π−(ūd).

(g) By comparing the calculation in (b) with experiment we can deter-

mine the fraction α of antiquark in the quark content of proton.

3080

The bag model of hadron structure has colored quarks moving as inde-

pendent spin- 12 Dirac particles in a cavity of radius R. The confinement of

the quarks to this cavity is achieved by having the quarks satisfy the free

Dirac equation with a mass that depends on position: m = 0 for r < R

and m = ∞ for r > R. The energy operator for the quarks contains a

term
∫
d3rm(r)ψ̄ψ. In order for this term to give a finite contribution to

the energy, the allowed Dirac wave functions must satisfy ψ̄ψ = 0 where

m =∞ (i.e. for r > R), This is achieved by choosing a boundary condition

at R on the solution of the Dirac equation.

(a) Show that the boundary conditions
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(1) ψ(|x| = R) = 0, (2) ix̂ · γψ(|x| = R) = ψ(|x| = R), where x̂ is the

unit radial vector from the center of the cavity, both achieve the effect of

setting ψ̄ψ = 0 at |x| = R. Which condition is physically acceptable?

(b) The general s-wave solution to the free massless Dirac equation can

be written (using Bjorken–Drell conventions) as

ψ = N

(
j0(kR)x

iσ · x̂j1(kR)x

)
,

where x = 2-component spinor, jl =spherical Bessel function, N =

normalization constant. (Our convention is that γ0 =

(
I 0
0 −I

)
, γ =(

0 σ
−σ 0

)
, σ =Pauli matrices). Use the boundary condition at |x| = R

to obtain a condition that determines k (do not try to solve the equation).

(Princeton)

Solution:

(a) Clearly, the condition (l), ψ(X = R) = 0, satisfies the condition

ψ̄ψ|X=R = 0. For condition (2), we have (at X = R)

ψ̄ψ = (ix̂ · γψ)+β(ix̂ · γψ)

= (−iψ+x̂ · βγβ)β(ix̂ · γψ)

= ψ+β(x̂ · γ)(x̂ · γ)ψ .

As

(x̂ · γ)(x̂ · γ) =
(

0 σ · x̂
−σ · x̂ 0

)(
0 σ · x̂
−σ · x̂ 0

)
= −1 ,

we have

ψ̄ψ = −ψ+βψ = −ψ̄ψ ,

and hence

ψ̄ψ|X=R = 0 .

The second condition is physically acceptable. The Dirac equation con-

sists of four partial differential equations, each of which contains first partial

differentials of the coordinates. Hence four boundary conditions are needed.
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The requirement that wave functions should tend to zero at infinity places

restriction on half of the solutions. This is equivalent to two boundary con-

ditions, and we still need two more boundary conditions. Ψ(X = R) = 0 is

equivalent to four boundary conditions, while the condition

ix̂ · γψ(X = R) = ψ(X = R) ,

i.e.,

i

(
0 σ · x̂
−σ · x̂ 0

)(
α

β

)
=

(
α

β

)
,

or

i(σ · x̂)β = α ,

only has two equations which give the relationship between the major and

minor components. Therefore, only the condition (2) is physically accept-

able. We can see from the explicit expression of the solution in (b) that the

major and minor components of the Dirac spinor contain Bessel functions

of different orders and so cannot both be zero at X = R. Condition (1) is

thus not appropriate.

(b) The condition α = i(σ · x̂)β gives

j0(kR)x = i · i(σ · x̂)(σ · x̂)j1(kR)x ,

or

j0(kR) = −j1(kR) ,

which determines k.

3081

The bag model of hadron structure has colored quarks moving as in-

dependent spin-half Dirac particles within a spherical cavity of radius R.

To obtain wave functions for particular hadron states, the individual quark

“orbitals” must be combined to produce states of zero total color and the

appropriate values of the spin and flavor (isospin, charge, strangeness) quan-

tum numbers.
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In the very good approximation that the “up” and “down” quarks are

massless one can easily obtain the lowest energy (s-wave) bag orbitals.

These are given by the Dirac spinor

ψ = N

(
j0(kr)x

iσ · r̂j1(kr)x

)
,

where x is a 2-component spinor, k = 2.04/R, jl =spherical Bessel function.

(a) The lowest-lying baryons (proton and neutron) are obtained by

putting three quarks in this orbital. How would you construct the wave

function for the proton and for the neutron, i.e., which quarks would be

combined and what is the structure of the spin wave function consistent

with the quantum numbers of proton and neutron and Pauli’s principle?

(b) The magnetic moment operator is defined as µ =
∫
|x|<R d

3x1
2r ×

JEM , where JEM is the usual Dirac electric current operator. Find an

expression for this operator in terms of the spin operators of the constituent

quarks. (You may leave integrals over Bessel functions undone.)

(c) Show that µn/µp = −2/3.
You may need the following Clebsch–Gordon coefficients:

〈1/2, 1/2|1, 1; 1/2, 1/2〉= (2/3)1/2 ,

〈1/2, 1/2|1, 0; 1/2, 1/2〉= −(1/3)1/2 .

(Princeton)

Solution:

(a) If we neglect “color” freedom, the lowest states of a baryon (p and n)

are symmetric for quark exchange. Since the third component of the isospin

of p is I3 = 1/2, while u has I3 =
1
2 , d has I3 = − 1

2 , its quark content must

be uud. As the system has isospin 1
2 it cannot be completely symmetric for

ud exchange, (i.e., the wave function cannot be in the form uud+udu+duu

as this would result in a decuplet with I = 3/2). Thus the wave function

must have components of the form uud − udu. But, as mentioned above,

the lowest-state baryon is perfectly symmetric for quark exchange. We

have to multiply such forms with a spin wave function antisymmetric for

exchanging the second and third quarks (↑↑↓−↑↓↑) to yield a wave function
symmetric with respect to such an exchange:
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u ↑ (1)u ↑ (2)d ↓ (3)− u ↑ (1)d ↑ (2)u ↓ (3)

− u ↑ (1)u ↓ (2)d ↑ (3) + u ↑ (1)d ↓ (2)u ↑ (3) .
Note this also satisfies the isospin conditions. Then use the following pro-

cedure to make the wave function symmetric for exchanging the first and

second quarks, and the first and third quarks. Exchanging the first and

second quarks gives

u ↑ u ↑ d ↓ −d ↑ u ↑ u ↓ −u ↓ u ↑ d ↑ +d ↓ u ↑ u ↑ ,
and exchanging the first and third quarks gives

d ↓ u ↑ u ↑ −u ↓ d ↑ u ↑ −d ↑ u ↓ u ↑ +u ↑ d ↓ u ↑ .
Combining the above three wave functions and normalizing, we have

1√
18
(2u ↑ u ↑ d ↓ +2u ↑ d ↓ u ↑ +2d ↓ u ↑ u ↑ −u ↑ u ↓ d ↑ −u ↑ d ↑ u ↓

− u ↓ u ↑ d ↑ −u ↓ d ↑ u ↑ −d ↑ u ↑ u ↓ −d ↑ u ↓ u ↑) .
The color wave function antisymmetric for exchanging any two quarks takes

the form

1√
6
(RGB −RBG+GBR −GRB +BRG−BGR) .

Let

ψ↑ =

(
j0(kr)x(↑)

ij1(kr)σ · r̂x(↑)

)
, x(↑) =

(
1

0

)
,

ψ↓ =

(
j0(kr)x(↓)

ij1(kr)σ · r̂x(↓)

)
, x(↓) =

(
0

1

)
.

To include in the orbital wave functions, we need only to change ↑ to
ψ ↑, and ↓ to ψ ↓. Then the final result is

1

6
√
3
(RGB −RBG+GBR −GRB +BRG−BGR)

× (2uψ ↑ uψ ↑ dψ ↓ +2uψ ↑ dψ ↓ uψ ↑ +2dψ ↓ uψ ↑ uψ ↑

− uψ ↑ uψ ↓ dψ ↑ −uψ ↑ dψ ↑ uψ ↓ −uψ ↓ uψ ↑ dψ ↑

− uψ ↓ dψ ↑ uψ ↑ −dψ ↑ uψ ↑ uψ ↓ −dψ ↑ uψ ↓ uψ ↑) .
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The neutron wave function can be obtained by applying the isospin-flip

operator on the proton wave function (u↔ d), resulting in

1

6
√
3
(RGB −RBG+GBR−GRB +BRG−BGR)

× (2dψ ↑ dψ ↑ uψ ↓ +2dψ ↑ uψ ↓ dψ ↑ +2uψ ↓ dψ ↑ dψ ↑

− dψ ↑ dψ ↓ uψ ↑ −dψ ↑ uψ ↑ dψ ↓ −dψ ↓ dψ ↑ uψ ↑

− dψ ↓ uψ ↑ dψ ↑ −uψ ↑ dψ ↑ dψ ↓ −uψ ↑ dψ ↓ dψ ↑) .

The above wave functions are valid only for spin-up proton and neutron.

For spin-down nucleons, the wave functions can be obtained by changing ↑
into ↓, ↓ into ↑ in the spin-up wave function.
(b) The Dirac current operator is defined as

J = Qψ̄∗γψ = Qψ̄∗βαψ = Qψ+
↓ αψ = Qψ+

↓

(
0 σ

σ 0

)
ψ .

where σ is the Pauli matrix. Inserting the expression of ψ into the above,

we have

JEM = QN+N(j0(kr)x
+
↓ ,−ij1(kr)x+↓ σ · r̂)

×
(
0 σ

σ 0

)(
j0(kr)x

ij1(kr)σ · r̂x

)

= iQ|N |2j0(kr)j1(kr)x+↓ [σ,σ · r̂]x

= iQ|N |2j0(kr)j1(kr)x+↓ (−2iσ × r̂)x

= 2Q|N |2j0(kr)j1(kr)x+↓ (σ × r̂)x ,

and hence

µ =

∫
|X|<R

1

2
r× JEMd3X

=

∫
|X|<R

Q|N |2j0(kr)j1(kr)x+↓ [rσ − (σ · r)r]xd3X .
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When we integrate this over the angles the second term in the brackets

gives zero. Thus

µ = 4πQ|N |2
[ ∫

r<R

r3j0(kr)j1(kr)

]
x+↓ σxdr .

(c) The expected value of the magnetic moment of a spin-up proton is

〈p ↑ |µ|p ↑〉 = Q

18

[
4

(
2

3
+
2

3
+
1

3

)
+ 4

(
2

3
+
2

3
+
1

3

)

+ 4

(
2

3
+
2

3
+
1

3

)
+

(
2

3
− 2
3
− 1
3

)

+

(
2

3
− 2
3
− 1
3

)
+

(
2

3
− 2
3
− 1
3

)

+

(
2

3
− 2
3
− 1
3

)
+

(
2

3
− 2
3
− 1
3

)
+

(
2

3
− 2
3
− 1
3

)]

= Q .

Similarly,

〈n ↑ |µ|n ↑〉 = Q

18

[
3× 4

(
− 1
3
− 1
3
− 2
3

)
+ 6

(
− 1
3
+
1

3
− 2
3

)]

= −2
3
Q .

Therefore
µn

µp
=
〈n ↑ |µ|n ↑〉
〈p ↑ |µ|p ↑〉 = −

2

3
.

3082

Recent newspaper articles have touted the discovery of evidence for

gluons, coming from colliding beam e+e− experiments. These articles are

inevitably somewhat garbled and you are asked to do better.

(a) According to current theoretical ideas of quantum chromodynamics

(based on gauge group SU(3)): What are gluons? How many different kinds

are there? What are their electrical charge? What is spin of a gluon?
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(b) One speaks of various quark types or ‘flavors’, e.g., ‘up’ quarks,

‘down’ quarks, etc. According to QCD how many types of quark are there

for each flavor? What are their charges? Does QCD say anything about

the number of different flavors? According to currently available evidence

how many different flavors are in fact recently well established? Discuss

the evidence. Discuss also what weak interaction ideas say about whether,

given the present flavors, there is reason to expect more, and characterize

the “morez”. How do results on the inclusive cross section for e+ + e−+

hadrons, at various energies, bear on the number of flavors?

(c) At moderately high energies one finds that the hadrons coming from

e+e− collisions form two ‘jets (Fig. 3.25). This has made people happy.

How does one account for this two-jet phenomenon on the quark-gluon

picture? At still higher energies one occasionally sees three jets. This has

also made people happy. Account for this three-jet phenomenon.

(Princeton)

Fig. 3.25

Solution:

(a) According to QCD, hadrons consist of quarks and interactions be-

tween quarks are mediated by gluon field. Similar to the role of photons in

electromagnetic interaction, gluons are propagators of strong interaction.

There are eight kinds of gluons, all vector particles of electric charge zero,

spin 1.

(b) In QCD theory, each kind of quark can have three colors, and quarks

of the same flavor and different colors carry the same electric charge. An
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important characteristic of quarks is that they have fractional charges.

QCD gives a weak limitation to the number of quarks, namely, if the num-

ber of quark flavors is larger than 16, asymototic freedom will be violated.

The weak interaction does not restrict the number of quark flavors. How-

ever, cosmology requires the types of neutrino to be about 3 or 4 and the

symmetry between leptons and quarks then restricts the number of flavors

of quarks to be not more than 6 to 8. At various energies the relative total

cross section for hadron production

R =
σ(e+e− → hadrons)
σ(e+e− → µ+µ−)

has been found to agree with

R(E) = 3
∑
i

Q2
i ,

where the summation is over all quarks that can be produced at energy E,

Qi is the electric charge of the ith quark, and the factor 3 accounts for the

three colors (Problem 3078 (d)).

(c) The two-jet phenomenon in e+e− collisions can be explained by

the quark model. The colliding high energy e+, e− first produce a quark-

antiquark pair of momenta p and −p. When each quark fragments into
hadrons, the sum of the hadron momenta in the direction of p is

∑
p|| = |p|,

and in a transverse direction of p is
∑

p⊥ = 0. In other words, the hadrons

produced in the fragmentation of the quark and antiquark appear as two

jets with axes in the directions of p and −p. Measurements of the angular
distribution of the jets about the electron beam direction have shown that

quarks are ferminions of spin 1/2.

The three-jet phenomenon can be interperated as showing hard gluon

emission in the QCD theory. At high energies, like electrons emitting pho-

tons, quarks can emit gluons. In e+e− collisions a gluon emitted with

the quark pair can separately fragment into a hadron jet. From the rate

of three-jet events it is possible to calculate αs, the coupling constant of

strong interaction.

3083

The observation of narrow long-lived states (J/ψ, ψ′) suggested the exis-

tence of a new quantum number (charm). Recently a new series of massive
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states has been observed through their decay into lepton pairs (Υ,Υ′, . . .

with masses ∼ 10 GeV/c2). Suppose the observation is taken to imply yet
another quantum number (beauty).

(a) Estimate roughly the mass of the beauty quark.

(b) If this quark has an electric charge of −1/3 indicate how the Gell-
Mann–Nishijima formula should be modified to incorporate the new quan-

tum number.

(c) In the context of the conventional (colored) quark model, estimate

the value of the ratio

R =
σ(e+e− → hadrons)
σ(e+e− → µ+µ−)

in the region well above the threshold for the production of the beauty.

(d) How would you expect the cross section for production of an Υ(bb̄

bound state) in colliding e+e− beams to change if the charge of b quark is

+2/3 instead of −1/3? How would the branching ratio to lepton pairs

change? What might be the change in its production cross section in

hadronic collisions? Discuss this last answer briefly.

(Princeton)

Solution:

(a) The heavy meson Υ is composed of bb̄. Neglecting the binding energy

of b quarks, we have roughly

mb ≈
1

2
MΥ ≈ 5 GeV/e2 .

(b) For u, d, and s quarks, the Gell-Mann–Nishijima formula can be

written as

Q = I3 +
1

2
(B + S) .

Let the charm c of c quark be 1, the beauty b of b quark be −1. Then the
Gell-Mann–Nishijima formula can be generalized as

Q = I3 +
1

2
(B + S + c+ b) ,

which gives for c quark, Q(c) = 0 + 1
2 (

1
3 + 0 + 1 + 0) =

2
3 ; for b quark

Q(b) = 0 + 1
2 (

1
3 + 0+ 0− 1) = − 1

3
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(c) If a certain quark qi can be produced, its contribution to R is

R =
σ(e+e− → qiq̄i)

σ(e+e− → µ+µ−)
= 3Q2

i ,

where Qi is its charge, and the factor 3 accounts for the three colors. If the

c.m.s energy is above the threshold for producing beauty, the five flavors of

quarks u, d, s, c, and b can be produced. Hence

R(E) = 3
∑
i

Q2
i = 3

[
3×
(
1

3

)2

+ 2×
(
2

3

)2]
=
11

3
.

(d) The cross section for the resonance state Υ is given by

σ =
π(2J + 1)

m2

ΓeeΓ

(E −m)2 + Γ2

4

,

where J andm are the spin and mass of Υ respectively, Γ is the total width

of the resonance state, Γee is the partial width of the e
+e− channel. The

partial width of Υ→ e+e− is

Γee(Υ→ e+e−) = 16π
α2Q2

b

m2
b

|ψ(0)|2 ,

where Ψ(0) is the ground state wave function, Qb and mb are the charge

and mass of b respectively, and α is the fine structure constant. At E ≈ m,

σ =
12πΓee
m2Γ

∝ Q2
b ,

as Υ has spin J = 1.

When the charge of b quark changes from − 1
3 to

2
3 , Q

2
p changes from

1
9 to

4
9 and σ increases by 3 times. This means that both the total cross

section and the partial width for the leptonic channel increase by 3 times.

There is no resonance in the production cross section in hadron colli-

sions, because the hadron collision is a reaction process h+ h̄→ Υ+X, but

not a production process as e+ + e− → Υ. However, in the invariant mass

spectrum of µ pairs (or e pairs) in hadron collisions we can see a small peak
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at the invariant mass m(µµ) = mΥ. The height of this peak will increase

by 3 times also.

3084

The recently discovered ψ(M = 3.1 GeV/c2) and ψ∗(M = 3.7 GeV/c2)

particles are both believed to have the following quantum numbers:

JP = 1− ,

C = −1(charge conjugation) ,

I = 0(I-spin) ,

Q = 0 .

Indicate which of the following decay modes are allowed by strong interac-

tion, which by electromagnetic and which by weak interaction, and which

are strictly forbidden. If strong decay is forbidden or if the decay is strictly

forbidden, state the selection rule.

ψ → µ+µ−

ψ → π0π0

ψ∗ → ψπ+π−

ψ∗ → ψ + η′(0.96 GeV/c2)

(Wisconsin)

Solution:

The process ψ → µ+µ− is the result of electromagnetic interaction,

and the decay ψ∗ → ψπ+π− is a strong interaction process. The decay

mode ψ → π0π0 by strong interaction is forbidden since the C-parity of

ψ is −1 and that of the two π0 in the final state is +1, violating the

conservation of C-parity in strong interaction. The decay mode ψ∗ →
ψ + η′(0.96 GeV/c2) is strictly forbidden as it violates the conservation of

energy.
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3085

At SPEAR (e+e− colliding-beam storage ring) several states called ψ, χ

have been observed. The ψ’s have quantum numbers of the photon (JP =

1−, IG = 0−) and have massses at 3.1 and 3.7 GeV/c2. Suppose the

following reaction was observed:

e+e− → ψ(3.7)→ γ + χ

−−−→ π+π−

where E∗γ = 0.29 GeV. What are the mass, spin, parity, isotopic spin, G-

parity and charge conjugation possibilities for the χ? Assume an electric

dipole E1 transition for the γ-ray emission and strong decay of the χ to 2π.

(Wisconsin)

Solution:

First we find the mass of χ. In the ψ rest frame

Eχ +Eγ = mψ ,

or

Eχ = 3.7 GeV− 0.29 GeV = 3.41 GeV .

Momentum conservation gives

pχ = pγ = 0.29 GeV/c .

As

E2
χ = p2χ +m2

χ ,

we obtain

mχ =
√
E2
χ − p2χ =

√
3.42 − 0.292 = 3.40 GeV/c2 .

Now to find the other quantum numbers of χ. As ψ(3.7)→ γχ is an E1

transition, we see from its selection rules that the parities of ψ and χ are

opposite and the change of spin is 0 or ±1. Then the possible spin values
of χ are J = 0, 1, 2 and its parity is positive, as ψ has JP = 1−.
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Consider the strong decay χ→ π+π−. As the parity of χ is +1, parity

conservation requires P (π+)P (π−)(−1)l = (−1)2+l = (−1)l = +1, giving
l = 0 or 2. Thus the spin of χ can only be J = 0 or 2. Furthermore,

C(χ) = (−1)l+s = (−l)l = +1 .

As π has positive G-parity, conservation of G-parity requires

G(χ) = G(π+)G(π−) = +1 .

Now for mesons with C-parity, G-parity and C-parity are related through

isospin I:

G(χ) = (−1)IC(χ) .
As

G(χ) = C(χ) = 1 ,

(−1)I = +1, giving I = 0 or 2 for χ.
Up to now no meson with I = 2 has been discovered, so we can set

I = 0. Hence the quantum numbers of χ can be set as

mχ = 3.40 GeV/c
2, IG(JP )C = 0+(0+) + or 0+(2+) + .

The angular distribution of γ emitted in ψ decay indicates that the spin of

χ (3.40) is probably J = 0.

3086

It is well established that there are three cc̄ states intermediate in mass

between the ψ(3095) and ψ′(3684), namely,

χ0(3410) : JPC = 0++ ,

χ1(3510) : JPC = 1++ ,

χ2(3555) : JPC = 2++ .

The number in parentheses is the mass in MeV/c2.

(a) What electric and magnetic multipoles are allowed for each of the

three radioactive transitions:

ψ′ → γ + χ0,1,2?
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(b) Suppose that the ψ′ is produced in e+e− collisions at an electron-

positron storage ring. What is the angular distribution of the photons

relative to the beam direction for the decay ψ′ → γ + χ0?

(c) In the condition of part (b), could one use the angular distribution

of the photons to decide the parity of the χ0?

(d) For χ0 and χ1 states separately, which of the following decay modes

are expected to be large, small, or forbidden?

π0π0, γγ, pp̄, π+π−π0, 4π0, D0K̄0, e+e−, ψη0 .

(DATA :Mp = 938 MeV/c
2; Mπ0 = 135 MeV/c

2, Mη = 549 MeV/c
2)

(e) The strong decays of the χ states are pictured as proceeding through

an intermediate state consisting of a small number of gluons which then

interact to produce light quarks, which further interact and materialize as

hadrons. If gluons are massless and have JP = 1−, what is the minimum

number of gluons allowed in the pure gluon intermediate state of each of the

χ0,1,2? What does this suggest about the relative hadronic decay widths

for these three states?

(Princeton)

Solution:

(a) As γ and ψ both have JP = 1−, in the decay |∆J | = 0, 1 and parity
changes. Hence it is an electric dipole transition.

(b) The partial width of the electric dipole transition is given by

Γ(23S1 → γ23PJ ) =

(
16

243

)
α(2J + 1)k3|〈2P |γ|2S〉|2 ,

where α is the fine structure constant. Thus

Γ(23S1 → γ02
3P0) : Γ(2

3S1 → γ12
3P1) : Γ(2

3S1 → γ22
3P2)

= k30 : 3k
3
1 : 5k

3
2 ,

where k is the momentum of the emitted photon (setting � = 1). The

angular distributions of the photons are calculated to be

1 + cos2 θ for process ψ′ → γ0 + χ0 ,

1− (1/3) cos2 θ for process ψ′ → γ1 + χ1 ,

1 + (1/13) cos2 θ for process ψ′ → γ2 + χ2 .
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(c) As the angular distributions of γ1, γ2, and γ3 are different, they

can be measured experimentally and used to determine the spin of χi.

The other quantum numbers of χi may also be decided by the modes of

their decay. For example, the χ0 state decays to π+π− or K+K−, and

so JP = 0+, 1−, 2+ · · · . Then from the angular distribution, we can set

its JP = 0+. As C(π+π−) = (−1)l, JPC = 0++. For the χ1 state,

π+π− and K+K− are not among the final states so JP = 0−, 1+, 2−. The

angular distribution then gives J = 1 and so JP = 1+. It is not possible to

determine their JP by angular distributions alone.

(d) χ1 → π0π0 is forbidden. As π0 has JP = 0−, π0π0 can only combine

into states 0+, 1−, 2+. As χ1 has J
P = 1+, angular momentum and parity

cannot both be conserved.

χ0 → π0π0 satisfies all the conservation laws. However, it is difficult to

detect. The whole process is ψ′ → γχ0 → γπ0π0 → γγγγγ and one would

have to measure the five photons and try many combinations of invariant

masses simultaneously to check if the above mode is satisfied. This mode

has yet to be detected. Similarly we have the following:

χ1 → γγ is forbidden. χ0 → γγ is an allowed electromagnetic transition.

However as χ0 has another strong decay channel, the branching ratio of this

decay mode is very small.

χ0, χ1 → pp̄ are allowed decays. However, their phase spaces are much

smaller than that of χ0 → π0π0, and so are their relative decay widths.

χ0, χ1 → π+π−π0 are forbidden as G-parity is not conserved;

χ0, χ1 → π0ψ are forbidden as C-parity is not conserved;

χ0, χ1 → D0K̄0 are weak decays with very small branching ratios.

χ0 → e+e− is a high order electromagnetic decay with a very small

branching ratio.

χ1 → e+e− is an electromagnetic decay. It is forbidden, however, by

conservation of C-parity.

χ0, χ1 → ηψ are forbidden for violating energy conservation.

(e) As gluon has JP = 1−, it is a vector particle and the total wave

function of a system of gluons must be symmetric. As a two-gluon system

can only have states with 0++ or 2++, a three-gluon system can only have

states with 1++, χ0 and χ2 have strong decays via a two-gluon intermediate

state and χ1 has strong decay via a three-gluons intermediate state. Then

as decay probability is proportional to αns , where αs is the strong interaction

constant (αs ≈ 0.2 in the energy region of J/ψ) and n is the number of
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gluons in the intermediate state, the strong decay width of χ1 is αs times

smaller than those of χ0, χ2. The result given by QCD is Γ(χ0 → hadrons) :

Γ(χ2 → hadrons) : Γ(χ1 → hadrons) = 15 : 4 : 0.5.

3087

Particles carrying a new quantum number called charm have recently

been discovered. One such particle, D+, was seen produced in e+e− anni-

hilation, at center-of-mass energy E = 4.03 GeV, as a peak in the K−π+π+

mass spectrum at MKππ = 1.87 GeV. The Dalitz plot for the three-body

decay shows nearly uniform population.

(a) Using the simplest quark model in which mesons are bound states

of a quark and an antiquark, show that D+ cannot be an ordinary strange

particle resonance (e.g. K∗+).

(b) What are the spin and parity (JP ) of the Kππ final state?

(c) Another particle,D0, was seen at nearly the same mass in theK−π+

mass spectrum from the same experiment. What are the allowed JP as-

signments for the Kπ state?

(d) Assume that these two particles are the same isospin multiplet, what

can you infer about the type of interaction by which they decay?

(e) Suppose the Ks → 2π decay to be typical of strangeness-changing

charm-conserving weak decays. Estimate the lifetime of D0, assuming that

the branching ratio (D0 → K−π+)/(D0 → all) ≈ 5%. The lifetime of Ks

is ∼ 10−10 sec.
(Princeton)

Solution:

(a) According to the simplest quark model, K meson consists of an s̄

quark and a u quark. All strange mesons are composed of an s̄ and an

ordinary quark, and only weak decays can change the quark flavor. If the s

quark in a strange meson changes into a u or d quark, the strange meson will

become an ordinary meson. On the other hand, strong and electromagnetic

decays cannot change quark flavor. D+ → Kππ is a weak decay. So if there

is an s̄ quark in D+, its decay product cannot include K meson, which also

has an s̄ quark. Hence there is no s̄ but a quark of a new flavor inD+, which

changes into s̄ in weak decay, resulting in a K meson in the final state.
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(b) The Dalitz plot indicated J = 0 for a Kππ system. As the total

angular momentum of the three particles is zero, the spin of D+ is zero.

Let the relative orbital angular momentum of the two π system be l, the

orbital angular momentum of the K relative to the two π be l′. Since the

spins of K,π are both zero, J = l+ l′ = 0, i.e., l = −l′, or |l| = |l′|. Hence

P (Kππ) = (−1)l+l′P 2(π)P (K) = (−1)2(−1) = (−1)3 = −1 .

Thus the Kππ final state has JP = 0−.

(c) For the Kπ state,

P (Kπ) = (−1)lP (π)P (K) = (−1)l , J = 0 + 0 + l .

Hence

JP = 0+, 1−, 2+ · · · .

If J(D) = 0, then l = 0 and JP = 0+.

(d) If D+, D0 belong to an isospin multiplet, they must have the same

JP . As the above-mentioned Kππ and Kπ systems have odd and even

parities respectively, the decays must proceed through weak interaction in

which parity is not conserved.

(e) Quark flavor changes in both the decays D0 → Kπ and K0
s →

π+π−, which are both Cabibbo-allowed decays. If we can assume their

matrix elements are roughly same, then the difference in lifetime is due to

the difference in the phase-space factor. For the two-body weak decays,

neglecting the difference in mass of the final states, we have

Γ(D0
1 → K−π+) = f2D ·mD ·m2

K

(
1− m2

K

m2
D

)2

= f2D ·
m2
K

m3
D

(m2
D −m2

K)
2 ,

Γ(KS → 2π) = f2K ·mK ·m2
π

(
1− m2

π

m2
K

)2

= f2K ·
m2
π

m3
K

(m2
K −m2

π)
2 ,

where fD and fK are coupling constants associated with the decays. Take

fD = fK and assume the branching ratio of K0
S → 2π is nearly 100%, we

have

τD0

τK
=
Γ(K → 2π)
Γ(D → all)

=
Γ(K → 2π)
20Γ(D→ Kπ)

=
m2
πm

3
D(m

2
K −m2

π)
2

20m5
K(m

2
D −m2

K)
2
,



556 Problems and Solutions in Atomic, Nuclear and Particle Physics

and hence

τD0 =
1402 × 18703
20× 4945

(
4942 − 1402
18702 − 4942

)2

× 10−10 = 1.0× 10−13 s ,

which may be compared with the experimental value

τD0 =

(
4.4
+0.8

−0.6

)
× 10−13 s .

3088

A recent development in elementary particle physics is the discovery of

charmed nonstrange mesons (called D+, D0, and their charge conjugates)

with masses around 1870 MeV/c2.

(a) Knowing the charge of charmed quark to be 2/3, give the quark

contents of the D+ and D0 mesons.

(b) The D mesons decay weakly into ordinary mesons (π,K, · · · ). Give
estimates (with your reasoning) for the branching ratios of the following

two-body decays:

BR(D0 → K+K−)

BR(D0 → K−π+)
,

BR(D0 → π+π−)

BR(D0 → K−π+)
,

BR(D0 → K+π−)

BR(D0 → K−π+)
.

(c) How would you show that the decay of D mesons is by means of

weak interaction?

(d) In a colliding beam at c.m. energy 4.03 GeV, a D+ meson (mass =

1868.3 MeV/c2) and a D∗− meson (mass = 2008.6 MeV/c2) are produced.

The D∗− decays into a D̄0 (mass = 1863.3 MeV/c2) and a π−. What is

the maximum momentum in the laboratory of the D∗−? of the π?

(Princeton)

Solution:

(a) AD meson consists of a charmed quark c (charge 2
3 ) and the antipar-

ticle of a light quark u (charge 2
3 ) or d (charge − 1

3 ). To satisfy the charge

requirements, the quark contents of D+ and D0 are cd̄ and cū respectively.

(b) The essence of D meson decay is that one of its quarks changes

flavor via weak interaction, the main decay modes arising from decay of

the c quark as shown in Fig. 3.26.
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Fig. 3.26

Let θc be the Cabibbo mixing angle. We have

c→ sud̄, amplitude ∼ cos2 θc,
c→ sus̄, amplitude ∼ sin θc cos θc,
c→ dud̄, amplitude ∼ − sin θc cos θc,
c→ dus̄, amplitude ∼ sin2 θc,

and correspondingly

D0 → K− + π− , Cabibbo allowed ,

D0 → K− +K+ , first order Cabibbo forbidden ,

D0 → π+ + π− , first order Cabibbo forbidden ,

D0 → K+ + π− , second order Cabibbo forbidden .

The value of θc has been obtained by experiment to be θc = 13.10.

Hence

BR(D0 → K+K−)

BR(D0 → K−π+)
= tan2 θc ≈ 0.05,

BR(D0 → π+π−)

BR(D0 → K−π+)
= tan2 θc ≈ 0.05,

BR(D0 → K+π−)

BR(D0 → K−π+)
= tan4 θc ≈ 2.5× 10−3 .
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(c) In D0 decay, the charm quantum number C changes. As only weak

decays can change the flavor of a quark, the decays must all be weak decays.

(d) In the head-on collision of colliding beams the laboratory frame is the

same as the center-of-mass frame. Let the masses, energies and momenta

of D∗− and D+ be m∗, m, E∗, E, p∗, p respectively and denote the total

energy as E0. Momentum and energy conservation gives

p∗ = p, E∗ +
√
p2 +m2 = E0 .

Thus

E∗2 +E2
0 − 2E∗E0 = p∗2 +m2 .

With E∗2 = p∗2 +m∗2, we have

E∗ =
m∗2 −m2 +E2

0

2E0
=
2.00862 − 1.86832 + 4.032

2× 4.03 = 2.08 GeV ,

p∗ =
√
2.082 − 2.0082 = 0.54 GeV/c ,

giving

β = p∗/E∗ = 0.26, γ = E∗/m∗ = 1.04 .

In the D∗− rest frame, the decay takes place at rest and the total energy

is equal to m∗. Using the above derivation we have

Ēπ =
m2
π −m2

D +m∗2

2m∗
= 0.145 GeV ,

p̄π =
√
E2
π −m2

π = 38 MeV/c .

In the laboratory, the π meson will have the maximum momentum if it

moves in the direction of D∗−. Let it be Pmax. Then

pmax = γ(p̄π + βĒπ)

= 1.04(38 + 0.26× 145) = 79 MeV/c .
Hence the maximummomenta ofD∗− and π− are 540MeV/c and 79 MeV/c

respectively.

3089

In e+e− annihilation experiments, a narrow resonance (of width less

than the intrinsic energy spread of the two beams) has been observed at
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ECM = 9.5 GeV for both

e+e− → µ+µ−

and

e+e− → hadrons .

The integrated cross sections for these reactions are measured to be

∫
σµµ(E)dE = 8.5× 10−33 cm2 ·MeV ,

∫
σh(E)dE = 3.3× 10−31 cm2 ·MeV .

Use the Breit–Wigner resonance formula to determine the partial widths

Γµµ and Γh for the µµ and hadronic decays of the resonance.

Solution:

The Breit–Wigner formula can be written for the two cases as

σµ(E) =
π(2J + 1)

M2

ΓeeΓµµ

(E −M)2 + Γ2

4

,

σh(E) =
π(2J + 1)

M2

ΓeeΓh

(E −M)2 + Γ2

4

,

whereM and J are the mass and spin of the resonance state, Γ, Γee, Γh and

Γµµ are the total width, and the partial widths for decaying into electrons,

hadrons, and muons respectively. We have

Γ = Γee + Γττ + Γµµ + Γh ,

where Γττ is the partial width for decaying into τ particles. Because of the

universality of lepton interactions, if we neglect the difference phase space

factors, we have Γee = Γττ = Γµµ, and so

Γ = 3Γµµ + Γh .
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For the resonance at M = 9.5 GeV, J = 1. Therefore∫
σµµ(E)dE =

3πΓ2µµ
M2

∫
dE

(E −M)2 + Γ2

4

=
6π2Γ2µµ
M2Γ

= 8.5× 10−33 cm2 ·MeV ,

∫
σh(E)dE =

3πΓµµΓh
M2

∫
dE

(E −M)2 + Γ2

4

=
6π2ΓµµΓh
M2Γ

= 3.3× 10−31 cm2 ·MeV ,

whose ratio gives

Γh = 38.8Γµµ .

Hence

Γ = Γh + 3Γµµ = 41.8Γµµ ,

and

Γµµ =
M2

6π2
Γ

Γh
× 3.3× 10−31 = 5.42× 10−26 MeV3cm2 .

To convert it to usual units, we note that

1 = �c = 197× 10−13 MeV · cm ,

or

1 cm =
1

197× 10−13 MeV
−1 .

Thus

Γµµ = 1.40× 10−3 MeV ,

and

Γh = 38.8Γµµ = 5.42× 10−2 MeV ,

Γ = 41.8Γµµ = 5.84× 10−2 MeV .

3090

Suppose nature supplies us with massive charged spin-1 ‘quark’ Q+ and

antiquark Q̄−. Using a model like the nonrelativistic charmonium model
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which successfully describes the J/ψ family, predict the spectrum of the

neutral QQ̄ resonance. Make a diagram of the lowest few expected states,

indicating the spin, charge conjugation parities, and allowed electromag-

netic transitions, as well as the expected ordering of levels.

(Princeton)

Solution:

The current nonrelativistic model for dealing with heavy quarks employs

a strong-interaction potential, approximated by a central potential. Then

the angular part of the wave functions takes the form of spherical harmonic

functions. To take account of quark confinement, a better potential is given

by the Cornell model as V (r) = −k/r + r/a2, which is a Coloumb poten-

tial superposed on a linear potential, with the former implying asymptotic

freedom, and the latter quark confinement. By considering spin correlation

the order of levels can be calculated numerically. For the quark-antiquark

system,

spin: J = S+ l, where S = s1 + s2, s1 = s2 = 1,

P-parity: P (Q+Q−) = P (Q+)P (Q−)(−1)l = (−1)l, as for a boson of spin
1, P (Q̄) = P (Q),

C-parity: C(Q+Q−) = (−1)l+S .
Thus the system can have JPC as follows:

l = 0, S = |s1 + s2| = 0 , n1S0 JPC = 0++

S = |s1 + s2| = 1 n3S1 1+−

S = |s1 + s2| = 2 n5S2 2++

l = 1, S = |s1 + s2| = 0 n1P1 1−−

S = |s1 + s2| = 1 n3P0 0−+

n3P1 1−+

n3P2 2−+

S = |s1 + s2| = 2 n5P1 1−−

n5P2 2−−

n5P3 3−−
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25S2
23S1

21S0 15P3
15P2

13P2 15P1
11P1 13P1

13P0

15S2
13S1

11S0

JPC : 0++ 1+− 2++ 1−− 0−+ 1−+ 2−+ 1−− 2−− 3−−

Fig. 3.27

In the above we have used spectroscopic symbols n2S+1SJ , n
2S+1PJ

etc. to label states, with n denoting the principal quantum number, 2S +

1 the multiplicily, singlet, triplet or quintuplet, and J the total angular

momentum. The order of the levels is shown in Fig. 3.27 (only S and P

states are shown).

As the order of P states is related to the spin-correlation term, the

order given here is only a possible one. The true order must be calculated

using the assumed potential. Even the levels given here are seen more

complicated than those for a spin-1/2 charm-anticharm system, with the

addition of the 5S2 and
5PJ spectra. In accordance with the selection

Table 3.13. Possible γ transitions.

Transition ∆J ∆P ∆C Type of transition

23S1 → 13PJ 0, 1 −1 −1 E1

13PJ → 13S1 0, 1 −1 −1 E1

25S2 → 23S1 → 21S0 1 1 −1 M1(E2)

15S2 → 13S1 → 11S0 1 1 −1 M1(E2)

25S2 → 13S1 1 1 −1 M1(E2)

23S1 → 11S1 1 1 −1 M1(E2)

25S2 → 15PJ 0, 1 −1 −1 E1

15PJ → 15S2 0, 1 −1 −1 E1

21S0 → 11P1, 15P1 1 −1 −1 E1

11P1, 15P1 → 11S0 1 −1 −1 E1

25S2 → 11P1 1 −1 −1 E1

11P1 → 15S2 1 −1 −1 E1
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rules of electromagnetic transitions, the possible transitions are listed in

Table 3.13.

Note that electromagnetic transitions between the P states are not in-

cluded in the table because the level order cannot be ascertained. Higher

order transitions (M2, E3, etc.) between 21S0 → 15P2,3 are also excluded.
The transitions 5S2 → 1S0,

3S1 → 5P2,
1P1, etc. are C-parity forbidden

and so excluded.



PART IV

EXPERIMENTAL METHODS AND

MISCELLANEOUS TOPICS



1. KINEMATICS OF HIGH-ENERGY

PARTICLES (4001 4061)

4001

An accelerator under study at SLAC has as output bunches of electrons

and positrons which are made to collide head-on. The particles have 50 GeV

in the laboratory. Each bunch contains 1010 particles, and may be taken

to be a cylinder of uniform charge density with a radius of 1 micron and a

length of 2 mm as measured in the laboratory.

(a) To an observer traveling with a bunch, what are the radius and

length of its bunch and also the one of opposite sign?

(b) How long will it take the two bunches to pass completely through

each other as seen by an observer traveling with a bunch?

(c) Draw a sketch of the radial dependence of the magnetic field as

measured in the laboratory when the two bunches overlap. What is the

value of B in gauss at a radius of 1 micron?

(d) Estimate in the impulse approximation the angle in the laboratory

by which an electron at the surface of the bunch will be deflected in passing

through the other bunch. (Ignore particle-particle interaction.)

(UC, Berkeley)

Solution:

(a) Consider a particle P in the bunch traveling with the observer. Let

Σ, Σ0 be the reference frames attached to the laboratory and the observer

respectively, taking the direction of motion of P as the x direction. The

Lorentz factor of P , and hence of Σ0, in Σ is

γ =
E

mc2
=
50× 109
0.5× 106 = 1× 10

5 .

To an observer in Σ, the bunch is contracted in length:

L =
1

γ
L0 ,

where L0 is its length in Σ0. Thus

L0 = γL = 1× 105 × 2× 10−3 = 200 m .

567



568 Problems and Solutions in Atomic, Nuclear and Particle Physics

The radius of the bunch is

r0 = r = 1 µm ,

as there is no contraction in a transverse direction.

The bunch of opposite charge travels with velocity −βc in Σ, where β
is given by

γ2 =
1

1− β2
.

Its velocity in Σ0 is obtained by the Lorentz transformation for velocity:

β′ =
−β − β

1− β(−β) = −
2β

1 + β2
.

Its length in Σ0 is therefore

L′ =
1

γ′
L0 = L0

√
1− β′2 = L0

√
1−
(

2β

1 + β2

)2

= L0

(
1− β2

1 + β2

)
=

L0

2γ2 − 1

=
200

2× 1010 − 1 ≈ 10
−8 = 0.01 µm .

(b) To an observer in Σ0 the time taken for the two bunches to pass

through each other completely is

t′ =
L0 + L′

β′c
.

As

β =

√
1− 1

γ2
≈ 1

and so

β′ =
2β

1 + β2
≈ 1 ,

t′ ≈ 200 + 10
−8

c

=
200

3× 108 = 6.67× 10
−7 s .

(c) Consider the bunch of positrons and let its length, radius, number

of particles, and charge density be l, r0, N and ρ respectively. Then
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ρ =
eN

πr20l
.

The two bunches of positrons and electrons carry opposite charges and

move in opposite directions, and so the total charge density is

J = 2ρβc ,

where βc is the speed of the particles given by

γ =
E

mc2
= (1− β2)−

1
2 .

Applying Ampére’s circuital law∮
c

B · d l = µ0I ,

we find for r > r0,

2πrB = µ0 ·
2eN

πr20l
βc · πr20 ,

or

B =
µ0eN

πl

βc

r
;

for r < r0,

2πrB = µ0 ·
2eN

πr20 l
βcπr2

or

B =
µ0eN

πl

βcr

r20
.

Figure 4.1 shows the variation of B with r. At r = r0 = 1 µm,

B =
4π × 10−7 × 1.6× 10−19 × 1010

π × 2× 10−3 × 10−6 × 1× 3× 108 = 96 T

= 9.6× 105 Gs .

Fig. 4.1
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(d) The magnetic field exerts a force vB perpendicular to the motion of

an electron. If ∆t is the duration of encounter with the opposite bunch, it

will acquire a transverse momentum of

p⊥ = evB∆t .

Hence

θ ≈ p⊥
p
=

evB∆t

mγv
=

eBl

mγv
=

eBcl

pc

=
1.6× 10−19 × 96× 3× 108 × 2× 10−3

50× 109 × 1.6× 10−19 = 1.15× 10−3 rad = 39.6′ .

4002

A certain elementary process is observed to produce a relativistic meson

whose trajectory in a magnetic field B is found to have a curvature given

by (ρB)1 = 2.7 Tesla-meters.

After considerable energy loss by passage through a medium, the same

meson is found to have (ρB)2 = 0.34 Telsa-meters while a time-of-flight

measurement yields a speed of v2 = 1.8× 108 m/sec for this ‘slow’ meson.

(a) Find the rest mass and the kinetic energies of the meson (in MeV)

before and after slowing down (2-figure accuracy).

(b) If this ‘slow’ meson is seen to have a 50% probability of decaying in

a distance of 4 meters, compute the intrinsic half life of this particle in its

own rest frame, as well as the distance that 50% of the initial full-energy

mesons would travel in the laboratory frame.

(UC, Berkeley)

Solution:

(a) As evB = γmv2

ρ , or ρB = γβmc
e , we have for the meson

(ρB)1
(ρB)2

=
γ1β1

γ2β2
.
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At β2 =
v2
c
= 1.8×108

3×108 = 0.6, or γ2β2 =
β2√
1−β22

= 0.75, we have

p2c = γ2β2mc2 = ec(ρβ)2

= 1.6× 10−19 × 0.34c Joule

= 0.34× 3× 108 eV

= 0.102 GeV .

The rest mass of the meson is therefore

m =
p2c

γ2β2c2
=
0.102

0.75
GeV/c2 = 0.14 GeV/c2 .

Before slowing down, the meson has momentum

p1c = ec(ρB)1 = 2.7× 0.3 = 0.81 GeV ,

and hence kinetic energy

T1 =
√
p21c

2 +m2c4 −mc2 =
√
0.812 + 0.142 − 0.14 = 0.68 GeV .

After slowing down, the meson has kinetic energy

T2 =
√
p22c

2 +m2c4 −mc2 =
√
0.1022 + 0.142 − 0.14 = 0.033 GeV .

(b) The half life τ is defined by

exp

(
− t

τ

)
= exp

(
− l

βcτ

)
=
1

2
,

or

τ =
l

βc ln 2
.

In the rest frame of the meson, on account of time dilation, the half-life is

τ0 =
τ

γ2
=

l2

γ2β2c ln 2
=

4

0.75× 3× 108 ln 2 = 2.6× 10
−8 s .

In the laboratory frame, the distance full-energy mesons travel before

their number is reduced by 50% is given by

l1 = τ1β1c ln 2 = τ0γ1β1c ln 2 .
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As

γ1β1 =
p1c

mc2
=
0.81

0.14
= 5.8 ,

l1 = 2.6× 10−8 × 5.8× 3× 108 × ln 2 = 31 m .

4003

The Princeton synchrotron (PPA) has recently been used to accelerate

highly charged nitrogen ions. If the PPA can produce protons of nominal

total energy 3 GeV, what is the maximum kinetic energy of charge 6+

14N ions?

(Wisconsin)

Solution:

After the ions enter the synchrotron, they are confined by magnetic

field and accelerated by radio frequency accelerator. The maximum energy

attainable is limited by the maximum value Bm of the magnetic field. The

maximum momentum pm is given by

pm = |q|ρBm

where |q| is the absolute charge of the ion and ρ the radius of its orbit.

Considering protons and nitrogen ions we have

pp

pN
=
|q|p
|q|N

, pN = 6pp .

As √
p2p +m2

p =
√
p2p + 0.938

2 = 3 ,

we have

pp = 2.85 GeV/c ,

and

pN = 17.1 GeV/c .

Hence the maximum kinetic energy of the accelerated nitrogen ions is

T =
√
17.12 + (0.938× 14)2 − 0.938× 14 = 8.43 GeV .
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4004

(a) A muon at rest lives 10−6 sec and its mass is 100 MeV/c2. How

energetic must a muon be to reach the earth’s surface if it is produced high

in the atmosphere (say ∼ 104 m up)?
(b) Suppose to a zeroth approximation that the earth has a 1-gauss

magnetic field pointing in the direction of its axis, extending out to 104 m.

How much, and in what direction, is a muon of energy E normally incident

at the equator deflected by the field?

(c) Very high-energy protons in cosmic rays can lose energy through

collision with 3-K radiation (cosmological background) in the process p +

γ → p + π. How energetic need a proton be to be above threshold for

this reaction?

(Princeton)

Solution:

(a) Let the energy of the muons be E ≡ γm, where m is their rest mass.

In the laboratory frame the lifetime is τ = τ0γ, τ0 being the lifetime in the

muon rest frame. Then

l = τβc = τ0γβc ,

giving

E =
lm

βτ0c
≈ lm

τ0c
=

104 × 0.1
10−6 × 3× 108 = 3.3 GeV .

(b) Consider a high energy µ+ in the earth’s magnetic field. The force

exerted by the latter is balanced by the centripetal force:

evB =
mγv2

R
,

giving

R =
pc

ecB
≈ E

ecB
,

where p and E are the momentum and total energy of the muon. With E

in GeV and R in m,

R ≈ 1.6× 10−10 E
1.6× 10−19 × 3× 108 × 10−4

=
105

3
× E .
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Fig. 4.2

A µ+ incident vertically is deflected to the east and enters the earth’s

surface at a from the original path AD (Fig. 4.2). Let O be the center of

curvature of the muon orbit and note that AD is tangential to the orbit.

As ∠OAD = π
2 , we have ∠GAD = ∠AOH. Hence ∆GAD and ∆AOH are

similar and so
a√

l2 + a2
=

√
l2 + a2

2R
,

or

a2 − 2aR+ l2 = 0 ,

giving

a =
2R±

√
4R2 − 4l2
2

≈ l2

2R

as a� l � R. Thus

a ≈ 3× 108
2× 105 ×E

=
1.5× 103

E
.

For example, a ≈ 455 m if E = 3.3 GeV; a ≈ 75 m if E = 20 GeV.
As the earth’s magnetic field points to the north, the magnetic force on

a µ+ going vertically down points to the east. It will be deflected to the

east, while a µ− will be deflected to the west.
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(c) Radiation at T = 3 K consists of photons of energy E = 3kT/2,

where k = 8.6× 10−5 eV/K is the Boltzmann constant. Thus

Eγ = 8.6× 10−5 × 3/2× 3 = 3.87× 10−4 eV .

Consider the reaction γ + p = p + π. For head-on collision at threshold,

taking c = 1 we have

(Ep +Eγ)
2 − (pp −Eγ)

2 = (mp +mπ)
2 .

With E2
p−p2p = m2

p, and pp ≈ Ep for very high energy protons, this becomes

Ep ≈
m2
π + 2mpmπ

4Eγ
.

As mp = 0.938 GeV, mπ = 0.140 GeV, Eγ = 3.87 × 10−13 GeV, the
threshold energy is

Ep ≈
0.142 + 2× 0.938× 0.14

4× 3.87× 10−13 = 1.82× 1011 GeV .

4005

The mass of a muon is approximately 100 MeV/c2 and its lifetime at rest

is approximately two microseconds. How much energy would a muon need

to circumnavigate the earth with a fair chance of completing the journey,

assuming that the earth’s magnetic field is strong enough to keep it in orbit?

Is the earth’s field actually strong enough?

(Columbia)

Solution:

To circumnavigate the earth, the life of a moving muon should be equal

to or larger than the time required for the journey. Let the proper life of

muon be τ0. Then

τ0γ ≥
2πR

βc
,

where R is the earth’s radius, βc is the muon’s velocity and γ = (1−β2)− 12 .
The minimum momentum required by the muon is therefore

pc = mγβc =
2πRmc

τ0
,
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and the minimum energy required is

E =
√
m2c4 + p2c2 = mc2

√
1 +

(
2πR

τ0c

)2

= 100×

√
1 +

(
2π × 6400× 103
2× 10−6 × 3× 108

)2

= 6.7× 106 MeV .

To keep the meson in orbit, we require

evB ≥ mγv2

R
,

or

B ≥ pc

eRc
=

6.7× 106 × 1.6× 10−13
1.6× 10−19 × 6400× 103 × 3× 108

= 3.49× 10−3 T ≈ 35 Gs .
As the average magnetic field on the earth’s surface is about several

tenths of one gauss, it is not possible to keep the muon in this orbit.

4006

(a) A neutron 5000 light-years from earth has rest mass 940 MeV and

a half life of 13 minutes. How much energy must it have to reach the earth

at the end of one half life?

(b) In the spontaneous decay of π+ mesons at rest,

π+ → µ+ + νµ ,

the µ+ mesons are observed to have a kinetic energy of 4.0 MeV. The rest

mass of the µ+ is 106 MeV. The rest mass of neutrino is zero. What is the

rest mass of π+?

(Wisconsin)

Solution:

(a) Let the energy of the neutron be E, its velocity be βc, the half life

in its rest frame be τ1/2. Then its half life in the earth’s frame is τ1/2γ,

where γ = (1− β2)−
1
2 . For the neutron to reach the earth, we require

γβcτ 1
2
= 5000× 365× 24× 60c ,

or

γβ = 2.02× 108 .
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The energy of neutron is

E =
√
m2

0 + p2 = m0

√
1 + γ2β2 = 1.9× 1011 MeV .

(b) Consider the decay π+ → µ++ νµ at rest. Conservation of momen-

tum requires the momenta of µ and νµ be p and −p respectively. Then
their energies areEµ =

√
m2
µ + p2, Eν = p respectively. Asmµ = 106 MeV,

Eµ = 4 + 106 = 110 MeV, we have

p =
√
E2
µ −m2

µ = 29.4 MeV .

Hence

mπ = Eµ +Eν = 110 + 29.4 = 139.4 MeV .

4007

A certain electron-positron pair produced cloud chamber tracks of radius

of curvature 3 cm lying in a plane perpendicular to the applied magnetic

field of magnitude 0.11 Tesla (Fig. 4.3). What was the energy of the γ-ray

which produced the pair?

(Wisconsin)

Fig. 4.3

Solution:

As

evB =
mγv2

ρ
=

pv

ρ
,
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we have

pc = ecBρ

=
1.6× 10−19 × 3× 108

1.6× 10−13 Bρ

= 300Bρ

with B in Tesla, ρ in meter and p in MeV/c. Hence, on putting c = 1, the

momentum of the e+ or e− is

p = 300Bρ = 300× 0.11× 0.03 = 0.99 MeV/c ,

and its energy is

E =
√
p2 +m2

e =
√
0.992 + 0.512 = 1.1 MeV .

Therefore the energy of the γ-ray that produced the e+e− pair is approxi-

mately

Eγ = 2E = 2.2 MeV .

4008

Newly discovered D0 mesons (mass = 1.86 GeV) decay by D0 → K+π−

in τ = 5× 10−13 sec. They are created with 18.6 GeV energy in a bubble
chamber. What resolution is needed to observe more than 50% of the

decays?

(a) 0.0011 mm.

(b) 0.44 mm.

(c) 2.2 mm.

(CCT )

Solution:

As

I = I0e
−t/τ ≥ 0.5I0 ,

t ≤ τ ln 2 .
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The mesons have γ = 18.6
1.86 = 10 and β ≈ 1. Their proper lifetime is

τ0 = 5× 10−13 s, giving
τ = γτ0 = 5× 10−12 s .

Thus the distance traveled by the mesons is

tc ≤ τc ln 2 = 5× 10−12 × 3× 1011 × ln 2

= 1 mm

Hence the resolution should be better than 1 mm, and the answer is (b).

4009

A collimated kaon beam emerges from an analyzing spectrometer with

E = 2 GeV. At what distance is the flux reduced to 10% if the lifetime is

1.2× 10−8 sec?

(a) 0.66 km.

(b) 33 m.

(c) 8.3 m.

(CCT )

Solution:

As mk = 0.494 GeV, τ0 = 1.2× 10−8 s, Ek = 2 GeV, we have

γ =
2

0.494
= 4.05 , β =

√
1− γ−2 = 0.97 ,

and the laboratory lifetime is

τ = γτ0 = 4.8× 10−8 s .
The time t required to reduce the kaon flux from I0 to I0/10 is given by

I0e
−t/τ =

I0

10
,

or

t = τ ln 10 = 11.05× 10−8 s .
The distance traveled by the beam during t is

tβc = 11.05× 10−8 × 0.97× 3× 108 = 32 m .

Hence the answer is (b).



580 Problems and Solutions in Atomic, Nuclear and Particle Physics

4010

The Compton wavelength of a proton is approximately

(a) 10−6 cm.

(b) 10−13 cm.

(c) 10−24 cm.

(CCT )

Solution:

The Compton wavelength of proton is

λ =
2π�

mpc
=
2π�c

mpc2
=
2π × 197× 10−13

938
= 1.32× 10−13 cm .

Hence the answer is (b).

4011

In a two-body elastic collision:

(a) All the particle trajectories must lie in the same plane in the center

of mass frame.

(b) The helicity of a participant cannot change.

(c) The angular distribution is always spherically symmetric.

(CCT )

Solution:

Conservation of momentum requires all the four particles involved to lie

in the same plane. Hence the answer is (a).

4012

In a collision between a proton at rest and a moving proton, a particle

of rest mass M is produced, in addition to the two protons. Find the

minimum energy the moving proton must have in order for this process to

take place. What would be the corresponding energy if the original proton

were moving towards one another with equal velocity?

(Columbia)



Experimental Methods and Miscellaneous Topics 581

Solution:

At the threshold of the reaction

p+ p→M + p+ p ,

the particles on the right-hand side are all produced at rest. Let the energy

and momentum of the moving proton be Ep and pp respectively. The

invariant mass squared of the system at threshold is

S = (Ep +mp)
2 − p2p = (2mp +M)2 .

As

E2
p = m2

p + p2p ,

the above gives

Ep =
(2mp +M)2 − 2m2

p

2mp

= mp + 2M +
M2

2mp
.

If the two protons move towards each other with equal velocity, the

invariant mass squared at threshold is

S = (Ep +Ep)
2 − (pp − pp)

2 = (2mp +M)2 ,

giving

Ep = mp +M/2 .

4013

A relativistic particle of rest mass m0 and kinetic energy 2m0c
2 strikes

and sticks to a stationary particle of rest mass 2m0.

(a) Find the rest mass of the composite.

(b) Find its velocity.

(SUNY, Buffalo)
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Solution:

(a) The moving particle has total energy 3m0 and momentum

p =
√
(3m0)2 −m2

0 =
√
8m0 .

The invariant mass squared is then

S = (3m0 + 2m0)
2 − p2 = 17m2

0 .

Let the rest mass of the composite particle beM . Its momentum is also

p on account of momentum conservation. Thus

S = (
√
M2 + p2)2 − p2 =M2 ,

giving

M =
√
S =
√
17m0 .

(b) For the composite,

γβ =
p

M
=

√
8

17
,

γ =
√
γ2β2 + 1 =

√
8

17
+ 1 =

5√
17

.

Hence

β =
γβ

γ
=

√
8

5

and the velocity is

v = βc = 1.7× 1010 cm/s .

4014

Find the threshold energy (kinetic energy) for a proton beam to produce

the reaction

p+ p→ π0 + p+ p

with a stationary proton target.

(Wisconsin)
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Solution:

Problem 4012 gives

Ep = mp + 2mπ +
m2
π

2mp
= 938 + 2× 135 + 1352

2× 938 = 1218 MeV .

Hence the threshold kinetic energy of the proton is Tp = 1218 − 938 =
280 MeV.

4015

In high energy proton-proton collisions, one or both protons may “diffr-

actively dissociate” into a system of a proton and several charged pions.

The reactions are

(1) p+ p→ p+ (p+ nπ),

(2) p+ p→ (p+ nπ) + (p+mπ),

where n and m count the number of produced pions.

In the laboratory frame, an incident proton (the projectile) of total

energy E strikes a proton (the target) at rest. Find the incident proton

energy E that is

(a) the minimum energy for reaction 1 to take place when the target

dissociates into a proton and 4 pions,

(b) the minimum energy for reaction 1 to take place when the projectile

dissociates into a proton and 4 pions,

(c) the minimum energy for reaction 2 to take place when both protons

dissociate into a proton and 4 pions. (mπ = 0.140 GeV, mp = 0.938 GeV)

(Chicago)

Solution:

Let pp be the momentum of the incident proton, np and nπ be the

numbers of protons and pions, respectively, in the final state. Then the

invariant mass squared of the system is

S = (E +mp)
2 − p2p = (npmp + nπmπ)

2 ,

giving

E =
(npmp + nπmπ)

2 − 2m2
p

2mp
,
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as

E2 − p2p = m2
p .

(a) For p+ p→ 2p+ 4π,

E =
(2mp + 4mπ)

2 − 2m2
p

2mp
= 2.225 GeV .

(b) As the two protons are not distinguishable, the situation is identical

with that of (a). Hence E = 2.225 GeV.

(c) For p+ p→ 2p+ 8π,

E =
(2mp + 8mπ)

2 − 2m2
p

2mp
= 3.847 GeV .

4016

Protons from an accelerator collide with hydrogen. What is the mini-

mum energy to create antiprotons?

(a) 6.6 GeV.

(b) 3.3 GeV.

(c) 2 GeV.

(CCT )

Solution:

The reaction to produce antiprotons is

p+ p→ p̄+ p+ p+ p .

The hydrogen can be considered to be at rest. Thus at threshold the

invariant mass squared is

(E +mp)
2 − (E2 −m2

p) = (4mp)
2 ,

or

E = 7mp .

Hence the threshold energy is

E = 7mp = 6.6 GeV ,

and the answer is (a).
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4017

Determine the threshold energy for a gamma ray to create an electron-

positron pair in an interaction with an electron at rest.

(Wisconsin)

Solution:

From the conservation of lepton number, the reaction is

γ + e− → e+ + e− + e− .

At threshold the invariant mass squared is

S = (Eγ +me)
2 − p2γ = (3me)

2 .

With Eγ = pγ , the above becomes

Eγ = 4me = 2.044 MeV .

4018

Consider a beam of pions impinging on a proton target. What is the

threshold for K− production?

(Wisconsin)

Solution:

Conservation of strangeness requires a K+ be also produced. Then the

conservation of Iz requires that the p be converted to n as π
− has Iz = −1.

Hence the reaction is

π− + p→ K− +K+ + n .

Let the threshold energy and momentum of π− be Eπ and pπ re-

spectively. (Conservation of the invariant mass squared S = (ΣE)2 −
(ΣP)2 requires

S = (Eπ +mp)
2 − p2π = (2mK +mn)

2 .
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With E2
π − p2π = m2

π, this gives

Eπ =
(2mK +mn)

2 −m2
p −m2

π

2mp
=
(2× 0.494 + 0.94)2 − 0.9382 − 0.142

2× 0.938

= 1.502 GeV

4019

A particle of rest mass m whose kinetic energy is twice its rest energy

collides with a particle of equal mass at rest. The two combine into a single

new particle. Using only this information, calculate the rest mass such a

new particle would have.

(Wisconsin)

Solution:

Let the mass of the new particle be M and that of the incident particle

be m. The incident particle has total energy E = m + T = 3m. At

threshold, M is produced at rest and the invariant mass squared is

S = (E +m)2 − p2 =M2 .

With E2 − p2 = m2, this gives

M2 = 2Em+ 2m2 = 8m2 ,

i.e.,

M = 2
√
2m.

4020

If a 1000 GeV proton hits a resting proton, what is the free energy to

produce mass?

(a) 41.3 GeV.

(b) 1000 GeV.

(c) 500 GeV.

(CCT )
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Solution:

Label the incident and target protons by 1 and 2 respectively. As the

invariant mass squared

S = (ΣEi)
2 − (Σp)2

is Lorentz-invariant,

(E1 +mp)
2 − p21 = E∗2 ,

where E∗ is the total energy of the system in the center-of-mass frame. If

the final state retains the two protons, the free energy for production of

mass is

E∗ − 2mp =
√
2mpE1 + 2m2

p − 2mp

=
√
2× 0.938× 1000 + 2× 0.9382 − 2× 0.938

= 41.5 GeV .

As E1 � mp, a rough estimate is√
2mpE1 ≈

√
2000 = 45 GeV .

Thus the answer is (a).

4021

In the CERN colliding-beam storage ring, protons of total energy

30 GeV collide head-on. What energy must a single proton have to give

the same center-of-mass energy when colliding with a stationary proton?

(Wisconsin)

Solution:

Consider a proton of energy E and momentum P incident on a station-

ary proton in the laboratory. This is seen in the center-of-mass frame as two

protons each of energy Ē colliding head-on. The invariant mass squared S

is Lorentz-invariant. Hence

S = (2Ē)2 = (E +mp)
2 − P 2 = 2mpE + 2m

2
p ,
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giving

E =
4Ē2 − 2m2

p

2mp
=
4× 302 − 2× 0.9382

2× 0.938

= 1.92× 103 GeV .

4022

Calculate the fractional change in the kinetic energy of an α-particle

when it is scattered through 180◦ by an O16 nucleus.

(Wisconsin)

Solution:

Let E be the kinetic energy of the incident α-particle, p be its momen-

tum, mα be its mass, and let E
′ and p′ represent the kinetic energy and

momentum of the scattered α-particle respectively. In the nonrelativistic

approximation,

p =
√
2mαE , p′ =

√
2mαE′ .

Let the recoil momentum of 16O be P0, conservation of momentum and

of energy require

P0 = p+ p′ =
√
2mαE +

√
2mαE′ ,

E = E′ +
(
√
2mαE +

√
2mαE′)

2

2M
,

whereM is the mass of 16O nucleus. WithM ≈ 4mα the last equation gives

E = E′ +
1

4
(
√
E +
√
E ′)2 =

5

4
E′ +

1

2

√
EE′ +

1

4
E ,

or

(5
√
E′ − 3

√
E)(
√
E′ +
√
E) = 0 .

Thus 5
√
E′ − 3

√
E = 0, yielding E′ = 9

25E.

Therefore the fractional change in the kinetic energy of α-particle is

E′ −E

E
= −16

25
.
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4023

A beam of π+ mesons of kinetic energy T yields some µ+ going back-

ward. The µ+’s are products of the reaction

π+ → µ+ + ν .

With

mπc
2 = 139.57 MeV ,

mµc
2 = 105.66 MeV ,

mνc
2 = 0.0 MeV .

for what range of T is this possible?

(Wisconsin)

Solution:

µ+ from π+ decay can go backward in the laboratory frame if its velocity

in the center-of-mass frame (c.m.s.), which is also the rest frame of π+, is

greater than the velocity of π+ in the laboratory frame. Denoting quantities

in c.m.s. by a bar, we have

mπ =
√
p̄2µ +m2

µ + p̄ν

since neutrino has zero rest mass. As p̄µ = −p̄ν , p̄µ = p̄ν and the

above gives

p̄µ =
m2
π −m2

µ

2mπ
.

Hence

Ēµ =
√
p̄2µ +m2

µ =
m2
π +m2

µ

2mπ
,

and so

β̄µ =
p̄µ

Ēµ
=

m2
π −m2

µ

m2
π +m2

µ

.

We require βπ ≤ β̄µ for some µ
+ to go backward. Hence

Eπ ≤
mπ√
1− β̄µ2

=
m2
π +m2

µ

2mµ
,
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or

Tπ ≤ Eπ −mπ =
(mπ −mµ)

2

2mµ
= 5.44 MeV .

4024

State whether the following processes are possible or impossible and

prove your statement:

(a) A single photon strikes a stationary electron and gives up all its

energy to the electron.

(b) A single photon in empty space is transformed into an electron and

a positron.

(c) A fast positron and a stationary electron annihilate, producing only

one photon.

(Wisconsin)

Solution:

All the three reactions cannot take place because in each case energy

and momentum cannot be both conserved.

(a) For the process

γ + e→ e′ ,

conservation of the invariant mass squared,

S = (Eγ +me)
2 − p2γ = 2meEγ +m2

e = E2
e′ − p2e′ = m2

e ,

leads to meEγ = 0, which contradicts the fact that neither Eγ nor me

is zero.

(b) In the process γ → e+ + e−, let the energies and momenta of the

produced e+ and e− be E1, E2, p1, p2 respectively. The invariant mass

squared of the initial state is

S(γ) = E2
γ − p2γ = 0 ,

while for the final state it is

S(e+e−) = (E1 +E2)
2 − (p1 + p2)

2

= 2m2
e + 2(E1E2 − p1p2 cos θ) ≥ 2m2

e ,
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where θ is the angle between p1 and p2. As S(γ) �= S(e+e−), its invariance

is violated and the reaction cannot take place.

(c) The reaction is the inverse of that in (b). It similarly cannot

take place.

4025

(a) Prove that an electron-positron pair cannot be created by a single

isolated photon, i.e., pair production takes place only in the vicinity of a

particle.

(b) Assuming that the particle is the nucleus of a lead atom, show

numerically that we are justified in neglecting the kinetic energy of the

recoil nucleus in estimating the threshold energy for pair production.

(Columbia)

Solution:

(a) This is not possible because energy and momentum cannot both be

conserved, as shown in Problem 4024(b). However, if there is a particle

in the vicinity to take away some momentum, it is still possible.

(b) Neglecting the kinetic energy of the recoiling nucleus, the threshold

energy of the photon for e+e− pair production is

Eγ = 2me = 1.022 MeV .

At most, the lead nucleus can take away all its momentum pγ , i.e.,

pPb = pγ = Eγ ,

and the recoil kinetic energy of the Pb nucleus is

TPb = pPb
2/(2mPb) =

(
Eγ

2mPb

)
Eγ .

As mPb ≈ 200mp = 1.88× 105 MeV,

TPb ≈
1.022

2× 1.88× 105 ×Eγ = 2.7× 10−6 ×Eγ .

Hence it is reasonable to neglect the kinetic energy of the recoiling nucleus.
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4026

(a) Write the reaction equation for the decay of a negative muon. Iden-

tify in words all the particles involved.

(b) A mu-minus decays at rest. Could a lepton from this decay convert

a proton at rest into a neutron? If so, how; and in particular will there be

enough energy?

(Wisconsin)

Solution:

(a) The decay reaction for µ− is

µ− → e− + ν̄e + νµ ,

where e− represents electron, ν̄e electron-antineutrino, νµ muon-neutrino.

(b) If the energy of the electron or the electron-antineutrino is equal to

or larger than the respective threshold energy of the following reactions, a

proton at rest can be converted into a neutron.

e− + p→ n+ νe , (1)

ν̄e + p→ e+ + n . (2)

The threshold energy for reaction (1) is

E1 ≈ mn −mp −me ≈ 0.8 MeV .

The threshold energy for reaction (2) is

E2 ≈ mn −mp +me ≈ 1.8 MeV .

Mu-minus decay releases quite a large amount of energy, about 105MeV.

The maximum energy νµ can acquire is about mµ/2 ≈ 53 MeV. Then the
combined energy of ν̄e and e

− is at the least about 53 MeV. In the reactions,

as the mass of proton is much larger than that of muon or neutrino, the

threshold energy in the center-of-mass system is approximately equal to

that in the laboratory system. Therefore, at least one of the two leptons,
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ν̄e or e
−, from µ− decay has energy larger than the threshold of the above

reactions and so can convert a proton at rest into a neutron.

4027

Two accelerator facilities are under construction which will produce the

neutral intermediate vector boson Z0 via the process

e+ + e− → Z0 .

The mass of the Z0 is MZ = 92 GeV.

(a) Find the energy of the electron beam needed for the colliding beam

facility under construction.

Assume that a fixed target facility is to be built, such that a beam of

e+ will strike a target of e− at rest.

(b) What is the required e+ beam energy for this case?

(c) What is the energy and velocity of the Z0 (in the laboratory) after

production?

(d) Find the maximum energy in the laboratory frame of muons from

the subsequent decay Z0 → µ+ + µ−.

(Columbia)

Solution:

(a) For the colliding-beam machine, the center-of-mass and laboratory

frames are identical, and so the threshold electron energy for Z0 production

is E =MZ/2 = 46 GeV.

(b) For the fixed target facility, conservation of the invariant mass gives

(Ee+ +me)
2 − p2e+ =M2

Z .

With E2
e+ − p2e+ = m2

e, we find the threshold energy

Ee+ =
M2
Z − 2m2

e

2me
≈ M2

Z

2me
= 8.30× 106 GeV .

(c) In the center-of-mass frame (c.m.s.), total momentum is zero, total

energy is 2Ē, Ē being the energy of e+ or e−. Invariance of the invariant

mass squared,

S = (Ee+ +me)
2 − p2e+ = (2Ē)

2 ,
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gives

Ē =

√
2meEe+ + 2m2

e

2
≈
√

meEe+

2
=

MZ

2
.

The Lorentz factor of c.m.s. is therefore

γ0 =
Ē

me
=

√
Ee+

2me
+
1

2
≈ MZ

2me
.

This is also the Lorentz factor of Z0 as it is created at rest in c.m.s. Thus

Z0 has total energy γ0Mz ≈ M2
Z

2me
≈ Ee+ and velocity

βc =

(
1− 1

γ20

) 1
2

c ≈
[
1−
(
2me

MZ

)2
] 1
2

c

≈
(
1− 2m

2
e

M2
Z

)
c .

(d) In the rest frame of Z0 the angular distribution of the decay muons

is isotropic. Those muons that travel in the direction of the incident e+

have the maximum energy in the laboratory.

In c.m.s. Z0 decays at rest into two muons, so that

Ēµ =
MZ

2
, γ̄µ =

Ēµ

mµ
=

MZ

2mµ
.

For a muon moving in the direction of motion of e+, inverse Lorentz

transformation gives

γµ = γ0(γ̄µ + β0γ̄µβ̄µ) ≈ 2γ0γ̄µ ,

as β0 ≈ βµ ≈ 1. Hence the maximum laboratory energy of the decay

muons is

Eµ = γµmµ ≈ 2γ0γ̄µmµ =
M2
Z

2me
≈ Ee+ .

This is to be expected physically as the velocity of the Z0 is nearly equal

to c. Compared to its kinetic energy, the rest mass of the muons produced

in the reaction is very small. Thus the rest mass of the forward muon can
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be treated as zero, so that, like a photon, it takes all the momentum and

energy of the Z0.

4028

The following elementary-particle reaction may be carried out on a pro-

ton target at rest in the laboratory:

K− + p→ π0 +Λ0 .

Find the special value of the incident K− energy such that the Λ0 can be

produced at rest in the laboratory. Your answer should be expressed in

terms of the rest masses mπ0 , mK− , mp and mΛ0 .

(MIT )

Solution:

The invariant mass squared S = (ΣE)2 − (Σp)2 is conserved in a reac-
tion. Thus

(EK +mp)
2 − p2K = (Eπ +mΛ)

2 − p2π .

As the Λ0 is produced at rest, pΛ = 0 and the initial momentum pK is

carried off by the π0. Hence pπ = pK and the above becomes

EK +mp = Eπ +mΛ ,

or

E2
π = p2π +m2

π = p2K +m2
π = E2

K + (mΛ −mp)
2 − 2EK(mΛ −mp) ,

or

2EK(mΛ −mp) = m2
K −m2

π + (mΛ −mp)
2 ,

giving

EK =
m2
K −m2

π + (mΛ −mp)
2

2(mΛ −mp)
.

4029

K+ mesons can be photoproduced in the reaction

γ + p→ K+ +Λ0 .
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(a) Give the minimum γ-ray energy in the laboratory, where p is at rest,

that can cause this reaction to take place.

(b) If the target proton is not free but is bound in a nucleus, then the

motion of the proton in the nucleus (Fermi motion) allows the reaction

of part (a) to proceed with a lower incident photon energy. Assume a

reasonable value for the Fermi motion and compute the minimum photon

energy.

(c) The Λ0 decays in flight into a proton and a π− meson. If the Λ0

has a velocity of 0.8c, what is (i) the maximum momentum that the π−

can have in the laboratory, and (ii) the maximum component of laboratory

momentum perpendicular to the Λ0 direction?

(mK+ = 494 MeV/c
2 ,mA0 = 1116 MeV/c

2 ,mπ− = 140 Mev/c
2)

(CUSPEA)

Solution:

(a) Let P denote 4-momentum. We have the invariant mass squared

S = −(Pγ + Pp)
2 = (mp +Eγ)

2 −E2
γ = m2

p + 2Eγmp = (mK +mΛ)
2 ,

giving

Eγ =
(mK +mΛ)

2 −m2
p

2mp
= 913 MeV .

as the minimum γ energy required for the reaction to take place.

(b) If we assume that the proton has Fermi momentum pp = 200 MeV/

c then

S = −(Pγ + Pp)
2 = (Eγ +Ep)

2 − (pγ + pp)
2 = (mK +mΛ)

2 .

With Eγ = pγ , E
2
p − p2p = m2

p, this gives

Eγ =
(mK +mΛ)

2 −m2
p + 2pγ · pp

2Ep
.

The threshold energy Eγ is minimum when the proton moves opposite to

the photon, in which case

Eγ =
(mK +mΛ)

2 −m2
p

2(Ep + pp)

=
(mK +mΛ)

2 −m2
p

2(
√
p2p +m2

p + pp)
= 739 MeV .
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(c) In the rest frame of Λ0, conservation of energy and of momen-

tum give

Ēπ + Ēp = mΛ , p̄π + p̄p = 0 .

Then

(mΛ − Ēπ)
2 = p̄2p +m2

p = p̄2π +m2
p ,

or

Ēπ =
m2

Λ +m2
π −m2

p

2mΛ
= 173 MeV ,

and so

p̄π =
√
Ē2
π −m2

π = 101 MeV/c .

pπ is maximum in the laboratory if p̄π is in the direction of motion of

the Λ0, which has β0 = 0.8, γ0 = (1− β2)−
1
2 = 5

3 in the laboratory. Thus

pπ = γ0(p̄π + β0Ēπ) = 399 MeV/c .

As (pπ)⊥ = (p̄π)⊥, the maximum momentum in the transverse direction

is given by the maximum (p̄π)⊥, i.e., 101 MeV/c.

4030

The ρ− meson is a meson resonance with mass 769 MeV and width

154 MeV. It can be produced experimentally by bombarding a hydrogen

target with a π−-meson beam,

π− + p→ ρ0 + n .

(a) What is the lifetime and mean decay distance for a 5 GeV ρ0?

(b) What is the π− threshold energy for producing ρ0 mesons?

(c) If the production cross section is 1 mb ≡ 10−27 cm2 and the liquid

hydrogen target is 30 cm long, how many ρ0 are produced on the average

per incident π−? (The density of liquid hydrogen is 0.07 g/c.c.)

(d) ρ0 mesons decay almost instantaneously into π+ + π−. Given that

the ρ0 is produced in the forward direction in the laboratory frame with an

energy of 5 GeV, what is the minimum opening angle between the outgoing

π+ and π− in the laboratory frame?

(Columbia)
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Solution:

(a) The ρ0 has Lorentz factor

γ0 =
Eρ

mρ
=

5

0.769
= 6.50 .

Its proper lifetime is

τ0 = �/Γ =
6.58× 10−22

154
= 4.27× 10−24 s .

In laboratory frame the lifetime is

τ = γ0τ0 = 2.78× 10−23 s .

The mean decay distance for a 5 GeV ρ0 is thus

d = τβc = τ0γ0βc = τ0c

√
γ20 − 1

= 4.27× 10−24 × 3× 1010 ×
√
6.502 − 1

= 8.23× 10−13 cm .

(b) At threshold the invariant mass squared is

S = (Eπ +mp)
2 − p2π = (mρ +mn)

2 .

With E2
π = m2

π + p2π this gives the threshold pion energy

Eπ =
(mρ +mn)

2 −m2
π −m2

p

2mp

=
(769 + 940)2 − 1402 − 9382

2× 938 = 1077 MeV .

(c) The average number of ρ− events caused by an incident π is

N = ρlσN0/A = 0.07× 30× 10−27 × 6.02× 1023

= 1.3× 10−3 ,



Experimental Methods and Miscellaneous Topics 599

where N0 = 6.023×1023 is the Avagadro number, A = 1 is the mass number
of hydrogen, and ρ is the density of liquid hydrogen.

(d) In the rest frame Σ̄ of the ρ0, the pair of pions produced move in

opposite directions with momenta p̄π+ = −p̄π− and energies Ēπ+ = Ēπ− =
mρ
2 , corresponding to

γ̄π =
Ēπ

mπ
=

mp

2mπ
, β̄π =

√
1− 1

γ̄2π
=

1

mρ

√
m2
ρ − 4m2

π = 0.93 .

Σ̄ has Lorentz factor γ0 = 6.50 in the laboratory, corresponding to

β0 =

√
1− 1

6.502
= 0.99 .

Consider a pair of pions emitted in Σ̄ parallel to the line of flight of

ρ0 in the laboratory. The forward-moving pion will move forward in the

laboratory. As β0 > β̄π, the backword-moving pion will also move forward

in the laboratory. Hence the minimum opening angle between the pair

is zero.

4031

(a) The Ω− was discovered in the reaction K−+p→ Ω−+K++K0. In

terms of the masses of the various particles, what is the threshold kinetic

energy for the reaction to occur if the proton is at rest?

(b) Suppose the K0 travels at a speed of 0.8c. It decays in flight into

two neutral pions. Find the maximum angle (in the laboratory frame) that

the pions can make with the K0 line of flight. Express your answer in terms

of the π and K masses.

(Columbia)

Solution:

(a) At threshold the invariant mass squared is

S = (EK +mp)
2 − p2K = (mΩ + 2mK)

2 .

With E2
K = p2K +m2

K , this gives

EK =
(mΩ + 2mK)

2 −m2
p −m2

K

2mp
.
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Hence the threshold kinetic energy is

TK = EK −mK =
(mΩ + 2mK)

2 − (mp +mK)
2

2mp
.

(b) Denote the rest frame of K0 by Σ̄ and label the two π0 produced

by 1 and 2. In Σ̄,

p̄1 = −p̄2, Ē1 + Ē2 = mK ,

and so

Ē1 = Ē2 =
mK

2
,

p̄1 = p̄2 =
√
Ē2 −m2

π

=
1

2

√
m2
K − 4m2

π .

Consider one of the pions, say pion 1. Lorentz transformation

p1 cos θ1 = γ0(p̄1 cos θ̄1 + β0Ē1) ,

p1 sin θ1 = p̄1 sin θ̄1 ,

gives

tan θ1 =
sin θ̄1

γ0

(
cos θ̄1 +

β0

β̄

) ,

where γ0 and β0 are the Lorentz factor and velocity of the K
0 in laboratory

and β̄ = p̄1
Ē1
is the velocity of the pion in Σ̄.

To find maximum θ1, let
d tan θ1
dθ̄1

= 0, which gives

cos θ̄1 = −
β̄

β0
.

Note that under this condition d2 tan θ1
dθ̄21

< 0. Also, we have β0 = 0.8,

β̄ =
p̄1

Ē1
=

1

mK

√
m2
K − 4m2

π

=
√
4942 − 1352 × 4/494 = 0.84 .
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As | cos θ̄1| ≤ 1, the condition cannot be satisfied. However, we see that
as θ̄1 → π, cos θ̄1 → −1, sin θ̄1 → 0 and tan θ1 → 0, or θ1 → π. Thus the

maximum angle a pion can make with the line of flight of K0 is π.

4032

The reaction

p+ p→ π+ +D , (1)

in which energetic protons from an accelerator strike resting protons to

produce positive pi-meson-deuteron pairs, was an important reaction in

the “early days” of high-energy physics.

(a) Calculate the threshold kinetic energy T in the laboratory for the

incident proton. That is, T is the minimum laboratory kinetic energy al-

lowing the reaction to proceed. Express T in terms of the proton mass

mp, the pion mass mπ, and the deuteron mass mD. Evaluate T , taking

mp = 938 MeV/c
2, mD = 1874 MeV/c

2, mπ = 140 MeV/c
2.

(b) Assume that the reaction is isotropic in the center-of-mass system.

That is, the probability of producing a π+ in the solid angle element dΩ∗ =

dφ∗d(cos θ∗) is constant, independent of angle. Find an expression for the

normalized probability of the π+ per unit solid angle in the laboratory, in

terms of cos θlab, the velocity β̄c of the center of mass, the π
+ velocity βc

in the laboratory, and the momentum p∗ in the center of mass.

(c) In 2-body endothermic reactions such as (1) it can happen that the

probability per unit solid angle in the laboratory for a reaction product can

be singular at an angle θ �= 0. How does this relate to the result derived in
(b)? Comment briefly but do not work out all of the relevant kinematics.

(CUSPEA)

Solution:

(a) At threshold the invariant mass squared is

(E +mp)
2 − p2 = (mπ +mD)

2 ,

where E and p are the energy and momentum of the incident proton in the

laboratory. With

E2 = p2 +m2
p
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this gives

E =
(mπ +mD)

2 − 2m2
p

2mp
,

or the threshold kinetic energy

T = E −mp =
(mπ +mD)

2 − 4m2
p

2mp
= 286.2 MeV .

(b) Let the normalized probability for producing a π+ per unit solid an-

gle in the center-of-mass and laboratory frames be dP
dΩ∗ and

dP
dΩ respectively.

Then

dP

dΩ∗
=
1

4π
,

dP

dΩ
=

dP

dΩ∗
dΩ∗

dΩ
=
1

4π

d cos θ∗

d cos θ
,

where the star denotes quantities in the center-of-mass frame.

The Lorentz transformation for the produced π+

p∗ sin θ∗ = p sin θ , (1)

p∗ cos θ∗ = γ̄(p cos θ − β̄E) , (2)

E∗ = γ̄(E − β̄p cos θ) , (3)

where γ̄ and β̄ are the Lorentz factor and velocity of the center of mass in

the laboratory. Differentiating Eq. (2) with respect to cos θ, as p∗ and E∗

are independent of θ∗ and hence of θ, we have

p∗
d cos θ∗

d cos θ
= γ̄

(
p+ cos θ

dp

d cos θ
− β̄

dE

dp

dp

d cos θ

)
.

As E = (m2 + p2)1/2, dE/dp = p/E = β and the above becomes

p∗
d cos θ∗

d cos θ
= γ̄

(
p+ cos θ

dp

d cos θ
− β̄β

dp

d cos θ

)
. (4)

Differentiate Eq. (3) with respect to cos θ, we find

0 = γ̄

(
dE

d cos θ
− β̄p− β̄ cos θ

dp

d cos θ

)

= γ̄

(
β

dp

d cos θ
− β̄p− β̄ cos θ

dp

d cos θ

)
,
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or
dp

d cos θ
=

pβ̄

β − β̄ cos θ
.

Substituting this in Eq. (4) gives

p∗
d cos θ∗

d cos θ
= γ̄

[
p+

(cos θ − β̄β)β̄p

β − β̄ cos θ

]

=
(1− β̄2)γ̄βp

β − β̄ cos θ
=

p

γ̄(1− β̄ cos θ/β)
.

Hence the probability of producing a π+ per unit solid angle in the labora-

tory is

dP

dΩ
=
1

4π

d cos θ∗

d cos θ

=
p

4πγ̄p∗(1− β̄ cos θ/β)

=
mπβγ

4πγ̄p∗(1− β̄ cos θ/β)
.

(c) The result in (b) shows that dP
dΩ is singular if 1 −

β̄
β
cos θ = 0 which

requires β̄ > β. When the π+ goes backward in the center-of-mass frame,

β < β̄. Thus there will be an angle θ in the laboratory for which the

condition is satisfied. Physically, this is the “turn around” angle, i.e., the

maximum possible angle of π+ emission in the laboratory.

4033

The Q-value (the energy released) of the He3(n, p) reaction is reported

to be 0.770 MeV. From this and the fact that the maximum kinetic energy

of β-particles emitted by tritium (H3) is 0.018 MeV, calculate the mass

difference in amu between the neutron and a hydrogen atom (1H). (1 amu

= 931 MeV)

(SUNY, Buffalo)

Solution:

The reaction
3He + n→3 H+ p
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has Q-value

Q = [M(3He) +M(n)−M(3H)−M(1H)] = 0.770 MeV ,

whence

M(n)−M(3H) = 0.770 +M(1H)−M(3He) .

As in the decay 3H→3 He + e− + ν̄ the electron has maximum energy

Emax = [M(
3H)−M(3He)] = 0.018 MeV ,

we find

M(n)−M(1H) = 0.770 + 0.018 = 0.788 MeV

= 8.46× 10−4 amu .

4034

Suppose that a slowly moving antiproton is annihilated in a collision

with a proton, leading to 2 negative pions and 2 positive pions. (mπc
2 =

140 MeV)

(a) What is the average kinetic energy per pion? (MeV)

(b) What is the magnitude of the momentum of a pion with such an

energy? (MeV/c)

(c) What is the magnitude of the velocity? (In units of c)

(d) If the annihilation led instead to 2 photons, what would be the

wavelength of each? (cm)

(UC, Berkeley)

Solution:

(a)

p+ p̄→ 2π+ + 2π− ,

As the incident p̄ is slowly moving, we can take Tp̄ ≈ 0. Then each pion
will have energy Eπ ≈ 2mp

4 = 1
2mp, and so kinetic energy

T̄π ≈
1

2
mp −mπ =

1

2
(938− 2× 140) = 329 MeV .
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(b) The momentum of each pion is

p =
√
E2
π −m2

π ≈
1

2

√
m2
p − 4m2

π = 448 MeV/c .

(c) Its velocity is

β =
p

E
≈ 2p

mp
= 0.955 .

(d) If the annihilation had led to two photons, the energy of each photon

would be

Eγ =
2mp

2
= mp = 938 MeV .

The wavelength of each photon is

λ =
c

ν
=
2π�c

hν
=
2π�c

Eγ
=
2π × 197× 10−13

938
= 1.32× 10−13 cm .

4035

Consider the process of Compton scattering. A photon of wavelength λ

is scattered off a free electron initially at rest. Let λ′ be the wavelength of

the photon scattered in a direction of θ.

(a) Compute λ′ in terms of λ, θ and universal parameters.

(b) Compute the kinetic energy of the recoiled electron.

(CUSPEA)

Solution:

(a) Conservation of energy gives (Fig. 4.4)

pc+mc2 = p′c+
√
p2ec

2 +m2c4 ,

or

(p− p′ +mc)2 = p2e +m2c2 , (1)

where m is the mass of electron. Conservation of momentum requires

p = p′ + pe

or

(p− p′)2 = p2e . (2)
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Fig. 4.4

The difference of Eqs. (1) and (2) gives

pp′(1− cos θ) = (p− p′)mc ,

i.e.,
1

p′
− 1

p
=

1

mc
(1− cos θ) ,

or
h

p′
− h

p
=

h

mc
(1− cos θ) .

Hence

λ′ = λ+
h

mc
(1− cos θ) .

(b) The result of (a) gives

p′c =
mc2

1− cos θ + mc

p

.

The kinetic energy of the recoiled electron is

T =
√
p2ec

2 +m2c4 −mc2 = pc− p′c

=
pc(1− cos θ)
1− cos θ + mc

p

=
(1− cos θ)hc

λ

1− cos θ + mcλ

h

.
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4036

An X-ray photon of initial frequency 3×1019 Hz collides with an electron
at rest and is scattered through 90◦. Find the new frequency of the X-ray.

The electron Compton wavelength is 2.4× 10−12 meters.
(Wisconsin)

Solution:

Suppose that the target electron is free. Then the wavelength of the

scattered photon is given by (Problem 4035(a))

λ′ = λ0 +
h

mc
(1− cos θ) ,

where λ0 is the wavelength of the incident photon, h/(mc) is the electron’s

Compton wavelength λc. At scattering angle 90
◦ the wavelength of the

scattered photon is

λ′ = λ0 + λc ,

and the new frequency is

ν′ =
c

λ′
=

c
c

ν0
+ λc

= 2.42× 1019 Hz .

4037

Consider Compton scattering of photons colliding head-on with moving

electrons. Find the energy of the back-scattered photons (θ = 180◦) if the

incident photons have an energy hν = 2 eV and the electrons have a kinetic

energy of 1 GeV.

(Wisconsin, MIT, Columbia, Chicago, CCT )

Solution:

Denote the energies and momenta of the electron and photon before and

after collision by Ee, pe, Eγ , pγ , E
′
e, p

′
e, E

′
γ , p

′
γ respectively. Conservation

of energy and of momentum give

Eγ +Ee = E′γ +E′e ,
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or

pγ +Ee = p′γ +E′e ,

and

−pγ + pe = p′γ + p′e .

Addition and subtraction of the last two equations give

E′e + p′e = −2p′γ +Ee + pe ,

E′e − p′e = 2pγ +Ee − pe ,

which, after multiplying the respective sides together, give

E′2e − p′2e = E2
e − p2e + 2pγ(Ee + pe)− 2p′γ(Ee − pe + 2pγ) .

With E′2e − p′2e = E2
e − p2e = m2

e, this becomes

p′γ =
pγ(Ee + pe)

Ee − pe + 2pγ
≈ 2pγEe

m2
e

2Ee
+ 2pγ

=
2× 2× 10−6 × 103
0.5112

2× 103 + 2× 2× 10
−6
= 29.7 MeV/c ,

since Ee−pe = Ee−
√
E2
e −m2

e ≈ Ee−Ee(1− m2e
2E2e
) =

m2e
2Ee
, Ee+pe ≈ 2Ee,

Ee ≈ Te as me � Ee. Hence the back-scattered photons have energy

29.7 MeV.

4038

(a) Two photons energy ε and E respectively collide head-on. Show

that the velocity of the coordinate system in which the momentum is zero

is given by

β =
E − ε

E + ε

(b) If the colliding photons are to produce an electron-positron pair and

ε is 1 eV, what must be the minimum value of the energy E?

(Wisconsin)
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Solution:

(a) Let P, p be the momenta of the photons, where P = E, p = ε. The

total momentum of the system is |P + p|, and the total energy is E + ε.

Hence the system as a whole has velocity

β =
|P+ p|
E + ε

=
E − ε

E + ε
.

(b) At threshold the invariant mass squared of the system is

S = (E + ε)2 − (P+ p)2 = (2me)
2 ,

me being the electron mass.

As (P + p)2 = (P − p)2 = (E − ε)2, the above gives the minimum

energy required:

E =
m2
e

ε
= 261 GeV .

4039

The universe is filled with black-body microwave radiation. The average

photon energy is E ∼ 10−3 eV. The number density of the photons is

∼ 300 cm−3. Very high energy γ-rays make electron-positron-producing

collisions with these photons. This pair-production cross section is σT /3,

with σT being the nonrelativistic electron-photon scattering cross section

σT = (8π/3)r
2
e , where re = e2/mc2 is the classical radius of electron.

(a) What energy γ-rays would have their lifetimes in the universe limited

by this process?

(b) What is the average distance they would travel before being con-

verted into e+e− pairs?

(c) How does this compare with the size of the universe?

(d) What physical process might limit lifetime of ultra-high-energy pro-

tons (energy ≥ 1020 eV) in this same microwave radiation? (Assume

photon-proton scattering to be too small to be important.)

(CUSPEA)

Solution:

(a) Let the energies and momenta of the high energy photon and a

microwave photon be E1, p1, E2, p2 respectively. For e
+e− production

we require
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(E1 +E2)
2 − (p1 + p2)

2 ≥ (2m)2 ,

where m is the electron mass. As E1 = p1, E2 = p2, this becomes

2E1E2 − 2p2 · p2 ≥ (2m)2 ,

or, if the angle between p1 and p2 is θ,

E1E2(1− cos θ) ≥ 2m2 .

Hence

E1 ≥
2m2

E2(1− cos θ)
.

E1 is minimum when θ = π, i.e., cos θ = −1. Thus the minimum energy

for pair production is

Emin =
m2

E2
=
(0.51× 106)2

10−3
= 2.6× 1014 eV .

Photons of energies above this value would have lieftimes limited by the

pair production process.

(b) The mean free path for pair production is

l =
1

ρσ
≈ 1

ρσT

3

=
9

8πρr2e

=
9

8π × 300× (2.8× 10−13)2 = 1.5× 10
22 cm = 1.6× 104 light years .

(c) The size of our universe is R ≈ 1010 light years. Thus

l � R .

(d) Suppose the proton collides head-on with a microwave photon. The

total energy Ē in the center-of-mass frame is given by the invariant mass

squared

(Ep +Eγ)
2 − (pp − pγ)

2 = Ē2 ,

or

2EpEγ + 2pppγ +m2
p = Ē2 .
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As pγ = Eγ , pp ≈ Ep,

Ē =
√
4EpEγ +m2

p

=
√
4× 1020 × 10−3 + (109)2

= 1.18× 109 eV .

Neglecting γp → γp, we see that, as conservation of baryon number

requires baryon number 1 in the products, the possible reactions are the

following pion photoproduction

γp→ π0p , γp→ π+n .

4040

Consider the pion photoproduction reaction

γ + p→ π0 + p ,

where the rest energy is 938 MeV for the proton and 135 MeV for the

neutral pion.

(a) If the initial proton is at rest in the laboratory find the laboratory

threshold gamma-ray energy for this reaction to “go”.

(b) The isotropic 3-K cosmic black-body radiation has average photon

energy of about 0.001 eV. Consider a head-on collision between a proton

and a photon of energy 0.001 eV. Find the minimum proton energy that

will allow this pion photoproduction reaction to go.

(c) Speculate briefly on the implications of your result [to part (b)] for

the energy spectrum of cosmic ray protons.

(UC, Berkeley)

Solution:

(a) The invariant mass squared of the reaction at threshold is

(Eγ +mp)
2 − p2γ = (mp +mπ)

2 .
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With Eγ = pγ , this gives

Eγ =
(mp +mπ)

2 −m2
p

2mp
= mπ +

m2
π

2mp
= 145 MeV .

(b) For head-on collision the invariant mass squared at threshold,

S = (Eγ +Ep)
2 − (pγ − pp)

2 = (mπ +mp)
2 ,

gives

Ep − pp =
(mp +mπ)

2 −m2
p

2Eγ
= 1.36× 1014 MeV .

Writing Ep − pp = A, we have

p2p = (Ep −A)2 ,

or

m2
p − 2AEp +A2 = 0 ,

giving the minimum proton energy for the reaction to go

Ep =
1

2A
(A2 +m2

p) ≈
A

2
= 6.8× 1013 MeV .

(c) The photon density of 3-K black-body radiation is very large. Pro-

tons of energies> Ep in cosmic radiation lose energy by constantly interact-

ing with them. Hence the upper limit of the energy spectrum of cosmic-ray

protons is Ep.

4041

The J/ψ particle has a mass of 3.097 GeV/c2 and a width of 63 keV. A

specific J/ψ is made with momentum 100 GeV/c and subsequently decays

according to

J/ψ → e+ + e− .

(a) Find the mean distance traveled by the J/ψ in the laboratory before

decaying.

(b) For a symmetric decay (i.e., e+ and e− have the same laboratory

momenta), find the energy of the decay electron in the laboratory.

(c) Find the laboratory angle of the electron with respect to the direction

of the J/ψ.

(Columbia)
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Solution:

(a) The total width Γ of J/ψ decay is 63 keV, so its proper lifetime is

τ0 = �/Γ =
6.58× 10−16
63× 103 = 1.045× 10−20 s .

The laboratory lifetime is τ = τ0γ, where γ is its Lorentz factor. Hence the

mean distance traveled by the J/ψ in the laboratory before decaying is

l = τβc = τ0γβc =
τ0pc

m
= 1.045× 10−20 × 100

3.097
× 3× 108

= 1.012× 10−10 m.

(b) For symmetric decay, conservation of energy and of momentum give

EJ = 2Ee ,

pJ = 2pe cos θ ,

where θ is the angle the electron makes with the direction of the J/ψ

particle. Thus

Ee =
1

2
EJ =

1

2

√
p2J +m2

J =
1

2

√
1002 + 3.0972 = 50.024 GeV .

(c) The equations give

(
EJ

2

)2

−
( pJ

2 cos θ

)2
= E2

e − p2e = m2
e ,

or

cos θ =
pJ√

p2J +m2
J − 4m2

e

=
100√

1002 + 3.0972 − 4× (0.511× 10−3)2
= 0.9995 ,

i.e.

θ = 1.77◦ .
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4042

A negative Ξ particle decays into a Λ0 and a π−:

Ξ− → Λ0 + π− .

The Ξ− is moving in the laboratory in the positive x direction and has a

momentum of 2 GeV/c. The decay occurs in such a way that in the Ξ−

center-of-mass system the Λ0 goes at an angle of 30◦ from the initial Ξ−

direction.

Find the momenta and angles of the Λ0 and the π− in the laboratory

after the decay.

Rest energies:

MΞc
2 = 1.3 GeV ,

MΛc
2 = 1.1 GeV ,

Mπc
2 = 0.14 GeV .

(Columbia)

Solution:

The kinematic parameters β, γ and energy EΞ for Ξ
− are as follows:

EΞ =
√
p2Ξ +m2

Ξ = 2.385 GeV ,

βΞ =
pΞ

EΞ
= 0.839 ,

γΞ =
EΞ

mΞ
= 1.835 .

Denote quantities in the Ξ− rest frame by a bar. Conservation of mo-

mentum and of energy give

p̄π + p̄Λ = 0 ,

Ēπ + ĒΛ = mΞ .

Then

p̄Λ = p̄π ,
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and so

ĒΛ =
√
p̄2π +m2

Λ = mΞ − Ēπ .

Solving the last equation gives, with Ē2
π − p̄2π = m2

π,

Ēπ =
m2

Ξ +m2
π −m2

Λ

2mΞ
= 0.192 GeV ,

ĒΛ = mΞ −Eπ = 1.108 GeV ,

p̄Λ = p̄π =
√
Ē2
π −m2

π = 0.132 GeV/c .

The angle between p̄Λ and pΞ is θ̄Λ = 30
◦, and the angle between p̄π

and pΞ is θ̄π = 30
◦ + 180◦ = 210◦.

Lorentz-transforming to the laboratory frame:

For π:

pπ sin θπ = p̄π sin θ̄π = 0.132× sin 2100 = −0.064 GeV/c ,

pπ cos θπ = γ(p̄π cos θ̄π + βĒπ) = 0.086 GeV/c ,

giving

tan θπ = −0.767, or θπ = −37.5◦ ,

pπ =
√
0.0862 + 0.0642 = 0.11 GeV/c .

For Λ:

pΛ sin θΛ = p̄Λ sin θ̄Λ = 0.132× sin 30◦ = 0.66 GeV/c ,

pΛ cos θΛ = γ(p̄Λ cos θ̄Λ + βĒΛ) = 1.92 GeV/c ,

tan θΛ = 0.034 , or θΛ = 1.9
◦ ,

pΛ =
√
1.922 + 0.0662 = 1.92 GeV/c .

The angle between directions of π and Λ in the laboratory is

θ = θΛ − θπ = 1.9 + 37.5 = 39.4
◦ .
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4043

A K-meson of rest energy 494 MeV decays into a µ of rest energy

106 MeV and a neutrino of zero rest energy. Find the kinetic energies of

the µ and neutrino in a frame in which the K-meson decays at rest.

(UC, Berkeley)

Solution:

Consider the reaction

K → µ+ ν

in the rest frame of K. Conservation of momentum and of energy give

pµ + pν = 0 , or pµ = pν ,

and Eµ +Eν = mK .

We have

E2
µ = (mK −Eν)

2 = m2
K +E2

ν − 2mKEν ,

or, as Eν = pν = pµ and E
2
µ = p2µ +m2

µ,

pµ =
m2
K −m2

µ

2mK
=
4942 − 1062
2× 494 = 236 MeV/c .

The kinetic energies are

Tν = Eν = pνc = pµc = 236 MeV ,

Tµ =
√
p2µ +m2

µ −mµ = 152 MeV .

4044

Pions (m = 140 MeV) decay into muons and neutrinos. What is the

maximum momentum of the emitted muon in the pion rest frame?

(a) 30 MeV/c.

(b) 70 MeV/c.

(c) 2.7 MeV/c.

(CCT )
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Solution:

Denote total energy by E, momentum by p, and consider the reaction

π → µ+νµ in the pion rest frame. Conservation of energy and of momentum

give

Eµ = mπ −Eν ,

pµ + pν = 0 , or pµ = pν .

As for neutrinos Eν = pν , the first equation becomes, on squaring

both sides,

p2µ +m2
µ = (mπ − pµ)

2 ,

giving

pµ =
m2
π −m2

µ

2mπ
= 29.9 MeV/c .

Thus the answer is (a).

4045

The η′ meson (let M denote its mass) can decay into a ρ0 meson (mass

m) and a photon (mass = 0): η′ → ρ0 + γ. The decay is isotropic in the

rest frame of the parent η′ meson.

Fig. 4.5

Now suppose that a monoenergetic beam of η′ mesons is traveling with

speed v in the laboratory and let θ be the angle of the photon relative to the

beam, as shown in Fig. 4.5. Let P (θ)d(cos θ) be the normalized probability

that cos θ lies in the interval (cos θ, cos θ + d cos θ).

(a) Compute P (θ).
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(b) Let E(θ) be the laboratory energy of the photon coming out at angle

θ. Compute E(θ).

(CUSPEA)

Solution:

(a) Denote quantities in the rest frame of the η′ particle by a bar and

consider an emitted photon. Lorentz transformation for the photon,

p̄ cos θ̄ = γ(p cos θ − βE) ,

Ē = γ(E − βp cos θ) ,

where γ, β are the Lorentz factor and velocity of the decaying η′ in the

laboratory frame, gives, as for the photon p̄ = Ē, p = E,

cos θ̄ =
cos θ − β

1− β cos θ
,

or
d cos θ̄

d cos θ
=

1− β2

(1− β cos θ)2
.

In the rest frame of the η′, photon emission is isotropic, i.e., the proba-

bility of γ emission per unit solid angle is a constant. Thus

dP ∝ dΩ̄ = 2π sin θ̄dθ̄ = 2πd cos θ̄ ,

or
dP

1
=
2πd cos θ̄

4π
=
1

2
d cos θ̄ .

Writing it as dP = P̄ (θ̄)d cos θ̄ we have P̄ (θ̄) = 1
2 . Transforming to the

laboratory frame,

dP = P̄ (θ̄)d cos θ̄ = P (θ)d cos θ ,

giving

P (θ) =
1

2

d cos θ̄

d cos θ
=

1− β2

2(1− β cos θ)2
.

(b) In the rest frame of the η′, conservation laws give

Ēp =M − Ē , p̄p = p̄ ,
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or

Ē2
p − p̄2p = m2 =M2 − 2MĒ .

Thus

Ē =
M2 −m2

2M
.

Lorentz transformation for energy

Ē = γE(1− β cos θ)

gives

E =
Ē

γ(1− β cos θ)
=

M2 −m2

2(Eη − pη cos θ)
,

Eη, pη being the energy and momentum of the η
′ in the laboratory.

4046

A K0
L meson (Mc2 = 498 MeV) decays into π+π− (mc2 = 140 MeV)

in flight. The ratio of the momentum of the K0
L to Mc is p/Mc = 1. Find

the maximum transverse component of momentum that any decay pion can

have in the laboratory. Find the maximum longitudinal momentum that a

pion can have in the laboratory.

(Wisconsin)

Solution:

In the laboratory frame, K0
L has velocity

βc =
p

E
=

p√
p2 +M2

=
1√
2
,

and hence γc =
√
2.

Let the energy and momentum of the pions in the rest frame of K0
L be

Ē and p̄ respectively. Energy conservation gives 2Ē =M , and hence

p̄ =
√
Ē2 −m2 =

1

2

√
M2 − 4m2 =

1

2

√
4982 − 4× 1402 = 206 MeV/c .

The transverse component of momentum is not changed by the Lorentz

transformation. Hence its maximum value is the same as the maximum

value in the rest frame, namely 206 MeV/c.
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In the laboratory frame the longitudinal component of momentum of

π is

pl = γc(p̄ cos θ̄ + βcĒ) ,

and has the maximum value (cos θ̄ = 1)

plmax = γc(p̄+ βcĒ) = γc

(
p̄+

βcM

2

)
=
√
2

(
206 +

498

2
√
2

)

= 540 MeV/c .

4047

(a) A D0 charmed particle decays in the bubble chamber after traveling

a distance of 3 mm. The total energy of the decay products is 20 GeV. The

mass of D0 is 1.86 GeV. What is the time that the particle lived in its own

rest frame?

(b) If the decays of many D0 particles are observed, compare the ex-

pected time distributions (in the D0 rest frame) of the decays into decay

mode of branching ratio 1% and the same for a decay mode of branching

ratio 40%.

(Wisconsin)

Solution:

(a) The total energy of theD0 before decay is 20 GeV. Hence the Lorentz

factor γ of its rest frame is

γ =
E

m0
=

20

1.86
= 10.75 .

The velocity of the D0 (in units of c) is

β =

√
γ2 − 1
γ2

= 0.996

The lifetime of the D0 in the laboratory is

τ =
l

βc
=

3× 10−3
0.996× 3× 108 = 1.0× 10

−11 s
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and its proper lifetime is

τ0 =
τ

γ
= 9.3× 10−13 s .

(b) The decay constant of D0 is λ = 1
τ = 1.07× 1012 s−1.

In whatever decay mode, the expected time distribution of D0 decays

take the same form f(t) ≈ e−λt = exp(−1.07× 1012 × t). In other words,

the decay modes of branching ratios 1% and 40% have the same expected

time distribution.

4048

The charmed meson D0 decays into K−π+. The masses of D, K, π =

1.8, 0.5, 0.15 GeV/c2 respectively.

(a) What is the momentum of the K-meson in the rest frame of the D0?

(b) Is the following statement true or false? Explain your answer.

“The production of single K− mesons by neutrinos (νµ) is evidence for

D0 production”

(Wisconsin)

Solution:

In the rest frame of the D0 meson, momentum conservation gives

pK + pπ = 0 , or pK = pπ .

Energy conservation gives

EK +Eπ = mD .

i.e., √
p2K +m2

K +
√
p2K +m2

π = mD ,

leading to

pK =

[(
m2
D +m2

π −m2
K

2mD

)2

−m2
π

] 1
2

= 0.82 GeV/c .

(b) False. K− has an s quark. Other particles such as Ξ∗, Ω−, K∗,

which can be produced in neutrino reactions, can also decay into single K−

mesons.
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4049

The mean lifetime of a charged π-meson at rest is 2.6×10−8 sec. A mo-
noenergetic beam of high-energy pions, produced by an accelerator, travels

a distance of 10 meters, and in the process 10% of the pion decay. Find the

momentum and kinetic energy of the pions.

(Wisconsin)

Solution:

Suppose the initial number of pions is N0 and their velocity is β (in

units of c). After traveling a distance of l the number becomes

N(l) = N0 exp

(−λl
βc

)
,

where λ is the decay constant of pion in the laboratory. As

λ =
1

τ
=

1

γτ0
,

where τ0 = 2.6× 10−8 s is the proper lifetime of pion, γ = 1√
1−β2

, we have

γβ =
l

τ0c ln
N0

N(l)

=
10

2.6× 10−8 × 3× 108 × ln 1

0.9

= 12.2 .

The momentum of the pions is

p = mγβ = 0.14× 12.2 = 1.71 GeV/c ,

and so the kinetic energy is

T =
√
p2 +m2 −m ≈ 1.58 GeV .

4050

Neutral mesons are produced by a proton beam striking a thin target.

The mesons each decay into two γ-rays. The photons emitted in the forward
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direction with respect to the beam have an energy of 96 MeV, and the

photons emitted in the backward direction have an energy of 48 MeV.

(a) Determine β = v/c for the mesons.

(b) Determine the (approximate) rest energy of the mesons.

(Wisconsin)

Solution:

(a) In the decay of a π0 in the laboratory, if one photon is emitted back-

ward, the other must be emitted forward. Let their energies and momenta

be E2, p2, E1, p1 respectively. Conservation of energy gives

E = E1 +E2 = 96 + 48 = 144 MeV .

Conservation of momentum gives

p = p1 − p2 = 96− 48 = 48 MeV/c .

Hence the π0 has velocity

β =
p

E
=
48

144
=
1

3
.

(b) The π0 rest mass is

m =
E

γ
= E

√
1− β2 =

144

3
×
√
8 = 136 MeV/c2 .

4051

A particle has mass M = 3 GeV/c2 and momentum p = 4 GeV/c along

the x-axis. It decays into 2 photons with an angular distribution which

is isotropic in its rest frame, i.e. dP
d cos θ∗ =

1
2 . What are the maximum

and minimum values of the component of photon momentum along the x-

axis? Find the probability dP/dpx of finding a photon with x component

of momentum px, as a function of px.

(Wisconsin)

Solution:

In the rest frame of the particle, conservation of momentum and of

energy require

Ē1 + Ē2 =M , p̄1 + p̄2 = 0 .
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Thus

p̄1 = p̄2 = p̄ , Ē1 = Ē2 = Ē =
M

2
,

and the photons have energy

Ē =
3

2
= 1.5 GeV

and momentum

p̄ = Ē = 1.5 GeV/c .

The decaying particle has, in the laboratory,

γβ =
p

M
=
4

3
,

and so

γ =
√
(γβ)2 + 1 =

5

3
, β =

γβ

γ
= 0.8 .

Lorentz transformation gives the x component of photon momentum in

the laboratory as

px = γ(p̄ cos θ̄ + βĒ) = γp̄(cos θ̄ + β) .

Hence, px is maximum when θ̄ = 0◦:

(px)max =
5

3
× 1.5(1 + 0.8) = 4.5 GeV/c ,

px is minimum when θ̄ = 180◦:

(px)min =
5

3
× 1.5(−1 + 0.8) = −0.5 GeV/c .

Differentiating the transformation equation we have

dpx = γp̄d cos θ̄ .

Hence
dP

dpx
=

dP

d cos θ̄

d cos θ̄

dpx
=
1

2
· 1
γp̄
= 0.2 .
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4052

A neutral pion (π0) decays into two γ rays. Suppose a π0 is moving

with a total energy E.

(a) What are the energies of the γ-rays if the decay process causes them

to be emitted in opposite directions along the pion’s original line of motion?

(b) What angle is formed between the two γ’s if they are emitted at

equal angles to the direction of the pion’s motion?

(c) Taking mπ = 135 MeV and E = 1 GeV, give approximate numerical

values for your above answers.

(Columbia)

Solution:

(a) Let the momenta and energies of the two γ’s be pγ1 , pγ2 and Eγ1 ,

Eγ2 , the momentum and energy of the π0 be pπ, E, respectively. Conser-

vation laws of energy and momentum require

E = Eγ1 +Eγ2 ,

pπ = pγ1 − pγ2 .

As

E2 = p2π +m2
π , Eγ1 = pγ1 , Eγ2 = pγ2 ,

the above equations give

m2
π = 4Eγ1Eγ2 = 4Eγ1(E −Eγ1) .

The quadratic equation for Eγ1 has two solutions

Eγ1 =
E +

√
E2 −m2

π

2
,

Eγ2 =
E −

√
E2 −m2

π

2
,

which are the energies of the two photons.

(b) Let the angles the two photons make with the direction of the pion

be θ and −θ. Conservation laws give

E = 2Eγ ,

pπ = 2pγ cos θ .
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Note that, on account of symmetry, the two photons have the same energy

and momentum Eγ , pγ .

The two equations combine to give

m2
π = 4E

2
γ − 4p2γ cos2 θ = E2(1− cos2 θ) = E2 sin2 θ ,

or

θ = ± arcsin
(mπ

E

)
.

Thus the angle between the two photons is

θ2γ = 2θ = 2 arcsin
(mπ

E

)
.

(c) Numerically we have

Eγ1 =
103 +

√
106 − 1352
2

= 995.4 MeV ,

Eγ2 =
103 −

√
106 − 1352
2

= 4.6 MeV ,

θ2γ = 2 arcsin

(
135

1000

)
= 15.5◦ .

4053

A π0 meson decays isotropically into two photons in its rest system.

Find the angular distribution of the photons in the laboratory as a function

of the cosine of the polar angle in the laboratory for a π0 with momentum

p = 280 MeV/c. The rest energy of the pion is 140 MeV.

(UC, Berkeley)

Solution:

In the rest frame of the pion, the angular distribution of decay photons is

isotropic and satisfies the normalization condition
∫
W0(cos θ

∗, φ∗)dΩ∗ = 1.

As a π0 decays into two photons,
∫
W (cos θ∗, φ∗)dΩ∗ = 2. Note that W

is the probability of emitting a photon in the solid angle dΩ∗(θ∗, φ∗) in
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the decay of a π0. As W is independent of θ∗ and φ∗, the integral gives

W
∫
dΩ∗ = 4πW = 2, or W (cos θ∗, φ∗) = 1

2π . Integrating over φ
∗, we have

∫ 2π

0

W (cos θ∗)dϕ∗ =W

∫ 2π

0

dϕ∗ = 1 ,

or

W (cos θ∗) = 1 .

If θ∗ corresponds to laboratory angle θ, then

W (cos θ)d cos θ =W (cos θ∗)d cos θ∗ .

Let γ0, β0 be the Lorentz factor and velocity of the decaying π
0. The

Lorentz transformation for a photon gives

p cos θ = γ0(p
∗ cos θ∗ + β0E

∗) = γ0p
∗(cos θ∗ + β0) ,

E = p = γ0(E
∗ + β0p

∗ cos θ∗) = γ0p
∗(1 + β0 cos θ

∗) .

Note E∗, p∗ are constant since the angular distribution of the photons in

the rest frame is isotropic. Differentiating the above equations with respect

to cos θ∗, we have

cos θ
dp

d cos θ∗
+ p

d cos θ

d cos θ∗
= γ0p

∗ ,

dp

d cos θ∗
= γ0β0p

∗ ,

which combine to give

d cos θ∗

d cos θ
=

p

γ0p∗(1− β0 cos θ)
=

1

γ20(1− β0 cos θ)2
,

use having been made of the transformation equation

E∗ = γ0(E − β0p cos θ) ,

or

p∗ = γ0p(1− β0 cos θ) .
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Hence

W (cos θ) =W (cos θ∗)
d cos θ∗

d cos θ
=

1

γ20(1− β0 cos θ)2
.

With π0 of mass 140 MeV/c2, momentum 280 MeV/c, we have

γ0β0 =
280

140
= 2 ,

γ0 =
√
(γ0β0)2 + 1 =

√
5 ,

β0 =
γ0β0

γ0
=

2√
5
,

giving the laboratory angular distribution

W (cos θ) =
1

(
√
5)2
(
1− 2√

5
cos θ

)2 =
1

(
√
5− 2 cos θ)2

.

4054

A neutral pion decays into two γ-rays, π0 → γ + γ, with a lifetime

of about 10−16 sec. Neutral pions can be produced in the laboratory by

stopping negative pions in hydrogen via the reaction

π− + p→ π0 + n .

The values of the rest masses of these particles are:

m(π−) = 140 MeV , m(π0) = 135 MeV , m(p) = 938 MeV ,

m(n) = 940 MeV .

(a) What is the velocity of the π0 emerging from this reaction? Assume

that both the π− and the proton are at rest before the reaction.

(b) What is the kinetic energy of the emerging neutron?

(c) How far does the π0 travel in the laboratory if it lives for a time of

10−16 seconds measured in its own rest frame?
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(d) What is the maximum energy in the laboratory frame of the γ-rays

from the π0 decay?

(Columbia)

Solution:

(a) Momentum conservation requires

pπ0 + pn = 0 , or pπ0 = pn .

Energy conservation requires

En = mπ− +mp −Eπ0 .

With E2 − p2 = m2, these equations give

Eπ0 =
(mπ +mp)

2 +m2
π0 −m2

n

2(mπ− +mp)

= 137.62 MeV .

Hence

γ =
Eπ0

mπ0
= 1.019 ,

and

β =

√
1− 1

γ2
= 0.194 .

Thus the π0 has velocity 5.8× 107 m/s.
(b) The neutron has kinetic energy

Tn = mπ− +mp −Eπ0 −mn

= 0.38 MeV .

(c) The lifetime of π0 in the laboratory is

τ = τ0γ = 1.019× 10−16 s .

Hence the distance it travels before decaying is

l = τβc = 1.019× 10−16 × 5.8× 107 = 5.9× 10−9 m .
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(d) The π0 has γ = 1.019, β = 0.194 in the laboratory. In its rest frame,

each decay photon has energy

E∗γ =
1

2
mπ0 = 67.5 MeV .

Transforming to the laboratory gives

Eγ = γ(E∗γ + βp∗γ cos θ
∗) .

Maximum Eγ corresponds to θ
∗ = 0:

(Eγ)max = γE∗γ(1 + β) = 1.019× 67.5× (1 + 0.194)

= 82.1 MeV .

4055

High energy neutrino beams at Fermilab are made by first forming a

monoenergetic π+ (or K+) beam and then allowing the pions to decay by

π+ → µ+ + ν .

Recall that the mass of the pion is 140 MeV/c2 and the mass of the

muon is 106 MeV/c2.

(a) Find the energy of the decay neutrino in the rest frame of the π+.

In the laboratory frame, the energy of the decay neutrino depends on

the decay angle θ (see Fig. 4.6). Suppose the π+ beam has an energy

200 GeV/c2.

(b) Find the energy of a neutrino produced in the forward direction

(θ = 0).

Fig. 4.6
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(c) Find the angle θ at which the neutrino’s energy has fallen to half of

its maximum energy.

(Chicago)

Solution:

(a) In the π+ rest frame conservation laws of energy and momentum re-

quire

Eν +Eµ = mπ ,

pν + pµ = 0 , or pν = pµ .

These equations combine to give

m2
µ + p2ν = E2

ν +m2
π − 2mπEν .

Assume that neutrino has zero mass. Then Eν = pν and the above gives

Eν =
m2
π −m2

µ

2mπ+
=
1402 − 1062
2× 140 = 30 MeV .

(b) For π+ of energy 200 GeV, γ = E
m
= 200

0.140 = 1429, β ≈ 1. Lorentz
transformation for neutrino

Eν = γ(E∗ν + βp∗ν cos θ
∗) = γE∗ν(1 + β cos θ∗)

gives for θ∗ = 0

Eν = γE∗ν(1 + β) ≈ 1429× 30× (1 + 1) = 85.7 GeV .

Note θ∗ = 0 corresponds to θ = 0 in the laboratory as pν sin θ = p∗ν sin θ
∗.

(c) The laboratory energy of the neutrino is maximum when θ = θ∗ = 0.

Thus

(Eν)max = γE∗ν(1 + β) .

For Eν =
1
2 (Eν)max, we have

γE∗ν(1 + β cos θ∗) =
1

2
γE∗γ(1 + β) ,

giving

cos θ∗ =
β − 1
2β

,
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which corresponds to

sin θ∗ =
√
1− cos2 θ∗ = 1

2β

√
3β2 + 2β − 1 .

Lorentz transformation equations for neutrino

pν sin θ = p∗ν sin θ
∗ ,

pν cos θ = γ(p∗ν cos θ
∗ + βE∗ν) = γp∗ν(cos θ

∗ + β) ,

give

tan θ =
sin θ∗

γ(cos θ∗ + β)
.

For Eν =
1
2 (Eν)max,

tan θ 1
2
=

√
3β2 + 2β − 1

γ(β − 1 + 2β2) =
1

γ
· 1

(2β − 1)

√
3β − 1
β + 1

≈ 1
γ

as β ≈ 1. Hence at half the maximum angle,

θ 1
2
≈ 1

γ
.

4056

One particular interest in particle physics at present is the weak interac-

tions at high energies. These can be investigated by studying high-energy

neutrino interactions. One can produce neutrino beams by letting pi and

K mesons decay in flight. Suppose a 200-GeV/c pi-meson beam is used to

produce neutrinos via the decay π+ → µ+ + ν. The lifetime of pi-mesons

is τπ± = 2.60× 10−8 sec (in the rest frame of the pion), and its rest energy
is 139.6 MeV. The rest energy of the muon is 105.7 MeV, and the neutrino

is massless.

(a) Calculate the mean distance traveled by the pions before they decay.

(b) Calculate the maximum angle of the muon (relative to the pion

direction) in the laboratory.
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(c) Calculate the minimum and maximum momenta the neutrinos can

have.

(UC, Berkeley)

Solution:

(a) The pions have Lorentz factor

γ =
E

m
≈ p

m
=
200000

139.6
= 1433 .

The lifetime of the pions in the laboratory frame is then τ = γτ0 =

2.6× 10−8 × 1433 = 3.72× 10−5 s.
The speed of the pions is very close to that of light. Thus before decaying

the distance traveled is on the average

l = cτ = 3× 108 × 3.72× 10−5 = 1.12× 104 m .

(b) Figure 4.7 shows the decay in the laboratory frame Σ and the rest

frame Σ∗ of the pion.

Fig. 4.7

In Σ∗, conservation laws of energy and momentum require

E∗ν +E∗µ = mπ ,

p∗ν + p∗µ = 0 , or p∗ν = p∗µ .

The above equations combine to give

E∗µ =
m2
π +m2

µ

2mπ
= 109.8 MeV .



634 Problems and Solutions in Atomic, Nuclear and Particle Physics

Lorentz transformation for the muon gives

pµ sin θ = p∗µ sin θ
∗ ,

pµ cos θ = γ(p∗µ cos θ
∗ + βE∗µ) ,

where γ = 1433 is the Lorentz factor of Σ∗, β ≈ 1. Thus

tan θ =
sin θ∗

γ

(
cos θ∗ +

E∗µ
p∗µ

) = sin θ∗

γ

(
cos θ∗ +

1

β∗µ

) ,

where β∗µ =
p∗µ
E∗µ
. To find maximum θ, let

d tan θ

dθ∗
= 0 .

This gives cos θ∗ = −β∗µ, sin θ∗ =
√
1− β∗2µ = 1

γ∗µ
. Hence

(tan θ)max =
1

γγ∗µ

(
−β∗µ +

1

β∗µ

) = β∗µ
γγ∗µ(β

∗2
µ − 1)

=
γ∗µβ

∗
µ

γ
=

√
γ∗2µ − 1
γ

.

As γ∗µ =
E∗µ
mµ

= 109.8
105.7 = 1.039, γ = 1433, we have

θmax = arctan(tan θ)max ≈

√
γ∗2µ − 1
γ

= 1.97× 10−4 rad = 0.0110 .

(c) In the rest frame Σ∗, the neutrino has energy

E∗ν = mπ −E∗µ =
m2
π −m2

µ

2mπ
= 29.8 MeV ,

and hence momentum 29.8 MeV/c. Lorentz transformation gives for the

neutrino,

pν = Eν = γ(E∗ν + βp∗ν cos θ
∗) = γp∗ν(1 + β cos θ∗) .
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Hence

(pν)max = γp∗ν(1 + β)

= 1433× 29.8(1 + 1) = 85.4 GeV/c ,

(pν)min = γp∗ν(1− β)

= [
√
(γβ)2 + 1− γβ]p∗ν

≈ p∗ν
2γβ

=
mπp

∗
ν

2pπ
=
139.6× 29.4
2× 200× 103

= 1.04× 10−2 MeV/c .

4057

A beam of pions of energy E0 is incident along the z-axis. Some of these

decay to a muon and a neutrino, with the neutrino emerging at an angle

θν relative to the z-axis. Assume that the neutrino is massless.

(a) Determine the neutrino energy as a function of θν . Show that if

E0 � mπ and θν � 1,

Eν ≈ E0

1−
(
mµ

mπ

)2

1 +

(
E0

mπ

)2

θ2ν

.

(b) The decay is isotropic in the center-of-mass frame. Determine the

angle θm such that half the neutrinos will have θν < θm.

(Columbia)

Solution:

(a) Let the emission angle of the muon relative to the z-axis be θ.

Conservation of energy and of momentum give

E0 = Eµ +Eν =
√
p2µ +m2

µ +Eν ,√
E2
0 −m2

π = pµ cos θ + pν cos θν ,

0 = pµ sin θ + pν sin θν ,
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As neutrino is assumed massless, pν = Eν . The momentum equations

combine to give

p2µ = E2
0 −m2

π + p2ν − 2
√
E2
0 −m2

πEν cos θν ,

while the energy equation gives

p2µ = E2
0 −m2

µ + p2ν − 2E0Eν .

The difference of the last two equations then gives

Eν =
m2
π −m2

µ

2(E0 −
√
E2
0 −m2

π cos θν)

=
m2
π

2E0

[
1−
(
mµ

mπ

)2
]


1−

√
1−
(
mπ

E0

)2

cos θν



.

If E0 � mπ, θν � 1, then√
1−
(
mπ

E0

)2

cos θν ≈
[
1− 1

2

(
mπ

E0

)2
](
1− θ2ν

2

)
≈ 1− 1

2

(
mπ

E0

)2

− θ2ν
2
,

and hence

Eν ≈
m2
π

E0
×
1−
(
mµ

mπ

)2

(
mπ

E0

)2

+ θ2ν

= E0

1−
(
mµ

mπ

)2

1 +

(
E0

mπ

)2

θ2ν

.

(b) The center-of-mass frame (i.e. rest frame of π) has Lorentz factor

and velocity

γ =
E0

mπ
, β =

√
1− 1

γ2
.

Denote quantities in the rest frame by a bar. Lorentz transformation for

the neutrino

pν sin θν = p̄ν sin θ̄ν ,

pν cos θν = γ(p̄ν cos θ̄ν + βĒν) = γp̄ν(cos θ̄ν + β)
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gives

tan θν =
sin θ̄ν

γ(β + cos θ̄ν)
.

As the angular distribution of the neutrinos in the rest frame is isotropic,

θ̄m = 90
◦. Then

tan θm =
sin 90◦

γ(β + cos 90◦)
=
1

γβ
=

1√
γ2 − 1

=
1√(

E0

mπ

)2

− 1
=

mπ√
E2
0 −m2

π

,

or

θm = arctan

(
mπ√

E2
0 −m2

π

)
.

Note that as
dθν

dθ̄ν
=
cos2 θν

γ

(1 + β cos θ̄ν)

(β + cos θ̄ν)2
≥ 0

θν increases monotonically as θ̄ν increases. This means that if θ̄ν ≤ θ̄m
contains half the number of the neutrinos emitted, θν ≤ θm also contains

half the neutrinos.

4058

(a) Calculate the momentum of pions that have the same velocity as

protons having momentum 400 GeV/c. This is the most probable momen-

tum that produced-pions have when 400-GeV/c protons strike the target

at Fermilab. The pion rest mass is 0.14 GeV/c2. The proton rest mass is

0.94 GeV/c2.

(b) These pions then travel down a decay pipe of 400 meter length where

some of them decay to produce the neutrino beam for the neutrino detector

located more than 1 kilometer away. What fraction of the pions decay in

the 400 meters? the pions’ proper mean lifetime is 2.6× 10−8 sec.
(c) What is the length of the decay pipe as measured by observers in

the pion rest frame?
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(d) The pion decays into a muon and a neutrino (π → µ+ νµ, the neu-

trino has zero rest-mass.) Using the relationship between total relativistic

energy and momentum show that the magnitude of the decay fragments’

momentum in the pion rest frame is given by p
c =

M2−m2
2M , where M is the

rest mass of pion and m is the rest mass of muon.

(e) The neutrino detectors are, on the average, approximately 1.2 km

from the point where the pions decay. How large should the transverse

dimension (radius) of the detector be in order to have a chance of detect-

ing all neutrinos that are produced in the forward hemisphere in the pion

rest frame?

(UC, Berkeley)

Solution:

(a) The pions and the protons, having the same velocity, have the same

γ and hence the same γβ. As

pπ = mπγβ , pp = mpγβ ,

pπ =
mπ

mp
pp =

0.14

0.94
× 400 = 59.6 Gev/c .

(b) The pions have

γβ =
59.6

0.14
= 426 ,

and hence γ =
√
(γβ)2 + 1 ≈ γβ = 426.

The pions have proper mean lifetime τ0 = 2.6× 10−8 s and hence mean
lifetime τ = γτ0 = 1.1× 10−5 s in the laboratory. Hence

N

N0
= (1− e−

l
τc ) = (1− e−0.12) = 0.114 .

(c) In the pion rest frame, on account of Fitzgerald contraction the

observed length of the decay pipe is

l̄ =
l

γ
=
400

426
= 0.94 m.

(d) In the pion rest frame, energy and momentum conservation laws re-

quire

Eµ +Eν = mπ ,

pµ + pν = 0 , or pµ = pν .
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For a particle, total energy and momentum are related by (taking c = 1)

E2 = p2 +m2 .

For neutrino, as m = 0 we have Eν = pν . The energy equation thus

becomes

p2µ +m2
µ = m2

π − 2pνmπ + p2ν ,

or

pν =
m2
π −m2

µ

2mπ

i.e.,

p =
M2 −m2

2M
.

(e) The decay π → µν is isotropic in the rest frame of the pion. Prob-

lem 4057(b) gives the neutrinos’ ‘half-angle’ as

θ1/2 = arctan

(
mπ√

E2
0 −m2

π

)
= arctan

1√
γ2 − 1

≈ 1
γ
.

Thus the diameter of the detector should be larger than

L = 2d tan θ 1
2
≈ 2d

γ
=
2× 1200
426

= 5.63 m.

4059

Consider the decay K0 → π+ + π−.

Assuming the following transition matrix element

Tif =
G√

8EKE+E−

PK(P+ + P−)

mK
.

show that the lifetime of the K0 meson as measured in its rest system is

τ =

[
G2

8π�4c

√
m2
K

4
− µ2

]−1
.
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(EK , E+ and E− are the relativistic energies ofK
0, π+ and π− respectively,

and PK , P+ and P− are the corresponding 4-momenta. MK is the K-meson

mass and G is the coupling constant. µ is the π-meson mass).

(SUNY, Buffalo)

Solution:

The transition probability per unit time is given by

W =
2π

�
|Tif|2ρ(E) .

In the rest frame of K0 meson,

EK = mKc
2 , E+ = E− =

1

2
mKc

2 ,

P 2
K =

E2
K

c2
= m2

Kc
2 ,

(P+ + P−)
2 = −(p+ + p−)

2 +
(E+ +E−)

2

c2
= m2

Kc
2 .

Hence

|Tif|2 =
G2

8EKE+E−

[PK(P+ + P−)]
2

m2
K

=
G2

8mKc2
m2
K

4
c4

m4
Kc

4

m2
K

=
G2

2mKc2
.

For a two-body decay, in the rest frame of the decaying particle,

ρ(E) =
1

(2π�)3
d

dE

∫
p21dp1dΩ =

4π

(2π�)3
d

dE

(
1

3
p31

)
,

assuming the decay to be isotropic.

Noting p1+p2 = 0, or p
2
1 = p22, i.e., p1dp1 = p2dp2, and dE = dE1+dE2,

we find

ρ(E) =
4π

(2π�)3
E1E2p1

E1 +E2
=

1

(2π�)3c2
mKc

2

4

(√
m2
K

4
− µ2

)
4πc

=
mKc

8π2�3

√
m2
K

4
− µ2 ,
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where we have used

d

dt

(
1

3
p31

)
=

p21dp1

dE1 + dE2
=

p1
dE1

p1dp1
+

dE2

p2dp2

=
E1E2p1

E1 +E2
,

for as E2
1 = p21 +m2

1
dE1

p1dp1
=
1

E1
, etc.

Therefore

W =
2π

�

G2

2mKc2
mKc

8π2�3

√
m2
K

4
− µ2

=
G2

8π�4c

√
m2
K

4
− µ2 ,

and the lifetime of K0 is

τ =

[
G2

8π�4c

√
m2
K

4
− µ2

]−1
.

4060

The possible radioactive decay of the proton is a topic of much current

interest. A typical experiment to detect proton decay is to construct a very

large reservoir of water and put into it devices to detect Čerenkov radiation

produced by the products of proton decay.

(a) Suppose that you have built a reservoir with 10,000 metric tons

(1 ton = 1000 kg) of water. If the proton mean life τp is 10
32 years, how

many decays would you expect to observe in one year? Assume that your

detector is 100% efficient and that protons bound in nuclei and free protons

decay at the same rate.

(b) A possible proton decay is p → π0 + e+. The neutral pion π0

immediately (in 10−16 sec) decays to two photons, π0 → γ + γ. Calculate

the maximum and minimum photon energies to be expected from a proton

decaying at rest. The masses: proton mp = 938 MeV, positron me+ =

0.51 MeV, neutral pion mπ0 = 135 MeV.

(CUSPEA)
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Solution:

(a) Each H2O molecule has 10 protons and 8 neutrons and a molecular

weight of 18. The number of protons in 104 tons of water is then

N =
10

18
× 107 × 103 × 6.02× 1023 = 3.34× 1033 ,

using Avagadro’s numberN0 = 6.02×1023mole−1. The number of expected
decays per year is therefore

∆N =
3 · 34
τp
× 1033 = 3.34× 10

33

1032
= 33.4/year .

(b) In the rest frame of the proton, conservation laws of energy and

momentum require

Mp = Eπ0 +Ee+ ,

pπ0 = pe+ .

With E2 =M2 + p2, these give

Eπ =
M2
p +M2

π −M2
e

2Mp

=
9382 + 1352 − 0.52

2× 938 = 479 MeV .

In the rest frame of the π0 the energy and momentum of each γ are

E′ = p′ =
Mπ

2
.

The π0 has Lorentz factor and velocity

γπ =
479

135
= 3.548 ,

βπ =

√
1− 1

γ2π
= 0.9595 .
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Lorentz transformation between the π0 rest frame and the laboratory frame

for the photons

Eγ = γπ(E
′ + βπp

′ cos θ′) =
Mπ

2
γπ(1 + βπ cos θ

′) =
Eπ

2
(1 + βπ cos θ

′)

shows that the photons will have in the laboratory maximum energy (θ′

= 0)

(Eγ)max =
Eπ

2
(1 + βπ) =

479

2
(1 + 0.9595) = 469.3 MeV ,

and minimum energy (θ′ = 180◦)

(Eγ)min =
Eπ

2
(1− βπ) =

479

2
(1− 0.9595) = 9.7 MeV .

4061

Consider the decay in flight of a pion of laboratory energy Eπ by the

mode π → µ + νµ. In the pion center-of-mass system, the muon has a

helicity h = s·β
sβ
of 1, where s is the muon spin. For a given Eπ there is a

unique laboratory muon energy E
(0)
µ for which the muon has zero average

helicity in the laboratory frame.

(a) Find the relation between Eπ and E
(0)
µ .

(b) In the nonrelativistic limit, find the minimum value of Eπ for which

it is possible to have zero-helicity muons in the laboratory.

(Columbia)

Solution:

(a) Consider the spin 4-vector of the muon emitted in the decay π →
µ+ ν. In the rest frame of the muon, it is

Sα = (S, iS0) ,

where S is the muon spin and S0 = 0.

Now consider the spin 4-vector in the rest frame of the pion, Σπ. The

muon has parameters γµ, βµ in this frame and

S′α = (S
′, iS′0)
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with

S′ = S+ (γµ − 1)S · β̂µβ̂µ ,

S′0 = γµ(S0 + S · βµ) = γµS · βµ = γµSβµhµ .

In the Σπ frame,

hµ =
S · βµ
Sβµ

= 1 ,

and so S · βµ = Sβµ, i.e. S//βµ. It follows that

S′ = S+ (γµ − 1)Sβ−1µ βµ ,

S′0 = γµSβµ .

Next transform from Σπ to the laboratory frame Σ, in which the pion

has parameters γπ, βπ, the muon has parameters γ, β. Then

SLab
α = (S′′, iS′′0 ) ,

where

S′′0 = γπ(S
′
0 + βπ · S′)

= γπ[γµβµS + βπ · S+ (γµ − 1)(βπ · βµ)Sβ−1µ ] .

As S//βµ,

(βπ · βµ)Sβ−1µ = (βπ · S)βµβ−1µ = βπ · S ,
and

S′′0 = γπγµS(β
2
µ + βπ · βµ)β−1µ = γβSh ,

with

h = γπγµγ
−1β−1(β2µ + βπ · βµ)β−1µ .

At muon energy E
(0)
µ , h = 0, or

β2µ = −βπ · βµ .

Lorentz transformation then gives

γ = γπγµ(1 + βπ · βµ)

= γπγµ(1− β2µ) =
γπ

γµ
.
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Hence

E(0)
µ = mµγ =

mµ

mπ

Eπ

γµ
.

Consider the decay in the rest frame of π. Conservation of momentum

and of energy require

pν + pµ = 0 , or pν = pµ ,

Eν = mπ −Eπ .

These combine to give

Eµ =
m2
π +m2

µ

2mπ
,

or

γµ =
Eµ

mµ
=

m2
π +m2

µ

2mπmµ
.

Hence

E(0)
µ =

mµ

mπ
· 2mπmµ

m2
π +m2

µ

Eπ =
2m2

µ

m2
π +m2

µ

Eπ .

(b) For the average muon helicity h = 0 in the laboratory frame, we re-

quire

βπ · βµ = −β2µ ,

or

βπ cos θ = −βµ .

This means that

βπ ≥ βµ , or γπ ≥ γµ .

Hence the minimum pion energy required is

(Eπ)min = γµmπ =
m2
π +m2

µ

2mµ
.
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2. INTERACTIONS BETWEEN

RADIATION AND MATTER (4062 4085)

4062

The energy loss of an energetic muon in matter is due mainly to colli-

sions with

(a) nucleons.

(b) nuclei.

(c) electrons.

(CCT )

Solution:

A muon loses energy in matter mainly due to collisions with electrons,

transferring part of its kinetic energy to the latter, which can either jump

to higher energy levels or to be separated from the atoms resulting in their

ionization.

So the answer is (c).

4063

A beam of negative muons can be stopped in matter because a muon

may be

(a) transformed into an electron by emitting a photon.

(b) absorbed by a proton, which goes into an excited state.

(c) captured by an atom into a bound orbit about the nucleus.

(CCT )

Solution:

A µ− can be captured into a bound orbit by a nucleus to form a µ-atom.

It can also decay into an electron and two neutrinos (γµ, ν̄e) but not an

electron and a photon. So the answer is (c).

4064

After traversing one radiation length, an electron of 1 GeV has lost:
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(a) 0.368 GeV

(b) none

(c) 0.632 GeV

of its original energy.

(CCT )

Solution:

By definition E = E0e
−x/λ, where λ is the radiation length. Thus when

x = λ, E = E0e
−1 = 0.368 GeV. The loss of energy is ∆E = 1 − 0.368 =

0.632 GeV, and the answer is (c).

4065

A relativistic proton loses 1.8 MeV when penetrating a 1-cm thick scin-

tillator. What is the most likely mechanism?

(a) Ionization, excitation.

(b) Compton effect.

(c) Pair production.

(CCT )

Solution:

When a relativistic proton passes through a medium, energy loss by

ionization and excitation comes to −dE/dx ≈ 1–2 MeV/g cm−2. The

density of the scintilator is ρ ≈ 1 g cm−3, so dx = 1 g cm−2. The energy
loss rate −dEdx = 1.8 MeV/g cm−2 agrees with ionization loss rate. So the
answer is (a).

4066

The mean energy loss of a relativistic charged particle in matter

per g/cm2 is about

(a) 500 eV.

(b) 10 KeV.

(c) 2 MeV.

(CCT )
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Solution:

As dE/dx ≈ (1 ∼ 2) MeV/g cm −2, the answer is (c).

4067

The critical energy of an electron is the energy at which

(a) the radiation loss equals the ionization loss.

(b) the electron ionizes an atom.

(c) the threshold of nuclear reaction is reached.

(CCT )

Solution:

The critical energy is defined as the energy at which the radiation loss

is equal to the ionization loss. The answer is (a).

4068

The straggling of heavy ions at low energy is mostly a consequence of

(a) finite momentum.

(b) fluctuating state of ionization.

(c) multiple scattering.

(CCT )

Solution:

Multiple scattering changes an ion’s direction of motion, thus making

them straggle. The answer is (c).

4069

The so-called “Fermi plateau” is due to

(a) a density effect.

(b) Lorentz contraction.

(c) relativistic mass increase.

(CCT )
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Solution:

At Lorentz factor γ ≈ 3, rate of ionization loss dE/dx ≈ (dE/dx)min. At

γ > 3, because of its logarithmic relationship with energy, dE/dx increases

only slowly with increasing γ. Finally, dE
dz ≈ constant when γ > 10 for

a dense medium (solid or liquid), and when γ > 100 for a dilute medium

(gas), because of the effect of electron density. The plateau in the dE
dx
vs E

curve is known as “Fermi plateau”. Thus the answer is (a).

4070

The probability for an energy loss E′ in the interval dE′ of a charged

particle with energy E and velocity v in a single collision is proportional to

(a) E′

E
dE′.

(b) EdE′.

(c) ( 1
vE′ )

2dE′.

(CCT )

Solution:

Take collisions with electrons as example. For a single collision, the

energy loss of a particle of charge Ze depends only on its velocity v and the

impact parameter b : E′ = 2Z2e4

m0v2b2
, where m0 is the electron mass. Thus

dE′ = − 4Z2e4

m0v2b3
db = −A db

v2b3 , where A =
4Z2e4

m0
is a constant.

Suppose the electrons are distributed uniformly in the medium. Then

the probability of colliding with an electron with impact parameter in the

interval between b and b+ db is

dσ = 2πb|db| = 2πv2b4

A
dE′ =

πAdE′

2(vE′)2
∝ dE′

(vE′)2
.

Hence the answer is (c).

4071

The scattering of an energetic charged particle in matter is due mostly

to interactions with (the)

(a) electrons.

(b) nuclei.
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(c) quarks.

(CCT )

Solution:

In traversing a medium, a charged particle suffers Coulomb interactions

with both electrons and nuclei. However, though collisions with the former

are numerous, the momentum transfer in each is very small. Only collisions

with the latter will result in appreciable scattering of the traversing particle.

Hence the answer is (b).

4072

The mean scattering angle of a charged particle in matter of a thickness

x increases with

(a) x2.

(b) x1/2.

(c) x.

(CCT )

Solution:

The mean scattering angle of a particle of charge Ze in traversing matter

of thickness x is |θ̄| = KZ
√
x

pv ∝ x1/2, where K is a constant. Hence the

answer is (b).

4073

Consider a 2-cm thick plastic scintillator directly coupled to the surface

of a photomultiplier with a gain of 106. A 10-GeV particle beam is incident

on the scintillator as shown in Fig. 4.8(a).

(a) If the beam particle is a muon, estimate the charge collected at the

anode of the photomultiplier.

(b) Suppose one could detect a signal on the anode of as little as

10−12 coulomb. If the beam particle is a neutron, estimate what is the

smallest laboratory angle that it could scatter elastically from a proton in

the scintillator and still be detected?
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Fig. 4.8

(c) Same as Part (b), but it scatters elastically from a carbon nucleus.

(Chicago)

Solution:

(a) From its ionization loss curve, we see that a muon of energy 10 GeV

will lose 4 MeV in a plastic scintillator of length 2 cm. Roughly, in a plastic

scintillator, producing one photon requires 100 eV of energy. This amount

of energy will produce Nph ≈ 4× 104 photons in the scintillator. Suppose
about 50% of the photons make it to the photomultiplier tube and about

10% of these produce photoelectrons off the cathode. Then the number of

photoelectrons emitted is Npe = 2 × 103. With a gain of 106, the charge
collected at the anode of the photomultiplier is Q = 2×109e = 3.2×10−10 C.
(b) Figure 4.8(b) shows a neutron scatters by a small angle θ in the

laboratory frame. Its momentum is changed by an amount pθ normal to

the direction of motion. This is the momentum of the recoiling nucleus.

Then the kinetic energy acquired by it is

p2θ2

2m
,

where m is the mass of the recoiling nucleus. As an energy loss of 4 MeV

corresponds to 3.2 × 10−10C of anode charge, the detection threshold of
10−12 C implies that recoil energy as little as 12.5 keV can be detected.

Hence the smallest laboratory scattering angle θmin that can be detected is

given by
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θ2min =
2mp

p2n
× 12.5× 103 = 2× 109

(1010)2
× 12.5× 103 = 2.5× 10−7 rad2 ,

i.e.

θmin = 5.0× 10−4 rad ,
assuming the recoiling nucleus is a proton.

(a) If the recoiling particle is a carbon nucleus, then

θ2min =
2mc

p2n
× 12.5× 103 = 2× 12× 10

9

(1010)2
× 12.5× 103 = 3.0× 10−6 rad2 ,

i.e.,

θmin = 1.73× 10−3 rad .

4074

How many visible photons (∼ 5000 Å) does a 100-W bulb with 3%

efficiency emit per second?

(a) 1019.

(b) 109.

(c) 1033.

(CCT )

Solution:

Each photon of λ = 5000 Å has energy

E = hν = hc/λ =
2π × 197× 10−7
5000× 10−8 = 2.5 eV .

So the number of photons is

N =
W

E
=

100× 0.03
2.5× 1.6× 10−19 = 0.75× 10

19 ≈ 1019 .

Hence the answer is (a).

4075

Estimate the attenuation (absorption/scattering) of a beam of 50-keV

X-rays in passage through a layer of human tissue (no bones!) one centime-

ter thick.

(Columbia)
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Solution:

As the human body is mostly water, we can roughly take its density as

that of water, ρ ≈ 1 g/cm3. Generally, the absorption coefficient of 50 keV

X-rays is about 0.221 cm2/g. Then the attenuation resulting from the

passage through one centimeter of tissue (thickness = 1 cm × 1 g cm−3 =
1 g cm−2) is

1− exp(−0.221× 1) = 0.20 = 20% .

4076

Photons of energy 0.3 eV, 3 eV, 3 keV, and 3 MeV strike matter. What

interactions would you expect to be important? Match one or more inter-

actions with each energy.

0.3 eV (a) Pair production (e) Atomic Ionization

3 eV (b) Photoelectric effect (f) Raman Scattering (rotational

3 keV (c) Compton Scattering and vibrational excitation)

3 MeV (d) Rayleigh Scattering

(Wisconsin)

Solution:

Raman scattering is important in the region of 0.3 eV. Atomic ion-

ization, Rayleigh scattering and Raman scattering are important around

3 eV. Photoelectric effect is important in the region of 3 keV. In the region

of 3 MeV, Compton scattering and pair production are dominant.

4077

Discuss the interaction of gamma radiation with matter for photon en-

ergies less than 10 MeV. List the types of interaction that are important in

this energy range; describe the physics of each interaction and sketch the

relative contribution of each type of interaction to the total cross section

as a function of energy.

(Columbia)
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Solution:

Photons of energies less than 10 MeV interact with matter mainly

through photoelectric effect, Compton scattering, and pair production.

(1) Photoelectric effect: A single photon gives all its energy to a bound

electron in an atom, detaching it completely and giving it a kinetic energy

Ee = Eγ −Eb, where Eγ is the energy of the photon and Eb is the binding
energy of the electron. However, conservation of momentum and of energy

prevent a free electron from becoming a photoelectron by absorbing all the

energy of the photon. In photoelectric effect, conservation of momentum

must be satisfied by the recoiling of the nucleus to which the electron was

attached. The process generally takes place with the inner electrons of an

atom (mostly K- and L-shell electrons). The cross section σp−e ∝ Z5,

where Z is the nuclear charge of the medium. If εK < Eγ < 0.5 MeV,

σp−e ∝ E
− 72
γ , where εK is the binding energy of K-electron. If Eγ >

0.5 MeV, σp−e ∝ E−1γ . Thus photoelectric effect is dominant in the low-

energy region and in high-Z materials.

(2) Compton scattering: A photon is scattered by an electron at rest,

the energies of the electron and the scattered photon being determined by

conservation of momentum and energy to be respectively

Ee = Eγ

[
1 +

mc2

Eγ(1− cos θ)

]−1
,

Eγ′ = Eγ

[
1 +

Eγ

mc2
(1− cos θ)

]−1
,

where m is the electron mass, Eγ is the energy of the incident photon, and

θ is the angle the scattered photon makes with the incident direction. The

cross section is σc ∝ ZE−1γ lnEγ (if Eγ > 0.5 MeV).

(3) Pair production: If Eγ > 2mec
2, a photon can produce a positron-

electron pair in the field of a nucleus. The kinetic energy of the positron-

electron pair is given by Ee+ + Ee− = Eγ − 2mec
2. In low-energy region

σe+e− increases with increasing Eγ , while in high-energy region, it is ap-

proximately constant. Figure 4.9 shows the relative cross sections of lead for

absorption of γ-rays as a function of Eγ . It is seen that for Eγ � 4 MeV, pair
production dominates, while for low energies, photoelectric and Compton

effects are important. Compton effect predominates in the energy region

from several hundred keV to several MeV.
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Fig. 4.9

4078

Fast neutrons can be detected by observing scintillations caused by re-

coil protons in certain (optically transparent) hydrocarbons. Assume that

you have a 5 cm thick slab of scintillator containing the same number-

density of C and H, namely 4× 1022 atoms/cm3 of each kind.

(a) What fraction of ∼ 5 MeV neutrons incident normal to the slab will
pass through the slab without interacting with either C or H nuclei?

(b) What fraction of the incident neutrons will produce a recoil proton?

[Assume σH = 1.5 barns, σC = 1.0 barn. Note 1 barn = 10
−24 cm2.]

(Wisconsin)

Solution:

(a) Denote the number of neutrons by N . The number decreases by

∆N after traveling a distance ∆x in the scintillator, given by

∆N = −N(σHnH + σCnC)∆x ,

where n is the number density of the nuclei of the scintillator. After passing

through a distance d, the number of neutrons that have not undergone any

interaction is then
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N = N0 exp[−(σHnH + σCnC)d] ,

giving

η = N/N0 = exp[−(1.5 + 1.0)× 10−24 × 4× 1022 × 5]

= e−0.5 = 60.5% .

(b) The fraction of incident neutrons undergoing at least one interaction

is

η′ = 1− η = 39.5% .

Of these only those interacting with protons can produce recoil protons.

Thus the fraction of neutrons that produce recoil protons is

η′′ = η′ · 1.5

1.5 + 1.0
=
3

5
η′ = 23.7% .

4079

The mean free path of fast neutrons in lead is about 5 cm. Find the

total neutron cross section of lead (atomic mass number ∼ 200, density
∼ 10 g/cm3).

(Wisconsin)

Solution:

The number of Pb atoms per unit volume is

n =
ρ

A
×N0 =

10

200
× 6.022× 1023 = 3.01× 1022 cm−3 .

The mean free path of neutron in lead is l = 1/(nσ), where σ is the

interaction cross section between neutron and lead. Hence

σ =
1

nl
=

1

3.01× 1022 × 5 = 6.64× 10
−24 cm2 = 6.64 b .

4080

It is desired to reduce the intensity of a beam of slow neutrons to 5% of

its original value by placing into the beam a sheet of Cd (atomic weight 112,
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density 8.7×103 kg/m3). The absorption cross section of Cd is 2500 barns.

Find the required thickness of Cd.

(Wisconsin)

Solution:

The intensity of a neutron beam after passing through a Cd foil of

thickness t is given by I(t) = I0e
−nσt, where I0 is the initial intensity, n is

the number density of Cd, and σ is the capture cross section. As

n =
ρN0

A
=
8.7

112
× 6.022× 1023 = 4.7× 1022 cm−3 ,

the required thickness of Cd foil is

t =
1

nσ
ln

I0

I(t)
=

1

4.7× 1022 × 2500× 10−24 ln
1

0.05
= 0.025 cm .

4081

A beam of neutrons passes through a hydrogen target (density 4 ×
1022 atom/cm3) and is detected in a counter C as shown in Fig. 4.10. For

equal incident beam flux, 5.0×105 counts are recorded in C with the target
empty, and 4.6 × 105 with the target full of hydrogen. Estimate the total
n-p scattering cross section, and its statistical error.

(Wisconsin)

Fig. 4.10

Solution:

Let the total cross section of n-p interaction be σ. After passing through

the hydrogen target, the number of neutrons decreases fromN0 to N0e
−nσt,
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where n = 4×1022 cm−3 is the atomic concentration of the target. Suppose
the numbers of neutrons detected without and with the hydrogen target are

N ′, N ′′ respectively and η is the neutron-detecting efficiency of C. Then

N ′ = ηN0 , N ′′ = ηN0e
−nσt = N ′e−nσt ,

and thus

N ′′/N ′ = e−nσt ,

giving the n-p scattering cross section as

σ =
1

nt
ln

N ′

N ′′
=

1

4× 1022 × 100 ln
5× 105
4.6× 105 = 2.08× 10

−26 cm2 .

To estimate the statistical error of σ we note

∆σ =
∂σ

∂N ′
(∆N ′) +

∂σ

∂N ′
(∆N ′) ,

∂σ

∂N ′
=

1

ntN ′
,

∂σ

∂N ′′
= − 1

ntN ′′
,

∆N ′ =
√
N ′ , ∆N ′′ =

√
N ′′ .

Hence

(∆σ)2 =

(
∂σ

∂N ′

)2

(∆N ′)2 +

(
∂σ

∂N ′′

)2

(∆N ′′)2 =
1

(nt)2

(
1

N ′
+

1

N ′′

)
,

or

∆σ =
1

(nt)

√
1

N ′
+

1

N ′′
=

1

4× 1022 × 100

√
1

4.6× 105 +
1

5× 105

≈ 5× 10−28 cm2 .

Therefore

σ = (2.08± 0.05)× 10−26 cm2 = (20.8± 0.5) mb .
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4082

A beam of energetic neutrons with a broad energy spectrum is incident

down the axis of a very long rod of crystalline graphite as shown in Fig. 4.11.

It is found that the faster neutrons emerge from the sides of the rod, but

only slow neutrons emerge from the end. Explain this very briefly and

estimate numerically the maximum velocity of the neutrons which emerge

from the end of the rod. Introduce no symbols.

(Columbia)

Fig. 4.11

Solution:

Crystalline graphite is a cold neutron filter. High-energy neutrons

change directions on elastic scattering with the nuclei in the crystalline

graphite and finally go out of the rod. Because of their wave property,

if the wavelengths of the neutrons are comparable with the lattice size,

interference occurs with the diffraction angle θ satisfying Bragg’s law

mλ = 2d sin θ , with m = 1, 2, 3 . . . .

In particular for λ > 2d, there is no coherent scattering except for θ = 0.

At θ = 0, the neutrons can go through the crystal without deflection. Fur-

thermore, as the neutron absorption cross section of graphite is very small,

attenuation is small for the neutrons of λ > 2d. Graphite is polycrystalline

with irregular lattice orientation. The high-energy neutrons change direc-

tions by elastic scattering and the hot neutrons change directions by Bragg

scattering from microcrystals of different orientations. Finally both leave

the rod through the sides. Only the cold neutrons with wavelength λ > 2d

can go through the rod without hindrance. For graphite, λ > 2d = 6.69 Å.

The maximum velocity of such cold neutrons is
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vmax =
p

m
=

h

mλ
=
2π�c2

λmc2
=
2π × 197× 10−13 × 3× 1010

6.69× 10−8 × 940
= 0.59× 105 cm/s = 590 m/s .

4083

Mean free path for 3-MeV electron-neutrinos in matter is

10, 107, 1017, 1027 g/cm2 .

(Columbia)

Solution:

The interaction cross section between neutrino and matter is σ ≈
10−41 cm2, and typically the atomic number-density of matter n ≈
1023 cm−3, density of matter ρ ≈ 1 g/cm3. Hence the mean free path

of neutrino in matter is 1 = ρ/nσ ≈ 1018 g/cm2. The third answer is

correct.

4084

Čerenkov radiation is emitted by a high-energy charged particle which

moves through a medium with a velocity greater than the velocity of electro-

magnetic-wave propagation in the medium.

(a) Derive the relationship among the particle velocity v = βc, the

index of refraction n of the medium, and the angle θ at which the Čerenkov

radiation is emitted relative to the line of flight of the particle.

(b) Hydrogen gas at one atmosphere and 20◦C has an index of refraction

n = 1 + 1.35× 10−4. What is the minimum kinetic energy in MeV which

an electron (of mass 0.5 MeV/c2) would need in order to emit Čerenkov

radiation in traversing a medium of hydrogen gas at 20◦C and one atmo-

sphere?

(c) A Čerenkov-radiation particle detector is made by fitting a long pipe

of one atmosphere, 20◦C hydrogen gas with an optical system capable of

detecting the emitted light and of measuring the angle of emission θ to an

accuracy of δθ = 10−3 radian. A beam of charged particles with momentum
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100 GeV/c are passed through the counter. Since the momentum is known,

measurement of the Čerenkov angle is, in effect, a measurement of the rest

mass m0. For a particle with m0 near 1 GeV/c
2, and to first order in small

quantities, what is the fractional error (i.e., δm0/m0) in the determination

of m0 with the Čerenkov counter?

(CUSPEA)

Solution:

(a) Figure 4.12 shows the cross section of a typical Čerenkov wavefront.

Suppose the particle travels from O to A in t seconds. The radiation sent

out while it is at O forms a spherical surface with center at O and radius

R = ct/n. The Čerenkov radiation wavefront which is tangent to all such

spherical surfaces is a conic surface. In the triangle AOB, OB = R = ct/n,

OA = vt = βct, and so cos θ = OB/OA = 1/(nβ).

Fig. 4.12

(b) As cos θ = 1
nβ
, we require

β ≥ 1
n
.

Thus

βmin =
1

n
=

1

1 + 1.35× 10−4 ≈ 1− 1.35× 10
−4 ,

and so

γmin =
1√

(1 + β)(1− β)
≈ 1√

2× 1.35× 10−4
= 60.86 .
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The minimum kinetic energy required by an electron is therefore

T = (γ − 1)mc2 = 59.86× 0.5 = 29.9 MeV .

(c) The rest mass m0c
2 is calculated from (taking c = 1)

m2
0 =

p2

(γβ)2
=

p2(1− β2)

β2
=

p2

β2
− p2

= p2n2 cos2 θ − p2 .

Differentiating with respect to θ gives

2m0dm0 = −2p2n2 cos θ sin θdθ .

Hence

δm0 =
p2n2

2m0
sin 2θδθ .

With m0 ≈ 1 GeV/c2, p = 100 GeV/c,

γ =

√
p2 +m2

0

m0
=
√
104 + 1 .

Thus

cos θ =
1

nβ
=

γ

n
√
γ2 − 1

=

√
104 + 1

(1 + 1.35× 10−4)× 102

≈ 1 + 0.5× 10−4
1 + 1.35× 10−4

≈ 1− 0.85× 10−4

≈ 1− θ2

2
,

and hence

θ2 ≈ 1.7× 10−4

or

θ ≈ 1.3× 10−2 rad .
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As θ is small, sin 2θ ≈ 2θ, and

δm0

m0
=

p2n2θ

m2
0

δθ

≈ 104 × 1.3× 10−2 × 10−3 = 0.13 .

4085

A proton with a momentum of 1.0 GeV/c is passing through a gas

at high pressure. The index of refraction of the gas can be changed by

changing the pressure.

(a) What is the minimum index of refraction at which the proton will

emit Čerenkov radiation?

(b) At what angle will the Čerenkov radiation be emitted when the index

of refraction of the gas is 1.6? (Take rest mass of proton as 0.94 GeV/c2.)

(Columbia)

Solution:

(a) The proton has Lorentz factor

γ =

√
p2 +m2

m
=

√
1 + 0.942

0.94
= 1.46

and hence

β =

√
1− 1

γ2
= 0.729 .

For the proton to emit Čerenkov radiation we require

1

nβ
≤ 1 ,

or

n ≥ 1
β
=

1

0.729
= 1.37 .

(b)

cos θ =
1

nβ
=

1

1.6× 0.729 = 0.86 ,

giving

θ = 31◦ .
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3. DETECTION TECHNIQUES AND

EXPERIMENTAL METHODS (4086 4105)

4086

The mean energy for production of a free ion pair in gases by radiation is

(a) equal to the ionization potential.

(b) between 20 ∼ 40 eV.
(c) in good approximation 11.5Z.

(CCT )

Solution:

The average energy needed to produce a pair of free ions is larger than

the ionization potential, as part of the energy goes to provide for the kinetic

energy of the ions. The answer is (b).

4087

At low E/p the drift velocity of electrons in gases, vDr, follows precisely

the relation vDr ∝ E/p. This can be explained by the fact that

(a) the electrons each gains an energy ε = eE
∫
ds.

(b) the electrons thermalize completely in inelastic encounters with the

gas molecules.

(c) the cross section is independent of electron velocity.

(CCT )

Solution:

The electrons acquire an average velocity vDr =
p

2me
= eEτ

2me
, in the

electric field E, where τ is the average time-interval between two consecutive

collisions. As τ = l
vDr
∝ 1

σvDr
, where l is the mean free path of the electrons

in the gas and σ is the interaction cross section, we have

vDr ∝
E

σp
∝ E

p

if σ is independent of velocity. If σ is dependent on velocity, the relationship

would be much more complicated. Hence the answer is (c).
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4088

The mean ionization potential is a mean over energies of different

(a) atomic excitation levels.

(b) molecular binding energies.

(c) electronic shell energies.

(CCT )

Solution:

The mean ionization potential is defined as the average energy needed

to produce a pair of positive and negative ions, which is the average of the

molecular binding energies. The answer is (b).

4089

The efficiency of a proportional counter for charged particles is ulti-

mately limited by

(a) signal-to-noise ratio.

(b) total ionization.

(c) primary ionization.

(CCT )

Solution:

If the mean primary ionization of a charged particle is very small, there is

a finite probability that the charged particle may not produce sufficient pri-

mary ionization for its observation because of statistical fluctuation. Hence

the answer is (c).

4090

Spectra of monoenergetic X-rays often show two peaks in proportional

counters. This is due to

(a) escape of fluorescent radiation.

(b) Auger effect.

(c) Compton scattering.

(CCT )



666 Problems and Solutions in Atomic, Nuclear and Particle Physics

Solution:

The escape of fluorescent radiation causes the spectrum to have two

peaks. The larger peak is the total energy peak of the X-rays, while the

smaller one is due to the fluorescent X-rays escaping from the detector. The

answer is (a).

4091

A Geiger counter consists of a 10 mm diameter grounded tube with a

wire of 50 µm diameter at +2000 V in the center. What is the electrical

field at the wire?

(a) 2002 V/cm.

(b) 150 kV/cm.

(c) 1.5× 109 V/cm.
(CCT )

Solution:

With R0 = 0.5×10−2 m, Ri = 75×10−6 m, V = 200 V, γ = 25×10−6 m,

E(r) =
V

r ln
R0

Ri

= 1.51× 107 V/m

= 151 kV/cm .

Hence the answer is (b).

4092

For Question 4091, the electrical field at the tube wall is

(a) 0 V/cm.

(b) 377 V/cm.

(c) 754 V/cm.

(CCT )
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Solution:

Same as for Problem 4091 but with r = 0.5× 10−2 m:

E(r) = 7.55× 104 V/m = 755 V/cm .

The answer is (c).

4093

What limits the time resolution of a proportional counter?

(a) Signal-to-noise ratio of the amplifier.

(b) Slow signal formation at the anode (slow rise time).

(c) Random location of the ionization and therefore variable drift time.

(CCT )

Solution:

Randomness of the location of the primary ionization causes the time

it takes for the initial ionization electrons to reach the anode to vary. The

anode signals are produced mainly by the avalanche of the electrons which

reach the anode first. Thus large fluctuation results, making the resolution

poor. The answer is (c).

4094

What is the mechanism of discharge propagation in a self-quenched

Geiger counter?

(a) Emission of secondary electrons from the cathode by UV quanta.

(b) Ionization of the gas near the anode by UV quanta.

(c) Production of metastable states and subsequent de-excitation.

(CCT )

Solution:

The answer is (b).
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4095

Does very pure NaI work as a good scintillator?

(a) No.

(b) Only at low temperatures.

(c) Yes.

(CCT )

Solution:

The answer is (b).

4096

What is the advantage of binary scintillators?

(a) They are faster.

(b) They give more amplitude in the photodetector.

(c) They are cheaper.

(CCT )

Solution:

The advantage of binary scintillators is their ability to restrain the

Compton and escape peaks, and so to increase the total energy-peak am-

plitudes in the photodetector. The answer is (b).

4097

A charged particle crosses a NaI(TI)-scintillator and suffers an energy

loss per track length dE/dx. The light output dL/dx

(a) is proportional to dE/dx.

(b) shows saturation at high dE/dx.

(c) shows saturation at high dE/dx and deficiency at low dE/dx.

(CCT )

Solution:

NaI(T1) is not a strictly linear detector. Its photon output depends on

both the type of the traversing particle and its energy loss. When the energy
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loss is very small the departure from nonlinearity of the photon output is
large, while when dE/dX is very large it becomes saturated. The answer
is (c).

4098

Monoenergetic γ-rays are detected in a NaI detector. The events be-
tween the Compton edge and the photopeak occur

(a) predominantly in thin detectors.

(b) predominantly in thick detectors.

(c) never.
(CCT )

Solution:

In general, the number of events in the region between the Compton
edge and the photopeak is smaller than in other regions. In the spectrum,
such events appear as a valley. In neither a thin detector or a thick detector
can they become dominant. The answer is (c).

4099

The light emission in organic scintillators is caused by transitions be-
tween

(a) levels of delocalized σ electrons.

(b) vibrational levels.

(c) rotational levels.
(CCT )

Solution:

Actually the fast component of the emitted light from an organic scintil-
lator is produced in the transition between the 0S1 level and the delocalized
1S0 level. The answer is (a).

4100

A proton with total energy 1.4 GeV transverses two scintillation coun-
ters 10 m apart. What is the time of flight?
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(a) 300 ns.

(b) 48 ns.

(c) 33 ns.

(CCT )

Solution:

The proton has rest mass mp = 0.938 GeV and hence

γ =
E

mp
=

1.4

0.938
= 1.49 ,

β =

√
1− 1

γ2
= 0.74 .

The time of flight is therefore

t =
10

0.74× 3× 108 = 4.5× 10
−8 s = 45 ns .

The answer is (b).

4101

What is the time of flight if the particle in Question 4100 is an electron?

(a) 330 ns.

(b) 66 ns.

(c) 33 ns.

(CCT )

Solution:

An electron with energy 1.4 GeV� mec
2 = 0.51 MeV has β ≈ 1. Hence

the time of flight is

t ≈ 10

3× 108 = 3.3× 10
−8 s = 33 ns .

Thus the answer is (c).
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4102

How would you detect 500 MeV γ-rays? With

(a) hydrogen bubble chamber.

(b) shower counter (BGO).

(c) Geiger counter.

(CCT )

Solution:

As 500 MeV γ-rays will cause cascade showers in a medium, we need

a total-absorption electromagnetic shower counter for their detection. The

BGO shower counter makes a good choice because of its short radiation

length and high efficiency. Hence the answer is (b).

4103

How would one measure the mean lifetime of the following particles?

(1) U238 : τ = 4.5× 109 years,
(2) Λ0 hyperon : τ = 2.5× 10−10 sec,
(3) ρ0 meson : τ ≈ 10−22 sec.

(Wisconsin)

Solution:

(1) The lifetime of 238U can be deduced from its radioactivity−dN/dt =
λN , where the decay rate is determined directly by measuring the counting

rate. Given the number of the nuclei, λ can be worked out and τ = 1/λ

calculated.

(2) The lifetime of Λ0 hyperon can be deduced from the length of its

trajectory before decaying according to Λ0 → p+π− in a strong magnetic

field in a bubble chamber. From the opening angle and curvatures of the

tracks of p and π−, we can determine the momentum of the Λ0, which is

the sum of the momenta of p and π−. Given the rest mass of Λ0, its mean

lifetime can be calculated from the path length of Λ0 (Problem 3033).

(3) The lifetime of ρ0 meson can be estimated from the invariant mass

spectrum. From the natural width ∆E of its mass in the spectrum, its

lifetime can be estimated using the uncertainty principle ∆E∆τ ≈ �.
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4104

The “charmed” particles observed in e+e− storage rings have not yet

been seen in hadron-hadron interactions. One possible means for detecting

such particles is the observation of muons resulting from their leptonic

decays. For example, consider a charmed particle c with decay mode

c→ µν .

Unfortunately, the experimental situation is complicated by the presence

of muons from π decays.

Consider an experiment at Fermilab in which 400 GeV protons strike a

thick iron target (beam dump) as depicted in Fig. 4.13.

Fig. 4.13

Some of the muons entering the detector will be from π decays and some

from c decays (ignore other processes). Calculate the ratio of muons from

c decays to those from π decays under the following assumptions:

(a) the pions that have suffered interaction in the dump completely

disappear from the beam,

(b) the energy spectra of both π and c are flat from minimum up to the

maximum possible energy,

(c) the mass of the c is 2 GeV/c2 and its lifetime is � 10−10 sec,
(d) one can ignore muon energy loss in the iron,

(e) one can ignore any complications due to the geometry of the muon

detector,

(f) the p–p inelastic cross section is 30 mb, and the mean charged pion

multiplicity in inelastic interactions is 8.

Be specific. State any additional assumptions. Give a numerical value

for the ratio at Eµ = 100 GeV assuming the total production cross section

for c to be 10 µb per Fe nucleus and that it decays to µν 10% of the time.

(Princeton)
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Solution:

In addition to the assumptions listed in the question, we also assume

the charge independence of nucleon interactions so that σpp = σpn and the

mean charged-pion multiplicities are the same for pp and pn collisions.

For 56Fe, the number densities of protons and neutrons are the same,

being

Np = Nn =
28

56
× 7.8× 6.02× 1023 = 2.35× 1024 cm−3 .

Denote the flux of protons in the incident beam by φ(x), where x is the

target thickness from the surface of incidence. As

dφ

dx
= −(σppNp + σpnNn)φ = −2σppNpφ ,

φ = φ0e
−2σppNpx .

If the target is sufficiently thick, say x = 10 m = 103 cm, then

φ = φ0 exp(−2× 30× 10−27 × 2.35× 1024 × 103) = 5.8× 10−62φ0 ,

at the exit surface, showing that the beam of protons is completely dissi-

pated in the target. This will be assumed in the following.

Consider first the c quarks produced in p–Fe interactions in the target.

From the given data σpFe(c) = 10 µb, σpp = 30 mb, we find the number of

c quarks so produced as

Nc =

∫
NFeσ(c)dφ ≈ NFeσ(c)φ0

∫ ∞
0

e−2σppNpxdx

=
NFe

2Npp

σ(c)

σpp
φ0 =

1

56
× 10−5

30× 10−3φ0 = 5.95× 10
−6φ0 .

As the c quarks have lifetime � 10−10 s, all those produced in p–Fe

interactions will decay in the target, giving rise to muons 10% of the times.

Thus

Nµc = 0.1Nc = 5.95× 10−7φ0 .

Next consider the muons arising from the decay of charged pions pro-

duced in p-nucleon interactions. After emission the pions may interact
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with the nucleons of the target and disappear from the beam, as assumed,

or decay in flight giving rise to muons. For the former case we assume

σπp = σπn ≈ 2
3σpp = 20 mb at high energies. For the latter case the life-

time of the charged pions in the laboratory is γπ/λ, where λ is the decay

constant and γπ = (1 − β2π)
− 12 , βπc being the mean velocity of the pions.

Then the change of Nπ per unit interval of x is

dNπ

dx
= 8(σppNp + σpnNn)φ(x) −

(
λ

γπβπc
+ σπpNp + σπnNn

)
Nπ

= 16σppNpϕ0e
−2σppNpx −

(
λ

γπβπc
+ 2σπpNp

)
Nπ

= 8Bφ0e
−Bx −B′Nπ ,

where B = 2σppNp, B
′ = 2σπpNp + λ′, λ′ = λ

γπβπc
. The solution of the

differential equation is

Nπ =
8B

B′ −B
(e−Bx − e−B

′x)φ0 .

Hence the number of charged pions which decay in the target per unit

interval of x is

dNπ(λ)

dx
=

λ

γπβπc
Nπ(λ) =

8Bλ′

B′ −B
(e−Bx − e−B

′x)φ0 .

Integration from x = 0 to x =∞ gives

Nπ(λ) =
8Bλ′

B′ −B

(
1

B
− 1

B′

)
φ0 =

8λ′φ0
B′

.

The branching ratio for π → µν ≈ 100%, so that Nµπ ≈ Nπ(λ). This

means that the energy spectrum of muons is also flat (though in actual

fact high-energy muons are more likely than low-energy ones), making the

comparison with Nµc much simpler.

Take for example Eµ ∼ 100 GeV. Then Eπ � 100 GeV, βπ ≈ 1, γπ �
714, and so

λ′ =
λ

γπβπc
=

1

2.6× 10−8 × 714× 3× 1010 = 1.8× 10
−6 cm−1 .



Experimental Methods and Miscellaneous Topics 675

As

σπpNp = 20× 10−27 × 2.34× 1024 = 4.7× 10−2 cm−1 � λ′ .

Nπ(λ) �
8λ′φ0
2σπpNp

=
8× 1.8× 10−6φ0
2× 4.7× 10−2 = 1.5× 10−4φ0 .

Hence
Nµc

Nµπ
=
5.95× 10−7
1.5× 10−4 = 4× 10−3 .

4105

An experiment has been proposed to study narrow hadronic states that

might be produced in pp̄ annihilation. Antiprotons stored inside a ring

would collide with a gas jet of hydrogen injected into the ring perpendicular

to the beam. By adjusting the momentum of the beam in the storage ring

the dependence of the pp̄ cross section on the center-of-mass energy can be

studied. A resonance would show up as a peak in the cross section to some

final state.

Assume that there exists a hadron that can be produced in this channel

with a mass of 3 GeV and a total width of 100 keV.

(a) What beam momentum should be used to produce this state?

(b) One of the motivations for this experiment is to search for charmo-

nium states (bound states of a charmed quark-antiquark pair) that cannot

be seen directly as resonance in e+e− annihilation. Which spin-parity states

of charmonium would you expect to be visible as resonance in this experi-

ment but not in e+e− annihilation?

Rough answers are O.K. for the remaining questions.

(c) Assume that the beam momentum spread is 1%. If the state shows

up as a peak in the total cross section vs. center-of-mass energy plot, how

wide would it appear to be?

(d) How wide would the state appear to be if oxygen were used in the

gas jet instead of hydrogen?

(e) Assume that the jet is of thickness 1 mm and of density 10−9 gram/

cm3, and that there are 1011 circulating antiprotons in a ring of diameter

100 m. How many events per second occur per cm2 of cross section? (In
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other words, what is the luminosity?) How many pp̄ annihilations would

occur per second?

(f) If the state (whose total width is 100 keV) has a branching ratio of

10% to pp̄, what is the value of the total cross section expected at the peak

(assuming the target jet is hydrogen)?

(Princeton)

Solution:

(a) In the laboratory frame, the velocity of the gas jet is very small

and the target protons can be considered as approximately at rest. At

threshold, the invariant mass squared is

S = (Ep +mp)
2 − p2p =M2 .

With E2
p = m2

p + p2p, M = 3 GeV, this gives

Ep =
M2 − 2m2

p

2mp
=
32 − 2× 0.9382
2× 0.938 = 3.86 GeV ,

and hence the threshold momentum

pp =
√
E2
p −m2

p = 3.74 GeV/c .

(b) In e+e− collisions, as e+e− annihilation gives rise to a virtual photon

whose JP is 1−, only the resonance state of JP = 1− can be produced. But

for pp̄ reaction, many states can be created, e.g.,

for S = 0, l = 0, Jp = 0+ ;

S = 1, l = 0, JP = 1− ;

S = 1, l = 1, JP = 0−, 1−, 2− ;

l = 2, JP = 1+, 2+, 3+ .

Therefore, besides the state JP = 1−, other resonance states with JP =

0−, 0+, 1+, 2−, 2+, 3+ · · · can also be produced in pp̄ annihilation.
(c) At threshold

p2 = E2 −m2 =
M4

4m2
p

−M2 .
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Differentiating we have

2p∆p =M3∆M

m2
p

− 2M∆M ,

or

∆M =

2m2
pp

2∆p

p

M3 − 2m2
pM

.

With ∆p
p = 0.01, this gives

∆M =
2× 0.9382 × 3.742 × 0.01
33 − 2× 0.9382 × 3

= 1.13× 10−2 GeV .

Since ∆M � Γ, the observed linewidth is due mainly to ∆p.
(d) If oxygen was used instead of hydrogen, the proton that interacts

with the incident antiproton is inside the oxygen nucleus and has a certain

kinetic energy known as the Fermi energy. The Fermi motion can be in any

direction, thus broadening the resonance peak. For a proton in an oxygen

nucleus, the maximum Fermi momentum is

pF ≈
�

R0

(
9πZ

4A

)1/3

=
�c

R0c

(
9π

8

)1/3

=
197× 10−13
1.4× 10−13c

(
9π

8

)1/3

= 210 MeV/c ,

where the nuclear radius is taken to be R = R0A
1/3, which is much larger

than the spread of momentum (∆p = 3.47 MeV/c). This would make the

resonance peak much too wide for observation. Hence it is not practicable

to use oxygen instead of hydrogen in the experiment.

(e) The antiprotons have velocity βc, where

β =
pp

Ep
=
3.74

3.86
= 0.97 .

The number of times they circulate the ring per second is

βc

100π
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and so the number of encounters of pp̄ per second per cm2 of cross section is

B = 1011 × 0.97× 3× 10
10

100× 102 × π
× 0.1× 10−9 × 6.023× 1023

= 5.6× 1030 cm−2 s−1 .

Suppose σpp̄ ≈ 30 mb. The number of pp̄ annihilation expected per second is

σpp̄B = 30× 10−27 × 5.6× 1030

= 1.68× 105 s−1 .

(f) The cross section at the resonance peak is given by

σ =
(2J + 1)

(2Jp + 1)(2Jp̄ + 1)

πλ2Γpp̄Γ

(E −M)2 +
Γ2

4

.

At resonance E = M . Suppose the spin of the resonance state is zero.

Then as Jp = Jp̄ =
1
2 ,

σ(J = 0) = πλ2
Γpp̄
Γ

.

With λ = �

pp
,
Γpp̄
Γ = 0.1, we have

σ = π ×
(
�c

ppc

)2

× 0.1 = π ×
(
197× 10−13

3740

)2

× 0.1

= 8.7× 10−30 cm2

= 8.7 µb .

4. ERROR ESTIMATION

AND STATISTICS (4106 4118)

4106

Number of significant figures to which α is known: 4, 8, 12, 20

(Columbia)
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Solution:

α =
e2

�c
=

1

137.03604(11)
,

the answer is 8.

4107

If the average number of counts in a second from a radioactive source

is 4, what is the probability of recording 8 counts in one second?

(Columbia)

Solution:

The count rate follows Poisson distribution. Hence

P (8) = 48e−4/8! = 0.03 .

4108

Suppose it is intended to measure the uniformity of the thickness of an

aluminium filter placed perpendicular to an X-ray beam. Using an X-ray

detector and source, equal-exposure transmission measurements are taken

at various points on the filter. The number of counts, N , obtained in 6 trials

were 1.00× 104, 1.02× 104, 1.04× 104, 1.06× 104, 1.08× 104, 1.1× 104.

(a) Calculate the standard deviation associated with these measure-

ments.

(b) What do the measurements tell you about the uniformity of the

filter?

(c) Given that N = N0e
−µt, how is a fractional uncertainty in N related

to a fractional uncertainty in t?

(d) For a given number of counts at the detector, would the fractional

error in t be larger for small t or large t?

(Wisconsin)

Solution:

(a) The mean of the counts is N̄ = 1
n

∑n
1 Ni = 1.05×104. The standard

deviation of a reading is
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σ =

√√√√ 1

n− 1

n∑
i

(Ni − N̄)2 = 0.037× 104 .

(b) If the Al foil is uniform, the counts taken at various locations should

follow the Poisson distribution with a standard deviation

∆N =
√
N ≈

√
1.05× 104 = 0.01× 104 .

Since the standard deviation of the readings (0.037 × 104) is more than
three times ∆N , the foil cannot be considered uniform.

(c) Write N = N0e
−µt as lnN = lnN0 − µt. As dN

N
= −µdt, we have

∆N

N
= µ∆t ,

or
∆N

N
= µt

(
∆t

t

)
.

(d) As
∆t

t
=
1

µt

∆N

N
,

for a given set of data, the smaller t is, the larger is the fractional error of t.

4109

You have measured 25 events J → e+e− by reconstructing the mass of

the e+e− pairs. The apparatus measures with ∆m/m = 1% accuracy. The

average mass is 3.100 GeV. What is the error?

(a) 6.2 MeV

(b) 1.6 MeV

(c) 44 MeV.

(CCT )

Solution:

As ∆m is the error in a single measurement, the standard deviation is

σ =

√
1

25− 1
∑
(∆m)2 =

√
25

24
∆m ≈ ∆m = 31 MeV .
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Hence the standard deviation of the mean, or the standard error, is

e =
σ√
25
= 6.2 MeV .

Thus the answer is (a).

4110

In a cloud chamber filled with air at atmospheric pressure, 5 MeV alpha

particles make tracks about 4 cm long. Approximately how many such

tracks must one observe to have a good chance of finding one with a distinct

sharp bend resulting from a nuclear encounter?

(Columbia)

Solution:

As the nuclear radius is R = r0A
1/3, where r0 = 1.2 fm and A = 14.7

for the average air nucleus, the nuclear cross section σ is

σ ≈ πR2 = π × (1.2× 10−13 × 14.71/3)2 = 2.7× 10−25 cm2 .

The number density of nuclei in the cloud chamber is

n =
ρNA

A
=
0.001293× 6.023× 1023

14.7
= 5.3× 1019 cm−3 .

Hence the mean free path is λ = 1
nσ = 7.0× 104 cm.

Therefore, for a good chance of finding a large-angle scattering one

should observe about 7× 104/4 ≈ 20000 events.

4111

The positive muon (µ+) decays into a positron and two neutrinos,

µ+ → e+ + νe + ν̄µ ,

with a mean lifetime of about 2 microseconds. Consider muons at rest po-

larized along the z-axis of a coordinate system with a degree of polarization
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P , and confine our observations to the highest-energy positrons from muon

decays. These positrons are emitted with an angular distribution

I(cos θ)dΩ = (1 + P cos θ)
dΩ

4π
,

where θ is the angle between the positron direction and z-axis, and dΩ is

the solid angle element into which the positron is emitted.

(a) Assume P = +1. What is the probability that for the first six

positrons observed, three are in the forward hemisphere (cos θ > 0) and

three are in the backward hemisphere (cos θ < 0)?

(b) Assume that P is in the neighborhood of 1, but not accurately

known. You wish to determine P by comparing the numbers of observed

forward (Nf ) and backward (Nb) decay positrons. How many muon decays,

N (N = Nf+Nb), must you observe to determine P to an accuracy of ±1%?
(CUSPEA)

Solution:

(a) As dΩ = 2πd cos θ, the probability of a forward decay is

Pf = 2π

∫ 1

0

(1 + P cos θ)d cos θ

4π
=
1

2

(
1 +

P

2

)
,

and the probability of a backward decay is

Pb = 2π

∫ 0

−1

(1 + P cos θ)d cos θ

4π
=
1

2

(
1− P

2

)
.

If we observe N positrons, the probability of finding Nf positrons in the

forward and Nb positrons in the backward hemisphere, where N = Nf+Nb,

is according to binomial distribution

W =
N !

Nf !Nb!
(Pf )

Nf (Pb)
Nb .

For P = 1, the above give Pf = 3/4, Pb = 1/4. With N = 6, Nf = Nb = 3,

the probability is

W =
6!

3!3!

(
3

4

)3 (
1

4

)3

= 0.132 .
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(b) P can be determined from

Pf − Pb =
P

2
,

i.e.,

P = 2(Pf − Pb) = 2(2Pf − 1) ,

where Pf =
Nf
N , Pb =

Nb
N are to be obtained from experimental observa-

tions. With N events observed, the standard deviation of Nf is

∆Nf =
√
NPf (1− Pf ) .

So

∆Pf =
∆Nf

N
=

√
Pf (1− Pf )

N
.

Hence

∆P = 4∆Pf = 4

√
Pf (1− Pf )

N
,

or

N =
16Pf (1− Pf )

(∆P )2
.

With P ≈ 1, ∆P ≈ 0.01P = 0.01, Pf ≈ 3
4 , N must be at least

Nmin =
16 · 3

4
· 1
4

(10−2)2
= 30000 .

4112

Carbon dioxide in the atmosphere contains a nearly steady-state con-

centration of radioactive 14C which is continually produced by secondary

cosmic rays interacting with atmosphere nitrogen. When a living organism

dies, its carbon contains 14C at the atmospheric concentration, but as time

passes the fraction of 14C decreases due to radioactive decay. This is the

basis for the technique of radiocarbon dating.
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In the following you may assume that the atmospheric value for the

ratio 14C/12C is 10−12 and that the half life for the 14C β-decay is 5730

years.

(a) It is desired to use radiocarbon dating to determine the age of a

carbon sample. How many grams of a sample are needed to measure the

age to a precision of ±50 years (standard deviation of 50 years)? Assume
that the sample is actually 5000 years old, that the radioactivity is counted

for one hour with a 100% efficient detector, and that there is no background.

(b) Repeat part (a), but now assume that there is a background counting

rate in the detector (due to radioactivity in the detector itself, cosmic rays,

etc.) whose average value is accurately known to be 4000 counts per hour.

(CUSPEA)

Solution:

(a) 14C decays according to

N = N0e
−λt .

Its counting rate is thus

A = −dN/dt = λN0e
−λt = λN .

Differentiating we have

dA

dt
= −λ2N0e

−λt = −λA ,

and hence

∆A/A = λ∆t .

The decay constant is λ = ln 2
T1/2

= ln 2
5730 = 1.21 × 10−4 yr−1. As the

counting rate per hour A follows the Poisson distribution,

∆A

A
=

√
A

A
=

1√
A
= 50λ ,

giving

A =

(
1

50× 1.21× 10−4
)2

= 2.73× 104 h−1 .
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Let the mass of carbon required be x grams. Then

A =
λxNA

12
× 10−12 × exp(−5000λ) ,

giving

x =
12A× 1012 × e5000λ

NAλ

=
12× 2.73× 104 × 365× 24
6.023× 1023 × 1.21× 10−4 × 10

12 × e5000×1.21×10
−4

= 72.1 g .

(b) With a background counting rate of AB, the total rate is A+AB ±√
A+AB . As AB is known precisely, ∆AB = 0. Hence

∆(A+AB) = ∆A =
√
A+AB ,

or
∆A

A
=

√
1

A
+

AB

A2
.

With ∆A
A
= λ∆t = C, say, the above becomes

C2A2 −A−AB = 0 .

Hence

A =
1

2C2
(1 +

√
1 + 4C2AB)

=
1

2× (1.21× 10−4 × 50)2
[
1 +
√
1 + 4× (1.21× 10−4 × 50)2 × 4000

]

= 3.09× 104 h−1 ,

and the mass of sample required is

m =
3.09× 104
2.73× 104 × 72.1 = 81.6 g .
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4113

A Čerenkov counter produces 20 photons/particle. The cathode of the

photomultiplier converts photons with 10% efficiency into photoelectrons.

One photoelectron in the multiplier will produce a signal. Of 1000 particles,

how many passes unobserved?

(a) none

(b) 3

(c) 130

(CCT )

Solution:

Consider the passage of a particle. It produces 20 photons, each of

which has a probability P = 0.1 of producing a photoelectron and so be-

ing detected. The particle will not be observed if none of the 20 photons

produces photoelectrons. The probability of this happening is

P (0) =
20!

0!20!
(0.1)0(0.9)20

= 0.122 .

Hence of the 1000 incident particles, it is expected that 122 will not be

observed. Thus the answer is (c).

4114

A radioactive source is emitting two types of radiation A and B, and is

observed by means of a counter that can distinguish between the two. In

a given interval, 1000 counts of type A and 2000 of type B are observed.

Assuming the processes producing A and B are independent, what is the

statistical error on the measured ratio r = NA
NB
?

(Wisconsin)

Solution:

Writing the equation as

ln r = lnNa − lnNB
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and differentiating both sides, we have

dr

r
=

dNA

NA
− dNB

NB
.

As NA and NB are independent of each other,

(
∆r

r

)2

=

(
∆NA

NA

)2

+

(
∆NB

NB

)2

.

Now NA and NB follow Poisson’s distribution. So ∆NA =
√
NA, ∆NB =√

NB, and hence

∆r

r
=

√
1

NA
+

1

NB
=

√
1

1000
+

1

2000
= 3.9% ,

or

∆r =
1000

2000
× 0.039 = 0.020 ,

which is the standard error of the ratio r.

4115

A sample of β-radioactive isotope is studied with the aid of a scintillation

counter which is able to detect the decay electrons and accurately determine

the individual decay times.

(a) Let τ denote the mean decay lifetime. The sample contains a large

number N of atoms, and the detection probability per decay is ε. Calculate

the average counting rate in the scintillator. You may assume τ to be much

longer than any period of time over which measurements are made. In a

measurement of τ , 10,000 counts are collected over a period of precisely

one hour. The detection efficiency of the scintillator is independently de-

termined to be 0.4 and N is determined to be 1023. What is the measured

value of τ? What is the statistical error in this determination of τ (standard

deviation)?

(b) Let P (t)dt be the probability that two successive counts in the scin-

tillator are at t and t+ dt. Compute P (t) in terms of t, ε, N , τ .

(CUSPEA)
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Solution:

(a) As τ � time of measurement, N can be considered constant and

the average counting rate is

R =
εN

τ
.

Hence

τ =
εN

R
=
0.4× 1023
104

= 0.4× 1019 h = 4.6× 1014 yr .

The statistical error of R is
√
R as counting rates follow Poisson’s dis-

tribution. Then

∆τ

τ
=
∆R

R
=

1√
R
=

1√
104

= 0.01 ,

or

∆τ = 4.6× 1012 yr .
(b) The first count occurs at time t. This means that no count occurs

in the time interval 0 to t. As the expected mean number of counts for the

interval is m = Rt, the probability of this happening is

e−mm0

0!
= e−m = e−Rt .

The second count can be taken to occur in the time dt. As m′ = Rdt,

the probability is
e−m

′
m′

1!
= e−RdtRdt ≈ Rdt .

Hence

P (t)dt = Re−Rtdt

or

P (t) =
εN

τ
exp

(
−εNt

τ

)
.

4116

A minimum-ionizing charged particle traverses about 1 mg/cm2 of gas.

The energy loss shows fluctuations. The full width at half maximum (fwhm)

divided by the most probable energy loss (the relative fwhm) is about

(a) 100%.
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(b) 10%.

(c) 1%.

(CCT )

Solution:

The energy loss of a minimum-ionizing charged particle when it trans-

verses about 1 mg/cm2 of gas is about 2 keV. The average ionization energy

for a gas molecule is about 30 eV. The relative fwhm is then about

η = 2.354

(
εF

E0

)1/2

= 2.354

(
30F

2000

)1/2

= 29(F )1/2% ,

where F < 1 is the Fanor factor. The answer is (b).

4117

An X-ray of energy ε is absorbed in a proportional counter and produces

in the mean n̄ ion pairs. The rms fluctuation σ of this number is given by

(a)
√
n̄.

(b)
√
Fn̄, with F < 1.

(c) π ln n̄.

(CCT )

Solution:

The answer is (b).

4118

A 1 cm thick scintillator produces 1 visible photon/100 eV of energy

loss. It is connected by a light guide with 10% transmission to a photomul-

tiplier (10% efficient) converting the light into photoelectrons. What is the

variation σ in pulse height for the proton in Problem 4065?

(a) 21.2%

(b) 7.7%

(c) 2.8%

(CCT )
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Solution:

The energy loss of the proton in the scintillator is ∆E = 1.8 MeV

= 1.8 × 106 eV per cm path length. Then the mean number of photons

produced in the scintillator is

n̄ =
1.8× 106
100

= 1.8× 104 .

With a transmission efficiency of 10% and a conversion efficiency of 10%,

the number of observed photoelectrons is N̄ = 1.8× 104 × 0.1× 0.1 = 180.
The percentage standard deviation is therefore

σ =

√
N̄

N̄
=

1√
N̄
=

1√
180

= 7.5% .

Hence the answer is (b).

5. PARTICLE BEAMS

AND ACCELERATORS (4119 4131)

4119

(a) Discuss the basic principles of operation of cyclotrons, synchrocy-

clotrons and synchrotrons. What are the essential differences among them?

What limits the maximum energy obtainable from each?

(b) Discuss the basic principles of operation of linear accelerators such

as the one at SLAC. What are the advantages and disadvantages of linear

accelerators as compared to circular types?

(c) For what reason have colliding-beam accelerators (“intersecting stor-

age ring”) been constructed in recent years? What are their advantages and

disadvantages as compared to conventional fixed-target accelerators?

(Columbia)

Solution:

(a) The cyclotron basically consists of two hollow, semicircular metal

boxes — the dees — separated along their straight edges by a small gap. An

ion source at the center of the gap injects particles of charge Ze into one of
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the dees. A uniform and constant magnetic field is applied perpendicular to

the dees, causing the particles to orbit in circular paths of radius r given by

mv2

r
= ZevB .

The particles are accelerated each time it crosses the gap by a radio-

frequency electric field applied across the gap of angular frequency ωr =
ZeB
m = wp, the angular frequency of revolution of the particles. As wp is

independent of the orbit radius r, the particles always take the same time

to cover the distance between two successive crossings, arriving at the gap

each time at the proper phase to be accelerated.

An upper limit in the energy attainable in the cyclotron is imposed by

the relativistic increase of mass accompanying increase of energy, which

causes them to reach the accelerating gap progressively later, to finally fall

out of resonance with the rf field and be no longer accelerated.

In the synchrocyclotron, this basic limitation on the maximum energy

attainable is overcome by varying the frequency of the rf field, reducing

it step by step in keeping with the decrease of wp due to relativistic mass

change. While in principle there is no limit to the attainable energy in

the synchrocyclotron, the magnet required to provide the magnetic field,

which covers the entire area of the orbits, has a weight proportional to the

third power of the maximum energy. The weight and cost of the magnet in

practice limit the maximum attainable energy.

In the synchrotron the particles are kept in an almost circular orbit

of a fixed radius between the poles of a magnet annular in shape, which

provides a magnetic field increasing in step with the momentum of the

particles. Accelerating fields are provided by one or more rf stations at

points on the magnetic ring, the rf frequency increasing in step with the

increasing velocity of the particles. The highest energy attainable is limited

by the radiation loss of the particles, which on account of the centripetal

acceleration radiate electromagnetic radiation at a rate proportional to the

fourth power of energy.

Comparing the three types of accelerators, we note that for the cyclotron

both the magnitude of the magnetic field and the frequency of the rf field

are constant. For the synchrocyclotron, the magnitude of the magnetic

field is constant while the frequency of the rf field changes synchronously

with the particle energy, and the orbit of a particle is still a spiral. For the
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synchrotron, both the magnitude of the magnetic field and the frequency

of the rf field are to be tuned to keep the particles in a fixed orbit.

(b) In a linear accelerator such as SLAC, charged particles travel in a

straight line along the axis of a cylindrical pipe that acts as a waveguide,

which has a rf electromagnetic field pattern with an axial electric field com-

ponent to provide the accelerating force. Compared to ring-shaped accel-

erators, the linear accelerator has many advantages. As the particles move

along a straight line they are easily injected and do not need extraction. In

addition, as there is no centripetal acceleration radiation loss is neglectable.

It is especially suited for acclerating electrons to very high energies. An-

other advantage is its flexibility in construction. It can be lengthened in

steps. Its downside is its great length and high cost as compared to a ring

accelerator of equal energy.

(c) In the collision of a particle of massm and energyE with a stationary

particle of equal mass the effective energy for interaction is
√
2mE, while

for a head-on collision between colliding beams of energy E the effective

energy is 2E. It is clear then that the higher the energy E, the smaller will

be the fraction of the total energy available for interaction in the former

case. As it is difficult and costly to increase the energy attainable by an

accelerated particle, many colliding-beam machines have been constructed

in recent years. However, because of their lower beam intensity and particle

density, the luminosity of colliding-beam machines is much lower than that

of stationary-target machines.

4120

(a) Briefly describe the cyclotron and the synchrotron, contrasting them.

Tell why one does not use:

(b) cyclotrons to accelerate protons to 2 GeV?

(c) synchrotrons to accelerate electrons to 30 GeV?

(Columbia)

Solution:

(a) In the cyclotron, a charged particle is kept in nearly circular orbits

by a uniform magnetic field and accelerated by a radio frequency electric

field which reverses phase each time the particle crosses the gap between

the two D-shape electrodes. However, as its mass increases accompanying
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the increase of energy, the cyclotron radius of the particle r = mv
eB
increases,

and the cyclotron frequency w = eB
m decreases. Hence the relative phase

of particle revolution relative to the rf field changes constantly. In the

synchrotron the bending magnetic field is not constant, but changes with

the energy of the particle, causing it to move in a fixed orbit. Particles are

accelerated by resonant high frequency field at one or several points on the

orbit, continually increasing the energy (cf. Problem 4119(a)).

(b) In the cyclotron, as the energy of the particle increases, the radius

of its orbit also increases and the accelerating phase of the particle changes

constantly. When the kinetic energy of the particle is near to its rest energy,

the accumulated phase difference can be quite large, and finally the particle

will fall in the decelerating range of the radio frequency field when it reaches

the gap between the D-shaped electrorodes. Then the energy of the particle

cannot be further increased. The rest mass of the proton is ∼ 1 GeV. To
accelerate it to 2 GeV with a cyclotron, we have to accomplish this before it

falls in the decelerating range. The voltage required is too high in practice.

(c) In the synchrotron the phase-shift probem does not arise, so the

particle can be accelerated to a much higher energy. However at high

energies, on account of the large centripetal acceleration the particle will

radiate electromagnetic radiation, the synchrotron radiation, and lose en-

ergy, making the increase in energy per cycle negative. The higher the

energy and the smaller the rest mass of a particle, the more intense is the

synchrotron radiation. Obviously, when the loss of energy by synchrotron

radiation is equal to the energy acquired from the accelerating field in the

same interval of time, further acceleration is not possible. As the rest mass

of electron is only 0.511 MeV, to accelerate an electron to 30 GeV, we

must increase the radius of the accelerator, or the accelerating voltage, or

both to very large values, which are difficult and costly in practice. For

example, a 45 GeV e+e− colliding-beams facility available at CERN has a

circumference of 27 km.

4121

Radius of 500 GeV accelerator at Batavia is 102, 103, 104, 105 m.

(Columbia)
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Solution:

In a magnetic field of induction B, the radius of the orbit of a proton is

R =
mγβc

eB
=

mγβc2

eBc
.

For a proton of energy 500 GeV, β ≈ 1,mγc2 = 500 GeV. Hence, if B ∼ 1 T
as is generally the case,

R =
500× 109 × 1.6× 10−19
1.6× 10−19 × 1× 3× 108 =

5

3
× 103 m .

Thus the answer is 103 m.

4122

In a modern proton synchrotron (particle accelerator) the stability of the

protons near the equilibrium orbit is provided by the fact that the magnetic

field B required to keep the particles in the equilibrium orbit (of radius R)

is nonuniform, independent of θ, and can often be parametrized as

Bz = B0

(
R

r

)n
,

where z is the coordinate perpendicular to the plane of the equilibrium

orbit (i.e., the vertical direction) with z = 0 at the equilibrium orbit, B0

is a constant field required to keep the particles in the equilibrium orbit of

radius R, r is the actual radial position of the particle (i.e. ρ = r − R is

the horizontal displacement of the particle from the equilibrium orbit), and

n is some constant. Derive the frequencies of the vertical and horizontal

betatron oscillations for a particular value of n. For what range of values

of n will the particles undergo stable oscillations in both the vertical and

horizontal directions around the equilibrium orbit?

(Columbia)

Solution:

Using the cylindrical coordinates (r, θ, z), we can write the equation of

motion of the particle

d

dt
(mv) = eE+ ev×B
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as

d

dt

(
m
dr

dt

)
−mr

(
dθ

dt

)2

= eEr + eBzr
dθ

dt
− eBθ

dz

dt
,

1

r

d

dt

(
mr2

dθ

dt

)
= eEθ + eBr

dz

dt
− eBz

dr

dt
,

d

dt

(
m
dz

dt

)
= eEz + eBθ

dz

dt
− eBrr

dθ

dt
.

On the orbit of the particle the electric field is zero and the magnetic field

is independent of θ, i.e.,

Eθ = Er = Ez = Bθ = 0 .

The first and third of the above equations reduce to

d

dt

(
m
dr

dt

)
−mr

(
dθ

dt

)2

= eBzr
dθ

dt
, (1)

d

dt

(
m
dz

dt

)
= −eBrr

dθ

dt
. (2)

On the equilibrium orbit, r = R and Eq. (1) becomes

mR

(
dθ

dt

)2

= −eB0R

(
dθ

dt

)
,

or
dθ

dt
= −eB0

m
= −ω0 , say .

ω0 is the angular velocity of revolution of the particle, i.e., its angular

frequency.

The actual orbit fluctuates about the equilibrium orbit. Writing r =

R+ ρ, where ρ is a first order small quantity, same as z, and retaining only

first order small quantities we have, near the equilibrium orbit,

Bz(r, z) ≈ B0

(
B

r

)n
≈ B0

(
1 +

ρ

R

)−n
≈ B0

(
1− nρ

R

)
.
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As

∇×B = 0 ,
considering the θ component of the curl we have

∂Br

∂z
=

∂Bz

∂r
,

from which follows

Br(ρ, z) ≈ Br(ρ, 0) +

(
∂Br

∂z

)
z=0

z = 0 +

(
∂Bz

∂r

)
z=0

z

= −
(
nBz

r

)
z=0

z = −nB0

R
z ,

since B = Bz = B0 for ρ = 0.

To consider oscillations about R, let r = R + ρ. On using the ap-

proximate expressions for Bz and Br and keeping only first order small

quantities, Eqs. (1) and (2) reduce to

d2ρ

dt2
= −ω2

0(1− n)ρ ,

d2z

dt2
= −ω2

0nz .

Hence if n < 1, there will be stable oscillations in the radial direction with

frequency

ωρ =
√
1− nω0 =

√
1− neB0

m
.

If n > 0, there will be stable oscillations in the vertical direction with

frequency

ωz =
√
nω0 =

√
neB0

m
.

Thus only when the condition 0 < n < 1 is satisfied can the particle undergo

stable oscillations about the equilibrium orbit in both the horizontal and

vertical directions.

4123

A modern accelerator produces two counter-rotating proton beams

which collide head-on. Each beam has 30 GeV protons.

(a) What is the total energy of collision in the center-of-mass system?
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(b) What would be the required energy of a conventional proton accel-

erator in which protons strike a stationary hydrogen target to give the same

center-of-mass energy?

(c) If the proton-proton collision rate in this new machine is 104/sec,

estimate the required vacuum in the system such that the collision rate of

protons with residual gas be of this same order of magnitude in 5 m of pipe.

Take 1000 m as the accelerator circumference, σp−air = 10
−25 cm2, and the

area of the beam as 1 mm2.

(Columbia)

Solution:

(a) The center-of-mass system is defined as the frame in which the total

momentum of the colliding particles is zero. Thus for the colliding beams,

the center-of-mass system (c.m.s.) is identical with the laboratory system.

It follows that the total energy of collision in c.m.s. is 2Ep = 2 × 30 =
60 GeV.

(b) If a conventional accelerator and a stationary target are used, the

invariant mass squared is

S = (Ep +mp)
2 − p2p

= E2
p − p2p + 2Epmp +m2

p

= 2Epmp + 2m
2
p .

In c.m.s.

S = (60)2 = 3600 GeV2 .

As S is invariant under Lorentz transformation we have

2Epmp + 2m
2
p = 3600 ,

or

Ep =
1800− 0.9382

0.938
= 1918 GeV ,

as the required incident proton energy.

(c) Let n, s be the number density of protons and cross sectional area

of each colliding beam, L be the circumference of the beam orbit, l be the
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length of the pipe of residual air with density ρ. The number of collisions

per unit time in the colliding beam machine is

r =
N

∆t
=

NpNpσpp(
L

c

) =
(nsL)2cσpp

L
= n2s2Lcσpp .

The number of collisions per unit time in the air pipe is

r′ =
N ′

∆t′
=

NpNaσpa(
L+ l

c

) ≈ (nsL)(ρslNA

A

)
cσpa

L
,

where A is the molecular weight of air and NA is Avodagro’s number.

If r′ = r, the above give

ρ =
A

NA

L

l

σpp

σpa
n .

As r = 104 s−1, we have

n =

(
104

s2Lcσpp

) 1
2

=

(
104

10−4 × 105 × 3× 1010 × 3× 10−26
) 1
2

= 1.8× 109 cm−3 ,

taking σpp = 30 mb= 3× 10−26 cm2. Hence

ρ =
29

6.02× 1023
(
1000

5

)(
3× 10−26
10−25

)
× 1.8× 109

= 5.3× 10−12 g cm−3 ,

The pressure P of the residual air is given by

5.3× 10−12
1.3× 10−3 =

P

1
,

i.e., P = 4× 10−9 atm.

4124

Suppose you are able to produce a beam of protons of energy E in the

laboratory (where E � mpc
2) and that you have your choice of making
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a single-beam machine in which this beam strikes a stationary target, or

dividing the beam into two parts (each of energy E) to make a colliding-

beam machine.

(a) Discuss the relative merits of these two alternatives from the follow-

ing points of view:

(1) the threshold energy for particle production,

(2) the event rate,

(3) the angular distribution of particles produced and its consequences

for detector design.

(b) Consider the production of the Z0 particle (Mc2 ≈ 90 GeV) at
threshold in a p+ p collision. What is the energy E required for each type

of machine?

(c) At beam energy E, what is the maximum energy of a π meson

produced in each machine?

(CUSPEA)

Solution:

(a) (i) The invariant mass squared is the same before and after reaction:

S = −(p1 + p2)
2 = −(p′1 + p′2 + p)2 ,

where p1, p2 are the initial 4-momenta of the two protons, p
′
1, p

′
2 are their

final 4-momenta, respectively, and p is the 4-momentum of the new particle

of rest mass M .

Then for one proton being stationary initially, p1 = (p1, Ep), p2 =

(0,mp) and so

S = (E1 +mp)
2 − p21

= (E2
1 − p21) +m2

p + 2E1mp

= 2m2
p + 2E1mp .

At threshold the final state has

p′1 = p′2 = (0,mp), p = (0,M) and so

S′ = (2mp +M)2 .
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For the reaction to proceed we require

S ≥ S′ ,

or

E1 ≥ mp + 2M +
M2

2mp
.

For colliding beams, we have p1 = (pc, Ec), p2 = (−pc, Ec) and the invari-
ant mass squared

S′′ = (2Ec)
2 − (pc − pc)2 = 4E2

c .

The requirement S′′ ≥ S′ then gives

Ec ≥ mp +
M

2
.

Note that E1 � Ec if M � mp. Hence colliding-beam machine is able

to produce the same new particle with particles of much lower energies.

(ii) Since a fixed target provides an abundance of target protons which

exist in its nuclei, the event rate is much higher for a stationary-target

machine.

(iii) With a stationary-target machine, most of the final particles are

collimated in the forward direction of the beam in the laboratory. Detec-

tion of new particles must deal with this highly directional geometry of

particle distribution and may have difficulty in separating them from the

background of beam particles.

With a colliding-beam machine the produced particles will be more

uniformly distributed in the laboratory since the total momentum of the

colliding system is zero. In this case the detectors must cover most of the

4π solid angle.

(b) Using the formulas in (a) (i) we find, with mp = 0.94 GeV, M =

90 GeV, the threshold energies for a fixed-target machine,

E1 = mp + 2M +
M2

2mp
= 0.94 + 2× 90 + 902

2× 0.94 = 4489 GeV ,

and for a colliding-beam machine,

Ec = mP +
M

2
= 0.94 +

90

2
= 45.94 GeV .
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(c) Colliding-beam machine

Let p1, p2 be the momenta of the protons in the final state, and pπ be

the momentum of the pion produced. Conservation of energy requires

2E =
√
m2
p + p21 +

√
m2
p + p22 +

√
m2
π + p2π .

Conservation of momentum requires

p1 + p2 + pπ = 0 ,

or

p2π = p21 + p22 + 2p1p2 cosα .

This means that for pπ to have the maximum value, the angle α between

p1, p2 must be zero, since
∂pπ
∂α = p1p2

pπ
sinα. Thus at maximum pπ, the three

final particles must move in the same line. Write

p2 = −(p1 + pπ) .

The energy equation becomes

2E =
√
m2
p + (pπ + p1)2 +

√
m2
π + p2π +

√
m2
p + p21 .

Differentiating we have

0 =
(pπ + p1)d(pπ + p1)√

m2
p + (pπ + p1)2

+
pπdpπ√
m2
π + p2π

+
p1dp1√
m2
p + p21

.

Letting dpπ/dp1 = 0, we find

− p1√
m2
p + p21

=
(pπ + p1)√

m2
p + (pπ + p1)2

.

Hence

pπ = −2p1 , p2 = p1 .

Thus at maximum Eπ ,

2E = 2
√
m2
p + p21 +

√
m2
π + (2p1)

2 ,
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or

4E2 − 4EEπmax +m2
π + 4p

2
1 = 4m

2
p + 4p

2
1 ,

giving the maximum pion energy

Eπmax =
4E2 +m2

π − 4m2
p

4E
≈ E ,

as E � mp.

Stationary-target machine: When Eπ is maximum, the two final-state

protons are stationary and the pion takes away the momentum of the inci-

dent proton. Thus

Eπ + 2mp = E +mp ,

or

Eπ = E −mp ≈ E as E � mp .

4125

An electron (mass m, charge e) moves in a plane perpendicular to a

uniform magnetic field. If energy loss by radiation is neglected the orbit is

a circle of some radius R. Let E be the total electron energy, allowing for

relativistic kinematics so that E � mc2.

(a) Explain the needed field strength B analytically in terms of the

above parameters. Compute B numerically, in gauss, for the case where

R = 30 meters, E = 2.5× 109 electron volts. For this part of the problem
you will have to recall some universal constants.

(b) Actually, the electron radiates electromagnetic energy because it is

being accelerated by the B field. However, suppose that the energy loss per

revolution ∆E is small compared to E. Explain the ratio ∆E/E analyti-

cally in terms of the parameters. Then evaluate this ratio numerically for

the particular value of R given above.

(CUSPEA)

Solution:

(a) Let v be the velocity of the electron. Its momentum is p = mγv,

where γ = (1− v2

c2 )
− 12 . Newton’s second law of motion gives

dp

dt
= mγ

dv

dt
= ev×B ,
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as |v| and hence γ are constant since v ⊥ B, or∣∣∣∣dvdt
∣∣∣∣ = evB

mγ
.

As ∣∣∣∣dvdt
∣∣∣∣ = v2

R
,

where R is the radius of curvature of the electron orbit,

B =
mγv

eR
,

or

B =
pc

eRc
=

√
E2 −m2c4

eRc
≈ E

eRc

=
2.5× 109 × 1.6× 10−19
1.6× 10−19 × 30× 3× 108 = 2.8× 10

−1 T

= 2.8× 103 Gs .
(b) The power radiated by the electron is

P =
e2

6πε0c3
γ6

[
v̇2 −

(
v× v̇
c

)2
]

=
e2v̇2

6πε0c3
γ4

=
e2v4

6πε0c3
γ4

R2
,

as v̇ ⊥ v. The energy loss per revolution is then

∆E =
2πRP

v
=
4π

3

(
e2

4πε0mc2R

)
(γβ)3γmc2

=
4π

3

(r0
R

)
(γβ)3E =

4π

3

(r0
R

)
(γ2 − 1) 32E ,

where r0 = 2.8 × 10−15 m is the classical radius of electron and β = v
c .

With γ = 2.5×109
0.51×106 = 4.9× 103,

∆E

E
≈ 4π
3
× 2.8× 10

−15

30
× (4.9× 103)3

= 4.6× 10−5 .
The results can also be obtained using the relevant formulas as follows.
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(a)

p(GeV/c) = 0.3B(T)R(m)

giving

B =
p

0.3R
=

2.5

0.3× 30 ≈ 0.28 T .

(b)

∆E(keV) ≈ 88E(GeV)4/R(m)
giving

∆E

E
= 88E3 × 10−6/R

= 88× 2.53 × 10−6/30

= 4.6× 10−5 .

4126

Draw a simple, functional cyclotron magnet in cross section, showing

pole pieces of 1 m diameter, yoke and windings. Estimate the number of

ampere-turns required for the coils if the spacing between the pole pieces is

10 cm and the required field is 2 T (= 20 kgauss). µ0 = 4π×10−7 J/A2· m.
(Columbia)

Solution:

Figure 4.14 shows the cross section of a cyclotron magnet. The magnetic

flux φ crossing the gap betwen the pole pieces is

φ =
NI

R
,

where

R =
d

µ0S
,

d being the gap spacing and S the area of each pole piece, is the reluctance.

By definition the magnetic induction is B = φ
S
. Thus

NI = φR =
Bd

µ0
=
2× 10× 10−2
4π × 10−7 = 1.59× 105 A-turns .
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Fig. 4.14

4127

In general, when one produces a beam of ions or electrons, the space

charge within the beam causes a potential difference between the axis and

the surface of the beam. A 10-mA beam of 50-keV protons (v = 3 ×
106 m/sec) travels along the axis of an evacuated beam pipe. The beam has

a circular cross section of 1-cm diameter. Calculate the potential difference

between the axis and the surface of the beam, assuming that the current

density is uniform over the beam diameter.

(Wisconsin)

Solution:

The beam carries a current

I =

∫
j · dS =

∫ R

0

j2πrdr = πR2j = πR2ρv ,

where j and ρ are the current and charge densities respectively. Thus

ρ =
I

πR2v
.
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At a distance r from the axis, Gauss’ flux theorem

2πrlE = πr2lρ/ε0

gives the electric field intensity as

E =
rρ

2ε0
=

r

2πε0

I

vR2
.

As E = −dV
dr
, the potential difference is

∆V =

∫ R

0

E(r)dr =
I

2πε0vR2

∫
rdr =

I

4πε0v

=
9× 109 × 10× 10−3

3× 106 = 30 V .

4128

Cosmic ray flux at ground level is 1/year, 1/min, 1/ms, 1/µs, cm−2

sterad−1.

(Columbia)

Solution:

The answer is 1/(min · cm2· sterad). At ground level, the total cosmic
ray flux is 1.1× 102/(m2· s · sterad), which consists of a hard component
of 0.8 × 102/(m2· s · sterad) and a soft component of 0.3 × 102/(m2· s ·
sterad).

4129

Particle flux in a giant accelerator is 104, 108, 1013, 1018 per pulse.

(Columbia)

Solution:

A typical particle flux in a proton accelerator is 1013/pulse.

4130

Which particle emits the most synchrotron radiation light when bent in

a magnetic field?
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(a) Proton.

(b) Muon.

(c) Electron.

(CCT )

Solution:

The synchrotron radiation is emitted when the trajectory of a charged

particle is bent by a magnetic field. Problem 4125 gives the energy loss

per revolution as

∆E =

(
4π

3

)(
e2

4πε0

)
1

R
β3γ4 ,

where R, the radius of curvature of the trajectory, is given by

R =
mγβc

eB
.

Thus for particles of the same charge and γ, ∆E ∝ m−1. Hence the answer

is (c).

4131

The magnetic bending radius of a 400 GeV particle in 15 kgauss is:

(a) 8.8 km.

(b) 97 m.

(c) 880 m.

(CCT )

Solution:

The formula

p(GeV/c) = 0.3B(T )R(m)

gives

R =
p

0.3B
=

400

0.3× 1.5 = 880 m .

Or, from first principles one can obtain

R =
mγβc

eB
≈ mγc2

eBc
=

400× 109 × 1.6× 10−19
1.6× 10−19 × 1.5× 3× 108 = 880 m ,

as B = 15 kGs = 1.5 T.

Hence the answer is (c).
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Experiments important in history of atomic physics 1113

Fermi plateau 4069

Fermi transition between isospin multiplets 2091

Fine structure of atomic levels 1009, 1028, 1052, 1054, 1055, 1099

Fission 2029, 2030, 2035, 2037, 2041, 2043, 2117

Franck-Hertz experiment 1034

Frequency shift of photon falling through gravity 2099

Fusion 2006, 2044, 2045, 2046

γ-ray absorption 2094, 2095

γ-ray emission 2096, 2097

Geiger-Nuttall law of α-decays 2076, 2078

Gell-Mann–Nishijima relation 3074

Gluons 3082

Gluons, evidence for 3072

G-parity operator 3005

Half life of

particle 4002

radioactive nucleus 2040, 2066, 2077, 2079

Hall effect 1112

Heavy neutrino 3048

Helicity 3043, 3050

Helicity of µ from π decay 4061

Higgs boson 3064

Hund’s rule 1008, 1078, 1082, 1095

Hyperfine structure of atomic levels 1029, 1030, 1041, 1052, 1053

1054, 1099

Inertness of noble gas 1077

Intermediate boson 3059, 3061

Ionization energy 1007, 1009, 1046, 1076

Isobaric analog states 2014, 2069

Isobaric nuclei 2081, 2082

Isospin assignment 2014

Isospin muliplet 2012, 2013
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JJ coupling 1094

Josephson effect 1112

J/ψ particle 3009

K lifetime 4059

production 3058

regeneration 3009

Kinematics of

collision 4013, 4019, 4020, 4021, 4022, 4024, 4025, 4027, 4028

4029, 4030, 4031, 4033, 4034, 4038, 4040, 4054, 4055

decay 4006, 4023, 4041, 4042, 4043, 4044, 4045, 4046, 4047, 4048

4049, 4050, 4051, 4052, 4053, 4056, 4057, 4058

relativistic particle 4003, 4004, 4006, 4008, 4009, 4030

KS/KL ratio 3056, 3057

Lamb-Rutherford experiment 1034

Lamb shift 1008, 1032, 1037

Λ particle production in πp scattering 3021

Landé g-factor 1083, 1091, 1109

Landé interval rule 1008

Lepton number conservation 3011

Lepton types 3011

Lifetime measurements 4103

Lifetimes against different types of interaction 3018

LS coupling 1079, 1080, 1081, 1083, 1088, 1089, 1091, 1094, 1097

Lyman alpha-line 1009

Magnetic moment of

atom 1077

deuteron 2057

electron 1009

nucleus 2015, 2070

Magnetic monopole 2071

Meson of charge 2, argument against 3021

Metal as free electrons in potential well 1014

Molecule, homonuclear 1130

hydrogen 1132

H+
2 1123

Mössbauer spectroscopy 1111
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Multiple-choice questions on

accelerators 4129, 4130

atomic physics 1005, 1018, 1020, 1021, 1023, 1027, 1030, 4069, 4088

1126, 1127

cosmic rays 4128

elementary interactions 3002, 3004, 3007, 3045, 4011, 4070, 4071

4083, 4116

experimental errors 4106, 4117

experimental methodology 1001, 3046, 4089, 4090, 4091, 4092, 4093

4094, 4095, 4096, 4097, 4098, 4099, 4102

nuclear physics 2008, 2040, 2108, 3020

particle kinematics 4100, 4101

particle physics 3008, 3010, 3051, 4062, 4063, 4064, 4065, 4066

4067, 4068, 4074, 4075, 4086, 4087

Neutrino

capture by isotopes 2089

from the sun 2046

interaction cross section 3045, 3046

interaction with matter 3047

mass 3044

oscillation 3068

properties 3042, 3043

types 3042, 3067

Neutron-antineutron oscillation 3069, 3070

Neutron decay modes 3014

Neutron density in uranium 2039

Neutron interaction in scintillator 4078

Neutron irradiation of

gold 2101

Li 2103

nuclei 2104

Neutron passage through graphite rod 4082

Neutron scattering cross sections 2118, 2119, 4079, 4081

Neutron star 2047

Noble gas atomic structure 1077, 1083

Nuclear

binding energy 2025, 2026, 2027, 2028
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excitation energy 2108, 2111

ground state 2035

reaction 2109, 2110, 2112, 2115, 2116, 2120

Nuclear precession in magnetic field 2005

Nuclear radius

determination 2002, 2035

from mirror nuclei 2009, 2010

Nuclear reactor of

breeder type 2042

fission type 2043

Nuclear shell model 2065, 2067, 2068, 2072

magic numbers 2060, 2071

single-particle levels 2061, 2062, 2064, 2069

Nucleon form factor 2021

Nucleon-nucleon interactions 2048, 2090

Nucleus, double-magic 2066

effect of deformation of 2004, 2073

magnetic moment of 2006

models of 2059

Nucleus represented by potential box 2063

N/Z ratio for stable nuclei 2031, 2032

Pairing force 2075

Para- and ortho-states 1134

of He atom 1073, 1077

of hydrogen molecule 1133

Parity of atomic level 1097

Parity of π0 3021

Parity operator 3052

Parity violation in ep scattering 3065

Particle interactions 3013, 3017, 3019, 3037

angular distribution in 4032

conservation laws in 3001, 3006, 3015, 3016, 3025

cross sections for 3037

relative cross sections for 3025, 3026

relative strengths of 3001

threshold for 3019, 3036, 4012, 4014, 4015, 4016, 4017, 4018, 4031

4032
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Particle interactions between

e+, e− 3077

e, ν 3059, 3060

e+, p and e−, p 3021

K0, e 3062

N , N 2090, 3017, 3019

ν, q 3063

π, d 3030, 3019

p, p̄ 3013

Particle tracks in emulsion/bubble chamber 3033, 3069

Particle types 3003

Particle with magnetic moment in magnetic field 1025

Photoexcitation of atom 1010, 1019

Photon interactions in matter 4076, 4077

π quantum numbers and properties 3023

Potential difference across particle beam 4127

Pressure exerted by electron on cavity walls 1024

Proton-radioactivity 2034

Ψ particle 3084, 3085, 3086

Pulsed nuclear magnetic resonance spectroscope 1111

Quantum chromodynamics 3082, 3083

Quantum numbers of hadron 3074, 3075

Quark model of hadron 3072, 3073, 3074, 3075

Radioactive capture p+ n→ d+ γ 2051, 2052

Radioactivity series 2100, 2102

Raman spectrum 1136, 1137

Recombination of split neutron beams 1027

Relative population in energy level 1090

Resonance particles 3034

Resonance states in e+e− annhilation 3089

s wave scattering 1016

Scattering by atom of p 2018

Scattering by hard sphere 2016

Scattering by nucleus of

α 2113

e 2021

p 2023
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Scattering cross section calculations involving

Born approximation 2017

known total cross section 2022

phase shift 2019, 2020

Rutherford formula 1017

Semi-emperical nuclear mass formula 2024, 2036

Separation energy of neutron from nucleus 2071

Σ particle 3028

Singlet and triplet states of hydrogen molecule 1041

Spectral line broadening 1006, 1055

by Doppler effect 1021, 1022

Spectral line intensity 1077, 1084

Spectroscopic notation for atomic levels 1069, 1070, 1071, 1075

1078, 1085, 1089, 1090, 1093, 1116

Spin echo experiment 1110

Spin of free proton 1009

Spin-orbit interaction 1031, 1056

Spontaneous transition, lifetime for 1039

Stern-Gerlach experiment 1015, 1034, 1077, 1114, 1115

SU(3) multiplets 3076, 3078

Synchrotron 4122

System of

bosons 2074

nucleons 2073

two nucleons 2048, 2054, 2055

Time-reversal operator 3052

Transition between molecular levels 1135, 1138, 1140, 1141

Transmission spectrum of HCl 1138

Two-neutrino experiments 3009

Van de Graaff generator experiment 2114

X-ray

absorption spectrum 1103, 1108

emission spectrum determination 1107

K-lines 1102, 1104, 1105

Zeeman effect 1120

Zeeman effect, anomalous 1008




